Sample records for acoustic communication channel

  1. Acoustic MIMO communications in a very shallow water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuehai; Cao, Xiuling; Tong, Feng

    2015-12-01

    Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  2. Multi-carrier Communications over Time-varying Acoustic Channels

    NASA Astrophysics Data System (ADS)

    Aval, Yashar M.

    Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple

  3. A high-frequency warm shallow water acoustic communications channel model and measurements.

    PubMed

    Chitre, Mandar

    2007-11-01

    Underwater acoustic communication is a core enabling technology with applications in ocean monitoring using remote sensors and autonomous underwater vehicles. One of the more challenging underwater acoustic communication channels is the medium-range very shallow warm-water channel, common in tropical coastal regions. This channel exhibits two key features-extensive time-varying multipath and high levels of non-Gaussian ambient noise due to snapping shrimp-both of which limit the performance of traditional communication techniques. A good understanding of the communications channel is key to the design of communication systems. It aids in the development of signal processing techniques as well as in the testing of the techniques via simulation. In this article, a physics-based channel model for the very shallow warm-water acoustic channel at high frequencies is developed, which are of interest to medium-range communication system developers. The model is based on ray acoustics and includes time-varying statistical effects as well as non-Gaussian ambient noise statistics observed during channel studies. The model is calibrated and its accuracy validated using measurements made at sea.

  4. Single- and multi-channel underwater acoustic communication channel capacity: a computational study.

    PubMed

    Hayward, Thomas J; Yang, T C

    2007-09-01

    Acoustic communication channel capacity determines the maximum data rate that can be supported by an acoustic channel for a given source power and source/receiver configuration. In this paper, broadband acoustic propagation modeling is applied to estimate the channel capacity for a time-invariant shallow-water waveguide for a single source-receiver pair and for vertical source and receiver arrays. Without bandwidth constraints, estimated single-input, single-output (SISO) capacities approach 10 megabitss at 1 km range, but beyond 2 km range they decay at a rate consistent with previous estimates by Peloquin and Leinhos (unpublished, 1997), which were based on a sonar equation calculation. Channel capacities subject to source bandwidth constraints are approximately 30-90% lower than for the unconstrained case, and exhibit a significant wind speed dependence. Channel capacity is investigated for single-input, multi-output (SIMO) and multi-input, multi-output (MIMO) systems, both for finite arrays and in the limit of a dense array spanning the entire water column. The limiting values of the SIMO and MIMO channel capacities for the modeled environment are found to be about four times higher and up to 200-400 times higher, respectively, than for the SISO case. Implications for underwater acoustic communication systems are discussed.

  5. Channel coding for underwater acoustic single-carrier CDMA communication system

    NASA Astrophysics Data System (ADS)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  6. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2014-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks , through innovative signal processing, coding, and...4. TITLE AND SUBTITLE Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and...coding: 3) OFDM modulated dynamic coded cooperation in underwater acoustic channels; 3 Localization, Networking , and Testbed: 4) On-demand

  7. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2011-09-30

    channel interference mitigation for underwater acoustic MIMO - OFDM . 3) Turbo equalization for OFDM modulated physical layer network coding. 4) Blind CFO...Underwater Acoustic MIMO - OFDM . MIMO - OFDM has been actively studied for high data rate communications over the bandwidthlimited underwater acoustic...with the cochannel interference (CCI) due to parallel transmissions in MIMO - OFDM . Our proposed receiver has the following components: 1

  8. High-speed acoustic communication by multiplexing orbital angular momentum

    PubMed Central

    Shi, Chengzhi; Dubois, Marc; Wang, Yuan

    2017-01-01

    Long-range acoustic communication is crucial to underwater applications such as collection of scientific data from benthic stations, ocean geology, and remote control of off-shore industrial activities. However, the transmission rate of acoustic communication is always limited by the narrow-frequency bandwidth of the acoustic waves because of the large attenuation for high-frequency sound in water. Here, we demonstrate a high-throughput communication approach using the orbital angular momentum (OAM) of acoustic vortex beams with one order enhancement of the data transmission rate at a single frequency. The topological charges of OAM provide intrinsically orthogonal channels, offering a unique ability to multiplex data transmission within a single acoustic beam generated by a transducer array, drastically increasing the information channels and capacity of acoustic communication. A high spectral efficiency of 8.0 ± 0.4 (bit/s)/Hz in acoustic communication has been achieved using topological charges between −4 and +4 without applying other communication modulation techniques. Such OAM is a completely independent degree of freedom which can be readily integrated with other state-of-the-art communication modulation techniques like quadrature amplitude modulation (QAM) and phase-shift keying (PSK). Information multiplexing through OAM opens a dimension for acoustic communication, providing a data transmission rate that is critical for underwater applications. PMID:28652341

  9. MURI: Impact of Oceanographic Variability on Acoustic Communications

    DTIC Science & Technology

    2011-09-01

    multiplexing ( OFDM ), multiple- input/multiple-output ( MIMO ) transmissions, and multi-user single-input/multiple-output (SIMO) communications. Lastly... MIMO - OFDM communications: Receiver design for Doppler distorted underwater acoustic channels,” Proc. Asilomar Conf. on Signals, Systems, and... MIMO ) will be of particular interest. Validating experimental data will be obtained during the ONR acoustic communications experiment in summer 2008

  10. Ocean Variability Effects on Underwater Acoustic Communications

    DTIC Science & Technology

    2007-09-30

    sea surface was rougher. To recover the transmitted symbols which have been passed through the time-varying multi-path acoustic channels, a new ...B is about 6 dB higher than that during enviromental case A. Due to the large aperture and deployment range of the MPL array, the channel impulse...environmental fluctuations and the performance of coherent underwater acoustic communications presents new insights into the operational effectiveness of

  11. Frequency-selective fading statistics of shallow-water acoustic communication channel with a few multipaths

    NASA Astrophysics Data System (ADS)

    Bae, Minja; Park, Jihyun; Kim, Jongju; Xue, Dandan; Park, Kyu-Chil; Yoon, Jong Rak

    2016-07-01

    The bit error rate of an underwater acoustic communication system is related to multipath fading statistics, which determine the signal-to-noise ratio. The amplitude and delay of each path depend on sea surface roughness, propagation medium properties, and source-to-receiver range as a function of frequency. Therefore, received signals will show frequency-dependent fading. A shallow-water acoustic communication channel generally shows a few strong multipaths that interfere with each other and the resulting interference affects the fading statistics model. In this study, frequency-selective fading statistics are modeled on the basis of the phasor representation of the complex path amplitude. The fading statistics distribution is parameterized by the frequency-dependent constructive or destructive interference of multipaths. At a 16 m depth with a muddy bottom, a wave height of 0.2 m, and source-to-receiver ranges of 100 and 400 m, fading statistics tend to show a Rayleigh distribution at a destructive interference frequency, but a Rice distribution at a constructive interference frequency. The theoretical fading statistics well matched the experimental ones.

  12. Performance analysis of passive time reversal communication technique for multipath interference in shallow sea acoustic channel

    NASA Astrophysics Data System (ADS)

    Kida, Yukihiro; Shimura, Takuya; Deguchi, Mitsuyasu; Watanabe, Yoshitaka; Ochi, Hiroshi; Meguro, Koji

    2017-07-01

    In this study, the performance of passive time reversal (PTR) communication techniques in multipath rich underwater acoustic environments is investigated. It is recognized empirically and qualitatively that a large number of multipath arrivals could generally raise the demodulation result of PTR. However, the relationship between multipath and the demodulation result is hardly evaluated quantitatively. In this study, the efficiency of the PTR acoustic communication techniques for multipath interference cancelation was investigated quantitatively by applying a PTR-DFE (decision feed-back filter) scheme to a synthetic dataset of a horizontal underwater acoustic channel. Mainly, in this study, we focused on the relationship between the signal-to-interference ratio (SIR) of datasets and the output signal-to-noise ratio (OSNR) of demodulation results by a parametric study approach. As a result, a proportional relation between SIR and OSNR is confirmed in low-SNR datasets. It was also found that PTR has a performance limitation, that is OSNR converges to a typical value depending on the number of receivers. In conclusion, results indicate that PTR could utilize the multipath efficiently and also withstand the negative effects of multipath interference at a given limitation.

  13. CSI feedback-based CS for underwater acoustic adaptive modulation OFDM system with channel prediction

    NASA Astrophysics Data System (ADS)

    Kuai, Xiao-yan; Sun, Hai-xin; Qi, Jie; Cheng, En; Xu, Xiao-ka; Guo, Yu-hui; Chen, You-gan

    2014-06-01

    In this paper, we investigate the performance of adaptive modulation (AM) orthogonal frequency division multiplexing (OFDM) system in underwater acoustic (UWA) communications. The aim is to solve the problem of large feedback overhead for channel state information (CSI) in every subcarrier. A novel CSI feedback scheme is proposed based on the theory of compressed sensing (CS). We propose a feedback from the receiver that only feedback the sparse channel parameters. Additionally, prediction of the channel state is proposed every several symbols to realize the AM in practice. We describe a linear channel prediction algorithm which is used in adaptive transmission. This system has been tested in the real underwater acoustic channel. The linear channel prediction makes the AM transmission techniques more feasible for acoustic channel communications. The simulation and experiment show that significant improvements can be obtained both in bit error rate (BER) and throughput in the AM scheme compared with the fixed Quadrature Phase Shift Keying (QPSK) modulation scheme. Moreover, the performance with standard CS outperforms the Discrete Cosine Transform (DCT) method.

  14. Three-dimensional model of hydro acoustic channel for research MIMO systems

    NASA Astrophysics Data System (ADS)

    Fedosov, V. P.; Lomakina, A. V.; Legin, A. A.; Voronin, V. V.

    2017-05-01

    Currently, wireless hydroacoustic modems are actively being developed, which are used to provide efficient data transmission in the hydroacoustic channel. Such kind of developments are relevant for today, as they are used in various fields of science and fields of activity. An example is the connection with underwater vehicles for scientific, research, search and rescue purposes. Development of this kind of communication systems (modems) is a difficult task, as signal propagation is affected by various factors. As a result, the transfer characteristic changes with time, thereby imposing restrictions on the acoustic communication channel. In this regard, the researchers began the task of further study sonar environment and get a detailed mathematical description of the underwater channel. For this, a huge number of field tests were conducted, aimed at studying the underwater acoustic environment. However, the results of the research are always limited by the conditions in which the test took place. Therefore, it is not always possible to apply these results to the required conditions. All of the above features do not allow you to create some kind of a commonly accepted model for the acoustic channel, as studies based on experiments, collected in localized environments without generalizations. This paper presents, the three-dimensional model of the sonar channel for MIMO systems in the coastal zone, based on the acoustic signal propagation characteristics in the presence of multiple paths, the influence of the Doppler effect (as a result of mobile and / or base station traffic), in terms of signal attenuation, receiver characteristics influence and Transmitting antenna, etc.

  15. Effective channel estimation and efficient symbol detection for multi-input multi-output underwater acoustic communications

    NASA Astrophysics Data System (ADS)

    Ling, Jun

    Achieving reliable underwater acoustic communications (UAC) has long been recognized as a challenging problem owing to the scarce bandwidth available and the reverberant spread in both time and frequency domains. To pursue high data rates, we consider a multi-input multi-output (MIMO) UAC system, and our focus is placed on two main issues regarding a MIMO UAC system: (1) channel estimation, which involves the design of the training sequences and the development of a reliable channel estimation algorithm, and (2) symbol detection, which requires interference cancelation schemes due to simultaneous transmission from multiple transducers. To enhance channel estimation performance, we present a cyclic approach for designing training sequences with good auto- and cross-correlation properties, and a channel estimation algorithm called the iterative adaptive approach (IAA). Sparse channel estimates can be obtained by combining IAA with the Bayesian information criterion (BIC). Moreover, we present sparse learning via iterative minimization (SLIM) and demonstrate that SLIM gives similar performance to IAA but at a much lower computational cost. Furthermore, an extension of the SLIM algorithm is introduced to estimate the sparse and frequency modulated acoustic channels. The extended algorithm is referred to as generalization of SLIM (GoSLIM). Regarding symbol detection, a linear minimum mean-squared error based detection scheme, called RELAX-BLAST, which is a combination of vertical Bell Labs layered space-time (V-BLAST) algorithm and the cyclic principle of the RELAX algorithm, is presented and it is shown that RELAX-BLAST outperforms V-BLAST. We show that RELAX-BLAST can be implemented efficiently by making use of the conjugate gradient method and diagonalization properties of circulant matrices. This fast implementation approach requires only simple fast Fourier transform operations and facilitates parallel implementations. The effectiveness of the proposed MIMO schemes

  16. Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications.

    PubMed

    Smith, Kevin B; Abrantes, Antonio A M; Larraza, Andres

    2003-06-01

    The shallow water acoustic communication channel is characterized by strong signal degradation caused by multipath propagation and high spatial and temporal variability of the channel conditions. At the receiver, multipath propagation causes intersymbol interference and is considered the most important of the channel distortions. This paper examines the application of time-reversal acoustic (TRA) arrays, i.e., phase-conjugated arrays (PCAs), that generate a spatio-temporal focus of acoustic energy at the receiver location, eliminating distortions introduced by channel propagation. This technique is self-adaptive and automatically compensates for environmental effects and array imperfections without the need to explicitly characterize the environment. An attempt is made to characterize the influences of a PCA design on its focusing properties with particular attention given to applications in noncoherent underwater acoustic communication systems. Due to the PCA spatial diversity focusing properties, PC arrays may have an important role in an acoustic local area network. Each array is able to simultaneously transmit different messages that will focus only at the destination receiver node.

  17. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    PubMed Central

    Dini, Gianluca; Duca, Angelica Lo

    2012-01-01

    In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead. PMID:23202204

  18. Time Reversal Acoustic Communication Using Filtered Multitone Modulation

    PubMed Central

    Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo

    2015-01-01

    The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process. PMID:26393586

  19. Time Reversal Acoustic Communication Using Filtered Multitone Modulation.

    PubMed

    Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo

    2015-09-17

    The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process.

  20. Long-range multi-carrier acoustic communications in shallow water based on iterative sparse channel estimation.

    PubMed

    Kang, Taehyuk; Song, H C; Hodgkiss, W S; Soo Kim, Jea

    2010-12-01

    Long-range orthogonal frequency division multiplexing (OFDM) acoustic communications is demonstrated using data from the Kauai Acomms MURI 2008 (KAM08) experiment carried out in about 106 m deep shallow water west of Kauai, HI, in June 2008. The source bandwidth was 8 kHz (12-20 kHz), and the data were received by a 16-element vertical array at a distance of 8 km. Iterative sparse channel estimation is applied in conjunction with low-density parity-check decoding. In addition, the impact of diversity combining in a highly inhomogeneous underwater environment is investigated. Error-free transmission using 16-quadtrative amplitude modulation is achieved at a data rate of 10 kb/s.

  1. Acoustic communication in plant-animal interactions.

    PubMed

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Ocean Variability Effects on Underwater Acoustic Communications

    DTIC Science & Technology

    2010-09-30

    fluctuations on noncoherent acoustic communication [11] as well as on phase-coherent communication [12] were investigated for a near-seafloor source over...V. McDonald, and the KauaiEx Group, “Effects of ocean thermocline variability on noncoherent underwater acoustic communications,” J. Acoust. Soc. Am

  3. Carrier frequency offset estimation for an acoustic-electric channel using 16 QAM modulation

    NASA Astrophysics Data System (ADS)

    Cunningham, Michael T.; Anderson, Leonard A.; Wilt, Kyle R.; Chakraborty, Soumya; Saulnier, Gary J.; Scarton, Henry A.

    2016-05-01

    Acoustic-electric channels can be used to send data through metallic barriers, enabling communications where electromagnetic signals are ineffective. This paper considers an acoustic-electric channel that is formed by mounting piezoelectric transducers on metallic barriers that are separated by a thin water layer. The transducers are coupled to the barriers using epoxy and the barriers are positioned to axially-align the PZTs, maximizing energy transfer efficiency. The electrical signals are converted by the transmitting transducers into acoustic waves, which propagate through the elastic walls and water medium to the receiving transducers. The reverberation of the acoustic signals in these channels can produce multipath distortion with a significant delay spread that introduces inter-symbol interference (ISI) into the received signal. While the multipath effects can be severe, the channel does not change rapidly which makes equalization easier. Here we implement a 16-QAM system on this channel, including a method for obtaining accurate carrier frequency offset (CFO) estimates in the presence of the quasi-static multipath propagation. A raised-power approach is considered but found to suffer from excessive data noise resulting from the ISI. An alternative approach that utilizes a pilot tone burst at the start of a data packet is used for CFO estimation and found to be effective. The autocorrelation method is used to estimate the frequency of the received burst. A real-time prototype of the 16 QAM system that uses a Texas Instruments MSP430 microcontroller-based transmitter and a personal computer-based receiver is presented along with performance results.

  4. Experimental Assessment of Different Receiver Structures for Underwater Acoustic Communications over Multipath Channels

    PubMed Central

    Zhang, Guosong; Hovem, Jens M.; Dong, Hefeng

    2012-01-01

    Underwater communication channels are often complicated, and in particular multipath propagation may cause intersymbol interference (ISI). This paper addresses how to remove ISI, and evaluates the performance of three different receiver structures and their implementations. Using real data collected in a high-frequency (10–14 kHz) field experiment, the receiver structures are evaluated by off-line data processing. The three structures are multichannel decision feedback equalizer (DFE), passive time reversal receiver (passive-phase conjugation (PPC) with a single channel DFE), and the joint PPC with multichannel DFE. In sparse channels, dominant arrivals represent the channel information, and the matching pursuit (MP) algorithm which exploits the channel sparseness has been investigated for PPC processing. In the assessment, it is found that: (1) it is advantageous to obtain spatial gain using the adaptive multichannel combining scheme; and (2) the MP algorithm improves the performance of communications using PPC processing. PMID:22438755

  5. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications

    PubMed Central

    Cañete, Francisco J.; López-Fernández, Jesús; García-Corrales, Celia; Sánchez, Antonio; Robles, Encarnación; Rodrigo, Francisco J.; Paris, José F.

    2016-01-01

    Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression. PMID:26907281

  6. Third International Conference on Acoustic Communication by Animals

    DTIC Science & Technology

    2011-09-30

    communications Invited Speakers Peter Tyack cetacean communications Christopher Clark acoustic environment of whales Whitlow Au sound detection and...echolocation by dolphins Magnus Wahlberg sperm whale acoustics Robert Dooling bird hearing Ronald Hoy communication strategies in insects Peter Narins...frogs (6). Topics covered included cognition/language; song and call classification; rule learning; acoustic ecology; communication in noisy

  7. Experimental Demonstration of Long-Range Underwater Acoustic Communication Using a Vertical Sensor Array

    PubMed Central

    Zhao, Anbang; Zeng, Caigao; Hui, Juan; Ma, Lin; Bi, Xuejie

    2017-01-01

    This paper proposes a composite channel virtual time reversal mirror (CCVTRM) for vertical sensor array (VSA) processing and applies it to long-range underwater acoustic (UWA) communication in shallow water. Because of weak signal-to-noise ratio (SNR), it is unable to accurately estimate the channel impulse response of each sensor of the VSA, thus the traditional passive time reversal mirror (PTRM) cannot perform well in long-range UWA communication in shallow water. However, CCVTRM only needs to estimate the composite channel of the VSA to accomplish time reversal mirror (TRM), which can effectively mitigate the inter-symbol interference (ISI) and reduce the bit error rate (BER). In addition, the calculation of CCVTRM is simpler than traditional PTRM. An UWA communication experiment using a VSA of 12 sensors was conducted in the South China Sea. The experiment achieves a very low BER communication at communication rate of 66.7 bit/s over an 80 km range. The results of the sea trial demonstrate that CCVTRM is feasible and can be applied to long-range UWA communication in shallow water. PMID:28653976

  8. Multireceiver Acoustic Communications in Time-Varying Environments

    DTIC Science & Technology

    2014-06-01

    Canberra, ACT, 2012, pp. 1–7. [7] W. Chen and F. Yanjun, “Physical layer design consideration for underwater acoustic sensor networks ,”3rd IEEE Int...analysis of underwater acoustic MIMO communications,”OCEANS, Sydney, NSW, 2010, pp. 1–8. [9] Wines lab (2013). Wireless networks and embedded... NETWORKS ......................................................................3 B. CHALLENGES OF UNDERWATER ACOUSTIC COMMUNICATIONS

  9. Precoding based channel prediction for underwater acoustic OFDM

    NASA Astrophysics Data System (ADS)

    Cheng, En; Lin, Na; Sun, Hai-xin; Yan, Jia-quan; Qi, Jie

    2017-04-01

    The life duration of underwater cooperative network has been the hot topic in recent years. And the problem of node energy consuming is the key technology to maintain the energy balance among all nodes. To ensure energy efficiency of some special nodes and obtain a longer lifetime of the underwater cooperative network, this paper focuses on adopting precoding strategy to preprocess the signal at the transmitter and simplify the receiver structure. Meanwhile, it takes into account the presence of Doppler shifts and long feedback transmission delay in an underwater acoustic communication system. Precoding technique is applied based on channel prediction to realize energy saving and improve system performance. Different precoding methods are compared. Simulated results and experimental results show that the proposed scheme has a better performance, and it can provide a simple receiver and realize energy saving for some special nodes in a cooperative communication.

  10. Low complexity adaptive equalizers for underwater acoustic communications

    NASA Astrophysics Data System (ADS)

    Soflaei, Masoumeh; Azmi, Paeiz

    2014-08-01

    Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggested ways is to use adaptive equalizers. Convergence rate and misadjustment error in adaptive algorithms play important roles in adaptive equalizer performance. In this paper, affine projection algorithm (APA), selective regressor APA(SR-APA), family of selective partial update (SPU) algorithms, family of set-membership (SM) algorithms and selective partial update selective regressor APA (SPU-SR-APA) are compared with conventional algorithms such as the least mean square (LMS) in underwater acoustic communications. We apply experimental data from the Strait of Hormuz for demonstrating the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE) of SR-APA, SPU-APA, SPU-normalized least mean square (SPU-NLMS), SPU-SR-APA, SM-APA and SM-NLMS algorithms decrease in comparison with the LMS algorithm. Also these algorithms have better convergence rates than LMS type algorithm.

  11. Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication.

    PubMed

    Qiao, Gang; Gan, Shuwei; Liu, Songzuo; Ma, Lu; Sun, Zongxin

    2018-05-24

    To improve the throughput of underwater acoustic (UWA) networking, the In-band full-duplex (IBFD) communication is one of the most vital pieces of research. The major drawback of IBFD-UWA communication is Self-Interference (SI). This paper presents a digital SI cancellation algorithm for asynchronous IBFD-UWA communication system. We focus on two issues: one is asynchronous communication dissimilar to IBFD radio communication, the other is nonlinear distortion caused by power amplifier (PA). First, we discuss asynchronous IBFD-UWA signal model with the nonlinear distortion of PA. Then, we design a scheme for asynchronous IBFD-UWA communication utilizing the non-overlapping region between SI and intended signal to estimate the nonlinear SI channel. To cancel the nonlinear distortion caused by PA, we propose an Over-Parameterization based Recursive Least Squares (RLS) algorithm (OPRLS) to estimate the nonlinear SI channel. Furthermore, we present the OPRLS with a sparse constraint to estimate the SI channel, which reduces the requirement of the length of the non-overlapping region. Finally, we verify our concept through simulation and the pool experiment. Results demonstrate that the proposed digital SI cancellation scheme can cancel SI efficiently.

  12. Comparison of two underwater acoustic communications techniques for multi-user access

    NASA Astrophysics Data System (ADS)

    Hursky, Paul; Siderius, T. Martin; Kauaiex Group

    2004-05-01

    Frequency hopped frequency shift keying (FHFSK) and code division multiple access (CDMA) are two different modulation techniques for multiple users to communicate with a single receiver simultaneously. In July 2003, these two techniques were tested alongside each other in a shallow water coastal environment off the coast of Kauai. A variety of instruments were used to measure the prevailing oceanography, enabling detailed modeling of the channel. The channel was acoustically probed using LFM waveforms and m-sequences as well. We will present the results of demodulating the FHFSK and CDMA waveforms and discuss modeling the channel for the purpose of predicting multi-user communications performance. a)Michael B. Porter, Paul Hursky, Martin Siderius (SAIC), Mohsen Badiey (UD), Jerald Caruthers (USM), William S. Hodgkiss, Kaustubha Raghukumar (SIO), Dan Rouseff, Warren Fox (APL-UW), Christian de Moustier, Brian Calder, Barbara J. Kraft (UNH), Keyko McDonald (SPAWARSSC), Peter Stein, James K. Lewis, and Subramaniam Rajan (SSI).

  13. Spatial acoustic signal processing for immersive communication

    NASA Astrophysics Data System (ADS)

    Atkins, Joshua

    Computing is rapidly becoming ubiquitous as users expect devices that can augment and interact naturally with the world around them. In these systems it is necessary to have an acoustic front-end that is able to capture and reproduce natural human communication. Whether the end point is a speech recognizer or another human listener, the reduction of noise, reverberation, and acoustic echoes are all necessary and complex challenges. The focus of this dissertation is to provide a general method for approaching these problems using spherical microphone and loudspeaker arrays.. In this work, a theory of capturing and reproducing three-dimensional acoustic fields is introduced from a signal processing perspective. In particular, the decomposition of the spatial part of the acoustic field into an orthogonal basis of spherical harmonics provides not only a general framework for analysis, but also many processing advantages. The spatial sampling error limits the upper frequency range with which a sound field can be accurately captured or reproduced. In broadband arrays, the cost and complexity of using multiple transducers is an issue. This work provides a flexible optimization method for determining the location of array elements to minimize the spatial aliasing error. The low frequency array processing ability is also limited by the SNR, mismatch, and placement error of transducers. To address this, a robust processing method is introduced and used to design a reproduction system for rendering over arbitrary loudspeaker arrays or binaurally over headphones. In addition to the beamforming problem, the multichannel acoustic echo cancellation (MCAEC) issue is also addressed. A MCAEC must adaptively estimate and track the constantly changing loudspeaker-room-microphone response to remove the sound field presented over the loudspeakers from that captured by the microphones. In the multichannel case, the system is overdetermined and many adaptive schemes fail to converge to

  14. Study of opto-acoustic communication between air and underwater carrier

    NASA Astrophysics Data System (ADS)

    Zong, Si-Guang; Liu, Tao; Cao, Jing; He, Qi-Yi

    2018-02-01

    How to solve the communication problem to the underwater target has turned into one of the subjects that the militarists of all over the world commonly concern. Laser-induced acoustic signal is a new approach for underwater acoustic source, which has much virtue such as high intensity, short pulse and broad frequency. The paper studies the opto-acoustic communication method. The acoustic signal characteristic of laser-induced breakdown is studied and corresponding theory model is systemically analyzed. The opto-acoustic communication experimental measure investigation is formed with the high power laser, water tank and high frequency hydrophone. The characteristic of acoustic signal is analyzed, such as intensity and frequency. This makes a stride for pursing the feasibility of laser-acoustic underwater communication.

  15. Acoustic communication in insect disease vectors

    PubMed Central

    Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio

    2013-01-01

    Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects. PMID:24473800

  16. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.

    PubMed

    Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W

    2012-07-01

    Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Acoustic Differences between Humorous and Sincere Communicative Intentions

    ERIC Educational Resources Information Center

    Hoicka, Elena; Gattis, Merideth

    2012-01-01

    Previous studies indicate that the acoustic features of speech discriminate between positive and negative communicative intentions, such as approval and prohibition. Two studies investigated whether acoustic features of speech can discriminate between two positive communicative intentions: humour and sweet-sincerity, where sweet-sincerity involved…

  18. Acoustic communications for cabled seafloor observatories

    NASA Astrophysics Data System (ADS)

    Freitag, L.; Stojanovic, M.

    2003-04-01

    Cabled seafloor observatories will provide scientists with a continuous presence in both deep and shallow water. In the deep ocean, connecting sensors to seafloor nodes for power and data transfer will require cables and a highly-capable ROV, both of which are potentially expensive. For many applications where very high bandwidth is not required, and where a sensor is already designed to operate on battery power, the use of acoustic links should be considered. Acoustic links are particularly useful for large numbers of low-bandwidth sensors scattered over tens of square kilometers. Sensors used to monitor the chemistry and biology of vent fields are one example. Another important use for acoustic communication is monitoring of AUVs performing pre-programmed or adaptive sampling missions. A high data rate acoustic link with an AUV allows the observer on shore to direct the vehicle in real-time, providing for dynamic event response. Thus both fixed and mobile sensors motivate the development of observatory infrastructure that provides power-efficient, high bandwidth acoustic communication. A proposed system design that can provide the wireless infrastructure, and further examples of its use in networks such as NEPTUNE, are presented.

  19. Improving Passive Time Reversal Underwater Acoustic Communications Using Subarray Processing.

    PubMed

    He, Chengbing; Jing, Lianyou; Xi, Rui; Li, Qinyuan; Zhang, Qunfei

    2017-04-24

    Multichannel receivers are usually employed in high-rate underwater acoustic communication to achieve spatial diversity. In the context of multichannel underwater acoustic communications, passive time reversal (TR) combined with a single-channel adaptive decision feedback equalizer (TR-DFE) is a low-complexity solution to achieve both spatial and temporal focusing. In this paper, we present a novel receiver structure to combine passive time reversal with a low-order multichannel adaptive decision feedback equalizer (TR-MC-DFE) to improve the performance of the conventional TR-DFE. First, the proposed method divides the whole received array into several subarrays. Second, we conduct passive time reversal processing in each subarray. Third, the multiple subarray outputs are equalized with a low-order multichannel DFE. We also investigated different channel estimation methods, including least squares (LS), orthogonal matching pursuit (OMP), and improved proportionate normalized least mean squares (IPNLMS). The bit error rate (BER) and output signal-to-noise ratio (SNR) performances of the receiver algorithms are evaluated using simulation and real data collected in a lake experiment. The source-receiver range is 7.4 km, and the data rate with quadrature phase shift keying (QPSK) signal is 8 kbits/s. The uncoded BER of the single input multiple output (SIMO) systems varies between 1 × 10 - 1 and 2 × 10 - 2 for the conventional TR-DFE, and between 1 × 10 - 2 and 1 × 10 - 3 for the proposed TR-MC-DFE when eight hydrophones are utilized. Compared to conventional TR-DFE, the average output SNR of the experimental data is enhanced by 3 dB.

  20. Acoustic Communications and Navigation for Mobile Under-Ice Sensors

    DTIC Science & Technology

    2017-02-04

    From- To) 04/02/2017 Final Report 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Acoustic Communications and Navigation for Mobile Under-Ice Sensors...development and fielding of a new acoustic communications and navigation system for use on autonomous platforms (gliders and profiling floats) under the...contact below the ice. 15. SUBJECT TERMS Arctic Ocean, Undersea Workstations & Vehicles, Signal Processing, Navigation, Underwater Acoustics 16

  1. Improving Passive Time Reversal Underwater Acoustic Communications Using Subarray Processing

    PubMed Central

    He, Chengbing; Jing, Lianyou; Xi, Rui; Li, Qinyuan; Zhang, Qunfei

    2017-01-01

    Multichannel receivers are usually employed in high-rate underwater acoustic communication to achieve spatial diversity. In the context of multichannel underwater acoustic communications, passive time reversal (TR) combined with a single-channel adaptive decision feedback equalizer (TR-DFE) is a low-complexity solution to achieve both spatial and temporal focusing. In this paper, we present a novel receiver structure to combine passive time reversal with a low-order multichannel adaptive decision feedback equalizer (TR-MC-DFE) to improve the performance of the conventional TR-DFE. First, the proposed method divides the whole received array into several subarrays. Second, we conduct passive time reversal processing in each subarray. Third, the multiple subarray outputs are equalized with a low-order multichannel DFE. We also investigated different channel estimation methods, including least squares (LS), orthogonal matching pursuit (OMP), and improved proportionate normalized least mean squares (IPNLMS). The bit error rate (BER) and output signal-to-noise ratio (SNR) performances of the receiver algorithms are evaluated using simulation and real data collected in a lake experiment. The source-receiver range is 7.4 km, and the data rate with quadrature phase shift keying (QPSK) signal is 8 kbits/s. The uncoded BER of the single input multiple output (SIMO) systems varies between 1×10−1 and 2×10−2 for the conventional TR-DFE, and between 1×10−2 and 1×10−3 for the proposed TR-MC-DFE when eight hydrophones are utilized. Compared to conventional TR-DFE, the average output SNR of the experimental data is enhanced by 3 dB. PMID:28441763

  2. Communication in Pipes Using Acoustic Modems that Provide Minimal Obstruction to Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Archer, Eric D. (Inventor)

    2016-01-01

    A plurality of phased array acoustic communication devices are used to communicate data along a tubulation, such as a well. The phased array acoustic communication devices employ phased arrays of acoustic transducers, such as piezoelectric transducers, to direct acoustic energy in desired directions along the tubulation. The system is controlled by a computer-based controller. Information, including data and commands, is communicated using digital signaling.

  3. Acoustic differences between humorous and sincere communicative intentions.

    PubMed

    Hoicka, Elena; Gattis, Merideth

    2012-11-01

    Previous studies indicate that the acoustic features of speech discriminate between positive and negative communicative intentions, such as approval and prohibition. Two studies investigated whether acoustic features of speech can discriminate between two positive communicative intentions: humour and sweet-sincerity, where sweet-sincerity involved being sincere in a positive, warm-hearted way. In Study 1, 22 mothers read a book containing humorous, sweet-sincere, and neutral-sincere images to their 19- to 24-month-olds. In Study 2, 41 mothers read a book containing humorous or sweet-sincere sentences and images to their 18- to 24-month-olds. Mothers used a higher mean F0 to communicate visual humour as compared to visual sincerity. Mothers used greater F0 mean, range, and standard deviation; greater intensity mean, range, and standard deviation; and a slower speech rate to communicate verbal humour as compared to verbal sweet-sincerity. Mothers used a rising linear contour to communicate verbal humour, but used no specific contour to express verbal sweet-sincerity. We conclude that speakers provide acoustic cues enabling listeners to distinguish between positive communicative intentions. ©2011 The British Psychological Society.

  4. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2013-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks, through innovative signal processing, coding, and navigation...in real enviroments , an offshore testbed has been developed to conduct field experimetns. The testbed consists of four nodes and has been deployed...Leadership by the Connecticut Technology Council. Dr. Zhaohui Wang joined the faculty of the Department of Electrical and Computer Engineering at

  5. Modal processing for acoustic communications in shallow water experiment.

    PubMed

    Morozov, Andrey K; Preisig, James C; Papp, Joseph

    2008-09-01

    Acoustical array data from the Shallow Water Acoustics experiment was processed to show the feasibility of broadband mode decomposition as a preprocessing method to reduce the effective channel delay spread and concentrate received signal energy in a small number of independent channels. The data were collected by a vertical array designed at the Woods Hole Oceanographic Institution. Phase-shift Keying (PSK) m-sequence modulated signals with different carrier frequencies were transmitted at a distance 19.2 km from the array. Even during a strong internal waves activity a low bit error rate was achieved.

  6. Optical Communications Channel Combiner

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  7. Effect of reflected and refracted signals on coherent underwater acoustic communication: results from the Kauai experiment (KauaiEx 2003).

    PubMed

    Rouseff, Daniel; Badiey, Mohsen; Song, Aijun

    2009-11-01

    The performance of a communications equalizer is quantified in terms of the number of acoustic paths that are treated as usable signal. The analysis uses acoustical and oceanographic data collected off the Hawaiian Island of Kauai. Communication signals were measured on an eight-element vertical array at two different ranges, 1 and 2 km, and processed using an equalizer based on passive time-reversal signal processing. By estimating the Rayleigh parameter, it is shown that all paths reflected by the sea surface at both ranges undergo incoherent scattering. It is demonstrated that some of these incoherently scattered paths are still useful for coherent communications. At range of 1 km, optimal communications performance is achieved when six acoustic paths are retained and all paths with more than one reflection off the sea surface are rejected. Consistent with a model that ignores loss from near-surface bubbles, the performance improves by approximately 1.8 dB when increasing the number of retained paths from four to six. The four-path results though are more stable and require less frequent channel estimation. At range of 2 km, ray refraction is observed and communications performance is optimal when some paths with two sea-surface reflections are retained.

  8. Environmental Fluctuations and Acoustic Data Communications

    DTIC Science & Technology

    2015-09-30

    July 2011 along with subsequent analysis of the experiment data. KAM11 Experiment (2011) A shallow water acoustic communications experiment...packet and packet-to-packet variability. Algorithm Design and Experiment Data Analysis Communication receiver algorithm design for shallow water is...exhibited substantial daily oceanographic variability. Analysis of the KAM11 experiment data this past year has focused on fixed source transmissions

  9. Interactive communication channel

    NASA Astrophysics Data System (ADS)

    Chan, R. H.; Mann, M. R.; Ciarrocchi, J. A.

    1985-10-01

    Discussed is an interactive communications channel (ICC) for providing a digital computer with high-performance multi-channel interfaces. Sixteen full duplex channels can be serviced in the ICC with the sequence or scan pattern being programmable and dependent upon the number or channels and their speed. A channel buffer system is used for line interface, and character exchange. The channel buffer system is on a byte basis. The ICC performs frame start and frame end functions, bit stripping and bit stuffing. Data is stored in a memory in block format (256 bytes maximum) by a program control and the ICC maintains byte address information and a block byte count. Data exchange with a memory is made by cycle steals. Error detection is also provided for using a cyclic redundancy check technique.

  10. One-dimensional pressure transfer models for acoustic-electric transmission channels

    NASA Astrophysics Data System (ADS)

    Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.

    2015-09-01

    A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.

  11. Infrared imaging and acoustic sizing of a bubble inside a micro-electro-mechanical system piezo ink channel

    NASA Astrophysics Data System (ADS)

    van der Bos, Arjan; Segers, Tim; Jeurissen, Roger; van den Berg, Marc; Reinten, Hans; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2011-08-01

    Piezo drop-on-demand inkjet printers are used in an increasing number of applications because of their reliable deposition of droplets onto a substrate. Droplets of a few picoliters are ejected from an inkjet nozzle at frequencies of up to 100 kHz. However, the entrapment of an air microbubble in the ink channel can severely impede the productivity and reliability of the printing system. The air bubble disturbs the channel acoustics, resulting in disrupted drop formation or failure of the jetting process. Here we study a micro-electro-mechanical systems-based printhead. By using the actuating piezo transducer in receive mode, the acoustical field inside the channel was monitored, clearly identifying the presence of an air microbubble inside the channel during failure of the jetting process. The infrared visualization technique allowed for the accurate sizing of the bubble, including its dynamics, inside the intact printhead. A model was developed to calculate the mutual interaction between the channel acoustics and the bubble dynamics. The model was validated by simultaneous acoustical and infrared detection of the bubble. The model can predict the presence and size of entrapped air bubbles inside an operating ink channel purely from the acoustic response.

  12. Noise can affect acoustic communication and subsequent spawning success in fish.

    PubMed

    de Jong, Karen; Amorim, M Clara P; Fonseca, Paulo J; Fox, Clive J; Heubel, Katja U

    2018-06-01

    There are substantial concerns that increasing levels of anthropogenic noise in the oceans may impact aquatic animals. Noise can affect animals physically, physiologically and behaviourally, but one of the most obvious effects is interference with acoustic communication. Acoustic communication often plays a crucial role in reproductive interactions and over 800 species of fish have been found to communicate acoustically. There is very little data on whether noise affects reproduction in aquatic animals, and none in relation to acoustic communication. In this study we tested the effect of continuous noise on courtship behaviour in two closely-related marine fishes: the two-spotted goby (Gobiusculus flavescens) and the painted goby (Pomatoschistus pictus) in aquarium experiments. Both species use visual and acoustic signals during courtship. In the two-spotted goby we used a repeated-measures design testing the same individuals in the noise and the control treatment, in alternating order. For the painted goby we allowed females to spawn, precluding a repeated-measures design, but permitting a test of the effect of noise on female spawning decisions. Males of both species reduced acoustic courtship, but only painted gobies also showed less visual courtship in the noise treatment compared to the control. Female painted gobies were less likely to spawn in the noise treatment. Thus, our results provide experimental evidence for negative effects of noise on acoustic communication and spawning success. Spawning is a crucial component of reproduction. Therefore, even though laboratory results should not be extrapolated directly to field populations, our results suggest that reproductive success may be sensitive to noise pollution, potentially reducing fitness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A speech processing study using an acoustic model of a multiple-channel cochlear implant

    NASA Astrophysics Data System (ADS)

    Xu, Ying

    1998-10-01

    A cochlear implant is an electronic device designed to provide sound information for adults and children who have bilateral profound hearing loss. The task of representing speech signals as electrical stimuli is central to the design and performance of cochlear implants. Studies have shown that the current speech- processing strategies provide significant benefits to cochlear implant users. However, the evaluation and development of speech-processing strategies have been complicated by hardware limitations and large variability in user performance. To alleviate these problems, an acoustic model of a cochlear implant with the SPEAK strategy is implemented in this study, in which a set of acoustic stimuli whose psychophysical characteristics are as close as possible to those produced by a cochlear implant are presented on normal-hearing subjects. To test the effectiveness and feasibility of this acoustic model, a psychophysical experiment was conducted to match the performance of a normal-hearing listener using model- processed signals to that of a cochlear implant user. Good agreement was found between an implanted patient and an age-matched normal-hearing subject in a dynamic signal discrimination experiment, indicating that this acoustic model is a reasonably good approximation of a cochlear implant with the SPEAK strategy. The acoustic model was then used to examine the potential of the SPEAK strategy in terms of its temporal and frequency encoding of speech. It was hypothesized that better temporal and frequency encoding of speech can be accomplished by higher stimulation rates and a larger number of activated channels. Vowel and consonant recognition tests were conducted on normal-hearing subjects using speech tokens processed by the acoustic model, with different combinations of stimulation rate and number of activated channels. The results showed that vowel recognition was best at 600 pps and 8 activated channels, but further increases in stimulation rate and

  14. Acoustic communication at the water's edge: evolutionary insights from a mudskipper.

    PubMed

    Polgar, Gianluca; Malavasi, Stefano; Cipolato, Giacomo; Georgalas, Vyron; Clack, Jennifer A; Torricelli, Patrizia

    2011-01-01

    Coupled behavioural observations and acoustical recordings of aggressive dyadic contests showed that the mudskipper Periophthalmodon septemradiatus communicates acoustically while out of water. An analysis of intraspecific variability showed that specific acoustic components may act as tags for individual recognition, further supporting the sounds' communicative value. A correlative analysis amongst acoustical properties and video-acoustical recordings in slow-motion supported first hypotheses on the emission mechanism. Acoustic transmission through the wet exposed substrate was also discussed. These observations were used to support an "exaptation hypothesis", i.e. the maintenance of key adaptations during the first stages of water-to-land vertebrate eco-evolutionary transitions (based on eco-evolutionary and palaeontological considerations), through a comparative bioacoustic analysis of aquatic and semiterrestrial gobiid taxa. In fact, a remarkable similarity was found between mudskipper vocalisations and those emitted by gobioids and other soniferous benthonic fishes.

  15. Fault-tolerant communication channel structures

    NASA Technical Reports Server (NTRS)

    Tai, Ann T. (Inventor); Alkalai, Leon (Inventor); Chau, Savio N. (Inventor)

    2006-01-01

    Systems and techniques for implementing fault-tolerant communication channels and features in communication systems. Selected commercial-off-the-shelf devices can be integrated in such systems to reduce the cost.

  16. Singing whales generate high levels of particle motion: implications for acoustic communication and hearing?

    PubMed

    Mooney, T Aran; Kaplan, Maxwell B; Lammers, Marc O

    2016-11-01

    Acoustic signals are fundamental to animal communication, and cetaceans are often considered bioacoustic specialists. Nearly all studies of their acoustic communication focus on sound pressure measurements, overlooking the particle motion components of their communication signals. Here we characterized the levels of acoustic particle velocity (and pressure) of song produced by humpback whales. We demonstrate that whales generate acoustic fields that include significant particle velocity components that are detectable over relatively long distances sufficient to play a role in acoustic communication. We show that these signals attenuate predictably in a manner similar to pressure and that direct particle velocity measurements can provide bearings to singing whales. Whales could potentially use such information to determine the distance of signalling animals. Additionally, the vibratory nature of particle velocity may stimulate bone conduction, a hearing modality found in other low-frequency specialized mammals, offering a parsimonious mechanism of acoustic energy transduction into the massive ossicles of whale ears. With substantial concerns regarding the effects of increasing anthropogenic ocean noise and major uncertainties surrounding mysticete hearing, these results highlight both an unexplored pathway that may be available for whale acoustic communication and the need to better understand the biological role of acoustic particle motion. © 2016 The Author(s).

  17. Singing whales generate high levels of particle motion: implications for acoustic communication and hearing?

    PubMed Central

    Kaplan, Maxwell B.; Lammers, Marc O.

    2016-01-01

    Acoustic signals are fundamental to animal communication, and cetaceans are often considered bioacoustic specialists. Nearly all studies of their acoustic communication focus on sound pressure measurements, overlooking the particle motion components of their communication signals. Here we characterized the levels of acoustic particle velocity (and pressure) of song produced by humpback whales. We demonstrate that whales generate acoustic fields that include significant particle velocity components that are detectable over relatively long distances sufficient to play a role in acoustic communication. We show that these signals attenuate predictably in a manner similar to pressure and that direct particle velocity measurements can provide bearings to singing whales. Whales could potentially use such information to determine the distance of signalling animals. Additionally, the vibratory nature of particle velocity may stimulate bone conduction, a hearing modality found in other low-frequency specialized mammals, offering a parsimonious mechanism of acoustic energy transduction into the massive ossicles of whale ears. With substantial concerns regarding the effects of increasing anthropogenic ocean noise and major uncertainties surrounding mysticete hearing, these results highlight both an unexplored pathway that may be available for whale acoustic communication and the need to better understand the biological role of acoustic particle motion. PMID:27807249

  18. Acoustic Communication at the Water's Edge: Evolutionary Insights from a Mudskipper

    PubMed Central

    Polgar, Gianluca; Malavasi, Stefano; Cipolato, Giacomo; Georgalas, Vyron; Clack, Jennifer A.; Torricelli, Patrizia

    2011-01-01

    Coupled behavioural observations and acoustical recordings of aggressive dyadic contests showed that the mudskipper Periophthalmodon septemradiatus communicates acoustically while out of water. An analysis of intraspecific variability showed that specific acoustic components may act as tags for individual recognition, further supporting the sounds' communicative value. A correlative analysis amongst acoustical properties and video-acoustical recordings in slow-motion supported first hypotheses on the emission mechanism. Acoustic transmission through the wet exposed substrate was also discussed. These observations were used to support an “exaptation hypothesis”, i.e. the maintenance of key adaptations during the first stages of water-to-land vertebrate eco-evolutionary transitions (based on eco-evolutionary and palaeontological considerations), through a comparative bioacoustic analysis of aquatic and semiterrestrial gobiid taxa. In fact, a remarkable similarity was found between mudskipper vocalisations and those emitted by gobioids and other soniferous benthonic fishes. PMID:21738663

  19. Communication of emotions in vocal expression and music performance: different channels, same code?

    PubMed

    Juslin, Patrik N; Laukka, Petri

    2003-09-01

    Many authors have speculated about a close relationship between vocal expression of emotions and musical expression of emotions. but evidence bearing on this relationship has unfortunately been lacking. This review of 104 studies of vocal expression and 41 studies of music performance reveals similarities between the 2 channels concerning (a) the accuracy with which discrete emotions were communicated to listeners and (b) the emotion-specific patterns of acoustic cues used to communicate each emotion. The patterns are generally consistent with K. R. Scherer's (1986) theoretical predictions. The results can explain why music is perceived as expressive of emotion, and they are consistent with an evolutionary perspective on vocal expression of emotions. Discussion focuses on theoretical accounts and directions for future research.

  20. Effect of an entrained air bubble on the acoustics of an ink channel.

    PubMed

    Jeurissen, Roger; de Jong, Jos; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2008-05-01

    Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the pressure buildup necessary for the droplet formation. The channel acoustics and the air bubble dynamics are modeled. For good agreement with the experimental data it is crucial to include the confined geometry into the model: The air bubble acts back on the acoustic field in the channel and thus on its own dynamics. This two-way coupling limits further bubble growth and thus determines the saturation size of the bubble.

  1. A surface impedance-based three-channel acoustic metasurface retroreflector

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Díaz-Rubio, Ana; Li, Junfei; Cummer, Steven A.

    2018-04-01

    We propose the design and measurement of an acoustic metasurface retroreflector that works at three discrete incident angles. An impedance model is developed such that for acoustic waves impinging at -60°, the reflected wave is defined by the surface impedance of the metasurface, which is realized by a periodic grating. At 0° and 60°, the retroreflection condition can be fulfilled by the diffraction of the surface. The thickness of the metasurface is about half of the operating wavelength and the retroreflector functions without parasitic diffraction associated with conventional gradient-index metasurfaces. Such highly efficient and compact retroreflectors open up possibilities in metamaterial-based acoustic sensing and communications.

  2. Concurrent signal combining and channel estimation in digital communications

    DOEpatents

    Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM

    2011-08-30

    In the reception of digital information transmitted on a communication channel, a characteristic exhibited by the communication channel during transmission of the digital information is estimated based on a communication signal that represents the digital information and has been received via the communication channel. Concurrently with the estimating, the communication signal is used to decide what digital information was transmitted.

  3. Metasurface-based angle-selective multichannel acoustic refractor

    NASA Astrophysics Data System (ADS)

    Liu, Bingyi; Jiang, Yongyuan

    2018-05-01

    We theoretically study the angle-selective refractions of an impedance-matched acoustic gradient-index metasurface, which is integrated with a rigid bar array of a deep subwavelength period. An interesting refraction order appears under the all-angle incidence despite the existence of a critical angle, and notably, the odevity of the phase-discretization level apparently selects the transmitted diffraction orders. We utilize the strategy of multilayered media design to realize a three-channel acoustic refractor, which shows good promise for constructing multifunctional diffractive acoustic elements for acoustic communication.

  4. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.

    PubMed

    Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe

    2018-07-01

    A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2016-08-05

    JPAnalytics LLC CC: DCMA Boston DTIC Director, NRL Progress Report #8 Coupled Research in Ocean Acoustics and Signal Processing for the Next...Generation of Underwater Acoustic Communication Systems Principal Investigator’s Name: Dr. James Preisig Period Covered By Report: 1/20/2016 to 4/19/2016...Technical work this period has spanned two areas. The first of these is VHF Acoustics . During this time period, the Principle Investigator worked with Dr

  6. Photonic channels for quantum communication

    PubMed

    van Enk SJ; Cirac; Zoller

    1998-01-09

    A general photonic channel for quantum communication is defined. By means of local quantum computing with a few auxiliary atoms, this channel can be reduced to one with effectively less noise. A scheme based on quantum interference is proposed that iteratively improves the fidelity of distant entangled particles.

  7. Experimental studies of applications of time-reversal acoustics to noncoherent underwater communications.

    PubMed

    Heinemann, M; Larraza, A; Smith, K B

    2003-06-01

    The most difficult problem in shallow underwater acoustic communications is considered to be the time-varying multipath propagation because it impacts negatively on data rates. At high data rates the intersymbol interference requires adaptive algorithms on the receiver side that lead to computationally intensive and complex signal processing. A novel technique called time-reversal acoustics (TRA) can environmentally adapt the acoustic propagation effects of a complex medium in order to focus energy at a particular target range and depth. Using TRA, the multipath structure is reduced because all the propagation paths add coherently at the intended target location. This property of time-reversal acoustics suggests a potential application in the field of noncoherent acoustic communications. This work presents results of a tank scale experiment using an algorithm for rapid transmission of binary data in a complex underwater environment with the TRA approach. A simple 15-symbol code provides an example of the simplicity and feasibility of the approach. Covert coding due to the inherent scrambling induced by the environment at points other than the intended receiver is also investigated. The experiments described suggest a high potential in data rate for the time-reversal approach in underwater acoustic communications while keeping the computational complexity low.

  8. Implementation and Testing of the JANUS Standard with SSC Pacific’s Software-Defined Acoustic Modem

    DTIC Science & Technology

    2017-10-01

    Communications Outpost (FDECO) Innovative Naval Prototype (INP) Program by the Advanced Photonic Technologies Branch (Code 55360), Space and Naval Warfare...underwater acoustic communication operations with NATO and non-NATO military and civilian maritime assets. iv ACRONYMS SPAWAR Space and Naval Warfare...the center frequency [1]. The ease of implementation and proven robustness in harsh underwater acoustic communication channels paved the way for

  9. Ocean Variability Effects on Underwater Acoustic Communications

    DTIC Science & Technology

    2012-09-30

    2000. [2] B. Li, J. Huang, S. Zhou, K. Ball, M. Stojanovic, L. Freitag, and P. Willett. MIMO - OFDM for high rate underwater acoustic...alternative to orthogonal frequency-division multiplexing ( OFDM ) [2], we developed a multiband transceiver, where a wide frequency band is divided into...multiple separated sub-bands. These sub- bands are several kilohertz in width, much wider than OFDM sub-carriers used in underwater channels

  10. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition.

    PubMed

    Dron, Olivier; Aider, Jean-Luc

    2013-09-01

    It is well-known that particles can be focused at mid-height of a micro-channel using Acoustic Radiation Force (ARF) tuned at the resonance frequency (h=λ/2). The resonance condition is a strong limitation to the use of acoustophoresis (particles manipulation using acoustic force) in many applications. In this study we show that it is possible to focus the particles anywhere along the height of a micro-channel just by varying the acoustic frequency, in contradiction with the resonance condition. This result has been thoroughly checked experimentally. The different physical properties as well as wall materials have been changed. The wall materials is finally the only critical parameters. One of the specificity of the micro-channel is the thickness of the carrier and reflector layer. A preliminary analysis of the experimental results suggests that the acoustic focusing beyond the classic resonance condition can be explained in the framework of the multilayered resonator proposed by Hill [1]. Nevertheless, further numerical studies are needed in order to confirm and fully understand how the acoustic pressure node can be moved over the entire height of the micro channel by varying the acoustic frequency. Despite some uncertainties about the origin of the phenomenon, it is robust and can be used for improved acoustic sorting or manipulation of particles or biological cells in confined set-ups. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. MURI: Impact of Oceanographic Variability on Acoustic Communications

    DTIC Science & Technology

    2012-09-30

    ACSSC.2010.5757934 (2010). [published] [50] K. Tu, T.M. Duman, J.G. Proakis, and M. Stojanovic, “Cooperative MIMO - OFDM communications: Receiver...considered across bands of frequencies in the range 1-50 kHz. Multiple source and receiver cases ( MIMO ) will be of particular interest. Validating...Parabolic Equation (PE) acoustic models. Communication receiver design has included processors for orthogonal frequency division multiplexing ( OFDM

  12. Award 1 Title: Acoustic Communications 2011 Experiment: Deployment Support and Post Experiment Data Handling and Analysis. Award 2 Title: Exploiting Structured Dependencies in the Design of Adaptive Algorithms for Underwater Communication Award. 3 Title: Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2015-09-30

    Wireless Networks (WUWNet’14), Rome, Italy, Nov. 12 ­ 14, 2014. J. Preisig, “ Underwater Acoustic Communications: Enabling the Next Generation at the...on Wireless Communication. M. Pajovic, J. Preisig, “Performance Analytics and Optimal Design of Multichannel Equalizers for Underwater Acoustic Communications”, to appear in IEEE Journal of Oceanic Engineering. 6 ...Exploiting Structured Dependencies in the Design of Adaptive Algorithms for Underwater Communication Award #3

  13. Quantum-secure covert communication on bosonic channels.

    PubMed

    Bash, Boulat A; Gheorghe, Andrei H; Patel, Monika; Habif, Jonathan L; Goeckel, Dennis; Towsley, Don; Guha, Saikat

    2015-10-19

    Computational encryption, information-theoretic secrecy and quantum cryptography offer progressively stronger security against unauthorized decoding of messages contained in communication transmissions. However, these approaches do not ensure stealth--that the mere presence of message-bearing transmissions be undetectable. We characterize the ultimate limit of how much data can be reliably and covertly communicated over the lossy thermal-noise bosonic channel (which models various practical communication channels). We show that whenever there is some channel noise that cannot in principle be controlled by an otherwise arbitrarily powerful adversary--for example, thermal noise from blackbody radiation--the number of reliably transmissible covert bits is at most proportional to the square root of the number of orthogonal modes (the time-bandwidth product) available in the transmission interval. We demonstrate this in a proof-of-principle experiment. Our result paves the way to realizing communications that are kept covert from an all-powerful quantum adversary.

  14. Characterizing phantom arteries with multi-channel laser ultrasonics and photo-acoustics.

    PubMed

    Johnson, Jami L; van Wijk, Kasper; Sabick, Michelle

    2014-03-01

    Multi-channel photo-acoustic and laser ultrasonic waves are used to sense the characteristics of proxies for healthy and diseased vessels. The acquisition system is non-contacting and non-invasive with a pulsed laser source and a laser vibrometer detector. As the wave signatures of our targets are typically low in amplitude, we exploit multi-channel acquisition and processing techniques. These are commonly used in seismology to improve the signal-to-noise ratio of data. We identify vessel proxies with a diameter on the order of 1 mm, at a depth of 18 mm. Variations in scattered and photo-acoustic signatures are related to differences in vessel wall properties and content. The methods described have the potential to improve imaging and better inform interventions for atherosclerotic vessels, such as the carotid artery. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Sexual Hearing: The influence of sex hormones on acoustic communication in frogs

    PubMed Central

    Arch, Victoria S.; Narins, Peter M.

    2009-01-01

    The majority of anuran amphibians (frogs and toads) use acoustic communication to mediate sexual behavior and reproduction. Generally, females find and select their mates using acoustic cues provided by males in the form of conspicuous advertisement calls. In these species, vocal signal production and reception are intimately tied to successful reproduction. Research with anurans has demonstrated that acoustic communication is modulated by reproductive hormones, including gonadal steroids and peptide neuromodulators. Most of these studies have focused on the ways in which hormonal systems influence vocal signal production; however, here we will concentrate on a growing body of literature that examines hormonal modulation of call reception. This literature suggests that reproductive hormones contribute to the coordination of reproductive behaviors between signaler and receiver by modulating sensitivity and spectral filtering of the anuran auditory system. It has become evident that the hormonal systems that influence reproductive behaviors are highly conserved among vertebrate taxa, thus studying the endocrine and neuromodulatory bases of acoustic communication in frogs and toads can lead to insights of broader applicability to hormonal modulation of vertebrate sensory physiology and behavior. PMID:19272318

  16. Ion acoustic wave assisted laser beat wave terahertz generation in a plasma channel

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav; Garg, Deepak

    2018-04-01

    Resonant excitation of terahertz (THz) radiation by non-linear mixing of two lasers in the presence of an electrostatic wave is investigated. The electrostatic wave assists in k matching and contributes to non-linear coupling. In this plasma channel, the electron plasma frequency becomes minimum on the axis. The beat frequency ponderomotive force imparts an oscillating velocity to the electrons. In the presence of an ion-acoustic wave, density perturbation due to the ion-acoustic wave couples with the oscillating velocity of the electrons and give rise to non-linear current that gives rise to an ion-acoustic wave frequency assisted THz radiation field. The normalized field amplitude of ion acoustic wave assisted THz varies inversely for ω/ωp . The field amplitude of ion acoustic wave assisted THz decreases as ω/ωp increases.

  17. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  18. Communication and cooperation in underwater acoustic networks

    NASA Astrophysics Data System (ADS)

    Yerramalli, Srinivas

    In this thesis, we present a study of several problems related to underwater point to point communications and network formation. We explore techniques to improve the achievable data rate on a point to point link using better physical layer techniques and then study sensor cooperation which improves the throughput and reliability in an underwater network. Robust point-to-point communications in underwater networks has become increasingly critical in several military and civilian applications related to underwater communications. We present several physical layer signaling and detection techniques tailored to the underwater channel model to improve the reliability of data detection. First, a simplified underwater channel model in which the time scale distortion on each path is assumed to be the same (single scale channel model in contrast to a more general multi scale model). A novel technique, which exploits the nature of OFDM signaling and the time scale distortion, called Partial FFT Demodulation is derived. It is observed that this new technique has some unique interference suppression properties and performs better than traditional equalizers in several scenarios of interest. Next, we consider the multi scale model for the underwater channel and assume that single scale processing is performed at the receiver. We then derive optimized front end pre-processing techniques to reduce the interference caused during single scale processing of signals transmitted on a multi-scale channel. We then propose an improvised channel estimation technique using dictionary optimization methods for compressive sensing and show that significant performance gains can be obtained using this technique. In the next part of this thesis, we consider the problem of sensor node cooperation among rational nodes whose objective is to improve their individual data rates. We first consider the problem of transmitter cooperation in a multiple access channel and investigate the stability of

  19. Range-dependence of acoustic channel with traveling sinusoidal surface wave.

    PubMed

    Choo, Youngmin; Seong, Woojae; Lee, Keunhwa

    2014-04-01

    Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.

  20. Simulations of acoustic waves in channels and phonation in glottal ducts

    NASA Astrophysics Data System (ADS)

    Yang, Jubiao; Krane, Michael; Zhang, Lucy

    2014-11-01

    Numerical simulations of acoustic wave propagation were performed by solving compressible Navier-Stokes equations using finite element method. To avoid numerical contamination of acoustic field induced by non-physical reflections at computational boundaries, a Perfectly Matched Layer (PML) scheme was implemented to attenuate the acoustic waves and their reflections near these boundaries. The acoustic simulation was further combined with the simulation of interaction of vocal fold vibration and glottal flow, using our fully-coupled Immersed Finite Element Method (IFEM) approach, to study phonation in the glottal channel. In order to decouple the aeroelastic and aeroacoustic aspects of phonation, the airway duct used has a uniform cross section with PML properly applied. The dynamics of phonation were then studied by computing the terms of the equations of motion for a control volume comprised of the fluid in the vicinity of the vocal folds. It is shown that the principal dynamics is comprised of the near cancellation of the pressure force driving the flow through the glottis, and the aerodynamic drag on the vocal folds. Aeroacoustic source strengths are also presented, estimated from integral quantities computed in the source region, as well as from the radiated acoustic field.

  1. Optimal Deployment of Sensor Nodes Based on Performance Surface of Underwater Acoustic Communication

    PubMed Central

    Choi, Jee Woong

    2017-01-01

    The underwater acoustic sensor network (UWASN) is a system that exchanges data between numerous sensor nodes deployed in the sea. The UWASN uses an underwater acoustic communication technique to exchange data. Therefore, it is important to design a robust system that will function even in severely fluctuating underwater communication conditions, along with variations in the ocean environment. In this paper, a new algorithm to find the optimal deployment positions of underwater sensor nodes is proposed. The algorithm uses the communication performance surface, which is a map showing the underwater acoustic communication performance of a targeted area. A virtual force-particle swarm optimization algorithm is then used as an optimization technique to find the optimal deployment positions of the sensor nodes, using the performance surface information to estimate the communication radii of the sensor nodes in each generation. The algorithm is evaluated by comparing simulation results between two different seasons (summer and winter) for an area located off the eastern coast of Korea as the selected targeted area. PMID:29053569

  2. Load-adaptive practical multi-channel communications in wireless sensor networks.

    PubMed

    Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon

    2010-01-01

    In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.

  3. Design and Analysis of Underwater Acoustic Networks with Reflected Links

    NASA Astrophysics Data System (ADS)

    Emokpae, Lloyd

    Underwater acoustic networks (UWANs) have applications in environmental state monitoring, oceanic profile measurements, leak detection in oil fields, distributed surveillance, and navigation. For these applications, sets of nodes are employed to collaboratively monitor an area of interest and track certain events or phenomena. In addition, it is common to find autonomous underwater vehicles (AUVs) acting as mobile sensor nodes that perform search-and-rescue missions, reconnaissance in combat zones, and coastal patrol. These AUVs are to work cooperatively to achieve a desired goal and thus need to be able to, in an ad-hoc manner, establish and sustain communication links in order to ensure some desired level of quality of service. Therefore, each node is required to adapt to environmental changes and be able to overcome broken communication links caused by external noise affecting the communication channel due to node mobility. In addition, since radio waves are quickly absorbed in the water medium, it is common for most underwater applications to rely on acoustic (or sound) rather than radio channels for mid-to-long range communications. However, acoustic channels pose multiple challenging issues, most notably the high transmission delay due to slow signal propagation and the limited channel bandwidth due to high frequency attenuation. Moreover, the inhomogeneous property of the water medium affects the sound speed profile while the signal surface and bottom reflections leads to multipath effects. In this dissertation, we address these networking challenges by developing protocols that take into consideration the underwater physical layer dynamics. We begin by introducing a novel surface-based reflection scheme (SBR), which takes advantage of the multipath effects of the acoustic channel. SBR works by using reflections from the water surface, and bottom, to establish non-line-of-sight (NLOS) communication links. SBR makes it possible to incorporate both line

  4. Diversity-based acoustic communication with a glider in deep water.

    PubMed

    Song, H C; Howe, Bruce M; Brown, Michael G; Andrew, Rex K

    2014-03-01

    The primary use of underwater gliders is to collect oceanographic data within the water column and periodically relay the data at the surface via a satellite connection. In summer 2006, a Seaglider equipped with an acoustic recording system received transmissions from a broadband acoustic source centered at 75 Hz deployed on the bottom off Kauai, Hawaii, while moving away from the source at ranges up to ∼200 km in deep water and diving up to 1000-m depth. The transmitted signal was an m-sequence that can be treated as a binary-phase shift-keying communication signal. In this letter multiple receptions are exploited (i.e., diversity combining) to demonstrate the feasibility of using the glider as a mobile communication gateway.

  5. Proximate and ultimate aspects of acoustic and multimodal communication in butterflyfishes

    NASA Astrophysics Data System (ADS)

    Boyle, Kelly S.

    Communication in social animals is shaped by natural selection on both sender and receiver. Diurnal butterflyfishes use a combination of visual cues like bright color patterns and motor pattern driven displays, acoustic communication, and olfactory cues that may advertise territorial behavior, facilitate recognition of individuals, and provide cues for courtship. This dissertation examines proximate and multimodal communication in several butterflyfishes, with an emphasis on acoustic communication which has recently garnered attention within the Chaetodontidae. Sound production in the genus Forcipiger involves a novel mechanism with synchronous contractions of opposing head muscles at the onset of sound emission and rapid cranial rotation that lags behind sound emission. Acoustic signals in F. flavissimus provide an accurate indicator of body size, and to a lesser extent cranial rotation velocity and acceleration. The closely related Hemitaurichthys polylepis produces rapid pulse trains of similar duration and spectral content to F. flavissimus, but with a dramatically different mechanism which involves contractions of hypaxial musculature at the anterior end of the swim bladder that occur with synchronous muscle action potentials. Both H. polylepis sonic and hypaxial trunk muscle fibers have triads at the z-line, but sonic fibers have smaller cross-sectional areas, more developed sarcoplasmic reticula, longer sarcomere lengths, and wider t-tubules. Sonic motor neurons are located along a long motor column entirely within the spinal cord and are composed of large and small types. Forcipiger flavissimus and F. longirostris are site attached and territorial, with F. flavissimus engaged in harem polygyny and F. longirostris in social monogamy. Both produce similar pulse sounds to conspecifics during territoriality that vary little with respect to communicative context. Chaetodon multicinctus can discriminate between mates and non-mate intruders, but require combined

  6. Energy scavenging system by acoustic wave and integrated wireless communication

    NASA Astrophysics Data System (ADS)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  7. Optimal Scheduling for Underwater Communications in Multiple-user Scenarios

    DTIC Science & Technology

    2014-09-30

    underwater acoustic sensor networks . These techniques aim at consuming as less energy as... underwater acoustic networks disrupt the behavior of surrounding species of marine mammals. As a consequence of these two studies, we aim at developing...Markov models of incremental redundancy hybrid ARQ over underwater acoustic channels. Elsevier Journal on Ad-hoc Networks (Special Issue on Underwater Communications and Networks ), 2014. 4

  8. Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications

    PubMed Central

    He, Chengbing; Xi, Rui; Wang, Han; Jing, Lianyou; Shi, Wentao; Zhang, Qunfei

    2017-01-01

    Phase-coherent underwater acoustic (UWA) communication systems typically employ multiple hydrophones in the receiver to achieve spatial diversity gain. However, small underwater platforms can only carry a single transducer which can not provide spatial diversity gain. In this paper, we propose single-carrier with frequency domain equalization (SC-FDE) for phase-coherent synthetic aperture acoustic communications in which a virtual array is generated by the relative motion between the transmitter and the receiver. This paper presents synthetic aperture acoustic communication results using SC-FDE through data collected during a lake experiment in January 2016. The performance of two receiver algorithms is analyzed and compared, including the frequency domain equalizer (FDE) and the hybrid time frequency domain equalizer (HTFDE). The distances between the transmitter and the receiver in the experiment were about 5 km. The bit error rate (BER) and output signal-to-noise ratio (SNR) performances with different receiver elements and transmission numbers were presented. After combining multiple transmissions, error-free reception using a convolution code with a data rate of 8 kbps was demonstrated. PMID:28684683

  9. AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Yoon, Seokhoon; Azad, Abul K.; Oh, Hoon; Kim, Sunghwan

    2012-01-01

    Deploying a multi-hop underwater acoustic sensor network (UASN) in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol), which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs). In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved. PMID:22438740

  10. AURP: an AUV-aided underwater routing protocol for underwater acoustic sensor networks.

    PubMed

    Yoon, Seokhoon; Azad, Abul K; Oh, Hoon; Kim, Sunghwan

    2012-01-01

    Deploying a multi-hop underwater acoustic sensor network (UASN) in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol), which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs). In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved.

  11. Development and evaluation of an acoustic device to estimate size distribution of channel catfish in commercial ponds

    USDA-ARS?s Scientific Manuscript database

    As one step in the continued effort to utilize acoustic methods and techniques to the betterment of catfish aquaculture, an acoustic “catfish sizer” was designed to determine the size distribution of Channel Catfish Ictalurus punctatus in commercial ponds. The catfish sizer employed a custom-built 4...

  12. Nonverbal channel use in communication of emotion: how may depend on why.

    PubMed

    App, Betsy; McIntosh, Daniel N; Reed, Catherine L; Hertenstein, Matthew J

    2011-06-01

    This study investigated the hypothesis that different emotions are most effectively conveyed through specific, nonverbal channels of communication: body, face, and touch. Experiment 1 assessed the production of emotion displays. Participants generated nonverbal displays of 11 emotions, with and without channel restrictions. For both actual production and stated preferences, participants favored the body for embarrassment, guilt, pride, and shame; the face for anger, disgust, fear, happiness, and sadness; and touch for love and sympathy. When restricted to a single channel, participants were most confident about their communication when production was limited to the emotion's preferred channel. Experiment 2 examined the reception or identification of emotion displays. Participants viewed videos of emotions communicated in unrestricted and restricted conditions and identified the communicated emotions. Emotion identification in restricted conditions was most accurate when participants viewed emotions displayed via the emotion's preferred channel. This study provides converging evidence that some emotions are communicated predominantly through different nonverbal channels. Further analysis of these channel-emotion correspondences suggests that the social function of an emotion predicts its primary channel: The body channel promotes social-status emotions, the face channel supports survival emotions, and touch supports intimate emotions.

  13. Reliable quantum communication over a quantum relay channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu; Imre, Sandor

    2014-12-04

    We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.

  14. Implementing statistical analysis in multi-channel acoustic impact-echo testing of concrete bridge decks: Determining thresholds for delamination detection

    NASA Astrophysics Data System (ADS)

    Hendricks, Lorin; Spencer Guthrie, W.; Mazzeo, Brian

    2018-04-01

    An automated acoustic impact-echo testing device with seven channels has been developed for faster surveying of bridge decks. Due to potential variations in bridge deck overlay thickness, varying conditions between testing passes, and occasional imprecise equipment calibrations, a method that can account for variations in deck properties and testing conditions was necessary to correctly interpret the acoustic data. A new methodology involving statistical analyses was therefore developed. After acoustic impact-echo data are collected and analyzed, the results are normalized by the median for each channel, a Gaussian distribution is fit to the histogram of the data, and the Kullback-Leibler divergence test or Otsu's method is then used to determine the optimum threshold for differentiating between intact and delaminated concrete. The new methodology was successfully applied to individual channels of previously unusable acoustic impact-echo data obtained from a three-lane interstate bridge deck surfaced with a polymer overlay, and the resulting delamination map compared very favorably with the results of a manual deck sounding survey.

  15. Research on Localization Algorithms Based on Acoustic Communication for Underwater Sensor Networks

    PubMed Central

    Fan, Liying; Wu, Shan; Yan, Xueting

    2017-01-01

    The water source, as a significant body of the earth, with a high value, serves as a hot topic to study Underwater Sensor Networks (UWSNs). Various applications can be realized based on UWSNs. Our paper mainly concentrates on the localization algorithms based on the acoustic communication for UWSNs. An in-depth survey of localization algorithms is provided for UWSNs. We first introduce the acoustic communication, network architecture, and routing technique in UWSNs. The localization algorithms are classified into five aspects, namely, computation algorithm, spatial coverage, range measurement, the state of the nodes and communication between nodes that are different from all other survey papers. Moreover, we collect a lot of pioneering papers, and a comprehensive comparison is made. In addition, some challenges and open issues are raised in our paper. PMID:29301369

  16. Applications of Time-Reversal Processing for Planetary Surface Communications

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2007-01-01

    Due to the power constraints imposed on wireless sensor and communication networks deployed on a planetary surface during exploration, energy efficient transfer of data becomes a critical issue. In situations where groups of nodes within a network are located in relatively close proximity, cooperative communication techniques can be utilized to improve the range, data rate, power efficiency, and lifetime of the network. In particular, if the point-to-point communication channels on the network are well modeled as frequency non-selective, distributed or cooperative beamforming can employed. For frequency-selective channels, beamforming itself is not generally appropriate, but a natural generalization of it, time-reversal communication (TRC), can still be effective. Time-reversal processing has been proposed and studied previously for other applications, including acoustical imaging, electromagnetic imaging, underwater acoustic communication, and wireless communication channels. In this paper, we study both the theoretical advantages and the experimental performance of cooperative TRC for wireless communication on planetary surfaces. We give a brief introduction to TRC and present several scenarios where TRC could be profitably employed during planetary exploration. We also present simulation results illustrating the performance of cooperative TRC employed in a complex multipath environment and discuss the optimality of cooperative TRC for data aggregation in wireless sensor networks

  17. Secure quantum communication using classical correlated channel

    NASA Astrophysics Data System (ADS)

    Costa, D.; de Almeida, N. G.; Villas-Boas, C. J.

    2016-10-01

    We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice's measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.

  18. Modeling and characterization of different channels based on human body communication.

    PubMed

    Jingzhen Li; Zedong Nie; Yuhang Liu; Lei Wang

    2017-07-01

    Human body communication (HBC), which uses the human body as a transmission medium for electrical signals, provides a prospective communication solution for body sensor networks (BSNs). In this paper, an inhomogeneous model which includes the tissue layers of skin, fat, and muscle is proposed to study the propagation characteristics of different HBC channels. Specifically, the HBC channels, namely, the on-body to on-body (OB-OB)channel, on-body to in-body (OB-IB) channel, in-body to on-body (IB-OB) channel, and in-body to in-body (IB-IB)channel, are studied over different frequencies (from 1MHz to 100MHz) through numerical simulations with finite-difference time-domain (FDTD) method. The results show that the gain of OB-IB channel and IB-OB channel is almost the same. The gain of IB-IB channel is greater than other channels in the frequency range 1MHz to 70MHz. In addition, the gain of all channels is associated with the channel length and communication frequency. The simulations are verified by experimental measurements in a porcine tissue sample. The results show that the simulations are in agreement with the measurements.

  19. Multichannel myopic deconvolution in underwater acoustic channels via low-rank recovery

    PubMed Central

    Tian, Ning; Byun, Sung-Hoon; Sabra, Karim; Romberg, Justin

    2017-01-01

    This paper presents a technique for solving the multichannel blind deconvolution problem. The authors observe the convolution of a single (unknown) source with K different (unknown) channel responses; from these channel outputs, the authors want to estimate both the source and the channel responses. The authors show how this classical signal processing problem can be viewed as solving a system of bilinear equations, and in turn can be recast as recovering a rank-1 matrix from a set of linear observations. Results of prior studies in the area of low-rank matrix recovery have identified effective convex relaxations for problems of this type and efficient, scalable heuristic solvers that enable these techniques to work with thousands of unknown variables. The authors show how a priori information about the channels can be used to build a linear model for the channels, which in turn makes solving these systems of equations well-posed. This study demonstrates the robustness of this methodology to measurement noises and parametrization errors of the channel impulse responses with several stylized and shallow water acoustic channel simulations. The performance of this methodology is also verified experimentally using shipping noise recorded on short bottom-mounted vertical line arrays. PMID:28599565

  20. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  1. SystemC modelling of wireless communication channel

    NASA Astrophysics Data System (ADS)

    Conti, Massimo; Orcioni, Simone

    2011-05-01

    This paper presents the definition in SystemC of wireless channels at different levels of abstraction. The different levels of description of the wireless channel can be easily interchanged allowing the reuse of the application and baseband layers in a high level analysis of the network or in a deep analysis of the communication between the wireless devices.

  2. Real-Time Communication Support for Underwater Acoustic Sensor Networks †.

    PubMed

    Santos, Rodrigo; Orozco, Javier; Micheletto, Matias; Ochoa, Sergio F; Meseguer, Roc; Millan, Pere; Molina, And Carlos

    2017-07-14

    Underwater sensor networks represent an important and promising field of research due to the large diversity of underwater ubiquitous applications that can be supported by these networks, e.g., systems that deliver tsunami and oil spill warnings, or monitor submarine ecosystems. Most of these monitoring and warning systems require real-time communication in wide area networks that have a low density of nodes. The underwater communication medium involved in these networks is very harsh and imposes strong restrictions to the communication process. In this scenario, the real-time transmission of information is done mainly using acoustic signals, since the network nodes are not physically close. The features of the communication scenario and the requirements of the communication process represent major challenges for designers of both, communication protocols and monitoring and warning systems. The lack of models to represent these networks is the main stumbling block for the proliferation of underwater ubiquitous systems. This paper presents a real-time communication model for underwater acoustic sensor networks (UW-ASN) that are designed to cover wide areas with a low density of nodes, using any-to-any communication. This model is analytic, considers two solution approaches for scheduling the real-time messages, and provides a time-constraint analysis for the network performance. Using this model, the designers of protocols and underwater ubiquitous systems can quickly prototype and evaluate their solutions in an evolving way, in order to determine the best solution to the problem being addressed. The suitability of the proposal is illustrated with a case study that shows the performance of a UW-ASN under several initial conditions. This is the first analytic model for representing real-time communication in this type of network, and therefore, it opens the door for the development of underwater ubiquitous systems for several application scenarios.

  3. Real-Time Communication Support for Underwater Acoustic Sensor Networks †

    PubMed Central

    Santos, Rodrigo; Orozco, Javier; Micheletto, Matias

    2017-01-01

    Underwater sensor networks represent an important and promising field of research due to the large diversity of underwater ubiquitous applications that can be supported by these networks, e.g., systems that deliver tsunami and oil spill warnings, or monitor submarine ecosystems. Most of these monitoring and warning systems require real-time communication in wide area networks that have a low density of nodes. The underwater communication medium involved in these networks is very harsh and imposes strong restrictions to the communication process. In this scenario, the real-time transmission of information is done mainly using acoustic signals, since the network nodes are not physically close. The features of the communication scenario and the requirements of the communication process represent major challenges for designers of both, communication protocols and monitoring and warning systems. The lack of models to represent these networks is the main stumbling block for the proliferation of underwater ubiquitous systems. This paper presents a real-time communication model for underwater acoustic sensor networks (UW-ASN) that are designed to cover wide areas with a low density of nodes, using any-to-any communication. This model is analytic, considers two solution approaches for scheduling the real-time messages, and provides a time-constraint analysis for the network performance. Using this model, the designers of protocols and underwater ubiquitous systems can quickly prototype and evaluate their solutions in an evolving way, in order to determine the best solution to the problem being addressed. The suitability of the proposal is illustrated with a case study that shows the performance of a UW-ASN under several initial conditions. This is the first analytic model for representing real-time communication in this type of network, and therefore, it opens the door for the development of underwater ubiquitous systems for several application scenarios. PMID:28708093

  4. Mutual information of optical communication in phase-conjugating Gaussian channels

    NASA Astrophysics Data System (ADS)

    Schäfermeier, Clemens; Andersen, Ulrik L.

    2018-03-01

    In all practical communication channels, the code word consists of Gaussian states and the measurement strategy is often a Gaussian detector such as homodyning or heterodyning. We investigate the communication performance using a phase-conjugated alphabet and joint Gaussian detection in a phase-insensitive amplifying channel. We find that a communication scheme consisting of a phase-conjugating alphabet of coherent states and a joint detection strategy significantly outperforms a standard coherent-state strategy based in individual detection. Moreover, we show that the performance can be further enhanced by using entanglement and that the performance is completely independent of the gain of the phase-insensitively amplifying channel.

  5. An integrated optical/acoustic communication system for seafloor observatories: A field test of high data rate communications at CORK 857D

    NASA Astrophysics Data System (ADS)

    Tivey, M.; Farr, N.; Ware, J.; Pontbriand, C.

    2010-12-01

    We report the successful deployment and testing of an underwater optical communication system that provides high data rate communications over a range of 100 meters from a deep sea borehole observatory located in the northeast Pacific. Optical underwater communications offers many advantages over acoustic or underwater wet mateable connections (UWMC). UMWCs requires periodic visits from a submersible or ROV to plug in and download data. Typically, these vehicles cannot perform any other tasks during these download periods - their time on station is limited, restricting the amount of data that can be downloaded. To eliminate the need for UWMCs requires the use of remote communication techniques such as acoustics or optical communications. Optical communications is capable of high data rates up to 10 mega bits per sec (Mbps) compared to acoustic data rates of 57 Kbps. We have developed an integrated optical/acoustic telemetry system (OTS) that uses an acoustic command system to control a high bandwidth, low latency optical communication system. In July 2010, we used the deep submersible ALVIN to install the Optical Telemetry System (OTS) at CORK 857D. The CORK is instrumented with a thermistor string and pressure sensors that record downhole formation pressures and temperatures within oceanic basement that is pressure sealed from the overlying water column. The seafloor OTS was plugged into the CORK’s existing UWMC to provide an optical and acoustic communication interface and additional data storage and battery power for the CORK to sample at 1 Hz data-rate, an increase over the normal 15 sec data sample rate. Using a CTD-mounted OTS lowered by wire from a surface ship, we established an optical communication link at 100 meters range at rates of 1, 5 and 10 Mbps with no bit errors. Tests were also done to establish the optical range of various data rates and the optical power of the system. After a week, we repeated the CTD-OTS experiment and downloaded 20 Mbytes

  6. Visual and acoustic communication in non-human animals: a comparison.

    PubMed

    Rosenthal, G G; Ryan, M J

    2000-09-01

    The visual and auditory systems are two major sensory modalities employed in communication. Although communication in these two sensory modalities can serve analogous functions and evolve in response to similar selection forces, the two systems also operate under different constraints imposed by the environment and the degree to which these sensory modalities are recruited for non-communication functions. Also, the research traditions in each tend to differ, with studies of mechanisms of acoustic communication tending to take a more reductionist tack often concentrating on single signal parameters, and studies of visual communication tending to be more concerned with multivariate signal arrays in natural environments and higher level processing of such signals. Each research tradition would benefit by being more expansive in its approach.

  7. Investigation of the Mechanism of Generation of Acoustic Oscillations inside Complicated Curvilinear Channels

    NASA Astrophysics Data System (ADS)

    Mitrofanova, O. V.; Bayramukov, A. S.; Fedorinov, A. V.

    2017-11-01

    There are presented some results of computational-theoretical research on identifying thermo-physical features and topology of high-velocity curved and swirl flows, which are occur inside complicated channels of collector systems, active zones and nuclear power installations equipment with pressurized water reactors. Cylindrical curved channels of different configurations and various combinations of bends and cross sectional areas were considered as modeling objects. Results of computational experiments to determine velocity, pressure, vorticity and temperature fields in transverse and longitudinal sections of the pipeline showed that the complicated geometry of the channels can cause to large-scale swirl of flow, cavitation effects and generation acoustic fluctuations with wide spectrum of sound frequencies for the coolant in the dynamic modes.

  8. First Annual Progress Report on Transmission of Information by Acoustic Communication along Metal Pathways in Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heifetz, A.; Bakhtiari, S.; Huang, X.

    The objective of this project is to develop and demonstrate methods for transmission of information in nuclear facilities by acoustic means along existing in-place metal piping infrastructure. Pipes are omnipresent in a nuclear facility, and penetrate enclosures and partitions, such as the containment building wall. In the envisioned acoustic communication (AC) system, packets of information will be transmitted as guided acoustic waves along pipes. Performance of AC hardware and network protocols for efficient and secure communications under development in this project will be eventually evaluated in a representative nuclear power plant environment. Research efforts in the first year of thismore » project have been focused on identification of appropriate transducers, and evaluation of their performance for information transmission along nuclear-grade metallic pipes. COMSOL computer simulations were performed to study acoustic wave generation, propagation, and attenuation on pipes. An experimental benchtop system was used to evaluate signal attenuation and spectral dispersion using piezo-electric transducers (PZTs) and electromagnetic acoustic transducers (EMATs). Communication protocols under evaluation consisted on-off keying (OOK) signal modulation, in particular amplitude shift keying (ASK) and phase shift keying (PSK). Tradeoffs between signal power and communication data rate were considered for ASK and PSK coding schemes.« less

  9. An Adaptive OFDMA-Based MAC Protocol for Underwater Acoustic Wireless Sensor Networks

    PubMed Central

    Khalil, Issa M.; Gadallah, Yasser; Hayajneh, Mohammad; Khreishah, Abdallah

    2012-01-01

    Underwater acoustic wireless sensor networks (UAWSNs) have many applications across various civilian and military domains. However, they suffer from the limited available bandwidth of acoustic signals and harsh underwater conditions. In this work, we present an Orthogonal Frequency Division Multiple Access (OFDMA)-based Media Access Control (MAC) protocol that is configurable to suit the operating requirements of the underwater sensor network. The protocol has three modes of operation, namely random, equal opportunity and energy-conscious modes of operation. Our MAC design approach exploits the multi-path characteristics of a fading acoustic channel to convert it into parallel independent acoustic sub-channels that undergo flat fading. Communication between node pairs within the network is done using subsets of these sub-channels, depending on the configurations of the active mode of operation. Thus, the available limited bandwidth gets fully utilized while completely avoiding interference. We derive the mathematical model for optimal power loading and subcarrier selection, which is used as basis for all modes of operation of the protocol. We also conduct many simulation experiments to evaluate and compare our protocol with other Code Division Multiple Access (CDMA)-based MAC protocols. PMID:23012517

  10. An adaptive OFDMA-based MAC protocol for underwater acoustic wireless sensor networks.

    PubMed

    Khalil, Issa M; Gadallah, Yasser; Hayajneh, Mohammad; Khreishah, Abdallah

    2012-01-01

    Underwater acoustic wireless sensor networks (UAWSNs) have many applications across various civilian and military domains. However, they suffer from the limited available bandwidth of acoustic signals and harsh underwater conditions. In this work, we present an Orthogonal Frequency Division Multiple Access (OFDMA)-based Media Access Control (MAC) protocol that is configurable to suit the operating requirements of the underwater sensor network. The protocol has three modes of operation, namely random, equal opportunity and energy-conscious modes of operation. Our MAC design approach exploits the multi-path characteristics of a fading acoustic channel to convert it into parallel independent acoustic sub-channels that undergo flat fading. Communication between node pairs within the network is done using subsets of these sub-channels, depending on the configurations of the active mode of operation. Thus, the available limited bandwidth gets fully utilized while completely avoiding interference. We derive the mathematical model for optimal power loading and subcarrier selection, which is used as basis for all modes of operation of the protocol. We also conduct many simulation experiments to evaluate and compare our protocol with other Code Division Multiple Access (CDMA)-based MAC protocols.

  11. Energy reduction using multi-channels optical wireless communication based OFDM

    NASA Astrophysics Data System (ADS)

    Darwesh, Laialy; Arnon, Shlomi

    2017-10-01

    In recent years, an increasing number of data center networks (DCNs) have been built to provide various cloud applications. Major challenges in the design of next generation DC networks include reduction of the energy consumption, high flexibility and scalability, high data rates, minimum latency and high cyber security. Use of optical wireless communication (OWC) to augment the DC network could help to confront some of these challenges. In this paper we present an OWC multi channels communication method that could lead to significant energy reduction of the communication equipment. The method is to convert a high speed serial data stream to many slower and parallel streams and vies versa at the receiver. We implement this concept of multi channels using optical orthogonal frequency division multiplexing (O-OFDM) method. In our scheme, we use asymmetrically clipped optical OFDM (ACO-OFDM). Our results show that the realization of multi channels OFDM (ACO-OFDM) methods reduces the total energy consumption exponentially, as the number of channels transmitted through them rises.

  12. Integrated source and channel encoded digital communications system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1974-01-01

    Studies on the digital communication system for the direct communication links from ground to space shuttle and the links involving the Tracking and Data Relay Satellite (TDRS). Three main tasks were performed:(1) Channel encoding/decoding parameter optimization for forward and reverse TDRS links,(2)integration of command encoding/decoding and channel encoding/decoding; and (3) modulation coding interface study. The general communication environment is presented to provide the necessary background for the tasks and to provide an understanding of the implications of the results of the studies.

  13. Channel Equalization for Single Carrier MIMO Underwater Acoustic Communications

    DTIC Science & Technology

    2010-01-01

    II Tx 1 Tx 2 Symbol mapping s1 s2 x1 x2 sa Figure 2: Signalling at the transmitter in Makai05 experiment. fc = 32 kHz and the symbol interval was...frequency was fc = 37.5 kHz and the symbol interval was 0.05ms. The occupied channel bandwidth was fb = 25 kHz due to a pulse shaping filter with roll...water. QPSK modulation was used with a symbol rate of 4 ksps. The carrier frequency was fc = 17 kHz. The structure of the transmission packet is

  14. Disordered speech disrupts conversational entrainment: a study of acoustic-prosodic entrainment and communicative success in populations with communication challenges

    PubMed Central

    Borrie, Stephanie A.; Lubold, Nichola; Pon-Barry, Heather

    2015-01-01

    Conversational entrainment, a pervasive communication phenomenon in which dialogue partners adapt their behaviors to align more closely with one another, is considered essential for successful spoken interaction. While well-established in other disciplines, this phenomenon has received limited attention in the field of speech pathology and the study of communication breakdowns in clinical populations. The current study examined acoustic-prosodic entrainment, as well as a measure of communicative success, in three distinctly different dialogue groups: (i) healthy native vs. healthy native speakers (Control), (ii) healthy native vs. foreign-accented speakers (Accented), and (iii) healthy native vs. dysarthric speakers (Disordered). Dialogue group comparisons revealed significant differences in how the groups entrain on particular acoustic–prosodic features, including pitch, intensity, and jitter. Most notably, the Disordered dialogues were characterized by significantly less acoustic-prosodic entrainment than the Control dialogues. Further, a positive relationship between entrainment indices and communicative success was identified. These results suggest that the study of conversational entrainment in speech pathology will have essential implications for both scientific theory and clinical application in this domain. PMID:26321996

  15. Visual communications with side information via distributed printing channels: extended multimedia and security perspectives

    NASA Astrophysics Data System (ADS)

    Voloshynovskiy, Sviatoslav V.; Koval, Oleksiy; Deguillaume, Frederic; Pun, Thierry

    2004-06-01

    In this paper we address visual communications via printing channels from an information-theoretic point of view as communications with side information. The solution to this problem addresses important aspects of multimedia data processing, security and management, since printed documents are still the most common form of visual information representation. Two practical approaches to side information communications for printed documents are analyzed in the paper. The first approach represents a layered joint source-channel coding for printed documents. This approach is based on a self-embedding concept where information is first encoded assuming a Wyner-Ziv set-up and then embedded into the original data using a Gel'fand-Pinsker construction and taking into account properties of printing channels. The second approach is based on Wyner-Ziv and Berger-Flynn-Gray set-ups and assumes two separated communications channels where an appropriate distributed coding should be elaborated. The first printing channel is considered to be a direct visual channel for images ("analog" channel with degradations). The second "digital channel" with constrained capacity is considered to be an appropriate auxiliary channel. We demonstrate both theoretically and practically how one can benefit from this sort of "distributed paper communications".

  16. Characterizing Social Networks and Communication Channels in a Web-Based Peer Support Intervention.

    PubMed

    Owen, Jason E; Curran, Michaela; Bantum, Erin O'Carroll; Hanneman, Robert

    2016-06-01

    Web and mobile (mHealth) interventions have promise for improving health outcomes, but engagement and attrition may be reducing effect sizes. Because social networks can improve engagement, which is a key mechanism of action, understanding the structure and potential impact of social networks could be key to improving mHealth effects. This study (a) evaluates social network characteristics of four distinct communication channels (discussion board, chat, e-mail, and blog) in a large social networking intervention, (b) predicts membership in online communities, and (c) evaluates whether community membership impacts engagement. Participants were 299 cancer survivors with significant distress using the 12-week health-space.net intervention. Social networking attributes (e.g., density and clustering) were identified separately for each type of network communication (i.e., discussion board, blog, web mail, and chat). Each channel demonstrated high levels of clustering, and being a community member in one communication channel was associated with being in the same community in each of the other channels (φ = 0.56-0.89, ps < 0.05). Predictors of community membership differed across communication channels, suggesting that each channel reached distinct types of users. Finally, membership in a discussion board, chat, or blog community was strongly associated with time spent engaging with coping skills exercises (Ds = 1.08-1.84, ps < 0.001) and total time of intervention (Ds = 1.13-1.80, ps < 0.001). mHealth interventions that offer multiple channels for communication allow participants to expand the number of individuals with whom they are communicating, create opportunities for communicating with different individuals in distinct channels, and likely enhance overall engagement.

  17. Characterizing Social Networks and Communication Channels in a Web-Based Peer Support Intervention

    PubMed Central

    Curran, Michaela; Bantum, Erin O'Carroll; Hanneman, Robert

    2016-01-01

    Abstract Web and mobile (mHealth) interventions have promise for improving health outcomes, but engagement and attrition may be reducing effect sizes. Because social networks can improve engagement, which is a key mechanism of action, understanding the structure and potential impact of social networks could be key to improving mHealth effects. This study (a) evaluates social network characteristics of four distinct communication channels (discussion board, chat, e-mail, and blog) in a large social networking intervention, (b) predicts membership in online communities, and (c) evaluates whether community membership impacts engagement. Participants were 299 cancer survivors with significant distress using the 12-week health-space.net intervention. Social networking attributes (e.g., density and clustering) were identified separately for each type of network communication (i.e., discussion board, blog, web mail, and chat). Each channel demonstrated high levels of clustering, and being a community member in one communication channel was associated with being in the same community in each of the other channels (φ = 0.56–0.89, ps < 0.05). Predictors of community membership differed across communication channels, suggesting that each channel reached distinct types of users. Finally, membership in a discussion board, chat, or blog community was strongly associated with time spent engaging with coping skills exercises (Ds = 1.08–1.84, ps < 0.001) and total time of intervention (Ds = 1.13–1.80, ps < 0.001). mHealth interventions that offer multiple channels for communication allow participants to expand the number of individuals with whom they are communicating, create opportunities for communicating with different individuals in distinct channels, and likely enhance overall engagement. PMID:27327066

  18. 27. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. COMMUNICATIONS CONSOLE AT LEFT; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. COMMUNICATIONS CONSOLE AT LEFT; LAUNCH CONTROL CONSOLE AT RIGHT. PADLOCKED PANEL AT TOP CENTER CONTAINS MISSILE LAUNCH KEYS. SHOCK ISOLATOR AT FAR LEFT. VIEW TO EAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  19. Collaborators and Communication Channels in Eight Patient-Centered Medical Homes.

    PubMed

    Chase, Dian A; Dorr, David A; Cohen, Deborah J; Ash, Joan S

    2017-01-01

    The patient-centered medical home (PCMH) concept requires collaboration among clinicians both within the medical home clinic, and outside the clinic. As we redesign health information technology (HIT) to support transformation to the PCMH, we need to better understand these collaboration patterns. This study provides quantitative data describing these collaborations in order to facilitate the design of systems to allow for more efficient collaboration. Eighty-four clinicians in eight clinics identified their two most recent significant collaborators - one each within the clinic and in the medical neighborhood. They also identified the communication channels used in these collaborations. We used k-means clustering to identify communication patterns. Within the clinic, half of the primary care providers (PCPs) identified a care manager as their most recent collaborator. Outside specialists were their most common external collaborators. Ninety-two percent of the non-PCP participants identified PCP's as their most recent internal collaborators. The best model for communication channel usage (p < .0001) had six clusters. In general, inside communications were more informal but outside collaborations were more often formal written communications (faxes, letters) or the exchange of electronic health record progress notes. But there were exceptions to these patterns and in many cases multiple channels were used for the same collaboration. Systems design (and redesign) needs to focus on reducing communications load and increasing communication effectiveness while maintaining flexibility.

  20. Dolphin Sounds-Inspired Covert Underwater Acoustic Communication and Micro-Modem

    PubMed Central

    Qiao, Gang; Liu, Songzuo; Bilal, Muhammad

    2017-01-01

    A novel portable underwater acoustic modem is proposed in this paper for covert communication between divers or underwater unmanned vehicles (UUVs) and divers at a short distance. For the first time, real dolphin calls are used in the modem to realize biologically inspired Covert Underwater Acoustic Communication (CUAC). A variety of dolphin whistles and clicks stored in an SD card inside the modem helps to realize different biomimetic CUAC algorithms based on the specified covert scenario. In this paper, the information is conveyed during the time interval between dolphin clicks. TMS320C6748 and TLV320AIC3106 are the core processors used in our unique modem for fast digital processing and interconnection with other terminals or sensors. Simulation results show that the bit error rate (BER) of the CUAC algorithm is less than 10−5 when the signal to noise ratio is over ‒5 dB. The modem was tested in an underwater pool, and a data rate of 27.1 bits per second at a distance of 10 m was achieved. PMID:29068363

  1. Developments in Acoustic Navigation and Communication for High-Latitude Ocean Research

    NASA Astrophysics Data System (ADS)

    Gobat, J.; Lee, C.

    2006-12-01

    Developments in autonomous platforms (profiling floats, drifters, long-range gliders and propeller-driven vehicles) offer the possibility of unprecedented access to logistically difficult polar regions that challenge conventional techniques. Currently, however, navigation and telemetry for these platforms rely on satellite positioning and communications poorly suited for high-latitude applications where ice cover restricts access to the sea surface. A similar infrastructure offering basin-wide acoustic geolocation and telemetry would allow the community to employ autonomous platforms to address previously intractable problems in Arctic oceanography. Two recent efforts toward the development of such an infrastructure are reported here. As part of an observational array monitoring fluxes through Davis Strait, development of real-time RAFOS acoustic navigation for gliders has been ongoing since autumn 2004. To date, test deployments have been conducted in a 260 Hz field in the Pacific and 780 Hz fields off Norway and in Davis Strait. Real-time navigation accuracy of ~1~km is achievable. Autonomously navigating gliders will operate under ice cover beginning in autumn 2006. In addition to glider navigation development, the Davis Strait array moorings carry fixed RAFOS recorders to study propagation over a range of distances under seasonally varying ice cover. Results from the under-ice propagation and glider navigation experiments are presented. Motivated by the need to coordinate these types of development efforts, an international group of acousticians, autonomous platform developers, high-latitude oceanographers and marine mammal researchers gathered in Seattle, U.S.A. from 27 February -- 1 March 2006 for an NSF Office of Polar Programs sponsored Acoustic Navigation and Communication for High-latitude Ocean Research (ANCHOR) workshop. Workshop participants focused on summarizing the current state of knowledge concerning Arctic acoustics, navigation and communications

  2. Using recurrent neural networks for adaptive communication channel equalization.

    PubMed

    Kechriotis, G; Zervas, E; Manolakos, E S

    1994-01-01

    Nonlinear adaptive filters based on a variety of neural network models have been used successfully for system identification and noise-cancellation in a wide class of applications. An important problem in data communications is that of channel equalization, i.e., the removal of interferences introduced by linear or nonlinear message corrupting mechanisms, so that the originally transmitted symbols can be recovered correctly at the receiver. In this paper we introduce an adaptive recurrent neural network (RNN) based equalizer whose small size and high performance makes it suitable for high-speed channel equalization. We propose RNN based structures for both trained adaptation and blind equalization, and we evaluate their performance via extensive simulations for a variety of signal modulations and communication channel models. It is shown that the RNN equalizers have comparable performance with traditional linear filter based equalizers when the channel interferences are relatively mild, and that they outperform them by several orders of magnitude when either the channel's transfer function has spectral nulls or severe nonlinear distortion is present. In addition, the small-size RNN equalizers, being essentially generalized IIR filters, are shown to outperform multilayer perceptron equalizers of larger computational complexity in linear and nonlinear channel equalization cases.

  3. 80-Channel Multiplexer-Demultiplexer Module for DWDM Communications using Hybrid AWG -- Interleaver Technology

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Bredthauer, Lance

    2007-10-01

    Aside from the more traditional data, voice and e-mail communications, new bandwidth intensive applications in the larger consumer markets, such as music, digital pictures and movies, have led to an explosive increase in the demand for transmission capacity for optical communications networks. This has resulted in a widespread deployment of Dense Wavelength Division Multiplexing (DWDM) as a means of increasing the communications capacity by multiplexing and transmitting signals of different wavelengths (establishing multiple communication channels) through a single strand of fiber. We report on the design, assembly and characterization of a 50-GHz, 80-channel Mux-Demux module for DWDM systems. The module has been assembled from two commercially available 100 GHz, 40-channel Array Waveguide Grating (AWG) modules and a 50-GHz to 100-GHz interleaver. Relevant performance parameters such as insertion loss, channel uniformity, next-channel isolation (crosstalk) and integrated cross-talk are presented and discussed in contrast with the performance of other competing technologies such as Thin-Film-Filter-based Mux-Demux devices.

  4. Statistical simulation of information transfer through non-line-of-sight atmospheric optical communication channels

    NASA Astrophysics Data System (ADS)

    Tarasenkov, M. V.; Belov, V. V.; Poznakharev, E. S.

    2017-11-01

    Impulse response of non-line-of-sight atmospheric communication channels at wavelengths of 0.3, 0.5, and 0.9 μm are compared for the case in which the optical axes of the receiver and laser radiation lie in the plane perpendicular to the Earth's surface. The most efficient communication channel depending on the base distance is determined. For a wavelength of 0.5 μm and a concrete variant of the transceiving part of the communication system, the limiting communication range and the limiting repetition frequency of pulses that can be transmitted through the communication channel are estimated.

  5. 30. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. OPERATORS' CHAIR AND COMMUNICATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. OPERATORS' CHAIR AND COMMUNICATIONS CONSOLE IN FOREGROUND. ELECTRONIC EQUIPMENT RACK AT LEFT; LAUNCH CONTROL CONSOLE WITH CAPTAIN JAMES L. KING, JR. IN CENTER. LIEUTENANT KEVIN R. MCCLUNEY IN BACKGROUND. VIEW TO SOUTHEAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  6. Faithful qubit transmission in a quantum communication network with heterogeneous channels

    NASA Astrophysics Data System (ADS)

    Chen, Na; Zhang, Lin Xi; Pei, Chang Xing

    2018-04-01

    Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.

  7. Mobile Communication Devices, Ambient Noise, and Acoustic Voice Measures.

    PubMed

    Maryn, Youri; Ysenbaert, Femke; Zarowski, Andrzej; Vanspauwen, Robby

    2017-03-01

    The ability to move with mobile communication devices (MCDs; ie, smartphones and tablet computers) may induce differences in microphone-to-mouth positioning and use in noise-packed environments, and thus influence reliability of acoustic voice measurements. This study investigated differences in various acoustic voice measures between six recording equipments in backgrounds with low and increasing noise levels. One chain of continuous speech and sustained vowel from 50 subjects with voice disorders (all separated by silence intervals) was radiated and re-recorded in an anechoic chamber with five MCDs and one high-quality recording system. These recordings were acquired in one condition without ambient noise and in four conditions with increased ambient noise. A total of 10 acoustic voice markers were obtained in the program Praat. Differences between MCDs and noise condition were assessed with Friedman repeated-measures test and posthoc Wilcoxon signed-rank tests, both for related samples, after Bonferroni correction. (1) Except median fundamental frequency and seven nonsignificant differences, MCD samples have significantly higher acoustic markers than clinical reference samples in minimal environmental noise. (2) Except median fundamental frequency, jitter local, and jitter rap, all acoustic measures on samples recorded with the reference system experienced significant influence from room noise levels. Fundamental frequency is resistant to recording system, environmental noise, and their combination. All other measures, however, were impacted by both recording system and noise condition, and especially by their combination, often already in the reference/baseline condition without added ambient noise. Caution is therefore warranted regarding implementation of MCDs as clinical recording tools, particularly when applied for treatment outcomes assessments. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Identical synchronization of chaotic secure communication systems with channel induced coherence resonance

    NASA Astrophysics Data System (ADS)

    Sepantaie, Marc M.; Namazi, Nader M.; Sepantaie, Amir M.

    2016-05-01

    This paper is devoted to addressing the synchronization, and detection of random binary data exposed to inherent channel variations existing in Free Space Optical (FSO) communication systems. This task is achieved by utilizing the identical synchronization methodology of Lorenz chaotic communication system, and its synergetic interaction in adversities imposed by the FSO channel. Moreover, the Lorenz system has been analyzed, and revealed to induce Stochastic Resonance (SR) once exposed to Additive White Gaussian Noise (AWGN). In particular, the resiliency of the Lorenz chaotic system, in light of channel adversities, has been attributed to the success of the proposed communication system. Furthermore, this paper advocates the use of Haar wavelet transform for enhanced detection capability of the proposed chaotic communication system, which utilizes Chaotic Parameter Modulation (CPM) technique for means of transmission.

  9. Channels of health communications used among Korean and Asian Indian older adults.

    PubMed

    Lee, Ji Seon

    2010-01-01

    According to Healthy People 2010, health communication is an important tool to reduce health disparities. Communication channels in which people prefer to receive health information may differ by race/ethnicity. One of the main challenges in designing an effective health communication program is to identify the most trusted and most often used channels of health information by Asian older adults. The aim of this study is to determine which health communication channels can be used to promote healthy lifestyles among older adults. A non-probability, convenience-sampling technique was used to recruit Korean (n = 9) and Asian Indian (n = 9) older adults from two senior centers in New York City. The findings from the two focus groups identified three distinct channels used by Asian older adults when obtaining health information: interpersonal (i.e., health care providers, word of mouth), mass media (i.e., ethnic mass media sources), and community specific (i.e., religious organizations, community centers). Health communication is an important area for prevention. Increased efforts are needed to develop culturally appropriate health messages and equally important to deliver these messages in the context in which Asian older adults trust and use the most.

  10. Low-mobility channel tracking for MIMO-OFDM communication systems

    NASA Astrophysics Data System (ADS)

    Pagadarai, Srikanth; Wyglinski, Alexander M.; Anderson, Christopher R.

    2013-12-01

    It is now well understood that by exploiting the available additional spatial dimensions, multiple-input multiple-output (MIMO) communication systems provide capacity gains, compared to a single-input single-output systems without increasing the overall transmit power or requiring additional bandwidth. However, these large capacity gains are feasible only when the perfect knowledge of the channel is available to the receiver. Consequently, when the channel knowledge is imperfect, as is common in practical settings, the impact of the achievable capacity needs to be evaluated. In this study, we begin with a general MIMO framework at the outset and specialize it to the case of orthogonal frequency division multiplexing (OFDM) systems by decoupling channel estimation from data detection. Cyclic-prefixed OFDM systems have attracted widespread interest due to several appealing characteristics not least of which is the fact that a single-tap frequency-domain equalizer per subcarrier is sufficient due to the circulant structure of the resulting channel matrix. We consider a low-mobility wireless channel which exhibits inter-block channel variations and apply Kalman tracking when MIMO-OFDM communication is performed. Furthermore, we consider the signal transmission to contain a stream of training and information symbols followed by information symbols alone. By relying on predicted channel states when training symbols are absent, we aim to understand how the improvements in channel capacity are affected by imperfect channel knowledge. We show that the Kalman recursion procedure can be simplified by the optimal minimum mean square error training design. Using the simplified recursion, we derive capacity upper and lower bounds to evaluate the performance of the system.

  11. Development of a Multi-Channel Piezoelectric Acoustic Sensor Based on an Artificial Basilar Membrane

    PubMed Central

    Jung, Youngdo; Kwak, Jun-Hyuk; Lee, Young Hwa; Kim, Wan Doo; Hur, Shin

    2014-01-01

    In this research, we have developed a multi-channel piezoelectric acoustic sensor (McPAS) that mimics the function of the natural basilar membrane capable of separating incoming acoustic signals mechanically by their frequency and generating corresponding electrical signals. The McPAS operates without an external energy source and signal processing unit with a vibrating piezoelectric thin film membrane. The shape of the vibrating membrane was chosen to be trapezoidal such that different locations of membrane have different local resonance frequencies. The length of the membrane is 28 mm and the width of the membrane varies from 1 mm to 8 mm. Multiphysics finite element analysis (FEA) was carried out to predict and design the mechanical behaviors and piezoelectric response of the McPAS model. The designed McPAS was fabricated with a MEMS fabrication process based on the simulated results. The fabricated device was tested with a mouth simulator to measure its mechanical and piezoelectrical frequency response with a laser Doppler vibrometer and acoustic signal analyzer. The experimental results show that the as fabricated McPAS can successfully separate incoming acoustic signals within the 2.5 kHz–13.5 kHz range and the maximum electrical signal output upon acoustic signal input of 94 dBSPL was 6.33 mVpp. The performance of the fabricated McPAS coincided well with the designed parameters. PMID:24361926

  12. Performance analysis of replication ALOHA for fading mobile communications channels

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee; Clare, Loren P.

    1986-01-01

    This paper describes an ALOHA random access protocol for fading communications channels. A two-state Markov model is used for the channel error process to account for the channel fading memory. The ALOHA protocol is modified to send multiple contiguous copies of a message at each transmission attempt. Both pure and slotted ALOHA channels are considered. The analysis is applicable to fading environments where the channel memory is short compared to the propagation delay. It is shown that smaller delay may be achieved using replications and, in noisy conditions, can also improve throughput.

  13. Exposure to seismic survey alters blue whale acoustic communication

    PubMed Central

    Di Iorio, Lucia; Clark, Christopher W.

    2010-01-01

    The ability to perceive biologically important sounds is critical to marine mammals, and acoustic disturbance through human-generated noise can interfere with their natural functions. Sounds from seismic surveys are intense and have peak frequency bands overlapping those used by baleen whales, but evidence of interference with baleen whale acoustic communication is sparse. Here we investigated whether blue whales (Balaenoptera musculus) changed their vocal behaviour during a seismic survey that deployed a low-medium power technology (sparker). We found that blue whales called consistently more on seismic exploration days than on non-exploration days as well as during periods within a seismic survey day when the sparker was operating. This increase was observed for the discrete, audible calls that are emitted during social encounters and feeding. This response presumably represents a compensatory behaviour to the elevated ambient noise from seismic survey operations. PMID:19776059

  14. Science communication on YouTube: Factors that affect channel and video popularity.

    PubMed

    Welbourne, Dustin J; Grant, Will J

    2016-08-01

    YouTube has become one of the largest websites on the Internet. Among its many genres, both professional and amateur science communicators compete for audience attention. This article provides the first overview of science communication on YouTube and examines content factors that affect the popularity of science communication videos on the site. A content analysis of 390 videos from 39 YouTube channels was conducted. Although professionally generated content is superior in number, user-generated content was significantly more popular. Furthermore, videos that had consistent science communicators were more popular than those without a regular communicator. This study represents an important first step to understand content factors, which increases the channel and video popularity of science communication on YouTube. © The Author(s) 2015.

  15. Surface acoustic waves voltage controlled directional coupler

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.

    1988-10-01

    An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.

  16. Epistemic View of Quantum States and Communication Complexity of Quantum Channels

    NASA Astrophysics Data System (ADS)

    Montina, Alberto

    2012-09-01

    The communication complexity of a quantum channel is the minimal amount of classical communication required for classically simulating a process of state preparation, transmission through the channel and subsequent measurement. It establishes a limit on the power of quantum communication in terms of classical resources. We show that classical simulations employing a finite amount of communication can be derived from a special class of hidden variable theories where quantum states represent statistical knowledge about the classical state and not an element of reality. This special class has attracted strong interest very recently. The communication cost of each derived simulation is given by the mutual information between the quantum state and the classical state of the parent hidden variable theory. Finally, we find that the communication complexity for single qubits is smaller than 1.28 bits. The previous known upper bound was 1.85 bits.

  17. Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications

    NASA Astrophysics Data System (ADS)

    Qian, Xuewen; Deng, Honggui; He, Hailang

    2017-10-01

    Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.

  18. Communication and Student Unrest: A Report to the President of the University of New Mexico; Part I: Student-Administration Channels, Student Faculty Channels.

    ERIC Educational Resources Information Center

    Goldhaber, Gerald M.

    This initial segment of a three-part study (Communication and Student Unrest) is an examination of the various communication channels--informal and formal, vertical and horizontal--which exist for student-administration and student-faculty interaction. Student-administration and student-faculty communication channels are discussed separately, and…

  19. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  20. Efficient Processing of Acoustic Signals for High Rate Information Transmission over Sparse Underwater Channels

    DTIC Science & Technology

    2016-09-02

    the fractionally-spaced channel estimators and the short feedforward equalizer filters . Receiver algorithm is applied to real data transmitted at 10...multichannel decision-feedback equalizer (DFE)[1]. This receiver consists of a bank of adaptive feedforwad filters , one per array element, followed by a...decision-feedback filter . It has been implemented in the prototype high-rate acoustic modem developed at the Woods Hole Oceanographic Institution, and

  1. Nearly ideal binary communication in squeezed channels

    NASA Astrophysics Data System (ADS)

    Paris, Matteo G.

    2001-07-01

    We analyze the effect of squeezing the channel in binary communication based on Gaussian states. We show that for coding on pure states, squeezing increases the detection probability at fixed size of the strategy, actually saturating the optimal bound already for moderate signal energy. Using Neyman-Pearson lemma for fuzzy hypothesis testing we are able to analyze also the case of mixed states, and to find the optimal amount of squeezing that can be effectively employed. It results that optimally squeezed channels are robust against signal mixing, and largely improve the strategy power by comparison with coherent ones.

  2. Performance of Ultra Wideband On-Body Communication Based on Statistical Channel Model

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; Wang, Jianqing

    Ultra wideband (UWB) on-body communication is attracting much attention in biomedical applications. In this paper, the performance of UWB on-body communication is investigated based on a statistically extracted on-body channel model, which provides detailed characteristics of the multi-path-affected channel with an emphasis on various body postures or body movement. The possible data rate, the possible communication distance, as well as the bit error rate (BER) performance are clarified via computer simulation. It is found that the conventional correlation receiver is incompetent in the multi-path-affected on-body channel, while the RAKE receiver outperforms the conventional correlation receiver at a cost of structure complexity. Different RAKE receiver structures are compared to show the improvement of the BER performance.

  3. Analytical modeling of a sandwiched plate piezoelectric transformer-based acoustic-electric transmission channel.

    PubMed

    Lawry, Tristan J; Wilt, Kyle R; Scarton, Henry A; Saulnier, Gary J

    2012-11-01

    The linear propagation of electromagnetic and dilatational waves through a sandwiched plate piezoelectric transformer (SPPT)-based acoustic-electric transmission channel is modeled using the transfer matrix method with mixed-domain two-port ABCD parameters. This SPPT structure is of great interest because it has been explored in recent years as a mechanism for wireless transmission of electrical signals through solid metallic barriers using ultrasound. The model we present is developed to allow for accurate channel performance prediction while greatly reducing the computational complexity associated with 2- and 3-dimensional finite element analysis. As a result, the model primarily considers 1-dimensional wave propagation; however, approximate solutions for higher-dimensional phenomena (e.g., diffraction in the SPPT's metallic core layer) are also incorporated. The model is then assessed by comparing it to the measured wideband frequency response of a physical SPPT-based channel from our previous work. Very strong agreement between the modeled and measured data is observed, confirming the accuracy and utility of the presented model.

  4. A review on channel models in free space optical communication systems

    NASA Astrophysics Data System (ADS)

    Anbarasi, K.; Hemanth, C.; Sangeetha, R. G.

    2017-12-01

    Free Space Optical communication (FSO) is a wireless communication technology which uses light to transmit the data in free space. FSO has advantages like unlicensed spectrum and higher bandwidth. In this paper FSO system merits and demerits, challenges in FSO, and various channel models are discussed. To mitigate the turbulence in FSO the mitigation techniques like relaying, diversity schemes and adopting different modulation techniques used in different channels are discussed and its performance comparison is given.

  5. A 1000+ channel bionic communication system.

    PubMed

    Schulman, Joseph H; Mobley, J Phil; Wolfe, James; Stover, Howard; Krag, Adrian

    2006-01-01

    The wireless electronic nervous system interface known as the functional electrical stimulation-battery powered bion system is being developed at the Alfred Mann Foundation. It contains a real-time propagated wave micro-powered multichannel communication system. This system is designed to send bi-directional messages between an external master controller unit (MCU), and each one of a group of injectable stimulator-sensor battery powered bion implants (BPB). The system is capable of communicating in each direction about 90 times per second using a structure of 850 time slots within a repeating 11 millisecond time window. The system's total Time Division Multiple Access (TDMA) communication capability is about 77,000 two-way communications per second on a single 5 MHz wide radio channel. Each time slot can be used by one BPB, or shared alternately by two or more BPBs. Each bidirectional communication consists of a 15 data bit message sent from the MCU sequentially to each BPB and 10 data bit message sent sequentially from each BPB to the MCU. Redundancy bits are included to provide error detection and correction. This communication system is designed to draw only a few microamps from the 3.6 volt, 3.0 mAHr lithium ion (LiIon) battery contained in each BPB, and the majority of the communications circuitry is contained within a 1.4x5 mm integrated circuit.

  6. Analysis of different communication channels for promoting hygiene behaviour.

    PubMed

    Pinfold, J V

    1999-10-01

    A hygiene intervention study reduced diarrhoeal disease transmission in rural northeast Thailand by promoting hand-washing and dish-washing behaviour. Most of the target audience did not recognize a connection between these behaviours and diarrhoeal disease, and therefore a social marketing approach was used to develop a campaign promoting behaviours through a variety of communication channels keeping messages simple and in terms understood by the community. Overall, there was a strong correlation between the number of communication channels remembered by respondents and their knowledge score, with passive channels of printed media such as stickers, posters and leaflets associated with significantly higher scores than other channels. However, the same did not hold true for improvement in actual behaviour and only 'school children' were associated with significantly less fingertip contamination. In-depth interviews with conformers and non-conformers suggested that although most knew the intervention messages well enough, the importance they attached to them differed markedly. Thus dissemination of message knowledge was not consistent with the process of dissemination of actual practice. Where a strong sense of community spirit existed, friends, relatives and neighbours were more likely to discuss intervention activities with each other.

  7. Three-dimensional time reversal communications in elastic media

    DOE PAGES

    Anderson, Brian E.; Ulrich, Timothy J.; Le Bas, Pierre-Yves; ...

    2016-02-23

    Our letter presents a series of vibrational communication experiments, using time reversal, conducted on a set of cast iron pipes. Time reversal has been used to provide robust, private, and clean communications in many underwater acoustic applications. Also, the use of time reversal to communicate along sections of pipes and through a wall is demonstrated here in order to overcome the complications of dispersion and multiple scattering. These demonstrations utilize a single source transducer and a single sensor, a triaxial accelerometer, enabling multiple channels of simultaneous communication streams to a single location.

  8. New coherent laser communication detection scheme based on channel-switching method.

    PubMed

    Liu, Fuchuan; Sun, Jianfeng; Ma, Xiaoping; Hou, Peipei; Cai, Guangyu; Sun, Zhiwei; Lu, Zhiyong; Liu, Liren

    2015-04-01

    A new coherent laser communication detection scheme based on the channel-switching method is proposed. The detection front end of this scheme comprises a 90° optical hybrid and two balanced photodetectors which outputs the in-phase (I) channel and quadrature-phase (Q) channel signal current, respectively. With this method, the ultrahigh speed analog/digital transform of the signal of the I or Q channel is not required. The phase error between the signal and local lasers is obtained by simple analog circuit. Using the phase error signal, the signals of the I/Q channel are switched alternately. The principle of this detection scheme is presented. Moreover, the comparison of the sensitivity of this scheme with that of homodyne detection with an optical phase-locked loop is discussed. An experimental setup was constructed to verify the proposed detection scheme. The offline processing procedure and results are presented. This scheme could be realized through simple structure and has potential applications in cost-effective high-speed laser communication.

  9. Capacity and Delay Spread in Multilayer Diffusion-Based Molecular Communication (DBMC) Channel.

    PubMed

    Md Mustam, Saizalmursidi; Syed-Yusof, Sharifah K; Zubair, Suleiman

    2016-10-01

    In nanoscale communication, diffusion-based molecular communication (DBMC) in which information is encoded into molecule patterns by a transmitter nanomachine, has emerged as a promising communication system, particularly for biomedical and healthcare applications. Although, numerous studies have been conducted to evaluate and analyze DBMC systems, investigation on DBMC system through a multilayer channel has received less attention. The aims of this paper are to formulate channel characteristics and to evaluate the performance of multilayer DBMC channel in terms of delay spread and capacity. In this paper, the propagation of molecules over an n- layer channel is assumed to follow the Brownian motion and subjected to Fick's law of diffusion. Fourier transform is used to convert time to frequency domain functions. Besides, the multilayer channel is considered as a linear and deterministic channel. For the performance evaluation, the air-water-blood plasma medium representing the simplified multilayer diffusion model in the respiratory system was chosen. It was found that a high channel capacity can be achieved with wide transmission bandwidth, short transmission distance, and high averaged transmitted power. In addition, the findings showed that channel delay spread increases as both the transmission distance, and the pulse duration increased. By setting the symbol duration greater than the pulse duration or delay spread, an inter-symbol interference problem due to previous molecules transmission can be mitigated. These findings can be used as a guide in the development and fabrication of future artificial nanocommunication and nanonetworks systems involving multilayer transmission medium.

  10. Two-channel spin-chain communication line and simple quantum gates

    NASA Astrophysics Data System (ADS)

    Stolze, J.; Zenchuk, A. I.

    2017-08-01

    We consider the remote creation of a mixed state in a one-qubit receiver connected to two two-qubit senders via different channels. Channels are assumed to be chains of spins (qubits) with nearest-neighbor interactions, no external fields are being applied. The problem of sharing the creatable region of the receiver's state-space between two senders is considered for a communication line with the receiver located asymmetrically with respect to these senders (asymmetric communication line). An example of a quantum register realizing simple functions is constructed on the basis of a symmetric communication line. In that setup, the initial states of the two senders serve as input and control signals, respectively, while the state of the receiver at a proper time instant is considered as the output signal.

  11. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    range acoustic systems, whether for acoustic surveillance, communication, or remote sensing of the ocean interior . The data from the NPAL network, and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water... Acoustics PI James A. Mercer Applied Physics Laboratory, University of Washington 1013 NE 40th Street Seattle, WA 98105 phone: (206) 543-1361 fax

  12. A review of radio channel models for body centric communications

    PubMed Central

    Cotton, Simon L; D'Errico, Raffaele; Oestges, Claude

    2014-01-01

    The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing

  13. Coherent acoustic communication in a tidal estuary with busy shipping traffic.

    PubMed

    van Walree, Paul A; Neasham, Jeffrey A; Schrijver, Marco C

    2007-12-01

    High-rate acoustic communication experiments were conducted in a dynamic estuarine environment. Two current profilers deployed in a shipping lane were interfaced with acoustic modems, which modulated and transmitted the sensor readings every 200 s over a period of four days. QPSK modulation was employed at a raw data rate of 8 kbits on a 12-kHz carrier. Two 16-element hydrophone arrays, one horizontal and one vertical, were deployed near the shore. A multichannel decision-feedback equalizer was used to demodulate the modem signals received on both arrays. Long-term statistical analysis reveals the effects of the tidal cycle, subsea unit location, attenuation by the wake of passing vessels, and high levels of ship-generated noise on the fidelity of the communication links. The use of receiver arrays enables vast improvement in the overall reliability of data delivery compared with a single-receiver system, with performance depending strongly on array orientation. The vertical array offers the best performance overall, although the horizontal array proves more robust against shipping noise. Spatial coherence estimates, variation of array aperture, and inspection of array angular responses point to adaptive beamforming and coherent combining as the chief mechanisms of array gain.

  14. The design and analysis of channel transmission communication system of XCTD profiler

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Wang, Xiao-Rui; Jin, Xiang-Yu; Song, Guo-Min; Shang, Ying-Sheng; Li, Hong-Zhi

    2016-10-01

    In this paper, a channel transmission communication system of expendable conductivity-temperature-depth is established in accordance to the operation characteristics of the transmission line to more accurately assess the characteristics of deep-sea abandoned profiler channel. The wrapping inductance is eliminated to maximum extent through the wrapping pattern of the underwater spool and the overwater spool and the calculation of the wrapping diameter. The feasibility of the proposed channel transmission communication system is verified through theoretical analysis and practical measurement of the transmission signal error rate in the amplitude shift keying (ASK) modulation. The proposed design provides a new research method for the channel assessment of complex abandoned measuring instrument and an important experiment evidence for the rapid development of the deep-sea abandoned measuring instrument.

  15. The design and analysis of channel transmission communication system of XCTD profiler.

    PubMed

    Zheng, Yu; Wang, Xiao-Rui; Jin, Xiang-Yu; Song, Guo-Min; Shang, Ying-Sheng; Li, Hong-Zhi

    2016-10-01

    In this paper, a channel transmission communication system of expendable conductivity-temperature-depth is established in accordance to the operation characteristics of the transmission line to more accurately assess the characteristics of deep-sea abandoned profiler channel. The wrapping inductance is eliminated to maximum extent through the wrapping pattern of the underwater spool and the overwater spool and the calculation of the wrapping diameter. The feasibility of the proposed channel transmission communication system is verified through theoretical analysis and practical measurement of the transmission signal error rate in the amplitude shift keying (ASK) modulation. The proposed design provides a new research method for the channel assessment of complex abandoned measuring instrument and an important experiment evidence for the rapid development of the deep-sea abandoned measuring instrument.

  16. Digital Channels in Teacher-Parent Communication: The Case of Estonia

    ERIC Educational Resources Information Center

    Palts, Karmen; Kalmus, Veronika

    2015-01-01

    The aim of this paper is to analyse the attitudes of Estonian primary school teachers and parents regarding the role of mutual digital communication in socialising the child and in the child's academic progress, their communication channel preferences, and related experiences and opinions. The main starting points are Bronfenbrenner's (1979)…

  17. Mentoring as a communication channel: Implications for innovation and productivity

    NASA Technical Reports Server (NTRS)

    Avant, L.; Boozer, R. W.

    1985-01-01

    The impact of a formalized mentoring program as a communication channel for enhancing information distribution, innovation, and productivity is investigated. Formal and informal approaches to mentoring are discussed. Interviews with 11 members of formal mentor-protege teams indicate communications in the mentoring relationship can affect individual and organizational innovation and productivity.

  18. Is channel segmentation necessary to reach a multiethnic population with weight-related health promotion? An analysis of use and perception of communication channels.

    PubMed

    Hartman, Marieke A; Nierkens, Vera; Cremer, Stephan W; Verhoeff, Arnoud; Stronks, Karien

    2015-01-01

    To explore similarities and differences in the use and perception of communication channels to access weight-related health promotion among women in three ethnic minority groups. The ultimate aim was to determine whether similar channels might reach ethnic minority women in general or whether segmentation to ethnic groups would be required. Eight ethnically homogeneous focus groups were conducted among 48 women of Ghanaian, Antillean/Aruban, or Afro-Surinamese background living in Amsterdam. Our questions concerned which communication channels they usually used to access weight-related health advice or information about programs and whose information they most valued. The content analysis of data was performed. The participants mentioned four channels - regular and traditional health care, general or ethnically specific media, multiethnic and ethnic gatherings, and interpersonal communication with peers in the Netherlands and with people in the home country. Ghanaian women emphasized ethnically specific channels (e.g., traditional health care, Ghanaian churches). They were comfortable with these channels and trusted them. They mentioned fewer general channels - mainly limited to health care - and if discussed, negative perceptions were expressed. Antillean women mentioned the use of ethnically specific channels (e.g., communication with Antilleans in the home country) on balance with general audience-oriented channels (e.g., regular health care). Perceptions were mixed. Surinamese participants discussed, in a positive manner, the use of general audience-oriented channels, while they said they did not use traditional health care or advice from Surinam. Local language proficiency, time resided in the Netherlands, and approaches and messages received seemed to explain channel use and perception. The predominant differences in channel use and perception among the ethnic groups indicate a need for channel segmentation to reach a multiethnic target group with weight

  19. A Study of the Seastar Underwater Acoustic Local Area Network Concept

    DTIC Science & Technology

    2007-12-01

    sense multiple access (CSMA) and multiple access with collision avoidance ( MACA ) are reviewed in [19, 22, 23, 34]. Peripheral nodes using ALOHA and...transmissions until the channel is clear. However, the long propagation time limits the effectiveness of CSMA for acoustic communications. MACA [22] uses... MACA protocol, if no ACK message is received after the transmission is completed, the full packet will be retransmitted until reception is

  20. Channel noise enhances signal detectability in a model of acoustic neuron through the stochastic resonance paradigm.

    PubMed

    Liberti, M; Paffi, A; Maggio, F; De Angelis, A; Apollonio, F; d'Inzeo, G

    2009-01-01

    A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.

  1. Locality of Area Coverage on Digital Acoustic Communication in Air using Differential Phase Shift Keying

    NASA Astrophysics Data System (ADS)

    Mizutani, Keiichi; Ebihara, Tadashi; Wakatsuki, Naoto; Mizutani, Koichi

    2009-07-01

    We experimentally evaluate the locality of digital acoustic communication in air. Digital acoustic communication in air is suitable for a small cell system, because acoustic waves have a short propagation distance in air. In this study, optimal cell size is experimentally evaluated. Each base station (BS) transmits different commands. In our experiment, differential phase shift keying (DPSK), especially binary DPSK (DBPSK), is adopted as a modulation and demodulation scheme. The evaluated system consists of a personal computer (PC), a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), a loud speaker (SP), a microphone (MIC), and transceiver software. All experiments are performed in an anechoic room. The cell size of the transmitter can be limited under low signal-to-noise ratio (SNR) condition. If another transmitter works, cell size is limited by the effect of the interference from that transmitter. The cell size-to-distance ratio of transmitter A to transmitter B is 37.5%, if cell edge bit-error-rate (BER) is taken as 10-3.

  2. Hybrid Speaker Recognition Using Universal Acoustic Model

    NASA Astrophysics Data System (ADS)

    Nishimura, Jun; Kuroda, Tadahiro

    We propose a novel speaker recognition approach using a speaker-independent universal acoustic model (UAM) for sensornet applications. In sensornet applications such as “Business Microscope”, interactions among knowledge workers in an organization can be visualized by sensing face-to-face communication using wearable sensor nodes. In conventional studies, speakers are detected by comparing energy of input speech signals among the nodes. However, there are often synchronization errors among the nodes which degrade the speaker recognition performance. By focusing on property of the speaker's acoustic channel, UAM can provide robustness against the synchronization error. The overall speaker recognition accuracy is improved by combining UAM with the energy-based approach. For 0.1s speech inputs and 4 subjects, speaker recognition accuracy of 94% is achieved at the synchronization error less than 100ms.

  3. 75 FR 65323 - The Tennis Channel, Inc. v. Comcast Cable Communications, LLC; File No. CSR-8258-P

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... FEDERAL COMMUNICATIONS COMMISSION [MB Docket No. 10-204; DA 10-1918] The Tennis Channel, Inc. v... Tennis Channel, Inc. (``The Tennis Channel'') and Comcast Cable Communications, LLC (``Comcast'') shall... Tennis Channel and Comcast, in person or by their attorneys, shall each file with the Commission, by...

  4. An audience-channel-message-evaluation (ACME) framework for health communication campaigns.

    PubMed

    Noar, Seth M

    2012-07-01

    Recent reviews of the literature have indicated that a number of health communication campaigns continue to fail to adhere to principles of effective campaign design. The lack of an integrated, organizing framework for the design, implementation, and evaluation of health communication campaigns may contribute to this state of affairs. The current article introduces an audience-channel-message-evaluation (ACME) framework that organizes the major principles of health campaign design, implementation, and evaluation. ACME also explicates the relationships and linkages between the varying principles. Insights from ACME include the following: The choice of audience segment(s) to focus on in a campaign affects all other campaign design choices, including message strategy and channel/component options. Although channel selection influences options for message design, choice of message design also influences channel options. Evaluation should not be thought of as a separate activity, but rather should be infused and integrated throughout the campaign design and implementation process, including formative, process, and outcome evaluation activities. Overall, health communication campaigns that adhere to this integrated set of principles of effective campaign design will have a greater chance of success than those using principles idiosyncratically. These design, implementation, and evaluation principles are embodied in the ACME framework.

  5. Position-based coding and convex splitting for private communication over quantum channels

    NASA Astrophysics Data System (ADS)

    Wilde, Mark M.

    2017-10-01

    The classical-input quantum-output (cq) wiretap channel is a communication model involving a classical sender X, a legitimate quantum receiver B, and a quantum eavesdropper E. The goal of a private communication protocol that uses such a channel is for the sender X to transmit a message in such a way that the legitimate receiver B can decode it reliably, while the eavesdropper E learns essentially nothing about which message was transmitted. The ɛ -one-shot private capacity of a cq wiretap channel is equal to the maximum number of bits that can be transmitted over the channel, such that the privacy error is no larger than ɛ \\in (0,1). The present paper provides a lower bound on the ɛ -one-shot private classical capacity, by exploiting the recently developed techniques of Anshu, Devabathini, Jain, and Warsi, called position-based coding and convex splitting. The lower bound is equal to a difference of the hypothesis testing mutual information between X and B and the "alternate" smooth max-information between X and E. The one-shot lower bound then leads to a non-trivial lower bound on the second-order coding rate for private classical communication over a memoryless cq wiretap channel.

  6. An End-to-End Model of Plant Pheromone Channel for Long Range Molecular Communication.

    PubMed

    Unluturk, Bige D; Akyildiz, Ian F

    2017-01-01

    A new track in molecular communication is using pheromones which can scale up the range of diffusion-based communication from μm meters to meters and enable new applications requiring long range. Pheromone communication is the emission of molecules in the air which trigger behavioral or physiological responses in receiving organisms. The objective of this paper is to introduce a new end-to-end model which incorporates pheromone behavior with communication theory for plants. The proposed model includes both the transmission and reception processes as well as the propagation channel. The transmission process is the emission of pheromones from the leaves of plants. The dispersion of pheromones by the flow of wind constitutes the propagation process. The reception process is the sensing of pheromones by the pheromone receptors of plants. The major difference of pheromone communication from other molecular communication techniques is the dispersion channel acting under the laws of turbulent diffusion. In this paper, the pheromone channel is modeled as a Gaussian puff, i.e., a cloud of pheromone released instantaneously from the source whose dispersion follows a Gaussian distribution. Numerical results on the performance of the overall end-to-end pheromone channel in terms of normalized gain and delay are provided.

  7. An enhanced multi-channel bacterial foraging optimization algorithm for MIMO communication system

    NASA Astrophysics Data System (ADS)

    Palanimuthu, Senthilkumar Jayalakshmi; Muthial, Chandrasekaran

    2017-04-01

    Channel estimation and optimisation are the main challenging tasks in Multi Input Multi Output (MIMO) wireless communication systems. In this work, a Multi-Channel Bacterial Foraging Optimization Algorithm approach is proposed for the selection of antenna in a transmission area. The main advantage of this method is, it reduces the loss of bandwidth during data transmission effectively. Here, we considered the channel estimation and optimisation for improving the transmission speed and reducing the unused bandwidth. Initially, the message is given to the input of the communication system. Then, the symbol mapping process is performed for converting the message into signals. It will be encoded based on the space-time encoding technique. Here, the single signal is divided into multiple signals and it will be given to the input of space-time precoder. Hence, the multiplexing is applied to transmission channel estimation. In this paper, the Rayleigh channel is selected based on the bandwidth range. This is the Gaussian distribution type channel. Then, the demultiplexing is applied on the obtained signal that is the reverse function of multiplexing, which splits the combined signal arriving from a medium into the original information signal. Furthermore, the long-term evolution technique is used for scheduling the time to channels during transmission. Here, the hidden Markov model technique is employed to predict the status information of the channel. Finally, the signals are decoded and the reconstructed signal is obtained after performing the scheduling process. The experimental results evaluate the performance of the proposed MIMO communication system in terms of bit error rate, mean squared error, average throughput, outage capacity and signal to interference noise ratio.

  8. Acoustic echo cancellation for full-duplex voice transmission on fading channels

    NASA Technical Reports Server (NTRS)

    Park, Sangil; Messer, Dion D.

    1990-01-01

    This paper discusses the implementation of an adaptive acoustic echo canceler for a hands-free cellular phone operating on a fading channel. The adaptive lattice structure, which is particularly known for faster convergence relative to the conventional tapped-delay-line (TDL) structure, is used in the initialization stage. After convergence, the lattice coefficients are converted into the coefficients for the TDL structure which can accommodate a larger number of taps in real-time operation due to its computational simplicity. The conversion method of the TDL coefficients from the lattice coefficients is derived and the DSP56001 assembly code for the lattice and TDL structure is included, as well as simulation results and the schematic diagram for the hardware implementation.

  9. Adaptive Reception for Underwater Communications

    DTIC Science & Technology

    2011-06-01

    Experimental results prove the effectiveness of the receiver. 14. SUBJECT TERMS Underwater acoustic communications, adaptive algorithms , Kalman filter...the update algorithm design and the value of the spatial diversity are addressed. In this research, an adaptive multichannel equalizer made up of a...for the time-varying nature of the channel is to use an Adaptive Decision Feedback Equalizer based on either the RLS or LMS algorithm . Although this

  10. Is channel segmentation necessary to reach a multiethnic population with weight-related health promotion? An analysis of use and perception of communication channels

    PubMed Central

    Nierkens, Vera; Cremer, Stephan W.; Verhoeff, Arnoud; Stronks, Karien

    2014-01-01

    Objective To explore similarities and differences in the use and perception of communication channels to access weight-related health promotion among women in three ethnic minority groups. The ultimate aim was to determine whether similar channels might reach ethnic minority women in general or whether segmentation to ethnic groups would be required. Design Eight ethnically homogeneous focus groups were conducted among 48 women of Ghanaian, Antillean/Aruban, or Afro-Surinamese background living in Amsterdam. Our questions concerned which communication channels they usually used to access weight-related health advice or information about programs and whose information they most valued. The content analysis of data was performed. Results The participants mentioned four channels – regular and traditional healthcare, general or ethnically specific media, multiethnic and ethnic gatherings, and interpersonal communication with peers in the Netherlands and with people in the home country. Ghanaian women emphasized ethnically specific channels (e.g., traditional healthcare, Ghanaian churches). They were comfortable with these channels and trusted them. They mentioned fewer general channels – mainly limited to healthcare – and if discussed, negative perceptions were expressed. Antillean women mentioned the use of ethnically specific channels (e.g., communication with Antilleans in the home country) on balance with general audience–oriented channels (e.g., regular healthcare). Perceptions were mixed. Surinamese participants discussed, in a positive manner, the use of general audience–oriented channels, while they said they did not use traditional healthcare or advice from Surinam. Local language proficiency, time resided in the Netherlands, and approaches and messages received seemed to explain channel use and perception. Conclusion The predominant differences in channel use and perception among the ethnic groups indicate a need for channel segmentation to reach a

  11. Channel characterization and empirical model for ergodic capacity of free-space optical communication link

    NASA Astrophysics Data System (ADS)

    Alimi, Isiaka; Shahpari, Ali; Ribeiro, Vítor; Sousa, Artur; Monteiro, Paulo; Teixeira, António

    2017-05-01

    In this paper, we present experimental results on channel characterization of single input single output (SISO) free-space optical (FSO) communication link that is based on channel measurements. The histograms of the FSO channel samples and the log-normal distribution fittings are presented along with the measured scintillation index. Furthermore, we extend our studies to diversity schemes and propose a closed-form expression for determining ergodic channel capacity of multiple input multiple output (MIMO) FSO communication systems over atmospheric turbulence fading channels. The proposed empirical model is based on SISO FSO channel characterization. Also, the scintillation effects on the system performance are analyzed and results for different turbulence conditions are presented. Moreover, we observed that the histograms of the FSO channel samples that we collected from a 1548.51 nm link have good fits with log-normal distributions and the proposed model for MIMO FSO channel capacity is in conformity with the simulation results in terms of normalized mean-square error (NMSE).

  12. Seabird acoustic communication at sea: a new perspective using bio-logging devices.

    PubMed

    Thiebault, Andréa; Pistorius, Pierre; Mullers, Ralf; Tremblay, Yann

    2016-08-05

    Most seabirds are very noisy at their breeding colonies, when aggregated in high densities. Calls are used for individual recognition and also emitted during agonistic interactions. When at sea, many seabirds aggregate over patchily distributed resources and may benefit from foraging in groups. Because these aggregations are so common, it raises the question of whether seabirds use acoustic communication when foraging at sea? We deployed video-cameras with built in microphones on 36 Cape gannets (Morus capensis) during the breeding season of 2010-2011 at Bird Island (Algoa Bay, South Africa) to study their foraging behaviour and vocal activity at sea. Group formation was derived from the camera footage. During ~42 h, calls were recorded on 72 occasions from 16 birds. Vocalization exclusively took place in the presence of conspecifics, and mostly in feeding aggregations (81% of the vocalizations). From the observation of the behaviours of birds associated with the emission of calls, we suggest that the calls were emitted to avoid collisions between birds. Our observations show that at least some seabirds use acoustic communication when foraging at sea. These findings open up new perspectives for research on seabirds foraging ecology and their interactions at sea.

  13. Continued Investigation of the Acoustics of Marine Sediments Using Impedance Tube and Acoustic Resonator Techniques

    DTIC Science & Technology

    2009-09-30

    seagrass , which in turn benefits buried object detection, sonar operation and acoustic communications in shallow water. Another goal for the out years...bottom sediments, including multiphase materials such as gas- bearing sediments and seagrass . These measurements are conducted using an acoustic...such as gas-bearing sediments and seagrass , which in turn benefits buried object detection, sonar operation and acoustic communications in shallow

  14. Communication Channels as Implementation Determinants of Performance Management Framework in Kenya

    ERIC Educational Resources Information Center

    Sang, Jane

    2016-01-01

    The purpose of this study to assess communication channels as implementation determinants of performance management framework In Kenya at Moi Teaching and Referral Hospital (MTRH). The communication theory was used to inform the study. This study adopted an explanatory design. The target sampled 510 respondents through simple random and stratified…

  15. The African cichlid fish Astatotilapia burtoni uses acoustic communication for reproduction: sound production, hearing, and behavioral significance.

    PubMed

    Maruska, Karen P; Ung, Uyhun S; Fernald, Russell D

    2012-01-01

    Sexual reproduction in all animals depends on effective communication between signalers and receivers. Many fish species, especially the African cichlids, are well known for their bright coloration and the importance of visual signaling during courtship and mate choice, but little is known about what role acoustic communication plays during mating and how it contributes to sexual selection in this phenotypically diverse group of vertebrates. Here we examined acoustic communication during reproduction in the social cichlid fish, Astatotilapia burtoni. We characterized the sounds and associated behaviors produced by dominant males during courtship, tested for differences in hearing ability associated with female reproductive state and male social status, and then tested the hypothesis that female mate preference is influenced by male sound production. We show that dominant males produce intentional courtship sounds in close proximity to females, and that sounds are spectrally similar to their hearing abilities. Females were 2-5-fold more sensitive to low frequency sounds in the spectral range of male courtship sounds when they were sexually-receptive compared to during the mouthbrooding parental phase. Hearing thresholds were also negatively correlated with circulating sex-steroid levels in females but positively correlated in males, suggesting a potential role for steroids in reproductive-state auditory plasticity. Behavioral experiments showed that receptive females preferred to affiliate with males that were associated with playback of courtship sounds compared to noise controls, indicating that acoustic information is likely important for female mate choice. These data show for the first time in a Tanganyikan cichlid that acoustic communication is important during reproduction as part of a multimodal signaling repertoire, and that perception of auditory information changes depending on the animal's internal physiological state. Our results highlight the

  16. The African Cichlid Fish Astatotilapia burtoni Uses Acoustic Communication for Reproduction: Sound Production, Hearing, and Behavioral Significance

    PubMed Central

    Maruska, Karen P.; Ung, Uyhun S.; Fernald, Russell D.

    2012-01-01

    Sexual reproduction in all animals depends on effective communication between signalers and receivers. Many fish species, especially the African cichlids, are well known for their bright coloration and the importance of visual signaling during courtship and mate choice, but little is known about what role acoustic communication plays during mating and how it contributes to sexual selection in this phenotypically diverse group of vertebrates. Here we examined acoustic communication during reproduction in the social cichlid fish, Astatotilapia burtoni. We characterized the sounds and associated behaviors produced by dominant males during courtship, tested for differences in hearing ability associated with female reproductive state and male social status, and then tested the hypothesis that female mate preference is influenced by male sound production. We show that dominant males produce intentional courtship sounds in close proximity to females, and that sounds are spectrally similar to their hearing abilities. Females were 2–5-fold more sensitive to low frequency sounds in the spectral range of male courtship sounds when they were sexually-receptive compared to during the mouthbrooding parental phase. Hearing thresholds were also negatively correlated with circulating sex-steroid levels in females but positively correlated in males, suggesting a potential role for steroids in reproductive-state auditory plasticity. Behavioral experiments showed that receptive females preferred to affiliate with males that were associated with playback of courtship sounds compared to noise controls, indicating that acoustic information is likely important for female mate choice. These data show for the first time in a Tanganyikan cichlid that acoustic communication is important during reproduction as part of a multimodal signaling repertoire, and that perception of auditory information changes depending on the animal's internal physiological state. Our results highlight the

  17. Dynamic Propagation Channel Characterization and Modeling for Human Body Communication

    PubMed Central

    Nie, Zedong; Ma, Jingjing; Li, Zhicheng; Chen, Hong; Wang, Lei

    2012-01-01

    This paper presents the first characterization and modeling of dynamic propagation channels for human body communication (HBC). In-situ experiments were performed using customized transceivers in an anechoic chamber. Three HBC propagation channels, i.e., from right leg to left leg, from right hand to left hand and from right hand to left leg, were investigated under thirty-three motion scenarios. Snapshots of data (2,800,000) were acquired from five volunteers. Various path gains caused by different locations and movements were quantified and the statistical distributions were estimated. In general, for a given reference threshold è = −10 dB, the maximum average level crossing rate of the HBC was approximately 1.99 Hz, the maximum average fade time was 59.4 ms, and the percentage of bad channel duration time was less than 4.16%. The HBC exhibited a fade depth of −4 dB at 90% complementary cumulative probability. The statistical parameters were observed to be centered for each propagation channel. Subsequently a Fritchman model was implemented to estimate the burst characteristics of the on-body fading. It was concluded that the HBC is motion-insensitive, which is sufficient for reliable communication link during motions, and therefore it has great potential for body sensor/area networks. PMID:23250278

  18. Dynamic propagation channel characterization and modeling for human body communication.

    PubMed

    Nie, Zedong; Ma, Jingjing; Li, Zhicheng; Chen, Hong; Wang, Lei

    2012-12-18

    This paper presents the first characterization and modeling of dynamic propagation channels for human body communication (HBC). In-situ experiments were performed using customized transceivers in an anechoic chamber. Three HBC propagation channels, i.e., from right leg to left leg, from right hand to left hand and from right hand to left leg, were investigated under thirty-three motion scenarios. Snapshots of data (2,800,000) were acquired from five volunteers. Various path gains caused by different locations and movements were quantified and the statistical distributions were estimated. In general, for a given reference threshold è = -10 dB, the maximum average level crossing rate of the HBC was approximately 1.99 Hz, the maximum average fade time was 59.4 ms, and the percentage of bad channel duration time was less than 4.16%. The HBC exhibited a fade depth of -4 dB at 90% complementary cumulative probability. The statistical parameters were observed to be centered for each propagation channel. Subsequently a Fritchman model was implemented to estimate the burst characteristics of the on-body fading. It was concluded that the HBC is motion-insensitive, which is sufficient for reliable communication link during motions, and therefore it has great potential for body sensor/area networks.

  19. Channel simulation for direct detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct detection optical communication system. The system is capable of providing signal fading statistics which obey log normal, beta, Rayleigh, Ricean or chi-squared density functions. Experimental tests of the performance of the Channel Simulator are presented.

  20. Channel simulation for direct-detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct-detection optical communication system. The system is capable of providing signal fading statistics which obey log-normal, beta, Rayleigh, Ricean, or chi-square density functions. Experimental tests of the performance of the channel simulator are presented.

  1. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  2. Evidence for acoustic communication among bottom foraging humpback whales

    PubMed Central

    Parks, Susan E.; Cusano, Dana A.; Stimpert, Alison K.; Weinrich, Mason T.; Friedlaender, Ari S.; Wiley, David N.

    2014-01-01

    Humpback whales (Megaptera novaeangliae), a mysticete with a cosmopolitan distribution, demonstrate marked behavioural plasticity. Recent studies show evidence of social learning in the transmission of specific population level traits ranging from complex singing to stereotyped prey capturing behaviour. Humpback whales have been observed to employ group foraging techniques, however details on how individuals coordinate behaviour in these groups is challenging to obtain. This study investigates the role of a novel broadband patterned pulsed sound produced by humpback whales engaged in bottom-feeding behaviours, referred to here as a ‘paired burst' sound. Data collected from 56 archival acoustic tag deployments were investigated to determine the functional significance of these signals. Paired burst sound production was associated exclusively with bottom feeding under low-light conditions, predominantly with evidence of associated conspecifics nearby suggesting that the sound likely serves either as a communicative signal to conspecifics, a signal to affect prey behaviour, or possibly both. This study provides additional evidence for individual variation and phenotypic plasticity of foraging behaviours in humpback whales and provides important evidence for the use of acoustic signals among foraging individuals in this species. PMID:25512188

  3. Evidence for acoustic communication among bottom foraging humpback whales.

    PubMed

    Parks, Susan E; Cusano, Dana A; Stimpert, Alison K; Weinrich, Mason T; Friedlaender, Ari S; Wiley, David N

    2014-12-16

    Humpback whales (Megaptera novaeangliae), a mysticete with a cosmopolitan distribution, demonstrate marked behavioural plasticity. Recent studies show evidence of social learning in the transmission of specific population level traits ranging from complex singing to stereotyped prey capturing behaviour. Humpback whales have been observed to employ group foraging techniques, however details on how individuals coordinate behaviour in these groups is challenging to obtain. This study investigates the role of a novel broadband patterned pulsed sound produced by humpback whales engaged in bottom-feeding behaviours, referred to here as a 'paired burst' sound. Data collected from 56 archival acoustic tag deployments were investigated to determine the functional significance of these signals. Paired burst sound production was associated exclusively with bottom feeding under low-light conditions, predominantly with evidence of associated conspecifics nearby suggesting that the sound likely serves either as a communicative signal to conspecifics, a signal to affect prey behaviour, or possibly both. This study provides additional evidence for individual variation and phenotypic plasticity of foraging behaviours in humpback whales and provides important evidence for the use of acoustic signals among foraging individuals in this species.

  4. The Vocal Repertoire of the Domesticated Zebra Finch: a Data Driven Approach to Decipher the Information-bearing Acoustic Features of Communication Signals

    PubMed Central

    Elie, Julie E.; Theunissen, Frédéric E.

    2018-01-01

    Although a universal code for the acoustic features of animal vocal communication calls may not exist, the thorough analysis of the distinctive acoustical features of vocalization categories is important not only to decipher the acoustical code for a specific species but also to understand the evolution of communication signals and the mechanisms used to produce and understand them. Here, we recorded more than 8,000 examples of almost all the vocalizations of the domesticated zebra finch, Taeniopygia guttata: vocalizations produced to establish contact, to form and maintain pair bonds, to sound an alarm, to communicate distress or to advertise hunger or aggressive intents. We characterized each vocalization type using complete representations that avoided any a priori assumptions on the acoustic code, as well as classical bioacoustics measures that could provide more intuitive interpretations. We then used these acoustical features to rigorously determine the potential information-bearing acoustical features for each vocalization type using both a novel regularized classifier and an unsupervised clustering algorithm. Vocalization categories are discriminated by the shape of their frequency spectrum and by their pitch saliency (noisy to tonal vocalizations) but not particularly by their fundamental frequency. Notably, the spectral shape of zebra finch vocalizations contains peaks or formants that vary systematically across categories and that would be generated by active control of both the vocal organ (source) and the upper vocal tract (filter). PMID:26581377

  5. A private ultraviolet channel in visual communication.

    PubMed

    Cummings, Molly E; Rosenthal, Gil G; Ryan, Michael J

    2003-05-07

    Although private communication is considered an important diversifying force in evolution, there is little direct behavioural evidence to support this notion. Here, we show that ultraviolet (UV) signalling in northern swordtails (Xiphophorus) affords a channel for communication that is not accessible to their major predator, Astyanax mexicanus, the Mexican tetra. Laboratory and field behavioural experiments with swordtails (X. nigrensis) and predators (A. mexicanus) demonstrate that male UV ornamentation significantly increases their attractiveness to females but not to this predator, which is less sensitive to UV. UV reflectance among swordtail species correlates positively with tetra densities across habitats, and visual contrast estimates suggest that UV signals are highly conspicuous to swordtails in their natural environment. Cross-species comparisons also support the hypothesis that natural selection drives the use of UV communication. We compared two species, one with high (X. nigrensis) and one with low (X. malinche) Mexican tetra densities. Xiphophorus nigrensis males reflect significantly more UV than X. malinche, exhibit significant UV sexual dimorphism, and UV is a salient component of the sexual communication system. In X. malinche, however, males reflect minimally in the UV, there is no UV sexual dimorphism, and UV does not play a part in its communication system.

  6. A private ultraviolet channel in visual communication.

    PubMed Central

    Cummings, Molly E; Rosenthal, Gil G; Ryan, Michael J

    2003-01-01

    Although private communication is considered an important diversifying force in evolution, there is little direct behavioural evidence to support this notion. Here, we show that ultraviolet (UV) signalling in northern swordtails (Xiphophorus) affords a channel for communication that is not accessible to their major predator, Astyanax mexicanus, the Mexican tetra. Laboratory and field behavioural experiments with swordtails (X. nigrensis) and predators (A. mexicanus) demonstrate that male UV ornamentation significantly increases their attractiveness to females but not to this predator, which is less sensitive to UV. UV reflectance among swordtail species correlates positively with tetra densities across habitats, and visual contrast estimates suggest that UV signals are highly conspicuous to swordtails in their natural environment. Cross-species comparisons also support the hypothesis that natural selection drives the use of UV communication. We compared two species, one with high (X. nigrensis) and one with low (X. malinche) Mexican tetra densities. Xiphophorus nigrensis males reflect significantly more UV than X. malinche, exhibit significant UV sexual dimorphism, and UV is a salient component of the sexual communication system. In X. malinche, however, males reflect minimally in the UV, there is no UV sexual dimorphism, and UV does not play a part in its communication system. PMID:12803903

  7. Performance Results of Some Candidate French Modems for the Aeronautical Satellite Communication Channel

    DOT National Transportation Integrated Search

    1978-05-01

    Five candidate data, voice, and ranging modems were evaluated by the AEROSAT channel simulation facility to determine applicability for use in the aeronautical satellite communication channel for air traffic control. The modems were supplied by Telec...

  8. Secret-key-assisted private classical communication capacity over quantum channels

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Hsiu; Luo, Zhicheng; Brun, Todd

    2008-10-01

    We prove a regularized formula for the secret-key-assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak (e-print arXiv:quant-ph/0512015) on entanglement-assisted quantum communication capacity . This formula provides a family protocol, the private father protocol, under the resource inequality framework that includes private classical communication without secret-key assistance as a child protocol.

  9. A Stratified Acoustic Model Accounting for Phase Shifts for Underwater Acoustic Networks

    PubMed Central

    Wang, Ping; Zhang, Lin; Li, Victor O. K.

    2013-01-01

    Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated. PMID:23669708

  10. A stratified acoustic model accounting for phase shifts for underwater acoustic networks.

    PubMed

    Wang, Ping; Zhang, Lin; Li, Victor O K

    2013-05-13

    Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated.

  11. Mutual information against correlations in binary communication channels.

    PubMed

    Pregowska, Agnieszka; Szczepanski, Janusz; Wajnryb, Eligiusz

    2015-05-19

    Explaining how the brain processing is so fast remains an open problem (van Hemmen JL, Sejnowski T., 2004). Thus, the analysis of neural transmission (Shannon CE, Weaver W., 1963) processes basically focuses on searching for effective encoding and decoding schemes. According to the Shannon fundamental theorem, mutual information plays a crucial role in characterizing the efficiency of communication channels. It is well known that this efficiency is determined by the channel capacity that is already the maximal mutual information between input and output signals. On the other hand, intuitively speaking, when input and output signals are more correlated, the transmission should be more efficient. A natural question arises about the relation between mutual information and correlation. We analyze the relation between these quantities using the binary representation of signals, which is the most common approach taken in studying neuronal processes of the brain. We present binary communication channels for which mutual information and correlation coefficients behave differently both quantitatively and qualitatively. Despite this difference in behavior, we show that the noncorrelation of binary signals implies their independence, in contrast to the case for general types of signals. Our research shows that the mutual information cannot be replaced by sheer correlations. Our results indicate that neuronal encoding has more complicated nature which cannot be captured by straightforward correlations between input and output signals once the mutual information takes into account the structure and patterns of the signals.

  12. Indigenous Acoustic Detection.

    DTIC Science & Technology

    1982-01-26

    RESEARCH Contract #NO0014-80-C--0829 Task No. NR 139-004 FINAL REPORT Indigenous Acoustic Detection by James J. Whitesefl Secondary Education/Biology...methodology. DTIC. CD-58-PL. Lloyd, J. E. 1981. Personnel communication . Nevo, E. and S. A. Blondheim. 1972. Acoustic isolation in the speciation of...6. Walker, T. J. 1981. Personnel communication . *Walker, T. J. and J. J. Whitesell. 1981. Singing schedules and sites for a tropical burrowing

  13. Investigation on thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing in scramjet cooling channel based on wavelet entropy method

    NASA Astrophysics Data System (ADS)

    Zan, Hao; Li, Haowei; Jiang, Yuguang; Wu, Meng; Zhou, Weixing; Bao, Wen

    2018-06-01

    As part of our efforts to find ways and means to further improve the regenerative cooling technology in scramjet, the experiments of thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing have been conducted in horizontal circular tubes at different conditions. The experimental results indicate that there is a developing process from thermo-acoustic stability to instability. In order to have a deep understanding on the developing process of thermo-acoustic instability, the method of Multi-scale Shannon Wavelet Entropy (MSWE) based on Wavelet Transform Correlation Filter (WTCF) and Multi-Scale Shannon Entropy (MSE) is adopted in this paper. The results demonstrate that the developing process of thermo-acoustic instability from noise and weak signals is well detected by MSWE method and the differences among the stability, the developing process and the instability can be identified. These properties render the method particularly powerful for warning thermo-acoustic instability of hydrocarbon fuel flowing in scramjet cooling channels. The mass flow rate and the inlet pressure will make an influence on the developing process of the thermo-acoustic instability. The investigation on thermo-acoustic instability dynamic characteristics at supercritical pressure based on wavelet entropy method offers guidance on the control of scramjet fuel supply, which can secure stable fuel flowing in regenerative cooling system.

  14. Differential phase-shift keying and channel equalization in free space optical communication system

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu

    2018-01-01

    We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.

  15. Power losses in diffuse ultraviolet optical communications channels.

    PubMed

    Raptis, Nikos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-09-15

    One of the most critical parameters in free-space optical communications systems operating in a non-line-of-sight regime are the optical losses. In this Letter, we numerically calculate these losses taking into account the scattering effects using the Monte Carlo simulation technique. The obtained results are compared with experimentally obtained data at 265 nm (solar-blind UV regime). A large set of measurements at distances up to 20 m, for different elevation angles of the transmitter (UV-LEDs) and receiver (photomultiplier tube) and for different atmospheric conditions has been taken for the characterization of the optical communications channel in terms of its loss properties.

  16. Bandwidth efficient channel estimation method for airborne hyperspectral data transmission in sparse doubly selective communication channels

    NASA Astrophysics Data System (ADS)

    Vahidi, Vahid; Saberinia, Ebrahim; Regentova, Emma E.

    2017-10-01

    A channel estimation (CE) method based on compressed sensing (CS) is proposed to estimate the sparse and doubly selective (DS) channel for hyperspectral image transmission from unmanned aircraft vehicles to ground stations. The proposed method contains three steps: (1) the priori estimate of the channel by orthogonal matching pursuit (OMP), (2) calculation of the linear minimum mean square error (LMMSE) estimate of the received pilots given the estimated channel, and (3) estimate of the complex amplitudes and Doppler shifts of the channel using the enhanced received pilot data applying a second round of a CS algorithm. The proposed method is named DS-LMMSE-OMP, and its performance is evaluated by simulating transmission of AVIRIS hyperspectral data via the communication channel and assessing their fidelity for the automated analysis after demodulation. The performance of the DS-LMMSE-OMP approach is compared with that of two other state-of-the-art CE methods. The simulation results exhibit up to 8-dB figure of merit in the bit error rate and 50% improvement in the hyperspectral image classification accuracy.

  17. A communication channel model of the software process

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1988-01-01

    Reported here is beginning research into a noisy communication channel analogy of software development process productivity, in order to establish quantifiable behavior and theoretical bounds. The analogy leads to a fundamental mathematical relationship between human productivity and the amount of information supplied by the developers, the capacity of the human channel for processing and transmitting information, the software product yield (object size), the work effort, requirements efficiency, tool and process efficiency, and programming environment advantage. Also derived is an upper bound to productivity that shows that software reuse is the only means than can lead to unbounded productivity growth; practical considerations of size and cost of reusable components may reduce this to a finite bound.

  18. A communication channel model of the software process

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1988-01-01

    Beginning research into a noisy communication channel analogy of software development process productivity, in order to establish quantifiable behavior and theoretical bounds is discussed. The analogy leads to a fundamental mathematical relationship between human productivity and the amount of information supplied by the developers, the capacity of the human channel for processing and transmitting information, the software product yield (object size) the work effort, requirements efficiency, tool and process efficiency, and programming environment advantage. An upper bound to productivity is derived that shows that software reuse is the only means that can lead to unbounded productivity growth; practical considerations of size and cost of reusable components may reduce this to a finite bound.

  19. The Influence of eHealth Literacy on Perceived Trust in Online Health Communication Channels and Sources

    PubMed Central

    Krieger, Janice L.; Stellefson, Michael L.

    2017-01-01

    Disparities in online health information accessibility are partially due to varying levels of eHealth literacy and perceived trust. This study examined the relationship between eHealth literacy and perceived trust in online health communication channels and sources among diverse socio-demographic groups. A stratified sample of Black/African Americans (n = 402) and Caucasians (n = 409) completed a web-based survey that measured eHealth literacy and perceived trustworthiness of online health communication channels and information sources. eHealth literacy positively predicted perceived trust in online health communication channels and sources, but disparities existed by socio-demographic factors. Segmenting audiences according to eHealth literacy level provides a detailed understanding of how perceived trust in discrete online health communication channels and information sources vary among diverse audiences. Black/AAs with low eHealth literacy had high perceived trust in YouTube and Twitter, while Black/AAs with high eHealth literacy had high perceived trust in online government and religious organizations. Older adults with low eHealth literacy had high perceived trust in Facebook but low perceived trust in online support groups. Researchers and practitioners should consider the socio-demographics and eHealth literacy level of an intended audience when tailoring information through trustworthy online health communication channels and information sources. PMID:28001489

  20. The Influence of eHealth Literacy on Perceived Trust in Online Health Communication Channels and Sources.

    PubMed

    Paige, Samantha R; Krieger, Janice L; Stellefson, Michael L

    2017-01-01

    Disparities in online health information accessibility are partially due to varying levels of eHealth literacy and perceived trust. This study examined the relationship between eHealth literacy and perceived trust in online health communication channels and sources among diverse sociodemographic groups. A stratified sample of Black/African Americans (n = 402) and Caucasians (n = 409) completed a Web-based survey that measured eHealth literacy and perceived trustworthiness of online health communication channels and information sources. eHealth literacy positively predicted perceived trust in online health communication channels and sources, but disparities existed by sociodemographic factors. Segmenting audiences according to eHealth literacy level provides a detailed understanding of how perceived trust in discrete online health communication channels and information sources varies among diverse audiences. Black/African Americans with low eHealth literacy had high perceived trust in YouTube and Twitter, whereas Black/African Americans with high eHealth literacy had high perceived trust in online government and religious organizations. Older adults with low eHealth literacy had high perceived trust in Facebook but low perceived trust in online support groups. Researchers and practitioners should consider the sociodemographics and eHealth literacy level of an intended audience when tailoring information through trustworthy online health communication channels and information sources.

  1. Channel MAC Protocol for Opportunistic Communication in Ad Hoc Wireless Networks

    NASA Astrophysics Data System (ADS)

    Ashraf, Manzur; Jayasuriya, Aruna; Perreau, Sylvie

    2008-12-01

    Despite significant research effort, the performance of distributed medium access control methods has failed to meet theoretical expectations. This paper proposes a protocol named "Channel MAC" performing a fully distributed medium access control based on opportunistic communication principles. In this protocol, nodes access the channel when the channel quality increases beyond a threshold, while neighbouring nodes are deemed to be silent. Once a node starts transmitting, it will keep transmitting until the channel becomes "bad." We derive an analytical throughput limit for Channel MAC in a shared multiple access environment. Furthermore, three performance metrics of Channel MAC—throughput, fairness, and delay—are analysed in single hop and multihop scenarios using NS2 simulations. The simulation results show throughput performance improvement of up to 130% with Channel MAC over IEEE 802.11. We also show that the severe resource starvation problem (unfairness) of IEEE 802.11 in some network scenarios is reduced by the Channel MAC mechanism.

  2. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.

    PubMed

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2013-02-01

    This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments.

  3. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks

    PubMed Central

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-01-01

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency. PMID:28208735

  4. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks.

    PubMed

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-02-08

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency.

  5. Seabird acoustic communication at sea: a new perspective using bio-logging devices

    PubMed Central

    Thiebault, Andréa; Pistorius, Pierre; Mullers, Ralf; Tremblay, Yann

    2016-01-01

    Most seabirds are very noisy at their breeding colonies, when aggregated in high densities. Calls are used for individual recognition and also emitted during agonistic interactions. When at sea, many seabirds aggregate over patchily distributed resources and may benefit from foraging in groups. Because these aggregations are so common, it raises the question of whether seabirds use acoustic communication when foraging at sea? We deployed video-cameras with built in microphones on 36 Cape gannets (Morus capensis) during the breeding season of 2010–2011 at Bird Island (Algoa Bay, South Africa) to study their foraging behaviour and vocal activity at sea. Group formation was derived from the camera footage. During ~42 h, calls were recorded on 72 occasions from 16 birds. Vocalization exclusively took place in the presence of conspecifics, and mostly in feeding aggregations (81% of the vocalizations). From the observation of the behaviours of birds associated with the emission of calls, we suggest that the calls were emitted to avoid collisions between birds. Our observations show that at least some seabirds use acoustic communication when foraging at sea. These findings open up new perspectives for research on seabirds foraging ecology and their interactions at sea. PMID:27492779

  6. Bathymetry and Acoustic Backscatter: Northern Santa Barbara Channel, Southern California

    USGS Publications Warehouse

    Dartnell, Pete; Finlayson, David; Conrad, Jamie; Cochrane, Guy; Johnson, Samuel

    2010-01-01

    In the summer of 2008, as part of the California Seafloor Mapping Program (CSMP) the U.S. Geological Survey, Coastal and Marine Geology mapped a nearshore region of the northern Santa Barbara Channel in Southern California (fig 1). The CSMP is a cooperative partnership between Federal and State agencies, Universities, and Industry to create a comprehensive coastal/marine geologic and habitat basemap series to support the Marine Life Protection Act (MLPA) inititive. The program is supported by the California Ocean Protection Council and the California Coastal Conservancy. The 2008 mapping collected high resolution bathymetry and acoustic backscatter data using a bathymetric side scan system within State waters from about the 10-m isobath out over 3-nautical miles. This Open-File Report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and FGDC metadata.

  7. Shared acoustic codes underlie emotional communication in music and speech-Evidence from deep transfer learning.

    PubMed

    Coutinho, Eduardo; Schuller, Björn

    2017-01-01

    Music and speech exhibit striking similarities in the communication of emotions in the acoustic domain, in such a way that the communication of specific emotions is achieved, at least to a certain extent, by means of shared acoustic patterns. From an Affective Sciences points of view, determining the degree of overlap between both domains is fundamental to understand the shared mechanisms underlying such phenomenon. From a Machine learning perspective, the overlap between acoustic codes for emotional expression in music and speech opens new possibilities to enlarge the amount of data available to develop music and speech emotion recognition systems. In this article, we investigate time-continuous predictions of emotion (Arousal and Valence) in music and speech, and the Transfer Learning between these domains. We establish a comparative framework including intra- (i.e., models trained and tested on the same modality, either music or speech) and cross-domain experiments (i.e., models trained in one modality and tested on the other). In the cross-domain context, we evaluated two strategies-the direct transfer between domains, and the contribution of Transfer Learning techniques (feature-representation-transfer based on Denoising Auto Encoders) for reducing the gap in the feature space distributions. Our results demonstrate an excellent cross-domain generalisation performance with and without feature representation transfer in both directions. In the case of music, cross-domain approaches outperformed intra-domain models for Valence estimation, whereas for Speech intra-domain models achieve the best performance. This is the first demonstration of shared acoustic codes for emotional expression in music and speech in the time-continuous domain.

  8. Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment.

    PubMed

    Preisig, James C

    2005-07-01

    Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error (sigma2(s)) of each equalizer. This error is decomposed into two components. These are the minimum achievable error (sigma2(0)) and the excess error (sigma2(e)). The former is the soft decision error that would be realized by the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel impulse response and statistics of the interfering noise field. The latter is the additional soft decision error that is realized due to errors in the estimates of these channel parameters. These expressions accurately predict the equalizer errors observed in the processing of experimental data by a channel estimate based decision feedback equalizer (DFE) and a passive time-reversal equalizer. Further expressions are presented that allow equalizer performance to be predicted given the scattering function of the acoustic channel. The analysis using these expressions yields insights into the features of surface scattering that most significantly impact equalizer performance in shallow water environments and motivates the implementation of a DFE that is robust with respect to channel estimation errors.

  9. Science Enabled by Ocean Observatory Acoustics

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lee, C.; Gobat, J.; Freitag, L.; Miller, J. H.; Committee, I.

    2004-12-01

    Ocean observatories have the potential to examine the physical, chemical, biological, and geological parameters and processes of the ocean at time and space scales previously unexplored. Acoustics provides an efficient and cost-effective means by which these parameters and processes can be measured and information can be communicated. Integrated acoustics systems providing navigation and communications for mobile platforms and conducting acoustical measurements in support of science objectives are critical and essential elements of the ocean observatories presently in the planning and implementation stages. The ORION Workshop (Puerto Rico, 4-8 January 2004) developed science themes that can be addressed utilizing ocean observatory infrastructure. The use of acoustics to sense the 3-d/volumetric ocean environment on all temporal and spatial scales was discussed in many ORION working groups. Science themes that are related to acoustics and measurements using acoustics are reviewed and tabulated, as are the related and sometimes competing requirements for passive listening, acoustic navigation and acoustic communication around observatories. Sound in the sea, brought from observatories to universities and schools via the internet, will also be a major education and outreach mechanism.

  10. Communication systems, transceivers, and methods for generating data based on channel characteristics

    DOEpatents

    Forman, Michael A; Young, Derek

    2012-09-18

    Examples of methods for generating data based on a communications channel are described. In one such example, a processing unit may generate a first vector representation based in part on at least two characteristics of a communications channel. A constellation having at least two dimensions may be addressed with the first vector representation to identify a first symbol associated with the first vector representation. The constellation represents a plurality of regions, each region associated with a respective symbol. The symbol may be used to generate data, which may stored in an electronic storage medium and used as a cryptographic key or a spreading code or hopping sequence in a modulation technique.

  11. Channel simulation to facilitate mobile-satellite communications research

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    1987-01-01

    The mobile-satellite-service channel simulator, which is a facility for an end-to-end hardware simulation of mobile satellite communications links is discussed. Propagation effects, Doppler, interference, band limiting, satellite nonlinearity, and thermal noise have been incorporated into the simulator. The propagation environment in which the simulator needs to operate and the architecture of the simulator are described. The simulator is composed of: a mobile/fixed transmitter, interference transmitters, a propagation path simulator, a spacecraft, and a fixed/mobile receiver. Data from application experiments conducted with the channel simulator are presented; the noise converison technique to evaluate interference effects, the error floor phenomenon of digital multipath fading links, and the fade margin associated with a noncoherent receiver are examined. Diagrams of the simulator are provided.

  12. Acoustic trapping in bubble-bounded micro-cavities

    NASA Astrophysics Data System (ADS)

    O'Mahoney, P.; McDougall, C.; Glynne-Jones, P.; MacDonald, M. P.

    2016-12-01

    We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded `micro-cavities'. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.

  13. On simulation of the atmospheric acoustic channel for some nuclear tests in former soviet test site Semipalatinsk

    NASA Astrophysics Data System (ADS)

    Sorokin, A. G.; Lobycheva, I. Yu.

    2011-08-01

    This paper presents data on the recording of infrasound from distant nuclear explosions set off in former soviet test site Semipalatinsk and recorded by infrasonic station Irkutsk-Badary of the Institute of Solar-Terrestrial Physics SB RAS in the Tunkinsky region in the Buryat Republic. We assess the state of the atmospheric acoustic channel (AAC) along the propagation path. Results of the AAC modeling are compared with experimental data.

  14. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW).

    PubMed

    Shi, Jinjie; Yazdi, Shahrzad; Lin, Sz-Chin Steven; Ding, Xiaoyun; Chiang, I-Kao; Sharp, Kendra; Huang, Tony Jun

    2011-07-21

    Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bonded between them. To understand the working principle of the SSAW-based 3D focusing and investigate the position of the focal point, we computed longitudinal waves, generated by the SAWs and radiated into the fluid media from opposite sides of the microchannel, and the resultant pressure and velocity fields due to the interference and reflection of the longitudinal waves. Simulation results predict the existence of a focusing point which is in good agreement with our experimental observations. Compared with other 3D focusing techniques, this method is non-invasive, robust, energy-efficient, easy to implement, and applicable to nearly all types of microparticles.

  15. 47 CFR 90.625 - Other criteria to be applied in assigning channels for use in conventional systems of communication.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... channels for use in conventional systems of communication. 90.625 Section 90.625 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES... applied in assigning channels for use in conventional systems of communication. (a) Where an applicant...

  16. Shared acoustic codes underlie emotional communication in music and speech—Evidence from deep transfer learning

    PubMed Central

    Schuller, Björn

    2017-01-01

    Music and speech exhibit striking similarities in the communication of emotions in the acoustic domain, in such a way that the communication of specific emotions is achieved, at least to a certain extent, by means of shared acoustic patterns. From an Affective Sciences points of view, determining the degree of overlap between both domains is fundamental to understand the shared mechanisms underlying such phenomenon. From a Machine learning perspective, the overlap between acoustic codes for emotional expression in music and speech opens new possibilities to enlarge the amount of data available to develop music and speech emotion recognition systems. In this article, we investigate time-continuous predictions of emotion (Arousal and Valence) in music and speech, and the Transfer Learning between these domains. We establish a comparative framework including intra- (i.e., models trained and tested on the same modality, either music or speech) and cross-domain experiments (i.e., models trained in one modality and tested on the other). In the cross-domain context, we evaluated two strategies—the direct transfer between domains, and the contribution of Transfer Learning techniques (feature-representation-transfer based on Denoising Auto Encoders) for reducing the gap in the feature space distributions. Our results demonstrate an excellent cross-domain generalisation performance with and without feature representation transfer in both directions. In the case of music, cross-domain approaches outperformed intra-domain models for Valence estimation, whereas for Speech intra-domain models achieve the best performance. This is the first demonstration of shared acoustic codes for emotional expression in music and speech in the time-continuous domain. PMID:28658285

  17. Designing Effective Persuasive Systems Utilizing the Power of Entanglement: Communication Channel, Strategy & Affect

    ERIC Educational Resources Information Center

    Li, Haiqing

    2010-01-01

    With rapid advancements in information and communication technologies, computer-mediated communication channels such as email, web, mobile smart-phones with SMS, social networking websites (Facebook), multimedia websites, and OEM devices provide users with multiple technology choices to seek information. However, no study has compared the…

  18. The Modeling and Simulation of the Galvanic Coupling Intra-Body Communication via Handshake Channel.

    PubMed

    Li, Maoyuan; Song, Yong; Li, Wansong; Wang, Guangfa; Bu, Tianpeng; Zhao, Yufei; Hao, Qun

    2017-04-14

    Intra-body communication (IBC) is a technology using the conductive properties of the body to transmit signal, and information interaction by handshake is regarded as one of the important applications of IBC. In this paper, a method for modeling the galvanic coupling intra-body communication via handshake channel is proposed, while the corresponding parameters are discussed. Meanwhile, the mathematical model of this kind of IBC is developed. Finally, the validity of the developed model has been verified by measurements. Moreover, its characteristics are discussed and compared with that of the IBC via single body channel. Our results indicate that the proposed method will lay a foundation for the theoretical analysis and application of the IBC via handshake channel.

  19. Diffusion-Based Model for Synaptic Molecular Communication Channel.

    PubMed

    Khan, Tooba; Bilgin, Bilgesu A; Akan, Ozgur B

    2017-06-01

    Computational methods have been extensively used to understand the underlying dynamics of molecular communication methods employed by nature. One very effective and popular approach is to utilize a Monte Carlo simulation. Although it is very reliable, this method can have a very high computational cost, which in some cases renders the simulation impractical. Therefore, in this paper, for the special case of an excitatory synaptic molecular communication channel, we present a novel mathematical model for the diffusion and binding of neurotransmitters that takes into account the effects of synaptic geometry in 3-D space and re-absorption of neurotransmitters by the transmitting neuron. Based on this model we develop a fast deterministic algorithm, which calculates expected value of the output of this channel, namely, the amplitude of excitatory postsynaptic potential (EPSP), for given synaptic parameters. We validate our algorithm by a Monte Carlo simulation, which shows total agreement between the results of the two methods. Finally, we utilize our model to quantify the effects of variation in synaptic parameters, such as position of release site, receptor density, size of postsynaptic density, diffusion coefficient, uptake probability, and number of neurotransmitters in a vesicle, on maximum number of bound receptors that directly affect the peak amplitude of EPSP.

  20. What You Don't Know Won't Hurt Me: Impression Management Functions of Communication Channels in Relationships.

    ERIC Educational Resources Information Center

    O'Sullivan, Patrick B.

    2000-01-01

    Addresses the implications of interpersonal communication technology use for personal relationships. Tests elements of an impression management model, which specifies the processes and outcomes of strategic uses of channel and message for self-presentational goals. Supports a functional perspective that views mediated communication channels as a…

  1. Integrated multi-channel vehicle-vehicle and vehicle-roadside communications for ITS

    DOT National Transportation Integrated Search

    2008-12-01

    This research describes a medium access control (MAC) protocol to Enable multi-channel operation for dedicated short-range communication (DSRC). In particular, we focus on the challenge of supporting potentially high-bandwidth commercial or infotainm...

  2. Designing Effective Persuasive Systems Utilizing the Power of Entanglement: Communication Channel, Strategy and Affect

    NASA Astrophysics Data System (ADS)

    Li, Haiqing; Chatterjee, Samir

    With rapid advances in information and communication technology, computer-mediated communication (CMC) technologies are utilizing multiple IT platforms such as email, websites, cell-phones/PDAs, social networking sites, and gaming environments. However, no studies have compared the effectiveness of a persuasive system using such alternative channels and various persuasive techniques. Moreover, how affective computing impacts the effectiveness of persuasive systems is not clear. This study proposes (1) persuasive technology channels in combination with persuasive strategies will have different persuasive effectiveness; (2) Adding positive emotion to a message that leads to a better overall user experience could increase persuasive effectiveness. The affective computing or emotion information was added to the experiment using emoticons. The initial results of a pilot study show that computer-mediated communication channels along with various persuasive strategies can affect the persuasive effectiveness to varying degrees. These results also shows that adding a positive emoticon to a message leads to a better user experience which increases the overall persuasive effectiveness of a system.

  3. Quantum communication using a multiqubit entangled channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghose, Shohini, E-mail: sghose@wlu.ca; Institute for Quantum Computing, University of Waterloo, Ontario; Hamel, Angele

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  4. Quantum communication using a multiqubit entangled channel

    NASA Astrophysics Data System (ADS)

    Ghose, Shohini; Hamel, Angele

    2015-12-01

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  5. Compensating the noise of a communication channel via asymmetric encoding of quantum information.

    PubMed

    Lucamarini, Marco; Kumar, Rupesh; Di Giuseppe, Giovanni; Vitali, David; Tombesi, Paolo

    2010-10-01

    An asymmetric preparation of the quantum states sent through a noisy channel can enable a new way to monitor and actively compensate the channel noise. The paradigm of such an asymmetric treatment of quantum information is the Bennett 1992 protocol, in which the counts in the two separate bases are in direct connection with the channel noise. Using this protocol as a guiding example, we show how to correct the phase drift of a communication channel without using reference pulses, interruptions of the quantum transmission, or public data exchanges.

  6. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  7. A Glider-Assisted Link Disruption Restoration Mechanism in Underwater Acoustic Sensor Networks.

    PubMed

    Jin, Zhigang; Wang, Ning; Su, Yishan; Yang, Qiuling

    2018-02-07

    Underwater acoustic sensor networks (UASNs) have become a hot research topic. In UASNs, nodes can be affected by ocean currents and external forces, which could result in sudden link disruption. Therefore, designing a flexible and efficient link disruption restoration mechanism to ensure the network connectivity is a challenge. In the paper, we propose a glider-assisted restoration mechanism which includes link disruption recognition and related link restoring mechanism. In the link disruption recognition mechanism, the cluster heads collect the link disruption information and then schedule gliders acting as relay nodes to restore the disrupted link. Considering the glider's sawtooth motion, we design a relay location optimization algorithm with a consideration of both the glider's trajectory and acoustic channel attenuation model. The utility function is established by minimizing the channel attenuation and the optimal location of glider is solved by a multiplier method. The glider-assisted restoration mechanism can greatly improve the packet delivery rate and reduce the communication energy consumption and it is more general for the restoration of different link disruption scenarios. The simulation results show that glider-assisted restoration mechanism can improve the delivery rate of data packets by 15-33% compared with cooperative opportunistic routing (OVAR), the hop-by-hop vector-based forwarding (HH-VBF) and the vector based forward (VBF) methods, and reduce communication energy consumption by 20-58% for a typical network's setting.

  8. Is dust acoustic wave a new plasma acoustic mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, C.B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi {ital et al.} [J. Plasma Phys. {bold 41}, 219 (1989)]. It is suggested that both correct and more usable nomenclature of themore » ALM should be the so-called acoustic mode. {copyright} {ital 1997 American Institute of Physics.}« less

  9. Management of Communication Channels for Health Information in the Community

    ERIC Educational Resources Information Center

    Tanvatanakul, Vasuton; Amado, Joao; Saowakontha, Sastri

    2007-01-01

    Object: To investigate channels for communication of health information to various groups in the community. Design: An exploratory cross sectional design was used, followed by focus groups of selected participants to confirm and clarify the findings. Setting: Five levels of sub-district administration organizations were selected from different…

  10. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  11. Communication acoustics in Bell Labs

    NASA Astrophysics Data System (ADS)

    Flanagan, J. L.

    2004-05-01

    Communication aoustics has been a central theme in Bell Labs research since its inception. Telecommunication serves human information exchange. And, humans favor spoken language as a principal mode. The atmospheric medium typically provides the link between articulation and hearing. Creation, control and detection of sound, and the human's facility for generation and perception are basic ingredients of telecommunication. Electronics technology of the 1920s ushered in great advances in communication at a distance, a strong economical impetus being to overcome bandwidth limitations of wireline and cable. Early research established criteria for speech transmission with high quality and intelligibility. These insights supported exploration of means for efficient transmission-obtaining the greatest amount of speech information over a given bandwidth. Transoceanic communication was initiated by undersea cables for telegraphy. But these long cables exhibited very limited bandwidth (order of few hundred Hz). The challenge of sending voice across the oceans spawned perhaps the best known speech compression technique of history-the Vocoder, which parametrized the signal for transmission in about 300 Hz bandwidth, one-tenth that required for the typical waveform channel. Quality and intelligibility were grave issues (and they still are). At the same time parametric representation offered possibilities for encryption and privacy inside a traditional voice bandwidth. Confidential conversations between Roosevelt and Churchill during World War II were carried over high-frequency radio by an encrypted vocoder system known as Sigsaly. Major engineering advances in the late 1940s and early 1950s moved telecommunications into a new regime-digital technology. These key advances were at least three: (i) new understanding of time-discrete (sampled) representation of signals, (ii) digital computation (especially binary based), and (iii) evolving capabilities in microelectronics that

  12. The Modeling and Simulation of the Galvanic Coupling Intra-Body Communication via Handshake Channel

    PubMed Central

    Li, Maoyuan; Song, Yong; Li, Wansong; Wang, Guangfa; Bu, Tianpeng; Zhao, Yufei; Hao, Qun

    2017-01-01

    Intra-body communication (IBC) is a technology using the conductive properties of the body to transmit signal, and information interaction by handshake is regarded as one of the important applications of IBC. In this paper, a method for modeling the galvanic coupling intra-body communication via handshake channel is proposed, while the corresponding parameters are discussed. Meanwhile, the mathematical model of this kind of IBC is developed. Finally, the validity of the developed model has been verified by measurements. Moreover, its characteristics are discussed and compared with that of the IBC via single body channel. Our results indicate that the proposed method will lay a foundation for the theoretical analysis and application of the IBC via handshake channel. PMID:28420119

  13. Bathymetry and acoustic backscatter-outer mainland shelf, eastern Santa Barbara Channel, California

    USGS Publications Warehouse

    Dartnell, Peter; Finlayson, David P.; Ritchie, Andrew C.; Cochrane, Guy R.; Erdey, Mercedes D.

    2012-01-01

    In 2010 and 2011, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from the outer shelf region of the eastern Santa Barbara Channel, California. These surveys were conducted in cooperation with the Bureau of Ocean Energy Management (BOEM). BOEM is interested in maps of hard-bottom substrates, particularly natural outcrops that support reef communities in areas near oil and gas extraction activity. The surveys were conducted using the USGS R/V Parke Snavely, outfitted with an interferometric sidescan sonar for swath mapping and real-time kinematic navigation equipment. This report provides the bathymetry and backscatter data acquired during these surveys in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  14. On the quantum-channel capacity for orbital angular momentum-based free-space optical communications.

    PubMed

    Zhang, Yequn; Djordjevic, Ivan B; Gao, Xin

    2012-08-01

    Inspired by recent demonstrations of orbital angular momentum-(OAM)-based single-photon communications, we propose two quantum-channel models: (i) the multidimensional quantum-key distribution model and (ii) the quantum teleportation model. Both models employ operator-sum representation for Kraus operators derived from OAM eigenkets transition probabilities. These models are highly important for future development of quantum-error correction schemes to extend the transmission distance and improve date rates of OAM quantum communications. By using these models, we calculate corresponding quantum-channel capacities in the presence of atmospheric turbulence.

  15. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    PubMed

    Hondorp, Darryl W; Bennion, David H; Roseman, Edward F; Holbrook, Christopher M; Boase, James C; Chiotti, Justin A; Thomas, Michael V; Wills, Todd C; Drouin, Richard G; Kessel, Steven T; Krueger, Charles C

    2017-01-01

    Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens) into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove important for

  16. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    PubMed Central

    Bennion, David H.; Roseman, Edward F.; Holbrook, Christopher M.; Boase, James C.; Chiotti, Justin A.; Thomas, Michael V.; Wills, Todd C.; Drouin, Richard G.; Kessel, Steven T.; Krueger, Charles C.

    2017-01-01

    Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens) into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove important for

  17. Assessing the Role of College as a Sustainability Communication Channel

    ERIC Educational Resources Information Center

    Lertpratchya, Alisa P.; Besley, John C.; Zwickle, Adam; Takahashi, Bruno; Whitley, Cameron Thomas

    2017-01-01

    Purpose: The purpose of this study is to assess the effectiveness of higher education institution as a sustainability communication channel. The theory of planned behavior was used to examine the degree to which a student's tenure at a large university with active and visible sustainability initiatives is associated with changes in views about…

  18. Channel Modelling and Performance of Non-Line-of-Sight Ultraviolet Scattering Communications

    DTIC Science & Technology

    2012-01-01

    Avalanche photodiode (APD) detectors are also rapidly being developed [6, 7]. These device advances have inspired recent research in LED-based short...response and path loss results for outdoor NLOS UV communication channels in Section 3. The impulse response modelling describes UV pulse broadening via...Both the impulse response and path loss are critical to communication system design and performance assessment. Although pulse broadening creates inter

  19. Acoustics and sociolinguistics: Patterns of communication in hearing impairing classrooms

    NASA Astrophysics Data System (ADS)

    McKellin, William; Shahin, Kimary; Jamieson, Janet; Hodgson, Murray; Pichora-Fuller, Kathleen

    2005-04-01

    In elementary school classes, noise during student led activities is often taken as evidence of successful interaction and learning. In this complex social environment of elementary school classrooms, acquisition of complex language and social skills-the focus of activities in early education-is expected to take place in hearing-hostile environments. Communication and language processing in these contexts requires interactive strategies, discourse forms, and syntactic structures different from the educationally desired forms used in acoustically advantageous environments. Recordings were made of the interaction of groups of students in grades 1-3, 5, and 7 during collaborative group work in their regular classrooms. Each student wore microphones at the ear level and head-mounted video cameras. Each group as a whole was also audio- and videotaped and noise level readings were recorded. Analysis of the acoustical and phonological properties of language heard by each student has demonstrated that the language variety used in these noisy and reverberant settings is similar to that of individuals with hearing impairments. This paper reports similarities between the syntactic structures and pragmatic strategies used by hearing impaired children and normally hearing children in noisy contexts. [Work supported by Peter Wall Institute for Advanced Studies, University of British Columbia.

  20. Acoustical conditions for speech communication in active elementary school classrooms

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Bradley, John

    2005-04-01

    Detailed acoustical measurements were made in 34 active elementary school classrooms with typical rectangular room shape in schools near Ottawa, Canada. There was an average of 21 students in classrooms. The measurements were made to obtain accurate indications of the acoustical quality of conditions for speech communication during actual teaching activities. Mean speech and noise levels were determined from the distribution of recorded sound levels and the average speech-to-noise ratio was 11 dBA. Measured mid-frequency reverberation times (RT) during the same occupied conditions varied from 0.3 to 0.6 s, and were a little less than for the unoccupied rooms. RT values were not related to noise levels. Octave band speech and noise levels, useful-to-detrimental ratios, and Speech Transmission Index values were also determined. Key results included: (1) The average vocal effort of teachers corresponded to louder than Pearsons Raised voice level; (2) teachers increase their voice level to overcome ambient noise; (3) effective speech levels can be enhanced by up to 5 dB by early reflection energy; and (4) student activity is seen to be the dominant noise source, increasing average noise levels by up to 10 dBA during teaching activities. [Work supported by CLLRnet.

  1. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions

    PubMed Central

    Muhammed, Dalhatu; Anisi, Mohammad Hossein; Vargas-Rosales, Cesar; Khan, Anwar

    2018-01-01

    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node’s cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted. PMID:29389874

  2. Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    PubMed

    Muhammed, Dalhatu; Anisi, Mohammad Hossein; Zareei, Mahdi; Vargas-Rosales, Cesar; Khan, Anwar

    2018-02-01

    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted.

  3. Passing crisis and emergency risk communications: the effects of communication channel, information type, and repetition.

    PubMed

    Edworthy, Judy; Hellier, Elizabeth; Newbold, Lex; Titchener, Kirsteen

    2015-05-01

    Three experiments explore several factors which influence information transmission when warning messages are passed from person to person. In Experiment 1, messages were passed down chains of participants using five different modes of communication. Written communication channels resulted in more accurate message transmission than verbal. In addition, some elements of the message endured further down the chain than others. Experiment 2 largely replicated these effects and also demonstrated that simple repetition of a message eliminated differences between written and spoken communication. In a final field experiment, chains of participants passed information however they wanted to, with the proviso that half of the chains could not use telephones. Here, the lack of ability to use a telephone did not affect accuracy, but did slow down the speed of transmission from the recipient of the message to the last person in the chain. Implications of the findings for crisis and emergency risk communication are discussed. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  5. Information transfer in auditoria and room-acoustical quality.

    PubMed

    Summers, Jason E

    2013-04-01

    It is hypothesized that room-acoustical quality correlates with the information-transfer rate. Auditoria are considered as multiple-input multiple-output communication channels and a theory of information-transfer is outlined that accounts for time-variant multipath, spatial hearing, and distributed directional sources. Source diversity and spatial hearing are shown to be the mechanisms through which multipath increases the information-transfer rate by overcoming finite spatial resolution. In addition to predictions that are confirmed by recent and historical findings, the theory provides explanations for the influence of factors such as musical repertoire and ensemble size on subjective preference and the influence of multisource, multichannel auralization on perceived realism.

  6. General Approach to Quantum Channel Impossibility by Local Operations and Classical Communication.

    PubMed

    Cohen, Scott M

    2017-01-13

    We describe a general approach to proving the impossibility of implementing a quantum channel by local operations and classical communication (LOCC), even with an infinite number of rounds, and find that this can often be demonstrated by solving a set of linear equations. The method also allows one to design a LOCC protocol to implement the channel whenever such a protocol exists in any finite number of rounds. Perhaps surprisingly, the computational expense for analyzing LOCC channels is not much greater than that for LOCC measurements. We apply the method to several examples, two of which provide numerical evidence that the set of quantum channels that are not LOCC is not closed and that there exist channels that can be implemented by LOCC either in one round or in three rounds that are on the boundary of the set of all LOCC channels. Although every LOCC protocol must implement a separable quantum channel, it is a very difficult task to determine whether or not a given channel is separable. Fortunately, prior knowledge that the channel is separable is not required for application of our method.

  7. A Self-Adaptive Capacitive Compensation Technique for Body Channel Communication.

    PubMed

    Mao, Jingna; Yang, Huazhong; Lian, Yong; Zhao, Bo

    2017-10-01

    In wireless body area network, capacitive-coupling body channel communication (CC-BCC) has the potential to attain better energy efficiency over conventional wireless communication schemes. The CC-BCC scheme utilizes the human body as the forward signal transmission medium, reducing the path loss in wireless body-centric communications. However, the backward path is formed by the coupling capacitance between the ground electrodes (GEs) of transmitter (Tx) and receiver (Rx), which increases the path loss and results in a body posture dependent backward impedance. Conventional methods use a fixed inductor to resonate with the backward capacitor to compensate the path loss, while it's not effective in compensating the variable backward impedance induced by the body movements. In this paper, we propose a self-adaptive capacitive compensation (SACC) technique to address such a problem. A backward distance detector is introduced to estimate the distance between two GEs of Tx and Rx, and a backward capacitance model is built to calculate the backward capacitance. The calculated backward capacitance at varying body posture is compensated by a digitally controlled tunable inductor (DCTI). The proposed SACC technique is validated by a prototype CC-BCC system, and measurements are taken on human subjects. The measurement results show that 9dB-16 dB channel enhancement can be achieved at a backward path distance of 1 cm-10 cm.

  8. Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Collins, David J.; Ai, Ye; Neild, Adrian

    2017-04-01

    Periodic pattern generation using time-averaged acoustic forces conventionally requires the intersection of counterpropagating wave fields, where suspended micro-objects in a microfluidic system collect along force potential minimizing nodal or antinodal lines. Whereas this effect typically requires either multiple transducer elements or whole channel resonance, we report the generation of scalable periodic patterning positions without either of these conditions. A single propagating surface acoustic wave interacts with the proximal channel wall to produce a knife-edge effect according to the Huygens-Fresnel principle, where these cylindrically propagating waves interfere with classical wave fronts emanating from the substrate. We simulate these conditions and describe a model that accurately predicts the lateral spacing of these positions in a robust and novel approach to acoustic patterning.

  9. Integrated source and channel encoded digital communication system design study. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  10. Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay.

    PubMed

    Zhong, Xuefeng; Chen, Fangjiong; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua

    2018-01-16

    Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter-receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter-receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity.

  11. Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay

    PubMed Central

    Zhong, Xuefeng; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua

    2018-01-01

    Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter–receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter–receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity. PMID:29337911

  12. Experimental demonstration of OFDM/OQAM transmission with DFT-based channel estimation for visible laser light communications

    NASA Astrophysics Data System (ADS)

    He, Jing; Shi, Jin; Deng, Rui; Chen, Lin

    2017-08-01

    Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.

  13. Mothers "Google It Up:" Extending Communication Channel Behavior in Diffusion of Innovations Theory.

    PubMed

    Sundstrom, Beth

    2016-01-01

    This study employed qualitative methods, conducting 44 in-depth interviews with biological mothers of newborns to understand women's perceptions and use of new media, mass media, and interpersonal communication channels in relation to health issues. Findings contribute to theoretical and practical understandings of the role of communication channels in diffusion of innovations theory. In particular, this study provides a foundation for the use of qualitative research to advance applications of diffusion of innovations theory. Results suggest that participants resisted mass media portrayals of women's health. When faced with a health question, participants uniformly started with the Internet to "Google it up." Findings suggest new media comprise a new communication channel with new rules, serving the functions of both personal and impersonal influence. In particular, pregnancy and the postpartum period emerged as a time when campaign planners can access women in new ways online. As a result, campaign planners could benefit from introducing new ideas online and capitalizing on the strength of weak ties favored in new media. Results expand the innovativeness/needs paradox in diffusion of innovations theory by elaborating on the role of new media to reach underserved populations. These findings provide an opportunity to better understand patient information seeking through the lens of diffusion of innovations theory.

  14. Selective and Efficient Neural Coding of Communication Signals Depends on Early Acoustic and Social Environment

    PubMed Central

    Amin, Noopur; Gastpar, Michael; Theunissen, Frédéric E.

    2013-01-01

    Previous research has shown that postnatal exposure to simple, synthetic sounds can affect the sound representation in the auditory cortex as reflected by changes in the tonotopic map or other relatively simple tuning properties, such as AM tuning. However, their functional implications for neural processing in the generation of ethologically-based perception remain unexplored. Here we examined the effects of noise-rearing and social isolation on the neural processing of communication sounds such as species-specific song, in the primary auditory cortex analog of adult zebra finches. Our electrophysiological recordings reveal that neural tuning to simple frequency-based synthetic sounds is initially established in all the laminae independent of patterned acoustic experience; however, we provide the first evidence that early exposure to patterned sound statistics, such as those found in native sounds, is required for the subsequent emergence of neural selectivity for complex vocalizations and for shaping neural spiking precision in superficial and deep cortical laminae, and for creating efficient neural representations of song and a less redundant ensemble code in all the laminae. Our study also provides the first causal evidence for ‘sparse coding’, such that when the statistics of the stimuli were changed during rearing, as in noise-rearing, that the sparse or optimal representation for species-specific vocalizations disappeared. Taken together, these results imply that a layer-specific differential development of the auditory cortex requires patterned acoustic input, and a specialized and robust sensory representation of complex communication sounds in the auditory cortex requires a rich acoustic and social environment. PMID:23630587

  15. Efficient multichannel acoustic echo cancellation using constrained tap selection schemes in the subband domain

    NASA Astrophysics Data System (ADS)

    Desiraju, Naveen Kumar; Doclo, Simon; Wolff, Tobias

    2017-12-01

    Acoustic echo cancellation (AEC) is a key speech enhancement technology in speech communication and voice-enabled devices. AEC systems employ adaptive filters to estimate the acoustic echo paths between the loudspeakers and the microphone(s). In applications involving surround sound, the computational complexity of an AEC system may become demanding due to the multiple loudspeaker channels and the necessity of using long filters in reverberant environments. In order to reduce the computational complexity, the approach of partially updating the AEC filters is considered in this paper. In particular, we investigate tap selection schemes which exploit the sparsity present in the loudspeaker channels for partially updating subband AEC filters. The potential for exploiting signal sparsity across three dimensions, namely time, frequency, and channels, is analyzed. A thorough analysis of different state-of-the-art tap selection schemes is performed and insights about their limitations are gained. A novel tap selection scheme is proposed which overcomes these limitations by exploiting signal sparsity while not ignoring any filters for update in the different subbands and channels. Extensive simulation results using both artificial as well as real-world multichannel signals show that the proposed tap selection scheme outperforms state-of-the-art tap selection schemes in terms of echo cancellation performance. In addition, it yields almost identical echo cancellation performance as compared to updating all filter taps at a significantly reduced computational cost.

  16. Channel capacity of OAM based FSO communication systems with partially coherent Bessel-Gaussian beams in anisotropic turbulence

    NASA Astrophysics Data System (ADS)

    Peng, Juan; Zhang, Li; Zhang, Kecheng; Ma, Junxian

    2018-07-01

    Based on the Rytov approximation theory, the transmission model of an orbital angular momentum (OAM)-carrying partially coherent Bessel-Gaussian (BG) beams propagating in weak anisotropic turbulence is established. The corresponding analytical expression of channel capacity is presented. Influences of anisotropic turbulence parameters and beam parameters on channel capacity of OAM-based free-space optical (FSO) communication systems are discussed in detail. The results indicate channel capacity increases with increasing of almost all of the parameters except for transmission distance. Raising the values of some parameters such as wavelength, propagation altitude and non-Kolmogorov power spectrum index, would markedly improve the channel capacity. In addition, we evaluate the channel capacity of Laguerre-Gaussian (LG) beams and partially coherent BG beams in anisotropic turbulence. It indicates that partially coherent BG beams are better light sources candidates for mitigating the influences of anisotropic turbulence on channel capacity of OAM-based FSO communication systems.

  17. A Glider-Assisted Link Disruption Restoration Mechanism in Underwater Acoustic Sensor Networks

    PubMed Central

    Wang, Ning; Su, Yishan; Yang, Qiuling

    2018-01-01

    Underwater acoustic sensor networks (UASNs) have become a hot research topic. In UASNs, nodes can be affected by ocean currents and external forces, which could result in sudden link disruption. Therefore, designing a flexible and efficient link disruption restoration mechanism to ensure the network connectivity is a challenge. In the paper, we propose a glider-assisted restoration mechanism which includes link disruption recognition and related link restoring mechanism. In the link disruption recognition mechanism, the cluster heads collect the link disruption information and then schedule gliders acting as relay nodes to restore the disrupted link. Considering the glider’s sawtooth motion, we design a relay location optimization algorithm with a consideration of both the glider’s trajectory and acoustic channel attenuation model. The utility function is established by minimizing the channel attenuation and the optimal location of glider is solved by a multiplier method. The glider-assisted restoration mechanism can greatly improve the packet delivery rate and reduce the communication energy consumption and it is more general for the restoration of different link disruption scenarios. The simulation results show that glider-assisted restoration mechanism can improve the delivery rate of data packets by 15–33% compared with cooperative opportunistic routing (OVAR), the hop-by-hop vector-based forwarding (HH-VBF) and the vector based forward (VBF) methods, and reduce communication energy consumption by 20–58% for a typical network’s setting. PMID:29414898

  18. Free-space quantum cryptography with quantum and telecom communication channels

    NASA Astrophysics Data System (ADS)

    Toyoshima, Morio; Takayama, Yoshihisa; Klaus, Werner; Kunimori, Hiroo; Fujiwara, Mikio; Sasaki, Masahide

    2008-07-01

    Quantum cryptography is a new technique that uses the laws of physics to transmit information securely. In such systems, the vehicle to transfer quantum information is a single photon. However, the transmission distance is limited by the absorption of photons in an optical fiber in which the maximum demonstrated range is about 100 km. Free-space quantum cryptography between a ground station and a satellite is a way of sending the quantum information further distances than that with optical fibers since there is no birefringence effect in the atmosphere. At the National Institute of Information and Communications Technology (NICT), the laser communication demonstration between the NICT optical ground station and a low earth orbit satellite was successfully conducted in 2006. For such space communication links, free-space quantum cryptography is considered to be an important application in the future. We have developed a prototype system for free-space quantum cryptography using a weak coherent light and a telecom communication channel. The preliminary results are presented.

  19. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    PubMed Central

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  20. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Trumpis, B. D.; Udalov, S.

    1975-01-01

    Various aspects of space shuttle communication systems were studied. The following major areas were investigated: burst error correction for shuttle command channels; performance optimization and design considerations for Costas receivers with and without bandpass limiting; experimental techniques for measuring low level spectral components of microwave signals; and potential modulation and coding techniques for the Ku-band return link. Results are presented.

  1. A group communication approach for mobile computing mobile channel: An ISIS tool for mobile services

    NASA Astrophysics Data System (ADS)

    Cho, Kenjiro; Birman, Kenneth P.

    1994-05-01

    This paper examines group communication as an infrastructure to support mobility of users, and presents a simple scheme to support user mobility by means of switching a control point between replicated servers. We describe the design and implementation of a set of tools, called Mobile Channel, for use with the ISIS system. Mobile Channel is based on a combination of the two replication schemes: the primary-backup approach and the state machine approach. Mobile Channel implements a reliable one-to-many FIFO channel, in which a mobile client sees a single reliable server; servers, acting as a state machine, see multicast messages from clients. Migrations of mobile clients are handled as an intentional primary switch, and hand-offs or server failures are completely masked to mobile clients. To achieve high performance, servers are replicated at a sliding-window level. Our scheme provides a simple abstraction of migration, eliminates complicated hand-off protocols, provides fault-tolerance and is implemented within the existing group communication mechanism.

  2. Free space optical ultra-wideband communications over atmospheric turbulence channels.

    PubMed

    Davaslioğlu, Kemal; Cağiral, Erman; Koca, Mutlu

    2010-08-02

    A hybrid impulse radio ultra-wideband (IR-UWB) communication system in which UWB pulses are transmitted over long distances through free space optical (FSO) links is proposed. FSO channels are characterized by random fluctuations in the received light intensity mainly due to the atmospheric turbulence. For this reason, theoretical detection error probability analysis is presented for the proposed system for a time-hopping pulse-position modulated (TH-PPM) UWB signal model under weak, moderate and strong turbulence conditions. For the optical system output distributed over radio frequency UWB channels, composite error analysis is also presented. The theoretical derivations are verified via simulation results, which indicate a computationally and spectrally efficient UWB-over-FSO system.

  3. Promoting new practices to increase access to and retention in addiction treatment: an analysis of five communication channels.

    PubMed

    Johnson, Kimberly A; Ford, James H; McCluskey, Matthew

    2012-11-01

    Addiction treatment programs adopt evidence-based practices slowly, in part because adopting a new practice is a process, not an event. Using different communication channels may have a different effect at different points in the process. This paper reports the effectiveness of five communication channels in getting substance abuse treatment programs to adopt new business practices. In this study, national trade media coverage produced the greatest interest among programs and the greatest number of decisions to adopt. Conference presentations produced fewer decisions to adopt than national media, but were the most effective channel when compared to the number of programs they reached. Peers were the greatest influence in moving clinic staff from the decision to adopt to implementation. These findings give preliminary evidence for using different communication channels at different times during an effort to promote the adoption of best practices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Equalization and detection for digital communication over nonlinear bandlimited satellite communication channels. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gutierrez, Alberto, Jr.

    1995-01-01

    This dissertation evaluates receiver-based methods for mitigating the effects due to nonlinear bandlimited signal distortion present in high data rate satellite channels. The effects of the nonlinear bandlimited distortion is illustrated for digitally modulated signals. A lucid development of the low-pass Volterra discrete time model for a nonlinear communication channel is presented. In addition, finite-state machine models are explicitly developed for a nonlinear bandlimited satellite channel. A nonlinear fixed equalizer based on Volterra series has previously been studied for compensation of noiseless signal distortion due to a nonlinear satellite channel. This dissertation studies adaptive Volterra equalizers on a downlink-limited nonlinear bandlimited satellite channel. We employ as figure of merits performance in the mean-square error and probability of error senses. In addition, a receiver consisting of a fractionally-spaced equalizer (FSE) followed by a Volterra equalizer (FSE-Volterra) is found to give improvement beyond that gained by the Volterra equalizer. Significant probability of error performance improvement is found for multilevel modulation schemes. Also, it is found that probability of error improvement is more significant for modulation schemes, constant amplitude and multilevel, which require higher signal to noise ratios (i.e., higher modulation orders) for reliable operation. The maximum likelihood sequence detection (MLSD) receiver for a nonlinear satellite channel, a bank of matched filters followed by a Viterbi detector, serves as a probability of error lower bound for the Volterra and FSE-Volterra equalizers. However, this receiver has not been evaluated for a specific satellite channel. In this work, an MLSD receiver is evaluated for a specific downlink-limited satellite channel. Because of the bank of matched filters, the MLSD receiver may be high in complexity. Consequently, the probability of error performance of a more practical

  5. Communication channels to promote evidence-based practice: a survey of primary care clinicians to determine perceived effects.

    PubMed

    Dadich, Ann; Hosseinzadeh, Hassan

    2016-08-11

    Research suggests that the channels through which evidence-based practices are communicated to healthcare professionals can shape the ways they engage with, and use, this information. For instance, there is evidence to suggest that information should be communicated via sources that are deemed to be credible, like government departments, professional bodies and peers. This article examines the contention that information should be communicated via credible sources. More specifically, the article examines the different communication channels through which primary care clinicians learnt of resources on evidence-based sexual healthcare - namely, clinical aides and online training programs. Furthermore, the article determines whether these communication channels influenced the perceived impact of the resources. Primary care clinicians in Australia (n = 413), notably General Practitioners (n = 214) and Practice Nurses (n = 217), were surveyed on the GP Project - a suite of resources to promote evidence-based sexual healthcare within primary care. Survey items pertained to the source of information about the resources (or communication channel), perceived usefulness of the resources, frequency of use, subsequent contact with the Sexual Health Infoline and a sexual health clinic, as well as the perceived impact of the resources. To determine the relationships between the different communication channels and the perceived impact of the resources, a one-way ANOVA using Tukey's post-hoc test, an independent sample t-test, a χ(2) test, and a Kruskal-Wallis H test were performed where appropriate. Of the respondents who were aware of the clinical aides (49.9%), the largest proportion became aware of these through an educational event or a colleague. Of those who were aware of the online training programs (36.9%), the largest proportion became aware of these through a professional body or government organisation, either directly or via their website. Although both resource

  6. Location of acoustic radiators and inversion for energy density using radio-frequency sources and thunder recordings

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J. B.; Arechiga, R. O.; Edens, H. E.; Thomas, R. J.

    2011-12-01

    We use radio frequency (VHF) pulse locations mapped with the New Mexico Tech Lightning Mapping Array (LMA) to study the distribution of thunder sources in lightning channels. A least squares inversion is used to fit channel acoustic energy radiation with broadband (0.01 to 500 Hz) acoustic recordings using microphones deployed local (< 10 km) to the lightning. We model the thunder (acoustic) source as a superposition of line segments connecting the LMA VHF pulses. An optimum branching algorithm is used to reconstruct conductive channels delineated by VHF sources, which we discretize as a superposition of finely-spaced (0.25 m) acoustic point sources. We consider total radiated thunder as a weighted superposition of acoustic waves from individual channels, each with a constant current along its length that is presumed to be proportional to acoustic energy density radiated per unit length. Merged channels are considered as a linear sum of current-carrying branches and radiate proportionally greater acoustic energy. Synthetic energy time series for a given microphone location are calculated for each independent channel. We then use a non-negative least squares inversion to solve for channel energy densities to match the energy time series determined from broadband acoustic recordings across a 4-station microphone network. Events analyzed by this method have so far included 300-1000 VHF sources, and correlations as high as 0.5 between synthetic and recorded thunder energy were obtained, despite the presence of wind noise and 10-30 m uncertainty in VHF source locations.

  7. Inversion of Acoustic and Electromagnetic Recordings for Mapping Current Flow in Lightning Strikes

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J.; Arechiga, R. O.; Thomas, R. J.

    2012-12-01

    Acoustic recordings can be used to map current-carrying conduits in lightning strikes. Unlike stepped leaders, whose very high frequency (VHF) radio emissions have short (meter-scale) wavelengths and can be located by lightning-mapping arrays, current pulses emit longer (kilometer-scale) waves and cannot be mapped precisely by electromagnetic observations alone. While current pulses are constrained to conductive channels created by stepped leaders, these leaders often branch as they propagate, and most branches fail to carry current. Here, we present a method to use thunder recordings to map current pulses, and we apply it to acoustic and VHF data recorded in 2009 in the Magdalena mountains in central New Mexico, USA. Thunder is produced by rapid heating and expansion of the atmosphere along conductive channels in response to current flow, and therefore can be used to recover the geometry of the current-carrying channel. Toward this goal, we use VHF pulse maps to identify candidate conductive channels where we treat each channel as a superposition of finely-spaced acoustic point sources. We apply ray tracing in variable atmospheric structures to forward model the thunder that our microphone network would record for each candidate channel. Because multiple channels could potentially carry current, a non-linear inversion is performed to determine the acoustic source strength of each channel. For each combination of acoustic source strengths, synthetic thunder is modeled as a superposition of thunder signals produced by each channel, and a power envelope of this stack is then calculated. The inversion iteratively minimizes the misfit between power envelopes of recorded and modeled thunder. Because the atmospheric sound speed structure through which the waves propagate during these events is unknown, we repeat the procedure on many plausible atmospheres to find an optimal fit. We then determine the candidate channel, or channels, that minimizes residuals between

  8. Coding for Communication Channels with Dead-Time Constraints

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Hamkins, Jon

    2004-01-01

    Coding schemes have been designed and investigated specifically for optical and electronic data-communication channels in which information is conveyed via pulse-position modulation (PPM) subject to dead-time constraints. These schemes involve the use of error-correcting codes concatenated with codes denoted constrained codes. These codes are decoded using an interactive method. In pulse-position modulation, time is partitioned into frames of Mslots of equal duration. Each frame contains one pulsed slot (all others are non-pulsed). For a given channel, the dead-time constraints are defined as a maximum and a minimum on the allowable time between pulses. For example, if a Q-switched laser is used to transmit the pulses, then the minimum allowable dead time is the time needed to recharge the laser for the next pulse. In the case of bits recorded on a magnetic medium, the minimum allowable time between pulses depends on the recording/playback speed and the minimum distance between pulses needed to prevent interference between adjacent bits during readout. The maximum allowable dead time for a given channel is the maximum time for which it is possible to satisfy the requirement to synchronize slots. In mathematical shorthand, the dead-time constraints for a given channel are represented by the pair of integers (d,k), where d is the minimum allowable number of zeroes between ones and k is the maximum allowable number of zeroes between ones. A system of the type to which the present schemes apply is represented by a binary- input, real-valued-output channel model illustrated in the figure. At the transmitting end, information bits are first encoded by use of an error-correcting code, then further encoded by use of a constrained code. Several constrained codes for channels subject to constraints of (d,infinity) have been investigated theoretically and computationally. The baseline codes chosen for purposes of comparison were simple PPM codes characterized by M-slot PPM

  9. Extended Horizon Liftings for Periodic Gain Adjustments in Control Systems, and for Equalization of Communication Channels

    NASA Technical Reports Server (NTRS)

    Bayard, David S. (Inventor)

    1996-01-01

    Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N greater then n of liftings in periodic input and output windows Pu and Py, respectively, where N is an integer chosen to define the extent (length) of each of the windows Pu and Py, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is carried out. Conditions for OT are distinct from IT in terms of zero annihilation, namely for OT and of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels.

  10. On Channel Sharing in Discrete-Time, Multi-Access Broadcast Communications,

    DTIC Science & Technology

    1980-09-01

    towards a physical intepretation . of the solutions. 1.4.3 THE PROBLEM OF CAPACITY Our discussion of capacity has two objectives. First, to explore...8021 (DARPA). Yemnii, Y., "On Channel Sharing in Discrete-Time, Multi-Access Broadcast Communication," Sep- tember 1980, UCLA-ENG-8061. (DARPA). 280 FILMED 9-83 DTIC 𔃾’W 9111 ’K4VFClMlP-- Om mFoca 1,00,

  11. Green symphonies: a call for studies on acoustic communication in plants

    PubMed Central

    2013-01-01

    Sound and its use in communication have significantly contributed to shaping the ecology, evolution, behavior, and ultimately the success of many animal species. Yet, the ability to use sound is not a prerogative of animals. Plants may also use sound, but we have been unable to effectively research what the ecological and evolutionary implications might be in a plant’s life. Why should plants emit and receive sound and is there information contained in those sounds? I hypothesize that it would be particularly advantageous for plants to learn about the surrounding environment using sound, as acoustic signals propagate rapidly and with minimal energetic or fitness costs. In fact, both emission and detection of sound may have adaptive value in plants by affecting responses in other organisms, plants, and animals alike. The systematic exploration of the functional, ecological, and evolutionary significance of sound in the life of plants is expected to prompt a reinterpretation of our understanding of these organisms and galvanize the emergence of novel concepts and perspectives on their communicative complexity. PMID:23754865

  12. Optimized optical wireless channel for indoor and intra-vehicle communications: power distribution and SNR analysis

    NASA Astrophysics Data System (ADS)

    Shaaban, Rana; Faruque, Saleh

    2018-01-01

    Light emitting diodes - LEDs are modernizing the indoor illumination and replacing current incandescent and fluorescent lamps rapidly. LEDs have multiple advantages such as extremely high energy efficient, longer lifespan, and lower heat generation. Due to the ability to switch to different light intensity at a very fast rate, LED has given rise to a unique communication technology (visible light communication - VLC) used for high speed data transmission. By studying various kinds of commonly used VLC channel analysis: diffuse and line of sight channels, we presented a simply improved indoor and intra-vehicle visible light communication transmission model. Employing optical wireless communications within the vehicle, not only enhance user mobility, but also alleviate radio frequency interference, and increase efficiency by lowering the complexity of copper cabling. Moreover, a solution to eliminate ambient noise caused by environmental conditions is examined by using optical differential receiver. The simulation results show the improved received power distribution and signal to noise ratio - SNR.

  13. Field tests of acoustic telemetry for a portable coastal observatory

    USGS Publications Warehouse

    Martini, M.; Butman, B.; Ware, J.; Frye, D.

    2006-01-01

    Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.

  14. Using the Harp as a Communication Channel with Children with Autism

    ERIC Educational Resources Information Center

    Kissinger, Lori; Worley, David W.

    2008-01-01

    This study focused on the feasibility of using the concert harp as a communication channel for children with autism. Two qualitative case studies using constant comparison analysis were conducted over a six-day observation period resulting in field notes both from the primary researcher and the teacher who regularly worked with the two children in…

  15. Method for Evaluation of Outage Probability on Random Access Channel in Mobile Communication Systems

    NASA Astrophysics Data System (ADS)

    Kollár, Martin

    2012-05-01

    In order to access the cell in all mobile communication technologies a so called random-access procedure is used. For example in GSM this is represented by sending the CHANNEL REQUEST message from Mobile Station (MS) to Base Transceiver Station (BTS) which is consequently forwarded as an CHANNEL REQUIRED message to the Base Station Controller (BSC). If the BTS decodes some noise on the Random Access Channel (RACH) as random access by mistake (so- called ‘phantom RACH') then it is a question of pure coincidence which èstablishment cause’ the BTS thinks to have recognized. A typical invalid channel access request or phantom RACH is characterized by an IMMEDIATE ASSIGNMENT procedure (assignment of an SDCCH or TCH) which is not followed by sending an ESTABLISH INDICATION from MS to BTS. In this paper a mathematical model for evaluation of the Power RACH Busy Threshold (RACHBT) in order to guaranty in advance determined outage probability on RACH is described and discussed as well. It focuses on Global System for Mobile Communications (GSM) however the obtained results can be generalized on remaining mobile technologies (ie WCDMA and LTE).

  16. Channel coding and data compression system considerations for efficient communication of planetary imaging data

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1974-01-01

    End-to-end system considerations involving channel coding and data compression which could drastically improve the efficiency in communicating pictorial information from future planetary spacecraft are presented.

  17. Effectiveness of public health messaging and communication channels during smoke events: A rapid systematic review.

    PubMed

    Fish, Jennifer A; Peters, Micah D J; Ramsey, Imogen; Sharplin, Greg; Corsini, Nadia; Eckert, Marion

    2017-05-15

    Exposure to smoke emitted from wildfire and planned burns (i.e., smoke events) has been associated with numerous negative health outcomes, including respiratory symptoms and conditions. This rapid review investigates recent evidence (post-2009) regarding the effectiveness of public health messaging during smoke events. The objectives were to determine the effectiveness of various communication channels used and public health messages disseminated during smoke events, for general and at-risk populations. A search of 12 databases and grey literature yielded 1775 unique articles, of which 10 were included in this review. Principal results were: 1) Smoke-related public health messages are communicated via a variety of channels, but limited evidence is available regarding their effectiveness for the general public or at-risk groups. 2) Messages that use simple language are more commonly recalled, understood, and complied with. Compliance differs according to socio-demographic characteristics. 3) At-risk groups may be advised to stay indoors before the general population, in order to protect the most vulnerable people in a community. The research included in this review was observational and predominantly descriptive, and is therefore unable to sufficiently answer questions regarding effectiveness. Experimental research, as well as evaluations, are required to examine the effectiveness of modern communication channels, channels to reach at-risk groups, and the 'stay indoors' message. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Shannon Meets Fick on the Microfluidic Channel: Diffusion Limit to Sum Broadcast Capacity for Molecular Communication.

    PubMed

    Bicen, A Ozan; Lehtomaki, Janne J; Akyildiz, Ian F

    2018-03-01

    Molecular communication (MC) over a microfluidic channel with flow is investigated based on Shannon's channel capacity theorem and Fick's laws of diffusion. Specifically, the sum capacity for MC between a single transmitter and multiple receivers (broadcast MC) is studied. The transmitter communicates by using different types of signaling molecules with each receiver over the microfluidic channel. The transmitted molecules propagate through microfluidic channel until reaching the corresponding receiver. Although the use of different types of molecules provides orthogonal signaling, the sum broadcast capacity may not scale with the number of the receivers due to physics of the propagation (interplay between convection and diffusion based on distance). In this paper, the performance of broadcast MC on a microfluidic chip is characterized by studying the physical geometry of the microfluidic channel and leveraging the information theory. The convergence of the sum capacity for microfluidic broadcast channel is analytically investigated based on the physical system parameters with respect to the increasing number of molecular receivers. The analysis presented here can be useful to predict the achievable information rate in microfluidic interconnects for the biochemical computation and microfluidic multi-sample assays.

  19. Acoustical and Intelligibility Test of the Vocera(Copyright) B3000 Communication Badge

    NASA Technical Reports Server (NTRS)

    Archer, Ronald; Litaker, Harry; Chu, Shao-Sheng R.; Simon, Cory; Romero, Andy; Moses, Haifa

    2012-01-01

    To communicate with each other or ground support, crew members on board the International Space Station (ISS) currently use the Audio Terminal Units (ATU), which are located in each ISS module. However, to use the ATU, crew members must stop their current activity, travel to a panel, and speak into a wall-mounted microphone, or use either a handheld microphone or a Crew Communication Headset that is connected to a panel. These actions unnecessarily may increase task times, lower productivity, create cable management issues, and thus increase crew frustration. Therefore, the Habitability and Human Factors and Human Interface Branches at the NASA Johnson Space Center (JSC) are currently investigating a commercial-off-the-shelf (COTS) wireless communication system, Vocera(C), as a near-term solution for ISS communication. The objectives of the acoustics and intelligibility testing of this system were to answer the following questions: 1. How intelligibly can a human hear the transmitted message from a Vocera(c) badge in three different noise environments (Baseline = 20 dB, US Lab Module = 58 dB, Russian Module = 70.6 dB)? 2. How accurate is the Vocera(C) badge at recognizing voice commands in three different noise environments? 3. What body location (chest, upper arm, or shoulder) is optimal for speech intelligibility and voice recognition accuracy of the Vocera(C) badge on a human in three different noise environments?

  20. Structural basis for the selective permeability of channels made of communicating junction proteins.

    PubMed

    Ek-Vitorin, Jose F; Burt, Janis M

    2013-01-01

    The open state(s) of gap junction channels is evident from their permeation by small ions in response to an applied intercellular (transjunctional/transchannel) voltage gradient. That an open channel allows variable amounts of current to transit from cell-to-cell in the face of a constant intercellular voltage difference indicates channel open/closing can be complete or partial. The physiological significance of such open state options is, arguably, the main concern of junctional regulation. Because gap junctions are permeable to many substances, it is sensible to inquire whether and how each open state influences the intercellular diffusion of molecules as valuable as, but less readily detected than current-carrying ions. Presumably, structural changes perceived as shifts in channel conductivity would significantly alter the transjunctional diffusion of molecules whose limiting diameter approximates the pore's limiting diameter. Moreover, changes in junctional permeability to some molecules might occur without evident changes in conductivity, either at macroscopic or single channel level. Open gap junction channels allow the exchange of cytoplasmic permeants between contacting cells by simple diffusion. The identity of such permeants, and the functional circumstances and consequences of their junctional exchange presently constitute the most urgent (and demanding) themes of the field. Here, we consider the necessity for regulating this exchange, the possible mechanism(s) and structural elements likely involved in such regulation, and how regulatory phenomena could be perceived as changes in chemical vs. electrical coupling; an overall reflection on our collective knowledge of junctional communication is then applied to suggest new avenues of research. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Doppler-shift estimation of flat underwater channel using data-aided least-square approach

    NASA Astrophysics Data System (ADS)

    Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing

    2015-06-01

    In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

  2. Equivalent Discrete-Time Channel Modeling for Molecular Communication With Emphasize on an Absorbing Receiver.

    PubMed

    Damrath, Martin; Korte, Sebastian; Hoeher, Peter Adam

    2017-01-01

    This paper introduces the equivalent discrete-time channel model (EDTCM) to the area of diffusion-based molecular communication (DBMC). Emphasis is on an absorbing receiver, which is based on the so-called first passage time concept. In the wireless communications community the EDTCM is well known. Therefore, it is anticipated that the EDTCM improves the accessibility of DBMC and supports the adaptation of classical wireless communication algorithms to the area of DBMC. Furthermore, the EDTCM has the capability to provide a remarkable reduction of computational complexity compared to random walk based DBMC simulators. Besides the exact EDTCM, three approximations thereof based on binomial, Gaussian, and Poisson approximation are proposed and analyzed in order to further reduce computational complexity. In addition, the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is adapted to all four channel models. Numerical results show the performance of the exact EDTCM, illustrate the performance of the adapted BCJR algorithm, and demonstrate the accuracy of the approximations.

  3. Measurement and analysis of channel attenuation characteristics for an implantable galvanic coupling human-body communication.

    PubMed

    Zhang, Shuang; Pun, Sio Hang; Mak, Peng Un; Qin, Yu-Ping; Liu, Yi-He; Vai, Mang I

    2016-11-14

    In this study, an experiment was designed to verify the low power consumption of galvanic coupling human-body communication. A silver electrode (silver content: 99%) is placed in a pig leg and a sine wave signal with the power of 0 dBm is input. Compared with radio frequency communication and antenna transmission communication, attenuation is reduced by approximately 10 to 15 dB, so channel characteristics are highly improved.

  4. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter.

    PubMed

    Schmid, Lothar; Weitz, David A; Franke, Thomas

    2014-10-07

    We describe a versatile microfluidic fluorescence-activated cell sorter that uses acoustic actuation to sort cells or drops at ultra-high rates. Our acoustic sorter combines the advantages of traditional fluorescence-activated cell (FACS) and droplet sorting (FADS) and is applicable for a multitude of objects. We sort aqueous droplets, at rates as high as several kHz, into two or even more outlet channels. We can also sort cells directly from the medium without prior encapsulation into drops; we demonstrate this by sorting fluorescently labeled mouse melanoma cells in a single phase fluid. Our acoustic microfluidic FACS is compatible with standard cell sorting cytometers, yet, at the same time, enables a rich variety of more sophisticated applications.

  5. Three-Dimensional Phenomena in Microbubble Acoustic Streaming

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro; Rossi, Massimiliano; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2015-04-01

    Ultrasound-driven oscillating microbubbles are used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting, and manipulation of microparticles. A common configuration consists of side bubbles created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration consists of acoustically excited bubbles with a semicylindrical shape that generate significant streaming flow. Because of the geometry of the channels, such flows are generally considered as quasi-two-dimensional. Similar assumptions are often made in many other microfluidic systems based on flat microchannels. However, in this Letter we show that microparticle trajectories actually present a much richer behavior, with particularly strong out-of-plane dynamics in regions close to the microbubble interface. Using astigmatism particle-tracking velocimetry, we reveal that the apparent planar streamlines are actually projections of a stream surface with a pseudotoroidal shape. We, therefore, show that acoustic streaming cannot generally be assumed as a two-dimensional phenomenon in confined systems. The results have crucial consequences for most of the applications involving acoustic streaming such as particle trapping, sorting, and mixing.

  6. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  7. A tone-aided dual vestigial sideband system for digital communications on fading channels

    NASA Technical Reports Server (NTRS)

    Hladik, Stephen M.; Saulnier, Gary J.; Rafferty, William

    1989-01-01

    A spectrally efficient tone-aided dual vestigial sideband (TA/DVSB) system for digital data communications on fading channels is presented and described analytically. This PSK (phase-shift-keying) system incorporates a feed-forward, tone-aided demodulation technique to compensate for Doppler frequency shift and channel- induced, multipath fading. In contrast to other tone-in-band-type systems, receiver synchronization is derived from the complete data VSBs. Simulation results for the Rician fading channel are presented. These results demonstrate the receiver's ability to mitigate performance degradation due to fading and to obtain proper data carrier synchronization, suggesting that the proposed TA/DVSB system has promise for this application. Simulated BER (bit-error rate) data indicate that the TA/DVSB system effectively alleviates the channel distortions of the land mobile satellite application.

  8. Acoustic actuation of in situ fabricated artificial cilia

    NASA Astrophysics Data System (ADS)

    Orbay, Sinem; Ozcelik, Adem; Bachman, Hunter; Huang, Tony Jun

    2018-02-01

    We present on-chip acoustic actuation of in situ fabricated artificial cilia. Arrays of cilia structures are UV polymerized inside a microfluidic channel using a photocurable polyethylene glycol (PEG) polymer solution and photomasks. During polymerization, cilia structures are attached to a silane treated glass surface inside the microchannel. Then, the cilia structures are actuated using acoustic vibrations at 4.6 kHz generated by piezo transducers. As a demonstration of a practical application, DI water and fluorescein dye solutions are mixed inside a microfluidic channel. Using pulses of acoustic excitations, and locally fabricated cilia structures within a certain region of the microchannel, a waveform of mixing behavior is obtained. This result illustrates one potential application wherein researchers can achieve spatiotemporal control of biological microenvironments in cell stimulation studies. These acoustically actuated, in situ fabricated, cilia structures can be used in many on-chip applications in biological, chemical and engineering studies.

  9. A hybrid quantum eraser scheme for characterization of free-space and fiber communication channels

    NASA Astrophysics Data System (ADS)

    Nape, Isaac; Kyeremah, Charlotte; Vallés, Adam; Rosales-Guzmán, Carmelo; Buah-Bassuah, Paul K.; Forbes, Andrew

    2018-02-01

    We demonstrate a simple projective measurement based on the quantum eraser concept that can be used to characterize the disturbances of any communication channel. Quantum erasers are commonly implemented as spatially separated path interferometric schemes. Here we exploit the advantages of redefining the which-path information in terms of spatial modes, replacing physical paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural modes of free-space and fiber) have a non-separable feature of spin-orbit coupled states, equivalent to the description of two independently marked paths. We explore the effects of fiber perturbations by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial mode encoding of information for ultra-fast fiber communications.

  10. Extended horizon lifting for periodic gain adjustment in control systems, and for equalization of communication channels

    NASA Technical Reports Server (NTRS)

    Bayard, David S. (Inventor)

    1994-01-01

    Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N is greater than n of liftings in periodic input and output windows rho sub u and rho sub y, respectively, where N is an integer chosen to define the extent (length) of each of the windows rho sub u and rho sub y, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical, or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is performed. Conditions for OT are distinct from IT in terms of zero annihilation, namely H(sub s)H(sub s)(sup +) = I for OT and H(sub s)H(sub s)(sup +) = I of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels.

  11. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    PubMed Central

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558

  12. Optimal Scheduling and Fair Service Policy for STDMA in Underwater Networks with Acoustic Communications

    PubMed Central

    2018-01-01

    In this work, a multi-hop string network with a single sink node is analyzed. A periodic optimal scheduling for TDMA operation that considers the characteristic long propagation delay of the underwater acoustic channel is presented. This planning of transmissions is obtained with the help of a new geometrical method based on a 2D lattice in the space-time domain. In order to evaluate the performance of this optimal scheduling, two service policies have been compared: FIFO and Round-Robin. Simulation results, including achievable throughput, packet delay, and queue length, are shown. The network fairness has also been quantified with the Gini index. PMID:29462966

  13. Capacities of quantum amplifier channels

    NASA Astrophysics Data System (ADS)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  14. Application of convolve-multiply-convolve SAW processor for satellite communications

    NASA Technical Reports Server (NTRS)

    Lie, Y. S.; Ching, M.

    1991-01-01

    There is a need for a satellite communications receiver than can perform simultaneous multi-channel processing of single channel per carrier (SCPC) signals originating from various small (mobile or fixed) earth stations. The number of ground users can be as many as 1000. Conventional techniques of simultaneously processing these signals is by employing as many RF-bandpass filters as the number of channels. Consequently, such an approach would result in a bulky receiver, which becomes impractical for satellite applications. A unique approach utilizing a realtime surface acoustic wave (SAW) chirp transform processor is presented. The application of a Convolve-Multiply-Convolve (CMC) chirp transform processor is described. The CMC processor transforms each input channel into a unique timeslot, while preserving its modulation content (in this case QPSK). Subsequently, each channel is individually demodulated without the need of input channel filters. Circuit complexity is significantly reduced, because the output frequency of the CMC processor is common for all input channel frequencies. The results of theoretical analysis and experimental results are in good agreement.

  15. Channel coding and data compression system considerations for efficient communication of planetary imaging data

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1974-01-01

    End-to-end system considerations involving channel coding and data compression are reported which could drastically improve the efficiency in communicating pictorial information from future planetary spacecraft. In addition to presenting new and potentially significant system considerations, this report attempts to fill a need for a comprehensive tutorial which makes much of this very subject accessible to readers whose disciplines lie outside of communication theory.

  16. Network Computing for Distributed Underwater Acoustic Sensors

    DTIC Science & Technology

    2014-03-31

    underwater sensor network with mobility. In preparation. [3] EvoLogics (2013), Underwater Acoustic Modems, (Product Information Guide... Wireless Communications, 9(9), 2934–2944. [21] Pompili, D. and Akyildiz, I. (2010), A multimedia cross-layer protocol for underwater acoustic sensor networks ... Network Computing for Distributed Underwater Acoustic Sensors M. Barbeau E. Kranakis

  17. Microfluidic channel-based wireless charging and communication platform for microsensors with miniaturized onboard antenna

    NASA Astrophysics Data System (ADS)

    Duan, G.; Zhao, X.; Seren, H. R.; Chen, C.; Li, A.; Zhang, X.

    2016-12-01

    A double layer spiral antenna with side length of 380 μm was fabricated by a multi-step electroplating process, and integrated with a commercialized passive RFID chip to realize the RF power harvesting and communication functions of a microsensor. To power up and communicate with the microchips, a single layer spiral reader antenna was fabricated on top of a glass substrate with side length of 1 mm. The microchips and the reader antenna were both optimized at the frequency of 915 MHz. Due to the small size of the reader antenna, the strength of the magnetic field decreased dramatically along the axial direction of the reader antenna, which limited the working distance to within 1 mm. To enclose the microchips within the reading range, a three-layer microfluidic channel was designed and fabricated. The channel and cover layers were fabricated by laser cutting of acrylic sheets, and bonded with the glass substrate to form the channel. To operate multiple microchips simultaneously, separation and focusing function units were also designed. Low loss pump oil was used to transport the microchips flowing inside the channel. Within the reading area, the microchips were powered up, and their ID information was retrieved and displayed on the computer interface successfully.

  18. Effect of temperature on acoustic communication: sound production in the croaking gourami (labyrinth fishes).

    PubMed

    Ladich, Friedrich; Schleinzer, Günter

    2015-04-01

    Sound communication comprising the production and detection of acoustic signals is affected by ambient temperature in ectothermic animals. In the present study we investigated the effects of temperature on sound production and characteristics in the croaking gourami Trichopsis vittata, a freshwater fish from Southeast Asia possessing a highly specialized sound-generating mechanism found only in a single genus. The croaking gourami produces pulsed sounds by stretching and plucking two enhanced pectoral fin tendons during rapid pectoral fin beating. Croaking sounds typically consist of a series of double-pulsed bursts with main energies between 1 and 1.5 kHz. Sounds were recorded during dyadic contests between two males at three different temperatures (25°, 30° and 35°C). The mean dominant frequency increased with rising temperature from 1.18 to 1.33 kHz, whereas temporal characteristics decreased. The sound interval dropped from 492 to 259 ms, the burst period from 51 to 35 ms and the pulse period from 5.8 to 5.1 ms. In contrast, the number of sounds and number of bursts within a sound were not affected by temperature. The current study shows that spectral and temporal characteristics of sounds are affected in different ways by temperature in the croaking gourami, whereas the numbers of sounds and bursts remain unaffected. We conclude that acoustic communication in gouramis is affected by changes in ambient temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Acoustic Sensing of Ocean Turbulence

    DTIC Science & Technology

    1991-12-01

    quantities and of fast varying quantities, requiring high spatial resolution, fast response sensors and stable observation platforms. A classical approach to...with this type of sensor . Moum et.al. [Ref.l0] performed upper ocean observations with this instrument where they were able to 60 characterize the fine...platform orientation using the 3 axis accelerometer as tiltmeters . E. NON-ACOUSTIC DATA The non-acoustic channels on the CDV package are: 3 component

  20. Acoustic Green's function extraction in the ocean

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoqin

    that can result in coherence loss and undermine the utility of coherent stacking. The third one is the downward refracting sound speed profile, which impedes strong coupling between near surface noise sources and the near-bottom instruments. The active method of inverse filter processing was tested in a long-range deep-ocean environment. The high-power sound source, which was located near the sound channel axis, transmitted a pre-designed signal that was composed of a precursor signal and a communication signal. After traveling 1428.5 km distance in the north Pacific Ocean, the transmitted signal was detected by the receiver and was processed using the inverse filter. The probe signal, which was composed of M sequences and was known at the receiver, was utilized for the GF extraction in the inverse filter; the communication signal was then interpreted with the extracted GF. With a glitch in the length of communication signal, the inverse filter processing method was shown to be effective for long-range low-frequency deep ocean acoustic communication. (Abstract shortened by ProQuest.).

  1. A method of investigating the phase response characteristic of the ionospheric scattering communications channel

    NASA Technical Reports Server (NTRS)

    Yakovets, A. F.

    1972-01-01

    A method is proposed for measuring the phase difference fluctuations between vibrations at different frequencies that result from scattering properties of the medium. The measurement equipment is described, along with an ideal communication channel.

  2. 12.5 Gb/s multi-channel broadcasting transmission for free-space optical communication based on the optical frequency comb module.

    PubMed

    Tan, Jun; Zhao, Zeping; Wang, Yuehui; Zhang, Zhike; Liu, Jianguo; Zhu, Ninghua

    2018-01-22

    A wide-spectrum, ultra-stable optical frequency comb (OFC) module with 100 GHz frequency intervals based on a quantum dot mode locked (QDML) laser is fabricated by our lab, and a scheme with 12.5 Gb/s multi-channel broadcasting transmission for free-space optical (FSO) communication is proposed based on the OFC module. The output power of the OFC is very stable, with the specially designed circuit and the flatness of the frequency comb over the span of 6 nm, which can be limited to 1.5 dB. Four channel wavelengths are chosen to demonstrate one-to-many channels for FSO communication, like optical wireless broadcast. The outdoor experiment is established to test the bit error rate (BER) and eye diagrams with 12.5 Gb/s on-off keying (OOK). The indoor experiment is used to test the highest traffic rate, which is up to 21 Gb/s for one-hop FSO communication. To the best of our knowledge, this scheme is the first to propose the realization of one-to-many broadcasting transmission for FSO communication based on the OFC module. The advantages of integration, miniaturization, channelization, low power consumption, and unlimited bandwidth of one-to-many broadcasting communication scheme, shows promising results on constructing the future space-air-ground-ocean (SAGO) FSO communication networks.

  3. Long-distance multi-channel bidirectional chaos communication based on synchronized VCSELs subject to chaotic signal injection

    NASA Astrophysics Data System (ADS)

    Xie, Yi-Yuan; Li, Jia-Chao; He, Chao; Zhang, Zhen-Dong; Song, Ting-Ting; Xu, Chang-Jun; Wang, Gui-Jin

    2016-10-01

    A novel long-distance multi-channel bidirectional chaos communication system over multiple paths based on two synchronized 1550 nm vertical-cavity surface-emitting lasers (VCSELs) is proposed and studied theoretically. These two responding VCSELs (R-VCSELs) can output similar chaotic signals served as chaotic carrier in two linear polarization (LP) modes with identical signal injection from a driving VCSEL (D-VCSEL), which is subject to optical feedback and optical injection, simultaneously. Through the numerical simulations, high quality chaos synchronization between the two R-VCSELs can be obtained. Besides, the effects of varied qualities of chaos synchronization on communication performances in 20 km single mode fiber (SMF) channels are investigated by regulating different internal parameters mismatch after adopting chaos masking (CMS) technique. With the decrease of the maximum cross correlation coefficient (Max-C) between the two R-VCSELs, the bit error rate (BER) of decoded message increase. Meanwhile, the BER can still be less than 10-9 when the Max-C degrades to 0.982. Based on high quality synchronization, when the dispersion compensating fiber (DCF) links are introduced, 4n messages of 10 Gbit/s can transmit in 180 km SMF channels over n coupling paths, bidirectionally and simultaneously. Thorough tests are carried out with detailed analysis, demonstrating long-distance, multi-channel, bidirectional chaos communication based on VCSELs with chaotic signal injection.

  4. Department of Cybernetic Acoustics

    NASA Astrophysics Data System (ADS)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  5. Twisted Acoustics: Metasurface-Enabled Multiplexing and Demultiplexing.

    PubMed

    Jiang, Xue; Liang, Bin; Cheng, Jian-Chun; Qiu, Cheng-Wei

    2018-05-01

    Metasurfaces are used to enable acoustic orbital angular momentum (a-OAM)-based multiplexing in real-time, postprocess-free, and sensor-scanning-free fashions to improve the bandwidth of acoustic communication, with intrinsic compatibility and expandability to cooperate with other multiplexing schemes. The metasurface-based communication relying on encoding information onto twisted beams is numerically and experimentally demonstrated by realizing real-time picture transfer, which differs from existing static data transfer by encoding data onto OAM states. With the advantages of real-time transmission, passive and instantaneous data decoding, vanishingly low loss, compact size, and high transmitting accuracy, the study of a-OAM-based information transfer with metasurfaces offers new route to boost the capacity of acoustic communication and great potential to profoundly advance relevant fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mapping thunder sources by inverting acoustic and electromagnetic observations

    NASA Astrophysics Data System (ADS)

    Anderson, J. F.; Johnson, J. B.; Arechiga, R. O.; Thomas, R. J.

    2014-12-01

    We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is considered to consist of a weighted superposition of these acoustic signals. We calculate the posterior distribution of acoustic source energy for each channel with a Markov Chain Monte Carlo inversion that fits power envelopes of modeled and recorded thunder; these results show which parts of the flash carry current and produce thunder. We examine the effects of RF pulse location imprecision and atmospheric winds on quality of results and apply this method to several lightning flashes over the Magdalena Mountains in New Mexico, USA. This method will enable more detailed study of lightning phenomena by allowing researchers to map current flow in addition to leader propagation.

  7. A Method for Large Eddy Simulation of Acoustic Combustion Instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton; Moin, Parviz

    2003-11-01

    A method for performing Large Eddy Simulation of acoustic combustion instabilities is presented. By extending the low Mach number pressure correction method to the case of compressible flow, a numerical method is developed in which the Poisson equation for pressure is replaced by a Helmholtz equation. The method avoids the acoustic CFL condition by using implicit time advancement, leading to large efficiency gains at low Mach number. The method also avoids artificial damping of acoustic waves. The numerical method is attractive for the simulation of acoustics combustion instabilities, since these flows are typically at low Mach number, and the acoustic frequencies of interest are usually low. Additionally, new boundary conditions based on the work of Poinsot and Lele have been developed to model the acoustic effect of a long channel upstream of the computational inlet, thus avoiding the need to include such a channel in the computational domain. The turbulent combustion model used is the Level Set model of Duchamp de Lageneste and Pitsch for premixed combustion. Comparison of LES results to the reacting experiments of Besson et al. will be presented.

  8. Development of High Data Rate Acoustic Multiple-Input/Multiple-Output Modems

    DTIC Science & Technology

    2015-09-30

    communication capabilities of underwater platforms and facilitate real-time adaptive operations in the ocean. OBJECTIVES The ...signaling at the transmitter and low-complexity time reversal processing at the receiver. APPROACH Underwater acoustic (UWA) communication is useful...digital communications in shallow water environments. The advancement has direct impacts on defense appliations since underwater acoustic modems

  9. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    NASA Technical Reports Server (NTRS)

    Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation

  10. Simulation the Effect of Internal Wave on the Acoustic Propagation

    NASA Astrophysics Data System (ADS)

    Ko, D. S.

    2005-05-01

    An acoustic radiation transport model with the Monte Carlo solution has been developed and applied to study the effect of internal wave induced random oceanic fluctuations on the deep ocean acoustic propagation. Refraction in the ocean sound channel is performed by means of bi-cubic spline interpolation of discrete deterministic ray paths in the angle(energy)-range-depth coordinates. Scattering by random internal wave fluctuations is accomplished by sampling a power law scattering kernel applying the rejection method. Results from numerical experiments show that the mean positions of acoustic rays are significantly displaced tending toward the sound channel axis due to the asymmetry of the scattering kernel. The spreading of ray depths and angles about the means depends strongly on frequency. The envelope of the ray displacement spreading is found to be proportional to the square root of range which is different from "3/2 law" found in the non-channel case. Suppression of the spreading is due to the anisotropy of fluctuations and especially due to the presence of sound channel itself.

  11. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks.

    PubMed

    Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-12-21

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.

  12. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  13. Evaluation of multiple-channel OFDM based airborne ultrasonic communications.

    PubMed

    Jiang, Wentao; Wright, William M D

    2016-09-01

    Orthogonal frequency division multiplexing (OFDM) modulation has been extensively used in both wired and wireless communication systems. The use of OFDM technology allows very high spectral efficiency data transmission without using complex equalizers to correct the effect of a frequency-selective channel. This work investigated OFDM methods in an airborne ultrasonic communication system, using commercially available capacitive ultrasonic transducers operating at 50kHz to transmit information through the air. Conventional modulation schemes such as binary phase shift keying (BPSK) and quadrature amplitude modulation (QAM) were used to modulate sub-carrier signals, and the performances were evaluated in an indoor laboratory environment. Line-of-sight (LOS) transmission range up to 11m with no measurable errors was achieved using BPSK at a data rate of 45kb/s and a spectral efficiency of 1b/s/Hz. By implementing a higher order modulation scheme (16-QAM), the system data transfer rate was increased to 180kb/s with a spectral efficiency of 4b/s/Hz at attainable transmission distances up to 6m. Diffraction effects were incorporated into a model of the ultrasonic channel that also accounted for beam spread and attenuation in air. The simulations were a good match to the measured signals and non-LOS signals could be demodulated successfully. The effects of multipath interference were also studied in this work. By adding cyclic prefix (CP) to the OFDM symbols, the bit error rate (BER) performance was significantly improved in a multipath environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization.

    PubMed

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y; Alouini, Mohamed-Slim

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  15. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    PubMed Central

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique. PMID:29278405

  16. LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation.

    PubMed

    Djordjevic, Ivan B

    2007-08-06

    We describe a coded power-efficient transmission scheme based on repetition MIMO principle suitable for communication over the atmospheric turbulence channel, and determine its channel capacity. The proposed scheme employs the Q-ary pulse-position modulation. We further study how to approach the channel capacity limits using low-density parity-check (LDPC) codes. Component LDPC codes are designed using the concept of pairwise-balanced designs. Contrary to the several recent publications, bit-error rates and channel capacities are reported assuming non-ideal photodetection. The atmospheric turbulence channel is modeled using the Gamma-Gamma distribution function due to Al-Habash et al. Excellent bit-error rate performance improvement, over uncoded case, is found.

  17. Spatio-Temporal Evolution of Sound Speed Channels on the Chukchi Shelf

    NASA Astrophysics Data System (ADS)

    Eickmeier, J.; Badiey, M.; Wan, L.

    2017-12-01

    The physics of an acoustic waveguide are influenced by various boundary conditions as well as spatial and temporal fluctuations in temperature and salinity profiles the water column. The shallow water Canadian Basin Acoustic Propagation Experiment (CANAPE) experiment was designed to study the effect of oceanographic variability on the acoustic field. A pilot study was conducted in the summer of 2015, full deployment of acoustic and environmental moorings took place in 2016, and recovery will occur in late 2017. An example of strong oceanographic variability in the SW region is depicted in Figure 1. Over the course of 7 days, warm Bering Sea water arrived on the Chukchi Shelf and sank in the water column to between 25 m and 125 m depth. This warm water spread to a range of 10 km and a potential eddy of warm water formed causing an increase in sound speed between 15 km and 20 km range in Fig. 1(b). Due to the increased sound speed, a strong sound channel evolved between 100 m and 200 m for acoustic waves arriving from off the shelf, deep water sources. In Fig. 1(a), the initial formation of the acoustic channel is only evident in 50 m to 100 m of water out to a range of 5 km. Recorded environmental data will be used to study fluctuations in sound speed channel formation on the Chukchi Shelf. Data collected in 2015 and 2016 have shown sound duct evolution over 7 days and over a one-month period. Analysis is projected to show sound channel formation over a new range of spatio-temporal scales. This analysis will show a cycle of sound channels opening and closing on the shelf, where this cycle strongly influences the propagation path, range and attenuation of acoustic waves.

  18. Optimal Scheduling for Underwater Communications in Multiple-User Scenarios

    DTIC Science & Technology

    2015-09-30

    term goals of this project is to analyze and propose energy-efficient communication techniques for underwater acoustic sensor networks . These...investigate the possibility that these underwater acoustic networks disrupt the behavior of surrounding species of marine mammals. As a consequence of... underwater VHF acoustics , high data rate/short range acoustic communications and networking , and acoustic sensing in the VHF regime. WORK COMPLETED We

  19. Acoustic localization of triggered lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, Rene O.; Johnson, Jeffrey B.; Edens, Harald E.; Thomas, Ronald J.; Rison, William

    2011-05-01

    We use acoustic (3.3-500 Hz) arrays to locate local (<20 km) thunder produced by triggered lightning in the Magdalena Mountains of central New Mexico. The locations of the thunder sources are determined by the array back azimuth and the elapsed time since discharge of the lightning flash. We compare the acoustic source locations with those obtained by the Lightning Mapping Array (LMA) from Langmuir Laboratory, which is capable of accurately locating the lightning channels. To estimate the location accuracy of the acoustic array we performed Monte Carlo simulations and measured the distance (nearest neighbors) between acoustic and LMA sources. For close sources (<5 km) the mean nearest-neighbors distance was 185 m compared to 100 m predicted by the Monte Carlo analysis. For far distances (>6 km) the error increases to 800 m for the nearest neighbors and 650 m for the Monte Carlo analysis. This work shows that thunder sources can be accurately located using acoustic signals.

  20. Discrimination of acoustic communication signals by grasshoppers (Chorthippus biguttulus): temporal resolution, temporal integration, and the impact of intrinsic noise.

    PubMed

    Ronacher, Bernhard; Wohlgemuth, Sandra; Vogel, Astrid; Krahe, Rüdiger

    2008-08-01

    A characteristic feature of hearing systems is their ability to resolve both fast and subtle amplitude modulations of acoustic signals. This applies also to grasshoppers, which for mate identification rely mainly on the characteristic temporal patterns of their communication signals. Usually the signals arriving at a receiver are contaminated by various kinds of noise. In addition to extrinsic noise, intrinsic noise caused by stochastic processes within the nervous system contributes to making signal recognition a difficult task. The authors asked to what degree intrinsic noise affects temporal resolution and, particularly, the discrimination of similar acoustic signals. This study aims at exploring the neuronal basis for sexual selection, which depends on exploiting subtle differences between basically similar signals. Applying a metric, by which the similarities of spike trains can be assessed, the authors investigated how well the communication signals of different individuals of the same species could be discriminated and correctly classified based on the responses of auditory neurons. This spike train metric yields clues to the optimal temporal resolution with which spike trains should be evaluated. (c) 2008 APA, all rights reserved

  1. Information origins of the chemical bond: Bond descriptors from molecular communication channels in orbital resolution

    NASA Astrophysics Data System (ADS)

    Nalewajski, Roman F.

    The flow of information in the molecular communication networks in the (condensed) atomic orbital (AO) resolution is investigated and the plane-wave (momentum-space) interpretation of the average Fisher information in the molecular information system is given. It is argued using the quantum-mechanical superposition principle that, in the LCAO MO theory the squares of corresponding elements of the Charge and Bond-Order (CBO) matrix determine the conditional probabilities between AO, which generate the molecular communication system of the Orbital Communication Theory (OCT) of the chemical bond. The conditional-entropy ("noise," information-theoretic "covalency") and the mutual-information (information flow, information-theoretic "ionicity") descriptors of these molecular channels are related to Wiberg's covalency indices of chemical bonds. The illustrative application of OCT to the three-orbital model of the chemical bond X-Y, which is capable of describing the forward- and back-donations as well as the atom promotion accompanying the bond formation, is reported. It is demonstrated that the entropy/information characteristics of these separate bond-effects can be extracted by an appropriate reduction of the output of the molecular information channel, carried out by combining several exits into a single (condensed) one. The molecular channels in both the AO and hybrid orbital representations are examined for both the molecular and representative promolecular input probabilities.

  2. Marine Mammal Acoustic Monitoring and Habitat Investigation, Southern California Channel Island Region

    DTIC Science & Technology

    2005-07-01

    1998 . Long - range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. Journal of the Acoustical ...Peninsula. Deep-Sea Research II 51: 2327-2344. Stafford , K.M., C.G. Fox, and D.S. Clark. 1998 . Long - range acoustic detection and localization of blue ...speciation. Phil. Trans. R. Soc. Lond B 357:493-503. Stafford , K. M., Fox, C. G. and Clark, D.S. 1998

  3. Acoustic divergence in two cryptic Hipposideros species: a role for social selection?

    PubMed Central

    Kingston, T.; Lara, M. C.; Jones, G.; Akbar, Z.; Kunz, T. H.; Schneider, C. J.

    2001-01-01

    We present evidence that a relatively widespread and common bat from South East Asia comprises two morphologically cryptic but acoustically divergent species. A population of the bicoloured leaf-nosed bat (Hipposideros bicolor) from Peninsular Malaysia exhibits a bimodal distribution of echolocation call frequencies, with peaks in the frequency of maximum energy at ca. 131 and 142 kHz. The two phonic types are genetically distinct, with a cytochrome b sequence divergence of just under 7%. We consider the mechanisms by which acoustic divergence in these species might arise. Differences in call frequency are not likely to effect resource partitioning by detectable prey size or functional range. However, ecological segregation may be achieved by differences in microhabitat use; the 131kHz H. bicolor is characterized by significantly longer forearms, lower wing loading, a lower aspect ratio and a more rounded wingtip, features that are associated with greater manoeuvrability in flight that may enable it to forage in more cluttered environments relative to the 142 kHz phonic type. We suggest that acoustic divergence in these species is a consequence of social selection for a clear communication channel, which is mediated by the close link between the acoustic signal and receptor systems imposed by the highly specialized nature of the hipposiderid and rhinolophid echolocation system. PMID:11429138

  4. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    PubMed

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-09-22

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection

  5. geoPebble: Combined Seismic, Acoustic, and GPS Sensor with Wireless Communications for Glaciological Applications

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, S.; Burkett, P. G.; Long, B.

    2009-12-01

    Glaciologist and geophysicists study many dynamic processes in glaciated environments such as sliding, crevasse formation, and water flow. These processes generate signals that can be interpreted for fundamental parameters needed for numerical models of glacier and ice sheet flow. These signals include microearthquakes beneath glaciers and ice streams during stick-slip processes; seismically identifiable harmonic tremors associated with subglacial water flow; supraglacial lake drainage which can produce rapid uplift of the 1 m/hr. In addition, researchers use active seismic experiments to determine bed properties such as roughness and lubrication. Currently, each process requires different instrumentation and/or different field equipment to collect the data such as a GPS receiver for displacement, a passive seismic instrument for microearthquakes, and a multichannel seismic recorder for active seismic experiments. We report on the development of an instrument specifically designed for observing dynamic glaciated environments in a single platform, reducing the need for multiple field systems and reducing the cost considerably. The geoPebble wireless seismic acquisition system, designed and built at the Pennsylvania State University, comprises 4 channels of 24-bit seismic and acoustic digitizing, an L1 GPS engine, onboard data storage and an 802.15 ZigBee radio. Three of the four ADC channels are intended to be used with a 3 component seismic sensor. The fourth channel is a dedicated to an audio frequency microphone. The 1 Hz L1 GPS system is capable of horizontal position accuracy to better than 10 cm when post-processed against L1/L2 stations within 10 km. Onboard storage is achieved with a Secure Digital card where volumes now exceed 32 GB. The ZigBee radio is capable of forming a mesh network which reduces transmit and receive power requirements while maintaing communication throughout the array and provides state-of-health information as well as sufficient data

  6. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  7. A millisecond micromixer via single-bubble-based acoustic streaming.

    PubMed

    Ahmed, Daniel; Mao, Xiaole; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun

    2009-09-21

    We present ultra-fast homogeneous mixing inside a microfluidic channel via single-bubble-based acoustic streaming. The device operates by trapping an air bubble within a "horse-shoe" structure located between two laminar flows inside a microchannel. Acoustic waves excite the trapped air bubble at its resonance frequency, resulting in acoustic streaming, which disrupts the laminar flows and triggers the two fluids to mix. Due to this technique's simple design, excellent mixing performance, and fast mixing speed (a few milliseconds), our single-bubble-based acoustic micromixer may prove useful for many biochemical studies and applications.

  8. Applications of acoustics in insect pest management

    USDA-ARS?s Scientific Manuscript database

    Acoustic technology has been applied for many years in studies of insect communication and in the monitoring of calling-insect population levels, geographic distributions, and diversity, as well as in the detection of cryptic insects in soil, wood, container crops, and stored products. Acoustic devi...

  9. Transmission acoustic microscopy investigation

    NASA Astrophysics Data System (ADS)

    Maev, Roman; Kolosov, Oleg; Levin, Vadim; Lobkis, Oleg

    The nature of acoustic contrast, i.e. the connection of the amplitude and phase of the output signal of the acoustic microscope with the local values of the acoustic parameters of the sample (density, elasticity, viscosity) is a central problem of acoustic microscopy. A considerable number of studies have been devoted to the formation of the output signal of the reflection scanning acoustic microscope. For the transmission acoustic microscope (TAM) this problem has remained almost unstudied. Experimental investigation of the confocal system of the TAM was carried out on an independently manufactured laboratory mockup of the TAM with the working frequency of the 420 MHz. Acoustic lenses with the radius of curvature of about 500 microns and aperture angle of 45 deg were polished out in the end faces of two cylindrical sound conductors made from Al2O3 single crystals with an axis parallel to the axis C of the crystal (the length of the sound conductor is 20 mm; diameter, 6 mm). At the end faces of the sound conductor, opposite to the lenses, CdS transducers with a diameter of 2 mm were disposed. The electric channel of the TAM provided a possibility for registering the amplitude of the microscope output signal in the case of the dynamic range of the 50 dB.

  10. A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks

    PubMed Central

    Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping

    2017-01-01

    Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid “particle degeneracy” problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network. PMID:29267252

  11. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing

    NASA Astrophysics Data System (ADS)

    Zhao, Shengmei; Wang, Le; Zou, Li; Gong, Longyan; Cheng, Weiwen; Zheng, Baoyu; Chen, Hanwu

    2016-10-01

    A free-space optical (FSO) communication link with multiplexed orbital angular momentum (OAM) modes has been demonstrated to largely enhance the system capacity without a corresponding increase in spectral bandwidth, but the performance of the link is unavoidably degraded by atmospheric turbulence (AT). In this paper, we propose a turbulence mitigation scheme to improve AT tolerance of the OAM-multiplexed FSO communication link using both channel coding and wavefront correction. In the scheme, we utilize a wavefront correction method to mitigate the phase distortion first, and then we use a channel code to further correct the errors in each OAM mode. The improvement of AT tolerance is discussed over the performance of the link with or without channel coding/wavefront correction. The results show that the bit error rate performance has been improved greatly. The detrimental effect of AT on the OAM-multiplexed FSO communication link could be removed by the proposed scheme even in the relatively strong turbulence regime, such as Cn2 = 3.6 ×10-14m - 2 / 3.

  12. Hybrid finite-difference/lattice Boltzmann simulations of microchannel and nanochannel acoustic streaming driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Yeo, Leslie Y.

    2018-04-01

    A two-dimensional hybrid numerical method that allows full coupling of the elastic motion in a piezoelectric solid (modeled using a finite-difference time-domain technique) with the resultant compressional flow in a fluid (simulated using a lattice Boltzmann scheme) is developed to study the acoustic streaming that arises in both microchannels and nanochannels under surface acoustic wave (SAW) excitation. In addition to verifying the model through a comparison of the simulations with results from experimental and numerical studies of microchannel and nanochannel flows driven by both standing and traveling SAWs in the literature, we highlight salient features of the flow field that arise and discuss the underlying mechanisms responsible for the flow. In microchannels, boundary layer streaming is the dominant mechanism when the channel height is below the sound wavelength in the liquid, whereas Eckart streaming—arising as a consequence of the attenuation of the sound wave in the liquid—dominates in the form of periodic vortices for larger channel heights. The absence of Eckart streaming and the overlapping of boundary layers in nanochannels with heights below the boundary layer thickness, on the other hand, give rise to a time-averaged dynamic acoustic pressure that results in an inertial-dominant flow, which paradoxically possesses a parabolic-like velocity profile resembling pressure-driven laminar flow. In contrast, if the nanochannel were to be filled instead with air, the significantly lower fluid density leads to a considerable reduction in the dynamic acoustic pressure and hence inertial forcing such that boundary layer streaming once again dominates, asymptotically imposing a slip condition along the channel surface that results in a negative pluglike velocity profile.

  13. High-power 0.87-micron channel substrate planar lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Stewart, T. R.; Gilbert, D. B.; Slavin, S. E.; Carlin, D. B.

    1988-01-01

    High-power single-mode channeled-substrate planar AlGaAs diode lasers are being developed for reliable high-power operation for use as sources in spaceborne optical communication systems. The CSP laser structure has been optimized for operation at an emission wavelength of 870 nm. Such devices have exhibited output powers in excess of 80 mW CW at an operating temperature of 80 C.

  14. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  15. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  16. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Downey, James M.; Reinhart, Richard C.; Evans, Michael A.; Mortensen, Dale J.

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 2/4/8-phase shift keying (PSK) and 16/32- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 b/s/Hz) modulation combined with various LDPC encoding rates to maximize through- put. With a symbol rate of 200 M-band, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results

  17. Design and simulation of a microfluidic device for acoustic cell separation.

    PubMed

    Shamloo, Amir; Boodaghi, Miad

    2018-03-01

    Experimental acoustic cell separation methods have been widely used to perform separation for different types of blood cells. However, numerical simulation of acoustic cell separation has not gained enough attention and needs further investigation since by using numerical methods, it is possible to optimize different parameters involved in the design of an acoustic device and calculate particle trajectories in a simple and low cost manner before spending time and effort for fabricating these devices. In this study, we present a comprehensive finite element-based simulation of acoustic separation of platelets, red blood cells and white blood cells, using standing surface acoustic waves (SSAWs). A microfluidic channel with three inlets, including the middle inlet for sheath flow and two symmetrical tilted angle inlets for the cells were used to drive the cells through the channel. Two interdigital transducers were also considered in this device and by implementing an alternating voltage to the transducers, an acoustic field was created which can exert the acoustic radiation force to the cells. Since this force is dependent to the size of the cells, the cells are pushed towards the midline of the channel with different path lines. Particle trajectories for different cells were obtained and compared with a theoretical equation. Two types of separations were observed as a result of varying the amplitude of the acoustic field. In the first mode of separation, white blood cells were sorted out through the middle outlet and in the second mode of separation, platelets were sorted out through the side outlets. Depending on the clinical needs and by using the studied microfluidic device, each of these modes can be applied to separate the desired cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fading characteristics of maritime propagation channel for beyond geometrical horizon communications in C-band

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Raulefs, Ronald; Jost, Thomas

    2017-12-01

    The design of a maritime communication system requires the understanding of the wireless propagation channel above the sea. For broadband communication systems, a carrier frequency in the C-band is of interest because of allocatable spectrum. Therefore, the German Aerospace Center performed a long-distance channel measurement campaign at 5.2 GHz on the North sea to investigate large and small-scale fading characteristics. The results show that our measurement data conforms with the ITU-R and the Bullington's path loss model to predict the power loss caused by diffraction over the Earth's surface. Further, the first tap of the channel impulse response experiences Rician fading due to superposition of a strong line-of-sight (LoS) path and multipath components originating from the sea surface and ship body. We found that the fading of the second tap follows a Rician distribution, but with a much smaller K-factor compared to the first tap. The K-factor showed a dependence on the distance between the transmitter and receiver. Particularly, the K-factor of the first tap decreases significantly when the distance between the transmitter and receiver is larger than the clearance distance of the first Fresnel zone. Therefore, we propose a distance-dependent K-factor model for the first and the second tap.

  19. Acoustic Manifestations of Natural versus Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.; Aulich, G. D.; Trueblood, J.

    2010-12-01

    Positive leaders are rarely detected by VHF lightning detection systems; positive leader channels are usually outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped. The goal of this work is to study the types of thunder produced by natural versus triggered lightning and to assess which types of thunder signals have electromagnetic activity detected by the lightning mapping array (LMA). Towards this end we are investigating the lightning detection capabilities of acoustic techniques, and comparing them with the LMA. In a previous study we used array beam forming and time of flight information to locate acoustic sources associated with lightning. Even though there was some mismatch, generally LMA and acoustic techniques saw the same phenomena. To increase the database of acoustic data from lightning, we deployed a network of three infrasound arrays (30 m aperture) during the summer of 2010 (August 3 to present) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered lightning. The arrays were located at a range of distances (60 to 1400 m) surrounding the triggering site, called the Kiva, used by Langmuir Laboratory to launch rockets. We have continuous acoustic measurements of lightning data from July 20 to September 18 of 2009, and from August 3 to September 1 of 2010. So far, lightning activity around the Kiva was higher during the summer of 2009. We will present acoustic data from several interesting lightning flashes including a comparison between a natural and a triggered one.

  20. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  1. Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars.

    PubMed

    Du, Chunhua; Jiang, Chunyan; Zuo, Peng; Huang, Xin; Pu, Xiong; Zhao, Zhenfu; Zhou, Yongli; Li, Linxuan; Chen, Hong; Hu, Weiguo; Wang, Zhong Lin

    2015-12-02

    Visible light communication (VLC) simultaneously provides illumination and communication via light emitting diodes (LEDs). Keeping a low bit error rate is essential to communication quality, and holding a stable brightness level is pivotal for illumination function. For the first time, a piezo-phototronic effect controlled visible light communication (PVLC) system based on InGaN/GaN multiquantum wells nanopillars is demonstrated, in which the information is coded by mechanical straining. This approach of force coding is also instrumental to avoid LED blinks, which has less impact on illumination and is much safer to eyes than electrical on/off VLC. The two-channel transmission mode of the system here shows great superiority in error self-validation and error self-elimination in comparison to VLC. This two-channel PVLC system provides a suitable way to carry out noncontact, reliable communication under complex circumstances. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Iterative Frequency Domain Decision Feedback Equalization and Decoding for Underwater Acoustic Communications

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Ge, Jian-Hua

    2012-12-01

    Single-carrier (SC) transmission with frequency-domain equalization (FDE) is today recognized as an attractive alternative to orthogonal frequency-division multiplexing (OFDM) for communication application with the inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel. In this paper, we investigate an iterative receiver based on minimum mean square error (MMSE) decision feedback equalizer (DFE) with symbol rate and fractional rate samplings in the frequency domain (FD) and serially concatenated trellis coded modulation (SCTCM) decoder. Based on sound speed profiles (SSP) measured in the lake and finite-element ray tracking (Bellhop) method, the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. Performance results show that the proposed iterative receiver can significantly improve the performance and obtain better data transmission than FD linear and adaptive decision feedback equalizers, especially in adopting fractional rate sampling.

  3. 0.87-micron CSP diode lasers for spaceborne communications. [channeled-substrate-planar

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Pultz, G. N.; Goldstein, B.

    1987-01-01

    Index-guided channeled-substrate-planar (CSP) AlGaAs diode lasers are being developed for reliable, high-power operation for use as sources in spaceborne optical communications systems. Although most work on this AlGaAs structure has been aimed at optimizing performance at output wavelengths less than 8400 A, emission in the 8700 A regime is also of interest. In particular, such wavelengths are required for use in the direct detection laser transceiver to be incorporated into NASA's advanced communications technology satellite, in order to avoid absorption of the light by the atmosphere when communicating with ground-based terminals. Lowest order spatial mode and substantially single longitudinal mode output has been observed in 0.87-micron CSP devices in excess of 50 mW cw and 100 mW 50 percent duty-cycle, with rms phase-front aberrations measured to be about lambda/40.

  4. Adoption of ICT in Science Education: A Case Study of Communication Channels in a Teachers' Professional Development Project

    ERIC Educational Resources Information Center

    Juuti, Kalle; Lavonen, Jari; Aksela, Maija; Meisalo, Veijo

    2009-01-01

    This paper analyses the use of various communication channels in science teachers' professional development project aiming to develop versatile uses for ICT (Information and Communication Technologies) in science teaching. A teacher network was created specifically for this project, and the researchers facilitated three forms of communication…

  5. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H

    1987-12-01

    Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.

  6. A Hierarchical Communication Architecture for Oceanic Surveillance Applications

    PubMed Central

    Macias, Elsa; Suarez, Alvaro; Chiti, Francesco; Sacco, Andrea; Fantacci, Romano

    2011-01-01

    The interest in monitoring applications using underwater sensor networks has been growing in recent years. The severe communication restrictions imposed by underwater channels make that efficient monitoring be a challenging task. Though a lot of research has been conducted on underwater sensor networks, there are only few concrete applications to a real-world case study. In this work, hence, we propose a general three tier architecture leveraging low cost wireless technologies for acoustic communications between underwater sensors and standard technologies, Zigbee and Wireless Fidelity (WiFi), for water surface communications. We have selected a suitable Medium Access Control (MAC) layer, after making a comparison with some common MAC protocols. Thus the performance of the overall system in terms of Signals Discarding Rate (SDR), signalling delay at the surface gateway as well as the percentage of true detection have been evaluated by simulation, pointing out good results which give evidence in applicability’s favour. PMID:22247669

  7. Sensing resonant objects in the presence of noise and clutter using iterative, single-channel acoustic time reversal

    NASA Astrophysics Data System (ADS)

    Waters, Zachary John

    The presence of noise and coherent returns from clutter often confounds efforts to acoustically detect and identify target objects buried in inhomogeneous media. Using iterative time reversal with a single channel transducer, returns from resonant targets are enhanced, yielding convergence to a narrowband waveform characteristic of the dominant mode in a target's elastic scattering response. The procedure consists of exciting the target with a broadband acoustic pulse, sampling the return using a finite time window, reversing the signal in time, and using this reversed signal as the source waveform for the next interrogation. Scaled laboratory experiments (0.4-2 MHz) are performed employing a piston transducer and spherical targets suspended in the free field and buried in a sediment phantom. In conjunction with numerical simulations, these experiments provide an inexpensive and highly controlled means with which to examine the efficacy of the technique. Signal-to-noise enhancement of target echoes is demonstrated. The methodology reported provides a means to extract both time and frequency information for surface waves that propagate on an elastic target. Methods developed in the laboratory are then applied in medium scale (20-200 kHz) pond experiments for the detection of a steel shell buried in sandy sediment.

  8. Minke whale song, spacing, and acoustic communication on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Gedamke, Jason

    associated contextual data of recorded sounds were analyzed. Two categories of sound are described here: (1) patterned song, which was regularly repeated in one of three patterns: slow, fast, and rapid-clustered repetition, and (2) non-patterned "social" sounds recorded from gregarious assemblages of whales. These discrete acoustic signals may comprise a graded system of communication (Slow/fast song → Rapid-clustered song → Social sounds) that is related to the spacing between whales.

  9. 47 CFR 90.625 - Other criteria to be applied in assigning channels for use in conventional systems of communication.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... certifies on its application that a channel will be loaded to 70 mobile stations, that channel will be made... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES... Policies Governing the Processing of Applications and the Selection and Assignment of Frequencies for Use...

  10. Speech Intelligibility Advantages using an Acoustic Beamformer Display

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Sunder, Kaushik; Godfroy, Martine; Otto, Peter

    2015-01-01

    A speech intelligibility test conforming to the Modified Rhyme Test of ANSI S3.2 "Method for Measuring the Intelligibility of Speech Over Communication Systems" was conducted using a prototype 12-channel acoustic beamformer system. The target speech material (signal) was identified against speech babble (noise), with calculated signal-noise ratios of 0, 5 and 10 dB. The signal was delivered at a fixed beam orientation of 135 deg (re 90 deg as the frontal direction of the array) and the noise at 135 deg (co-located) and 0 deg (separated). A significant improvement in intelligibility from 57% to 73% was found for spatial separation for the same signal-noise ratio (0 dB). Significant effects for improved intelligibility due to spatial separation were also found for higher signal-noise ratios (5 and 10 dB).

  11. Flexible Film Bulk Acoustic Wave Filters toward Radiofrequency Wireless Communication.

    PubMed

    Jiang, Yuan; Zhao, Yuan; Zhang, Lin; Liu, Bohua; Li, Quanning; Zhang, Menglun; Pang, Wei

    2018-03-30

    This paper presents a flexible radiofrequency filter with a central frequency of 2.4 GHz based on film bulk acoustic wave resonators (FBARs). The flexible filter consists of five air-gap type FBARs, each comprised of an aluminum nitride piezoelectric thin film sandwiched between two thin-film electrodes. By transfer printing the inorganic film structure from a silicon wafer to an ultrathin polyimide substrate, high electrical performance and mechanical flexibility are achieved. The filter has a peak insertion loss of -1.14 dB, a 3 dB bandwidth of 107 MHz, and a temperature coefficient of frequency of -27 ppm °C -1 . The passband and roll-off characteristics of the flexible filter are comparable with silicon-based commercial products. No electrical performance degradation and mechanical failure occur under bending tests with a bending radius of 2.5 mm or after 100 bending cycles. The flexible FBAR filters are believed to be promising candidates for future flexible wireless communication systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Acoustic measurement of bubble size and position in a piezo driven inkjet printhead

    NASA Astrophysics Data System (ADS)

    van der Bos, Arjan; Jeurissen, Roger; de Jong, Jos; Stevens, Richard; Versluis, Michel; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Lohse, Detlef

    2008-11-01

    A bubble can be entrained in the ink channel of a piezo-driven inkjet printhead, where it grows by rectified diffusion. If large enough, the bubble counteracts the pressure buildup at the nozzle, resulting in nozzle failure. Here an acoustic sizing method for the volume and position of the bubble is presented. The bubble response is detected by the piezo actuator itself, operating in a sensor mode. The method used to determine the volume and position of the bubble is based on a linear model in which the interaction between the bubble and the channel are included. This model predicts the acoustic signal for a given position and volume of the bubble. The inverse problem is to infer the position and volume of the bubble from the measured acoustic signal. By solving it, we can thus acoustically measure size and position of the bubble. The validity of the presented method is supported by time-resolved optical observations of the dynamics of the bubble within an optically accessible ink-jet channel.

  13. Quantifying loss of acoustic communication space for right whales in and around a U.S. National Marine Sanctuary.

    PubMed

    Hatch, Leila T; Clark, Christopher W; Van Parijs, Sofie M; Frankel, Adam S; Ponirakis, Dimitri W

    2012-12-01

    The effects of chronic exposure to increasing levels of human-induced underwater noise on marine animal populations reliant on sound for communication are poorly understood. We sought to further develop methods of quantifying the effects of communication masking associated with human-induced sound on contact-calling North Atlantic right whales (Eubalaena glacialis) in an ecologically relevant area (~10,000 km(2) ) and time period (peak feeding time). We used an array of temporary, bottom-mounted, autonomous acoustic recorders in the Stellwagen Bank National Marine Sanctuary to monitor ambient noise levels, measure levels of sound associated with vessels, and detect and locate calling whales. We related wind speed, as recorded by regional oceanographic buoys, to ambient noise levels. We used vessel-tracking data from the Automatic Identification System to quantify acoustic signatures of large commercial vessels. On the basis of these integrated sound fields, median signal excess (the difference between the signal-to-noise ratio and the assumed recognition differential) for contact-calling right whales was negative (-1 dB) under current ambient noise levels and was further reduced (-2 dB) by the addition of noise from ships. Compared with potential communication space available under historically lower noise conditions, calling right whales may have lost, on average, 63-67% of their communication space. One or more of the 89 calling whales in the study area was exposed to noise levels ≥120 dB re 1 μPa by ships for 20% of the month, and a maximum of 11 whales were exposed to noise at or above this level during a single 10-min period. These results highlight the limitations of exposure-threshold (i.e., dose-response) metrics for assessing chronic anthropogenic noise effects on communication opportunities. Our methods can be used to integrate chronic and wide-ranging noise effects in emerging ocean-planning forums that seek to improve management of cumulative effects

  14. Adaptive hearing in the vocal plainfin midshipman fish: getting in tune for the breeding season and implications for acoustic communication.

    PubMed

    Sisneros, Joseph A

    2009-03-01

    The plainfin midshipman fish (Porichthys notatus Girard, 1854) is a vocal species of batrachoidid fish that generates acoustic signals for intraspecific communication during social and reproductive activity and has become a good model for investigating the neural and endocrine mechanisms of vocal-acoustic communication. Reproductively active female plainfin midshipman fish use their auditory sense to detect and locate "singing" males, which produce a multiharmonic advertisement call to attract females for spawning. The seasonal onset of male advertisement calling in the midshipman fish coincides with an increase in the range of frequency sensitivity of the female's inner ear saccule, the main organ of hearing, thus leading to enhanced encoding of the dominant frequency components of male advertisement calls. Non-reproductive females treated with either testosterone or 17β-estradiol exhibit a dramatic increase in the inner ear's frequency sensitivity that mimics the reproductive female's auditory phenotype and leads to an increased detection of the male's advertisement call. This novel form of auditory plasticity provides an adaptable mechanism that enhances coupling between sender and receiver in vocal communication. This review focuses on recent evidence for seasonal reproductive-state and steroid-dependent plasticity of auditory frequency sensitivity in the peripheral auditory system of the midshipman fish. The potential steroid-dependent mechanism(s) that lead to this novel form of auditory and behavioral plasticity are also discussed. © 2009 ISZS, Blackwell Publishing and IOZ/CAS.

  15. Geo-Acoustic Doppler Spectroscopy: A Novel Acoustic Technique For Surveying The Seabed

    NASA Astrophysics Data System (ADS)

    Buckingham, Michael J.

    2010-09-01

    An acoustic inversion technique, known as Geo-Acoustic Doppler Spectroscopy, has recently been developed for estimating the geo-acoustic parameters of the seabed in shallow water. The technique is unusual in that it utilizes a low-flying, propeller-driven light aircraft as an acoustic source. Both the engine and propeller produce sound and, since they are rotating sources, the acoustic signature of each takes the form of a sequence of narrow-band harmonics. Although the coupling of the harmonics across the air-sea interface is inefficient, due to the large impedance mismatch between air and water, sufficient energy penetrates the sea surface to provide a useable underwater signal at sensors either in the water column or buried in the sediment. The received signals, which are significantly Doppler shifted due to the motion of the aircraft, will have experienced a number of reflections from the seabed and thus they contain information about the sediment. A geo-acoustic inversion of the Doppler-shifted modes associated with each harmonic yields an estimate of the sound speed in the sediment; and, once the sound speed has been determined, the known correlations between it and the remaining geo-acoustic parameters allow all of the latter to be computed. This inversion technique has been applied to aircraft data collected in the shallow water north of Scripps pier, returning values of the sound speed, shear speed, porosity, density and grain size that are consistent with the known properties of the sandy sediment in the channel.

  16. Feasibility of using an acoustic velocity meter to measure flow in the Chipps Island channel, Suisun Bay, California

    USGS Publications Warehouse

    Hoffard, Stuart H.

    1980-01-01

    Tests were conducted in 1978 to determine the feasibility of using an acoustic velocity meter to measure the Sacramento-San Joaquin Delta outflow in the Chipps Island Channel, Suisun Bay, Calif. Three parts of transducers with frequencies of 100, 40, and 24 kilohertz were installed on a cross-channel test path and operated at three elevations, 15.5, 8.0, and 4.0 feet below mean lower low water, to test signal transmission at varying depths. Transmission was most reliable at the lowest depth, and the 24-kilohertz transducers at the 7-millivolt threshold of signal strength met the study 's criterion of no persistent signal loss of more than one hour 's duration in any phase of the tidal cycle. Signal strength was statistically correlated with the environmental factors of wind velocity, wind direction, solar insolation, electrical conductivity, water temperature, water velocity, stage, rate of change in stage, and the acceleration of the rate of change in stage. All correlations were weak. Signal strength is apparently a function of the interaction of several environmental factors. A 32-day test to observe if aquatic growth on the transducers would affect signal transmission showed no reduction in signal strength. Suspended-sediment samples indicated that both the size and concentration of particles are greater than presumed in earlier studies. According to the results of this study, chances are good for reliable transmission of acoustic velocity meter signals. Usually some signals were much stronger than the average 20-second signal strength at 15-minute intervals used for correlation and the frequency analysis. Superior equipment is now being developed specifically for the Chipps Island site to transmit signals several times stronger than the signals analyzed in these tests. (USGS)

  17. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  18. Space Shuttle Orbiter audio subsystem. [to communication and tracking system

    NASA Technical Reports Server (NTRS)

    Stewart, C. H.

    1978-01-01

    The selection of the audio multiplex control configuration for the Space Shuttle Orbiter audio subsystem is discussed and special attention is given to the evaluation criteria of cost, weight and complexity. The specifications and design of the subsystem are described and detail is given to configurations of the audio terminal and audio central control unit (ATU, ACCU). The audio input from the ACCU, at a signal level of -12.2 to 14.8 dBV, nominal range, at 1 kHz, was found to have balanced source impedance and a balanced local impedance of 6000 + or - 600 ohms at 1 kHz, dc isolated. The Lyndon B. Johnson Space Center (JSC) electroacoustic test laboratory, an audio engineering facility consisting of a collection of acoustic test chambers, analyzed problems of speaker and headset performance, multiplexed control data coupled with audio channels, and the Orbiter cabin acoustic effects on the operational performance of voice communications. This system allows technical management and project engineering to address key constraining issues, such as identifying design deficiencies of the headset interface unit and the assessment of the Orbiter cabin performance of voice communications, which affect the subsystem development.

  19. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel

    NASA Astrophysics Data System (ADS)

    Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua

    2018-06-01

    The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.

  20. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory; Ward, Michael D

    2014-10-21

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  1. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOEpatents

    Kaduchak, Gregory [Los Alamos, NM; Ward, Michael D [Los Alamos, NM

    2011-12-27

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  2. Electronic Communication Channel Use and Health Information Source Preferences Among Latinos in Northern Manhattan.

    PubMed

    Hillyer, Grace Clarke; Schmitt, Karen M; Lizardo, Maria; Reyes, Andria; Bazan, Mercedes; Alvarez, Maria C; Sandoval, Rossy; Abdul, Kazeem; Orjuela, Manuela A

    2017-04-01

    Understanding key health concepts is crucial to participation in Precision Medicine initiatives. In order to assess methods to develop and disseminate a curriculum to educate community members in Northern Manhattan about Precision Medicine, clients from a local community-based organization were interviewed during 2014-2015. Health literacy, acculturation, use of Internet, email, and text messaging, and health information sources were assessed. Associations between age and outcomes were evaluated; multivariable analysis used to examine the relationship between participant characteristics and sources of health information. Of 497 interviewed, 29.4 % had inadequate health literacy and 53.6 % had access to the Internet, 43.9 % to email, and 45.3 % to text messaging. Having adequate health literacy was associated with seeking information from a healthcare professional (OR 2.59, 95 % CI 1.54-4.35) and from the Internet (OR 3.15, 95 % CI 1.97-5.04); having ≤ grade school education (OR 2.61, 95 % CI 1.32-5.17) also preferred information from their provider; persons >45 years (OR 0.29, 95 % CI 0.18-0.47) were less likely to use the Internet for health information and preferred printed media (OR 1.64, 95 % CI 1.07-2.50). Overall, electronic communication channel use was low and varied significantly by age with those ≤45 years more likely to utilize electronic channels. Preferred sources of health information also varied by age as well as by health literacy and educational level. This study demonstrates that to effectively communicate key Precision Medicine concepts, curriculum development for Latino community members of Northern Manhattan will require attention to health literacy, language preference and acculturation and incorporate more traditional communication channels for older community members.

  3. Transmission over EHF mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Zhuang, W.; Chouinard, J.-Y.; Yongacoglu, A.

    1993-01-01

    Land mobile satellite communications at Ka-band (30/20 GHz) are attracting an increasing interest among researchers because of the frequency band availability and the possibility of small earth station designs. However, communications at the Ka-band pose significant challenges in the system designs due to severe channel impairments. Because only very limited experimental data for mobile applications at Ka-band is available, this paper studies the channel characteristics based on experimental data at L-band (1.6/1.5 GHz) and the use of frequency scaling. The land mobile satellite communication channel at Ka-band is modelled as log-normal Rayleigh fading channel. The first and second-order statistics of the fading channel are studied. The performance of a coherent BPSK system over the fading channel at L-band and K-band is evaluated theoretically and validated by computer simulations. Conclusions on the communication channel characteristics and system performance at L-band and Ka-band are presented.

  4. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  5. Marketing hygiene behaviours: the impact of different communication channels on reported handwashing behaviour of women in Ghana.

    PubMed

    Scott, Beth E; Schmidt, Wolf P; Aunger, Robert; Garbrah-Aidoo, Nana; Animashaun, Rasaaque

    2008-06-01

    In 2003-04, a National Handwashing Campaign utilizing mass media and community events took place in Ghana. This article describes the results of the evaluation of the campaign in a sample of 497 women with children <5 years. The unifying message across all communication channels was that hands were not 'truly' clean unless washed with soap. The campaign reached 82% of the study population. Sixty-two per cent of women knew the campaign song, 44% were exposed to one channel and 36% to two or more. Overall, TV and radio had greater reach and impact on reported handwashing than community events, while exposure to both a mass media channel and an event yielded the greatest effect, resulting in a 30% increase in reported handwashing with soap after visiting the toilet or cleaning a child's bottom. Our evaluation questions wide-held belief that community events are more effective agents of behaviour change than mass media commercials, at least in the case of hygiene promotion. However, failure of mass media to reach the entire target audience, particularly in specific regions and lower socio-economic groups, and the additive effect of exposure, underscores the need to implement integrated communication programmes utilizing a variety of complementary channels.

  6. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  7. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  8. Non-Data Aided Doppler Shift Estimation for Underwater Acoustic Communication

    DTIC Science & Technology

    2014-05-01

    in underwater acoustic wireless sensor networks . We analyzed the data collected from our experiments using non-data aided (blind) techniques such as...investigated different methods for blind Doppler shift estimation and compensation for a single carrier in underwater acoustic wireless sensor ...distributed underwater sensor networks . Detailed experimental and simulated results based on second order cyclostationary features of the received signals

  9. Channel correlation of free space optical communication systems with receiver diversity in non-Kolmogorov atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Fu, Yulong; Tan, Liying; Yu, Siyuan; Xie, Xiaolong

    2018-05-01

    Spatial diversity as an effective technique to mitigate the turbulence fading has been widely utilized in free space optical (FSO) communication systems. The received signals, however, will suffer from channel correlation due to insufficient spacing between component antennas. In this paper, the new expressions of the channel correlation coefficient and specifically its components (the large- and small-scale channel correlation coefficients) for a plane wave with aperture effects are derived for horizontal link in moderate-to-strong turbulence, using a non-Kolmogorov spectrum that has a generalized power law in the range of 3-4 instead of the fixed classical Kolmogorov power law of 11/3. And then the influence of power law variations on the channel correlation coefficient and its components are analysed. The numerical results indicated that various value of the power law lead to varying effects on the channel correlation coefficient and its components. This work will help with the further investigation on the fading correlation in spatial diversity systems.

  10. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  11. Consecutive Plate Acoustic Suppressor Apparatus and Methods

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph (Inventor); Parrott, Tony L. (Inventor)

    1993-01-01

    An apparatus and method for suppressing acoustic noise utilizes consecutive plates, closely spaced to each other so as to exploit dissipation associated with sound propagation in narrow channels to optimize the acoustic resistance at a liner surface. The closely spaced plates can be utilized as high temperature structural materials for jet engines by constructing the plates from composite materials. Geometries of the plates, such as plate depth, shape, thickness, inter-plate spacing, arrangement, etc., can be selected to achieve bulk material-like behavior.

  12. First images of thunder: Acoustic imaging of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  13. Convergence of calls as animals form social bonds, active compensation for noisy communication channels, and the evolution of vocal learning in mammals.

    PubMed

    Tyack, Peter L

    2008-08-01

    The classic evidence for vocal production learning involves imitation of novel, often anthropogenic sounds. Among mammals, this has been reported for dolphins, elephants, harbor seals, and humans. A broader taxonomic distribution has been reported for vocal convergence, where the acoustic properties of calls from different individuals converge when they are housed together in captivity or form social bonds in the wild. Vocal convergence has been demonstrated for animals as diverse as songbirds, parakeets, hummingbirds, bats, elephants, cetaceans, and primates. For most species, call convergence is thought to reflect a group-distinctive identifier, with shared calls reflecting and strengthening social bonds. A ubiquitous function for vocal production learning that is starting to receive attention involves modifying signals to improve communication in a noisy channel. Pooling data on vocal imitation, vocal convergence, and compensation for noise suggests a wider taxonomic distribution of vocal production learning among mammals than has been generally appreciated. The wide taxonomic distribution of this evidence for vocal production learning suggests that perhaps more of the neural underpinnings for vocal production learning are in place in mammals than is usually recognized. (c) 2008 APA, all rights reserved

  14. Agricultural Opinion Leader Communication Channel Preferences: An Empirical Analysis of Participants of Agricultural and Natural Resource Leadership Development Programs

    ERIC Educational Resources Information Center

    Lamm, Kevan W.; Rumble, Joy N.; Carter, Hannah S.; Lamm, Alexa J.

    2016-01-01

    In the information rich society of the 21st century consumers have had access to many different communication channels where they can find information about agricultural topics. Individuals seek information that fulfills their needs and opinion leaders have been identified as a solution to communicating with audiences about complex topics.…

  15. Structural basis for the selective permeability of channels made of communicating junction proteins

    PubMed Central

    Ek-Vitorin, Jose F.; Burt, Janis M.

    2012-01-01

    The open state(s) of gap junction channels is evident from their permeation by small ions in response to an applied intercellular (transjunctional/transchannel) voltage gradient. That an open channel allows variable amounts of current to transit from cell-to-cell in the face of a constant intercellular voltage difference indicates channel open/closing can be complete or partial. The physiological significance of such open state options is, arguably, the main concern of junctional regulation. Because gap junctions are permeable to many substances, it is sensible to inquire whether and how each open state influences the intercellular diffusion of molecules as valuable as, but less readily detected than current-carrying ions. Presumably, structural changes perceived as shifts in channel conductivity would significantly alter the transjunctional diffusion of molecules whose limiting diameter approximates the pore’s limiting diameter. Moreover, changes in junctional permeability to some molecules might occur without evident changes in conductivity, either at macroscopic or single channel level. Open gap junction channels allow the exchange of cytoplasmic permeants between contacting cells by simple diffusion. The identity of such permeants, and the functional circumstances and consequences of their junctional exchange presently constitute the most urgent (and demanding) themes of the field. Here, we consider the necessity for regulating this exchange, the possible mechanism(s) and structural elements likely involved in such regulation, and how regulatory phenomena could be perceived as changes in chemical vs. electrical coupling; an overall reflection on our collective knowledge of junctional communication is then applied to suggest new avenues of research. PMID:22342665

  16. Amplitude Modulations of Acoustic Communication Signals

    NASA Astrophysics Data System (ADS)

    Turesson, Hjalmar K.

    2011-12-01

    In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a

  17. Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control

    NASA Astrophysics Data System (ADS)

    Krushynska, A. O.; Bosia, F.; Miniaci, M.; Pugno, N. M.

    2017-10-01

    Attenuating low-frequency sound remains a challenge, despite many advances in this field. Recently-developed acoustic metamaterials are characterized by unusual wave manipulation abilities that make them ideal candidates for efficient subwavelength sound control. In particular, labyrinthine acoustic metamaterials exhibit extremely high wave reflectivity, conical dispersion, and multiple artificial resonant modes originating from the specifically-designed topological architectures. These features enable broadband sound attenuation, negative refraction, acoustic cloaking and other peculiar effects. However, hybrid and/or tunable metamaterial performance implying enhanced wave reflection and simultaneous presence of conical dispersion at desired frequencies has not been reported so far. In this paper, we propose a new type of labyrinthine acoustic metamaterials (LAMMs) with hybrid dispersion characteristics by exploiting spider web-structured configurations. The developed design approach consists in adding a square surrounding frame to sectorial circular-shaped labyrinthine channels described in previous publications (e.g. (11)). Despite its simplicity, this approach provides tunability in the metamaterial functionality, such as the activation/elimination of subwavelength band gaps and negative group-velocity modes by increasing/decreasing the edge cavity dimensions. Since these cavities can be treated as extensions of variable-width internal channels, it becomes possible to exploit geometrical features, such as channel width, to shift the band gap position and size to desired frequencies. Time transient simulations demonstrate the effectiveness of the proposed metastructures for wave manipulation in terms of transmission or reflection coefficients, amplitude attenuation and time delay at subwavelength frequencies. The obtained results can be important for practical applications of LAMMs such as lightweight acoustic barriers with enhanced broadband wave

  18. Acoustic concentration of particles in fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Michael W.; Kaduchak, Gregory

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less

  19. Acoustic Imaging of a Turbidity Current Flowing along a Channel

    NASA Astrophysics Data System (ADS)

    Hughes Clarke, J. E.; Hiroji, A.; Cahill, L.; Fedele, J. J.

    2017-12-01

    As part of a 3 month sequence of repetitive surveys and ADCP monitoring, more than 30 turbidity currents have been identified modifying a lobe channel in 130 to 190m of water on the Squamish prodelta. For a 6 day period, daily surveys at low tide tried to capture the change resulting from a single flow. On the 8thof June three flows occurred within a half hour. Along channel multibeam images of the seabed and water column were obtained from a moving vessel immediately before, during and after the passage of the third flow. In this manner the spatial extent of the in-channel and overbank flow could be constrained. By following the flow, the spatial pattern of scattering from the flow upper surface could be examined over a 2 km length of the channel. Along channel bands of high scattering appear related to enhanced release of gas along the channel flanks. Notably, no signature of the underlying across-channel bedform modulations were evident, suggesting that the upper surface of the flow does not feel the influence of the channel floor. Overbank spillage of the flow could be detected by perturbation of a plankton scattering layer just above the seabed. Additionally, evidence of enhanced overbank deposition due to flow stripping on the outer corner of a bend was identified from backscatter changes. The specific seabed alteration due to this flow could be identified and compared with the cumulative change over three months in the channel and adjacent channel-lobe transition zone. As the flow passed under the ADCP, it had a peak velocity of over 2 m/s, a thickness of 4-5m and duration of 35 minutes. Based on the timing of the flow head when in view of the surface vessel, it was decelerating as it exited the mouth of the channel.

  20. Self-Assembled Resonance Energy Transfer Keys for Secure Communication over Classical Channels.

    PubMed

    Nellore, Vishwa; Xi, Sam; Dwyer, Chris

    2015-12-22

    Modern authentication and communication protocols increasingly use physical keys in lieu of conventional software-based keys for security. This shift is primarily driven by the ability to derive a unique, unforgeable signature from a physical key. The sole demonstration of an unforgeable key, thus far, has been through quantum key distribution, which suffers from limited communication distances and expensive infrastructure requirements. Here, we show a method for creating unclonable keys by molecular self-assembly of resonance energy transfer (RET) devices. It is infeasible to clone the RET-key due to the inability to characterize the key using current technology, the large number of input-output combinations per key, and the variation of the key's response with time. However, the manufacturer can produce multiple identical devices, which enables inexpensive, secure authentication and communication over classical channels, and thus any distance. Through a detailed experimental survey of the nanoscale keys, we demonstrate that legitimate users are successfully authenticated 99.48% of the time and the false-positives are only 0.39%, over two attempts. We estimate that a legitimate user would have a computational advantage of more than 10(340) years over an attacker. Our method enables the discovery of physical key based multiparty authentication and communication schemes that are both practical and possess unprecedented security.

  1. International Communication; Media, Channels, Functions.

    ERIC Educational Resources Information Center

    Fisher, Heinz-Dietrich, Ed.; Merrill, John Calhoun, Ed.

    A total of 41 essays explore several major issues in international communication. The essays are grouped according to their topic, beginning with the broader topics of communication systems and concepts and the flow of world news and proceeding to considerations of national concerns such as freedom and restriction of communication, national…

  2. Phenotypic integration and the evolution of signal repertoires: A case study of treefrog acoustic communication.

    PubMed

    Reichert, Michael S; Höbel, Gerlinde

    2018-03-01

    Animal signals are inherently complex phenotypes with many interacting parts combining to elicit responses from receivers. The pattern of interrelationships between signal components reflects the extent to which each component is expressed, and responds to selection, either in concert with or independently of others. Furthermore, many species have complex repertoires consisting of multiple signal types used in different contexts, and common morphological and physiological constraints may result in interrelationships extending across the multiple signals in species' repertoires. The evolutionary significance of interrelationships between signal traits can be explored within the framework of phenotypic integration, which offers a suite of quantitative techniques to characterize complex phenotypes. In particular, these techniques allow for the assessment of modularity and integration, which describe, respectively, the extent to which sets of traits covary either independently or jointly. Although signal and repertoire complexity are thought to be major drivers of diversification and social evolution, few studies have explicitly measured the phenotypic integration of signals to investigate the evolution of diverse communication systems. We applied methods from phenotypic integration studies to quantify integration in the two primary vocalization types (advertisement and aggressive calls) in the treefrogs Hyla versicolor , Hyla cinerea, and Dendropsophus ebraccatus . We recorded male calls and calculated standardized phenotypic variance-covariance ( P ) matrices for characteristics within and across call types. We found significant integration across call types, but the strength of integration varied by species and corresponded with the acoustic similarity of the call types within each species. H. versicolor had the most modular advertisement and aggressive calls and the least acoustically similar call types. Additionally, P was robust to changing social competition

  3. Communication Channel Estimation and Waveform Design: Time Delay Estimation on Parallel, Flat Fading Channels

    DTIC Science & Technology

    2010-02-01

    channels, so the channel gain is known on each realization and used in a coherent matched filter; and (c) Rayleigh channels with noncoherent matched...gain is known on each realization and used in a coherent matched filter (channel model 1A); and (c) Rayleigh channels with noncoherent matched filters...filters, averaged over Rayleigh channel realizations (channel model 1A). (b) Noncoherent matched filters with Rayleigh fading (channel model 3). MSEs are

  4. Acoustical power amplification and damping by temperature gradients.

    PubMed

    Biwa, Tetsushi; Komatsu, Ryo; Yazaki, Taichi

    2011-01-01

    Ceperley proposed a concept of a traveling wave heat engine ["A pistonless Stirling engine-The traveling wave heat engine," J. Acoust. Soc. Am. 66, 1508-1513 (1979).] that provided a starting point of thermoacoustics today. This paper verifies experimentally his idea through observation of amplification and strong damping of a plane acoustic traveling wave as it passes through axial temperature gradients. The acoustic power gain is shown to obey a universal curve specified by a dimensionless parameter ωτα; ω is the angular frequency and τα is the relaxation time for the gas to thermally equilibrate with channel walls. As an application of his idea, a three-stage acoustic power amplifier is developed, which attains the gain up to 10 with a moderate temperature ratio of 2.3.

  5. Efficient massively parallel simulation of dynamic channel assignment schemes for wireless cellular communications

    NASA Technical Reports Server (NTRS)

    Greenberg, Albert G.; Lubachevsky, Boris D.; Nicol, David M.; Wright, Paul E.

    1994-01-01

    Fast, efficient parallel algorithms are presented for discrete event simulations of dynamic channel assignment schemes for wireless cellular communication networks. The driving events are call arrivals and departures, in continuous time, to cells geographically distributed across the service area. A dynamic channel assignment scheme decides which call arrivals to accept, and which channels to allocate to the accepted calls, attempting to minimize call blocking while ensuring co-channel interference is tolerably low. Specifically, the scheme ensures that the same channel is used concurrently at different cells only if the pairwise distances between those cells are sufficiently large. Much of the complexity of the system comes from ensuring this separation. The network is modeled as a system of interacting continuous time automata, each corresponding to a cell. To simulate the model, conservative methods are used; i.e., methods in which no errors occur in the course of the simulation and so no rollback or relaxation is needed. Implemented on a 16K processor MasPar MP-1, an elegant and simple technique provides speedups of about 15 times over an optimized serial simulation running on a high speed workstation. A drawback of this technique, typical of conservative methods, is that processor utilization is rather low. To overcome this, new methods were developed that exploit slackness in event dependencies over short intervals of time, thereby raising the utilization to above 50 percent and the speedup over the optimized serial code to about 120 times.

  6. A Robotic Communications Gateway for Ocean Observations

    NASA Astrophysics Data System (ADS)

    Orcutt, J. A.; Berger, J.; Laske, G.; Babcock, J.

    2015-12-01

    We describe a new technology that can provide real-time telemetry of sensor data from the ocean bottom. The breakthrough technology that makes this system possible is an autonomous surface vehicle called the Wave Glider developed by Liquid Robotics, Inc. of Sunnyvale, CA., which harvests wave and solar energy for motive and electrical power. The free-floating surface communications gateway uses a Liquid Robotics wave glider comprising a surfboard-sized float towed by a tethered, submerged glider, which converts wave motion into thrust. For navigation, the wave glider is equipped with a small computer, a GPS receiver, a rudder, solar panels and batteries, and an Iridium satellite modem. Acoustic communications connect the subsea instruments and the surface gateway while communications between the gateway and land are provided by the Iridium satellite constellation. Wave gliders have demonstrated trans-oceanic range and long-term station keeping capabilities. The topside acoustics communications package is mounted in a shallow tow body, which uses a WHOI micro modem and a Benthos low frequency, directional transducer. A matching bottom side modem and transducer are mounted on the ocean bottom package. Tests of the surface gateway in 4000 m of water demonstrated an acoustic efficiency of approximately 256 bits/J. For example, it has the ability to send four channels of compressed, one sample per second data from the ocean bottom to the gateway with an average power draw of approximately 0.36 W and a latency of about three minutes. This gateway is used to send near-real-time data from a broadband ocean bottom seismic observatory; we are presently designing and constructing a seafloor package with a two-year operational life. We have found that for frequencies f where f<10mHz, 35mHz < f < 120mHz and f>~3Hz, the vertical component, seafloor system noise characteristics are generally superior to similar observatories on land. Increasing the density of these stations over

  7. Neutrophil-inspired propulsion in a combined acoustic and magnetic field.

    PubMed

    Ahmed, Daniel; Baasch, Thierry; Blondel, Nicolas; Läubli, Nino; Dual, Jürg; Nelson, Bradley J

    2017-10-03

    Systems capable of precise motion in the vasculature can offer exciting possibilities for applications in targeted therapeutics and non-invasive surgery. So far, the majority of the work analysed propulsion in a two-dimensional setting with limited controllability near boundaries. Here we show bio-inspired rolling motion by introducing superparamagnetic particles in magnetic and acoustic fields, inspired by a neutrophil rolling on a wall. The particles self-assemble due to dipole-dipole interaction in the presence of a rotating magnetic field. The aggregate migrates towards the wall of the channel due to the radiation force of an acoustic field. By combining both fields, we achieved a rolling-type motion along the boundaries. The use of both acoustic and magnetic fields has matured in clinical settings. The combination of both fields is capable of overcoming the limitations encountered by single actuation techniques. We believe our method will have far-reaching implications in targeted therapeutics.Devising effective swimming and propulsion strategies in microenvironments is attractive for drug delivery applications. Here Ahmed et al. demonstrate a micropropulsion strategy in which a combination of magnetic and acoustic fields is used to assemble and propel colloidal particles along channel walls.

  8. Theoretical analysis of the performance of code division multiple access communications over multimode optical fiber channels. Part 1: Transmission and detection

    NASA Astrophysics Data System (ADS)

    Walker, Ernest L.

    1994-05-01

    This paper presents results of a theoretical investigation to evaluate the performance of code division multiple access communications over multimode optical fiber channels in an asynchronous, multiuser communication network environment. The system is evaluated using Gold sequences for spectral spreading of the baseband signal from each user employing direct-sequence biphase shift keying and intensity modulation techniques. The transmission channel model employed is a lossless linear system approximation of the field transfer function for the alpha -profile multimode optical fiber. Due to channel model complexity, a correlation receiver model employing a suboptimal receive filter was used in calculating the peak output signal at the ith receiver. In Part 1, the performance measures for the system, i.e., signal-to-noise ratio and bit error probability for the ith receiver, are derived as functions of channel characteristics, spectral spreading, number of active users, and the bit energy to noise (white) spectral density ratio. In Part 2, the overall system performance is evaluated.

  9. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOEpatents

    Vo-Dinh, Tuan; Norton, Stephen J.

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  10. Acoustic metacages for sound shielding with steady air flow

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun

    2018-03-01

    Conventional sound shielding structures typically prevent fluid transport between the exterior and interior. A design of a two-dimensional acoustic metacage with subwavelength thickness which can shield acoustic waves from all directions while allowing steady fluid flow is presented in this paper. The structure is designed based on acoustic gradient-index metasurfaces composed of open channels and shunted Helmholtz resonators. In-plane sound at an arbitrary angle of incidence is reflected due to the strong parallel momentum on the metacage surface, which leads to low sound transmission through the metacage. The performance of the proposed metacage is verified by numerical simulations and measurements on a three-dimensional printed prototype. The acoustic metacage has potential applications in sound insulation where steady fluid flow is necessary or advantageous.

  11. Airy acoustical-sheet spinner tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  12. ADDOSS: Autonomously Deployed Deep-ocean Seismic System - Communications Gateway for Ocean Observatories

    NASA Astrophysics Data System (ADS)

    Laske, Gabi; Berger, Jon; Orcutt, John; Babcock, Jeff

    2014-05-01

    We describe an autonomously deployable, communications gateway designed to provide long-term and near real-time data from ocean observatories. The key features of this new system are its abilities to telemeter sensor data from the seafloor to shore without cables or moorings, and to be deployed without a ship, thereby greatly reducing life-cycle costs. The free-floating surface communications gateway utilizes a Liquid Robotics wave glider comprising a surfboard-sized float towed by a tethered, submerged glider, which converts wave motion into thrust. For navigation, the wave glider is equipped with a small computer, a GPS receiver, a rudder, solar panels and batteries, and an Iridium satellite modem. Acoustic communications connect the subsea instruments and the surface gateway while communications between the gateway and land are provided by the Iridium satellite constellation. Wave gliders have demonstrated trans-oceanic range and long-term station keeping capabilities. The acoustics communications package is mounted in a shallow tow body which utilizes a WHOI micro modem and a Benthos low frequency, directional transducer. A matching modem and transducer is mounted on the ocean bottom package. Tests of the surface gateway in 4350 m of water demonstrated an acoustic efficiency of approximately 396 bits/J. For example, it has the ability to send 4 channels of compressed, 1 sample per second data from the ocean bottom to the gateway with an average power draw of approximately 0.15 W and a latency of less than 3 minutes. This gateway is used to send near real-time data from a broadband ocean bottom seismic observatory, first during short week-to-months long test deployments but will ultimately be designed for a two-year operational life. Such data from presently unobserved oceanic areas are critical for both national and international agencies in monitoring and characterizing earthquakes, tsunamis, and nuclear explosions. We present initial results from a two short

  13. Tuned Chamber Core Panel Acoustic Test Results

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  14. Experimental realization of a highly secure chaos communication under strong channel noise

    NASA Astrophysics Data System (ADS)

    Ye, Weiping; Dai, Qionglin; Wang, Shihong; Lu, Huaping; Kuang, Jinyu; Zhao, Zhenfeng; Zhu, Xiangqing; Tang, Guoning; Huang, Ronghuai; Hu, Gang

    2004-09-01

    A one-way coupled spatiotemporally chaotic map lattice is used to construct cryptosystem. With the combinatorial applications of both chaotic computations and conventional algebraic operations, our system has optimal cryptographic properties much better than the separative applications of known chaotic and conventional methods. We have realized experiments to practice duplex voice secure communications in realistic Wired Public Switched Telephone Network by applying our chaotic system and the system of Advanced Encryption Standard (AES), respectively, for cryptography. Our system can work stably against strong channel noise when AES fails to work.

  15. Strong wave/mean-flow coupling in baroclinic acoustic streaming

    NASA Astrophysics Data System (ADS)

    Chini, Greg; Michel, Guillaume

    2017-11-01

    Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.

  16. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  17. Management of in-tube projectiles using acoustic channel

    NASA Astrophysics Data System (ADS)

    Kostina, M. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.

    2018-03-01

    The article describes the method of measuring the distance from the operator's console installed outside the pipe to the in-tube projectile. A method for measuring distance in the absence of an echo signal is proposed. To do this, two identical ultrasonic locators operating at different frequencies were installed inside and outside the pipeline. The change in the duration of an acoustic pulse propagating in a circular waveguide with rigid walls is shown, which leads to a decrease in the data transfer rate.

  18. Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.

    PubMed

    Li, Yun; Ho, K C; Popescu, Mihail

    2014-03-01

    Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.

  19. SCSI Communication Test Bus

    NASA Technical Reports Server (NTRS)

    Hua, Chanh V.; D'Ambrose, John J.; Jaworski, Richard C.; Halula, Elaine M.; Thornton, David N.; Heligman, Robert L.; Turner, Michael R.

    1990-01-01

    Small Computer System Interface (SCSI) communication test bus provides high-data-rate, standard interconnection enabling communication among International Business Machines (IBM) Personal System/2 Micro Channel, other devices connected to Micro Channel, test equipment, and host computer. Serves primarily as nonintrusive input/output attachment to PS/2 Micro Channel bus, providing rapid communication for debugger. Opens up possibility of using debugger in real-time applications.

  20. Multi-channel unidirectional transmission of phononic crystal heterojunctions

    NASA Astrophysics Data System (ADS)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-02-01

    Two square steel columns are arranged in air to form two-dimensional square lattice phononic crystals (PNCs). Two PNCs can be combined into a non-orthogonal 45∘ heterojunction when the difference in the directional band gaps of the two PNC types is utilized. The finite element method is used to calculate the acoustic band structure, the heterogeneous junction transmission characteristics, acoustic field distribution, and many others. Results show that a non-orthogonal PNC heterojunction can produce a multi-channel unidirectional transmission of acoustic waves. With the square scatterer rotated, the heterojunction can select a frequency band for unidirectional transmission performance. This capability is particularly useful for constructing acoustic diodes with wide-bands and high-efficiency unidirectional transmission characteristics.

  1. Controllable asymmetric transmission via gap-tunable acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Bingyi; Jiang, Yongyuan

    2018-04-01

    In this work, we utilize the acoustic gradient metasurface (AGM) of a bilayer configuration to realize the controllable asymmetric transmission. Relying on the adjustable gap between the two composing layers, the metasurface could switch from symmetric transmission to asymmetric transmission at a certain gap value. The underlying mechanism is attributed to the interference between the forward diffracted waves scattered by the surface bound waves at two air-AGM interfaces, which is apparently influenced by the interlayer distance. We further utilize the hybrid acoustic elements to construct the desired gradient metasurface with a tunable gap and validate the controllable asymmetric transmission with full-wave simulations. Our work provides the solution for actively controlling the transmission property of an acoustic element, which shows potential application in acoustic communication as a dynamic tunable acoustic diode.

  2. High frequency acoustic propagation under variable sea surfaces

    NASA Astrophysics Data System (ADS)

    Senne, Joseph

    This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are

  3. Experimental study on inter-particle acoustic forces.

    PubMed

    Garcia-Sabaté, Anna; Castro, Angélica; Hoyos, Mauricio; González-Cinca, Ricard

    2014-03-01

    A method for the experimental measurement of inter-particle forces (secondary Bjerknes force) generated by the action of an acoustic field in a resonator micro-channel is presented. The acoustic radiation force created by an ultrasonic standing wave moves suspended particles towards the pressure nodes and the acoustic pressure induces particle volume oscillations. Once particles are in the levitation plane, transverse and secondary Bjerknes forces become important. Experiments were carried out in a resonator filled with a suspension composed of water and latex particles of different size (5-15 μm) at different concentrations. Ultrasound was generated by means of a 2.5 MHz nominal frequency transducer. For the first time the acoustic force generated by oscillating particles acting on other particles has been measured, and the critical interaction distance in various cases has been determined. Inter-particle forces on the order of 10(-14) N have been measured by using this method.

  4. Flame front propagation in a channel with porous walls

    NASA Astrophysics Data System (ADS)

    Golovastov, S. V.; Bivol, G. Yu

    2016-11-01

    Propagation of the detonation front in hydrogen-air mixture was investigated in rectangular cross-section channels with sound-absorbing boundaries. The front of luminescence was detected in a channel with acoustically absorbing walls as opposed to a channel with solid walls. Flame dynamics was recorded using a high-speed camera. The flame was observed to have a V-shaped profile in the acoustically absorbing section. The possible reason for the formation of the V-shaped flame front is friction under the surface due to open pores. In these shear flows, the kinetic energy of the flow on the surface can be easily converted into heat. A relatively small disturbance may eventually lead to significant local stretching of the flame front surface. Trajectories of the flame front along the axis and the boundary are presented for solid and porous surfaces.

  5. Communicating with parents of obese children: which channels are most effective?

    PubMed

    Randle, Melanie; Okely, Anthony D; Dolnicar, Sara

    2017-04-01

    One of the strategies proven most successful in curbing rising rates of childhood obesity involves targeting parents as agents of change. Prior studies have focused on what messages to communicate, but few have investigated how they should be communicated. To identify the channels most effective for communicating with parents of overweight and obese children and understand whether their use of parenting information sources differs from others in the community. This study utilizes data from the Longitudinal Study of Australian Children (LSAC). Families were included if weight and height information was available for parents and children at three data collection points: Waves 1, 2 and 4 (collected 2004, 2006 and 2010, respectively, n = 5107). A priori and a posteriori segmentation methods identified groups of parents that were similar in the sources used to obtain information about parenting, and examined whether some segments were more likely to have obese children. Four segments were identified that differed in their information source use: the 'personal networks', 'books', 'official sources' and 'mixed approach' segments. The 'official sources' and 'mixed approach' segments were most likely to have obese children, and they used doctors, government/community organizations and friends to obtain information on parenting. These segments were also less educated and had lower employment. Messages are most likely to reach families with obese children if communicated through doctors, government publications and community organizations. Further, messages targeting social groupings of parents will leverage the power of advice from friends, which is another valuable information source for this group. © 2016 The Authors. Health Expectations Published by John Wiley & Sons Ltd.

  6. Smart communication with LabView

    NASA Astrophysics Data System (ADS)

    Iov, Cǎtǎlin J.; Diaconu, Bogdan; Hnatiuc, Mihaela

    2016-12-01

    The population alarm systems do not represent a new concept. Since hundreds of years ago the man used either smoke signals generated from certain upper locations, visible from long distance, getting through acoustic systems placed on high buildings, until now when mass-media channels extended the possibilities by the television and radio. However, either one of those mentioned above requested the individual to be located at the alarming moment in the area of action of the alarm. Otherwise, the message has no efficiency. This limitation is currently solved by additional communication channels such as the internet and the mobile networks. Messages are now able to be sent to the mobile screen, and the user can reply to messages either by using the short message service (SMS) or by emailing to someone, to a server, to a center. From the general pattern of alarming the population on certain events, the medical applications represent a very important field. Messages are sent from the patient to a central medical center and back to the patient. This paper focuses on the value that virtual tools developed with LabVIEW brings to us.

  7. Systems and methods for separating particles utilizing engineered acoustic contrast capture particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaduchak, Gregory; Ward, Michael D.

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minimamore » for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.« less

  8. Thin structured rigid body for acoustic absorption

    NASA Astrophysics Data System (ADS)

    Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.

    2017-01-01

    We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.

  9. Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel Islands, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Lafferty, Kevin D.

    2002-01-01

    Highly reflective seafloor features imaged by sidescan sonar in nearshore waters off the Northern Channel Islands (California, USA) have been observed in subsequent submersible dives to be areas of thin sand covering bedrock. Adjacent areas of rocky seafloor, suitable as habitat for endangered species of abalone and rockfish, and encrusting organisms, cannot be differentiated from the areas of thin sand on the basis of acoustic backscatter (i.e. grey level) alone. We found second-order textural analysis of sidescan sonar data useful to differentiate the bottom types where data is not degraded by near-range distortion (caused by slant-range and ground-range corrections), and where data is not degraded by far-range signal attenuation. Hand editing based on submersible observations is necessary to completely convert the sidescan sonar image to a bottom character classification map suitable for habitat mapping.

  10. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system

    NASA Astrophysics Data System (ADS)

    Sahu, Sanjay Kumar; Shanmugam, Palanisamy

    2018-02-01

    Scattering by water molecules and particulate matters determines the path and distance of photon propagation in underwater medium. Consequently, photon angle of scattering (given by scattering phase function) requires to be considered in addition to the extinction coefficient of the aquatic medium governed by the absorption and scattering coefficients in channel characterization for an underwater wireless optical communication (UWOC) system. This study focuses on analyzing the received signal power and impulse response of UWOC channel based on Monte-Carlo simulations for different water types, link distances, link geometries and transceiver parameters. A newly developed scattering phase function (referred to as SS phase function), which represents the real water types more accurately like the Petzold phase function, is considered for quantification of the channel characteristics along with the effects of absorption and scattering coefficients. A comparison between the results simulated using various phase function models and the experimental measurements of Petzold revealed that the SS phase function model predicts values closely matching with the actual values of the Petzold's phase function, which further establishes the importance of using a correct scattering phase function model while estimating the channel capacity of UWOC system in terms of the received power and channel impulse response. Results further demonstrate a great advantage of considering the nonzero probability of receiving scattered photons in estimating channel capacity rather than considering the reception of only ballistic photons as in Beer's Law, which severely underestimates the received power and affects the range of communication especially in the scattering water column. The received power computed based on the Monte-Carlo method by considering the receiver aperture sizes and field of views in different water types are further analyzed and discussed. These results are essential for

  11. Linear and Nonlinear Time Reverse Acoustics in Geomaterials

    NASA Astrophysics Data System (ADS)

    Sutin, A.; Johnson, P. A.; Tencate, J.

    2004-12-01

    Linear and Nonlinear Time Reverse Acoustics in Geomaterials P. A. Johnson, A.Sutin and J. TenCate Time Reversal Acoustics (TRA) is one of the most interesting topics to have emerged in modern acoustics in the last 40 years. Much of the seminal research in this area has been carried out by the group at the Laboratoire Ondes et Acoustique at the University of Paris 7, who have demonstrated the ability and robustness of TRA (using Time Reversal Mirrors) to provide spatial control and focusing of an ultrasonic beam (e.g. Fink, 1999). The ability to obtain highly focused signals with TRA has numerous applications, including lithotripsy, ultrasonic brain surgery, nondestructive evaluation and underwater acoustic communication. Notably, the study of time reversal in solids and in the earth is still relatively new. The problem is fundamentally different from the purely acoustic one due to the excitation and propagation of both compressional (bulk) and shear waves as well as the scattering and potentially high dissipation of the medium. We conducted series of TRA experiments in different solids using direct-coupled transducers on solids in tandem with a large bandwidth laser vibrometer detector. A typical time reversal experiment was carried out using the following steps (Sutin et al. 2004a). Laboratory experiments were conducted in different geomaterials of different shapes and sizes, including Carrera marble, granite and Berea sandstone. We observed that, in spite of potentially huge numbers of wave conversions (e.g., compressional to shear, shear to compressional, compressional/shear to surface waves, etc.) for each reflection at each free surface, time reversal still provides significant spatial and temporal focusing in these different geophysical materials. The typical size of the focal area is approximately equivalent to the shear wavelength and the focal area, but becomes larger with increasing wave attenuation (Sutin et al. 2004a; Delsanto et al., 2003)). The TR

  12. A Short Note on the Derivation of the Atmospheric Transfer Function for a Communications Channel and its Connection to Associated Propagation Parameters

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2004-01-01

    The systems engineering description of a wideband communications channel is provided which is based upon the fundamental propagation aspects of the problem. In particular, the well known time variant description of a channel is formulated from the basic multiple scattering processes that occur in a random propagation medium. Such a connection is required if optimal processing methods are to be applied to mitigate the deleterious random fading and multipathing of the channel. An example is given which demonstrates how the effective bandwidth of the channel is diminished due to atmospheric propagation impairments.

  13. Acoustic Tomography in the Canary Basin: Meddies and Tides

    NASA Astrophysics Data System (ADS)

    Dushaw, Brian D.; Gaillard, Fabienne; Terre, Thierry

    2017-11-01

    An acoustic propagation experiment over 308 km range conducted in the Canary Basin in 1997-1998 was used to assess the ability of ocean acoustic tomography to measure the flux of Mediterranean water and Meddies. Instruments on a mooring adjacent to the acoustic path measured the southwestward passage of a strong Meddy in temperature, salinity, and current. Over 9 months of transmissions, the acoustic arrival pattern was an initial broad stochastic pulse varying in duration by 250-500 ms, followed eight stable, identified-ray arrivals. Small-scale sound speed fluctuations from Mediterranean water parcels littered around the sound channel axis caused acoustic scattering. Internal waves contributed more modest acoustic scattering. Based on simulations, the main effect of a Meddy passing across the acoustic path is the formation of many early-arriving, near-axis rays, but these rays are thoroughly scattered by the small-scale Mediterranean-water fluctuations. A Meddy decreases the deep-turning ray travel times by 10-30 ms. The dominant acoustic signature of a Meddy is therefore the expansion of the width of the initial stochastic pulse. While this signature appears inseparable from the other effects of Mediterranean water in this region, the acoustic time series indicates the steady passage of Mediterranean water across the acoustic path. Tidal variations caused by the mode-1 internal tides were measured by the acoustic travel times. The observed internal tides were partly predicted using a recent global model for such tides derived from satellite altimetry.

  14. HYDROBS: a long-term autonomous mooring for passive acoustic monitoring

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Royer, J. Y.; Yegikyan, M.

    2017-12-01

    Passive acoustics proves an effective way for monitoring the low-level seismic activity of the ocean floor and low-frequency sounds from the ocean (baleen whales, sea-state, icebergs). Networks of synchronized autonomous hydrophones have thus been commonly deployed in the world ocean to monitor large sections of mid-oceanic ridges. HYDROBS is an improved system that meet two requirements: an easy access to the data collected by the instruments together with long-term deployments - up to 4 consecutive years - reducing the need of large vessels capable of yearly mooring operations in open seas. The system has two components: a data logger, up-to-date but similar to previous systems, and three messengers, releasable on demand to collect the data. The mooring line itself is classical, with an expandable weight at the sea-bottom to maintain the mooring, an acoustic release to free the mooring line for recovery, a line adjustable to the seafloor depth, and an immerged buoy, holding the acquisition system, to maintain the sensors at a constant depth and to bring the mooring line to the surface for its recovery. The data logger is based on a low-power microprocessor, an A/D-32bit convertor sampling at 250Hz, a 10-8 real time clock and SD card storage. Lithium batteries provide 3-4 years of autonomy. Acoustic communications with the surface-ship provide control over all functionalities at deployment and a health bulletin on demand. The 3 shuttles, encapsulated in 13" glass spheres, use the same CPU board and clock as the main station. Data transfer from the data logger to the shuttles is wireless (1Mbit/s digital inductive through water). Data are duplicated once per day on shuttles N and N+1 for redundancy. Prior to their release by acoustic command, the shuttles are synchronized with the master clock. At sea-surface, shuttles (as the main unit) look for GPS time and calculate their clock drift. So, the master clock drift can be monitored over time at every shuttle release

  15. Acoustic fine structure may encode biologically relevant information for zebra finches.

    PubMed

    Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J

    2018-04-18

    The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.

  16. Digital Signal Processing in Acoustics--Part 2.

    ERIC Educational Resources Information Center

    Davies, H.; McNeill, D. J.

    1986-01-01

    Reviews the potential of a data acquisition system for illustrating the nature and significance of ideas in digital signal processing. Focuses on the fast Fourier transform and the utility of its two-channel format, emphasizing cross-correlation and its two-microphone technique of acoustic intensity measurement. Includes programing format. (ML)

  17. Study and Validation of Eavesdropping Scenarios over a Visible Light Communication Channel.

    PubMed

    Marin-Garcia, Ignacio; Guerra, Victor; Perez-Jimenez, Rafael

    2017-11-21

    The security and privacy provided by Visible Light Communication (VLC) technologies is an area that has been slightly addressed due to the misconception that, since light does not go through solid objects like walls, VLC-based communications cannot be eavesdropped on by outside observers. As an upcoming technology, VLC is expected to be used in multiple environments were, due to radio frequency RF overuse or limitations, RF solutions cannot or should not be employed. In this work, we study the eavesdropping characteristics of a VLC-based communication. To evaluate these concerns, a two-step process was followed. First, several simulations of a standardly used scenario were run. Later on, experimental tests were performed. Following those tests, the results of the simulations and the experimental tests were analyzed. The results of these simulations and tests seemed to indicate that VLC channels can be eavesdropped on without considerable difficulties. Furthermore, the results showed that sniffing attacks could be performed from areas outside the expected coverage of the VLC infrastructure. Finally, the use of the simulation such as the one implemented in this work to recognize places from which sniffing is possible helps determine the risk for eavesdropping that our VLC-based network has.

  18. Study and Validation of Eavesdropping Scenarios over a Visible Light Communication Channel

    PubMed Central

    Perez-Jimenez, Rafael

    2017-01-01

    The security and privacy provided by Visible Light Communication (VLC) technologies is an area that has been slightly addressed due to the misconception that, since light does not go through solid objects like walls, VLC-based communications cannot be eavesdropped on by outside observers. As an upcoming technology, VLC is expected to be used in multiple environments were, due to radio frequency RF overuse or limitations, RF solutions cannot or should not be employed. In this work, we study the eavesdropping characteristics of a VLC-based communication. To evaluate these concerns, a two-step process was followed. First, several simulations of a standardly used scenario were run. Later on, experimental tests were performed. Following those tests, the results of the simulations and the experimental tests were analyzed. The results of these simulations and tests seemed to indicate that VLC channels can be eavesdropped on without considerable difficulties. Furthermore, the results showed that sniffing attacks could be performed from areas outside the expected coverage of the VLC infrastructure. Finally, the use of the simulation such as the one implemented in this work to recognize places from which sniffing is possible helps determine the risk for eavesdropping that our VLC-based network has. PMID:29160800

  19. Multi-channel acoustic recording and automated analysis of Drosophila courtship songs

    PubMed Central

    2013-01-01

    Background Drosophila melanogaster has served as a powerful model system for genetic studies of courtship songs. To accelerate research on the genetic and neural mechanisms underlying courtship song, we have developed a sensitive recording system to simultaneously capture the acoustic signals from 32 separate pairs of courting flies as well as software for automated segmentation of songs. Results Our novel hardware design enables recording of low amplitude sounds in most laboratory environments. We demonstrate the power of this system by collecting, segmenting and analyzing over 18 hours of courtship song from 75 males from five wild-type strains of Drosophila melanogaster. Our analysis reveals previously undetected modulation of courtship song features and extensive natural genetic variation for most components of courtship song. Despite having a large dataset with sufficient power to detect subtle modulations of song, we were unable to identify previously reported periodic rhythms in the inter-pulse interval of song. We provide detailed instructions for assembling the hardware and for using our open-source segmentation software. Conclusions Analysis of a large dataset of acoustic signals from Drosophila melanogaster provides novel insight into the structure and dynamics of species-specific courtship songs. Our new system for recording and analyzing fly acoustic signals should therefore greatly accelerate future studies of the genetics, neurobiology and evolution of courtship song. PMID:23369160

  20. Channel coding in the space station data system network

    NASA Technical Reports Server (NTRS)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  1. Research on the strategy of underwater united detection fusion and communication using multi-sensor

    NASA Astrophysics Data System (ADS)

    Xu, Zhenhua; Huang, Jianguo; Huang, Hai; Zhang, Qunfei

    2011-09-01

    In order to solve the distributed detection fusion problem of underwater target detection, when the signal to noise ratio (SNR) of the acoustic channel is low, a new strategy for united detection fusion and communication using multiple sensors was proposed. The performance of detection fusion was studied and compared based on the Neyman-Pearson principle when the binary phase shift keying (BPSK) and on-off keying (OOK) modes were used by the local sensors. The comparative simulation and analysis between the optimal likelihood ratio test and the proposed strategy was completed, and both the theoretical analysis and simulation indicate that using the proposed new strategy could improve the detection performance effectively. In theory, the proposed strategy of united detection fusion and communication is of great significance to the establishment of an underwater target detection system.

  2. Experimental Investigation of Acousto-Optic Communications

    DTIC Science & Technology

    2003-09-01

    acousto - optic sensor shows promise as a means for detecting acoustic data projected towards the water surface from a submerged platform. The laser...simulation studies were conducted to demonstrate acousto - optic sensor feasibility for obtaining robust recordings of acoustic communication signals across

  3. Introduction to Communication Systems

    DTIC Science & Technology

    2014-01-17

    channel modeling in complex baseband using ray tracing, reinforced by a software lab which applies these ideas to simulate link time variations for a...analog acoustic signal is generated (often translated to an analog electrical signal using a microphone). Even when this music is recorded onto a...include line of sight (LOS) and reflected paths. Equation (2.35) immediately tells us how to model multipath channels, in which multiple scat- tered

  4. Three-Dimensional Analysis of the Fundus of the Human Internal Acoustic Canal.

    PubMed

    Schart-Morén, Nadine; Larsson, Sune; Rask-Andersen, Helge; Li, Hao

    Documentation of the nerve components in the internal acoustic canal is essential before cochlea implantation surgery. Interpretations may be challenged by wide anatomical variations of the VIIIth nerve and their ramifications. Malformations may further defy proper nerve identification. Using microcomputed tomography, we analyzed the fundus bone channels in an archival collection of 113 macerated human temporal bones and 325 plastic inner molds. Data were subsequently processed by volume-rendering software using a bony tissue algorithm. Three-dimensional reconstructions were made, and through orthogonal sections, the topographic anatomy was established. The technique provided additional information regarding the anatomy of the nerve foramina/channels of the human fundus region, including variations and destinations. Channel anastomosis were found beyond the level of the fundus. A foramen of the transverse crest was identified. Three-dimensional reconstructions and cropping outlined the bone canals and demonstrated the highly variable VIIIth nerve anatomy at the fundus of the human inner acoustic canal. Myriad channel interconnections suggested an intricate system of neural interactive pathways in humans. Particularly striking was the variable anatomy of the saccule nerve channels. The results may assist in the preoperative interpretation of the VIIIth nerve anatomy.

  5. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication

    PubMed Central

    Garciarena, Carolina D.; Malik, Akif; Swietach, Pawel; Moreno, Alonso P.; Vaughan-Jones, Richard D.

    2018-01-01

    Most mammalian cells can intercommunicate via connexin-assembled, gap-junctional channels. To regulate signal transmission, connexin (Cx) channel permeability must respond dynamically to physiological and pathophysiological stimuli. One key stimulus is intracellular pH (pHi), which is modulated by a tissue’s metabolic and perfusion status. Our understanding of the molecular mechanism of H+ gating of Cx43 channels—the major isoform in the heart and brain—is incomplete. To interrogate the effects of acidic and alkaline pHi on Cx43 channels, we combined voltage-clamp electrophysiology with pHi imaging and photolytic H+ uncaging, performed over a range of pHi values. We demonstrate that Cx43 channels expressed in HeLa or N2a cell pairs are gated biphasically by pHi via a process that consists of activation by H+ ions at alkaline pHi and inhibition at more acidic pHi. For Cx43 channel–mediated solute/ion transmission, the ensemble of these effects produces a pHi optimum, near resting pHi. By using Cx43 mutants, we demonstrate that alkaline gating involves cysteine residues of the C terminus and is independent of motifs previously implicated in acidic gating. Thus, we present a molecular mechanism by which cytoplasmic acid–base chemistry fine tunes intercellular communication and establishes conditions for the optimal transmission of solutes and signals in tissues, such as the heart and brain.—Garciarena, C. D., Malik, A., Swietach, P., Moreno, A. P., Vaughan-Jones, R. D. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication. PMID:29183963

  6. Analysis of heating, ventilation, and air conditioning ducts as a radio frequency communication channel

    NASA Astrophysics Data System (ADS)

    Nikitin, Pavel Viktorovich

    2002-01-01

    A typical HVAC duct system is a network of interconnected hollow metal pipes which can serve as waveguides and carry electromagnetic waves. This work presents an analysis of this system as a radio frequency communication channel. Two main parts of the analysis include channel modelling and antenna design. The propagation modelling approach used here is based on the waveguide mode theory and employs the transfer matrix method to describe propagation through various cascaded HVAC elements. This allows one to model the channel response in the frequency domain. Impulse response characteristics of the ducts are also analyzed in this work. The approximate transfer matrices of cylindrical straight sections, bends, and tapers are derived analytically. The transforming properties of cylindrical T-junctions are analyzed experimentally. Antenna designs in waveguides and free-space are different. In waveguides, mode excitation characteristics are important as well as the impedance match. The criteria for antenna design in waveguides are presented here. Antennas analyzed in this work are monopole antennas, dipole antennas, and antenna arrays. The developed model can predict both channel response and antenna characteristics for a given geometry and dimensions of the duct system and the antennas. The model is computationally efficient and can potentially be applied to duct systems of multiple story buildings. The accuracy of the model has been validated with extensive experimental measurements on real HVAC ducts.

  7. Small Vocabulary Recognition Using Surface Electromyography in an Acoustically Harsh Environment

    NASA Technical Reports Server (NTRS)

    Betts, Bradley J.; Jorgensen, Charles

    2005-01-01

    This paper presents results of electromyographic-based (EMG-based) speech recognition on a small vocabulary of 15 English words. The work was motivated in part by a desire to mitigate the effects of high acoustic noise on speech intelligibility in communication systems used by first responders. Both an off-line and a real-time system were constructed. Data were collected from a single male subject wearing a fireghter's self-contained breathing apparatus. A single channel of EMG data was used, collected via surface sensors at a rate of 104 samples/s. The signal processing core consisted of an activity detector, a feature extractor, and a neural network classifier. In the off-line phase, 150 examples of each word were collected from the subject. Generalization testing, conducted using bootstrapping, produced an overall average correct classification rate on the 15 words of 74%, with a 95% confidence interval of [71%, 77%]. Once the classifier was trained, the subject used the real-time system to communicate and to control a robotic device. The real-time system was tested with the subject exposed to an ambient noise level of approximately 95 decibels.

  8. Expected number of quantum channels in quantum networks.

    PubMed

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-15

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  9. Expected number of quantum channels in quantum networks

    PubMed Central

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556

  10. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  11. Application of the Wiener-Hopf method for describing the propagation of sound in cylindrical and rectangular channels with an impedance jump in the presence of a flow

    NASA Astrophysics Data System (ADS)

    Sobolev, A. F.; Yakovets, M. A.

    2017-11-01

    Exact solutions to problems of the propagation of acoustic modes in lined channels with an impedance jump in the presence of a uniform flow are constructed. Two problems that can be solved by the Wiener- Hopf method—the propagation of acoustic modes in an infinite cylindrical channel with a transverse impedance jump and the propagation of acoustic modes in a rectangular channel with an impedance jump on one of its walls—are considered. On the channel walls, the Ingard-Myers boundary conditions are imposed and, as an additional boundary condition in the vicinity of the junction of the linings, the condition expressing the finiteness of the acoustic energy. Analytical expressions for the amplitudes of the transmitted and reflected fields are obtained.

  12. Methods And Apparatus For Acoustic Fiber Fractionation

    DOEpatents

    Brodeur, Pierre

    1999-11-09

    Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.

  13. A study of vocal nonlinearities in humpback whale songs: from production mechanisms to acoustic analysis.

    PubMed

    Cazau, Dorian; Adam, Olivier; Aubin, Thierry; Laitman, Jeffrey T; Reidenberg, Joy S

    2016-10-10

    Although mammalian vocalizations are predominantly harmonically structured, they can exhibit an acoustic complexity with nonlinear vocal sounds, including deterministic chaos and frequency jumps. Such sounds are normative events in mammalian vocalizations, and can be directly traceable to the nonlinear nature of vocal-fold dynamics underlying typical mammalian sound production. In this study, we give qualitative descriptions and quantitative analyses of nonlinearities in the song repertoire of humpback whales from the Ste Marie channel (Madagascar) to provide more insight into the potential communication functions and underlying production mechanisms of these features. A low-dimensional biomechanical modeling of the whale's U-fold (vocal folds homolog) is used to relate specific vocal mechanisms to nonlinear vocal features. Recordings of living humpback whales were searched for occurrences of vocal nonlinearities (instabilities). Temporal distributions of nonlinearities were assessed within sound units, and between different songs. The anatomical production sources of vocal nonlinearities and the communication context of their occurrences in recordings are discussed. Our results show that vocal nonlinearities may be a communication strategy that conveys information about the whale's body size and physical fitness, and thus may be an important component of humpback whale songs.

  14. A study of vocal nonlinearities in humpback whale songs: from production mechanisms to acoustic analysis

    NASA Astrophysics Data System (ADS)

    Cazau, Dorian; Adam, Olivier; Aubin, Thierry; Laitman, Jeffrey T.; Reidenberg, Joy S.

    2016-10-01

    Although mammalian vocalizations are predominantly harmonically structured, they can exhibit an acoustic complexity with nonlinear vocal sounds, including deterministic chaos and frequency jumps. Such sounds are normative events in mammalian vocalizations, and can be directly traceable to the nonlinear nature of vocal-fold dynamics underlying typical mammalian sound production. In this study, we give qualitative descriptions and quantitative analyses of nonlinearities in the song repertoire of humpback whales from the Ste Marie channel (Madagascar) to provide more insight into the potential communication functions and underlying production mechanisms of these features. A low-dimensional biomechanical modeling of the whale’s U-fold (vocal folds homolog) is used to relate specific vocal mechanisms to nonlinear vocal features. Recordings of living humpback whales were searched for occurrences of vocal nonlinearities (instabilities). Temporal distributions of nonlinearities were assessed within sound units, and between different songs. The anatomical production sources of vocal nonlinearities and the communication context of their occurrences in recordings are discussed. Our results show that vocal nonlinearities may be a communication strategy that conveys information about the whale’s body size and physical fitness, and thus may be an important component of humpback whale songs.

  15. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    NASA Astrophysics Data System (ADS)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  16. Social behaviors and acoustic vocalizations in different strains of mice.

    PubMed

    Faure, Alexis; Pittaras, Elsa; Nosjean, Anne; Chabout, Jonathan; Cressant, Arnaud; Granon, Sylvie

    2017-03-01

    Proposing a framework for the study of core functions is valuable for understanding how they are altered in multiple mental disorders involving prefrontal dysfunction, for understanding genetic influences and for testing therapeutic compounds. Social and communication disabilities are reported in several major psychiatric disorders, and social communication disorders also can occur independently. Being able to study social communication involving interactions and associated acoustic vocalizations in animal models is thus important. All rodents display extensive social behaviors, including interactions and acoustic vocalizations. It is therefore important to pinpoint potential genetic-related strain differences -and similarities- in social behavior and vocalization. One approach is to compare different mouse strains, and this may be useful in choosing which strains may be best suitable in modeling psychiatric disorders where social and communication deficits are core symptoms. We compared social behavior and ultrasonic acoustic vocalization profiles in males of four mouse strains (129S2/Sv, C57BL/6J, DBA/2, and CD-1) using a social interaction task that we previously showed to rely on prefrontal network activity. Our social interaction task promotes a high level of ultrasonic vocalization with both social and acoustic parameters, and further allows other measures of social behaviors. The duration of social contact, dominance and aggressiveness varied with the mouse strains. Only C57BL/6J mice showed no attacks, with social contact being highly affiliative, whereas others strains emitted aggressive attacks. C57BL/6J mice also exhibited a significantly higher rate of ultrasonic vocalizations (USV), especially during social interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Steerable sound transport in a 3D acoustic network

    NASA Astrophysics Data System (ADS)

    Xia, Bai-Zhan; Jiao, Jun-Rui; Dai, Hong-Qing; Yin, Sheng-Wen; Zheng, Sheng-Jie; Liu, Ting-Ting; Chen, Ning; Yu, De-Jie

    2017-10-01

    Quasi-lossless and asymmetric sound transports, which are exceedingly desirable in various modern physical systems, are almost always based on nonlinear or angular momentum biasing effects with extremely high power levels and complex modulation schemes. A practical route for the steerable sound transport along any arbitrary acoustic pathway, especially in a three-dimensional (3D) acoustic network, can revolutionize the sound power propagation and the sound communication. Here, we design an acoustic device containing a regular-tetrahedral cavity with four cylindrical waveguides. A smaller regular-tetrahedral solid in this cavity is eccentrically emplaced to break spatial symmetry of the acoustic device. The numerical and experimental results show that the sound power flow can unimpededly transport between two waveguides away from the eccentric solid within a wide frequency range. Based on the quasi-lossless and asymmetric transport characteristic of the single acoustic device, we construct a 3D acoustic network, in which the sound power flow can flexibly propagate along arbitrary sound pathways defined by our acoustic devices with eccentrically emplaced regular-tetrahedral solids.

  18. Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Liu, Peng; Hou, Zewei; Pei, Yongmao

    2017-04-01

    Wavelength division multiplexing technology, adopted to increase the information density, plays a significant role in optical communication. However, in acoustics, a similar function can be hardly implemented due to the weak dispersion in natural acoustic materials. Here, an acoustic demultiplexer, based on the concept of metasurfaces, is proposed for splitting acoustic waves and propagating along different trajectories in a low frequency range. An acoustic metasurface, containing multiple resonant units, is designed with various phase profiles for different frequencies. Originating from the highly dispersive properties, the resonant units are independent and merely work in the vicinity of their resonant frequencies. Therefore, by combing multiple resonant units appropriately, the phenomena of anomalous reflection, acoustic focusing, and acoustic wave bending can occur in different frequencies. The proposed acoustic demultiplexer has advantages on the subwavelength scale and the versatility in wave control, providing a strategy for separating acoustic waves with different Fourier components.

  19. Modeling the effect of channel number and interaction on consonant recognition in a cochlear implant peak-picking strategy.

    PubMed

    Verschuur, Carl

    2009-03-01

    Difficulties in speech recognition experienced by cochlear implant users may be attributed both to information loss caused by signal processing and to information loss associated with the interface between the electrode array and auditory nervous system, including cross-channel interaction. The objective of the work reported here was to attempt to partial out the relative contribution of these different factors to consonant recognition. This was achieved by comparing patterns of consonant feature recognition as a function of channel number and presence/absence of background noise in users of the Nucleus 24 device with normal hearing subjects listening to acoustic models that mimicked processing of that device. Additionally, in the acoustic model experiment, a simulation of cross-channel spread of excitation, or "channel interaction," was varied. Results showed that acoustic model experiments were highly correlated with patterns of performance in better-performing cochlear implant users. Deficits to consonant recognition in this subgroup could be attributed to cochlear implant processing, whereas channel interaction played a much smaller role in determining performance errors. The study also showed that large changes to channel number in the Advanced Combination Encoder signal processing strategy led to no substantial changes in performance.

  20. Performance analysis of dual-hop optical wireless communication systems over k-distribution turbulence channel with pointing error

    NASA Astrophysics Data System (ADS)

    Mishra, Neha; Sriram Kumar, D.; Jha, Pranav Kumar

    2017-06-01

    In this paper, we investigate the performance of the dual-hop free space optical (FSO) communication systems under the effect of strong atmospheric turbulence together with misalignment effects (pointing error). We consider a relay assisted link using decode and forward (DF) relaying protocol between source and destination with the assumption that Channel State Information is available at both transmitting and receiving terminals. The atmospheric turbulence channels are modeled by k-distribution with pointing error impairment. The exact closed form expression is derived for outage probability and bit error rate and illustrated through numerical plots. Further BER results are compared for the different modulation schemes.

  1. Spectral identification of sperm whales from Littoral Acoustic Demonstration Center passive acoustic recordings

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia A.; Richard, Blake; Ioup, George E.; Ioup, Juliette W.

    2005-09-01

    The Littoral Acoustic Demonstration Center (LADC) made a series of passive broadband acoustic recordings in the Gulf of Mexico and Ligurian Sea to study noise and marine mammal phonations. The collected data contain a large amount of various types of sperm whale phonations, such as isolated clicks and communication codas. It was previously reported that the spectrograms of the extracted clicks and codas contain well-defined null patterns that seem to be unique for individuals. The null pattern is formed due to individual features of the sound production organs of an animal. These observations motivated the present studies of adapting human speech identification techniques for deep-diving marine mammal phonations. A three-state trained hidden Markov model (HMM) was used with the phonation spectra of sperm whales. The HHM-algorithm gave 75% accuracy in identifying individuals when it had been initially tested for the acoustic data set correlated with visual observations of sperm whales. A comparison of the identification accuracy based on null-pattern similarity analysis and the HMM-algorithm is presented. The results can establish the foundation for developing an acoustic identification database for sperm whales and possibly other deep-diving marine mammals that would be difficult to observe visually. [Research supported by ONR.

  2. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  3. Radiation dominated acoustophoresis driven by surface acoustic waves.

    PubMed

    Guo, Jinhong; Kang, Yuejun; Ai, Ye

    2015-10-01

    Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The effect of habitat acoustics on common marmoset vocal signal transmission.

    PubMed

    Morrill, Ryan J; Thomas, A Wren; Schiel, Nicola; Souto, Antonio; Miller, Cory T

    2013-09-01

    Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets. © 2013

  5. The Effect of Habitat Acoustics on Common Marmoset Vocal Signal Transmission

    PubMed Central

    MORRILL, RYAN J.; THOMAS, A. WREN; SCHIEL, NICOLA; SOUTO, ANTONIO; MILLER, CORY T.

    2013-01-01

    Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets. PMID

  6. Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels

    USGS Publications Warehouse

    Laenen, Antonius; Curtis, R. E.

    1989-01-01

    Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)

  7. Orbital angular momentum in four channel spatial domain multiplexing system for multi-terabit per second communication architectures

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Muralikrishnan, Hari P.; Kozaitis, Samuel P.

    2012-06-01

    Bandwidth increase has always been an important area of research in communications. A novel multiplexing technique known as Spatial Domain Multiplexing (SDM) has been developed at the Optronics Laboratory of Florida Institute of Technology to increase the bandwidth to T-bits/s range. In this technique, space inside the fiber is used effectively to transmit up to four channels of same wavelength at the same time. Experimental and theoretical analysis shows that these channels follow independent helical paths inside the fiber without interfering with each other. Multiple pigtail laser sources of exactly the same wavelength are used to launch light into a single carrier fiber in a fashion that resulting channels follow independent helical trajectories. These helically propagating light beams form optical vortices inside the fiber and carry their own Orbital Angular Momentum (OAM). The outputs of these beams appear as concentric donut shaped rings when projected on a screen. This endeavor presents the experimental outputs and simulated results for a four channel spatially multiplexed system effectively increasing the system bandwidth by a factor of four.

  8. Communications protocol

    NASA Technical Reports Server (NTRS)

    Zhou, Xiaoming (Inventor); Baras, John S. (Inventor)

    2010-01-01

    The present invention relates to an improved communications protocol which increases the efficiency of transmission in return channels on a multi-channel slotted Alohas system by incorporating advanced error correction algorithms, selective retransmission protocols and the use of reserved channels to satisfy the retransmission requests.

  9. Synchronized observations of cloud-to-ground lightning using VHF broadband interferometer and acoustic arrays

    NASA Astrophysics Data System (ADS)

    Qiu, Shi; Zhou, Bi-Hua; Shi, Li-Hua

    2012-10-01

    A single-station-based lightning discharge channel reconstruction system by combining a two-dimensional (2D) VHF broadband interferometer and a three-dimensional (3D) acoustic lighting mapping system has been developed and used for lightning observations. Two cloud-to-ground (CG) flashes with highly branched leaders recorded by the system are analyzed and presented in this paper. VHF radiation could well delineate the development of simultaneous leader branches, while acoustic emissions mainly located on the main channel which was traversed by return stroke (RS) process. Localizations by VHF and acoustic emissions agree well with each other. The mapping results confirm that audible acoustic emission of lightning discharge is mainly associated with high current process like RS. Leaders could generate detectable acoustic signals, with amplitude at least an order weaker than ensuing RS, but they are hard to identify except in closer ranges than the main channel. As a significant phenomenon, this paper provides the first 3D locations associated with sources of tearing sounds, which are inferred to be generated by downward negative leaders when they approach ground. The synchronized observation enable VHF interferometer locate lightning development in spatially quasi 3D, and three stepped leaders, five dart leaders and two dart-stepped leaders are identified, with the 3D velocity (1.3-3.9) × 105 m/s, (1.0-2.9) × 107 m/s and from (1.0-1.3) × 107 m/s to (2.4-2.6) × 106 m/s, respectively. In addition, the application of this approach in improving the accuracy of thunder ranging is discussed.

  10. Longitudinal and Transverse Instability of Ion Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chapman, T.; Berger, R. L.; Cohen, B. I.; Banks, J. W.; Brunner, S.

    2017-08-01

    Ion acoustic waves are found to be susceptible to at least two distinct decay processes. Which process dominates depends on the parameters. In the cases examined, the decay channel where daughter modes propagate parallel to the mother mode is found to dominate at larger amplitudes, while the decay channel where the daughter modes propagate at angles to the mother mode dominates at smaller amplitudes. Both decay processes may occur simultaneously and with onset thresholds below those suggested by fluid theory, resulting in the eventual multidimensional collapse of the mother mode to a turbulent state.

  11. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect

    PubMed Central

    Römer, Heiner

    2015-01-01

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of −21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and “novelty detection” to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. SIGNIFICANCE STATEMENT Animal and human acoustic communication may suffer from the same “cocktail party problem,” when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one

  12. Smart Acoustic Network Using Combined FSK-PSK, Adaptive Beamforming and Equalization

    DTIC Science & Technology

    2002-09-30

    sonar data transmission from underwater vehicle during mission. The two-year objectives for the high-reliability acoustic network using multiple... sonar laboratory) and used for acoustic networking during underwater vehicle operation. The joint adaptive coherent path beamformer method consists...broadband communications transducer, while the low noise preamplifier conditions received signals for analog to digital conversion. External user

  13. Smart Acoustic Network Using Combined FSK-PSK, Adaptive, Beamforming and Equalization

    DTIC Science & Technology

    2001-09-30

    sonar data transmission from underwater vehicle during mission. The two-year objectives for the high-reliability acoustic network using multiple... sonar laboratory) and used for acoustic networking during underwater vehicle operation. The joint adaptive coherent path beamformer method consists...broadband communications transducer, while the low noise preamplifier conditions received signals for analog to digital conversion. External user

  14. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  15. Concentration-Encoded Subdiffusive Molecular Communication: Theory, Channel Characteristics, and Optimum Signal Detection.

    PubMed

    Mahfuz, Mohammad Upal; Makrakis, Dimitrios; Mouftah, Hussein T

    2016-09-01

    Unlike normal diffusion, in anomalous diffusion, the movement of a molecule is described by the correlated random walk model where the mean square displacement of a molecule depends on the power law of time. In molecular communication (MC), there are many scenarios when the propagation of molecules cannot be described by normal diffusion process, where anomalous diffusion is a better fit. In this paper, the effects of anomalous subdiffusion on concentration-encoded molecular communication (CEMC) are investigated. Although classical (i.e., normal) diffusion is a widely-used model of diffusion in molecular communication (MC) research, anomalous subdiffusion is quite common in biological media involving bio-nanomachines, yet inadequately addressed as a research issue so far. Using the fractional diffusion approach, the molecular propagation effects in the case of pure subdiffusion occurring in an unbounded three-dimensional propagation medium have been shown in detail in terms of temporal dispersion parameters of the impulse response of the subdiffusive channel. Correspondingly, the bit error rate (BER) performance of a CEMC system is investigated with sampling-based (SD) and strength (i.e., energy)-based (ED) signal detection methods. It is found that anomalous subdiffusion has distinctive time-dispersive properties that play a vital role in accurately designing a subdiffusive CEMC system. Unlike normal diffusion, to detect information symbols in subdiffusive CEMC, a receiver requires larger memory size to operate correctly and hence a more complex structure. An in-depth analysis has been made on the performances of SD and ED optimum receiver models under diffusion noise and intersymbol interference (ISI) scenarios when communication range, transmission data rate, and memory size vary. In subdiffusive CEMC, the SD method.

  16. Acoustic Tonal and Vector Properties of Red Hind Grouper Vocalizations

    NASA Astrophysics Data System (ADS)

    Matthews, Cameron Anthony

    Vertebrates are the most prodigious vocalizing animals in existence, and the most diverse methods of acoustic communication among vertebrates can be found in the ocean. Relatively many teleost fish are gifted with the ability to communicate acoustically, and the family of serranidae often performs this as a function of the swim bladder. Epinephelus Guttatus (E. guttatus), or more commonly the red hind grouper, is equipped with a drum shaped swim bladder acting as a monopole under typical ocean conditions. This configuration allows for what is understood to be omnidirectional projection of tones approximately centered between 40 and 440 Hz and spanning anywhere from 40 to 200 Hz of bandwidth and modulation effects based on observed data provided by researchers. Prior studies on many other fish show correlation in acoustic communication profile with length, size and sexual identity. In the red hind, sexual dimorphism leads to an inherent female identity in all juvenile fish which converts to male according to environmental factors, recommending at least consistent organs across both sexes be assumed even if not in use. Much research has been performed on male fish vocalization in terms of spectral content. Communication in fish is a complex multi-modal process, with acoustic communication being important for many of the species, particularly those in the littoral regions of the worlds' oceans. If identifying characteristics of the red hind vocalization can be isolated based on detection, classification, tracking and localizing methodologies, then these identifying characteristics may indeed lead to passive feature identification that allows for estimation of individual fish mass. Hypotheses based on vector, cyclostationary and classical tonal mechanics are presented for consideration. A battery of test data collection events, applying pre-recorded fish vocalizations to a geolocated undersea sound source were conducted. The results are supplied with the intent of

  17. Estimated communication range of social sounds used by bottlenose dolphins (Tursiops truncatus).

    PubMed

    Quintana-Rizzo, Ester; Mann, David A; Wells, Randall S

    2006-09-01

    Bottlenose dolphins, Tursiops truncatus, exhibit flexible associations in which the compositions of groups change frequently. We investigated the potential distances over which female dolphins and their dependent calves could remain in acoustic contact. We quantified the propagation of sounds in the frequency range of typical dolphin whistles in shallow water areas and channels of Sarasota Bay, Florida. Our results indicated that detection range was noise limited as opposed to being limited by hearing sensitivity. Sounds were attenuated to a greater extent in areas with seagrass than any other habitat. Estimates of active space of whistles showed that in seagrass shallow water areas, low-frequency whistles (7-13 kHz) with a 165 dB source level could be heard by dolphins at 487 m. In shallow areas with a mud bottom, all whistle frequency components of the same whistle could be heard by dolphins travel up to 2 km. In channels, high-frequency whistles (13-19 kHz) could be detectable potentially over a much longer distance (> 20 km). Our findings indicate that the communication range of social sounds likely exceeds the mean separation distances between females and their calves. Ecological pressures might play an important role in determining the separation distances within communication range.

  18. Acoustical considerations for secondary uses of government facilities

    NASA Astrophysics Data System (ADS)

    Evans, Jack B.

    2003-10-01

    Government buildings are by their nature, public and multi-functional. Whether in meetings, presentations, documentation processing, work instructions or dispatch, speech communications are critical. Full-time occupancy facilities may require sleep or rest areas adjacent to active spaces. Rooms designed for some other primary use may be used for public assembly, receptions or meetings. In addition, environmental noise impacts to the building or from the building should be considered, especially where adjacent to hospitals, hotels, apartments or other urban sensitive land uses. Acoustical criteria and design parameters for reverberation, background noise and sound isolation should enhance speech intelligibility and privacy. This presentation looks at unusual spaces and unexpected uses of spaces with regard to room acoustics and noise control. Examples of various spaces will be discussed, including an atrium used for reception and assembly, multi-jurisdictional (911) emergency control center, frequent or long-duration use of emergency generators, renovations of historically significant buildings, and the juxtaposition of acoustically incompatible functions. Brief case histories of acoustical requirements, constraints and design solutions will be presented, including acoustical measurements, plan illustrations and photographs. Acoustical criteria for secondary functional uses of spaces will be proposed.

  19. Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel

    NASA Astrophysics Data System (ADS)

    Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin

    2016-10-01

    An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.

  20. Technical Aspects of Acoustical Engineering for the ISS [International Space Station

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2009-01-01

    It is important to control acoustic levels on manned space flight vehicles and habitats to protect crew-hearing, allow for voice communications, and to ensure a healthy and habitable environment in which to work and live. For the International Space Station (ISS) this is critical because of the long duration crew-stays of approximately 6-months. NASA and the JSC Acoustics Office set acoustic requirements that must be met for hardware to be certified for flight. Modules must meet the NC-50 requirement and other component hardware are given smaller allocations to meet. In order to meet these requirements many aspects of noise generation and control must be considered. This presentation has been developed to give an insight into the various technical activities performed at JSC to ensure that a suitable acoustic environment is provided for the ISS crew. Examples discussed include fan noise, acoustic flight material development, on-orbit acoustic monitoring, and a specific hardware development and acoustical design case, the ISS Crew Quarters.

  1. System Design for Nano-Network Communications

    NASA Astrophysics Data System (ADS)

    ShahMohammadian, Hoda

    The potential applications of nanotechnology in a wide range of areas necessities nano-networking research. Nano-networking is a new type of networking which has emerged by applying nanotechnology to communication theory. Therefore, this dissertation presents a framework for physical layer communications in a nano-network and addresses some of the pressing unsolved challenges in designing a molecular communication system. The contribution of this dissertation is proposing well-justified models for signal propagation, noise sources, optimum receiver design and synchronization in molecular communication channels. The design of any communication system is primarily based on the signal propagation channel and noise models. Using the Brownian motion and advection molecular statistics, separate signal propagation and noise models are presented for diffusion-based and flow-based molecular communication channels. It is shown that the corrupting noise of molecular channels is uncorrelated and non-stationary with a signal dependent magnitude. The next key component of any communication system is the reception and detection process. This dissertation provides a detailed analysis of the effect of the ligand-receptor binding mechanism on the received signal, and develops the first optimal receiver design for molecular communications. The bit error rate performance of the proposed receiver is evaluated and the impact of medium motion on the receiver performance is investigated. Another important feature of any communication system is synchronization. In this dissertation, the first blind synchronization algorithm is presented for the molecular communication channels. The proposed algorithm uses a non-decision directed maximum likelihood criterion for estimating the channel delay. The Cramer-Rao lower bound is also derived and the performance of the proposed synchronization algorithm is evaluated by investigating its mean square error.

  2. Tactile communication.

    DOT National Transportation Integrated Search

    1962-05-01

    Tactile communication presents a relatively unexploited channel of information transmission in the field of aviation. Visual and auditory input channels frequently reach an information saturation point during various flight operations. A cutaneous co...

  3. The acoustic features of human laughter

    NASA Astrophysics Data System (ADS)

    Bachorowski, Jo-Anne; Owren, Michael J.

    2002-05-01

    Remarkably little is known about the acoustic features of laughter, despite laughter's ubiquitous role in human vocal communication. Outcomes are described for 1024 naturally produced laugh bouts recorded from 97 young adults. Acoustic analysis focused on temporal characteristics, production modes, source- and filter-related effects, and indexical cues to laugher sex and individual identity. The results indicate that laughter is a remarkably complex vocal signal, with evident diversity in both production modes and fundamental frequency characteristics. Also of interest was finding a consistent lack of articulation effects in supralaryngeal filtering. Outcomes are compared to previously advanced hypotheses and conjectures about this species-typical vocal signal.

  4. Cicadas impact bird communication in a noisy tropical rainforest

    PubMed Central

    Hall, Robert; Ray, William; Beck, Angela; Zook, James

    2015-01-01

    Many animals communicate through acoustic signaling, and “acoustic space” may be viewed as a limited resource that organisms compete for. If acoustic signals overlap, the information in them is masked, so there should be selection toward strategies that reduce signal overlap. The extent to which animals are able to partition acoustic space in acoustically diverse habitats such as tropical forests is poorly known. Here, we demonstrate that a single cicada species plays a major role in the frequency and timing of acoustic communication in a neotropical wet forest bird community. Using an automated acoustic monitor, we found that cicadas vary the timing of their signals throughout the day and that the frequency range and timing of bird vocalizations closely track these signals. Birds significantly avoid temporal overlap with cicadas by reducing and often shutting down vocalizations at the onset of cicada signals that utilize the same frequency range. When birds do vocalize at the same time as cicadas, the vocalizations primarily occur at nonoverlapping frequencies with cicada signals. Our results greatly improve our understanding of the community dynamics of acoustic signaling and reveal how patterns in biotic noise shape the frequency and timing of bird vocalizations in tropical forests. PMID:26023277

  5. Acoustic tracking of woodhead seabed drifters

    NASA Technical Reports Server (NTRS)

    Mayhue, R. J.; Lovelady, R. W.

    1977-01-01

    An investigation was conducted to determine the feasibility of tracking Woodhead seabed drifters that were instrumented with miniature acoustic transmitters having a range in water in excess of 1.0 n.mi. A trial cruise at the entrance of Delaware Bay, with the R.V. Annandale as the sonar-tracking vessel, verified acoustic communications and positioning of the bottom drifters. A demonstration cruise with the R.V. Annandale was also performed in the New York Bight to attempt to collect information on bottom water movement near the sewage-sluge dump site. Results from the tracking mission in the New York Bight suggested that bottom water currents were negligible near the dump site during the time interval from November 7-12, 1975, and that shipboard sonar tracking of acoustic Woodhead seabed drifters could provide useful Lagragian information on bottom water movement caused by tidal and other nonstorm effects.

  6. An Underlay Communication Channel for 5G Cognitive Mesh Networks: Packet Design, Implementation, Analysis, and Experimental Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarek Haddadin; Stephen Andrew Laraway; Arslan Majid

    This paper proposes and presents the design and implementation of an underlay communication channel (UCC) for 5G cognitive mesh networks. The UCC builds its waveform based on filter bank multicarrier spread spectrum (FB-MCSS) signaling. The use of this novel spread spectrum signaling allows the device-to-device (D2D) user equipments (UEs) to communicate at a level well below noise temperature and hence, minimize taxation on macro-cell/small-cell base stations and their UEs in 5G wireless systems. Moreover, the use of filter banks allows us to avoid those portions of the spectrum that are in use by macro-cell and small-cell users. Hence, both D2D-to-cellularmore » and cellular-to-D2D interference will be very close to none. We propose a specific packet for UCC and develop algorithms for packet detection, timing acquisition and tracking, as well as channel estimation and equalization. We also present the detail of an implementation of the proposed transceiver on a software radio platform and compare our experimental results with those from a theoretical analysis of our packet detection algorithm.« less

  7. Ultrasonic speech translator and communications system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less

  8. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  9. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  10. Phase-Quantized Block Noncoherent Communication

    DTIC Science & Technology

    2013-07-01

    2828 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 7, JULY 2013 Phase-Quantized Block Noncoherent Communication Jaspreet Singh and Upamanyu...in a carrier asynchronous system. Specifically, we consider transmission over the block noncoherent additive white Gaussian noise channel, and...block noncoherent channel. Several results, based on the symmetry inherent in the channel model, are provided to characterize this transition density

  11. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  12. Average capacity optimization in free-space optical communication system over atmospheric turbulence channels with pointing errors.

    PubMed

    Liu, Chao; Yao, Yong; Sun, Yun Xu; Xiao, Jun Jun; Zhao, Xin Hui

    2010-10-01

    A model is proposed to study the average capacity optimization in free-space optical (FSO) channels, accounting for effects of atmospheric turbulence and pointing errors. For a given transmitter laser power, it is shown that both transmitter beam divergence angle and beam waist can be tuned to maximize the average capacity. Meanwhile, their optimum values strongly depend on the jitter and operation wavelength. These results can be helpful for designing FSO communication systems.

  13. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    PubMed

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  14. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  15. How interpersonal communication mediates the relationship of multichannel communication connections to health-enhancing and health-threatening behaviors.

    PubMed

    Seo, Mihye; Matsaganis, Matthew D

    2013-08-01

    This article examines how everyday media use and interpersonal communication for health information could influence health behaviors beyond intervention or campaign contexts. The authors argue that interpersonal communication works as an independent information channel and mediates the relation between media channels and health behaviors. In addition, the authors investigate whether interpersonal communication differently influences the relation between media connections and health behaviors for more and less educated individuals. Using data from the 2008 Annenberg National Health Communication Survey, the authors show that multiple communication channels for health information encourage health-enhancing behaviors but do not have significant relations with health-threatening behaviors. Interpersonal communication is directly linked to health-enhancing behaviors, but it also mediates the influence of individuals' multichannel media environment on health-enhancing behaviors. The mediating role of interpersonal health communication was only significant for less educated people. In addition, among media channels, television was a more important instigator of health-related conversations with family and friends for the less educated group. The theoretical and practical implications of these findings, as well as suggestions for future research directions, are discussed.

  16. Acoustic measurement of bubble size in an inkjet printhead.

    PubMed

    Jeurissen, Roger; van der Bos, Arjan; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; de Jong, Jos; Versluis, Michel; Lohse, Detlef

    2009-11-01

    The volume of a bubble in a piezoinkjet printhead is measured acoustically. The method is based on a numerical model of the investigated system. The piezo not only drives the system but it is also used as a sensor by measuring the current it generates. The numerical model is used to predict this current for a given bubble volume. The inverse problem is to infer the bubble volume from an experimentally obtained piezocurrent. By solving this inverse problem, the size and position of the bubble can thus be measured acoustically. The method is experimentally validated with an inkjet printhead that is augmented with a glass connection channel, through which the bubble was observed optically, while at the same time the piezocurrent was measured. The results from the acoustical measurement method correspond closely to the results from the optical measurement.

  17. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    PubMed

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  18. Convolutional Neural Networks for 1-D Many-Channel Data

    DTIC Science & Technology

    Deep convolutional neural networks (CNNs) represent the state of the art in image recognition. The same properties that led to their success in that... crack detection ( 8,000 data points, 72 channels). Though the models predictive ability is limited to fitting the trend , its partial success suggests that...originally written to classify digits in the MNIST database (28 28 pixels, 1 channel), for use on 1-D acoustic data taken from experiments focused on

  19. Design and implementation of an omni-directional underwater acoustic micro-modem based on a low-power micro-controller unit.

    PubMed

    Won, Tae-Hee; Park, Sung-Joon

    2012-01-01

    For decades, underwater acoustic communication has been restricted to the point-to-point long distance applications such as deep sea probes and offshore oil fields. For this reason, previous acoustic modems were typically characterized by high data rates and long working ranges at the expense of large size and high power consumption. Recently, as the need for underwater wireless sensor networks (UWSNs) has increased, the research and development of compact and low-power consuming communication devices has become the focus. From the consideration that the requisites of acoustic modems for UWSNs are low power consumption, omni-directional beam pattern, low cost and so on, in this paper, we design and implement an omni-directional underwater acoustic micro-modem satisfying these requirements. In order to execute fast digital domain signal processing and support flexible interfaces with other peripherals, an ARM Cortex-M3 is embedded in the micro-modem. Also, for the realization of small and omni-directional properties, a spherical transducer having a resonant frequency of 70 kHz and a diameter of 34 mm is utilized for the implementation. Physical layer frame format and symbol structure for efficient packet-based underwater communication systems are also investigated. The developed acoustic micro-modem is verified analytically and experimentally in indoor and outdoor environments in terms of functionality and performance. Since the modem satisfies the requirements for use in UWSNs, it could be deployed in a wide range of applications requiring underwater acoustic communication.

  20. Acoustic Quality Levels of Mosques in Batu Pahat

    NASA Astrophysics Data System (ADS)

    Azizah Adnan, Nor; Nafida Raja Shahminan, Raja; Khair Ibrahim, Fawazul; Tami, Hannifah; Yusuff, M. Rizal M.; Murniwaty Samsudin, Emedya; Ismail, Isham

    2018-04-01

    Every Friday, Muslims has been required to perform a special prayer known as the Friday prayers which involve the delivery of a brief lecture (Khutbah). Speech intelligibility in oral communications presented by the preacher affected all the congregation and determined the level of acoustic quality in the interior of the mosque. Therefore, this study intended to assess the level of acoustic quality of three public mosques in Batu Pahat. Good acoustic quality is essential in contributing towards appreciation in prayers and increasing khusyu’ during the worship, which is closely related to the speech intelligibility corresponding to the actual function of the mosque according to Islam. Acoustic parameters measured includes noise criteria (NC), reverberation time (RT) and speech transmission index (STI), and was performed using the sound level meter and sound measurement instruments. This test is carried out through the physical observation with the consideration of space and volume design as a factor affecting acoustic parameters. Results from all 3 mosques as the showed that the acoustic quality level inside these buildings are slightly poor which is at below 0.45 coefficients based on the standard. Among the factors that influencing the low acoustical quality are location, building materials, installation of sound absorption material and the number of occupants inside the mosque. As conclusion, the acoustic quality level of a mosque is highly depends on physical factors of the mosque such as the architectural design and space volume besides other factors as been identified by this study.

  1. Acoustic-assisted fluidic hourglasses

    NASA Astrophysics Data System (ADS)

    Guimaraes, Tamara; Marin, Alvaro; Kaehler, Christian J.; Barnkob, Rune

    2017-11-01

    Microfluidic devices are prone to get clogged when suspensions are forced through narrow passages. Such clogging events occur when particles form arches that block the channel. In this work we study the clogging probabilities in a microfluidic hourglass when subject to ultrasound. We measure the clogging probabilities for certain ranges of sound amplitudes and particle-to-neck size ratios in which clogging events are more likely to occur. The ultrasound induces acoustic radiation forces on the suspended particles, leading to particle migration perpendicular to the channel flow direction. The transverse particle rearrangement can significantly reduce the clogging probability by decreasing the chances of arching in the narrowing of the passage. We show that by choosing proper sound actuation conditions, the method is reliable, non-intrusive, preventive, and allows to increase the life of fluidic devices (microfluidic or larger) with particles in a wide range of sizes.

  2. Development and utilization of complementary communication channels for treatment decision making and survivorship issues among cancer patients: The CIS Research Consortium Experience.

    PubMed

    Fleisher, Linda; Wen, Kuang Yi; Miller, Suzanne M; Diefenbach, Michael; Stanton, Annette L; Ropka, Mary; Morra, Marion; Raich, Peter C

    2015-11-01

    Cancer patients and survivors are assuming active roles in decision-making and digital patient support tools are widely used to facilitate patient engagement. As part of Cancer Information Service Research Consortium's randomized controlled trials focused on the efficacy of eHealth interventions to promote informed treatment decision-making for newly diagnosed prostate and breast cancer patients, and post-treatment breast cancer, we conducted a rigorous process evaluation to examine the actual use of and perceived benefits of two complementary communication channels -- print and eHealth interventions. The three Virtual Cancer Information Service (V-CIS) interventions were developed through a rigorous developmental process, guided by self-regulatory theory, informed decision-making frameworks, and health communications best practices. Control arm participants received NCI print materials; experimental arm participants received the additional V-CIS patient support tool. Actual usage data from the web-based V-CIS was also obtained and reported. Print materials were highly used by all groups. About 60% of the experimental group reported using the V-CIS. Those who did use the V-CIS rated it highly on improvements in knowledge, patient-provider communication and decision-making. The findings show that how patients actually use eHealth interventions either singularly or within the context of other communication channels is complex. Integrating rigorous best practices and theoretical foundations is essential and multiple communication approaches should be considered to support patient preferences.

  3. A Fusion Model of Seismic and Hydro-Acoustic Propagation for Treaty Monitoring

    NASA Astrophysics Data System (ADS)

    Arora, Nimar; Prior, Mark

    2014-05-01

    We present an extension to NET-VISA (Network Processing Vertically Integrated Seismic Analysis), which is a probabilistic generative model of the propagation of seismic waves and their detection on a global scale, to incorporate hydro-acoustic data from the IMS (International Monitoring System) network. The new model includes the coupling of seismic waves into the ocean's SOFAR channel, as well as the propagation of hydro-acoustic waves from underwater explosions. The generative model is described in terms of multiple possible hypotheses -- seismic-to-hydro-acoustic, under-water explosion, other noise sources such as whales singing or icebergs breaking up -- that could lead to signal detections. We decompose each hypothesis into conditional probability distributions that are carefully analyzed and calibrated. These distributions include ones for detection probabilities, blockage in the SOFAR channel (including diffraction, refraction, and reflection around obstacles), energy attenuation, and other features of the resulting waveforms. We present a study of the various features that are extracted from the hydro-acoustic waveforms, and their correlations with each other as well the source of the energy. Additionally, an inference algorithm is presented that concurrently infers the seismic and under-water events, and associates all arrivals (aka triggers), both from seismic and hydro-acoustic stations, to the appropriate event, and labels the path taken by the wave. Finally, our results demonstrate that this fusion of seismic and hydro-acoustic data leads to very good performance. A majority of the under-water events that IDC (International Data Center) analysts built in 2010 are correctly located, and the arrivals that correspond to seismic-to-hydroacoustic coupling, the T phases, are mostly correctly identified. There is no loss in the accuracy of seismic events, in fact, there is a slight overall improvement.

  4. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    PubMed

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.

  5. The possible effects of anthropogenic acoustic pollution on marine mammals' reproduction: an emerging threat to animal extinction.

    PubMed

    Nabi, Ghulam; McLaughlin, Richard William; Hao, Yujiang; Wang, Kexiong; Zeng, Xianyuan; Khan, Suliman; Wang, Ding

    2018-05-26

    For about 119 species of cetaceans and other aquatic animals, sound is the key source of learning about the environment, navigation, communication, foraging, and avoiding predators. However, in the recent era, the introduction of large quantities of anthropogenic noise into the ocean has significantly altered the ocean's acoustic environment. The anthropogenic noises travel very long distances, blanketing enormous areas. This can affect cetaceans, either by direct killing or compromising hearing, navigation, communication, predation, as well as normal behaviors. It has been suggested that acoustic pollution could possibly negatively affect cetacean reproduction, which is harmful for endangered and threatened species. However, it is still unknown how acoustic pollution can suppress cetacean reproduction. This is the first comprehensive review article, which focuses on the possible consequences affecting the reproduction of marine mammals resulting from acoustic pollution.

  6. Acoustic signals of baby black caimans.

    PubMed

    Vergne, Amélie L; Aubin, Thierry; Taylor, Peter; Mathevon, Nicolas

    2011-12-01

    In spite of the importance of crocodilian vocalizations for the understanding of the evolution of sound communication in Archosauria and due to the small number of experimental investigations, information concerning the vocal world of crocodilians is limited. By studying black caimans Melanosuchus niger in their natural habitat, here we supply the experimental evidence that juvenile crocodilians can use a graded sound system in order to elicit adapted behavioral responses from their mother and siblings. By analyzing the acoustic structure of calls emitted in two different situations ('undisturbed context', during which spontaneous calls of juvenile caimans were recorded without perturbing the group, and a simulated 'predator attack', during which calls were recorded while shaking juveniles) and by testing their biological relevance through playback experiments, we reveal the existence of two functionally different types of juvenile calls that produce a different response from the mother and other siblings. Young black caimans can thus modulate the structure of their vocalizations along an acoustic continuum as a function of the emission context. Playback experiments show that both mother and juveniles discriminate between these 'distress' and 'contact' calls. Acoustic communication is thus an important component mediating relationships within family groups in caimans as it is in birds, their archosaurian relatives. Although probably limited, the vocal repertoire of young crocodilians is capable of transmitting the information necessary for allowing siblings and mother to modulate their behavior. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Land Mobile Satellite Service (LMSS) channel simulator: An end-to-end hardware simulation and study of the LMSS communications links

    NASA Technical Reports Server (NTRS)

    Salmasi, A. B. (Editor); Springett, J. C.; Sumida, J. T.; Richter, P. H.

    1984-01-01

    The design and implementation of the Land Mobile Satellite Service (LMSS) channel simulator as a facility for an end to end hardware simulation of the LMSS communications links, primarily with the mobile terminal is described. A number of studies are reported which show the applications of the channel simulator as a facility for validation and assessment of the LMSS design requirements and capabilities by performing quantitative measurements and qualitative audio evaluations for various link design parameters and channel impairments under simulated LMSS operating conditions. As a first application, the LMSS channel simulator was used in the evaluation of a system based on the voice processing and modulation (e.g., NBFM with 30 kHz of channel spacing and a 2 kHz rms frequency deviation for average talkers) selected for the Bell System's Advanced Mobile Phone Service (AMPS). The various details of the hardware design, qualitative audio evaluation techniques, signal to channel impairment measurement techniques, the justifications for criteria of different parameter selection in regards to the voice processing and modulation methods, and the results of a number of parametric studies are further described.

  8. Digital, One Way, Acoustic Communication in the Ocean

    DTIC Science & Technology

    1990-09-01

    compared with miliseconds) and that the chan- nel can be assumed to be very slowly time-varyingl. A different way to show the 3 rate of variation of...outputs of all the mark channels and all the space channels of the branch receivers and to compare them. Choosing the mark and the space at each branch...2 g -(T)A +A2"-fg()[ gT) g(ig (4.35) In the presense of specular multipath, the performance of the estimator is not only governed by the additve

  9. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.

    PubMed

    Collins, David J; Ma, Zhichao; Han, Jongyoon; Ai, Ye

    2016-12-20

    Despite increasing demand in the manipulation of nanoscale objects for next generation biological and industrial processes, there is a lack of methods for reliable separation, concentration and purification of nanoscale objects. Acoustic methods have proven their utility in contactless manipulation of microscale objects mainly relying on the acoustic radiation effect, though the influence of acoustic streaming has typically prevented manipulation at smaller length scales. In this work, however, we explicitly take advantage of the strong acoustic streaming in the vicinity of a highly focused, high frequency surface acoustic wave (SAW) beam emanating from a series of focused 6 μm substrate wavelength interdigital transducers patterned on a piezoelectric lithium niobate substrate and actuated with a 633 MHz sinusoidal signal. This streaming field serves to focus fluid streamlines such that incoming particles interact with the acoustic field similarly regardless of their initial starting positions, and results in particle displacements that would not be possible with a travelling acoustic wave force alone. This streaming-induced manipulation of nanoscale particles is maximized with the formation of micro-vortices that extend the width of the microfluidic channel even with the imposition of a lateral flow, occurring when the streaming-induced flow velocities are an order of magnitude larger than the lateral one. We make use of this acoustic streaming to demonstrate the continuous and differential focusing of 100 nm, 300 nm and 500 nm particles.

  10. Characterizing Nanoscale Transient Communication.

    PubMed

    Chen, Yifan; Anwar, Putri Santi; Huang, Limin; Asvial, Muhamad

    2016-04-01

    We consider the novel paradigm of nanoscale transient communication (NTC), where certain components of the small-scale communication link are physically transient. As such, the transmitter and the receiver may change their properties over a prescribed lifespan due to their time-varying structures. The NTC systems may find important applications in the biomedical, environmental, and military fields, where system degradability allows for benign integration into life and environment. In this paper, we analyze the NTC systems from the channel-modeling and capacity-analysis perspectives and focus on the stochastically meaningful slow transience scenario, where the coherence time of degeneration Td is much longer than the coding delay Tc. We first develop novel and parsimonious models to characterize the NTC channels, where three types of physical layers are considered: electromagnetism-based terahertz (THz) communication, diffusion-based molecular communication (DMC), and nanobots-assisted touchable communication (TouchCom). We then revisit the classical performance measure of ϵ-outage channel capacity and take a fresh look at its formulations in the NTC context. Next, we present the notion of capacity degeneration profile (CDP), which describes the reduction of channel capacity with respect to the degeneration time. Finally, we provide numerical examples to demonstrate the features of CDP. To the best of our knowledge, the current work represents a first attempt to systematically evaluate the quality of nanoscale communication systems deteriorating with time.

  11. Controlled rotation and translation of spherical particles or living cells by surface acoustic waves.

    PubMed

    Bernard, Ianis; Doinikov, Alexander A; Marmottant, Philippe; Rabaud, David; Poulain, Cédric; Thibault, Pierre

    2017-07-11

    We show experimental evidence of the acoustically-assisted micromanipulation of small objects like solid particles or blood cells, combining rotation and translation, using high frequency surface acoustic waves. This was obtained from the leakage in a microfluidic channel of two standing waves arranged perpendicularly in a LiNbO 3 piezoelectric substrate working at 36.3 MHz. By controlling the phase lag between the emitters, we could, in addition to translation, generate a swirling motion of the emitting surface which, in turn, led to the rapid rotation of spherical polystyrene Janus beads suspended in the channel and of human red and white blood cells up to several rounds per second. We show that these revolution velocities are compatible with a torque caused by the acoustic streaming that develops at the particles surface, like that first described by [F. Busse et al., J. Acoust. Soc. Am., 1981, 69(6), 1634-1638]. This device, based on standard interdigitated transducers (IDTs) adjusted to emit at equal frequencies, opens a way to a large range of applications since it allows the simultaneous control of the translation and rotation of hard objects, as well as the investigation of the response of cells to shear stress.

  12. Surface acoustic wave actuated cell sorting (SAWACS).

    PubMed

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  13. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein

    PubMed Central

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-01-01

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins. DOI: http://dx.doi.org/10.7554/eLife.11897.001 PMID:26714107

  14. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.

    PubMed

    Tillein, J; Hartmann, R; Kral, A

    2015-04-01

    The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue

  15. Advances in Integrating Autonomy with Acoustic Communications for Intelligent Networks of Marine Robots

    DTIC Science & Technology

    2013-02-01

    Sonar AUV #Environmental Sampling Environmental AUV +name : string = OEX Ocean Explorer +name : string = Hammerhead Iver2 +name : string = Unicorn ...executable» Google Earth Bluefin 21 AUV ( Unicorn ) MOOS Computer GPS «serial» Bluefin 21 AUV (Macrura) MOOS Computer «acoustic» Micro-Modem «wired...Computer Bluefin 21 AUV ( Unicorn ) MOOS Computer NURC AUV (OEX) MOOS Computer Topside MOOS Computer «wifi» 5.0GHz WiLan «acoustic» Edgetech GPS

  16. Correlations among within-channel and between-channel auditory gap-detection thresholds in normal listeners.

    PubMed

    Phillips, Dennis P; Smith, Jennifer C

    2004-01-01

    We obtained data on within-channel and between-channel auditory temporal gap-detection acuity in the normal population. Ninety-five normal listeners were tested for gap-detection thresholds, for conditions in which the gap was bounded by spectrally identical, and by spectrally different, acoustic markers. Separate thresholds were obtained with the use of an adaptive tracking method, for gaps delimited by narrowband noise bursts centred on 1.0 kHz, noise bursts centred on 4.0 kHz, and for gaps bounded by a leading marker of 4.0 kHz noise and a trailing marker of 1.0 kHz noise. Gap thresholds were lowest for silent periods bounded by identical markers--'within-channel' stimuli. Gap thresholds were significantly longer for the between-channel stimulus--silent periods bounded by unidentical markers (p < 0.0001). Thresholds for the two within-channel tasks were highly correlated (R = 0.76). Thresholds for the between-channel stimulus were weakly correlated with thresholds for the within-channel stimuli (1.0 kHz, R = 0.39; and 4.0 kHz, R = 0.46). The relatively poor predictability of between-channel thresholds from the within-channel thresholds is new evidence on the separability of the mechanisms that mediate performance of the two tasks. The data confirm that the acuity difference for the tasks, which has previously been demonstrated in only small numbers of highly trained listeners, extends to a population of untrained listeners. The acuity of the between-channel mechanism may be relevant to the formation of voice-onset time-category boundaries in speech perception.

  17. Millimeter Wave Systems for Airports and Short-Range Aviation Communications: A Survey of the Current Channel Models at mmWave Frequencies

    NASA Technical Reports Server (NTRS)

    Khatun, Mahfuza; Mehrpouyan, Hani; Matolak, David; Guvenc, Ismail

    2017-01-01

    Millimeter-wave (mmWave) communications will play a key role in enhancing the throughput, reliability, and security of next generation wireless networks. These advancements are achieved through the large bandwidth available in this band and through the use of highly directional links that will be used to overcome the large pathloss at these frequencies. Although the terrestrial application of mmWave systems is advancing at a rapid pace, the use of mmWave communication systems in aviation systems or airports is still in its infancy. This can be attributed to the challenges related to radio technology and lack of development, and characterization of mmWave wireless channels for the aviation field and the airport environment. Consequently, one of our goals is to develop methodologies that support mmWave air to ground links, and various links at airports, by applying new localization schemes that allow for application of highly directional links that can be deployed over longer distances despite the high path loss at mmWave frequencies. However, a very thorough understanding of the mmWave channel models are needed to enable such new applications. To this end, in this paper, we present a survey of the current channel models in the mmWave band. The 3-dimensional statistical channel model is also reviewed and its parameters and typical characteristics for this model are identified and computed through simulation for the Boise metropolitan area.

  18. Long-distance quantum communication with atomic ensembles and linear optics.

    PubMed

    Duan, L M; Lukin, M D; Cirac, J I; Zoller, P

    2001-11-22

    Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.

  19. Resonant acoustic propagation and negative density in liquid foams.

    PubMed

    Pierre, Juliette; Dollet, Benjamin; Leroy, Valentin

    2014-04-11

    We measured the dispersion relation for acoustic longitudinal waves in liquid foams, over a broad frequency range (60-600 kHz). Strong dispersion was found, with two nondispersive behaviors, separated by a negative density regime. A new model, based on the coupled displacements of films, liquid channels, and gas in the foam, rationalizes all the experimental findings.

  20. Resonant Acoustic Propagation and Negative Density in Liquid Foams

    NASA Astrophysics Data System (ADS)

    Pierre, Juliette; Dollet, Benjamin; Leroy, Valentin

    2014-04-01

    We measured the dispersion relation for acoustic longitudinal waves in liquid foams, over a broad frequency range (60-600 kHz). Strong dispersion was found, with two nondispersive behaviors, separated by a negative density regime. A new model, based on the coupled displacements of films, liquid channels, and gas in the foam, rationalizes all the experimental findings.