Science.gov

Sample records for acoustic control system

  1. System for controlled acoustic rotation of objects

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1983-01-01

    A system is described for use with acoustically levitated objects, which enables close control of rotation of the object. One system includes transducers that propagate acoustic waves along the three dimensions (X, Y, Z) of a chamber of rectangular cross section. Each transducers generates one wave which is resonant to a corresponding chamber dimension to acoustically levitate an object, and additional higher frequency resonant wavelengths for controlling rotation of the object. The three chamber dimensions and the corresponding three levitation modes (resonant wavelengths) are all different, to avoid degeneracy, or interference, of waves with one another, that could have an effect on object rotation. Only the higher frequencies, with pairs of them having the same wavelength, are utilized to control rotation, so that rotation is controlled independently of levitation and about any arbitrarily chosen axis.

  2. A closed-loop automatic control system for high-intensity acoustic test systems.

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1973-01-01

    Sound at sound pressure levels in the range from 130 to 160 dB is used in the investigation. Random noise is passed through a series of parallel filters, generally 1/3-octave wide. A basic automatic system is investigated because of preadjustment inaccuracies and high costs found in a study of a typical manually controlled acoustic testing system. The unit described has been successfully used in automatic acoustic tests in connection with the spacecraft tests for the Mariner 1971 program.

  3. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  4. A closed-loop automatic control system for high-intensity acoustic test systems.

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1973-01-01

    Description of an automatic control system for high-intensity acoustic tests in reverberation chambers. Working in 14 one-third-octave bands from 50 to 1000 Hz, the desired sound pressure levels are set into the memory in the control system before the test. The control system then increases the sound pressure level in the reverberation chamber gradually in each of the one-third-octave bands until the level set in the memory is reached. This level is then maintained for the duration of the test. Additional features of the system are overtest protection, the capability of 'holding' the spectrum at any time, and the presence of a total test timer.

  5. Aeroelastic structural acoustic control.

    PubMed

    Clark, R L; Frampton, K D

    1999-02-01

    Static, constant-gain, output-feedback control compensators were designed to increase the transmission loss across a panel subjected to mean flow on one surface and a stationary, acoustic half-space on the opposite surface. The multi-input, multi-output control system was based upon the use of an array of colocated transducer pairs. The performance of the static-gain, output-feedback controller was compared to that of the full state-feedback controller using the same control actuator arrays, and was found to yield comparable levels of performance for practical limitations on control effort. Additionally, the resulting static compensators proved to be dissipative in nature, and thus the design varied little as a function of the aeroelastic coupling induced by the fluid-structure interaction under subsonic flow conditions. Several parametric studies were performed, comparing the effects of control-effort penalty as well as the number of transducer pairs used in the control system.

  6. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  7. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  8. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  9. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  10. Acoustic sniper localization system

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  11. Acoustic imaging system

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Jr.

    1977-01-01

    Tool detects noise sources by scanning sound "scene" and displaying relative location of noise-producing elements in area. System consists of ellipsoidal acoustic mirror and microphone and a display device.

  12. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  13. NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Conference Proceedings is a compilation of over 30 technical papers presented which report on the advances in rotorcraft technical knowledge resulting from NASA, Army, and industry research programs over the last 5 to 10 years. Topics addressed in this volume include: materials and structures; propulsion and drive systems; flight dynamics and control; and acoustics.

  14. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  15. A PDE-based methodology for modeling, parameter estimation and feedback control in structural and structural acoustic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.; Smith, Ralph C.; Wang, Yun

    1994-01-01

    A problem of continued interest concerns the control of vibrations in a flexible structure and the related problem of reducing structure-borne noise in structural acoustic systems. In both cases, piezoceramic patches bonded to the structures have been successfully used as control actuators. Through the application of a controlling voltage, the patches can be used to reduce structural vibrations which in turn lead to methods for reducing structure-borne noise. A PDE-based methodology for modeling, estimating physical parameters, and implementing a feedback control scheme for problems of this type is discussed. While the illustrating example is a circular plate, the methodology is sufficiently general so as to be applicable in a variety of structural and structural acoustic systems.

  16. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  17. Active control of acoustic field-of-view in a biosonar system.

    PubMed

    Yovel, Yossi; Falk, Ben; Moss, Cynthia F; Ulanovsky, Nachum

    2011-09-01

    Active-sensing systems abound in nature, but little is known about systematic strategies that are used by these systems to scan the environment. Here, we addressed this question by studying echolocating bats, animals that have the ability to point their biosonar beam to a confined region of space. We trained Egyptian fruit bats to land on a target, under conditions of varying levels of environmental complexity, and measured their echolocation and flight behavior. The bats modulated the intensity of their biosonar emissions, and the spatial region they sampled, in a task-dependant manner. We report here that Egyptian fruit bats selectively change the emission intensity and the angle between the beam axes of sequentially emitted clicks, according to the distance to the target, and depending on the level of environmental complexity. In so doing, they effectively adjusted the spatial sector sampled by a pair of clicks-the "field-of-view." We suggest that the exact point within the beam that is directed towards an object (e.g., the beam's peak, maximal slope, etc.) is influenced by three competing task demands: detection, localization, and angular scanning-where the third factor is modulated by field-of-view. Our results suggest that lingual echolocation (based on tongue clicks) is in fact much more sophisticated than previously believed. They also reveal a new parameter under active control in animal sonar-the angle between consecutive beams. Our findings suggest that acoustic scanning of space by mammals is highly flexible and modulated much more selectively than previously recognized.

  18. Guided acoustic wave inspection system

    SciTech Connect

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  19. Acoustic boundary control for quieter aircraft

    NASA Astrophysics Data System (ADS)

    Hirsch, Scott Michael

    1999-08-01

    There is a strong interest in reducing the volume of low- frequency noise in aircraft cabins. Active noise control (ANC), in which loudspeakers placed in the cabin are used to generate a sound field which will cancel these disturbances, is now a commercially available solution. A second control approach is active structural acoustic control (ASAC), which uses structural control forces to reduce sound transmitted into the cabin through the fuselage. Some of the goals of current research are to reduce the cost, weight, and bulk of these control systems, along with improving global control performance. This thesis introduces an acoustic boundary control (ABC) concept for active noise control in aircraft. This control strategy uses distributed actuator arrays along enclosure boundaries to reduce noise transmitted into the enclosure through the boundaries and to reduce global noise levels due to other disturbances. The motivation is to provide global pressure attenuation with small, lightweight control actuators. Analytical studies are conducted of acoustic boundary in two-dimensional and three-dimensional rectangular enclosures and in a finite cylindrical enclosure. The simulations provide insight into the control mechanisms of ABC and demonstrate potential advantages of ABC over traditional ANC and ASAC implementations. A key component of acoustic boundary control is the ``smart'' trim panel, a structurally modified aircraft trim panel for use as an acoustic control source. A prototype smart trim panel is built and tested. The smart trim panel is used as the control source in a real-time active noise control system in a laboratory- scale fuselage model. It is shown that the smart trim panel works as well as traditional loudspeakers for this application. A control signal scheduling approach is proposed which allows for a reduction in the computational burden of the real-time controller used in active noise control applications. This approach uses off-line system

  20. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  1. Truck acoustic data analyzer system

    SciTech Connect

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  2. MTCI acoustic agglomeration particulate control

    SciTech Connect

    Chandran, R.R.; Mansour, M.N.; Scaroni, A.W.; Koopmann, G.H.; Loth, J.L.

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  3. Digital control of high-intensity acoustic testing

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1975-01-01

    To eliminate previous system instabilities and control high-intensity acoustic tests, a digital control vibration test system is modified by a software change. Three systems for the control of acoustic testing are compared: a hybrid digital/analog system, a digital vibration system, and the same digital vibration system modified by a software change to allow acoustic testing. It is shown that the hybrid system and the modified vibration system exhibit almost equal performance, although the hybrid system performs testing twice as fast. The development of a specialized acoustic test control system is justified since it costs far less than the general-purpose vibration control system. However, the latter is much easier to set up for a test, which is important in preventing overtesting of valuable spacecraft components.

  4. Acoustic tests on a new motor generator system for the Minuteman launch control centers at Alpha 01 and Sierra 00, Malmstrom AFB, Montana

    NASA Astrophysics Data System (ADS)

    Fairman, Terry M.

    1991-05-01

    Field tests of the acoustic performance of a new motor generator system (MGS) were performed at Minuteman Launch Control Centers (LCC) Alpha 01 and Sierra 00, Malmstrom AFB, MT. This same MGS unit was accepted for use after the Hill Engineering Test Facilities (HETF) acoustic performance studies conducted in 1988. Rivet Mile from the Ogden ALC began installation of the new MGS at Malmstrom in the spring of 1990. Performance tests were requested by 00-ALC/MMGRMM, and SAC, to compare with the HETF data and document the LCC acoustic environment with the new MGS operating in a field setting. This report presents our findings.

  5. A state feedback electro-acoustic transducer for active control of acoustic impedance.

    PubMed

    Samejima, Toshiya

    2003-03-01

    In this paper, a new control system in which the acoustic impedance of an electro-acoustic transducer diaphragm can be actively varied by modifying design parameters is presented and its effectiveness is theoretically investigated. The proposed control system is based on a state-space description of the control system derived from an electrical equivalent circuit of an electro-acoustic transducer to which a differentiating circuit is connected, and is designed using modem control theory. The optimal quadratic regulator is used in the control system design, with its quadratic performance index formulated for producing desired acoustic impedance. Computer simulations indicate that the acoustic impedance of the diaphragm can be significantly varied over a wide frequency range that includes the range below the resonance frequency of the electro-acoustic transducer. A computer model of the proposed control system is used to illustrate its application to semi-active noise control in a duct. It is demonstrated that the proposed control system provides substantial reductions in the noise radiating from the outlet of the duct, both in the stiffness control range and in the mass control range.

  6. Evaluation of the sensitivity of electro-acoustic measurements for process monitoring and control of an atmospheric pressure plasma jet system

    NASA Astrophysics Data System (ADS)

    Law, V. J.; O'Neill, F. T.; Dowling, D. P.

    2011-06-01

    The development of non-invasive process diagnostic techniques for the control of atmospheric plasmas is a critical issue for the wider adoption of this technology. This paper evaluates the use of a frequency-domain deconvolution of an electro-acoustic emission as a means to monitor and control the plasma formed using an atmospheric pressure plasma jet (APPJ) system. The air plasma system investigated was formed using a PlasmaTreat™ OpenAir applicator. Change was observed in the electro-acoustic signal with changes in substrate type (ceramic, steel, polymer). APPJ nozzle to substrate distance and substrate feature size were monitored. The decoding of the electro-acoustic emission yields three subdatasets that are described by three separate emission mechanisms. The three emissions are associated with the power supply fundamental drive frequency and its harmonics, the APPJ nozzle longitudinal mode acoustic emission and its odd overtones, and the acoustic surface reflection that is produced by the impedance mismatch between the discharge and the surface. Incorporating this knowledge into a LabVIEW program facilitated the continuous deconvolution of the electro-acoustic data. This enabled the use of specific frequency band test limits to control the APPJ treatment process which is sensitive to both plasma processing conditions and substrate type and features.

  7. Non-chemical biofouling control in heat exchangers and seawater piping systems using acoustic pulses generated by an electrical discharge.

    PubMed

    Brizzolara, Robert A; Nordham, David J; Walch, Marianne; Lennen, Rebecca M; Simmons, Ron; Burnett, Evan; Mazzola, Michael S

    2003-02-01

    Acoustic pulses generated by an electrical discharge (pulsed acoustics) were investigated as a means for biofouling control in two test formats, viz. a 5/8" outside diameter titanium tube and a mockup heat exchanger. The pulsed acoustic device, when operated at 17 kV, demonstrated 95% inhibition of microfouling over a 20 ft length of titanium tube over a 4-week period, comparable to chlorination in combination with a high-velocity flush. The pulsed acoustic device inhibited microfouling over a downstream distance of 15 ft, therefore, a single pulsed acoustic device is theoretically capable of protecting at least 30 ft of tube from microfouling (15 ft on either side of the device). A correlation between acoustic intensity in the frequency range 0.01-1 MHz and the level of biofouling inhibition was observed. The threshold acoustic intensity for microfouling inhibition was determined for this frequency range. It was also observed that the orientation of the device is critical to obtaining microfouling inhibition.

  8. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  9. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  10. Active control of harmonic sound transmission into an acoustic enclosure using both structural and acoustic actuators

    PubMed

    Kim; Brennan

    2000-05-01

    This paper describes an analytical and experimental investigation into the active control of harmonic sound transmission in a structural-acoustic coupled system. A rectangular enclosure is considered that has five acoustically rigid walls and a flexible plate on the remaining side through which a harmonic sound wave is transmitted into the enclosure. The control system is designed to globally reduce the sound field inside the enclosure, and the roles of structural and acoustic actuators are of particular interest. Three control configurations, classified by the type of actuators, are compared and discussed. They are: (i) use of a single point-force actuator, (ii) use of a single acoustic piston source, and (iii) simultaneous use of both a point-force actuator and an acoustic piston source. It is shown both analytically and experimentally that the point-force actuator is effective in controlling plate-dominated modes while the acoustic source is effective in controlling cavity-dominated modes. Since the transmitted sound field is governed by both plate- and cavity-dominated modes, the hybrid use of both types of actuators is shown to be a desirable configuration for the active control of sound transmission into a structural-acoustic coupled system.

  11. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice D.

    2014-01-01

    The liftoff phase induces some of the highest acoustic loading over a broad frequency for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle but there are challenges. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests; i.e. static firings conducted in the 1960's, to generate 1/3 octave band Sound Pressure Level (SPL) spectra. These data sets are used to predict the liftoff acoustic environments for launch vehicles. To facilitate the accuracy and quality of acoustic loading, predictions at liftoff for future launch vehicles such as the Space Launch System (SLS), non-stationary flight data from the Ares I-X were processed in PC-Signal in two forms which included a simulated hold-down phase and the entire launch phase. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semiempirical methods. This consisted, initially, of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares IX flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  12. Generation and control of acoustic cavitation structure.

    PubMed

    Bai, Lixin; Xu, Weilin; Deng, Jingjun; Li, Chao; Xu, Delong; Gao, Yandong

    2014-09-01

    The generation and control of acoustic cavitation structure are a prerequisite for application of cavitation in the field of ultrasonic sonochemistry and ultrasonic cleaning. The generation and control of several typical acoustic cavitation structures (conical bubble structure, smoker, acoustic Lichtenberg figure, tailing bubble structure, jet-induced bubble structures) in a 20-50 kHz ultrasonic field are investigated. Cavitation bubbles tend to move along the direction of pressure drop in the region in front of radiating surface, which are the premise and the foundation of some strong acoustic cavitation structure formation. The nuclei source of above-mentioned acoustic cavitation structures is analyzed. The relationship and mutual transformation of these acoustic cavitation structures are discussed.

  13. Acoustic counter-sniper system

    NASA Astrophysics Data System (ADS)

    Duckworth, Gregory L.; Gilbert, Douglas C.; Barger, James E.

    1997-02-01

    BBN has developed, tested, and fielded pre-production versions of a versatile acoustics-based counter-sniper system. This system was developed by BBN for the DARPA Tactical Technology Office to provide a low cost and accurate sniper detection and localization system. The system uses observations of the shock wave from supersonic bullets to estimate the bullet trajectory, Mach number, and caliber. If muzzle blast observations are also available from unsilenced weapons, the exact sniper location along the trajectory is also estimated. A newly developed and very accurate model of the bullet ballistics and acoustic radiation is used which includes bullet deceleration. This allows the use of very flexible acoustic sensor types and placements, since the system can model the bullet's flight, and hence the acoustic observations, over a wide area very accurately. System sensor configurations can be as simple as two small four element tetrahedral microphone arrays on either side of the area to be protected, or six omnidirectional microphones spread over the area to be monitored. Increased performance can be obtained by expanding the sensor field in size or density, and the system software is easily reconfigured to accommodate this at deployment time. Sensor nodes can be added using wireless network telemetry or hardwired cables to the command node processing and display computer. The system has been field tested in three government sponsored tests in both rural and simulated urban environments at the Camp Pendleton MOUT facility. Performance was characterized during these tests for various shot geometries and bullet speeds and calibers.

  14. A film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system

    NASA Astrophysics Data System (ADS)

    Zhang, Mengying; Zhao, Zhan; Du, Lidong; Fang, Zhen

    2017-04-01

    This paper presented a high-performance pressure sensor based on a film bulk acoustic resonator (FBAR). The support film of the FBAR chip was made of silicon nitride and the part under the resonator area was etched to enhance the sensitivity and improve the linearity of the pressure sensor. A micro resistor temperature sensor and a micro resistor heater were integrated in the chip to monitor and control the operating temperature. The sensor chip was fabricated, and packaged in an oscillator circuit for differential pressure detection. When the detected pressure ranged from  ‑100 hPa to 600 hPa, the sensitivity of the improved FBAR pressure sensor was  ‑0.967 kHz hPa‑1, namely  ‑0.69 ppm hPa‑1, which was 19% higher than that of existing sensors with a complete support film. The nonlinearity of the improved sensor was less than  ±0.35%, while that of the existing sensor was  ±5%. To eliminate measurement errors from humidity, the temperature control system integrated in the sensor chip controlled the temperature of the resonator up to 75 °C, with accuracy of  ±0.015 °C and power of 20 mW.

  15. Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Shen, Huijie; Zhang, Linke; Su, Yongsheng; Yu, Dianlong

    2016-07-01

    Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range.

  16. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  17. Feedforward control of sound transmission using an active acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Cheer, Jordan; Daley, Stephen; McCormick, Cameron

    2017-02-01

    Metamaterials have received significant interest in recent years due to their potential ability to exhibit behaviour not found in naturally occurring materials. This includes the generation of band gaps, which are frequency regions with high levels of wave attenuation. In the context of acoustics, these band gaps can be tuned to occur at low frequencies where the acoustic wavelength is large compared to the material, and where the performance of traditional passive noise control treatments is limited. Therefore, such acoustic metamaterials have been shown to offer a significant performance advantage compared to traditional passive control treatments, however, due to their resonant behaviour, the band gaps tend to occur over a relatively narrow frequency range. A similar long wavelength performance advantage can be achieved using active noise control, but the systems in this case do not rely on resonant behaviour. This paper demonstrates how the performance of an acoustic metamaterial, consisting of an array of Helmholtz resonators, can be significantly enhanced by the integration of an active control mechanism that is facilitated by embedding loudspeakers into the resonators. Crucially, it is then also shown how the active acoustic metamaterial significantly outperforms an equivalent traditional active noise control system. In both cases a broadband feedforward control strategy is employed to minimise the transmitted pressure in a one-dimensional acoustic control problem and a new method of weighting the control effort over a targeted frequency range is described.

  18. Acoustics: Motion controlled by sound

    NASA Astrophysics Data System (ADS)

    Neild, Adrian

    2016-09-01

    A simple technique has been developed that produces holograms made of sound waves. These acoustic landscapes are used to manipulate microscale objects, and offer great potential in medical imaging and selective heating. See Letter p.518

  19. Acoustic emission sensor system using a chirped fiber-Bragg-grating Fabry-Perot interferometer and smart feedback control.

    PubMed

    Zhang, Qi; Zhu, Yupeng; Luo, Xiangyu; Liu, Guigen; Han, Ming

    2017-02-01

    We demonstrate a fiber-optic acoustic emission (AE) sensor system that is capable of performing AE detection, even when the sensor is experiencing large quasi-static strains. The sensor is a Fabry-Perot interferometer formed by cascaded chirped fiber-Bragg gratings (CFBGs). The reflection spectrum of the sensor features a number of narrow spectral notches equally spaced within the reflection bandwidth of the CFBG. A semiconductor laser whose wavelength can be fast tuned through current injection is used to lock the laser line to the center of a slope of a spectral notch. When the notch is knocked out of the tuning range of the laser, a neighboring notch moves into the range. Through a smart feedback control scheme, the laser is unlocked from the current spectral lock and relocked to the desired point of the new notch. The fast speed of the unlocking/relocking process (<1  ms) ensures that the AE signal is monitored without significant disruption.

  20. Acoustic Levitation System

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Wang, T. G.; Croonquist, A.; Lee, M. C.

    1985-01-01

    Dense materials, such as steel balls, continuously levitated with energy provided by efficient high-powered siren in combination with shaped reflector. Reflector system, consisting of curved top reflector and flat lower reflector, eliminates instability in spatial positioning of sample.

  1. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  2. Controlling the acoustic streaming by pulsed ultrasounds.

    PubMed

    Hoyos, Mauricio; Castro, Angélica

    2013-01-01

    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves.

  3. Digital control of high-intensity acoustic testing. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1975-01-01

    Three systems for the control of acoustic testing are compared: a hybrid digital/analog system, a digital vibration system, and the same digital vibration system modified by a software change. The hybrid system was constructed to control the 1/3-octaves from 50 to 1000 Hz. The vibration system was equipped with programs for sine and random vibration tests, shock analysis and synthesis, and signal analysis. For the modified vibration system, the random-vibration control program of the unmodified unit was changed so that acoustic tests could be performed. The performance of the three systems is compared by conducting probability-density and time-history analyses of the proposed test spectrum for the Mariner Jupiter/Saturn 1977 program. The results of the analyses show that the hybrid and modified vibration systems perform almost equally, but the modified vibration system is easier to use and produces better test documentation.

  4. Acoustical pipe lagging systems design and performance

    SciTech Connect

    Stevens, R.D.; Chapnik, B.V.; Howe, B.

    1998-10-30

    HGC Engineering was retained by the PRC International at the American Gas Association, to undertake a study of acoustical pipe lagging systems. The study included gathering input from PRCI member companies regarding their concerns and their established material specifications for lagging systems; conducting a comprehensive acoustical measurement program; using the measured results in conjunction with computer modeling to identify optimal lagging configurations; and developing material specifications for several standardized lagging systems for use by PRCI member companies. For all the lagging configurations, the measurement and modeling results showed amplification of sound at frequencies less than about 315 Hz. This result is a well known phenomenon, widely discussed the published acoustical literature, which means that pipe lagging is only effective for controlling higher frequencies noise (above about 500 Hz). Fortunately, in many gas piping applications, it is this higher frequency range that is of concern. The measurement and modeling results further showed that the high frequency performance of a lagging system is dependent primarily on having sufficient jacket mass and insulation thickness. The performance can be improved using an intermediate mass loaded barrier layer.

  5. Acoustic emission feedback control for control of boiling in a microwave oven

    SciTech Connect

    White, T.L.

    1991-02-26

    This patent describes an acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level.

  6. Acoustic emission feedback control for control of boiling in a microwave oven

    SciTech Connect

    White, T.L.

    1990-05-02

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level. 2 figs.

  7. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  8. Acoustic oscillatory pressure control for ramjet

    SciTech Connect

    Brown, R.S.; Dunlap, R.

    1988-08-02

    A method for controlling the acoustic oscillatory pressures generated by gas flow at the combustor inlet to a ramjet engine, the inlet including a sudden geometry expansion is described characterized by; restricting the inlet at the sudden expansion geometry such that the gas flow separates upstream and has a vena contracta downstream of the restricted inlet.

  9. Acoustic tests on a new motor generator system for the minuteman launch control centers in Hill engineering test facilities 1 and 2, Hill AFB, Utah

    NASA Astrophysics Data System (ADS)

    Fairman, Terry M.

    1989-04-01

    Post critical design review acoustic tests were performed in Hill Engineering Test Facilities 1 and 2 (HETF) on a proposed new motor generator system for the Minuteman Launch Control Centers (LCC). A performance noise criteria equivalent to a preferred noise criterion (PNC-50) curve was established as the standard by which to judge the effectiveness of the new motor generator. Measurements were obtained at both the commander's console and the deputy commander's console. Results indicated the noise from the motor generator as configured in HETF 1 (the small LCC) exceeded the PNC-50 criteria primarily in the 63 hertz (Hz) octave band by 10 decibels (dB) when operated in both the ac and dc modes. The motor generator as configured in HETF 2 (the large LCC) exceeded the PNC-50 criteria by 3 dB in the 125 Hz octave band only at the deputy commander's console when operated in the ac mode. Acoustic intensity measurements were obtained to isolate specific noise sources and determine the transmission loss of the floor panels. Vibration measurements were also made on and near the motor generator to determine paths of structure-borne vibration energy. Specific recommendations for improving the acoustic environment in the LCC's are presented.

  10. Zebra mussel control using acoustic energy

    SciTech Connect

    Tiller, G.W.; Gaucher, T.A.; Menezes, J.K.; Dolat, S.W. )

    1992-01-01

    A practical and economical device or method that reduces zebra mussel colonization without detrimental side effects is highly desirable. An ideal method is one that could be installed near, on, or in existing raw water intakes and conduits. It must have a known effect that is limited to a defined area, should have maximum effects on a targeted species, and preferably have a low life cycle cost than the current alternative methods of control and maintenance. Underwater sound could be such a desirable solution, if found to be an effective control measure for zebra mussels. Although sound most often applies specifically to acoustic energy that is audible to humans, 20 Hertz (Hz) to 20 kiloHertz (kHz), in this report we will use the terms sound and acoustic to include acoustic energy between 100 Hz and 100 MegaHertz (MHz). This research on zebra mussel biofouling is designed to effect the early developmental stages in the life cycle of Dreissena polymorpha (Pallas). Vulnerable stages in the development of D. polymorpha that might yield to site-specific acoustic deterrence measures include the free-swimming larval veliger stage, the postveliger pre-attachment demersal stage, and the immediate post-attachment stage. The proposed applications include surface treatment to prevent, reduce or eliminate colonization on underwater structures, and the stream treatment to reduce or eliminate (destroy) mussel larvae entrained in a moving volume of water.

  11. Control strategies and mechanisms for active control of sound transmission into a vibro-acoustic enclosure

    NASA Astrophysics Data System (ADS)

    Jin, Guoyong; Feng, Na; Yang, Tiejun

    2011-06-01

    An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead zirconate titanate piezoelectric (PZT) actuator instead of point force actuator. Using the modal acoustic transfer impedance-mobility matrices, the excitation and interaction in the coupled sound transmission system can be described with clear physical significance. With the control system designed to globally reduce the sound field, different control system configurations were considered, including the structural actuator on the incident plate, actuator on the receiving plate, acoustic actuator on the cavity, and their combinations. The effectiveness and performance of the control strategy corresponding to each system configuration were compared and discussed. The role and control mechanism of each type of actuator were of particular interest. It was shown that the incident plate actuator is effective in controlling the cavity-dominated modes and the structural modes dominated by the incident plate and receiving plate. Two main control mechanisms are involved in this control configuration, i.e., modal suppressing and modal rearrangement. For control system configuration with only acoustic actuator in the enclosure, the mechanism involved in this arrangement is purely modal suppression. Desirable placements of structural actuators in terms of total potential energy reduction were also discussed.

  12. Experimental Robust Control of Structural Acoustic Radiation

    NASA Technical Reports Server (NTRS)

    Cox, David E.; Gibbs, Gary P.; Clark, Robert L.; Vipperman, Jeffrey S.

    1998-01-01

    This work addresses the design and application of robust controllers for structural acoustic control. Both simulation and experimental results are presented. H(infinity) and mu-synthesis design methods were used to design feedback controllers which minimize power radiated from a panel while avoiding instability due to unmodeled dynamics. Specifically, high order structural modes which couple strongly to the actuator-sensor path were poorly modeled. This model error was analytically bounded with an uncertainty model, which allowed controllers to be designed without artificial limits on control effort. It is found that robust control methods provide the control designer with physically meaningful parameters with which to tune control designs and can be very useful in determining limits of performance. Experimental results also showed, however, poor robustness properties for control designs with ad-hoc uncertainty models. The importance of quantifying and bounding model errors is discussed.

  13. Acoustically-driven microfluidic systems

    SciTech Connect

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  14. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice

    2014-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  15. Acoustic formation control for nonholonomic mobile robots

    NASA Astrophysics Data System (ADS)

    Hegedus, Michael James

    Two leader-follower formation controllers are proposed for a group of nonholonomic mobile robots. Each controller is installed on the following robot and requires local sensory stimuli to move the follower into its formation's desired position. As a result, communication between robots is not necessary to maintain a desired formation. The first proposed controller utilizes range and bearing data from an acoustic sensor to move the follower into position. It assumes an acoustic source is attached to the leader and a stationary landmark. The second proposed controller is a landmark-less formation controller that assume two sources are attached to the leader, and the follower is equipped with an acoustic array and inertial sensor. Results show each controller exponentially reduces the tracking error to a steady-state level and can maintain stability, even in regions where the formation kinematics becomes singular. For two-dimensional passive arrays, a general method is described that ranks and selects multiple microphone configurations within the array that are likely to produce accurate position estimates. This method segments a two-dimensional array into various combinations and configurations of microphone pairs and flattens these configurations into one-dimension for comparison. Each configuration is ranked based on the microphones' spatial information (known a-priori) and incoming bearing estimates. These rankings select different microphone pair configurations, whose position estimates are combined in an adaptive weighted-average algorithm. Simulations and experimental results show that this method selects microphone configurations that provide the least position error. Through a fusion algorithm, which combines individual microphone pair data, an array's position accuracy can improve.

  16. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  17. Copper vapor laser acoustic thermometry system

    DOEpatents

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  18. Development of the seafloor acoustic ranging system

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Fujimoto, H.

    2007-12-01

    We have developed a seafloor acoustic ranging system, which simulates an operation with the DONET (Development of Dense Ocean-floor Network System for Earthquake and Tsunami) cable, to monitor seafloor crustal movement. The seafloor acoustic ranging system was based on the precise acoustic transponder (PXP). We have a few problems for the improvement of the resolution. One thing is the variation of sound speed. Another is the bending of ray path. A PXP measures horizontal distances on the seafloor from the round trip travel times of acoustic pulses between pairs of PXP. The PXP was equipped with the pressure, temperature gauge and tilt-meter. The variation of sound speed in seawater has a direct effect on the measurement. Therefore we collect the data of temperature and pressure. But we don't collect the data of salinity because of less influence than temperature and pressure. Accordingly a ray path of acoustic wave tends to be bent upward in the deep sea due to the Snell's law. As the acoustic transducer of each PXPs held about 3.0m above the seafloor, the baseline is too long for altitude from the seafloor. In this year we carried out the experiment for the seafloor acoustic ranging system. We deployed two PXPs at about 750m spacing on Kumano-nada. The water depth is about 2050m. We collected the 660 data in this experiment during one day. The round trip travel time show the variation with peak-to-peak amplitude of about 0.03msec. It was confirmed to explain the majority in this change by the change in sound speed according to the temperature and pressure. This results shows the resolution of acoustic measurements is +/-2mm. Acknowledgement This study is supported by 'DONET' of Ministry of Education, Culture, Sports, Science and Technology.

  19. Feasibility of using piezoelectric actuators to control launch vehicle acoustics and structural vibrations

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Cudney, Harley H.

    2000-06-01

    Future launch vehicle payload fairings will be manufactured form advanced lightweight composite materials. The loss of distributed mass causes a significant increase in the internal acoustic environment, causing a severe threat to the payload. Using piezoelectric actuators to control the fairing vibration and the internal acoustic environment has been proposed. To help determine the acoustic control authority of piezoelectric actuators mounted on a rocket fairing, the internal acoustic response created by the actuators needs to be determined. In this work, the internal acoustic response of a closed simply-supported (SS) cylinder actuated by piezoelectric (PZT) actuators is determined using a n impedance model for the actuator and boundary element analysis. The experimentally validated model is used to extrapolate results for a SS cylinder that emulates a Minotaur payload fairing. The internal cylinder acoustic levels are investigated for PZT actuation between 35 and 400 Hz. Significant reductions in the structural response due to increased damping do not equate to similar reductions in the acoustic SPLs for the cylinder. The sound levels at the acoustic resonant frequencies are essentially unaffected by the significant increase in structural damping while the acoustic level sat the structural resonant frequencies are mildly reduced. The interior acoustic response of the cylinder is dominated by the acoustic modes and therefore significant reductions in the overall interior acoustic levels will not be achieved if only the structural resonances are controlled. As the actuation frequency is reduced, the number of actuators required to generate acoustic levels commensurate to that found in the fairing increases to impractical values. Below approximately 100 Hz, the current demands reach levels that are extremely difficult to achieve with a practical system. The results of this work imply that PZT actuators do not have the authority to control the payload fairing

  20. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.

    2000-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibit enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  1. Piezoceramic Actuator Placement for Acoustic Control of Panels

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.; Turner, Travis L. (Technical Monitor)

    2001-01-01

    Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibits enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.

  2. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.; ,

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  3. Vibro-acoustic control with a distributed sensor network.

    PubMed

    Frampton, Kenneth D

    2006-04-01

    The purpose of this work is to demonstrate the ability of a distributed control system, based on a smart sensor network, to reduce acoustic radiation from a vibrating structure. The platform from which control is effected consists of a network of smart sensors, each referred to as a node. Each node possesses its own computational capability, sensor, actuator and the ability to communicate with other nodes via a wired or wireless network. The primary focus of this work is to employ existing group management middleware concepts to enable vibro-acoustic control with such a distributed network. Group management middleware is distributed software that provides for the establishment and maintenance of groups of distributed nodes and that provides for the network communication among such groups. The control objective is met by designing distributed feedback compensators that take advantage of node groups in order to effect their control. The node groups are formed based on physical proximity. The global control objective is to minimize the radiated sound power from a rectangular plate. Results of this investigation demonstrate that such a distributed control system can achieve attenuations comparable to those achieved by a centralized controller.

  4. Passive separation control by acoustic resonance

    NASA Astrophysics Data System (ADS)

    Yang, S. L.; Spedding, G. R.

    2013-10-01

    At transitional Reynolds numbers, the laminar boundary layer separation and possible reattachment on a smooth airfoil, or wing section, are notoriously sensitive to small variations in geometry or in the fluid environment. We report here on the results of a pilot study that adds to this list of sensitivities. The presence of small holes in the suction surface of an Eppler 387 wing has a transformative effect upon the aerodynamics, by changing the mean chordwise separation line location. These changes are not simply a consequence of the presence of the small cavities, which by themselves have no effect. Acoustic resonance in the backing cavities generates tones that interact with intrinsic flow instabilities. Possible consequences for passive flow control strategies are discussed together with potential problems in measurements through pressure taps in such flow regimes.

  5. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  6. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  7. Development of net cage acoustic alarm system

    NASA Astrophysics Data System (ADS)

    Hong, Shih-Wei; Wei, Ruey-Chang

    2001-05-01

    In recent years, the fishery production has been drastically decreased in Taiwan, mainly due to overfishing and coast pollution; therefore, fishermen and corporations are encouraged by government to invest in ocean net cage aquaculture. However, the high-price fishes in the net cage are often coveted, so incidences of fish stealing and net cage breaking were found occasionally, which cause great economical loss. Security guards or a visual monitoring system has limited effect, especially in the night when these intrusions occur. This study is based on acoustic measure to build a net cage alarm system, which includes the sonobuoy and monitor station on land. The sonobuoy is a passive sonar that collects the sounds near the net cage and transmits the suspected signal to the monitor station. The signals are analyzed by the control program on the personal computer in the monitor station, and the alarms at different stages could be activated by the sound levels and durations of the analyzed data. To insure long hours of surveillance, a solar panel is applied to charge the battery, and a photodetector is used to activate the system.

  8. 24. LAUNCH CONTROL CAPSULE. ENTRANCE TO ACOUSTICAL ENCLOSURE. SHOCK ISOLATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. LAUNCH CONTROL CAPSULE. ENTRANCE TO ACOUSTICAL ENCLOSURE. SHOCK ISOLATOR AT FAR LEFT. VIEW TO NORTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  9. A synthetic aperture acoustic prototype system

    NASA Astrophysics Data System (ADS)

    Luke, Robert H.; Bishop, Steven S.; Chan, Aaron M.; Gugino, Peter M.; Donzelli, Thomas P.; Soumekh, Mehrdad

    2015-05-01

    A novel quasi-monostatic system operating in a side-scan synthetic aperture acoustic (SAA) imaging mode is presented. This research project's objectives are to explore the military utility of outdoor continuous sound imaging of roadside foliage and target detection. The acoustic imaging method has several military relevant advantages such as being immune to RF jamming, superior spatial resolution as compared to 0.8-2.4 GHz ground penetrating radar (GPR), capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to GPR technologies. The prototype system's broadband 2-17 kHz LFM chirp transceiver is mounted on a manned all-terrain vehicle. Targets are positioned within the acoustic main beam at slant ranges of two to seven meters and on surfaces such as dirt, grass, gravel and weathered asphalt and with an intervening metallic chain link fence. Acoustic image reconstructions and signature plots result in means for literal interpretation and quantifiable analyses.

  10. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean

    2014-01-01

    Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.

  11. Active control of acoustic pressure fields using smart material technologies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, R. C.

    1993-01-01

    An overview describing the use of piezoceramic patches in reducing noise in a structural acoustics setting is presented. The passive and active contributions due to patches which are bonded to an Euler-Bernoulli beam or thin shell are briefly discussed and the results are incorporated into a 2-D structural acoustics model. In this model, an exterior noise source causes structural vibrations which in turn lead to interior noise as a result of nonlinear fluid/structure coupling mechanism. Interior sound pressure levels are reduced via patches bonded to the flexible boundary (a beam in this case) which generate pure bending moments when an out-of-phase voltage is applied. Well-posedness results for the infinite dimensional system are discussed and a Galerkin scheme for approximating the system dynamics is outlined. Control is implemented by using linear quadratic regulator (LQR) optimal control theory to calculate gains for the linearized system and then feeding these gains back into the nonlinear system of interest. The effectiveness of this strategy for this problem is illustrated in an example.

  12. Acoustic Aspects of Active-Twist Rotor Control

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Wilbur, Matthew L.

    2002-01-01

    The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.

  13. Duct wall impedance control as an advanced concept for acoustic impression

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Tester, B. J.

    1975-01-01

    Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.

  14. Multivariable feedback active structural acoustic control using adaptive piezoelectric sensoriactuators.

    PubMed

    Vipperman, J S; Clark, R L

    1999-01-01

    An experimental implementation of a multivariable feedback active structural acoustic control system is demonstrated on a piezostructure plate with pinned boundary conditions. Four adaptive piezoelectric sensoriactuators provide an array of truly colocated actuator/sensor pairs to be used as control transducers. Radiation filters are developed based on the self- and mutual-radiation efficiencies of the structure and are included into the performance cost of an H2 control law which minimizes total radiated sound power. In the cost function, control effort is balanced with reductions in radiated sound power. A similarity transform which produces generalized velocity states that are required as inputs to the radiation filters is presented. Up to 15 dB of attenuation in radiated sound power was observed at the resonant frequencies of the piezostructure.

  15. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  16. Controls of pass-bands in asymmetric acoustic transmission

    NASA Astrophysics Data System (ADS)

    Sun, Hong-Xiang; Zhang, Shu-Yi; Yuan, Shou-Qi

    2016-12-01

    The controls of the pass-bands in an asymmetric acoustic transmission system are investigated numerically and experimentally, and the system consists of a periodical rectangular grating and two uniform brass plates in water. We reveal that the pass-band of the asymmetric acoustic transmission is closely related to the grating period, but is affected slightly by the brass plate thickness. Moreover, the transmittance can be improved by adjusting the grating period and other structural parameters simultaneously. The control method of the system has the advantages of wider frequency range and simple operation, which has great potential applications in ultrasonic devices. Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the Major Program of the National Natural Science Foundation of China (Grant No. 51239005), the National Natural Science Foundation of China (Grant Nos. 11174142 and 11404147), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140519), the China Postdoctoral Science Foundation (Grant No. 2015M571672), the Training Project of Young Backbone Teachers of Jiangsu University, China, and the Research Fund for Advanced Talents of Jiangsu University, China (Grant No. 13JDG106).

  17. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  18. System for Multiplexing Acoustic Emission (AE) Instrumentation

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)

    2003-01-01

    An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.

  19. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  20. Closed-Loop Acoustic Control of Reverberant Room for Satellite Environmental Testing

    NASA Astrophysics Data System (ADS)

    Janssens, Karl; Bianciardi, Fabio; Sabbatini, Danilo; Debille, Jan; Carrella, Alex

    2012-07-01

    The full satellite acoustic test is an important milestone in a satellite launch survivability verification campaign. This test is required to verify the satellite’s mechanical design against the high-level acoustic loads induced by the launch vehicle during the atmospheric flight. During the test, the satellite is subjected to a broadband diffuse acoustic field, reproducing the pressure levels observed during launch. The excitation is in most cases provided by a combination of horns for the low frequencies and noise generators for the higher frequencies. Acoustic control tests are commonly performed in reverberant rooms, controlling the sound pressure levels in third octave bands over the specified target spectrum. This paper discusses an automatic feedback control system for acoustic control of large reverberation rooms for satellite environmental testing. The acoustic control system consists of parallel third octave PI (Proportional Integral) feedback controllers that take the reverberation characteristics of the room into consideration. The drive output of the control system is shaped at every control step based on the comparison of the average third octave noise spectrum, measured from a number of microphones in the test room, with the target spectrum. Cross-over filters split the output drive into band- limited signals to feed each of the horns. The control system is realized in several steps. In the first phase, a dynamic process model is developed, including the non-linear characteristics of the horns and the reverberant properties of the room. The model is identified from dynamic experiments using system identification techniques. In the next phase, an adequate control strategy is designed which is capable of reaching the target spectrum in the required time period without overshoots. This control strategy is obtained from model-in-the-loop (MIL) simulations, evaluating the performance of various potential strategies. Finally, the proposed strategy is

  1. Speaker verification system using acoustic data and non-acoustic data

    DOEpatents

    Gable, Todd J.; Ng, Lawrence C.; Holzrichter, John F.; Burnett, Greg C.

    2006-03-21

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  2. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  3. Acoustic and Thermal Testing of an Integrated Multilayer Insulation and Broad Area Cooling Shield System

    NASA Technical Reports Server (NTRS)

    Wood, Jessica J.; Foster, Lee W.

    2013-01-01

    A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.

  4. 30. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. OPERATORS' CHAIR AND COMMUNICATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. OPERATORS' CHAIR AND COMMUNICATIONS CONSOLE IN FOREGROUND. ELECTRONIC EQUIPMENT RACK AT LEFT; LAUNCH CONTROL CONSOLE WITH CAPTAIN JAMES L. KING, JR. IN CENTER. LIEUTENANT KEVIN R. MCCLUNEY IN BACKGROUND. VIEW TO SOUTHEAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  5. 27. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. COMMUNICATIONS CONSOLE AT LEFT; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. COMMUNICATIONS CONSOLE AT LEFT; LAUNCH CONTROL CONSOLE AT RIGHT. PADLOCKED PANEL AT TOP CENTER CONTAINS MISSILE LAUNCH KEYS. SHOCK ISOLATOR AT FAR LEFT. VIEW TO EAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  6. 26. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW MEMBER LIEUTENANT KEVIN R. MCCLUNEY AT COMMUNICATIONS CONSOLE. LAUNCH CONTROL CONSOLE IN FOREGROUND. VIEW TO NORTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  7. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  8. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  9. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  10. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  11. Materials for Adaptive Structural Acoustic Controls

    DTIC Science & Technology

    1994-01-31

    Zirconate Titanate Stannate Films. J. Appl. Phys. 75, 1399 (1994). 52. Sheen, J., R. Guo, A. S. Bhalla, and L. E. Cross. Measurements of Dielectric...use of acoustic emission and concurrent current pulse measurement to separate domain switching and micro-cracking which can occur in the poling...motion is described in Appendix 13. New measurements of nonlinearity in PZT and PLZT compositions are used to support the theoretical conclusions. Full

  12. Possibilities of acoustic thermometry for controlling targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Nemchenko, O. Yu.; Less, Yu. A.; Kazanskii, A. S.; Mansfel'd, A. D.

    2015-07-01

    Model acoustic thermometry experiments were conducted during heating of an aqueous liposome suspension. Heating was done to achieve the liposome phase transition temperature. At the moment of the phase transition, the thermal acoustic signal achieved a maximum and decreased, despite continued heating. During subsequent cooling of the suspension, when lipids again passed through the phase transition point, the thermal acoustic signal again increased, despite a reduction in temperature. This effect is related to an increase in ultrasound absorption by the liposome suspension at the moment of the lipid phase transition. The result shows that acoustic thermography can be used to control targeted delivery of drugs mixed in thermally sensitive liposomes, the integrity of which is violated during heating to the phase transition temperature.

  13. Digital control of high-intensity acoustic testing

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1975-01-01

    A high intensity acoustic test system is reported that consists of a reverberation room measuring 18 feet wide by 21 feet long by 26 feet high, with an internal volume of 10,900 cubic feet. The room is rectangular in shape. Acoustic energy is supplied through two 50-Hz cutoff exponential horns about 12 feet long. Each of the two horns has two transducers rated at 4000 acoustic watts each. A gaseous nitrogen supply is used to supply the energy. The equalized electrical signal is corrected by a circuit designed to compensate for the transducer nonlinearity, then fed into one channel of a phase linear power amplifier, then into the transducer. The amplifiers have been modified to increase their reliability. The acoustic energy in the room is monitored by six B and K 1/2-inch condenser microphones. The electrical signal from each microphone is fed into a six channel real time averager to give a spatial average of the signals.

  14. 28. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW MEMBERS (FRONT TO BACK) LIEUTENANT KEVIN R. MCCLUNEY AND CAPTAIN JAMES L. KING, JR. SHOCK ISOLATOR AND ELECTRONIC EQUIPMENT RACK AT FAR LEFT. VIEW TO SOUTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  15. Direct-field acoustic testing of a flight system : logistics, challenges, and results.

    SciTech Connect

    Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit; Skousen, Troy J.

    2010-10-01

    Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, the test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.

  16. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1982-01-01

    Very little information is available concerning acoustic velocity meter (AVM) operation, performance, and limitations. This report provides a better understanding about the application of AVM instrumentation to streamflow measurment. Operational U.S. Geological Survey systems have proven that AVM equipment is accurate and dependable. AVM equipment has no practical upper limit of measureable velocity if sonic transducers are securely placed and adequately protected, and will measure velocitites as low as 0.1 meter per second which is normally less than the threshold level for mechanical or head-loss meters. In some situations the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Smaller, less-expensive, more conveniently operable microprocessor equipment is now available which should increase use of AVM systems in streamflow applications. (USGS)

  17. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    PubMed

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy.

  18. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOEpatents

    Moore, Thomas L.; Fisher, Karl A.

    2005-08-09

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  19. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  20. Active modal control simulation of vibro-acoustic response of a fluid-loaded plate

    NASA Astrophysics Data System (ADS)

    Li, Sheng

    2011-11-01

    Active modal control simulation of vibro-acoustic response of a fluid-loaded plate is presented. The active modal control of the vibro-acoustic response is implemented using piezoelectric actuators/sensors. The active modal damping is added to the coupled system via negative velocity feedback. The feedback gain between the piezoelectric actuators/sensors for the modal control is obtained using the in-vacuo modal matrix and the incompressible fluid-loaded modal matrix. The modal control performance of structural vibration and acoustic radiation of a baffled plate is numerically studied. It is shown that the proposed method increases the modal damping ratio and achieves reduction in the mean square velocity and the sound power for given modes of the fluid-loaded plate.

  1. Modeling of Structural-Acoustic Interaction Using Coupled FE/BE Method and Control of Interior Acoustic Pressure Using Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shi, Yacheng

    1997-01-01

    A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.

  2. Controlling cell-cell interactions using surface acoustic waves.

    PubMed

    Guo, Feng; Li, Peng; French, Jarrod B; Mao, Zhangming; Zhao, Hong; Li, Sixing; Nama, Nitesh; Fick, James R; Benkovic, Stephen J; Huang, Tony Jun

    2015-01-06

    The interactions between pairs of cells and within multicellular assemblies are critical to many biological processes such as intercellular communication, tissue and organ formation, immunological reactions, and cancer metastasis. The ability to precisely control the position of cells relative to one another and within larger cellular assemblies will enable the investigation and characterization of phenomena not currently accessible by conventional in vitro methods. We present a versatile surface acoustic wave technique that is capable of controlling the intercellular distance and spatial arrangement of cells with micrometer level resolution. This technique is, to our knowledge, among the first of its kind to marry high precision and high throughput into a single extremely versatile and wholly biocompatible technology. We demonstrated the capabilities of the system to precisely control intercellular distance, assemble cells with defined geometries, maintain cellular assemblies in suspension, and translate these suspended assemblies to adherent states, all in a contactless, biocompatible manner. As an example of the power of this system, this technology was used to quantitatively investigate the gap junctional intercellular communication in several homotypic and heterotypic populations by visualizing the transfer of fluorescent dye between cells.

  3. Active structural acoustic control using the remote sensor method

    NASA Astrophysics Data System (ADS)

    Cheer, Jordan; Daley, Steve

    2016-09-01

    Active structural acoustic control (ASAC) is an effective method of reducing the sound radiation from vibrating structures. In order to implement ASAC systems using only structural actuators and sensors, it is necessary to employ a model of the sound radiation from the structure. Such models have been presented in the literature for simple structures, such as baffled rectangular plates, and methods of determining the radiation modes of more complex practical structures using experimental data have also been explored. A similar problem arises in the context of active noise control, where cancellation of a disturbance is required at positions in space where it is not possible to locate a physical error microphone. In this case the signals at the cancellation points can be estimated from the outputs of remotely located measurement sensors using the “remote microphone method”. This remote microphone method is extended here to the ASAC problem, in which the pressures at a number of microphone locations must be estimated from measurements on the structure of the radiating system. The control and estimation strategies are described and the performance is assessed for a typical structural radiation problem.

  4. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  5. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, Douglas S.

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  6. Extreme low frequency acoustic measurement system

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor)

    2013-01-01

    The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.

  7. Extreme Low Frequency Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor)

    2017-01-01

    The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.

  8. A review of underwater acoustic systems and methods for locating objects lost at sea

    NASA Technical Reports Server (NTRS)

    Lovelady, R. W.; Ferguson, R. L.

    1983-01-01

    Information related to the location of objects lost at sea is presented. Acoustic devices attached to an object prior to being transported is recommended as a homing beacon. Minimum requirements and some environmental constraints are defined. Methods and procedures for search and recovery are also discussed. Both an interim system and a more advanced system are outlined. Controlled acoustic emission to enhance security is the theme followed.

  9. Computer-controlled noise adaption for acoustical test facilities

    NASA Astrophysics Data System (ADS)

    Wedig, W. V.; Ams, A.

    1990-09-01

    For acoustical noise tests of elastic structures, statistically representative signals generated from white noise by means of spectrum shapers and band pass filters are needed. Subsequently, these signals are amplified and transformed into physical test noise by acoustical sirens. A mathematical model of the entire system based on measurements of frequency transfer functions in order to predict an optimal amplitude modulation of the spectrum shaper is presented. The prediction is performed by means of a nonlinear optimization procedure which iterates the tuning parameters of the shaper with respect to the stored frequency data of the entire system.

  10. Fuel Line Based Acoustic Flame-Out Detection System

    NASA Technical Reports Server (NTRS)

    Puster, Richard L. (Inventor); Franke, John M. (Inventor)

    1997-01-01

    An acoustic flame-out detection system that renders a large high pressure combustor safe in the event of a flame-out and possible explosive reignition. A dynamic pressure transducer is placed in the fuel and detects the stabilizing fuel pressure oscillations, caused by the combustion process. An electric circuit converts the signal from the combustion vortices, and transmitted to the fuel flow to a series of pulses. A missing pulse detector counts the pulses and continuously resets itself. If three consecutive pulses are missing, the circuit closes the fuel valve. With fuel denied the combustor is shut down or restarted under controlled conditions.

  11. 25. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW MEMBERS (FRONT TO BACK) CAPTAIN JAMES L. KING, JR. AT LAUNCH CONTROL CONSOLE AND LIEUTENANT KEVIN R. MCCLUNEY AT COMMUNICATIONS CONSOLE. RADIO TRANSMITTER AND RECEIVER RACKS AT FAR RIGHT; ELECTRONIC EQUIPMENT RACKS AT FAR LEFT. VIEW TO NORTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  12. Control of Acoustic Cavitation with Application to Lithotripsy.

    DTIC Science & Technology

    2007-11-02

    cavitation contributes to kidney stone comminution and tissue damage. An electrical spark at the near focus of an underwater ellipsoidal reflector was the...Control of acoustic cavitation (sound-induced bubble activity) is the subject of this dissertation. Application is to clinical lithotripsy where

  13. YO-3A acoustics research aircraft systems manual

    NASA Technical Reports Server (NTRS)

    Cross, J. L.

    1984-01-01

    The flight testing techniques, equipment, and procedures employed during air-to-air acoustic testing of helicopters using the NASA YO-3A Acoustic Research Aircraft are discussed. The research aircraft instrumentation system is described as well as hardware installation on the test aircraft and techniques used during the tests. Emphasis is placed on formation flying, position locations, test matrices, and test procedures.

  14. On the control of propagating acoustic waves in sonic crystals: analytical, numerical and optimization techniques

    NASA Astrophysics Data System (ADS)

    Garcia, D. Vincent Romero

    The control of the acoustical properties of the sonic crystals (SC) needs the study of both the distribution of the scatterers in the structure and the intrinsic acoustical properties of the scatterers. In this work an exhaustive analysis of the distribution of the scatterers as well as the improvement of the acoustical properties of the SC made of scatterers with absorbent and/or resonant properties is presented. Both procedures, working together or independently, provide real possibilities to control the propagation of acoustic waves through SC. From the theoretical point of view, the wave propagation through periodic and quasiperiodic structures has been analysed by means of the multiple scattering theory, the plane wave expansion and the finite elements method. A novel extension of the plane wave expansion allowing the complex relation dispersion for SC is presented in this work. This technique complements the provided information using the classical methods and it allows us to analyse the evanescent behaviour of the modes inside of the band gaps as well as the evanescent behaviour of localized modes around the point defects in SC. The necessity of accurate measurements of the acoustical properties of the SC has motivated the development of a novel three-dimensional acquisition system that synchronises the motion of the receiver and acquisition of the temporal signals. A good agreement between the theoretical and experimental data is shown in this work. The joint work between the optimized structures of scatterers and the intrinsic properties of the scatterers themselves is applied to generate devices that present wide ranges of attenuated frequencies. These systems are presented as an alternative to the classic acoustic barrier where the propagation of waves through SC can be controlled. The results help to correctly understand the behaviour of SC for the localization of sound and for the design of both wave guides and acoustic filters.

  15. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1983-01-01

    The acoustic velocity meter (AVM), also referred to as an ultrasonic flowmeter, has been an operational tool for the measurement of streamflow since 1965. Very little information is available concerning AVM operation, performance, and limitations. The purpose of this report is to consolidate information in such a manner as to provide a better understanding about the application of this instrumentation to streamflow measurement. AVM instrumentation is highly accurate and nonmechanical. Most commercial AVM systems that measure streamflow use the time-of-travel method to determine a velocity between two points. The systems operate on the principle that point-to-point upstream travel-time of sound is longer than the downstream travel-time, and this difference can be monitored and measured accurately by electronics. AVM equipment has no practical upper limit of measurable velocity if sonic transducers are securely placed and adequately protected. AVM systems used in streamflow measurement generally operate with a resolution of ?0.01 meter per second but this is dependent on system frequency, path length, and signal attenuation. In some applications the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Presently used minicomputer systems, although expensive to purchase and maintain, perform well. Increased use of AVM systems probably will be realized as smaller, less expensive, and more conveniently operable microprocessor-based systems become readily available. Available AVM equipment should be capable of flow measurement in a wide variety of situations heretofore untried. New signal-detection techniques and communication linkages can provide additional flexibility to the systems so that operation is possible in more river and estuary situations.

  16. SAIC SENTINEL acoustic counter-sniper system

    NASA Astrophysics Data System (ADS)

    Stoughton, Roland B.

    1997-02-01

    An acoustic surveillance system tailored to the detection and location of sniper fire was designed and a prototype built and tested. The SENTINEL system by Science Applications International Corporation exploits 100 kHz 16- bit digitization of signals from 16 condenser microphones in two volumetric arrays to make robust determinations of bearing, range, bullet trajectory, weapon caliber, and muzzle velocity. Signal processing is accomplished on VME hardware with C40 DSPs. Solutions are displayed within three seconds of a detected event on a ruggedized full-daylight- readable color laptop console. Typical accuracies are 1 degree to 2 degrees in azimuth and 2% to 10% in range, depending on range and environmental conditions. The large bandwidth and dynamic range, and exploitation of shock waveform period and amplitude estimates, give the system good capability even in difficult geometries and highly reverberant environments. In-depth study of the phenomenology of the ballistic shock wave was undertaken during the design phase. Results of this study are summarized.

  17. Deepwater pipeline intervention work with an acoustically controlled power module

    SciTech Connect

    Conter, A.; Launaro, F.; Bigoni, G.

    1997-02-01

    The stabilization of submarine pipeline free spans along uneven sea bottoms is performed conventionally using technologies such as gravel dumping, post trenching, and mattress installation. A new technology has been developed to support free spans along the 26-inch Transmed Gas Pipelines crossing the Sicily Channel in water depths ranging from 50 m to 510 m. This technology is based on the pipeline mechanical support Atlantis and its installation module Pegaso and was developed keeping requirements such as short installation time, system redundancy, operational flexibility, and simple interface with the support vessel in mind. The installation time reduction is achieved by automatic operational procedures that are controlled acoustically from the surface. Power is stored inside two dedicated battery packs placed on board pegaso; no umbilical cable is necessary, so that a vessel equipped with a normal crane is enough to launch and operate the system. Marine operations carried out in 1993 showed that a support can be installed in about 1 hour. In good weather conditions, three Atlantis were installed in 24 hours, including deck operations for recharging the battery packs. A total of 16 supports was installed along the 4th and 5th Transmed Gas Pipelines. The system has proved to be a cost-effective and flexible alternative to conventional technologies for free-span support, especially in deep waters. A cost/benefit analysis also shows the break-even point of the new technology vs. gravel dumping.

  18. 29. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE WITH MISSILE COMBAT CREW MEMBERS (FRONT TO BACK) LIEUTENANT KEVIN R. MCCLUNEY AND CAPTAIN JAMES L. KING, JR. AT CONSOLES. REFRIGERATOR AT RIGHT FLANKED BY RADIO EQUIPMENT (RIGHT) AND FILE CABINETS (LEFT). VIEW TO SOUTHWEST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  19. Optimization of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J.; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  20. Optimization of a biometric system based on acoustic images.

    PubMed

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced.

  1. Hybrid system for magnetic and acoustic measurement.

    PubMed

    Bruno, A C; Baffa, O; Carneiro, A O

    2009-01-01

    In order to improve the spatial resolution of Biosusceptometry of Alternate Current (BAC), we are suggesting the coupling of a Doppler ultrasonic transducer with the BAC system. The Doppler transducer obtains information from the vibration of ferromagnetic particles immersed in a visco-elastic medium when it is excited by an alternating magnetic field. In this case, the same magnetic particles used as contrast for susceptometric measurement also will work as contrast for the Doppler measurement. In this work, we present the characterization of the hybrid system for susceptometric and acoustic measurements simultaneously. It was observed that the susceptometric and Doppler ultrasound signal have the same profile and maximum amplitude for frequency of magnetizing field about 200 Hz. When using ferrite particles as magnetic contrast mixed with yogurt as based material, the susceptometric and Doppler measurement have sensitivity for concentration of particles as low as 1%. The sensitivity of the Doppler is dependent of the gradient of magnetic field over the sample. In this work, the magnetic field 5 cm far from the face of the transducer was 70 microT/volts.

  2. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    SciTech Connect

    Deng, Zhiqun; Weiland, Mark A.; Carlson, Thomas J.; Eppard, M. B.

    2010-03-31

    The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology developed by Portland District, the U.S. Army Corps of Engineers for detecting and tracking small fish. It is used at hydroelectric projects and in the laboratory for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was to design and build a measurement and calibration system for evaluating the JSATS component, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The system consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated system has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. It provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The measurement and calibration system has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  3. Acoustic contrast control in an arc-shaped area using a linear loudspeaker array.

    PubMed

    Zhao, Sipei; Qiu, Xiaojun; Burnett, Ian

    2015-02-01

    This paper proposes a method of creating acoustic contrast control in an arc-shaped area using a linear loudspeaker array. The boundary of the arc-shaped area is treated as the envelope of the tangent lines that can be formed by manipulating the phase profile of the loudspeakers in the array. When compared with the existing acoustic contrast control method, the proposed method is able to generate sound field inside an arc-shaped area and achieve a trade-off between acoustic uniformity and acoustic contrast. The acoustic contrast created by the proposed method increases while the acoustic uniformity decreases with frequency.

  4. Acoustic sensor for real-time control for the inductive heating process

    DOEpatents

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  5. Optimization and Control of Acoustic Liner Impedance with Bias Flow

    NASA Technical Reports Server (NTRS)

    Wood, Houston; Follet, Jesse

    2000-01-01

    Because communities are impacted by steady increases in aircraft traffic, aircraft noise continues to be a growing problem for the growth of commercial aviation. Research has focused on improving the design of specific high noise source areas of aircraft and on noise control measures to alleviate noise radiated from aircraft to the surrounding environment. Engine duct liners have long been a principal means of attenuating engine noise. The ability to control in-situ the acoustic impedance of a liner would provide a valuable tool to improve the performance of liners. The acoustic impedance of a liner is directly related to the sound absorption qualities of that liner. Increased attenuation rates, the ability to change liner acoustic impedance to match various operating conditions, or the ability to tune a liner to more precisely match design impedance represent some ways that in-situ impedance control could be useful. With this in mind, the research to be investigated will focus on improvements in the ability to control liner impedance using a mean flow through the liner which is referred to as bias flow.

  6. Preliminary characterization of a one-axis acoustic system. [acoustic levitation for space processing

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Reiss, D. A.; Berge, L. H.; Parker, H. W.

    1979-01-01

    The acoustic fields and levitation forces produced along the axis of a single-axis resonance system were measured. The system consisted of a St. Clair generator and a planar reflector. The levitation force was measured for bodies of various sizes and geometries (i.e., spheres, cylinders, and discs). The force was found to be roughly proportional to the volume of the body until the characteristic body radius reaches approximately 2/k (k = wave number). The acoustic pressures along the axis were modeled using Huygens principle and a method of imaging to approximate multiple reflections. The modeled pressures were found to be in reasonable agreement with those measured with a calibrated microphone.

  7. Potential acoustic benefits of circulation control rotors

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Cheeseman, I. C.

    1978-01-01

    The fundamental aeroacoustic mechanisms responsible for noise generation on a rotating blade are theoretically examined. Their contribution to the overall rotor sound pressure level is predicted. Results from a theory for airfoil trailing edge noise are presented. Modifications and extensions to other source theories are described where it is necessary to account for unique aspects of circulation control (CC) aerodynamics. The circulation control rotor (CCR), as embodied on an X-wing vertical takeoff and landing (VTOL) aircraft, is used as an example for computational purposes, although many of the theoretical results presented are generally applicable to other CC applications (such as low speed rotors, propellers, compressors, and fixed wing aircraft). Using the analytical models, it is shown that the utilization CC aerodynamics theoretically makes possible unprecedented advances in rotor noise reduction. For the X-wing VTOL these reductions appear to be feasible without incurring significant attendant performance and weight penalties.

  8. O the Use of Modern Control Theory for Active Structural Acoustic Control.

    NASA Astrophysics Data System (ADS)

    Saunders, William Richard

    A modern control theory formulation of Active Structural Acoustic Control (ASAC) of simple structures radiating acoustic energy into light or heavy fluid mediums is discussed in this dissertation. ASAC of a baffled, simply-supported plate subject to mechanical disturbances is investigated. For the case of light fluid loading, a finite element modelling approach is used to extend previous ASAC design methods. Vibration and acoustic controllers are designed for the plate. Comparison of the controller performance shows distinct advantages of the ASAC method for minimizing radiated acoustic power. A novel approach to the modelling of the heavy fluid-loaded plate is developed here. Augmenting structural and acoustic dynamics using state vector formalism allows the design of both vibration and ASAC controllers for the fluid-loaded plate. This modern control approach to active structural acoustic control is unique in its ability to suppress both persistent and transient disturbances on a plate in a heavy fluid. Numerical simulations of the open-loop and closed-loop plate response are provided to support the theoretical developments.

  9. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  10. Acoustic responses of coupled fluid-structure system by acoustic-structural analogy

    NASA Technical Reports Server (NTRS)

    Shin, Y. S.; Chargin, M. K.

    1983-01-01

    The use of an analogy between structural mechanics and acoustics makes it possible to solve fluid-structural interaction (FSI) problems using an existing structural analysis computer program. This method was implemented in MSC/NASTRAN program and the FSI analysis was performed using two dimensional coupled fluid beam model to assess and evaluate the adequacy of this approach. The coupled modal analysis of 3-D model is also briefly discussed. The normal mode, modal frequency response and transient response analysis of 2-D coupled fluid beam system is presented. The significant reduction of the acoustic pressure response at the fluid structure interface is observed as a result of fluid structure interaction.

  11. Bluefin autonomous underwater vehicles: Programs, systems, and acoustic issues

    NASA Astrophysics Data System (ADS)

    Bondaryk, Joseph E.

    2001-05-01

    Bluefin Robotics Corporation has been manufacturing autonomous underwater vehicles (AUVs) since spinning out of the MIT Sea Grant Laboratory in 1997. Bluefin currently makes three different diameter models of AUVs; the 9, 12, and 21, all based on the same free-flooded architecture and vectored-thrust propulsion design. Auxiliary acoustic systems include acoustic abort, ranging beacons, and acoustic modems. Vehicle navigation is aided by a downward-looking acoustic Doppler velocity logger (DVL). Sonar payloads can include: bottom profiler, side-scan sonar, SAS, forward-looking imagers (DIDSON), as well as horizontal and vertical discrete hydrophone arrays. Acoustic issues that arise include: (1) transmission of sound through the ABS plastic vehicle shell; (2) the impact of vehicle self-noise on data; (3) interoperability of sonars with other acoustic emitters present on and off the vehicle; and (4) the impact of navigation on some acoustic operations like SAS. This talk will illustrate these issues with real data collected on various Bluefin vehicles.

  12. Design and instrumentation of a measurement and calibration system for an acoustic telemetry system.

    PubMed

    Deng, Zhiqun; Weiland, Mark; Carlson, Thomas; Eppard, M Brad

    2010-01-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more "fish-friendly" hydroelectric facilities. The objective of this study was to design and build a Measurement and Calibration System (MCS) for evaluating the JSATS components, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The MCS consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated MCS has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. The MCS provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The MCS has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  13. Acoustic Power Suppression of a Panel Structure Using H∞OUTPUT Feedback Control

    NASA Astrophysics Data System (ADS)

    SIVRIOGLU, S.; TANAKA, N.; YUKSEK, I.

    2002-01-01

    This paper presents a robust control system design for suppressing the radiated acoustic power emitted from a vibrating planar structure, and spillover effect caused by neglected high-frequency modes. A state-space model of a simply supported panel structure is derived and an output equation is formed based on the one-dimensional PVDF film sensors. An output feedback H∞control is designed by introducing a multiplicative perturbation which represents unmodelled high-frequency dynamics in the control system. The simulation and experimental results demonstrated significant decrease in sound radiation for the considered structural power modes in control.

  14. Use of an Acoustic Orientation System for Indoor Travel with a Spatially Disabled Blind Man.

    ERIC Educational Resources Information Center

    Lancioni, G. E.; And Others

    1996-01-01

    An acoustic orientation system was developed that employed a portable remote control device keyed to trigger audio tones from modules placed at key locations throughout the user's home and work environments. Results found that the system helped a blind subject to move and work successfully in both settings, and the subject found it easy and…

  15. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2015-08-09

    Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems 5a. CONTRACT NUMBER 5b...Processing for the Next Generation of Underwater Acoustic Communication Systems Principal Investigator’s Name: Dr. James Preisig Period Covered By...correlation structure of received communications signals after they have been converted to the frequency domain via Fourier Transforms as de- scribed in

  16. A supervisory control policy over an acoustic communication network

    NASA Astrophysics Data System (ADS)

    Farhadi, Alireza; Dumon, Jonathan; Canudas-de-Wit, Carlos

    2015-05-01

    This paper presents a supervisory multi-agent control policy over an acoustic communication network subject to imperfections (packet dropout and transmission delay) for localisation of an underwater flow source (e.g., source of chemical pollution, fresh water, etc.) with an unknown location at the bottom of the ocean. A two-loop control policy combined with a coding strategy for reliable communication is presented to perform the above task. A simulator is developed and used to evaluate the trade-offs between quality of communication, transmission delay and control for a fleet of autonomous underwater vehicles supervised over a noisy acoustic communication network by an autonomous surface vessel. It is illustrated that without compensation of the effects of severe random packet dropout, localisation of an unknown underwater flow source is not possible for the condition simulated just by implementing a two-loop control policy. But a two-loop control policy combined with a strategy for reliable communication locates the unknown location of flow source.

  17. Dynamic Response of X-37 Hot Structure Control Surfaces Exposed to Controlled Reverberant Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Rizzi, Stephen A.; Rice, Chad E.

    2004-01-01

    This document represents a compilation of three informal reports from reverberant acoustic tests performed on X-37 hot structure control surfaces in the NASA Langley Research Center Structural Acoustics Loads and Transmission (SALT) facility. The first test was performed on a carbon-silicone carbide flaperon subcomponent on February 24, 2004. The second test was performed on a carbon-carbon ruddervator subcomponent on May 27, 2004. The third test was performed on a carbon-carbon flaperon subcomponent on June 30, 2004.

  18. An explosive acoustic telemetry system for seabed penetrators

    SciTech Connect

    Hauser, G.C.; Hickerson, J.

    1988-04-01

    This report discusses the design and past applications of an explosive acoustic telemetry system (EATS) for gathering and transmitting data from seabed penetrators. The system was first fielded in 1982 and has since been used to measure penetrator performance on three other occasions. Descriptions are given of the mechanical hardware, system electronics, and software.

  19. CONTROL SYSTEM

    DOEpatents

    Shannon, R.H.; Williamson, H.E.

    1962-10-30

    A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)

  20. A novel acoustically quiet coil for neonatal MRI system

    PubMed Central

    Ireland, Christopher M.; Giaquinto, Randy O.; Loew, Wolfgang; Tkach, Jean A.; Pratt, Ronald G.; Kline-Fath, Beth M.; Merhar, Stephanie L.; Dumoulin, Charles L.

    2015-01-01

    MRI acoustic exposure has the potential to elicit physiological distress and impact development in preterm and term infants. To mitigate this risk, a novel acoustically quiet coil was developed to reduce the sound pressure level experienced by neonates during MR procedures. The new coil has a conventional high-pass birdcage RF design, but is built on a framework of sound abating material. We evaluated the acoustic and MR imaging performance of the quiet coil and a conventional body coil on two small footprint NICU MRI systems. Sound pressure level and frequency response measurements were made for six standard clinical MR imaging protocols. The average sound pressure level, reported for all six imaging pulse sequences, was 82.2 dBA for the acoustically quiet coil, and 91.1 dBA for the conventional body coil. The sound pressure level values measured for the acoustically quiet coil were consistently lower, 9 dBA (range 6-10 dBA) quieter on average. The acoustic frequency response of the two coils showed a similar harmonic profile for all imaging sequences. However, the amplitude was lower for the quiet coil, by as much as 20 dBA. PMID:26457072

  1. A novel acoustically quiet coil for neonatal MRI system.

    PubMed

    Ireland, Christopher M; Giaquinto, Randy O; Loew, Wolfgang; Tkach, Jean A; Pratt, Ronald G; Kline-Fath, Beth M; Merhar, Stephanie L; Dumoulin, Charles L

    2015-08-01

    MRI acoustic exposure has the potential to elicit physiological distress and impact development in preterm and term infants. To mitigate this risk, a novel acoustically quiet coil was developed to reduce the sound pressure level experienced by neonates during MR procedures. The new coil has a conventional high-pass birdcage RF design, but is built on a framework of sound abating material. We evaluated the acoustic and MR imaging performance of the quiet coil and a conventional body coil on two small footprint NICU MRI systems. Sound pressure level and frequency response measurements were made for six standard clinical MR imaging protocols. The average sound pressure level, reported for all six imaging pulse sequences, was 82.2 dBA for the acoustically quiet coil, and 91.1 dBA for the conventional body coil. The sound pressure level values measured for the acoustically quiet coil were consistently lower, 9 dBA (range 6-10 dBA) quieter on average. The acoustic frequency response of the two coils showed a similar harmonic profile for all imaging sequences. However, the amplitude was lower for the quiet coil, by as much as 20 dBA.

  2. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2016-08-05

    JPAnalytics LLC CC: DCMA Boston DTIC Director, NRL Progress Report #9 Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation...of Underwater Acoustic Communication Systems Principal Investigator’s Name: Dr. James Preisig Period Covered By Report: 4/20/2016 to 7/19/2016 Report...lower dimensional structures in acoustic communications data, specifically fre- quency domain transformations of received communications signals, to

  3. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  4. Acoustic imaging for diagnostics of chemically reacting systems

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.; Seshan, P.

    1983-01-01

    The concept of local diagnostics, in chemically reacting systems, with acoustic imaging is developed. The elements of acoustic imaging through ellipsoidal mirrors are theoretically discussed. In a general plan of the experimental program, the first system is chosen in these studies to be a simple open jet, non premixed turbulent flame. Methane is the fuel and enriched air is the oxidizer. This simple chemically reacting flow system is established at a Reynolds number (based on cold viscosity) of 50,000. A 1.5 m diameter high resolution acoustic mirror with an f-number of 0.75 is used to map the acoustic source zone along the axis of the flame. The results are presented as acoustic power spectra at various distances from the nozzle exit. It is seen that most of the reaction intensity is localized in a zone within 8 diameters from the exit. The bulk reactions (possibly around the periphery of the larger eddies) are evenly distributed along the length of the flame. Possibilities are seen for locally diagnosing single zones in a multiple cluster of reaction zones that occur frequently in practice. A brief outline is given of the future of this work which will be to apply this technique to chemically reacting flows not limited to combustion.

  5. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  6. Development of a portable passive-acoustic bedload monitoring system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hydrophone-based passive acoustic bedload-monitoring system was designed, tested and deployed by researchers at the University of Mississippi and the National Sedimentation Laboratory in Oxford, MS. The hydrophone system was designed to be easily deployed and operated by non-experts. In addition, ...

  7. Acoustic systems containing curved duct sections

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1975-01-01

    The analysis of waves in bends in acoustical ducting of rectangular cross section is extended to the study of motion near discontinuities. This includes determination of the characteristics of the tangential and radial components of the non-propagating modes. It is established that attenuation of the non-propagating modes strongly depends on frequency and that, in general, the sharper the bend, the less attenuation may be expected. Evaluation of a bend's impedance and of impedance-generated reflections is also presented in detail.

  8. Duct wall impedance control as an advanced concept for acoustic suppression enhancement. [engine noise reduction

    NASA Technical Reports Server (NTRS)

    Dean, P. D.

    1978-01-01

    A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.

  9. Adaptations of Acoustic Technology for Detection of Hidden Insect Infestations in Trees and Their Root Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects that attack the trunks and roots of trees are difficult to detect and control because the tree structures hide and protect them. The vibrations caused by insects moving and feeding within the root systems can travel over long distances; consequently, acoustic technology is a likely candidat...

  10. Helicopter acoustic alerting system for high-security facilities

    NASA Astrophysics Data System (ADS)

    Steadman, Robert L.; Hansen, Scott; Park, Chris; Power, Dennis

    2009-05-01

    Helicopters present a serious threat to high security facilities such as prisons, nuclear sites, armories, and VIP compounds. They have the ability to instantly bypass conventional security measures focused on ground threats such as fences, check-points, and intrusion sensors. Leveraging the strong acoustic signature inherent in all helicopters, this system would automatically detect, classify, and accurately track helicopters using multi-node acoustic sensor fusion. An alert would be generated once the threat entered a predefined 3-dimension security zone in time for security personnel to repel the assault. In addition the system can precisely identify the landing point on the facility grounds.

  11. Structural Acoustic Prediction and Interior Noise Control Technology

    NASA Technical Reports Server (NTRS)

    Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)

    2001-01-01

    This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.

  12. Electro-magnetically controlled acoustic metamaterials with adaptive properties.

    PubMed

    Malinovsky, Vladimir S; Donskoy, Dimitri M

    2012-10-01

    A design of actively controlled metamaterial is proposed and discussed. The metamaterial consists of layers of electrically charged nano or micro particles exposed to external magnetic field. The particles are also attached to compliant layers in a way that the designed structure exhibits two resonances: mechanical spring-mass resonance and electro-magnetic cyclotron resonance. It is shown that if the cyclotron frequency is greater than the mechanical resonance frequency, the designed structure could be highly attenuative (40-60 dB) for vibration and sound waves in very broad frequency range even for wavelength much greater than the thickness of the metamaterial. The approach opens up wide range of opportunities for design of adaptively controlled acoustic metamaterials by controlling magnetic field and/or electrical charges.

  13. Blind deconvolution applied to acoustical systems identification with supporting experimental results

    NASA Astrophysics Data System (ADS)

    Roan, Michael J.; Gramann, Mark R.; Erling, Josh G.; Sibul, Leon H.

    2003-10-01

    Many acoustical applications require the analysis of a signal that is corrupted by an unknown filtering function. Examples arise in the areas of noise or vibration control, room acoustics, structural vibration analysis, and speech processing. Here, the observed signal can be modeled as the convolution of the desired signal with an unknown system impulse response. Blind deconvolution refers to the process of learning the inverse of this unknown impulse response and applying it to the observed signal to remove the filtering effects. Unlike classical deconvolution, which requires prior knowledge of the impulse response, blind deconvolution requires only reasonable prior estimates of the input signal's statistics. The significant contribution of this work lies in experimental verification of a blind deconvolution algorithm in the context of acoustical system identification. Previous experimental work concerning blind deconvolution in acoustics has been minimal, as previous literature concerning blind deconvolution uses computer simulated data. This paper examines experiments involving three classical acoustic systems: driven pipe, driven pipe with open side branch, and driven pipe with Helmholtz resonator side branch. Experimental results confirm that the deconvolution algorithm learns these systems' inverse impulse responses, and that application of these learned inverses removes the effects of the filters.

  14. Performance Evaluation of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo-Fuente, Alberto; del Val, Lara; Jiménez, María I.; Villacorta, Juan J.

    2011-01-01

    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications. PMID:22163708

  15. Controlled permeation of cell membrane by single bubble acoustic cavitation.

    PubMed

    Zhou, Y; Yang, K; Cui, J; Ye, J Y; Deng, C X

    2012-01-10

    Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of sonoporation, limited knowledge has been available regarding the detail processes and correlation of cavitation with membrane disruption at the single cell level. In the current study, we developed a combined approach including optical, acoustical, and electrophysiological techniques to enable synchronized manipulation, imaging, and measurement of cavitation of single bubbles and the resulting cell membrane disruption in real-time. Using a self-focused femtosecond laser and high frequency ultrasound (7.44MHz) pulses, a single microbubble was generated and positioned at a desired distance from the membrane of a Xenopus oocyte. Cavitation of the bubble was achieved by applying a low frequency (1.5MHz) ultrasound pulse (duration 13.3 or 40μs) to induce bubble collapse. Disruption of the cell membrane was assessed by the increase in the transmembrane current (TMC) of the cell under voltage clamp. Simultaneous high-speed bright field imaging of cavitation and measurements of the TMC were obtained to correlate the ultrasound-generated bubble activities with the cell membrane poration. The change in membrane permeability was directly associated with the formation of a sub-micrometer pore from a local membrane rupture generated by bubble collapse or bubble compression depending on ultrasound amplitude and duration. The impact of the bubble collapse on membrane permeation decreased rapidly with increasing distance (D) between the bubble (diameter d) and the cell membrane. The effective range of cavitation impact on membrane poration was determined to be D/d=0.75. The maximum mean

  16. Control of acoustic cavitation with application to lithotripsy

    NASA Astrophysics Data System (ADS)

    Bailey, Michael Rollins

    Control of acoustic cavitation, which is sound-induced growth and collapse of bubbles, is the subject of this dissertation. Application is to extracorporeal shock wave lithotripsy (ESWL), used to treat kidney stones. Cavitation is thought to help comminute stones yet may damage tissue. Can cavitation be controlled? The acoustic source in a widely used clinical lithotripter is an electrical spark at the near focus of an underwater ellipsoidal reflector. To control cavitation, we used rigid reflectors, pressure release reflectors, and pairs of reflectors aligned to have a common focus and a controlled delay between sparks. Cavitation was measured with aluminum foil, which was placed along the axis at the far focus of the reflector(s). Collapsing bubbles pitted the foil. Pit depth measured with a profilometer provided a relative measure of cavitation intensity. Cavitation was also measured with a focused hydrophone, which detected the pressure pulse radiated in bubble collapse. Acoustic pressure signals produced by the reflectors were measured with a PVdF membrane hydrophone, digitally recorded, and input into a numerical version of the Gilmore equation (F. R. Gilmore, 'The growth or collapse of a spherical bubble in a viscous compressible liquid,' Rep#26-4, California Institute of Technology, Pasadena (1952), pp.1-40.). Maximum pressure produced in a spherical bubble was calculated and employed as a relative measure of collapse intensity. Experimental and numerical results demonstrate cavitation can be controlled by an appropriately delayed auxiliary pressure pulse. When two rigid-reflector pulses are used, a long interpulse delay (150-200 μs) of the second pulse 'kicks' the collapsing bubble and intensifies cavitation. Foil pit depth and computed pressure three times single pulse values were obtained. Conversely, a short delay (<90 μs) 'stifles' bubble growth and weakens cavitation. A single pressure release reflector time- reverses the rigid-reflector waveform

  17. The Impact of Model Uncertainty on Spatial Compensation in Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Clark, Robert L.

    2005-01-01

    Turbulent boundary layer (TBL) noise is considered a primary contribution to the interior noise present in commercial airliners. There are numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a potential challenge since physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions were assumed; however, realistic panels likely display a range of boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of transducers required to achieve the desired control. The impact of model uncertainties, specifically uncertain boundaries, on the selection of transducer locations for structural acoustic control is considered herein. The final goal of this work is the design of an aircraft panel structure that can reduce TBL noise transmission through the use of a completely adaptive, single-input, single-output control system. The feasibility of this goal is demonstrated through the creation of a detailed analytical solution, followed by the implementation of a test model in a transmission loss apparatus. Successfully realizing a control system robust to variations in boundary conditions can lead to the design and implementation of practical adaptive structures that could be used to control the transmission of sound to the interior of aircraft. Results from this research effort indicate it is possible to optimize the design of actuator and sensor location and aperture, minimizing the impact of boundary conditions on the desired structural acoustic control.

  18. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  19. Structural acoustic control of plates with variable boundary conditions: design methodology.

    PubMed

    Sprofera, Joseph D; Cabell, Randolph H; Gibbs, Gary P; Clark, Robert L

    2007-07-01

    A method for optimizing a structural acoustic control system subject to variations in plate boundary conditions is provided. The assumed modes method is used to build a plate model with varying levels of rotational boundary stiffness to simulate the dynamics of a plate with uncertain edge conditions. A transducer placement scoring process, involving Hankel singular values, is combined with a genetic optimization routine to find spatial locations robust to boundary condition variation. Predicted frequency response characteristics are examined, and theoretically optimized results are discussed in relation to the range of boundary conditions investigated. Modeled results indicate that it is possible to minimize the impact of uncertain boundary conditions in active structural acoustic control by optimizing the placement of transducers with respect to those uncertainties.

  20. Digital servo control of random sound test excitation. [in reverberant acoustic chamber

    NASA Technical Reports Server (NTRS)

    Nakich, R. B. (Inventor)

    1974-01-01

    A digital servocontrol system for random noise excitation of a test object in a reverberant acoustic chamber employs a plurality of sensors spaced in the sound field to produce signals in separate channels which are decorrelated and averaged. The average signal is divided into a plurality of adjacent frequency bands cyclically sampled by a time division multiplex system, converted into digital form, and compared to a predetermined spectrum value stored in digital form. The results of the comparisons are used to control a time-shared up-down counter to develop gain control signals for the respective frequency bands in the spectrum of random sound energy picked up by the microphones.

  1. System and method for sonic wave measurements using an acoustic beam source

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  2. Computational Fluid Dynamics of Acoustically Driven Bubble Systems

    NASA Astrophysics Data System (ADS)

    Glosser, Connor; Lie, Jie; Dault, Daniel; Balasubramaniam, Shanker; Piermarocchi, Carlo

    2014-03-01

    The development of modalities for precise, targeted drug delivery has become increasingly important in medical care in recent years. Assemblages of microbubbles steered by acoustic pressure fields present one potential vehicle for such delivery. Modeling the collective response of multi-bubble systems to an intense, externally applied ultrasound field requires accurately capturing acoustic interactions between bubbles and the externally applied field, and their effect on the evolution of bubble kinetics. In this work, we present a methodology for multiphysics simulation based on an efficient transient boundary integral equation (TBIE) coupled with molecular dynamics (MD) to compute trajectories of multiple acoustically interacting bubbles in an ideal fluid under pulsed acoustic excitation. For arbitrary configurations of spherical bubbles, the TBIE solver self-consistently models transient surface pressure distributions at bubble-fluid interfaces due to acoustic interactions and relative potential flows induced by bubble motion. Forces derived from the resulting pressure distributions act as driving terms in the MD update at each timestep. The resulting method efficiently and accurately captures individual bubble dynamics for clouds containing up to hundreds of bubbles.

  3. On the acoustics of a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Reger, R.; Nickels, A.; Ukeiley, L.; Cattafesta, L. N.

    2017-02-01

    A two-dimensional elliptical circulation control airfoil model is studied in the Florida State Aeroacoustic Tunnel. Far-field acoustics are obtained via a 55 microphone phased array. Single microphone spectra are also obtained, and it is shown that background noise is significant. In order to circumvent this problem, beamforming is employed. The primary sources of background noise are from the tunnel collector and jet/sidewall interaction. The deconvolution approach to mapping acoustic sources (DAMAS) is employed to remove the effects of the array point spread function. Spectra are acquired by integrating the DAMAS result over the source region. The resulting DAMAS spectral levels are significantly below single microphone levels. Although the DAMAS levels are reduced from those of a single microphone or delay and sum beamforming (DAS), they are still above those of a NACA 0012, estimated using NAFNoise, at the same geometric and free-stream conditions. A scaling analysis is performed on the processed array data. With a constant free-stream velocity and a varying jet velocity the data scale as jet Mach number to the 6th power. If the momentum coefficient is held constant and the free-stream velocity is varied the data scale as free-stream Mach number to the 7th power.

  4. Design and performance analysis of digital acoustic underwater telemetry system

    NASA Astrophysics Data System (ADS)

    Catipovic, J. A.; Baggeroer, A. B.; Vonderheydt, K.; Koelsch, D. E.

    1985-11-01

    The work discusses the design and performance characteristics of a Digital Acoustic Telemetry System (DATS) which incorporates the current state-of-the-art technology and is capable of reliable data transmission at rates useful to a wide range of ocean exploration and development gear.

  5. Acoustic FMRI noise: linear time-invariant system model.

    PubMed

    Rizzo Sierra, Carlos V; Versluis, Maarten J; Hoogduin, Johannes M; Duifhuis, Hendrikus Diek

    2008-09-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For auditory system studies, however, the acoustic noise generated by the scanner tends to interfere with the assessments of this activation. Understanding and modeling fMRI acoustic noise is a useful step to its reduction. To study acoustic noise, the MR scanner is modeled as a linear electroacoustical system generating sound pressure signals proportional to the time derivative of the input gradient currents. The transfer function of one MR scanner is determined for two different input specifications: 1) by using the gradient waveform calculated by the scanner software and 2) by using a recording of the gradient current. Up to 4 kHz, the first method is shown as reliable as the second one, and its use is encouraged when direct measurements of gradient currents are not possible. Additionally, the linear order and average damping properties of the gradient coil system are determined by impulse response analysis. Since fMRI is often based on echo planar imaging (EPI) sequences, a useful validation of the transfer function prediction ability can be obtained by calculating the acoustic output for the EPI sequence. We found a predicted sound pressure level (SPL) for the EPI sequence of 104 dB SPL compared to a measured value of 102 dB SPL. As yet, the predicted EPI pressure waveform shows similarity as well as some differences with the directly measured EPI pressure waveform.

  6. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  7. Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications

    SciTech Connect

    Chen, Honghao; Cartmell, Samuel S.; Wang, Qiang; Lozano, Terence J.; Deng, Zhiqun; Li, Huidong; Chen, Xilin; Yuan, Yong; Gross, Mark E.; Carlson, Thomas J.; Xiao, Jie

    2014-01-21

    The Juvenile Salmon Acoustic Telemetry System (JSATS) project supported by the U.S. Army Corps of Engineers, Portland District, has yielded the smallest acoustic fish tag transmitter commercially available to date. In order to study even smaller fish populations and make the transmitter injectable by needles, the JSATS acoustic micro transmitter needs to be further downsized. This study focuses on the optimization of microbattery design based on Li/CFx chemistry. Through appropriate modifications, a steady high-rate pulse current with desirable life time has been achieved while the weight and volume of the battery is largely reduced. The impedance variation in as-designed microbatteries is systematically compared with that of currently used watch batteries in JSATS with an attempt to understand the intrinsic factors that control the performances of microbatteries under the real testing environments.

  8. Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.

    2010-01-01

    During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve

  9. Sound attenuation using microelectromechanical systems fabricated acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Yunker, William N.; Stevens, Colin B.; Flowers, George T.; Dean, Robert N.

    2013-01-01

    Unlike traditional rotational gyroscopes, microelectromechanical systems (MEMS) gyroscopes use a vibrating proof mass rather than a rotational mass to sense changes in angular rate. They are also smaller and less expensive than traditional gyroscopes. MEMS gyroscopes are known to be susceptible to the effects of acoustic noise, in particular high frequency and high power acoustic noise. Most notably, this has been proven true in aerospace applications where the noise can reach levels in excess of 120 dB and the noise frequency can exceed 20 kHz. The typical resonant frequency for the proof mass of a MEMS gyroscope is between 3 and 20 kHz. High power, high frequency acoustic noise can disrupt the output signal of the gyroscope to the point that the output becomes unreliable. In recent years, considerable research has focused on the fascinating properties found in metamaterials. A metamaterial is an artificially fabricated device or structure that is engineered to produce desired material responses that can either mimic known behaviors or produce responses that do not occur naturally in materials found in nature. Acoustic metamaterials, in particular, have shown great promise in the field of sound attenuation. This paper proposes a method to mitigate the performance degradation of the MEMS gyroscope in the presence of high power, high frequency acoustic noise by using a new acoustic metamaterial in the form of a two-dimensional array of micromachined Helmholtz resonators. The Helmholtz resonators are fabricated in a silicon wafer using standard MEMS manufacturing techniques and are designed to attenuate sound at the resonant frequency of the gyroscope proof mass. The resonator arrays were diced from the silicon wafer in one inch squares and assembled into a box open on one end in a manner to attenuate sound on all sides of the gyroscope, and to seal the gyroscope inside the box. The resulting acoustic metamaterial device was evaluated in an acoustic chamber and was

  10. Effectiveness of T-shaped acoustic resonators in low-frequency sound transmission control of a finite double-panel partition

    NASA Astrophysics Data System (ADS)

    Li, Deyu; Zhang, Xiao-Hong; Cheng, Li; Yu, Ganghua

    2010-10-01

    Double-panel partitions are widely used for sound insulation purposes. Their insulation efficiency is, however, deteriorated at low frequencies due to the structural and acoustic resonances. To tackle this problem, this paper proposes the use of long T-shaped acoustic resonators in a double-panel partition embedded along the edges. In order to facilitate the design and assess the performance of the structure, a general vibro-acoustic model, characterizing the interaction between the panels, air cavity, and integrated acoustic resonators, is developed. The effectiveness of the technique as well as the optimal locations of the acoustic resonators is examined at various frequencies where the system exhibits different coupling characteristics. The measured optimal locations are also compared with the predicted ones to verify the developed theory. Finally, the performance of the acoustic resonators in broadband sound transmission control is demonstrated.

  11. Controlled exciton transfer between quantum dots with acoustic phonons taken into account

    SciTech Connect

    Golovinski, P. A.

    2015-09-15

    A system of excitons in two quantum dots coupled by the dipole–dipole interaction is investigated. The excitation transfer process controlled by the optical Stark effect at nonresonant frequencies is considered and the effect of the interaction between excitons and acoustic phonons in a medium on this process is taken into account. The system evolution is described using quantum Heisenberg equations. A truncated set of equations is obtained and the transfer dynamics is numerically simulated. High-efficiency picosecond switching of the excitation transfer by a laser pulse with a rectangular envelope is demonstrated. The dependence of picosecond switching on the quantum-dot parameters and optical-pulse length is presented.

  12. Functional Connectivity Associated with Acoustic Stability During Vowel Production: Implications for Vocal-Motor Control

    PubMed Central

    2015-01-01

    Abstract Vowels provide the acoustic foundation of communication through speech and song, but little is known about how the brain orchestrates their production. Positron emission tomography was used to study regional cerebral blood flow (rCBF) during sustained production of the vowel /a/. Acoustic and blood flow data from 13, normal, right-handed, native speakers of American English were analyzed to identify CBF patterns that predicted the stability of the first and second formants of this vowel. Formants are bands of resonance frequencies that provide vowel identity and contribute to voice quality. The results indicated that formant stability was directly associated with blood flow increases and decreases in both left- and right-sided brain regions. Secondary brain regions (those associated with the regions predicting formant stability) were more likely to have an indirect negative relationship with first formant variability, but an indirect positive relationship with second formant variability. These results are not definitive maps of vowel production, but they do suggest that the level of motor control necessary to produce stable vowels is reflected in the complexity of an underlying neural system. These results also extend a systems approach to functional image analysis, previously applied to normal and ataxic speech rate that is solely based on identifying patterns of brain activity associated with specific performance measures. Understanding the complex relationships between multiple brain regions and the acoustic characteristics of vocal stability may provide insight into the pathophysiology of the dysarthrias, vocal disorders, and other speech changes in neurological and psychiatric disorders. PMID:25295385

  13. Acoustic bubble: Controlled and selective micropropulsion and chemical waveform generator

    NASA Astrophysics Data System (ADS)

    Ahmed, Daniel

    The physics governing swimming at the microscale---where viscous forces dominate over inertial---is distinctly different than that at the macroscale. Devices capable of finely controlled swimming at the microscale could enable bold ideas such as targeted drug delivery, non-invasive microsurgery, and precise materials assembly. Progress has already been made towards such artificial microswimmers using several means of actuation: chemical reactions and applied magnetic, electric or acoustic fields. However, the prevailing goal of selective actuation of a single microswimmer from within a group, the first step towards collaborative, guided action by a group of swimmers, has so far not been achieved. Here I present a new class of microswimmer that accomplishes for the first time selective actuation (Chapter 1). The swimmer design eschews the commonly-held design paradigm that microswimmers must use non-reciprocal motion to achieve propulsion; instead, the swimmer is propelled by oscillatory motion of an air bubble trapped within the swimmer's polymer body. This oscillatory motion is driven by a low-power biocompatible acoustic field to the ambient liquid, with meaningful swimmer propulsion occurring only at resonance frequencies of the bubble. This acoustically-powered microswimmer performs controllable rapid translational and rotational motion even in highly viscous liquid. By using a group of swimmers each with a different bubble size (and thus different resonance frequencies) selective actuation of a single swimmer from among the group can be readily achieved. Cellular response to chemical microenvironments depends on the spatiotemporal characteristics of the stimulus, which is central to many biological processes including gene expression, cell migration, differentiation, apoptosis, and intercellular signaling. To date, studies have been limited to digital (or step) chemical stimulation with little control over the temporal counterparts. Microfluidic approaches

  14. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.

    PubMed

    Arvanitis, Costas D; Livingstone, Margaret S; Vykhodtseva, Natalia; McDannold, Nathan

    2012-01-01

    The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R(2) = 0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology.

  15. Controlled Ultrasound-Induced Blood-Brain Barrier Disruption Using Passive Acoustic Emissions Monitoring

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; Vykhodtseva, Natalia; McDannold, Nathan

    2012-01-01

    The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R2 = 0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology. PMID:23029240

  16. Real-time RNN-based acoustic thermometry with feedback control

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen J.; Nam, Joana H.; Fan, Liexiang; Brunke, Shelby S.; Sekins, K. Michael

    2017-03-01

    A major obstacle to the widespread adoption of HIFU therapy is the development of a suitable method of monitoring the a blation therapy in real-time. While MR-thermometry has emerged as a promising method for HIFU therapy monitoring, acoustic guidance has continuously been sought for reasons of cost and practicality. We have previously demonstrated the potential of acoustic thermometry, by using a recurrent neural network (RNN) to estimate changes in tissue temperature during HIFU ablation therapies. A limitation of this method is that an excessive therapeutic dose can cause multiple, non-linear changes within the ultrasound data, resulting in unreliable temperature estimates from the RNN. Accordingly, we propose a revised method of dosing wherein closed loop feedback is used to provide a controlled and specific dose; not only to ensure an efficacious lesion, but also to preserve the integrity of the ultrasound image, thereby producing accurate temperature estimates from the RNN. This investigation of controlling the thermal dose using feedback was performed on ex vivo bovine liver. The acoustic parameters used as inputs to the RNN were: changes in integrated backscatter intensity, thermal strain, and decorrelation. The therapeutic dose was delivered using a 1.1 MHz, 2D-array HIFU transducer transmitting at regular intervals during a 40-second dose. Interleaved between these regular HIFU dose intervals, volumetric ultrasound images were acquired on a Siemens ACUSON SC2000, with a 4Zlc probe. Feedback was introduced to the system by varying the HIFU duty cycle, in order to minimize the difference between a desired temperature curve (assigned a priori) and the estimated focal temperature values. Two methods were used for obtaining the focal temperature: the first was direct measurement using a 75-micron copper-constantan thermocouple embedded within the liver sample, and the second was temperature estimation as calculated from the RNN-based output temperatures

  17. Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system

    NASA Astrophysics Data System (ADS)

    Shang, Ying; Yang, Yuan-Hong; Wang, Chen; Liu, Xiao-Hui; Wang, Chang; Peng, Gang-Ding

    2016-06-01

    We propose a demodulated signal distribution theory for a self-interfered distributed acoustic sensing system. The distribution region of Rayleigh backscattering including the acoustic sensing signal in the sensing fiber is investigated theoretically under different combinations of both the path difference and pulse width Additionally we determine the optimal solution between the path difference and pulse width to obtain the maximum phase change per unit length. We experimentally test this theory and realize a good acoustic pressure phase sensitivity of  -150 dB re rad/(μPa·m) of fiber in the frequency range from 200 Hz to 1 kHz.

  18. Acoustic system for communication in pipelines

    DOEpatents

    Martin, II, Louis Peter; Cooper, John F.

    2008-09-09

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  19. Publications in acoustic and noise control from NASA Langley Research Center during 1940-1979. [bibliographies

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1980-01-01

    Reference lists of approximately 900 published Langley Research Center reports in various areas of acoustics and noise control for the period 1940-1979 are presented. Specific topic areas covered include: duct acoustics; propagation and operations; rotating blade noise; jet noise; sonic boom; flow surface interaction noise; structural response/interior noise; human response; and noise prediction.

  20. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  1. Passive hypervelocity boundary layer control using an acoustically absortive surface

    NASA Astrophysics Data System (ADS)

    Rasheed, Adam

    A series of exploratory boundary layer transition experiments was performed on a sharp 5.06 degree half-angle round cone at zero angle-of-attack in the T5 Hypervelocity Shock Tunnel in order to test a novel hypersonic boundary layer control scheme. Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface that would damp the second mode (Mack mode). The cone used in the experiments was constructed with a smooth surface on half the cone (to serve as a control) and an acoustically absorptive porous surface on the other half. It was instrumented with flush-mounted thermocouples to detect the transition location. Test gases investigated included nitrogen and carbon dioxide at M = 5 with specific reservoir enthalpy ranging from 1.3 MJ/kg to 13.0 MJ/kg and reservoir pressure ranging from 9.0 MPa to 50.0 MPa. Detailed comparisons were performed to insure that previous results obtained in similar boundary layer transition experiments (on a regular smooth surface) were reproduced and the results were extended to examine the effects of the porous surface. These experiments indicated that the porous surface was highly effective in delaying transition provided that the hole size was significantly smaller than the viscous length scale.

  2. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  3. Acoustic leak-detection system for railroad transportation security

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.

    2007-04-01

    Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.

  4. An acoustically controlled tetherless underwater vehicle for installation and maintenance of neutrino detectors in the deep ocean

    SciTech Connect

    Ballou, Philip J.

    1997-02-01

    The task of installing and servicing high energy neutrino detectors in the deep ocean from a surface support vessel is problematic using conventional tethered systems. An array of multiple detector strings rising 500 m from the ocean floor, and forming a grid with 50 m spacing between the strings, presents a substantial entanglement hazard for equipment cables deployed from the surface. Such tasks may be accomplished with fewer risks using a tetherless underwater remotely operated vehicle that has a local acoustic telemetry link to send control commands and sensor data between the vehicle and a stationary hydrophone suspended above or just outside the perimeter of the work site. The Phase I effort involves the development of an underwater acoustic telemetry link for vehicle control and sensor feedback, the evaluation of video compression methods for real-time acoustic transmission of video through the water, and the defining of local control routines on board the vehicle to allow it to perform certain basic maneuvering tasks autonomously, or to initiate a self-rescue if the acoustic control link should be lost. In Phase II, a prototype tetherless vehicle system will be designed and constructed to demonstrate the ability to install cable interconnections within a detector array at 4 km depth. The same control technology could be used with a larger more powerful vehicle to maneuver the detector strings into desired positions as they are being lowered to the ocean floor.

  5. Closed-Loop Control for Sonic Fatigue Testing Systems

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Bossaert, Guido

    2001-01-01

    This article documents recent improvements to the acoustic control system of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, VA. A brief summary of past acoustic performance is first given to serve as a basis of comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented for a variety of input spectra including uniform, band-limited random and an expendable launch vehicle payload bay environment.

  6. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2015-03-18

    explicitly model the time vari- ability of acoustic channels and using this to predict underwater acoustic com- munications systems performance. Prior...methods have accommodated time variability by assuming that the channel is time invariant over an appropri- ately short interval of time. By explicitly...with the rate of channel fluctuations, the number and configuration of hydrophone array elements, the size of fil- ters in subsequent equalizers, and

  7. The Impact of Model Uncertainty on Spatial Compensation in Active Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Gibbs, Gary P.; Sprofera, Joseph D.; Clark, Robert L.

    2004-01-01

    Turbulent boundary layer (TBL) noise is considered a primary factor in the interior noise experienced by passengers aboard commercial airliners. There have been numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a challenge since the physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions have been assumed; however, realistic panels likely display a range of varying boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of actuators and sensors required to achieve the desired control. The impact of model uncertainties, uncertain boundary conditions in particular, on the selection of actuator and sensor locations for structural acoustic control are considered herein. Results from this research effort indicate that it is possible to optimize the design of actuator and sensor location and aperture, which minimizes the impact of boundary conditions on the desired structural acoustic control.

  8. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2015-01-01

    Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.

  9. Miniature acoustic wave lysis system and uses thereof

    DOEpatents

    Branch, Darren W.; Vreeland, Erika Cooley; Smith, Gennifer Tanabe

    2016-12-06

    The present invention relates to an acoustic lysis system including a disposable cartridge that can be reversibly coupled to a platform having a small, high-frequency piezoelectric transducer array. In particular, the system releases viable DNA, RNA, and proteins from human or bacterial cells, without chemicals or additional processing, to enable high-speed sample preparation for clinical point-of-care medical diagnostics and use with nano/microfluidic cartridges. Also described herein are methods of making and using the system of the invention.

  10. Optimal flushing agents for integrated optical and acoustic imaging systems

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-05-01

    An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging.

  11. Optimal flushing agents for integrated optical and acoustic imaging systems.

    PubMed

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-05-01

    An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging.

  12. Ideal flushing agents for integrated optical acoustic imaging systems

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, K. Kirk; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping

    2015-02-01

    An increased number of integrated optical acoustic intravascular imaging systems have been researched and hold great hope for accurate diagnosing of vulnerable plaques and for guiding atherosclerosis treatment. However, in any intravascular environment, vascular lumen is filled with blood, which is a high-scattering source for optical and high frequency ultrasound signals. Blood must be flushed away to make images clear. To our knowledge, no research has been performed to find the ideal flushing agent that works for both optical and acoustic imaging techniques. We selected three solutions, mannitol, dextran and iohexol, as flushing agents because of their image-enhancing effects and low toxicities. Quantitative testing of these flushing agents was performed in a closed loop circulation model and in vivo on rabbits.

  13. Coherent structures in swirling flows and their role in acoustic combustion control

    NASA Astrophysics Data System (ADS)

    Paschereit, Christian Oliver; Gutmark, Ephraim; Weisenstein, Wolfgang

    1999-09-01

    Interaction between flow instabilities and acoustic resonant modes and their effect on heat release were investigated and controlled in an experimental low-emission swirl stabilized combustor. Acoustic boundary conditions of the combustor were modified to excite combustion instability at various axisymmetric and helical unstable modes in a fully premixed combustion. The combustion unstable modes were related to flow instabilities in the recirculating wakelike region on the combustor axis and the separating shear layer at the sudden expansion (dump plane). Flow field measurements were performed in a water tunnel using a simulated combustor configuration. The water tunnel tests demonstrated the existence of several modes of flow instabilities in a highly swirling flow, modes which were shown to affect the combustion process. Mean and turbulent characteristics of the internal and external swirling shear layers were measured and unstable flow modes were identified. Instability modes during combustion were visualized by phase locked images of OH chemiluminescence. The axisymmetric mode showed large variation of the heat release during one cycle, while the helical modes showed variations in the radial location of maximal heat release. Closed loop active control system was employed to suppress the thermoacoustic pressure oscillations and to reduce NOx emissions. Microphone and OH emission detection sensors monitored the combustion process and provided input to the control system. An acoustic source modulated the airflow and thus affected the mixing process and the combustion. Effective suppression of the pressure oscillations and the concomitant reduction of NOx emissions were associated with a reduced coherence of the flow structures which excited the thermoacoustic instability.

  14. Distributed acoustic receptivity in laminar flow control configurations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1992-01-01

    A model problem related to distributed receptivity to free-stream acoustic waves in laminar flow control (LFC) configurations is studied, within the Orr-Sommerfield framework, by a suitable extension of the Goldstein-Ruban theory for receptivity due to localized disturbances on the airfoil surface. The results, thus, complement the earlier work on the receptivity produced by local variations in the surface suction and/or surface admittance. In particular, we show that the cumulative effect of the distributed receptivity can be substantially larger than that of a single, isolated suction strip or slot. Furthermore, even if the receptivity is spread out over very large distances, the most effective contributions come from a relatively short region in vicinity of the lower branch of the neutral stability curve. The length scale of this region is intermediate to that of the mean of these two length scales. Finally, it is found that the receptivity is effectively dominated by a narrow band of Fourier components from the wall-suction and admittance distributions, roughly corresponding to a detuning of less than ten percent with respect to the neutral instability wavenumber at the frequency under consideration. The results suggest that the drop-off in receptivity magnitudes away from the resonant wavenumber is nearly independent of the frequency parameter.

  15. Development and calibration of acoustic video camera system for moving vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Diange; Wang, Ziteng; Li, Bing; Lian, Xiaomin

    2011-05-01

    In this paper, a new acoustic video camera system is developed and its calibration method is established. This system is built based on binocular vision and acoustical holography technology. With binocular vision method, the spatial distance between the microphone array and the moving vehicles is obtained, and the sound reconstruction plane can be established closely to the moving vehicle surface automatically. Then the sound video is regenerated closely to the moving vehicles accurately by acoustic holography method. With this system, the moving and stationary sound sources are treated differently and automatically, which makes the sound visualization of moving vehicles much quicker, more intuitively, and accurately. To verify this system, experiments for a stationary speaker and a non-stationary speaker are carried out. Further verification experiments for outdoor moving vehicle are also conducted. Successful video visualization results not only confirm the validity of the system but also suggest that this system can be a potential useful tool in vehicle's noise identification because it allows the users to find out the noise sources by the videos easily. We believe the newly developed system will be of great potential in moving vehicles' noise identification and control.

  16. Effects of acoustic hood on noise, CFC-11, and particulate matter in a recycling system for waste refrigerator cabinet.

    PubMed

    Guo, Jie; Fang, Wenxiong; Yang, Yichen; Xu, Zhenming

    2014-11-01

    The mechanical-physical process was proven to be technologically feasible for waste refrigerator recycling and has been widely used in the typical e-waste recycling factories in China. In this study, effects of the acoustic hood on the reduction of noise level, CFC-11, and heavy metals (Cr, Ni, Cu, Cd, and Pb) in particulate matter (PM) were evaluated. For noise pollution, the noise level inside and outside the acoustic hood was 96.4 and 78.9 dB, respectively. Meanwhile, it had a significant effect on A-weighted sound level with a reduction from 98.3 to 63.6 dB. For CFC-11 exposure, abundant CFC-11 (255 mg/m(3)) was detected in the acoustic hood. However, the mean concentration of CFC-11 at the outline of polyurethane foam collection was obviously diminished to 14 mg/m(3), and no CFC-11 was monitored around the acoustic hood. The concentrations of PM and heavy metals in PM outside the acoustic hood were lower than those inside the acoustic hood due to the physical barriers of the acoustic hood. Based on the risk assessment, only adverse health effect caused by Pb might likely appear. All the results can provide the basic data for pollution control and risk assessment in waste refrigerator recycling system.

  17. An objective method and measuring equipment for noise control and acoustic diagnostics of motorcars. [acoustic diagnostics on automobile engines

    NASA Technical Reports Server (NTRS)

    Kacprowski, J.; Motylewski, J.; Miazga, J.

    1974-01-01

    An objective method and apparatus for noise control and acoustic diagnostics of motorcar engines are reported. The method and apparatus let us know whether the noisiness of the vehicle under test exceeds the admissible threshold levels given by appropriate standards and if so what is the main source of the excessive noise. The method consists in measuring both the overall noise level and the sound pressure levels in definite frequency bands while the engine speed is controlled as well and may be fixed at prescribed values. Whenever the individually adjusted threshold level has been exceeded in any frequency band, a self-sustaining control signal is sent.

  18. Direct Field Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Larkin, Paul; Goldstein, Bob

    2008-01-01

    This paper presents an update to the methods and procedures used in Direct Field Acoustic Testing (DFAT). The paper will discuss some of the recent techniques and developments that are currently being used and the future publication of a reference standard. Acoustic testing using commercial sound system components is becoming a popular and cost effective way of generating a required acoustic test environment both in and out of a reverberant chamber. This paper will present the DFAT test method, the usual setup and procedure and the development and use of a closed-loop, narrow-band control system. Narrow-band control of the acoustic PSD allows all standard techniques and procedures currently used in random control to be applied to acoustics and some examples are given. The paper will conclude with a summary of the development of a standard practice guideline that is hoped to be available in the first quarter of next year.

  19. DARPA counter-sniper program: Phase 1 Acoustic Systems Demonstration results

    NASA Astrophysics Data System (ADS)

    Carapezza, Edward M.; Law, David B.; Csanadi, Christina J.

    1997-02-01

    During October 1995 through May 1996, the Defense Advanced Research Projects Agency sponsored the development of prototype systems that exploit acoustic muzzle blast and ballistic shock wave signatures to accurately predict the location of gunfire events and associated shooter locations using either single or multiple volumetric arrays. The output of these acoustic systems is an estimate of the shooter location and a classification estimate of the caliber of the shooter's weapon. A portable display and control unit provides both graphical and alphanumeric shooter location related information integrated on a two- dimensional digital map of the defended area. The final Phase I Acoustic Systems Demonstration field tests were completed in May. These these tests were held at USMC Base Camp Pendleton Military Operations Urban Training (MOUT) facility. These tests were structured to provide challenging gunfire related scenarios with significant reverberation and multi-path conditions. Special shot geometries and false alarms were included in these tests to probe potential system vulnerabilities and to determine the performance and robustness of the systems. Five prototypes developed by U.S. companies and one Israeli developed prototype were tested. This analysis quantifies the spatial resolution estimation capability (azimuth, elevation and range) of these prototypes and describes their ability to accurately classify the type of bullet fired in a challenging urban- like setting.

  20. Development of a MEMS acoustic emission sensor system

    NASA Astrophysics Data System (ADS)

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first

  1. Acoustic and optoelectronic nature and interfacial durability of modified CNT and GnP-PVDF composites with nanostructural control

    NASA Astrophysics Data System (ADS)

    Park, Joung-Man; Kwon, Dong-Jun; Wang, Zuo-Jia; DeVries, Lawrence

    2014-03-01

    Nano- and hetero-structures of modified carbon nanotube (CNT) and Graphene nano Platelet (GnP) can control significantly piezoresistive and optoelectronic properties in Microelectromechanical Systems (MEMS) as acoustic actuators. Interfacial durability and electrical properties of modified CNT and GnP embedded in poly (vinylidene fluoride) (PVDF) nanocomposites were investigated for use in acoustic actuator applications. Modified GnP coated PVDF nanocomposite exhibited better electrical conductivity than neat and modified CNT due to the unique electrical nature of GnP. Modified GnP coating also exhibited good acoustical properties. Contact angle, surface energy, work of adhesion, and spreading coefficient measurements were contributed to explore the interfacial adhesion durability between neat CNT or plasma treated CNT and plasma treated PVDF. Acoustic actuation performance of modified GnP coated PVDF nanocomposites were investigated for different radii of curvature and different coating conditions, using a sound level meter. Modified GnP can be a more appropriate acoustic actuator than CNT cases because of improved electrical properties. Optimum radius of curvature and coating thickness was also obtained for the most appropriate sound pressure level (SPL) performance. This study can provide manufacturing parameters of transparent sound actuators with good quality practically.

  2. Acoustic Predictions of Manned and Unmanned Rotorcraft Using the Comprehensive Analytical Rotorcraft Model for Acoustics (CARMA) Code System

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Burley, Casey L.; Conner, David A.

    2005-01-01

    The Comprehensive Analytical Rotorcraft Model for Acoustics (CARMA) is being developed under the Quiet Aircraft Technology Project within the NASA Vehicle Systems Program. The purpose of CARMA is to provide analysis tools for the design and evaluation of efficient low-noise rotorcraft, as well as support the development of safe, low-noise flight operations. The baseline prediction system of CARMA is presented and current capabilities are illustrated for a model rotor in a wind tunnel, a rotorcraft in flight and for a notional coaxial rotor configuration; however, a complete validation of the CARMA system capabilities with respect to a variety of measured databases is beyond the scope of this work. For the model rotor illustration, predicted rotor airloads and acoustics for a BO-105 model rotor are compared to test data from HART-II. For the flight illustration, acoustic data from an MD-520N helicopter flight test, which was conducted at Eglin Air Force Base in September 2003, are compared with CARMA full vehicle flight predictions. Predicted acoustic metrics at three microphone locations are compared for limited level flight and descent conditions. Initial acoustic predictions using CARMA for a notional coaxial rotor system are made. The effect of increasing the vertical separation between the rotors on the predicted airloads and acoustic results are shown for both aerodynamically non-interacting and aerodynamically interacting rotors. The sensitivity of including the aerodynamic interaction effects of each rotor on the other, especially when the rotors are in close proximity to one another is initially examined. The predicted coaxial rotor noise is compared to that of a conventional single rotor system of equal thrust, where both are of reasonable size for an unmanned aerial vehicle (UAV).

  3. Acoustic control of mosquito larvae in artificial drinking water containers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic larvicide devices are part of an emerging technology that provides a non-chemical and non-biological means to reduce larval populations of key medically important mosquito species such as Aedes aegypti in containers or catchments of water. These devices could benefit integrated vector manag...

  4. Active Structural Acoustic Control of Interior Noise on a Raytheon 1900D

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran; Sullivan, Brenda; Cline, John

    2000-01-01

    An active structural acoustic control system has been demonstrated on a Raytheon Aircraft Company 1900D turboprop airliner. Both single frequency and multi-frequency control of the blade passage frequency and its harmonics was accomplished. The control algorithm was a variant of the popular filtered-x LMS implemented in the principal component domain. The control system consisted of 21 inertial actuators and 32 microphones. The actuators were mounted to the aircraft's ring frames. The microphones were distributed uniformly throughout the interior at head height, both seated and standing. Actuator locations were selected using a combinatorial search optimization algorithm. The control system achieved a 14 dB noise reduction of the blade passage frequency during single frequency tests. Multi-frequency control of the first 1st, 2nd and 3rd harmonics resulted in 10.2 dB, 3.3 dB and 1.6 dB noise reductions respectively. These results fall short of the predictions which were produced by the optimization algorithm (13.5 dB, 8.6 dB and 6.3 dB). The optimization was based on actuator transfer functions taken on the ground and it is postulated that cabin pressurization at flight altitude was a factor in this discrepancy.

  5. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  6. Noise control for a ChamberCore cylindrical structure using long T-shaped acoustic resonators

    NASA Astrophysics Data System (ADS)

    Li, Deyu; Vipperman, Jeffrey S.

    2003-10-01

    The Air Force Research Laboratory, Space Vehicles Directorate has developed a new advanced composite launch vehicle fairing (referred to as ``ChamberCore''). The ChamberCore is sandwich-type structure fabricated from multi-layered composite face sheets separated by channels that form passive acoustic chambers. These acoustic chambers have a potential to create an acoustic resonator network that can be used to attenuate noise inside the closed ChamberCore cylindrical structure. In this study, first, the feasibility of using cylindrical Helmholtz resonators to control noise in a mock-scale ChamberCore composite cylinder is investigated. The targeted frequencies for noise control are the first four acoustic cavity resonances of the ChamberCore cylinder. The optimal position of the Helmholtz resonators for controlling each targeted cavity mode is discussed, and the effects of resonator spacing on noise attenuation are also experimentally evaluated. Next, six long T-shaped acoustic resonators are designed and constructed within the acoustic chambers of the structure and investigated. Several tests are conducted to evaluate the noise control ability of the resonators in the ChamberCore cylinder. Reductions ranging from 3.2 to 6.0 dB were observed in the overall mean-square noise reduction spectrum at the targeted inner cavity resonance frequencies. [Work supported by AFRL/DV.

  7. Publications in acoustics and noise control from the NASA Langley Research Center during 1940-1976

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1977-01-01

    Reference lists are presented of published research papers in various areas of acoustics and noise control for the period 1940-1976. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics; (2) propagation and operations; (3) rotating blade noise; (4) jet noise; (5) sonic boom; (6) flow-surface interaction noise; (7) human response; (8) structural response; (9) prediction; and (10) miscellaneous.

  8. Reflective echo tomographic imaging using acoustic beams

    SciTech Connect

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  9. Microcontroller-based underwater acoustic ECG telemetry system.

    PubMed

    Istepanian, R S; Woodward, B

    1997-06-01

    This paper presents a microcontroller-based underwater acoustic telemetry system for digital transmission of the electrocardiogram (ECG). The system is designed for the real time, through-water transmission of data representing any parameter, and it was used initially for transmitting in multiplexed format the heart rate, breathing rate and depth of a diver using self-contained underwater breathing apparatus (SCUBA). Here, it is used to monitor cardiovascular reflexes during diving and swimming. The programmable capability of the system provides an effective solution to the problem of transmitting data in the presence of multipath interference. An important feature of the paper is a comparative performance analysis of two encoding methods, Pulse Code Modulation (PCM) and Pulse Position Modulation (PPM).

  10. Multiplex transmission system for gate drive signals of inverter circuit using surface acoustic wave filters

    NASA Astrophysics Data System (ADS)

    Suzuki, Akifumi; Ueda, Kensuke; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji

    2016-07-01

    We propose and fabricate a multiplexed transmission system based on frequency-division multiple access (FDMA) with surface acoustic wave (SAW) filters. SAW filters are suitable for use in wide-gap switching devices and multilevel inverters because of their capability to operate at high temperatures, good electrical isolation, low cost, and high reliability. Our proposed system reduces the number of electrical signal wires needed to control each switching device and eliminates the need for isolation circuits, simplifying the transmission system and gate drive circuits. We successfully controlled two switching devices with a single coaxial line and confirmed the operation of a single-phase half-bridge inverter at a supply voltage of 100 V, and the total delay time to control the switching devices was less than 2.5 µs. Our experimental results validated our proposed system.

  11. Predictive Acoustic Modelling Applied to the Control of Intake/exhaust Noise of Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Davies, P. O. A. L.; Harrison, M. F.

    1997-05-01

    The application of validated acoustic models to intake/exhaust system acoustic design is described with reference to a sequence of specific practical examples. These include large turbocharged diesel generating sets, truck engines and high performance petrol engines. The discussion includes a comparison of frequency domain, time domain and hybrid modelling approaches to design methodology. The calculation of sound emission from open terminations is summarized in an appendix.

  12. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    SciTech Connect

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  13. Parameter estimation in a structural acoustic system with fully nonlinear coupling conditions

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.

    1994-01-01

    A methodology for estimating physical parameters in a class of structural acoustic systems is presented. The general model under consideration consists of an interior cavity which is separated from an exterior noise source by an enclosing elastic structure. Piezoceramic patches are bonded to or embedded in the structure; these can be used both as actuators and sensors in applications ranging from the control of interior noise levels to the determination of structural flaws through nondestructive evaluation techniques. The presence and excitation of patches, however, changes the geometry and material properties of the structure as well as involves unknown patch parameters, thus necessitating the development of parameter estimation techniques which are applicable in this coupled setting. In developing a framework for approximation, parameter estimation and implementation, strong consideration is given to the fact that the input operator is unbonded due to the discrete nature of the patches. Moreover, the model is weakly nonlinear. As a result of the coupling mechanism between the structural vibrations and the interior acoustic dynamics. Within this context, an illustrating model is given, well-posedness and approximations results are discussed and an applicable parameter estimation methodology is presented. The scheme is then illustrated through several numerical examples with simulations modeling a variety of commonly used structural acoustic techniques for systems excitations and data collection.

  14. Baseline acoustic levels of the NASA Active Noise Control Fan rig

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Heidelberg, Laurence J.; Elliott, David M.; Nallasamy, M.

    1996-01-01

    Extensive measurements of the spinning acoustic mode structure in the NASA 48 inch Active Noise Control Fan (ANCF) test rig have been taken. A continuously rotating microphone rake system with a least-squares data reduction technique was employed to measure these modes in the inlet and exhaust. Farfield directivity patterns in an anechoic environment were also measured at matched corrected rotor speeds. Several vane counts and spacings were tested over a range of rotor speeds. The Eversman finite element radiation code was run with the measured in-duct modes as input and the computed farfield results were compared to the experimentally measured directivity pattern. The experimental data show that inlet spinning mode measurements can be made very accurately. Exhaust mode measurements may have wake interference, but the least-squares reduction does a good job of rejecting the non-acoustic pressure. The Eversman radiation code accurately extrapolates the farfield levels and directivity pattern when all in-duct modes are included.

  15. Optimal virtual sensing for active noise control in a rigid-walled acoustic duct

    NASA Astrophysics Data System (ADS)

    Petersen, Dick; Zander, Anthony C.; Cazzolato, Ben S.; Hansen, Colin H.

    2005-11-01

    The performance of local active noise control systems is generally limited by the small sizes of the zones of quiet created at the error sensors. This is often exacerbated by the fact that the error sensors cannot always be located close to an observer's ears. Virtual sensing is a method that can move the zone of quiet away from the physical location of the transducers to a desired location, such as an observer's ear. In this article, analytical expressions are derived for optimal virtual sensing in a rigid-walled acoustic duct with arbitrary termination conditions. The expressions are derived for tonal excitations, and are obtained by employing a traveling wave model of a rigid-walled acoustic duct. It is shown that the optimal solution for the virtual sensing microphone weights is independent of the source location and microphone locations. It is also shown that, theoretically, it is possible to obtain infinite reductions at the virtual location. The analytical expressions are compared with forward difference prediction techniques. The results demonstrate that the maximum attenuation, that theoretically can be obtained at the virtual location using forward difference prediction techniques, is expected to decrease for higher excitation frequencies and larger virtual distances.

  16. Effects of Systemic Hydration on Vocal Acoustics of 18- to 35-Year-Old Females

    ERIC Educational Resources Information Center

    Franca, Maria Claudia; Simpson, Kenneth O.

    2012-01-01

    The influence of body hydration and vocal acoustics was investigated in this study. Effects of two levels of hydration on objective measures of vocal acoustics were explored. In an attempt to reduce variability in the degree of systemic hydration and to induce a state of systemic dehydration, participants were instructed to refrain from ingestion…

  17. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  18. Damping of thermal acoustic oscillations in hydrogen systems

    NASA Technical Reports Server (NTRS)

    Gu, Youfan; Timmerhaus, Klaus D.

    1991-01-01

    Acoustic waves initiated by a large temperature gradient along a tube are defined as thermal acoustic oscillations (TAOs). These oscillations have been damped by introducing such sound absorbing techniques as acoustic filters, resonators, etc.. These devices serve as an acoustic sink that is used to absorb or dissipate the acoustic energy thereby eliminating or damping such oscillations. Several empirical damping techniques, such as attaching a resonator as a side branch or inserting a wire in the tube, have been developed in the past and have provided reasonable success. However, the effect of connecting tube radius, length, and resonator volume on the damping of thermal acoustic oscillations has not been evaluated quantitatively. Further, these methods have not been effective when the oscillating tube radius was relatively large. Detailed theoretical analyses of these techniques including a newly developed method for damping oscillations in a tube of relatively large radius are provided in this presentation.

  19. Acoustic and vibration response of a structure with added noise control treatment under various excitations.

    PubMed

    Rhazi, Dilal; Atalla, Noureddine

    2014-02-01

    The evaluation of the acoustic performance of noise control treatments is of great importance in many engineering applications, e.g., aircraft, automotive, and building acoustics applications. Numerical methods such as finite- and boundary elements allow for the study of complex structures with added noise control treatment. However, these methods are computationally expensive when used for complex structures. At an early stage of the acoustic trim design process, many industries look for simple and easy to use tools that provide sufficient physical insight that can help to formulate design criteria. The paper presents a simple and tractable approach for the acoustic design of noise control treatments. It presents and compares two transfer matrix-based methods to investigate the vibroacoustic behavior of noise control treatments. The first is based on a modal approach, while the second is based on wave-number space decomposition. In addition to the classical rain-on-the-roof and diffuse acoustic field excitations, the paper also addresses turbulent boundary layer and point source (monopole) excitations. Various examples are presented and compared to a finite element calculation to validate the methodology and to confirm its relevance along with its limitations.

  20. Acoustic Filtration, Fractionation, and Mixing in Microfluidic Systems

    SciTech Connect

    Wang, A; Fisher, K

    2002-02-04

    This project is concerned with the research and development of a technique to manipulate small particles using acoustic energy coupled into a fluid filled plastic or glass sample chamber. These resulting miniaturized systems combine high functionality with an inexpensive, disposable sample chamber. Our approach to this problem is based on a combination of sophisticated modeling tools in conjunction with laboratory experiments. The design methodology is summarized in Figure 1. The process begins by investigating a wide range of device parameters using a one-dimensional analytical approximation. The results of these initial parameter studies are incorporated into a sophisticated three-dimensional multi-physics finite element code. From these simulations the optimized designs are prototyped and experimentally tested. The results of the experimental observations are then used to improve analytical approximations and the process is repeated as necessary.

  1. Active Structural Acoustic Control in an Original A400M Aircraft Structure

    NASA Astrophysics Data System (ADS)

    Koehne, C.; Sachau, D.; Renger, K.

    2016-09-01

    Low frequency noise has always been a challenge in propeller driven aircraft. At low frequencies passive noise treatments are not as efficient as active noise reduction systems. The Helmut-Schmidt-University has built up a full-scale test rig with an original A400M aircraft structure. This provides a good opportunity to develop and test active noise reduction systems in a realistic environment. The currently installed system consists of mechanical actuators and acoustical sensors. The actuators are called TVAs (Tuneable Vibration Absorber) and contain two spring-mass systems whose natural frequencies are adjusted to the BPFs (Blade Passage Frequency) of the propellers. The TVAs are mounted to the frames and the force direction is normal to the skin. The sensors are condenser microphones which are attached to the primary structure of the airframe. The TVAs are equipped with signal processing devices. These components carry out Fourier transforms and signal amplification for the sensor data and actuator signals. The communication between the TVAs and the central control unit is implemented by the CAN Bus protocol and mainly consists of complex coefficients for the sensor and actuator data. This paper describes the basic structure of the system, the hardware set-up and function tests of the controller.

  2. Calibration of an acoustic system for measuring 2-D temperature distribution around hydrothermal vents.

    PubMed

    Fan, Wei; Chen, Chen-Tung Arthur; Chen, Ying

    2013-04-01

    One of the fundamental purposes of quantitative acoustic surveys of seafloor hydrothermal vents is to measure their 2-D temperature distributions. Knowing the system latencies and the acoustic center-to-center distances between the underwater transducers in an acoustic tomography system is fundamental to the overall accuracy of the temperature reconstruction. However, commercial transducer sources typically do not supply the needed data. Here we present a novel calibration algorithm to automatically determine the system latencies and the acoustic center-to-center distances. The possible system latency error and the resulting temperature error are derived and analyzed. We have also developed the experimental setup for calibration. To validate the effectiveness of the proposed calibration method, an experimental study was performed on acoustic imaging of underwater temperature fields in Lake Qiezishan, located at Longling County, Yunnan Province, China. Using the calibrated data, the reconstructed temperature distributions closely resemble the actual distributions measured with thermocouples, thus confirming the effectiveness of our algorithm.

  3. Approaches to Adaptive Active Acoustic Noise Control at a Point Using Feedforward Techniques.

    NASA Astrophysics Data System (ADS)

    Zulch, Peter A.

    Active acoustic noise control systems have been of interest since their birth in the 1930's. The principle is to superimpose on an unwanted noise wave shape its inverse with the intention of destructive interference. This work presents two approaches to this idea. The first approach uses a direct design method to develop a controller using an auto-regressive moving-average (ARMA) model that will be used to condition the primary noise to produce the required anti-noise for cancellation. The development of this approach has shown that the stability of the controller relies heavily on a non-minimum phase model of the secondary noise path. For this reason, a second approach, using a controller consisting of two parts was developed. The first part of the controller is designed to cancel broadband noise and the second part is an adaptive controller designed to cancel periodic noise. A simple technique for identifying the parameters of the broadband controller is developed. An ARMA model is used, and it is shown that its stability is improved by prefiltering the test signal with a minimum-phase inverse of the secondary noise channel. The periodic controller uses an estimate of the fundamental frequency to cancel the first few harmonics of periodic noise. A computationally efficient adaptive technique based on least squares is developed for updating the harmonic controller gains at each time step. Experimental results are included for the broadband controller, the harmonic controller, and the combination of the two algorithms. The advantages of using both techniques in conjunction are shown using test cases involving both broadband noise and periodic noise.

  4. Testing and verification of a scale-model acoustic propagation system.

    PubMed

    Sagers, Jason D; Ballard, Megan S

    2015-12-01

    This paper discusses the design and operation of a measurement apparatus used to conduct scale-model underwater acoustic propagation experiments, presents experimental results for an idealized waveguide, and compares the measured results to data generated by two-dimensional (2D) and three-dimensional (3D) numerical models. The main objective of this paper is to demonstrate the capability of the apparatus for a simple waveguide that primarily exhibits 2D acoustic propagation. The apparatus contains a computer-controlled positioning system that accurately moves a receiving transducer in the water layer above a scale-model bathymetry while a stationary source transducer emits broadband pulsed waveforms. Experimental results are shown for a 2.133 m × 1.219 m bathymetric part possessing a flat-bottom bathymetry with a translationally invariant wedge of 10° slope along one edge. Beamformed results from a synthetic horizontal line array indicate the presence of strong in-plane arrivals along with weaker diffracted and horizontally refracted arrivals. A simulated annealing inversion method is applied to infer values for five waveguide parameters with the largest measurement uncertainty. The inferred values are then used in a 2D method of images model and a 3D adiabatic normal-mode model to simulate the measured acoustic data.

  5. Diversity of acoustic tracheal system and its role for directional hearing in crickets

    PubMed Central

    2013-01-01

    Background Sound localization in small insects can be a challenging task due to physical constraints in deriving sufficiently large interaural intensity differences (IIDs) between both ears. In crickets, sound source localization is achieved by a complex type of pressure difference receiver consisting of four potential sound inputs. Sound acts on the external side of two tympana but additionally reaches the internal tympanal surface via two external sound entrances. Conduction of internal sound is realized by the anatomical arrangement of connecting trachea. A key structure is a trachea coupling both ears which is characterized by an enlarged part in its midline (i.e., the acoustic vesicle) accompanied with a thin membrane (septum). This facilitates directional sensitivity despite an unfavorable relationship between wavelength of sound and body size. Here we studied the morphological differences of the acoustic tracheal system in 40 cricket species (Gryllidae, Mogoplistidae) and species of outgroup taxa (Gryllotalpidae, Rhaphidophoridae, Gryllacrididae) of the suborder Ensifera comprising hearing and non hearing species. Results We found a surprisingly high variation of acoustic tracheal systems and almost all investigated species using intraspecific acoustic communication were characterized by an acoustic vesicle associated with a medial septum. The relative size of the acoustic vesicle - a structure most crucial for deriving high IIDs - implies an important role for sound localization. Most remarkable in this respect was the size difference of the acoustic vesicle between species; those with a more unfavorable ratio of body size to sound wavelength tend to exhibit a larger acoustic vesicle. On the other hand, secondary loss of acoustic signaling was nearly exclusively associated with the absence of both acoustic vesicle and septum. Conclusion The high diversity of acoustic tracheal morphology observed between species might reflect different steps in the evolution

  6. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Liever, Peter A.

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  7. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  8. Seismic wave detection system based on fully distributed acoustic sensing

    NASA Astrophysics Data System (ADS)

    Jiang, Yue; Xu, Tuanwei; Feng, Shengwen; Huang, Jianfen; Yang, Yang; Guo, Gaoran; Li, Fang

    2016-11-01

    This paper presents a seismic wave detection system based on fully distributed acoustic sensing. Combined with Φ- OTDR and PGC demodulation technology, the system can detect and acquire seismic wave in real time. The system has a frequency response of 3.05 dB from 5 Hz to 1 kHz, whose sampling interval of each channel of 1 meter on total sensing distance up to 10 km. By comparing with the geophone in laboratory, the data show that in the time domain and frequency domain, two waveforms coincide consistently, and the correlation coefficient could be larger than 0.98. Through the analysis of the data of the array experiment and the oil well experiment, DAS system shows a consistent time domain and frequency domain response and a clearer trail of seismic wave signal as well as a higher signal-noise rate which indicate that the system we proposed is expected to become the next generation of seismic exploration equipment.

  9. The evaluation and control of acoustical standing waves1

    PubMed Central

    Krasnegor, Norman A.; Hodos, William

    1974-01-01

    Calibration of a standard pigeon box subsequently modified for use as an acoustical chamber in a frequency discrimination experiment revealed that the enclosure was not acoustically “flat”. Standing waves were detected at each of the six frequencies measured. To ascertain whether the maximum standing waves recorded (3.0 dB) could serve as an added or alternative cue for pigeons tested in the chamber on a frequency discrimination problem, pure-tone intensity difference thresholds were determined for two pigeons at 1.0, 2.0, and 3.0 KHz. The results of the experiment indicated that the smallest intensity difference detectable was 10.0 dB, a value that was 7.0 dB above the maximum standing wave measured in the box. These data suggest that the modified pigeon chamber is suitable to test pure-tone frequency discriminations in pigeons in the range of 1.0 to 3.0 KHz. PMID:16811783

  10. Active structural acoustic control of a smart cylindrical shell using a virtual microphone

    NASA Astrophysics Data System (ADS)

    Loghmani, Ali; Danesh, Mohammad; Kwak, Moon K.; Keshmiri, Mehdi

    2016-04-01

    This paper investigates the active structural acoustic control of sound radiated from a smart cylindrical shell. The cylinder is equipped with piezoelectric sensors and actuators to estimate and control the sound pressure that radiates from the smart shell. This estimated pressure is referred to as a virtual microphone, and it can be used in control systems instead of actual microphones to attenuate noise due to structural vibrations. To this end, the dynamic model for the smart cylinder is derived using the extended Hamilton’s principle, the Sanders shell theory and the assumed mode method. The simplified Kirchhoff-Helmholtz integral estimates the far-field sound pressure radiating from the baffled cylindrical shell. A modified higher harmonic controller that can cope with a harmonic disturbance is designed and experimentally evaluated. The experimental tests were carried out on a baffled cylindrical aluminum shell in an anechoic chamber. The frequency response for the theoretical virtual microphone and the experimental actual microphone are in good agreement with each other, and the results show the effectiveness of the designed virtual microphone and controller in attenuating the radiated sound.

  11. Acoustic beam control in biomimetic projector via velocity gradient

    NASA Astrophysics Data System (ADS)

    Gao, Xiaowei; Zhang, Yu; Cao, Wenwu; Dong, Erqian; Song, Zhongchang; Li, Songhai; Tang, Liguo; Zhang, Sai

    2016-07-01

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  12. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  13. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  14. Acoustic Emission Based Surveillance System for Prediction of Stress Fractures

    DTIC Science & Technology

    2007-09-01

    withstand irrigation. The transducers were mounted on the specimen using cyanoacrylate glue . The acoustic emission signal from the transducers was...respectively. An acoustic emission transducer (Pico, PAC, NJ) was mounted at the mid-span of the specimens using cyanoacrylate glue . Signal from the

  15. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, A.M.; Osbourn, G.C.

    1998-07-28

    The present invention teaches systems and methods for verifying or recognizing a person`s identity based on measurements of the acoustic response of the individual`s ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications. 5 figs.

  16. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.

  17. Methods And Systems For Using Reference Images In Acoustic Image Processing

    DOEpatents

    Moore, Thomas L.; Barter, Robert Henry

    2005-01-04

    A method and system of examining tissue are provided in which a field, including at least a portion of the tissue and one or more registration fiducials, is insonified. Scattered acoustic information, including both transmitted and reflected waves, is received from the field. A representation of the field, including both the tissue and the registration fiducials, is then derived from the received acoustic radiation.

  18. Field performance of an acoustic scour-depth monitoring system

    USGS Publications Warehouse

    Mason, Jr., Robert R.; Sheppard, D. Max

    1994-01-01

    The Herbert C. Bonner Bridge over Oregon Inlet serves as the only land link between Bodie and Hatteras Islands, part of the Outer Banks of North Carolina. Periodic soundings over the past 30 years have documented channel migration, local scour, and deposition at several pilings that support the bridge. In September 1992, a data-collection system was installed to permit the off-site monitoring of scour at 16 bridge pilings. The system records channel-bed elevations at 15-minute intervals and transmits the data to a satellite receiver. A cellular phone connection also permits downloading and reviewing of the data as they are being collected. A digitally recording, acoustic fathometer is the main component of the system. In November 1993, current velocity, water-surface elevation, wave characteristics, and water temperature measuring instruments were also deployed at the site. Several performance problems relating to the equipment and to the harsh marine environment have not been resolved, but the system has collected and transmitted reliable scour-depth and water-level data.

  19. A wireless data acquisition system for acoustic emission testing

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. T.; Lynch, J. P.

    2013-01-01

    As structural health monitoring (SHM) systems have seen increased demand due to lower costs and greater capabilities, wireless technologies have emerged that enable the dense distribution of transducers and the distributed processing of sensor data. In parallel, ultrasonic techniques such as acoustic emission (AE) testing have become increasingly popular in the non-destructive evaluation of materials and structures. These techniques, which involve the analysis of frequency content between 1 kHz and 1 MHz, have proven effective in detecting the onset of cracking and other early-stage failure in active structures such as airplanes in flight. However, these techniques typically involve the use of expensive and bulky monitoring equipment capable of accurately sensing AE signals at sampling rates greater than 1 million samples per second. In this paper, a wireless data acquisition system is presented that is capable of collecting, storing, and processing AE data at rates of up to 20 MHz. Processed results can then be wirelessly transmitted in real-time, creating a system that enables the use of ultrasonic techniques in large-scale SHM systems.

  20. Acoustic Resonators for Far-Field Control of Sound on a Subwavelength Scale

    NASA Astrophysics Data System (ADS)

    Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2011-08-01

    We prove experimentally that broadband sounds can be controlled and focused at will on a subwavelength scale by using acoustic resonators. We demonstrate our approach in the audible range with soda cans, that is, Helmholtz resonators, and commercial computer speakers. We show that diffraction-limited sound fields convert efficiently into subdiffraction modes in the collection of cans that can be controlled coherently in order to obtain focal spots as thin as 1/25 of a wavelength in air. We establish that subwavelength acoustic pressure spots are responsible for a strong enhancement of the acoustic displacement at focus, which permits us to conclude with a visual experiment exemplifying the interest of our concept for subwavelength sensors and actuators.

  1. Acoustic Imaging of Combustion Noise

    NASA Technical Reports Server (NTRS)

    Ramohalli, K. N.; Seshan, P. K.

    1984-01-01

    Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.

  2. Improving acoustic streaming effects in fluidic systems by matching SU-8 and polydimethylsiloxane layers.

    PubMed

    Catarino, S O; Minas, G; Miranda, J M

    2016-07-01

    This paper reports the use of acoustic waves for promoting and improving streaming in tridimensional polymethylmethacrylate (PMMA) cuvettes of 15mm width×14mm height×2.5mm thickness. The acoustic waves are generated by a 28μm thick poly(vinylidene fluoride) - PVDF - piezoelectric transducer in its β phase, actuated at its resonance frequency: 40MHz. The acoustic transmission properties of two materials - SU-8 and polydimethylsiloxane (PDMS) - were numerically compared. It was concluded that PDMS inhibits, while SU-8 allows, the transmission of the acoustic waves to the propagation medium. Therefore, by simulating the acoustic transmission properties of different materials, it is possible to preview the acoustic behavior in the fluidic system, which allows the optimization of the best layout design, saving costs and time. This work also presents a comparison between numerical and experimental results of acoustic streaming obtained with that β-PVDF transducer in the movement and in the formation of fluid recirculation in tridimensional closed domains. Differences between the numerical and experimental results are credited to the high sensitivity of acoustic streaming to the experimental conditions and to limitations of the numerical method. The reported study contributes for the improvement of simulation models that can be extremely useful for predicting the acoustic effects of new materials in fluidic devices, as well as for optimizing the transducers and matching layers positioning in a fluidic structure.

  3. Confining capillary waves to control aerosol droplet size from surface acoustic wave nebulisation

    NASA Astrophysics Data System (ADS)

    Nazarzadeh, Elijah; Reboud, Julien; Wilson, Rab; Cooper, Jonathan M.

    Aerosols play a significant role in targeted delivery of medication through inhalation of drugs in a droplet form to the lungs. Delivery and targeting efficiencies are mainly linked to the droplet size, leading to a high demand for devices that can produce aerosols with controlled sizes in the range of 1 to 5 μm. Here we focus on enabling the control of the droplet size of a liquid sample nebulised using surface acoustic wave (SAW) generated by interdigitated transducers on a piezoelectric substrate (lithium niobate). The formation of droplets was monitored through a high-speed camera (600,000 fps) and the sizes measured using laser diffraction (Spraytec, Malvern Ltd). Results show a wide droplet size distribution (between 0.8 and 400 μm), while visual observation (at fast frame rates) revealed that the large droplets (>100 μm) are ejected due to large capillary waves (80 to 300 μm) formed at the free surface of liquid due to leakage of acoustic radiation of the SAWs, as discussed in previous literature (Qi et al. Phys Fluids, 2008). To negate this effect, we show that a modulated structure, specifically with feature sizes, typically 200 μm, prevents formation of large capillary waves by reducing the degrees of freedom of the system, enabling us to obtain a mean droplet size within the optimum range for drug delivery (<10 μm). This work was supported by an EPSRC grant (EP/K027611/1) and an ERC Advanced Investigator Award (340117-Biophononics).

  4. OPTIMUM SYSTEMS CONTROL,

    DTIC Science & Technology

    Variational calculus and continuous optimal control, (4) The maximum principle and Hamilton Jacobi theory, (5) Optimum systems control examples, (6...Discrete variational calculus and the discrete maximum principle, (7) Optimum control of distributed parameter systems, (8) Optimum state estimation in

  5. Laser method of acoustical emission control from vibrating surfaces

    NASA Astrophysics Data System (ADS)

    Motyka, Zbigniew

    2013-01-01

    For limitation of the noise in environment, the necessity occurs of determining and location of sources of sounds emitted from surfaces of many machines and devices, assuring in effect the possibility of suitable constructional changes implementation, targeted at decreasing of their nuisance. In the paper, the results of tests and calculations are presented for plane surface sources emitting acoustic waves. The tests were realized with the use of scanning laser vibrometer which enabled remote registration and the spectral analysis of the surfaces vibrations. The known hybrid digital method developed for determination of sound wave emission from such surfaces divided into small finite elements was slightly modified by distinguishing the phase correlations between such vibrating elements. The final method being developed may find use in wide range of applications for different forms of vibrations of plane surfaces.

  6. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  7. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2015-11-20

    environments. The second area of work is that of characterizing the performance of adaptive equalizers in order to evaluate di↵erent system configuration trade...the optimal partition- ing of a large-N array of hydrophones into subarrays for coherent processing by adaptive equalizers before combining the...Underwater Acoustic Communications. (Pajovic and Preisig) and lends new insights into the roles of subarrays and feedback filters play in adaptive

  8. Multivariable Control Systems

    DTIC Science & Technology

    1968-01-01

    one). Examples abound of systems with numerous controlled variables, and the modern tendency is toward ever greater utilization of systems and plants of this kind. We call them multivariable control systems (MCS).

  9. Passive control of flow-excited acoustic resonance in rectangular cavities using upstream mounted blocks

    NASA Astrophysics Data System (ADS)

    Shaaban, Mahmoud; Mohany, Atef

    2015-04-01

    A passive method for controlling the flow-excited acoustic resonance resulting from subsonic flows over rectangular cavities in channels is investigated. A cavity with length to depth ratio of is tested in air flow of Mach number up to 0.45. When the acoustic resonance is excited, the sound pressure level in the cavity reaches 162 dB. Square blocks are attached to the surface of the channel and centred upstream of the cavity leading edge to suppress the flow-excited acoustic resonance in the cavity. Six blocks of different widths are tested at three different upstream distances. The results show that significant attenuation of up to 30 dB of the excited sound pressure level is achieved using a block with a width to height ratio of 3, while blocks that fill the whole width of the channel amplify the pressure of the excited acoustic resonance. Moreover, it is found that placing the block upstream of the cavity causes the onset of the acoustic resonance to occur at higher flow velocities. In order to investigate the nature of the interactions that lead to suppression of the acoustic resonance and to identify the changes in flow patterns due to the placement of the block, 2D measurements of turbulence intensity in the shear layer and the block wake region are performed. The location of the flow reattachment point downstream of the block relative to the shear layer separation point has a major influence on the suppression level of the excited acoustic resonance. Furthermore, higher attenuation of noise is related to lower span-wise correlation of the shear-layer perturbation.

  10. Acoustic systems containing curved duct sections. [numerical analysis of wave propagation in acoustic ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1975-01-01

    The analysis of waves in bends in acoustical ducting of rectangular cross section was extended to the study of motion near discontinuities. This included determination of the characteristics of the tangential and radial components of the nonpropagating modes. It is established that attenuation of the nonpropagating modes strongly depends on frequency and that, in general, the sharper the bend, the less attenuation may be expected. Evaluation of a bend's impedance and of impedance-generated reflections is also presented in detail.

  11. Experimental characterization of active acoustic metamaterial cell with controllable dynamic density

    NASA Astrophysics Data System (ADS)

    Akl, Wael; Baz, Amr

    2012-10-01

    Controlling wave propagation pattern within acoustic fluid domains has been the motivation for the acoustic metamaterials developments to target applications ranging from acoustic cloaking to passive noise control techniques. Currently, various numerical and analytical approaches exist to predict the fluid domain material properties necessary for specific propagation pattern. Physical attempts to realize such material properties have revealed engineered material constructions that are focused on predefined wave propagation patterns. In the current paper, coupled fluid-structure one-dimensional metamaterial cell, in which piezoelectric active ingredient has been introduced, is manufactured to achieve controllable dynamic density. The density-controllable cell has been manufactured by coupling a water-filled cavity with piezoelectric elements in a cell of 4.5 cm length and 4.1 cm diameter subject to impulse excitation. A finite element model of the cell has been developed and its predictions are validated against the experimental results. The validated model is utilized to predict the changes in the pressure gradient inside the developed cell which is a direct measure of the changes introduced to the dynamic density of the acoustic metamaterial domain. With such predictions, it is demonstrated that densities as high as 3.2 gm/cm3 and as low as 0.72 gm/cm3 can be achieved experimentally for excitation frequencies ranging between 100 Hz and 500 Hz.

  12. MTR, TRA603. CONTROL ROOM DETAILS. ACOUSTIC PLASTER CEILING, USHAPED CONSOLE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, TRA-603. CONTROL ROOM DETAILS. ACOUSTIC PLASTER CEILING, U-SHAPED CONSOLE, INSTRUMENT PANELS, GLASS DOOR, ASPHALT TILE FLOOR AND COLORS. BLAW-KNOX 3150-803-11, 10/1950. INL INDEX NO. 531-0603-00-098-100570, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Acoustics in Research Facilities--Control of Wanted and Unwanted Sound. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Newman, Robert B.

    Common and special acoustics problems are discussed in relation to the design and construction of research facilities. Following a brief examination of design criteria for the control of wanted and unwanted sound, the technology for achieving desired results is discussed. Emphasis is given to various design procedures and materials for the control…

  14. Publications in acoustics and noise control from the NASA Langley Research Center during 1940 - 1974

    NASA Technical Reports Server (NTRS)

    Smith, G. C. (Compiler); Laneave, J. N. (Compiler)

    1975-01-01

    This document contains reference lists of published Langley Research Center papers in various areas of acoustics and noise control for the period 1940-1974. The research work was performed either in-house by the center staff or by other personnel supported entirely or in part by grants or contracts. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics, (2) Propagation and operations, (3) Rotating blade noise, (4) Jet noise, (5) Sonic boom, (6) Flow-surface interaction noise, (7) Human response, and (8) Structural response.

  15. Acoustic Resonance Spectroscopy (ARS) Munition Classification System enhancements. Final report

    SciTech Connect

    Vela, O.A.; Huggard, J.C.

    1997-09-18

    Acoustic Resonance Spectroscopy (ARS) is a non-destructive evaluation technology developed at the Los Alamos National Laboratory (LANL). This technology has resulted in three generations of instrumentation, funded by the Defense Special Weapons Agency (DSWA), specifically designed for field identification of chemical weapon (CW) munitions. Each generation of ARS instrumentation was developed with a specific user in mind. The ARS1OO was built for use by the U.N. Inspection Teams going into Iraq immediately after the Persian Gulf War. The ARS200 was built for use in the US-Russia Bilateral Chemical Weapons Treaty (the primary users for this system are the US Onsite Inspection Agency (OSIA) and their Russian counterparts). The ARS300 was built with the requirements of the Organization for the Prohibition of Chemical Weapons (OPCW) in mind. Each successive system is an improved version of the previous system based on learning the weaknesses of each and, coincidentally, on the fact that more time was available to do a requirements analysis and the necessary engineering development. The ARS300 is at a level of development that warrants transferring the technology to a commercial vendor. Since LANL will supply the computer software to the selected vendor, it is possible for LANL to continue to improve the decision algorithms, add features where necessary, and adjust the user interface before the final transfer occurs. This paper describes the current system, ARS system enhancements, and software enhancements. Appendices contain the Operations Manual (software Version 3.01), and two earlier reports on enhancements.

  16. Acoustical vortices on a Chip for 3D single particle manipulation and vorticity control

    NASA Astrophysics Data System (ADS)

    Riaud, Antoine; Thomas, Jean-Louis; Bou Matar, Olivier; Baudoin, Michael

    Surface acoustic waves offer most of the basic functions required for on-chip actuation of fluids at small scales: efficient flow mixing, integrated pumping, particles separation, droplet displacement, atomization, division and fusion. Nevertheless some more advanced functions such as 3D particles manipulation and vorticity control require the introduction of some specific kind of waves called acoustic vortices. These helical waves propagate spinning around a phase singularity called the dark core. On the one hand, the beam angular momentum can be transferred to the fluid and create point-wise vorticity for confined mixing, and on the other the dark core can trap individual particles in an acoustic well for single object manipulation. In this presentation, I will show how acoustical vortices on-a-chip can be synthesized with a programmable electronics and an array of transducers. I will then highlight how some of their specificities can be used for acoustical tweezing and twisting. This work is supported by ANR Project No. ANR-12-BS09-0021-01 and ANR-12- BS09-0021-02, and Rgion Nord Pas de Calais.

  17. Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control

    SciTech Connect

    Kelley, N.D.; McKenna, H.E.; Hemphill, R.R.; Etter, C.L.; Garrelts, R.L.; Linn, N.C.

    1985-02-01

    This report summarizes extensive research by staff of the Solar Energy Research Institute and its subcontractors conducted to establish the origin and possible amelioration of acoustic disturbances associated with the operation of the DOE/NASA MOD-1 wind turbine installed in 1979 near Boone, North Carolina. Results have shown that the source of this acoustic annoyance was the transient, unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the low-frequency, acoustic impulses propagated into the structures in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing. Several techniques for reducing the abrupt, unsteady blade load transients were researched and are discussed in the report.

  18. Analytical models for use in fan inflow control structure design. Inflow distortion and acoustic transmission models

    NASA Technical Reports Server (NTRS)

    Gedge, M. R.

    1979-01-01

    Analytical models were developed to study the effect of flow contraction and screening on inflow distortions to identify qualitative design criteria. Results of the study are that: (1) static testing distortions are due to atmospheric turbulence, nacelle boundary layer, exhaust flow reingestion, flow over stand, ground plane, and engine casing; (2) flow contraction suppresses, initially, turbulent axial velocity distortions and magnifies turbulent transverse velocity distortions; (3) perforated plate and gauze screens suppress axial components of velocity distortions to a degree determined by the screen pressure loss coefficient; (4) honeycomb screen suppress transverse components of velocity distortions to a degree determined by the length to diameter ratio of the honeycomb; (5) acoustic transmission loss of perforated plate is controlled by the reactance of its acoustic impedance; (6) acoustic transmission loss of honeycomb screens is negligible; and (7) a model for the direction change due to a corner between honeycomb panels compares favorably with measured data.

  19. DIASCoPE: Directly integrated acoustic system combined with pressure experiments—A new method for fast acoustic velocity measurements at high pressure

    NASA Astrophysics Data System (ADS)

    Whitaker, Matthew L.; Baldwin, Kenneth J.; Huebsch, William R.

    2017-03-01

    A new experimental system to measure elastic wave velocities in samples in situ under extreme conditions of pressure and temperature in a multi-anvil apparatus has been installed at Beamline 6-BM-B of the Advanced Photon Source at Argonne National Laboratory. This system allows for measurement of acoustic velocities via ultrasonic interferometry, and makes use of the synchrotron beam to measure sample densities via X-ray diffraction and sample lengths using X-radiographic imaging. This system is fully integrated into the automated software controls of the beamline and is capable of collecting robust data on elastic wave travel times in less than 1 s, which is an improvement of more than one to two orders of magnitude over existing systems. Moreover, this fast data collection time has been shown to have no effect on the obtained travel time results. This allows for more careful study of time-dependent phenomena with tighter snapshots in time of processes that would otherwise be lost or averaged out in other acoustic measurement systems.

  20. Simultaneous acoustic and dielectric real time curing monitoring of epoxy systems

    NASA Astrophysics Data System (ADS)

    Gkikas, G.; Saganas, Ch.; Grammatikos, S. A.; Aggelis, D. G.; Paipetis, A. S.

    2012-04-01

    The attainment of structural integrity of the reinforcing matrix in composite materials is of primary importance for the final properties of the composite structure. The detailed monitoring of the curing process on the other hand is paramount (i) in defining the optimal conditions for the impregnation of the reinforcement by the matrix (ii) in limiting the effects of the exotherm produced by the polymerization reaction which create unwanted thermal stresses and (iii) in securing optimal behavior in matrix controlled properties, such as off axis or shear properties and in general the durability of the composite. Dielectric curing monitoring is a well known technique for distinguishing between the different stages of the polymerization of a typical epoxy system. The technique successfully predicts the gelation and the vitrification of the epoxy and has been extended for the monitoring of prepregs. Recent work has shown that distinct changes in the properties of the propagated sound in the epoxy which undergoes polymerization is as well directly related to the gelation and vitrification of the resin, as well as to the attainment of the final properties of the resin system. In this work, a typical epoxy is simultaneously monitored using acoustic and dielectric methods. The system is isothermally cured in an oven to avoid effects from the polymerization exotherm. Typical broadband sensors are employed for the acoustic monitoring, while flat interdigital sensors are employed for the dielectric scans. All stages of the polymerization process were successfully monitored and the validity of both methods was cross checked and verified.

  1. Network Model of a Thermo-Acoustic Heat Engine Assisted with Unsteady CFD and System Identification

    NASA Astrophysics Data System (ADS)

    Selimefendigil, F.

    2011-09-01

    A thermo-acoustic stack with a linear temperature gradient has been identified with computational fluid dynamics (CFD) in response to forcing with acoustic velocity and pressure fluctuations at the inlet and outlet of the stack, respectively. Linear transfer matrix of the multiple input, multiple output system (MIMO) has been determined. This transfer matrix is then integrated into a network model of the full thermo-acoustic heat engine. Results for the eigenvalues have been compared between the analytically developed stack and identified stack assisted with CFD and system identification.

  2. Feature extraction from time domain acoustic signatures of weapons systems fire

    NASA Astrophysics Data System (ADS)

    Yang, Christine; Goldman, Geoffrey H.

    2014-06-01

    The U.S. Army is interested in developing algorithms to classify weapons systems fire based on their acoustic signatures. To support this effort, an algorithm was developed to extract features from acoustic signatures of weapons systems fire and applied to over 1300 signatures. The algorithm filtered the data using standard techniques then estimated the amplitude and time of the first five peaks and troughs and the location of the zero crossing in the waveform. The results were stored in Excel spreadsheets. The results are being used to develop and test acoustic classifier algorithms.

  3. Juvenile Salmon Acoustic Telemetry System Transmitter Downsize Assessment

    SciTech Connect

    Carlson, Thomas J.; Myjak, Mitchell J.

    2010-04-30

    At the request of the U.S. Army Corps of Engineers, Portland District, researchers from Pacific Northwest National Laboratory investigated the use of an application-specific integrated circuit (ASIC) to reduce the weight and volume of Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters while retaining current functionality. Review of the design of current JSATS transmitters identified components that could be replaced by an ASIC while retaining the function of the current transmitter and offering opportunities to extend function if desired. ASIC design alternatives were identified that could meet transmitter weight and volume targets of 200 mg and 100 mm3. If alternatives to the cylindrical batteries used in current JSATS transmitters can be identified, it could be possible to implant ASIC-based JSATS transmitters by injection rather than surgery. Using criteria for the size of fish suitable for surgical implantation of current JSATS transmitters, it was concluded that fish as small as 70 mm in length could be implanted with an ASIC-based transmitter, particularly if implantation by injection became feasible.

  4. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  5. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-type Structure.

    PubMed

    Thomas, Gilles; Andrade, Marco Aurelio; Adamowski, Julio; Silva, Emilio

    2017-02-23

    A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21 kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the Finite Element Method (FEM). Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.

  6. Deep water pipeline intervention work with an acoustically controlled power module

    SciTech Connect

    Conter, A.; Launaro, F.; Bigoni, G.

    1995-12-31

    The stabilisation of submarine pipeline free spans along uneven sea bottoms is conventionally performed using technologies such as gravel dumping, post trenching, matresses installation etc.. A new technology has been developed to support free spans along the 26 inches Transmed Gas Pipelines crossing the Sicily Channel in water depths ranging from 50m to 510m. This technology is based on the pipeline mechanical supports {open_quotes}Atlantis{close_quotes} and their installation module {open_quotes}Pegaso{close_quotes} and was developed having in mind requirements such as short installation time, system redundancy, operational flexibility and simple interface with the support vessel. The installation time reduction is achieved by automatic operational procedures which are acoustically controlled from surface. Power is stored inside two dedicated battery packs placed onboard Pegaso; no umbilical cable is necessary so that a vessel equipped with a normal crane is enough to launch and operate the system. Marine operations carried out in 1993 showed that a support can be installed in about one hour; in good weather conditions three Atlantis were installed in 24 hours including deck operations for recharging the battery packs; as a total sixteen supports were installed along the 4th and 5th Transmed Gas Pipelines. The system has proved to be a cost effective and flexible alternative to conventional technologies for free span support, especially in deep waters. A cost/benefit analysis also shows the breakeven point of the new technology versus gravel dumping.

  7. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles.

    PubMed

    Srivastava, Kyle H; Elemans, Coen P H; Sober, Samuel J

    2015-10-21

    The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output.

  8. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles

    PubMed Central

    Srivastava, Kyle H.; Elemans, Coen P.H.

    2015-01-01

    The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output. PMID:26490859

  9. Analysis of the Role of Update Rate and System Latency in Interactive Virtual Acoustic Environments

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Ahumada, Albert (Technical Monitor); Schlickenmaier, Herbert (Technical Monitor); Johnson, Gerald (Technical Monitor); Frey, Mary Anne (Technical Monitor); Schneider, Victor S. (Technical Monitor)

    1997-01-01

    The ultimate goal of virtual acoustics is to simulate the complex acoustic field experienced by a listener freely moving around within an environment. This paper discusses some of the engineering constraints that may be faced during implementation and the perceptual consequences of these constraints. In particular, the perceptual impact of parameters like the update rate and overall system latency of interactive spatial audio systems is addressed.

  10. The acoustics and unsteady wall pressure of a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Silver, Jonathan C.

    A Circulation Control (CC) airfoil uses a wall jet exiting onto a rounded trailing edge to generate lift via the Coanda effect. The aerodynamics of the CC airfoil have been studied extensively. The acoustics of the airfoil are, however, much less understood. The primary goal of the present work was to study the radiated sound and unsteady surface pressures of a CC airfoil. The focus of this work can be divided up into three main categories: characterizing the unsteady surface pressures, characterizing the radiated sound, and understanding the acoustics from surface pressures. The present work is the first to present the unsteady surface pressures from the trailing edge cylinder of a circulation control airfoil. The auto-spectral density of the unsteady surface pressures at various locations around the trailing edge are presented over a wide range of the jets momentum coefficient. Coherence of pressure and length scales were computed and presented. Single microphone measurements were made at a range of angles for a fixed observer distance in the far field. Spectra are presented for select angles to show the directivity of the airfoil's radiated sound. Predictions of the acoustics were made from unsteady surface pressures via Howe's curvature noise model and a modified Curle's analogy. A summary of the current understanding of the acoustics from a CC airfoil is given along with suggestions for future work.

  11. Time and timing in the acoustic recognition system of crickets

    PubMed Central

    Hennig, R. Matthias; Heller, Klaus-Gerhard; Clemens, Jan

    2014-01-01

    The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast in a long trill or as a chirped song. This pattern appears to be analyzed on two timescales, short and long. Recent evidence suggests that song recognition in crickets relies on two computations with respect to time; a short linear-nonlinear (LN) model that operates as a filter for pulse rate and a longer integration time window for monitoring song energy over time. Therefore, there is a twofold role for timing. A filter for pulse rate shows differentiating properties for which the specific timing of excitation and inhibition is important. For an integrator, however, the duration of the time window is more important than the precise timing of events. Here, we first review evidence for the role of LN-models and integration time windows for song recognition in crickets. We then parameterize the filter part by Gabor functions and explore the effects of duration, frequency, phase, and offset as these will correspond to differently timed patterns of excitation and inhibition. These filter properties were compared with known preference functions of crickets and katydids. In a comparative approach, the power for song discrimination by LN-models was tested with the songs of over 100 cricket species. It is demonstrated how the acoustic signals of crickets occupy a simple 2-dimensional space for song recognition that arises from timing, described by a Gabor function, and time, the integration window. Finally, we discuss the evolution of recognition systems in insects based on simple sensory computations. PMID:25161622

  12. Comparison of STRUCTURAL-ACOUSTIC Control Designs on AN Active Composite Panel

    NASA Astrophysics Data System (ADS)

    BINGHAM, B.; ATALLA, M. J.; HAGOOD, N. W.

    2001-07-01

    This work presents a comparison of three technologies for structural-acoustic control that, while prevalent in the literature, had not been compared on a single structure. The comparison is generalizable because the techniques are implemented on a panel structure representative of a more complex structure (e.g., an aircraft fuselage, a submarine vehicle hull, a satellite payload shroud, etc.). The test-bed used for this comparison is a carbon-fiber composite panel manufactured with embedded active fiber composite actuators. Since such integrated structures constitute a continued avenue of research, the manufacturing and performance of this structure is illustrated. The design of the test-bed is guided by an effort to achieve a dynamic response similar to a single panel in a typical aircraft or rotorcraft fuselage.Existing active control architectures for broadband acoustic radiation reduction are compared both analytically and experimentally on a representative structure to quantify the capabilities and limitations of the existing control methodologies. Specifically, three broad categories of control are compared: classical feedback (rate feedback), optimal feedback (linear quadratic Gaussian), and adaptive feedforward control (x -filtered least mean square). The control architectures implemented during this study are all single-input/single-output in order to allow a fair comparison of the issues involved in the design, as well as the use and performance of each approach. Both the vibration and the acoustic performance are recorded for each experiment under equivalent conditions to allow a generalizable comparison. Experimental results lead to conclusions pertaining to the application of active structural-based control to improve the acoustic performance of more complex structures.

  13. Birth Control Pills and Nonprofessional Voice: Acoustic Analyses

    ERIC Educational Resources Information Center

    Amir, Ofer; Biron-Shental, Tal; Shabtai, Esther

    2006-01-01

    Purpose: Two studies are presented here. Study 1 was aimed at evaluating whether the voice characteristics of women who use birth control pills that contain different progestins differ from the voice characteristics of a control group. Study 2 presents a meta-analysis that combined the results of Study 1 with those from 3 recent studies that…

  14. Target spectrum matrix definition for multiple-input- multiple-output control strategies applied on direct-field- acoustic-excitation tests

    NASA Astrophysics Data System (ADS)

    Alvarez Blanco, M.; Janssens, K.; Bianciardi, F.

    2016-09-01

    During the last two decades there have been several improvements on environmental acoustic qualification testing for launch and space vehicles. Direct field excitation (DFAX) tests using Multiple-Input-Multiple-Output (MIMO) control strategies seems to become the most cost-efficient way for component and subsystem acoustic testing. However there are still some concerns about the uniformity and diffusivity of the acoustic field produced by direct field testing. Lately, much of the documented progresses aimed to solve the non-uniformity of the field by altering the sound pressure level requirement, limiting responses and adding or modifying control microphones positions. However, the first two solutions imply modifying the qualification criteria, which could lead to under-testing, potentially risking the mission. Furthermore, adding or moving control microphones prematurely changes the system configuration, even if it is an optimal geometric layout in terms of wave interference patterns control. This research investigates the target definition as an initial condition for the acoustic MIMO control. Through experiments it is shown that for a given system configuration the performance of a DFAX test strongly depends on the target definition procedure. As output of this research a set of descriptors are presented describing a phenomenon defined as “Energy- sink”.

  15. Development and evaluation of new coupling system for lower limb prostheses with acoustic alarm system.

    PubMed

    Eshraghi, Arezoo; Osman, Noor Azuan Abu; Gholizadeh, Hossein; Ahmadian, Jalil; Rahmati, Bizhan; Abas, Wan Abu Bakar Wan

    2013-01-01

    Individuals with lower limb amputation need a secure suspension system for their prosthetic devices. A new coupling system was developed that is capable of suspending the prosthesis. The system's safety is ensured through an acoustic alarm system. This article explains how the system works and provides an in vivo evaluation of the device with regard to pistoning during walking. The system was designed to be used with silicone liners and is based on the requirements of prosthetic suspension systems. Mechanical testing was performed using a universal testing machine. The pistoning during walking was measured using a motion analysis system. The new coupling device produced significantly less pistoning compared to a common suspension system (pin/lock). The safety alarm system would buzz if the suspension was going to fail. The new coupling system could securely suspend the prostheses in transtibial amputees and produced less vertical movement than the pin/lock system.

  16. Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong.

    PubMed

    Mencio, Caitlin; Kuberan, Balagurunathan; Goller, Franz

    2017-02-01

    Neural control of complex vocal behaviors, such as birdsong and speech, requires integration of biomechanical nonlinearities through muscular output. Although control of airflow and tension of vibrating tissues are known functions of vocal muscles, it remains unclear how specific muscle characteristics contribute to specific acoustic parameters. To address this gap, we removed heparan sulfate chains using heparitinases to perturb neuromuscular transmission subtly in the syrinx of adult male zebra finches (Taeniopygia guttata). Infusion of heparitinases into ventral syringeal muscles altered their excitation threshold and reduced neuromuscular transmission changing their ability to modulate airflow. The changes in muscle activation dynamics caused a reduction in frequency modulation rates and elimination of many high-frequency syllables but did not alter the fundamental frequency of syllables. Sound amplitude was reduced and sound onset pressure was increased, suggesting a role of muscles in the induction of self-sustained oscillations under low-airflow conditions, thus enhancing vocal efficiency. These changes were reversed to preinfusion levels by 7 days after infusion. These results illustrate complex interactions between the control of airflow and tension and further define the importance of syringeal muscle in the control of a variety of acoustic song characteristics. In summary, the findings reported here show that altering neuromuscular transmission can lead to reversible changes to the acoustic structure of song. Understanding the full extent of muscle involvement in song production is critical in decoding the motor program for the production of complex vocal behavior, including our search for parallels between birdsong and human speech motor control.

  17. System and method for investigating sub-surface features of a rock formation using compressional acoustic sources

    DOEpatents

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-09-27

    A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to the borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.

  18. TU-F-CAMPUS-I-04: Head-Only Asymmetric Gradient System Evaluation: ACR Image Quality and Acoustic Noise

    SciTech Connect

    Weavers, P; Shu, Y; Tao, S; Bernstein, M; Lee, S; Piel, J; Foo, T; Mathieu, J-B

    2015-06-15

    Purpose: A high-performance head-only magnetic resonance imaging gradient system with an acquisition volume of 26 cm employing an asymmetric design for the transverse coils has been developed. It is able to reach a magnitude of 85 mT/m at a slew rate of 700 T/m/s, but operated at 80 mT/m and 500 T/m/s for this test. A challenge resulting from this asymmetric design is that the gradient nonlinearly exhibits both odd- and even-ordered terms, and as the full imaging field of view is often used, the nonlinearity is pronounced. The purpose of this work is to show the system can produce clinically useful images after an on-site gradient nonlinearity calibration and correction, and show that acoustic noise levels fall within non-significant risk (NSR) limits for standard clinical pulse sequences. Methods: The head-only gradient system was inserted into a standard 3T wide-bore scanner without acoustic damping. The ACR phantom was scanned in an 8-channel receive-only head coil and the standard American College of Radiology (ACR) MRI quality control (QC) test was performed. Acoustic noise levels were measured for several standard pulse sequences. Results: Images acquired with the head-only gradient system passed all ACR MR image quality tests; Both even and odd-order gradient distortion correction terms were required for the asymmetric gradients to pass. Acoustic noise measurements were within FDA NSR guidelines of 99 dBA (with assumed 20 dBA hearing protection) A-weighted and 140 dB for peak for all but one sequence. Note the gradient system was installed without any shroud or acoustic batting. We expect final system integration to greatly reduce noise experienced by the patient. Conclusion: A high-performance head-only asymmetric gradient system operating at 80 mT/m and 500 T/m/s conforms to FDA acoustic noise limits in all but one case, and passes all the ACR MR image quality control tests. This work was supported in part by the NIH grant 5R01EB010065.

  19. A survey on acoustic signature recognition and classification techniques for persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Alkilani, Amjad

    2012-06-01

    Application of acoustic sensors in Persistent Surveillance Systems (PSS) has received considerable attention over the last two decades because they can be rapidly deployed and have low cost. Conventional utilization of acoustic sensors in PSS spans a wide range of applications including: vehicle classification, target tracking, activity understanding, speech recognition, shooter detection, etc. This paper presents a current survey of physics-based acoustic signature classification techniques for outdoor sounds recognition and understanding. Particularly, this paper focuses on taxonomy and ontology of acoustic signatures resulted from group activities. The taxonomy and supportive ontology considered include: humanvehicle, human-objects, and human-human interactions. This paper, in particular, exploits applicability of several spectral analysis techniques as a means to maximize likelihood of correct acoustic source detection, recognition, and discrimination. Spectral analysis techniques based on Fast Fourier Transform, Discrete Wavelet Transform, and Short Time Fourier Transform are considered for extraction of features from acoustic sources. In addition, comprehensive overviews of most current research activities related to scope of this work are presented with their applications. Furthermore, future potential direction of research in this area is discussed for improvement of acoustic signature recognition and classification technology suitable for PSS applications.

  20. Active control of acoustic radiation from laminated cylindrical shells integrated with a piezoelectric layer

    NASA Astrophysics Data System (ADS)

    Cao, Xiongtao; Shi, Lei; Zhang, Xusheng; Jiang, Guohe

    2013-06-01

    Active control of sound radiation from piezoelectric laminated cylindrical shells is theoretically investigated in the wavenumber domain. The governing equations of the smart cylindrical shells are derived by using first-order shear deformation theory. The smart layer is divided into lots of actuator patches, each of which is coated with two very thin electrodes at its inner and outer surfaces. Proportional derivative negative feedback control is applied to the actuator patches and the stiffness of the controlled layer is derived in the wavenumber domain. The equivalent driving forces and moments generated by the piezoelectric layer can produce distinct sound radiation. Large actuator patches cause strong wavenumber conversion and fluctuation of the far-field sound pressure, and do not make any contribution to sound reduction. Nevertheless, suitable small actuator patches induce weak wavenumber conversion and play an important role in the suppression of vibration and acoustic power. The derivative gain of the active control can effectively suppress sound radiation from smart cylindrical shells. The effects of small proportional gain on the sound field can be neglected, but large proportional gain has a great impact on the acoustic radiation of cylindrical shells. The influence of different piezoelectric materials on the acoustic power is described in the numerical results.

  1. AMELIA CESTOL Test: Acoustic Characteristics of Circulation Control Wing with Leading- and Trailing-Edge Slot Blowing

    NASA Technical Reports Server (NTRS)

    Horne, William C.; Burnside, Nathan J.

    2013-01-01

    The AMELIA Cruise-Efficient Short Take-off and Landing (CESTOL) configuration concept was developed to meet future requirements of reduced field length, noise, and fuel burn by researchers at Cal Poly, San Luis Obispo and Georgia Tech Research Institute under sponsorship by the NASA Fundamental Aeronautics Program (FAP), Subsonic Fixed Wing Project. The novel configuration includes leading- and trailing-edge circulation control wing (CCW), over-wing podded turbine propulsion simulation (TPS). Extensive aerodynamic measurements of forces, surfaces pressures, and wing surface skin friction measurements were recently measured over a wide range of test conditions in the Arnold Engineering Development Center(AEDC) National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Ft Wind Tunnel. Acoustic measurements of the model were also acquired for each configuration with 7 fixed microphones on a line under the left wing, and with a 48-element, 40-inch diameter phased microphone array under the right wing. This presentation will discuss acoustic characteristics of the CCW system for a variety of tunnel speeds (0 to 120 kts), model configurations (leading edge(LE) and/or trailing-edge(TE) slot blowing, and orientations (incidence and yaw) based on acoustic measurements acquired concurrently with the aerodynamic measurements. The flow coefficient, Cmu= mVSLOT/qSW varied from 0 to 0.88 at 40 kts, and from 0 to 0.15 at 120 kts. Here m is the slot mass flow rate, VSLOT is the slot exit velocity, q is dynamic pressure, and SW is wing surface area. Directivities at selected 1/3 octave bands will be compared with comparable measurements of a 2-D wing at GTRI, as will as microphone array near-field measurements of the right wing at maximum flow rate. The presentation will include discussion of acoustic sensor calibrations as well as characterization of the wind tunnel background noise environment.

  2. System and Method for Calculating the Directivity Index of a Passive Acoustic Array

    DTIC Science & Technology

    2007-07-27

    DIRECTIVITY INDEX OF A PASSIVE ACOUSTIC ARRAY STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by or...directed to a system and method for calculating the directivity index of a passive acoustic array with directional sensors in an isotropic noise field...and to provide an efficient way to create, modify, and model any array geometry for the purposes of determining the directivity index of the array as

  3. Boiler control systems engineering

    SciTech Connect

    Gilman, J.

    2005-07-01

    The book provides in-depth coverage on how to safely and reliably control the firing of a boiler. Regardless of the capacity or fuel, certain fundamental control systems are required for boiler control. Large utility systems are more complex due to the number of burners and the overall capacity and equipment. This book covers engineering details on control systems and provides specific examples of boiler control including configuration and tuning. References to requirements are based on the 2004 NFPA 85 along with other ISA standards. Detailed chapters cover: Boiler fundamentals including piping and instrument diagrams (P&IDs) and a design basis checklist; Control of boilers, from strategies and bumpless transfer to interlock circuitry and final control elements; Furnace draft; Feedwater; Coal-fired boilers; Fuel and air control; Steam temperature; Burner management systems; Environment; and Control valve sizing. 2 apps.

  4. Digital Optical Control System

    NASA Astrophysics Data System (ADS)

    Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.

    1988-09-01

    We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.

  5. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  6. Intermittent Control Systems

    ERIC Educational Resources Information Center

    Montgomery, Thomas L.; And Others

    1975-01-01

    The technique of intermittent control systems for air quality control as developed and used by the Tennessee Valley Authority is investigated. Although controversial, all Tennessee Valley Authority sulfur dioxide elimination programs are scheduled to be operational this year. Existing or anticipated intermittent control systems are identified. (BT)

  7. Prediction of Acoustic Loads Generated by Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Perez, Linamaria; Allgood, Daniel C.

    2011-01-01

    NASA Stennis Space Center is one of the nation's premier facilities for conducting large-scale rocket engine testing. As liquid rocket engines vary in size, so do the acoustic loads that they produce. When these acoustic loads reach very high levels they may cause damages both to humans and to actual structures surrounding the testing area. To prevent these damages, prediction tools are used to estimate the spectral content and levels of the acoustics being generated by the rocket engine plumes and model their propagation through the surrounding atmosphere. Prior to the current work, two different acoustic prediction tools were being implemented at Stennis Space Center, each having their own advantages and disadvantages depending on the application. Therefore, a new prediction tool was created, using NASA SP-8072 handbook as a guide, which would replicate the same prediction methods as the previous codes, but eliminate any of the drawbacks the individual codes had. Aside from replicating the previous modeling capability in a single framework, additional modeling functions were added thereby expanding the current modeling capability. To verify that the new code could reproduce the same predictions as the previous codes, two verification test cases were defined. These verification test cases also served as validation cases as the predicted results were compared to actual test data.

  8. Eliminating Nonlinear Acoustical Effects From Thermoacoustic Refrigeration Systems

    NASA Astrophysics Data System (ADS)

    Garrett, Steven L.; Smith, Robert W. M.; Poese, Matthew E.

    2006-05-01

    Nonlinear acoustical effects dissipate energy that degrades thermoacoustic refrigerator performance. The largest of these effects occur in acoustic resonators and include shock formation; turbulence and boundary layer disruption; and entry/exit (minor) losses induced by changes in resonator cross-sectional area. Effects such as these also make the creation of accurate performance models more complicated. Suppression of shock formation by intentional introduction of resonator anharmonicity has been common practice for the past two decades. Recent attempts to increase cooling power density by increasing pressure amplitudes has required reduction of turbulence and minor loss by using an new acousto-mechanical resonator topology. The hybrid resonator still stores potential energy in the compressibility of the gaseous working fluid, but stores kinetic energy in the moving (solid) mass of the motor and piston. This talk will first present nonlinear acoustical loss measurements obtained in a "conventional" double-Helmholtz resonator geometry (TRITON) that dissipated four kilowatts of acoustic power. We will then describe the performance of the new "bellows bounce" resonator configuration and "vibromechanical multiplier" used in the first successful implementation of this approach that created an ice cream freezer produced at Penn State for Ben & Jerry's.

  9. Transducer Design Experiments for Ground-Penetrating Acoustic Systems

    DTIC Science & Technology

    2007-11-02

    subsurface imaging experiments have utilized a source (Tx) and receiver (Rx) configuration in which signals produced by a transmitter at the soil surface...development in the field of acoustic subsurface imaging are as follows. First, a transmitter designed to minimize the emission of surface waves, while

  10. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Owen, Neil (Inventor); Bailey, Michael R. (Inventor); Hossack, James (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  11. Radiometric and photometric design for an Acoustic Containerless Experiment System. [for space processing

    NASA Technical Reports Server (NTRS)

    Glavich, T. A.

    1981-01-01

    The design of an optical system for a high temperature Acoustic Containerless Experiment System is examined. The optical system provides two-axis video, cine and infrared images of an acoustically positioned sample over a temperature range of 20 to 1200 C. Emphasis is placed on the radiometric and photometric characterization of the elements in the optical system and the oven to assist image data determination. Sample visibility due to wall radiance is investigated along with visibility due to strobe radiance. The optical system is designed for operation in Spacelab, and is used for a variety of materials processing experiments.

  12. Reliable data storage system design and implementation for acoustic logging while drilling

    NASA Astrophysics Data System (ADS)

    Hao, Xiaolong; Ju, Xiaodong; Wu, Xiling; Lu, Junqiang; Men, Baiyong; Yao, Yongchao; Liu, Dong

    2016-12-01

    Owing to the limitations of real-time transmission, reliable downhole data storage and fast ground reading have become key technologies in developing tools for acoustic logging while drilling (LWD). In order to improve the reliability of the downhole storage system in conditions of high temperature, intensive shake and periodic power supply, improvements were made in terms of hardware and software. In hardware, we integrated the storage system and data acquisition control module into one circuit board, to reduce the complexity of the storage process, by adopting the controller combination of digital signal processor and field programmable gate array. In software, we developed a systematic management strategy for reliable storage. Multiple-backup independent storage was employed to increase the data redundancy. A traditional error checking and correction (ECC) algorithm was improved and we embedded the calculated ECC code into all management data and waveform data. A real-time storage algorithm for arbitrary length data was designed to actively preserve the storage scene and ensure the independence of the stored data. The recovery procedure of management data was optimized to realize reliable self-recovery. A new bad block management idea of static block replacement and dynamic page mark was proposed to make the period of data acquisition and storage more balanced. In addition, we developed a portable ground data reading module based on a new reliable high speed bus to Ethernet interface to achieve fast reading of the logging data. Experiments have shown that this system can work stably below 155 °C with a periodic power supply. The effective ground data reading rate reaches 1.375 Mbps with 99.7% one-time success rate at room temperature. This work has high practical application significance in improving the reliability and field efficiency of acoustic LWD tools.

  13. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.

    PubMed

    Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and

  14. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  15. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study.

    PubMed

    Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H

    2016-11-28

    BACKGROUND The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. MATERIAL AND METHODS The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5-4.5 kHz sweeps. RESULTS The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. CONCLUSIONS The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation.

  16. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study

    PubMed Central

    Wolak, Tomasz; Cieśla, Katarzyna; Rusiniak, Mateusz; Piłka, Adam; Lewandowska, Monika; Pluta, Agnieszka; Skarżyński, Henryk; Skarżyński, Piotr H.

    2016-01-01

    Background The goal of the fMRI experiment was to explore the involvement of central auditory structures in pathomechanisms of a behaviorally manifested auditory temporary threshold shift in humans. Material/Methods The material included 18 healthy volunteers with normal hearing. Subjects in the exposure group were presented with 15 min of binaural acoustic overstimulation of narrowband noise (3 kHz central frequency) at 95 dB(A). The control group was not exposed to noise but instead relaxed in silence. Auditory fMRI was performed in 1 session before and 3 sessions after acoustic overstimulation and involved 3.5–4.5 kHz sweeps. Results The outcomes of the study indicate a possible effect of acoustic overstimulation on central processing, with decreased brain responses to auditory stimulation up to 20 min after exposure to noise. The effect can be seen already in the primary auditory cortex. Decreased BOLD signal change can be due to increased excitation thresholds and/or increased spontaneous activity of auditory neurons throughout the auditory system. Conclusions The trial shows that fMRI can be a valuable tool in acoustic overstimulation studies but has to be used with caution and considered complimentary to audiological measures. Further methodological improvements are needed to distinguish the effects of TTS and neuronal habituation to repetitive stimulation. PMID:27893698

  17. Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics.

    PubMed

    Orloff, Nathan D; Dennis, Jaclyn R; Cecchini, Marco; Schonbrun, Ethan; Rocas, Eduard; Wang, Yu; Novotny, David; Simmonds, Raymond W; Moreland, John; Takeuchi, Ichiro; Booth, James C

    2011-12-01

    We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution. We demonstrate the dependence of nodal position on pseudo-static phase and show simultaneous control of 9 bead streams with spatial control of -0.058 μm/deg ± 0.001 μm/deg. As a consequence of changing the position of bead streams perpendicular to their flow direction, we also show that the integrated acoustic-microfluidic device can be used to change the trajectory of a bead stream towards a selected bin with an angular control of 0.008 deg/deg ± 0.000(2) deg/deg.

  18. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  19. The optimization of force inputs for active structural acoustic control using a neural network

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Lester, H. C.; Silcox, R. J.

    1992-01-01

    This paper investigates the use of a neural network to determine which force actuators, of a multi-actuator array, are best activated in order to achieve structural-acoustic control. The concept is demonstrated using a cylinder/cavity model on which the control forces, produced by piezoelectric actuators, are applied with the objective of reducing the interior noise. A two-layer neural network is employed and the back propagation solution is compared with the results calculated by a conventional, least-squares optimization analysis. The ability of the neural network to accurately and efficiently control actuator activation for interior noise reduction is demonstrated.

  20. Comparison of PAM Systems for Acoustic Monitoring and Further Risk Mitigation Application.

    PubMed

    Ludwig, Stefan; Kreimeyer, Roman; Knoll, Michaela

    2016-01-01

    We present results of the SIRENA 2011 research cruises conducted by the NATO Undersea Research Centre (NURC) and joined by the Research Department for Underwater Acoustics and Geophysics (FWG), Bundeswehr Technical Centre (WTD 71) and the Universities of Kiel and Pavia. The cruises were carried out in the Ligurian Sea. The main aim of the FWG was to test and evaluate the newly developed towed hydrophone array as a passive acoustic monitoring (PAM) tool for risk mitigation applications. The system was compared with the PAM equipment used by the other participating institutions. Recorded sounds were used to improve an automatic acoustic classifier for marine mammals, and validated acoustic detections by observers were compared with the results of the classifier.

  1. Noise control using a plate radiator and an acoustic resonator

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor)

    1996-01-01

    An active noise control subassembly for reducing noise caused by a source (such as an aircraft engine) independent of the subassembly. A noise radiating panel is bendably vibratable to generate a panel noise canceling at least a portion of the source noise. A piezoceramic actuator plate is connected to the panel. A front plate is spaced apart from the panel and the first plate, is positioned generally between the source noise and the panel, and has a sound exit port. A first pair of spaced-apart side walls each generally abut the panel and the front plate so as to generally enclose a front cavity to define a resonator.

  2. Integrated blending control system

    SciTech Connect

    Cogbill, R.B.; Dodd, T.J.; Heilman, P.W.; Heronemus, D.L.; Sears, L.R.; Berryman, L.N.; Baker, R.L.; Guffee, L.E.; Prucha, D.A.; Roberts, D.M.

    1989-07-25

    This patent describes a proppant control system. It comprises: storage bin means for storing particulate material; surge bin means for receiving a flow of the particulate material from the storage bin means; first conveyor means for providing a flow of particulate material to the surge bin means from the storage bin means; second conveyor means for transferring a controllable quantity of the particulate material from the surge bin means; and proppant control means. The control means include: first speed control means for remotely controlling the speed of the first conveyor means; and second speed control means for remotely controlling the speed of the second conveyor means.

  3. Effect of continuous rearing on courtship acoustics of five braconid parasitoids, candidates for augmentative biological control of Anastrepha species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The courtship acoustics of five species of parasitoid wasps (Hymenoptera: Braconidae), potential candidates for augmentative biological control of Anastrepha species (Diptera: Tephritidae), were compared between recently colonized individuals and those continuously reared 70-148 generations. During...

  4. Intelligent Control Systems Research

    NASA Technical Reports Server (NTRS)

    Loparo, Kenneth A.

    1994-01-01

    Results of a three phase research program into intelligent control systems are presented. The first phase looked at implementing the lowest or direct level of a hierarchical control scheme using a reinforcement learning approach assuming no a priori information about the system under control. The second phase involved the design of an adaptive/optimizing level of the hierarchy and its interaction with the direct control level. The third and final phase of the research was aimed at combining the results of the previous phases with some a priori information about the controlled system.

  5. Control and optimization system

    DOEpatents

    Xinsheng, Lou

    2013-02-12

    A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  6. Materials for Adaptive Structural Acoustic Control. Volume 1

    DTIC Science & Technology

    1993-04-06

    unusual response of thin film BaTiO3 is discussed in Appendix 49, which shows that for small grains (6-8 nm) the structure is cubic nonferroelectric, but...smart dental braces made from shape memory alloys Smart hulls and propulsion systems for navy ships and submarines that detect flow noise, remove... zirconia are a good example. Here the tetragonal-monoclinic phase change accompanied by ferroelastic twin wail motion are the stand-by phenomena capable of

  7. Three-dimensional photoacoustic imaging system with a 4f aspherical acoustic lens

    NASA Astrophysics Data System (ADS)

    Jen, En; Lin, Hsintien; Chiang, Huihua Kenny

    2016-08-01

    Photoacoustic (PA) imaging is a modality for achieving high-contrast images of blood vessels or tumors. Most PA imaging systems use complex reconstruction algorithms under conventional linear array transducers. We introduced the optical simulating method to improve the acoustic lens design and obtain a PA imaging system with improved spatial revolution (a 0.5-mm point spread function and a lateral image resolution of more than 1 mm) is realized using a 4f aspherical acoustic lens. The acoustic lens approach improved the image resolution and enabled direct reconstruction of three-dimensional (3-D) PA images. The system demonstrated a lateral resolution of more than 1 mm, a field of view of 8.5 deg, and a depth of focus of 10 mm. The system displays great potential for developing a real-time 3-D PA camera system for biomedical ultrasound imaging applications.

  8. Method and system for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Johnson, Paul A [Santa Fe, NM; Ten Cate, James A [Los Alamos, NM; Guyer, Robert [Reno, NV; Le Bas, Pierre-Yves [Los Alamos, NM; Vu, Cung [Houston, TX; Nihei, Kurt [Oakland, CA; Schmitt, Denis P [Katy, TX; Skelt, Christopher [Houston, TX

    2012-02-14

    A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.

  9. Acoustic Event Signatures for Damage Control: Water Events and Shipboard Ambient Noise

    DTIC Science & Technology

    2007-11-02

    documents some of the acoustic work done for the Advanced Volume Sensor (AVS) Project, Dr. Susan Rose-Pehrsson, NRL Code 6112. The AVS project is an...element of the ONR FNC Advanced Damage Countermeasures (ADC) Program, managed at NRL by Dr. Fred Williams, Code 6180. The ADC program seeks to develop...also installed and recorded to provide a visual record of the events and to test the response of fire alarm systems to the events. The results of the

  10. Acoustically shielded exhaust system for high thrust jet engines

    NASA Technical Reports Server (NTRS)

    Carey, John P. (Inventor); Lee, Robert (Inventor); Majjigi, Rudramuni K. (Inventor)

    1995-01-01

    A flade exhaust nozzle for a high thrust jet engine is configured to form an acoustic shield around the core engine exhaust flowstream while supplementing engine thrust during all flight conditions, particularly during takeoff. The flade airflow is converted from an annular 360.degree. flowstream to an arcuate flowstream extending around the lower half of the core engine exhaust flowstream so as to suppress exhaust noise directed at the surrounding community.

  11. Underwater Acoustic Network as a Deployable Positioning System

    DTIC Science & Technology

    2012-06-01

    their position via GPS due to errors inherent in inertial navigation. The goal of this research is increased accuracy of Seaweb range data and tracking...this thesis research , anchored modems communicate acoustically with a modem on a towed surface vehicle that is connected via serial port to a...determined by length of the tether and the water depth. The anchor position may also migrate due to a changing sea floor. A modem on a surface buoy can

  12. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool

    NASA Astrophysics Data System (ADS)

    Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong

    2016-06-01

    The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.

  13. A Tool Measuring Remaining Thickness of Notched Acoustic Cavities in Primary Reaction Control Thruster NDI Standards

    NASA Technical Reports Server (NTRS)

    Sun, Yushi; Sun, Changhong; Zhu, Harry; Wincheski, Buzz

    2006-01-01

    Stress corrosion cracking in the relief radius area of a space shuttle primary reaction control thruster is an issue of concern. The current approach for monitoring of potential crack growth is nondestructive inspection (NDI) of remaining thickness (RT) to the acoustic cavities using an eddy current or remote field eddy current probe. EDM manufacturers have difficulty in providing accurate RT calibration standards. Significant error in the RT values of NDI calibration standards could lead to a mistaken judgment of cracking condition of a thruster under inspection. A tool based on eddy current principle has been developed to measure the RT at each acoustic cavity of a calibration standard in order to validate that the standard meets the sample design criteria.

  14. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    NASA Technical Reports Server (NTRS)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  15. A Galerkin method for linear PDE systems in circular geometries with structural acoustic applications

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.

    1994-01-01

    A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.

  16. Optoelectronic and acoustic properties and their interfacial durability of GnP/PVDF/GnP composite actuators with nano-structural control

    NASA Astrophysics Data System (ADS)

    Park, Joung-Man; Kwon, Dong-Jun; Wang, Zuo-Jia; Gu, Ga-Young; DeVries, Lawrence

    2013-03-01

    Nano- and hetero-structures of carbon nanotube (CNT), indium tin oxide (ITO), and Graphene nano Platelet (GnP) can control significantly piezoelectric and optoelectronic properties in Microelectromechanical Systems (MEMS) as acoustic actuators. Interfacial durability and electrical properties of CNT, ITO or GnP coated poly(vinylidene fluoride) (PVDF) nanocomposites were investigated for use in acoustic actuator applications. The GnP coated PVDF nanocomposite exhibited better electrical conductivity than either CNT or ITO, due to the unique electrical properties of GnP. GnP nanocomposite coatings also exhibited good acoustical properties. Contact angle, surface energy, work of adhesion, and spreading coefficient measurements were used to explore the interfacial adhesion durability between neat CNT (or plasma treated CNT) and plasma treated PVDF. The acoustic actuation performance of GnP coated PVDF nanocomposites were investigated for different radii of curvature and different coating conditions, using a sound level meter. GnP is considered to be a more appropriate acoustic actuator than either CNT or ITO because of its characteristic electrical properties. A radius of curvature of about 15 degrees was established as being most appropriate. Sound characteristics differed with varying coating thicknesses. The results of this study suggest that it should be possible to manufacture transparent actuators with good sound quality.

  17. Control system design guide

    SciTech Connect

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  18. Non-contact test set-up for aeroelasticity in a rotating turbomachine combining a novel acoustic excitation system with tip-timing

    NASA Astrophysics Data System (ADS)

    Freund, O.; Montgomery, M.; Mittelbach, M.; Seume, J. R.

    2014-03-01

    Due to trends in aero-design, aeroelasticity becomes increasingly important in modern turbomachines. Design requirements of turbomachines lead to the development of high aspect ratio blades and blade integral disc designs (blisks), which are especially prone to complex modes of vibration. Therefore, experimental investigations yielding high quality data are required for improving the understanding of aeroelastic effects in turbomachines. One possibility to achieve high quality data is to excite and measure blade vibrations in turbomachines. The major requirement for blade excitation and blade vibration measurements is to minimize interference with the aeroelastic effects to be investigated. Thus in this paper, a non-contact—and thus low interference—experimental set-up for exciting and measuring blade vibrations is proposed and shown to work. A novel acoustic system excites rotor blade vibrations, which are measured with an optical tip-timing system. By performing measurements in an axial compressor, the potential of the acoustic excitation method for investigating aeroelastic effects is explored. The basic principle of this method is described and proven through the analysis of blade responses at different acoustic excitation frequencies and at different rotational speeds. To verify the accuracy of the tip-timing system, amplitudes measured by tip-timing are compared with strain gage measurements. They are found to agree well. Two approaches to vary the nodal diameter (ND) of the excited vibration mode by controlling the acoustic excitation are presented. By combining the different excitable acoustic modes with a phase-lag control, each ND of the investigated 30 blade rotor can be excited individually. This feature of the present acoustic excitation system is of great benefit to aeroelastic investigations and represents one of the main advantages over other excitation methods proposed in the past. In future studies, the acoustic excitation method will be used

  19. A Design Process for the Acoustical System of an Enclosed Space Colony

    NASA Technical Reports Server (NTRS)

    Hawke, Joanne

    1981-01-01

    Sounds of Silence. Using a general systems approach, factors and components of the acoustical design process for an isolated, confined space community in a torus space enclosure are considered. These components include the following: organizational structure and its effect on alternatives; problem definition and limits; criteria and priorities; methods of data gathering; modelling and measurement of the whole system and its components; decision methods; and design scenario of the acoustics of the complex, socio-technical space community system with emphasis on the human factors.

  20. Channel coding for underwater acoustic single-carrier CDMA communication system

    NASA Astrophysics Data System (ADS)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  1. Location optimization of a long T-shaped acoustic resonator array in noise control of enclosures

    NASA Astrophysics Data System (ADS)

    Yu, Ganghua; Cheng, Li

    2009-11-01

    Acoustic resonators are widely used in various noise control applications. In the pursuit of better performance and broad band control, multiple resonators or a resonator array are usually needed. The interaction among resonators significantly impacts on the control performance and leads to the requirement for a systematic design tool to determine their locations. In this work, simulated annealing (SA) algorithm is employed to optimize the locations of a set of long T-shaped acoustic resonators (TARs) for noise control inside an enclosure. Multiple optimal configurations are shown to exist. The control performance in terms of sound pressure level reduction, however, seems to be independent of the initial resonator-locations. Optimal solutions obtained from the SA approach are shown to outperform other existing methods for a TAR array design. Numerical simulations are systematically verified by experiments. Optimal locations are then synthesized, leading to a set of criteria, applicable to the present configuration, to guide engineering applications. It is concluded that the proposed optimization approach provides a systematic and effective tool to optimize the locations of TARs in noise control inside enclosures.

  2. Analyzing Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.

  3. Cockpit control system

    NASA Technical Reports Server (NTRS)

    Lesnewski, David; Snow, Russ M.; Paufler, Dave; Schnieder, George; Athousake, Roxanne; Combs, Lisa

    1993-01-01

    The purpose of this project is to provide a detail design for the cockpit control system of the Viper PFT. The statement of work for this project requires provisions for control of the ailerons, elevator, rudder, and elevator trim. The system should provide adjustment for pilot stature, rigging, and maintenance. MIL-STD-1472 is used as a model for human factors criterion. The system is designed to the pilot limit loading outlined in FAR part 23.397. The general philosophy behind this design is to provide a simple, reliable control system which will withstand the daily abuse that is experienced in the training environment without excessive cost or weight penalties.

  4. Acoustic resonators for noise control in enclosures: Modelling, design and optimization

    NASA Astrophysics Data System (ADS)

    Yu, Ganghua

    This work systematically investigates the acoustic interaction between an enclosure and resonators, and establishes systematic design tools based upon the interaction theory to optimize the physical characteristics and the locations of resonators. A general theoretical model is first established to predict the acoustic performance of multiple resonators placed in an acoustic enclosure of arbitrary shape. Analytical solutions for the sound pressure inside the enclosure are obtained when a single resonator is installed, which provide insight into the physics of the acoustic interaction between the enclosure and resonators. The theoretical model is experimentally validated, showing the effectiveness and reliability of the theoretical model. Using the validated acoustic interaction model and the analytical solutions, the internal resistance of a resonator is optimized to improve its performance in a frequency band enclosing acoustic resonances. An energy reduction index is defined to conduct the optimization. The dual process of the energy dissipation and radiation of the resonator is quantified. Optimal resistance and its physical effect on the enclosure-resonator interaction are numerically evaluated and categorized in terms of frequency bandwidths. Predictions on the resonator performance are confirmed by experiments. Comparisons with existing models based on different optimization criteria are also performed. It is shown that the proposed model serves as an effective design tool to determine the optimal internal-resistance of the resonator in a chosen frequency band. Due to the multi-modal coupling, the resonator performance is also affected by its location besides its physical characteristics. When multiple resonators are used, the mutual interaction among resonators leads to the requirement of a systematic optimization tool to determine their locations. In the present work, different optimization methodologies are explored. These include a sequential design

  5. Control system testing

    NASA Astrophysics Data System (ADS)

    Whittler, W. H.; Collart, R. E.

    1984-08-01

    A three stage process of ground testing of the Space Telescope Pointing Control System is used for verification prior to on-orbit operation. First, development tests are conducted in a laboratory environment using flight/engineering model control sensor and actuators configured with an engineering model of the flight computer and data management system breadboards. These development tests validate the results of computer simulations predicting control system performance. Integration tests bring together flight system elements and software interfaced to a software simulation of vehicle dynamics to confirm closed loop performance. The final ground test phase, flight systems testing, is conducted on the fully assembled Space Telescope, verifies interfaces with the Fine Guidance Sensors and includes a thermal vacuum testing period. During the final test phase, the Point Control System is exercised with the dynamics simulator running in real time.

  6. Phonatory Symptoms and Acoustic Findings in Patients with Asthma: A Cross-Sectional Controlled Study.

    PubMed

    Hamdan, Abdul Latif; Ziade, Georges; Kasti, Maher; Akl, Leslie; Bawab, Ibrahim; Kanj, Nadim

    2017-03-01

    To investigate the prevalence of phonatory symptoms, perceptual, acoustic and aerodynamic findings in patients with asthma compared to a control group. This study is a cross-sectional study. A total of 50 subjects, 31 asthmatic and 19 control subjects matched according to age and gender were enrolled in this study. All subjects were asked about the presence or absence of dysphonia, vocal fatigue, phonatory effort, cough, dyspnea, and respiratory failure. Perceptual evaluation, acoustic analysis and aerodynamic measurements were also performed. Patient's self assessment using the Voice Handicap Index 10 was reported. The mean age of patients was 43.5 years with a female to male ratio of 2:1. There was a statistically significant difference in the prevalence of dysphonia between the two groups (32.3 vs. 5.3%, p value 0.025) with a non-significant higher prevalence of vocal fatigue and phonatory effort. The overall grade of dysphonia was significantly higher in asthmatics compared to controls (p value 0.002). Patients with asthma had also significantly higher degree of asthenia and straining (p value of 0.04 and 0.008, respectively) with borderline significant difference with respect to roughness. There was no significant difference in the means of any of the acoustic parameters between patients and controls except for Shimmer, which was higher in the asthmatic group (p value of 0.037). There was also no significant difference in the Maximum phonation time between the two groups. Dysphonia is significantly more prevalent in patients with asthma compared to controls.

  7. Drone Control System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  8. Aircraft IR/acoustic detection evaluation. Volume 2: Development of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.

    1992-01-01

    The design and performance of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft is described and specified. The acoustic detection system performance criteria will subsequently be used to determine target detection ranges for the subject contract. Although the defined system has never been built and demonstrated in the field, the design parameters were chosen on the basis of achievable technology and overall system practicality. Areas where additional information is needed to substantiate the design are identified.

  9. Acoustic sounder system design for measurement of optical turbulence and wind profiles

    NASA Astrophysics Data System (ADS)

    Miller, Judith E.; Eaton, Frank D.; Stokes, Sheldon S.

    2000-07-01

    An Acoustic Sounder System has been installed on the side of the cliff at North Oscura Peak, WSMR to provide important refractive index structure parameter, Cn2 data for laser propagation tests. The acoustic sounder system records echo information that is used to provide 3D wind and optical turbulence profiles. The received signal is the product of the interaction of the transmitted acoustic pulse with the small scale atmospheric temperature variations. This information is displayed as a time-height display of the signal intensity. The frequency of the received signals are processed and converted into time histories of the horizontal wind field. The data from the Acoustic Sounder is calibrated with the hot-wire anemometer temperature structure parameter (Ct2) data, and meteorological data measured locally to produce the Cn2 profile. The design and location of the Acoustic Sounder System will be discussed along with the methodology of extracting the turbulence. Many days of data have been collected and representative data will be shown.

  10. Frequency tracking in acoustic trapping for improved performance stability and system surveillance.

    PubMed

    Hammarström, Björn; Evander, Mikael; Wahlström, Jacob; Nilsson, Johan

    2014-03-07

    This work proposes and demonstrates an acoustic trapping system where the trapping frequency is automatically determined and can be used to analyse changes in the acoustic trap. Critical for the functionality of this system is the use of a kerfed transducer that removes spurious resonances. This makes it possible to determine the optimal trapping frequency by analysing electrical impedance. It is demonstrated that the novel combination of a kerfed transducer and acoustic trapping in glass capillaries creates a high Q-value resonator. This narrows the frequency bandwidth but allows excellent performance, as confirmed by a ten-fold increase in the flow retention speed when compared to previously reported values. Importantly, the use of automatic frequency tracking allows the use of such a narrow bandwidth resonator without compromising system stability. As changes in temperature, buffer-properties, and the amount of captured particles will affect the properties of the acoustic resonator, corresponding changes in resonance frequency will occur. It is shown that such frequency changes can be accurately tracked using the setup. Therefore, monitoring the frequency over time adds a new feature to acoustic trapping, where experimental progress can be monitored and the amount of trapped material can be quantified.

  11. Power Systems Control Architecture

    SciTech Connect

    James Davidson

    2005-01-01

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  12. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  13. Vibroacoustic modeling of an acoustic resonator tuned by dielectric elastomer membrane with voltage control

    NASA Astrophysics Data System (ADS)

    Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen

    2017-01-01

    This paper investigates the acoustic properties of a duct resonator tuned by an electro-active membrane. The resonator takes the form of a side-branch cavity which is attached to a rigid duct and covered by a pre-stretched Dielectric Elastomer (DE) in the neck area. A three-dimensional, analytical model based on the sub-structuring approach is developed to characterize the complex structure-acoustic coupling between the DE membrane and its surrounding acoustic media. We show that such resonator provides sound attenuation in the medium frequency range mainly by means of sound reflection, as a result of the membrane vibration. The prediction accuracy of the proposed model is validated against experimental test. The pre-stretched DE membrane with fixed edges responds to applied voltage change with a varying inner stress and, by the same token, its natural frequency and vibrational response can be tuned to suit particular frequencies of interest. The peaks in the transmission loss (TL) curves can be shifted towards lower frequencies when the voltage applied to the DE membrane is increased. Through simulations on the effect of increasing the voltage level, the TL shifting mechanism and its possible tuning range are analyzed. This paves the way for applying such resonator device for adaptive-passive noise control.

  14. Comparison of Acoustic and Stroboscopic Findings and Voice Handicap Index between Allergic Rhinitis Patients and Controls

    PubMed Central

    Koç, Eltaf Ayça Özbal; Koç, Bülent; Erbek, Selim

    2014-01-01

    Background: In our experience Allergic Rhinitis (AR) patients suffer from voice problems more than health subjects. Aims: To investigate the acoustic analysis of voice, stroscopic findings of larynx and Voice Handicap Index scores in allergic rhinitis patients compared with healthy controls. Study Design: Case-control study. Methods: Thirty adult patients diagnosed with perennial allergic rhinitis were compared with 30 age- and sex-matched healthy controls without allergy. All assessments were performed in the speech physiology laboratory and the testing sequence was as follows: 1. Voice Handicap Index (VHI) questionnaire, 2. Laryngovideostroboscopy, 3. Acoustic analyses. Results: No difference was observed between the allergic rhinitis and control groups regarding mean Maximum Phonation Time (MPT) values, Fo values, and stroboscopic assessment (p>0.05). On the other hand, mean VHI score (p=0.001) and s/z ratio (p=0.011) were significantly higher in the allergic rhinitis group than in controls. Conclusion: Our findings suggest that the presence of allergies could have effects on laryngeal dysfunction and voice-related quality of life. PMID:25667789

  15. Acoustic droplet–hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness

    PubMed Central

    Fabiilli, Mario L.; Wilson, Christopher G.; Padilla, Frédéric; Martín-Saavedra, Francisco M.; Fowlkes, J. Brian; Franceschi, Renny T.

    2013-01-01

    Wound healing is regulated by temporally and spatially restricted patterns of growth factor signaling, but there are few delivery vehicles capable of the “on-demand” release necessary for recapitulating these patterns. Recently we described a perfluorocarbon double emulsion that selectively releases a protein payload upon exposure to ultrasound through a process known as acoustic droplet vaporization (ADV). In this study, we describe a delivery system composed of fibrin hydrogels doped with growth factor-loaded double emulsion for applications in tissue regeneration. Release of immunoreactive basic fibroblast growth factor (bFGF) from the composites increased up to 5-fold following ADV and delayed release was achieved by delaying exposure to ultrasound. Releasates of ultrasound-treated materials significantly increased the proliferation of endothelial cells compared to sham controls, indicating that the released bFGF was bioactive. ADV also triggered changes in the ultrastructure and mechanical properties of the fibrin as bubble formation and consolidation of the fibrin in ultrasound-treated composites were accompanied by up to a 22-fold increase in shear stiffness. ADV did not reduce the viability of cells suspended in composite scaffolds. These results demonstrate that an acoustic droplet–hydrogel composite could have broad utility in promoting wound healing through on-demand control of growth factor release and/or scaffold architecture. PMID:23535233

  16. Control Oriented System Identification

    DTIC Science & Technology

    1993-08-01

    The research goals for this grant were to obtain algorithms for control oriented system identification is to construct dynamical models of systems...and measured information. Algorithms for this type of nonlinear system identification have been given that produce models suitable for gain scheduled

  17. Desiccant humidity control system

    NASA Technical Reports Server (NTRS)

    Amazeen, J. (Editor)

    1973-01-01

    A regenerable sorbent system was investigated for controlling the humidity and carbon dioxide concentration of the space shuttle cabin atmosphere. The sorbents considered for water and carbon dioxide removal were silica gel and molecular sieves. Bed optimization and preliminary system design are discussed along with system optimization studies and weight penalites.

  18. Load Control System Reliability

    SciTech Connect

    Trudnowski, Daniel

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  19. IGISOL control system modernization

    NASA Astrophysics Data System (ADS)

    Koponen, J.; Hakala, J.

    2016-06-01

    Since 2010, the IGISOL research facility at the Accelerator laboratory of the University of Jyväskylä has gone through major changes. Comparing the new IGISOL4 facility to the former IGISOL3 setup, the size of the facility has more than doubled, the length of the ion transport line has grown to about 50 m with several measurement setups and extension capabilities, and the accelerated ions can be fed to the facility from two different cyclotrons. The facility has evolved to a system comprising hundreds of manual, pneumatic and electronic devices. These changes have prompted the need to modernize also the facility control system taking care of monitoring and transporting the ion beams. In addition, the control system is also used for some scientific data acquisition tasks. Basic guidelines for the IGISOL control system update have been remote control, safety, usability, reliability and maintainability. Legacy components have had a major significance in the control system hardware and for the renewed control system software the Experimental Physics and Industrial Control System (EPICS) has been chosen as the architectural backbone.

  20. Perceptual and Acoustic Reliability Estimates for the Speech Disorders Classification System (SDCS)

    ERIC Educational Resources Information Center

    Shriberg, Lawrence D.; Fourakis, Marios; Hall, Sheryl D.; Karlsson, Heather B.; Lohmeier, Heather L.; McSweeny, Jane L.; Potter, Nancy L.; Scheer-Cohen, Alison R.; Strand, Edythe A.; Tilkens, Christie M.; Wilson, David L.

    2010-01-01

    A companion paper describes three extensions to a classification system for paediatric speech sound disorders termed the Speech Disorders Classification System (SDCS). The SDCS uses perceptual and acoustic data reduction methods to obtain information on a speaker's speech, prosody, and voice. The present paper provides reliability estimates for…

  1. Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System

    NASA Technical Reports Server (NTRS)

    Duncan, Joshua J.; Youngquist, Robert C.

    2013-01-01

    The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors

  2. Deployable Acoustic Projector System (DAPS) Energy Source Study

    DTIC Science & Technology

    1988-12-01

    final, etc. If Statements on Technical applicable, enter inclusive report dates (e.g. 10 Documents. Jun 87 - 30 Jun 88). DOE - See authorities...aJIUILOI NG 20C WIII OCSR L[~,CONNETICUT 0 811 LT = LECT I -w L94 5 06 036 Form Appmv’ovd REPORT DOCUMENTATION PAGE C No. 0A,-0pov pull efa’, m a fm thi...ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED Dec 88 Final 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Deployable Acoustic Projector

  3. Exhaust System Experiments at NASA's AeroAcoustic Propulsion Lab

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2011-01-01

    This presentation gives an overview of the planned testing in the AeroAcoustic Propulsion Lab (AAPL) in the coming 15 months. It was stressed in the presentation that these are plans that are subject to change due to changes in funding and/or programmatic direction. The first chart shows a simplified schedule of test entries with funding sponsor and dates for each. In subsequent charts are pages devoted to the Objectives and Issues with each test entry, along with a graphic intended to represent the test activity. The chart for each test entry also indicates sponsorship of the activity, and a contact person.!

  4. SSRF Beamline Control System

    SciTech Connect

    Zheng, L. F.; Liu, P.; Zhang, Z. H.; Hu, C.; Mi, Q. R.; Wu, Y. F.; Gong, P. R.; Zhu, Z. X.; Li, Z.

    2010-06-23

    There are seven beamlines in the Phase-I of SSRF. Five of them are equipped with Insertion Devices, while two with Bending Magnets. The beamline control system is based on the standard hardware and software architecture. The VME(PowerPC) with VxWorks is used for motion control, while the personal computers with Scientific Linux are the front end controllers of equipment protection and personnel safety systems. The control software is developed under EPICS which makes various experimental programs of Blu-Ice, LabView, VC and SPEC conveniently access Monochromators, mirror chambers and other optical components.

  5. FEASIBILITY OF ACOUSTIC METHODS FOR IMPURITY GAS MONITORING IN DRY STORAGE SYSTEMS

    SciTech Connect

    Meyer, Ryan M.; Cuta, Judith M.; Jones, Anthony M.; Denslow, Kayte M.; Ramuhalli, Pradeep; Adkins, Harold E.; Hanson, Brady D.

    2015-05-01

    This paper explores the feasibility of monitoring impurities in dry storage containers (DSCs) for spent nuclear fuel using non-invasive acoustic sensing. The conceived implementation considers measurements based on changes in acoustic velocity at successive measurement intervals. Uncertainty contributions from the measurement system and temperature variability are estimated. Sources of temperature variability considered include changes in the decay heat source over time and ambient temperature variation. The results show that performance of a system which does not incorporate temperature compensation will be dependent upon geographic location and the decay heat source strength. The results also indicate that an annual measurement interval is optimal.

  6. Energy Source Study Technical Report for Deployable Acoustic Projector System (DAPS)

    DTIC Science & Technology

    1988-12-23

    S SPARTON"- AD-A278 879 7097-0001-1192 ENERGY SOURCE STUDY TECHNICAL REPORT FOR DEPLOYABLE ACOUSTIC PROJECTOR SYSTEM (DAPS) Contract N62190-88-M...SUBTITLE 5. FUNDING NUMBERS Energy Source Study Technical Report for Deployable C:N62190-88-q+0755 Acoustic Projector System (DAPS) 6. AUTHOR(S) 7...Rev 2-89) P~IýAIppd by ill* 164 it- IJs IL- 3 Fst’ rPAITON OWiENSE mac vrroNcS r 7097-0001-1192 ENERGY SOURCE STUDY TECHNICAL REPORT I FOR DEPLOYABLE

  7. Precise Wireless Triggering System for Anemometers with Long-Baseline Acoustic Probes

    NASA Astrophysics Data System (ADS)

    Wakatsuki, Naoto; Kinjo, Shin; Takarada, Jun; Mizutani, Koichi

    2010-07-01

    A wireless triggering system for acoustic anemometers using an acoustic probe with a long baseline is investigated. Acoustic probes for measuring micrometeorologic parameters, such as temperature and wind velocity, are used as noncontact and nondestructive methods. The acoustic probe with a long baseline was previously proposed by the authors and investigated to form a sensing grid system for micrometeorologic measurement. The authors have also partially investigated a wireless sensing grid using a wireless local-area network (LAN). However, because of the synchronization problem between sensor nodes, the trigger line has been left wired. In this paper, the problem of synchronization is solved by investigating a wireless triggering system using frequency modulated (FM) radio waves. The primitive triggering system of FM radio waves has some instability on time synchronization depending on such the communication environment as signal-to-noise ratio (SNR). To overcome the influence of the instability, a cross-correlation method is adopted to the triggering system. As a result, the time synchronization errors of the trigger system were reduced by up to one tenth. In addition, not only the instability problem but also other larger errors are compensated by the proposed system in an experimental wind velocity measurement.

  8. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels.

    PubMed

    Girardo, Salvatore; Cecchini, Marco; Beltram, Fabio; Cingolani, Roberto; Pisignano, Dario

    2008-09-01

    This paper presents prototypical microfluidic devices made by hybrid microchannels based on piezoelectric LiNbO(3) and polydimethylsiloxane. This system enables withdrawing micropumping by acoustic radiation in microchannels. The withdrawing configuration, integrated on chip, is here quantitatively investigated for the first time, and found to be related to the formation and coalescence dynamics of droplets within the microchannel, primed by surface acoustic waves. The growth dynamics of droplets is governed by the water diffusion on LiNbO(3), determining the advancement of the fluid front. Observed velocities are up to 2.6 mm s(-1) for 30 dBm signals applied to the interdigital transducer, corresponding to tens of nl s(-1), and the micropumping dynamics is described by a model taking into account an acoustic power exponentially decaying upon travelling along the microchannel. This straighforward and flexible micropumping approach is particularly promising for the withdrawing of liquids in lab-on-chip devices performing cycling transport of fluids and biochemical reactions.

  9. Acoustic Emission Analysis of Shuttle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Lane, John; Hooker, Jeffery; Immer, Christopher; Walker, James

    2004-01-01

    Acoustic emission (AE) signals generated from projectile impacts on reinforced and advanced carbon/carbon (RCC and ACC) panels, fired from a compressed-gas gun, identify the type and severity of damage sustained by the target. This type of testing is vital in providing the required "return to flight" (RTF) data needed to ensure continued and safe operation of NASA's Space Shuttle fleet. The gas gun at Kennedy Space Center is capable of propelling 12-inch by 3-inch cylinders of external tank (ET) foam at exit velocities exceeding 1,000 feet per second. Conventional AE analysis techniques require time domain processing of impulse data, along with amplitude distribution analysis. It is well known that identical source excitations can produce a wide range of AE signals amplitudes. In order to satisfy RTF goals, it is necessary to identify impact energy levels above and below damage thresholds. Spectral analysis techniques involving joint time frequency analysis (JTFA) are used to reinforce time domain AE analysis. JTFA analysis of the AE signals consists of short-time Fourier transforms (STFT) and the Huang-Hilbert transform (HHT). The HHT provides a very good measure of the instantaneous frequency of impulse events dominated by a single component. Identifying failure modes and cracking of fibers from flexural and/or extensional mode acoustic signals will help support in-flight as well as postflight impact analysis.

  10. Acoustic response modeling of energetics systems in confined spaces

    NASA Astrophysics Data System (ADS)

    González, David R.; Hixon, Ray; Liou, William W.; Sanford, Matthew

    2007-04-01

    In recent times, warfighting has been taking place not in far-removed areas but within urban environments. As a consequence, the modern warfighter must adapt. Currently, an effort is underway to develop shoulder-mounted rocket launcher rounds suitable with reduced acoustic signatures for use in such environments. Of prime importance is to ensure that these acoustic levels, generated by propellant burning, reflections from enclosures, etc., are at tolerable levels without requiring excessive hearing protection. Presented below is a proof-of-concept approach aimed at developing a computational tool to aid in the design process. Unsteady, perfectly-expanded-jet simulations at two different Mach numbers and one at an elevated temperature ratio were conducted using an existing computational aeroacoustics code. From the solutions, sound pressure levels and frequency spectra were then obtained. The results were compared to sound pressure levels collected from a live-fire test of the weapon. Lastly, an outline of work that is to continue and be completed in the near future will be presented.

  11. The use of male or female voices in warnings systems: a question of acoustics.

    PubMed

    Edworthy, J; Hellier, E; Rivers, J

    2003-01-01

    Speech warnings and communication systems are increasingly used in noisy, high workload environments. An important decision in the development of such systems is the choice of a male or a female speaker. There is little objective evidence to support this decision, although there are many misconceptions and misunderstandings on this topic. This paper suggests that both acoustic and non-acoustic differences (such as social attributions towards speakers of different sexes) between male and female speakers is negligible, therefore the choice of speaker should depend on the overlap of noise and speech spectra. Female voices do however appear to have an advantage in that they can portray a greater range of urgencies because of their usually higher pitch and pitch range. An experiment is reported showing that knowledge about the sex of a speaker has no effect on judgements of perceived urgency, with acoustic variables accounting for such differences.

  12. Time dependent inflow-outflow boundary conditions for 2D acoustic systems

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Myers, Michael K.

    1989-01-01

    An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.

  13. Control of Spoken Vowel Acoustics and the Influence of Phonetic Context in Human Speech Sensorimotor Cortex

    PubMed Central

    Bouchard, Kristofer E.

    2014-01-01

    Speech production requires the precise control of vocal tract movements to generate individual speech sounds (phonemes) which, in turn, are rapidly organized into complex sequences. Multiple productions of the same phoneme can exhibit substantial variability, some of which is inherent to control of the vocal tract and its biomechanics, and some of which reflects the contextual effects of surrounding phonemes (“coarticulation”). The role of the CNS in these aspects of speech motor control is not well understood. To address these issues, we recorded multielectrode cortical activity directly from human ventral sensory-motor cortex (vSMC) during the production of consonant-vowel syllables. We analyzed the relationship between the acoustic parameters of vowels (pitch and formants) and cortical activity on a single-trial level. We found that vSMC activity robustly predicted acoustic parameters across vowel categories (up to 80% of variance), as well as different renditions of the same vowel (up to 25% of variance). Furthermore, we observed significant contextual effects on vSMC representations of produced phonemes that suggest active control of coarticulation: vSMC representations for vowels were biased toward the representations of the preceding consonant, and conversely, representations for consonants were biased toward upcoming vowels. These results reveal that vSMC activity for phonemes are not invariant and provide insight into the cortical mechanisms of coarticulation. PMID:25232105

  14. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    Digital techniques are discussed for application to the servo and control systems of large antennas. The tracking loop for an antenna at a STADAN tracking site is illustrated. The augmentation mode is also considered.

  15. Linear Hereditary Control Systems,

    DTIC Science & Technology

    Relationships between external and internal models for systems with time lags are discussed. The use of various canonical forms for the models in solving optimal control problems is considered. (Author)

  16. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  17. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  18. A Connection Model between the Positioning Mechanism and Ultrasonic Measurement System via a Web Browser to Assess Acoustic Target Strength

    NASA Astrophysics Data System (ADS)

    Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko

    This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.

  19. Acoustic emission technique for monitoring the pyrolysis of composites for process control.

    PubMed

    Tittmann, B R; Yen, C E

    2008-11-01

    Carbonization is the first step in the heat and pressure treatment (pyrolysis) of composites in preparing carbon-carbon parts. These find many uses, including aircraft brakes, rocket nozzles and medical implants. This paper describes the acoustic emissions (AE) from various stages of the manufacturing process of carbon-carbon composites. This process involves carbonization at a high temperature and this results in both thermal expansion and volume change (due to pyrolysis in which a sacrificial polymer matrix is converted to carbon). Importantly the resultant matrix is porous and has a network of small intra-lamina cracks. The formation of these microcracks produces AE and this paper describes how this observation can be used to monitor (and eventually control) the manufacturing process. The aim is to speed up manufacture, which is currently time-consuming. The first section of the paper describes the design of unimodal waveguides to enable the AE to propagate to a cool environment where a transducer can be located. The second part of the paper describes various experimental observations of AE under a range of process conditions. In particular, this paper presents a technique based on detecting acoustic emissions and (1) uses wire waveguides to monitor parts within the autoclave to 800 degrees C, (2) monitors microcracking during pyrolysis, (3) uses a four-level threshold to distinguish between low- and high-amplitude cracking events, (4) recognizes the occurrence of harmful delaminations, and (5) guides the control of the heating rate for optimum efficiency of the pyrolysis process. In addition, supporting data are presented of in situ measurements of porosity, weight loss, cross-ply shrinkage, and mass spectroscopy of gases emitted. The process evolution is illustrated by the use of interrupted manufacturing cycle micrographs obtained by optical, scanning acoustic (SAM) and scanning electron (SEM) microscopy. The technique promotes in-process monitoring and

  20. Vibro-acoustic coupling dynamics of a finite cylindrical shell under a rotor-bearing-foundation system's nonlinear vibration excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Qizheng; Wang, Deshi

    2015-07-01

    The vibro-acoustic coupling dynamics of a rotor-bearing-foundation-cylinder system are investigated. Using rotor dynamics, structure dynamics and acoustical theory, the vibro-acoustic coupling equation of a cylindrical shell under rotor-bearing-foundation system's nonlinear vibration excitations is derived based on variational principle. In order to solve the coupling equation, the influences of the shell's vibration to the rotor-bearing system are neglected, and then the dynamical equation is reduced. The nonlinear forces transmitted to the cylinder are fitted in the Fourier series by the fast Fourier translation and the harmonic balance method, and then the analytical solution of the vibro-acoustic coupling equation of the cylinder is derived. Based on inherent assumption, the analytical expressions of the acoustic radiation power and the surface velocity are given. Then bifurcation diagrams, phase diagrams, time history diagrams and spectrum graphs are employed to study the nonlinear vibration characteristics and the acoustic radiation characteristics. It is inferred that the present work proposes a semi-analytical and semi-numerical method for the nonlinear vibro-acoustic coupling system. The motions of the forces transmitted to the cylinder are periodic motions, quasi-periodic motions, and so on. The vibro-acoustic characteristics of shell are dominated by the rotation frequency of the rotor, while there are some harmonic components dominating the vibro-acoustic characteristics at resonant frequencies.

  1. Rotor control system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Maciolek, Joseph R. (Inventor)

    1987-01-01

    A helicopter rotor control system (13) including a stop azimuth controller (32) for establishing the value of a deceleration command (15') to a deceleration controller (23), a transition azimuth predictor (41) and a position reference generator (55), which are effective during the last revolution of said rotor (14) to establish a correction indication (38) to adjust the deceleration command (15') to ensure that one of the rotor blades (27) stops at a predetermined angular position.

  2. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  3. Control of Nonlinear Systems.

    DTIC Science & Technology

    1980-02-26

    above papers shows how the "finite horizon time" feedback stabilization technique discussed in Section Ill-A can be extended to derive stabilizing ... control laws for the linear differential system with delayed controls: x = Ax(t) - 0 u(t) + B 1u(t - h). The second of the above papers shows how the

  4. Liquid Level Control System.

    DTIC Science & Technology

    A system for controlling liquid flow from an inlet into a tank comprising a normally closed poppet valve controlled by dual pressure chambers each...containing a diaphragm movable by the pressure of the liquid in the inlet to cause the valve to close. Pressure against the diaphragms is relieved by

  5. An application review of dielectric electroactive polymer actuators in acoustics and vibration control

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenghong; Shuai, Changgeng; Gao, Yan; Rustighi, Emiliano; Xuan, Yuan

    2016-09-01

    Recent years have seen an increasing interest in the dielectric electroactive polymers (DEAPs) and their potential in actuator applications due to the large strain capabilities. This paper starts with an overview of some configurations of the DEAP actuators and follows with an in-depth literature and technical review of recent advances in the field with special considerations given to aspects pertaining to acoustics and vibration control. Significant research has shown that these smart actuators are promising replacement for many conventional actuators. The paper has been written with reference to a large number of published papers listed in the reference section.

  6. Continuous Acoustic Sensing With an Unmanned Aerial Vehicle System for Anti-Submarine Warfare in a High-Threat Area

    DTIC Science & Technology

    2015-12-01

    ACOUSTIC SENSING WITH AN UNMANNED AERIAL VEHICLE SYSTEM FOR ANTI- SUBMARINE WARFARE IN A HIGH-THREAT AREA by Loney R. Cason III December 2015...REPORT DATE December 2015 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CONTINUOUS ACOUSTIC SENSING WITH AN UNMANNED...the ocean surface and deploying passive acoustic sensors at depth. We investigated the employment of the Aqua-Quad in a general environment

  7. Theory and investigation of acoustic multiple-input multiple-output systems based on spherical arrays in a room.

    PubMed

    Morgenstern, Hai; Rafaely, Boaz; Zotter, Franz

    2015-11-01

    Spatial attributes of room acoustics have been widely studied using microphone and loudspeaker arrays. However, systems that combine both arrays, referred to as multiple-input multiple-output (MIMO) systems, have only been studied to a limited degree in this context. These systems can potentially provide a powerful tool for room acoustics analysis due to the ability to simultaneously control both arrays. This paper offers a theoretical framework for the spatial analysis of enclosed sound fields using a MIMO system comprising spherical loudspeaker and microphone arrays. A system transfer function is formulated in matrix form for free-field conditions, and its properties are studied using tools from linear algebra. The system is shown to have unit-rank, regardless of the array types, and its singular vectors are related to the directions of arrival and radiation at the microphone and loudspeaker arrays, respectively. The formulation is then generalized to apply to rooms, using an image source method. In this case, the rank of the system is related to the number of significant reflections. The paper ends with simulation studies, which support the developed theory, and with an extensive reflection analysis of a room impulse response, using the platform of a MIMO system.

  8. Active Control of Fan Noise: Feasibility Study. Volume 5; Numerical Computation of Acoustic Mode Reflection Coefficients for an Unflanged Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.

  9. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    DOE PAGES

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less

  10. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.

    PubMed

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.

  11. ACCESS Pointing Control System

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Alexander, James; Trauger, John; Moody, Dwight; Egerman, Robert; Vallone, Phillip; Elias, Jason; Hejal, Reem; Camelo, Vanessa; Bronowicki, Allen; O'Connor, David; Partrick, Richard; Orzechowski, Pawel; Spitter, Connie; Lillie, Chuck

    2010-01-01

    ACCESS (Actively-Corrected Coronograph for Exoplanet System Studies) was one of four medium-class exoplanet concepts selected for the NASA Astrophysics Strategic Mission Concept Study (ASMCS) program in 2008/2009. The ACCESS study evaluated four major coronograph concepts under a common space observatory. This paper describes the high precision pointing control system (PCS) baselined for this observatory.

  12. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    The application of small computers using digital techniques for operating the servo and control system of large antennas is discussed. The advantages of the system are described. The techniques were evaluated with a forty foot antenna and the Sigma V computer. Programs have been completed which drive the antenna directly without the need for a servo amplifier, antenna position programmer or a scan generator.

  13. Acoustic characterization of hydraulic systems: application to POGO Phenomenon

    NASA Astrophysics Data System (ADS)

    Simon, A.; Fortes-Patella, R.; Martinez Molina, J.-J.; Rebattet, C.; Brillault, R.; Kernilis, A.

    2016-11-01

    This paper presents an experimental methodology for the evaluation of dynamic transfer matrices using three pressure sensors. The experimental study was carried out at the CREMHyG's acoustic test rig. The speed of sound in the pipe, as well as discharge fluctuations were evaluated from the pressure fluctuations measured during tests carried out under excitation of a modulator (piston). The method applied to reconstitute flow rate fluctuations from pressure sensors were validated by comparisons with piston displacement measurements. The transfer matrices for straight pipes and POGO corrective devices were identified based on electrical analogy. The identification method was validated by comparing the transfer matrix components to theoretical values. The results can be applied in the future, in the case of space rocket.

  14. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  15. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Zhang, Shangbin; He, Qingbo; Kong, Fanrang

    2016-01-01

    Wayside acoustic condition monitoring and fault diagnosis for train bearings depend on acquired acoustic signals, which consist of mixed signals from different train bearings with obvious Doppler distortion as well as background noises. This study proposes a novel scheme to overcome the difficulties, especially the multi-source problem in wayside acoustic diagnosis system. In the method, a time-frequency data fusion (TFDF) strategy is applied to weaken the Heisenberg's uncertainty limit for a signal's time-frequency distribution (TFD) of high resolution. Due to the Doppler Effect, the signals from different bearings have different time centers even with the same frequency. A Doppler feature matching search (DFMS) algorithm is then put forward to locate the time centers of different bearings in the TFD spectrogram. With the determined time centers, time-frequency filters (TFF) are designed with thresholds to separate the acoustic signals in the time-frequency domain. Then the inverse STFT (ISTFT) is taken and the signals are recovered and filtered aiming at each sound source. Subsequently, a dynamical resampling method is utilized to remove the Doppler Effect. Finally, accurate diagnosis for train bearing faults can be achieved by applying conventional spectrum analysis techniques to the resampled data. The performance of the proposed method is verified by both simulated and experimental cases. It shows that it is effective to detect and diagnose multiple defective bearings even though they produce multi-source acoustic signals.

  16. Acoustic field interaction with a boiling system under terrestrial gravity and microgravity.

    PubMed

    Sitter, J S; Snyder, T J; Chung, J N; Marston, P L

    1998-11-01

    Pool boiling experiments from a platinum wire heater in FC-72 liquid were conducted under terrestrial and microgravity conditions, both with and without the presence of a high-intensity acoustic standing wave within the fluid. The purpose of this research was to study the interaction between an acoustic field and a pool boiling system in normal gravity and microgravity. The absence of buoyancy in microgravity complicates the process of boiling. The acoustic force on a vapor bubble generated from a heated wire in a standing wave was shown to be able to play the role of buoyancy in microgravity. The microgravity environment was achieved with 0.6 and 2.1-s drop towers. The sound was transmitted through the fluid medium by means of a half wavelength sonic transducer driven at 10.18 kHz. At high enough acoustic pressure amplitudes cavitation and streaming began playing an important role in vapor bubble dynamics and heat transfer. Several different fixed heat fluxes were chosen for the microgravity experiment and the effects of acoustics on the surface temperature of the heater were recorded and the vapor bubble movement was filmed. Video images of the pool boiling processes and heat transfer data are presented.

  17. Nonlinear acoustic complexity in a fish ‘two-voice’ system

    PubMed Central

    Rice, Aaron N.; Land, Bruce R.; Bass, Andrew H.

    2011-01-01

    Acoustic signals play essential roles in social communication and show a strong selection for novel morphologies leading to increased call complexity in many taxa. Among vertebrates, repeated innovations in the larynges of frogs and mammals and the syrinx of songbirds have enhanced the spectro-temporal content, and hence the diversity of vocalizations. This acoustic diversification includes nonlinear characteristics that expand frequency profiles beyond the traditional categorization of harmonic and broadband calls. Fishes have remained a notable exception to evidence for such acoustic innovations among vertebrates, despite their being the largest group of living vertebrates that also exhibit widespread evolution of sound production. Here, we combine rigorous acoustic and mathematical analyses with experimental silencing of the vocal motor system to show how a novel swim bladder mechanism in a toadfish enables it to generate calls exhibiting nonlinearities like those found among frogs, birds and mammals, including primates. By showing that fishes have evolved nonlinear acoustic signalling like all other major lineages of vocal vertebrates, these results suggest strong selection pressure favouring this mechanism to enrich the spectro-temporal content and complexity of vocal signals. PMID:21561970

  18. The ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Deloose, I.; Pace, A.

    1994-12-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.

  19. Synthetic-gauge-field-induced Dirac semimetal state in an acoustic resonator system

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Zhang, Baile

    2016-12-01

    Recently, a proposal of synthetic gauge field in reduced two-dimensional (2D) system from three-dimensional (3D) acoustic structure shows an analogue of the gapped Haldane model with fixed k z , and achieves the gapless Weyl semimetal phase in 3D momentum space. Here, extending this approach of synthetic gauge flux, we propose a reduced square lattice of acoustic resonators, which exhibits Dirac nodes with broken effective time-reversal symmetry. Protected by an additional hidden symmetry, these Dirac nodes with quantized values of topological charge are characterized by nonzero winding number and the finite structure exhibits flat edge modes that cannot be destroyed by perturbations.

  20. Acoustical prediction methods for heating, ventilating, and air-conditioning (HVAC) systems

    NASA Astrophysics Data System (ADS)

    Ryherd, S. R.; Wang, L. M.

    2005-09-01

    The goal of this project is to compare and contrast various aspects of acoustical prediction methods for heating, ventilating, and air-conditioning (HVAC) systems. The three methods include two commonly used software programs and a custom spread sheet developed by the authors based on the American's Society of Heating, Refrigeration, and Air-conditioning Engineers (ASHRAE) Applications Handbook. Preliminary results indicate relatively good agreement between the three methods analyzed. The degree of disparity is predominately effected by the assumptions required by the end user. Research methods and results will be presented. This project provides a greater understanding of these acoustical prediction methods and their limitations.

  1. The acoustic streamflow-measuring system on the Columbia River at The Dalles, Oregon

    USGS Publications Warehouse

    Smith, Winchell; Hubbard, Larry L.; Laenen, Antonius

    1971-01-01

    Installation of this sytem, which is the first application of an AVM (acoustic velocity meter) in a large natural channel, was completed in April 1969. It has been in continuous operation since that date. Performance has been satisfactory, and similar installations at other key points in the Columbia River basin are now under consideration. This paper covers the general theory behind acoustic velocity meters, tracing development from earlier concepts to the present commercially available system. Conclusions are that the AVM can now be considered as an operational instrument which permits accurate gaging of river discharge at many sites where conventional stream-gaging procedures have proved to be unreliable.

  2. CNEOST Control Software System

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhao, H. B.; Xia, Y.; Lu, H.; Li, B.

    2015-03-01

    In 2013, CNEOST (China Near Earth Object Survey Telescope) adapted its hardware system for the new CCD camera. Based on the new system architecture, the control software is re-designed and implemented. The software system adopts the message passing mechanism via WebSocket protocol, and improves its flexibility, expansibility, and scalability. The user interface with responsive web design realizes the remote operating under both desktop and mobile devices. The stable operating of software system has greatly enhanced the operation efficiency while reducing the complexity, and has also made a successful attempt for the future system design of telescope and telescope cloud.

  3. Information Survivability Control Systems

    DTIC Science & Technology

    1999-01-01

    interfaces with higher-level (e.g., Federal Reserve ) and lower-level (e.g., branch) control systems. A hierarchical structure is natural to support...level hierarchical banking system with branch banks at the leaves, money-center banks in the middle, and the Federal Reserve system at the root...center in question, then the check deposit request is routed there. If not, then the check must be routed through the Federal Reserve . Checks for small

  4. Dynamical energy analysis for built-up acoustic systems at high frequencies.

    PubMed

    Chappell, D J; Giani, S; Tanner, G

    2011-09-01

    Standard methods for describing the intensity distribution of mechanical and acoustic wave fields in the high frequency asymptotic limit are often based on flow transport equations. Common techniques are statistical energy analysis, employed mostly in the context of vibro-acoustics, and ray tracing, a popular tool in architectural acoustics. Dynamical energy analysis makes it possible to interpolate between standard statistical energy analysis and full ray tracing, containing both of these methods as limiting cases. In this work a version of dynamical energy analysis based on a Chebyshev basis expansion of the Perron-Frobenius operator governing the ray dynamics is introduced. It is shown that the technique can efficiently deal with multi-component systems overcoming typical geometrical limitations present in statistical energy analysis. Results are compared with state-of-the-art hp-adaptive discontinuous Galerkin finite element simulations.

  5. Synthesis of porous-acoustic absorbing systems by an evolutionary optimization method

    NASA Astrophysics Data System (ADS)

    Silva, F. I.; Pavanello, R.

    2010-10-01

    Topology optimization is frequently used to design structures and acoustic systems in a large range of engineering applications. In this work, a method is proposed for maximizing the absorbing performance of acoustic panels by using a coupled finite element model and evolutionary strategies. The goal is to find the best distribution of porous material for sound absorbing panels. The absorbing performance of the porous material samples in a Kundt tube is simulated using a coupled porous-acoustic finite element model. The equivalent fluid model is used to represent the foam material. The porous material model is coupled to a wave guide using a modal superposition technique. A sensitivity number indicating the optimum locations for porous material to be removed is derived and used in a numerical hard kill scheme. The sensitivity number is used to form an evolutionary porous material optimization algorithm which is verified through examples.

  6. Multimode acoustic transparency and slow sound effects in hybrid subwavelength resonators

    NASA Astrophysics Data System (ADS)

    Deng, Yu-Qiang; Qi, Dong-Xiang; Tuo, Ming-Jun; Liu, Lian-Zi; Zhang, Rui-Li; Peng, Ru-Wen; Wang, Mu

    2017-03-01

    In this paper, we demonstrate that a series of hybrid Helmholtz resonators, which introduce “acoustic transparent atoms”, “acoustic nontransparent atoms”, and “acoustic quasitransparent atoms” simultaneously, can generate multimode acoustic transparency and the slow sound effect. Dual-mode acoustic transparency can be achieved by employing a waveguide incorporating three different Helmholtz resonators. Additional modes are introduced by adding further acoustic quasitransparent atoms. This can be explained by the destructive interference among different resonators. Furthermore, slow sound propagation is demonstrated in our multimode acoustic transparency systems by employing time-domain simulations. Our results may have potential applications for sound control in one-dimensional waveguides.

  7. Designing an Acoustic Suspension Speaker System in the General Physics Laboratory: A Divergent experiment

    ERIC Educational Resources Information Center

    Horton, Philip B.

    1969-01-01

    Describes a student laboratory project involving the design of an "acoustic suspension speaker system. The characteristics of the loudspeaker used are measured as an extension of the inertia-balance experiment. The experiment may be extended to a study of Stelmholtz resonators, coupled oscillators, electromagnetic forces, thermodynamics and…

  8. A Mobile Acoustic Subsurface Sensing (MASS) System for Rapid Roadway Assessment

    PubMed Central

    Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J. Gregory; Wang, Ming L.

    2013-01-01

    Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test. PMID:23698266

  9. Characterising nuclear simulant suspensions in situ with an acoustic backscatter system

    SciTech Connect

    Bux, Jaiyana; Hunter, Timothy N.; Paul, Neepa; Biggs, Simon R.; Dodds, Jonathan M.; Peakall, Jeffrey

    2013-07-01

    In situ characterisation of radio-toxic sludges and slurries is critical to numerous operations including those involving their transport and retrieval. An inexpensive, flexible acoustic backscatter system has been employed for the first time here to a 4/10. scale active storage tank comprising of a nuclear simulant suspension, to verify its application. Intricate suspension characteristics and tank operation features emerged. (authors)

  10. ACOUSTIC FORMING FOR ENHANCED DEWATERING AND FORMATION

    SciTech Connect

    Cyrus K Aidun

    2007-11-30

    The next generation of forming elements based on acoustic excitation to increase drainage and enhances formation both with on-line control and profiling capabilities has been investigated in this project. The system can be designed and optimized based on the fundamental experimental and computational analysis and investigation of acoustic waves in a fiber suspension flow and interaction with the forming wire.

  11. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-06-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a Wireless Sensor Network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  12. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-11-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a wireless sensor network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  13. Structural FE model updating of cavity systems incorporating vibro-acoustic coupling

    NASA Astrophysics Data System (ADS)

    Nehete, D. V.; Modak, S. V.; Gupta, K.

    2015-01-01

    Finite element model updating techniques are used to update the finite element model of a structure in order to improve its correlation with the experimental dynamic test data. These techniques are well developed and extensively studied for the case of purely structural dynamic systems. However, the cavities encountered in automotive, aerospace and other transportation applications represent a class of structures in which an elastic structure encloses an acoustic medium. In such systems the dynamic characteristics of the structure are influenced by the acoustic loading due to the acoustic response in the cavity. The existing structural FE model updating approaches assume the structure to be under in-vacuo condition and hence if used for updating cavity structural FE models would not allow taking into account the effect of acoustic loading on the structural dynamic characteristics. This may adversely affect the effectiveness of updating in yielding an accurate updated FE model. This paper addresses the above issue and presents a structural FE model updating method, called 'coupled inverse eigen-sensitivity method', which takes into account the acoustic loading on the structure. The method uses the experimentally identified coupled modal data on the structure as the reference data. A numerical case study of a 3D rectangular cavity backed by a flexible plate is presented to evaluate the effectiveness of the approach to obtain an accurate structural FE model. Updating is also carried out using the existing (uncoupled) inverse eigen-sensitivity method to study the influence of acoustic loading on the updating process and to study the accuracy with which the updating parameters are identified. The results obtained are also compared with those obtained by the proposed coupled inverse eigen-sensitivity method.

  14. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  15. Introducing DIASCoPE: Directly Integrated Acoustic System Combined with Pressure Experiments — Changing the Paradigm from Product to Process

    NASA Astrophysics Data System (ADS)

    Whitaker, M. L.; Baldwin, K. J.; Huebsch, W. B.; Tercé, N.; Bejina, F.; Bystricky, M.; Chen, H.; Vaughan, M. T.; Weidner, D. J.

    2014-12-01

    Understanding the properties and behaviors of materials and multi-phase aggregates under conditions of high pressure and temperature is vital to unraveling the mysteries that lie beneath the surface of the planet. Advances in in situexperimental techniques using synchrotron radiation at these extreme conditions have helped to provide answers to fundamental questions that were previously unattainable. Synchrotron-based ultrasonic interferometry measurements have proven to be especially important in determining acoustic velocities and thermoelastic properties of materials at high pressures and temperatures. However, due to relatively slow data collection times, it has been difficult to measure the effects of processes as they occur, and instead the measurement is made on the end product of these processes. DIASCoPE is an important step toward addressing this problem.Over the last three years, we have designed and developed an on-board ultrasonic acoustic velocity measurement system that cuts data collection time down by over an order of magnitude. We can now measure P- and S-wave travel times in samples at extreme conditions in less than one second. Moreover, the system has been fully integrated with the multi-anvil apparatus and the EPICS control system at beamline X17B2 of the National Synchrotron Light Source, allowing for greater ease of control andfull automation of experimental data collection. The DIASCoPE has completed the testing and commissioning phase, and the first data collected using this powerful new system will be presented here.DIASCoPE represents a major step forward in acoustic velocity collection time reduction that will finally allow us to begin to witness what effects various processes in the deep Earth may have on the physical properties of materials at extreme conditions as they occur. These new capabilities will allow us to change the focus of study from the product to the process itself and will lead to a greater understanding of the

  16. LSST control system

    NASA Astrophysics Data System (ADS)

    Schumacher, Germán; Warner, Michael; Krabbendam, Victor

    2006-06-01

    The Large Synoptic Survey Telescope (LSST) will be a large, wide-field ground-based telescope designed to obtain sequential images of the entire visible sky every few nights. The LSST, in spite of its large field of view and short 15 second exposures, requires a very accurate pointing and tracking performance. The high efficiency specified for the whole system implies that observations will be acquired in blind pointing mode and tracking demands calculated from blind pointing as well. This paper will provide a high level overview of the LSST Control System (LCS) and details of the Telescope Control System (TCS), explaining the characteristics of the system components and the interactions among them. The LCS and TCS will be designed around a distributed architecture to maximize the control efficiency and to support the highly robotic nature of the LSST System. In addition to its control functions, the LCS will capture, organize and store system wide state information, to make it available for monitoring, evaluation and calibration processes. An evaluation of the potential communications middleware software to be utilized for data transport, is also included.

  17. SERVOMOTOR CONTROL SYSTEM

    DOEpatents

    MacNeille, S.M.

    1958-12-01

    Control systems for automatic positioning of an electric motor operated vapor valve are described which is operable under the severe conditions existing in apparatus for electro-magnetlcally separating isotopes. In general, the system includes a rotor for turning the valve comprising two colls mounted mutually perpendicular to each other and also perpendicular to the magnetic field of the isotope separating apparatus. The coils are furnished with both a-c and d- c current by assoclate control circuitry and a position control is provided for varying the ratlo of the a-c currents in the coils and at the same time, but in an inverse manner, the ratio between the d-c currents in the coils is varied. With the present system the magnitude of the motor torque is constant for all valves of the rotor orientatlon angle.

  18. Back-end algorithms that enhance the functionality of a biomimetic acoustic gunfire direction finding system

    NASA Astrophysics Data System (ADS)

    Pu, Yirong; Kelsall, Sarah; Ziph-Schatzberg, Leah; Hubbard, Allyn

    2009-05-01

    Increasing battlefield awareness can improve both the effectiveness and timeliness of response in hostile military situations. A system that processes acoustic data is proposed to handle a variety of possible applications. The front-end of the existing biomimetic acoustic direction finding system, a mammalian peripheral auditory system model, provides the back-end system with what amounts to spike trains. The back-end system consists of individual algorithms tailored to extract specific information. The back-end algorithms are transportable to FPGA platforms and other general-purpose computers. The algorithms can be modified for use with both fixed and mobile, existing sensor platforms. Currently, gunfire classification and localization algorithms based on both neural networks and pitch are being developed and tested. The neural network model is trained under supervised learning to differentiate and trace various gunfire acoustic signatures and reduce the effect of different frequency responses of microphones on different hardware platforms. The model is being tested against impact and launch acoustic signals of various mortars, supersonic and muzzle-blast of rifle shots, and other weapons. It outperforms the cross-correlation algorithm with regard to computational efficiency, memory requirements, and noise robustness. The spike-based pitch model uses the times between successive spike events to calculate the periodicity of the signal. Differences in the periodicity signatures and comparisons of the overall spike activity are used to classify mortar size and event type. The localization of the gunfire acoustic signals is further computed based on the classification result and the location of microphones and other parameters of the existing hardware platform implementation.

  19. Performance evaluation of an acoustic indoor localization system based on a fingerprinting technique

    NASA Astrophysics Data System (ADS)

    Aloui, Nadia; Raoof, Kosai; Bouallegue, Ammar; Letourneur, Stephane; Zaibi, Sonia

    2014-12-01

    We present an acoustic location system that adopts the time of arrival of the path of maximum amplitude as a signature and estimates the target position through nonparametric kernel regression. The system was evaluated in experiments for two main configurations: a privacy-oriented configuration with code division multiple access operation and a centralized configuration with time division multiple access operation. The effects of the number and positions of sources on the performance of the privacy-oriented system was studied. Moreover, the effect of the number of fingerprint positions on the performance of both systems was investigated. Results showed that our privacy-oriented scheme provides an accuracy of 8.5 cm with 87% precision, whereas our centralized system provides an accuracy of 2.7 cm for 93% of measurements. A comparison between our privacy-oriented system and another acoustic location system based on code division multiple access operation and lateration was conducted on our test bench and revealed that the cumulative error distribution function of the fingerprint-based system is better than that of the lateration-based system. This result is similar to that found for Wi-Fi radio-based localization. However, our experiments are the first to demonstrate the detrimental effect that reverberation has on naive acoustic localization approaches.

  20. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  1. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  2. REACTOR CONTROL SYSTEM

    DOEpatents

    MacNeill, J.H.; Estabrook, J.Y.

    1960-05-10

    A reactor control system including a continuous tape passing through a first coolant passageway, over idler rollers, back through another parallel passageway, and over motor-driven rollers is described. Discrete portions of fuel or poison are carried on two opposed active sections of the tape. Driving the tape in forward or reverse directions causes both active sections to be simultaneously inserted or withdrawn uniformly, tending to maintain a more uniform flux within the reactor. The system is particularly useful in mobile reactors, where reduced inertial resistance to control rod movement is important.

  3. Optical controlled keyboard system

    NASA Astrophysics Data System (ADS)

    Budzyński, Łukasz; Długosz, Dariusz; Niewiarowski, Bartosz; Zajkowski, Maciej

    2011-06-01

    Control systems of our computers are common devices, based on the manipulation of keys or a moving ball. Completely healthy people have no problems with the operation of such devices. Human disability makes everyday activities become a challenge and create trouble. When a man can not move his hands, the work becomes difficult or often impossible. Controlled optical keyboard is a modern device that allows to bypass the limitations of disability limbs. The use of wireless optical transmission allows to control computer using a laser beam, which cooperates with the photodetectors. The article presents the construction and operation of non-contact optical keyboard for people with disabilities.

  4. Remotely controllable mixing system

    NASA Technical Reports Server (NTRS)

    Belew, Robert R. (Inventor)

    1987-01-01

    A remotely controllable mixing system (210) in which a plurality of mixing assemblies (10a-10e) are arranged in an annular configuration, and wherein each assembly (10) employs a central chamber (16) and two outer, upper and lower, chambers (12, 14). Valves (18, 20) are positioned between chambers, and these valves (18, 20) for a given mixing assembly (10) are operated by upper and lower control rotors (29), which in turn are driven by upper and lower drive rotors (270, 270b). Additionally, a hoop (278) is compressed around upper control rotors (29) and a hoop (278b) is compressed around lower control rotors (29) to thus insure constant frictional engagement between all control rotors (29) and drive rotors (270, 270b). The drive rollers (270, 270b) are driven by a motor (213).

  5. Shock absorber control system

    SciTech Connect

    Nakano, Y.; Ohira, M.; Ushida, M.; Miyagawa, T.; Shimodaira, T.

    1987-01-13

    A shock absorber control system is described for controlling a dampening force of a shock absorber of a vehicle comprising: setting means for setting a desired dampening force changeable within a predetermined range; drive means for driving the shock absorber to change the dampening force of the shock absorber linearly; control means for controlling the drive means in accordance with the desired dampening force when the setting of the desired dampening force has been changed; detecting means for detecting an actual dampening force of the shock absorber; and correcting means for correcting the dampening force of the shock absorber by controlling the drive means in accordance with a difference between the desired dampening force and the detected actual dampening force.

  6. Celsius Control system.

    PubMed

    Badjatia, Neeraj

    2004-01-01

    The Celsius Control system (Innercool Therapies, Inc.) is an intravascular cooling catheter system consisting of the Celsius Control catheter,circulating set, and the Celsius Control console. Based on clinical studies, the system has recently received Food and Drug Administration approval for use as a device to induce, maintain, and reverse mild hypothermia in neurosurgical patients in surgery and recovery/intensive care, and is currently being marketed in the 10.7 Fr and 14 Fr catheter sizes. It works to regulate temperature by circulating sterile saline through the Celsius Control console, which contains an integrated assembly comprising a temperature and pressure sensing block,supply and return lines, and a 20-{m} filter with connective tubing and an independent heat exchanger and pump. The system relies on digital core temperature readings from either esophageal or bladder temperature probes. After the system is turned on, approximately 150 mL of sterile saline solution is pumped through the console and is cooled to achieve the preset temperature. This cooled saline subsequently circulates from the console through the catheter in a closed-loop manner. The distal portion of the catheter incorporates a flexible distal metallic heat transfer element that is designed to allow for direct exchange of thermal energy with blood circulating around the catheter.

  7. Coded acoustic wave sensors and system using time diversity

    NASA Technical Reports Server (NTRS)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  8. Improved phonocardiogram system based on acoustic impedance matching.

    PubMed

    Schwartz, R S; Reeves, J T; Sodal, I E; Barnes, F S

    1980-04-01

    We considered that phonocardiographic recording could be improved 1) by minimizing the acoustic impedance mismatch between the precordial tissue and transducer, 2) by optimizing the configuration of the impedance-matching medium and transducer design, and 3) by storing signals in digital form through analog-to-digital conversion of analog recordings made at the bedside. The use of an aqueous coupling medium to improve energy transmission increased signal voltage approximately 100-fold over presently used commercial devices. Further match to the crystal was achieved by a concentrating horn configuration for the aqueous medium. Measured frequency response of the device in the range 1 Hz to 1 kHz was better than two other commercially tested microphones. Inspection of comparative phonocardiograms showed more information from the new device than from the two other commercial devices. Unfiltered digitized signals, using our microphone in normal subjects, demonstrated good beat-to-beat repeatability, but analog filtering to obtain the conventional phonocardiogram showed significant loss of information. The new instrument appears to be superior to those commercial devices tested in recording heart sounds.

  9. A two-beam acoustic system for tissue analysis.

    PubMed

    Sachs, T D; Janney, C D

    1977-03-01

    In the 'thermo-acoustic sensing technique' (TAST), a burst of sound, called the 'thermometer' beam is passed through tissue and its transit time is measured. A focused sound field, called the heating field, then warms a small volume in the path of the therometer beam, in proportion to the absorption. Finally, the therometer beam burst is repeated and its transit time subtracted from that of the initial thermometer burst. This difference measures the velocity perturbation in the tissue produced by the heating field. The transit time difference is td = K integral of infinity-infinity IP dchi where K is the instrument constant, I the heating field intensity, and P a perturbation factor which characterizes the tissues. The integration is carried out along the path of the thermometer beam. The perturbation factor is P = (formula: see text) where C is the specific heat, rho the denisty, V the velocity of sound, (formula: see text) the temperature coefficient of velocity and alpha the heating field absorption coefficient which is apparently sensitive to tissue structure and condition. Experiments on a fixed human brain showed an ability to distinguish between various tissue types combined with a spatial resolution of better than 3 mm. Should predictions based on the data and theory prove correct, TAST may become a non-invasive alternative to biopsy.

  10. Design and Evaluation of a Scalable and Reconfigurable Multi-Platform System for Acoustic Imaging

    PubMed Central

    Izquierdo, Alberto; Villacorta, Juan José; del Val Puente, Lara; Suárez, Luis

    2016-01-01

    This paper proposes a scalable and multi-platform framework for signal acquisition and processing, which allows for the generation of acoustic images using planar arrays of MEMS (Micro-Electro-Mechanical Systems) microphones with low development and deployment costs. Acoustic characterization of MEMS sensors was performed, and the beam pattern of a module, based on an 8 × 8 planar array and of several clusters of modules, was obtained. A flexible framework, formed by an FPGA, an embedded processor, a computer desktop, and a graphic processing unit, was defined. The processing times of the algorithms used to obtain the acoustic images, including signal processing and wideband beamforming via FFT, were evaluated in each subsystem of the framework. Based on this analysis, three frameworks are proposed, defined by the specific subsystems used and the algorithms shared. Finally, a set of acoustic images obtained from sound reflected from a person are presented as a case study in the field of biometric identification. These results reveal the feasibility of the proposed system. PMID:27727174

  11. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  12. Active control system trends

    NASA Technical Reports Server (NTRS)

    Yore, E. E.; Gunderson, D. C.

    1976-01-01

    The active control concepts which achieve the benefit of improved mission performance and lower cost and generate system trends towards improved dynamic performance, more integration, and digital fly by wire mechanization are described. Analytical issues and implementation requirements and tools and approaches developed to address the analytical and implementation issues are briefly discussed.

  13. Performance Characterization of a Switchable Acoustic Resolution and Optical Resolution Photoacoustic Microscopy System.

    PubMed

    Moothanchery, Mohesh; Pramanik, Manojit

    2017-02-12

    Photoacoustic microscopy (PAM) is a scalable bioimaging modality; one can choose low acoustic resolution with deep penetration depth or high optical resolution with shallow imaging depth. High spatial resolution and deep penetration depth is rather difficult to achieve using a single system. Here we report a switchable acoustic resolution and optical resolution photoacoustic microscopy (AR-OR-PAM) system in a single imaging system capable of both high resolution and low resolution on the same sample. Lateral resolution of 4.2 µm (with ~1.4 mm imaging depth) and lateral resolution of 45 μm (with ~7.6 mm imaging depth) was successfully demonstrated using a switchable system. In vivo blood vasculature imaging was also performed for its biological application.

  14. Experimental and theoretical identification of a four- acoustic-inputs/two-vibration-outputs hearing system

    NASA Astrophysics Data System (ADS)

    Balaji, P. A.

    1999-07-01

    A cricket's ear is a directional acoustic sensor. It has a remarkable level of sensitivity to the direction of sound propagation in a narrow frequency bandwidth of 4-5 KHz. Because of its complexity, the directional sensitivity has long intrigued researchers. The cricket's ear is a four-acoustic-inputs/two-vibration-outputs system. In this dissertation, this system is examined in depth, both experimentally and theoretically, with a primary goal to understand the mechanics involved in directional hearing. Experimental identification of the system is done by using random signal processing techniques. Theoretical identification of the system is accomplished by analyzing sound transmission through complex trachea of the ear. Finally, a description of how the cricket achieves directional hearing sensitivity is proposed. The fundamental principle involved in directional heating of the cricket has been utilized to design a device to obtain a directional signal from non- directional inputs.

  15. Performance Characterization of a Switchable Acoustic Resolution and Optical Resolution Photoacoustic Microscopy System

    PubMed Central

    Moothanchery, Mohesh; Pramanik, Manojit

    2017-01-01

    Photoacoustic microscopy (PAM) is a scalable bioimaging modality; one can choose low acoustic resolution with deep penetration depth or high optical resolution with shallow imaging depth. High spatial resolution and deep penetration depth is rather difficult to achieve using a single system. Here we report a switchable acoustic resolution and optical resolution photoacoustic microscopy (AR-OR-PAM) system in a single imaging system capable of both high resolution and low resolution on the same sample. Lateral resolution of 4.2 µm (with ~1.4 mm imaging depth) and lateral resolution of 45 μm (with ~7.6 mm imaging depth) was successfully demonstrated using a switchable system. In vivo blood vasculature imaging was also performed for its biological application. PMID:28208676

  16. Electric turbocompound control system

    DOEpatents

    Algrain, Marcelo C.

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  17. Timing control system

    NASA Technical Reports Server (NTRS)

    Wiker, Gordon A. (Inventor); Wells, Jr., George H. (Inventor)

    1989-01-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not overshoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  18. Timing Control System

    NASA Technical Reports Server (NTRS)

    Wiker, Gordon A. (Inventor); Wells, George H., Jr. (Inventor)

    1987-01-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not over shoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  19. Timing control system

    NASA Astrophysics Data System (ADS)

    Wiker, Gordon A.; Wells, George H., Jr.

    1987-09-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not over shoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  20. Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    "Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.

  1. Estimating suspended sediment using acoustics in a fine-grained riverine system, Kickapoo Creek at Bloomington, Illinois

    USGS Publications Warehouse

    Manaster, Amanda D.; Domanski, Marian M.; Straub, Timothy D.; Boldt, Justin A.

    2016-08-18

    Acoustic technologies have the potential to be used as a surrogate for measuring suspended-sediment concentration (SSC). This potential was examined in a fine-grained (97-100 percent fines) riverine system in central Illinois by way of installation of an acoustic instrument. Acoustic data were collected continuously over the span of 5.5 years. Acoustic parameters were regressed against SSC data to determine the accuracy of using acoustic technology as a surrogate for measuring SSC in a fine-grained riverine system. The resulting regressions for SSC and sediment acoustic parameters had coefficients of determination ranging from 0.75 to 0.97 for various events and configurations. The overall Nash-Sutcliffe model-fit efficiency was 0.95 for the 132 observed and predicted SSC values determined using the sediment acoustic parameter regressions. The study of using acoustic technologies as a surrogate for measuring SSC in fine-grained riverine systems is ongoing. The results at this site are promising in the realm of surrogate technology.

  2. Microprocessor control for standardized power control systems

    NASA Technical Reports Server (NTRS)

    Green, D. G.; Perry, E.

    1978-01-01

    The use of microcomputers in space-oriented power systems as a replacement for existing inflexible analog type controllers has been proposed. This study examines multiprocessor systems, various modularity concepts and presents a conceptualized power system incorporating a multiprocessor controller as well as preliminary results from a breadboard model of the proposed system.

  3. Acoustic Doppler Current Profiler Data Processing System manual [ADCP

    USGS Publications Warehouse

    Cote, Jessica M.; Hotchkiss, Frances S.; Martini, Marinna; Denham, Charles R.; revisions by Ramsey, Andree L.; Ruane, Stephen

    2000-01-01

    This open-file report describes the data processing software currently in use by the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), to process time series of acoustic Doppler current data obtained by Teledyne RD Instruments Workhorse model ADCPs. The Sediment Transport Instrumentation Group (STG) at the WHCMSC has a long-standing commitment to providing scientists high quality oceanographic data published in a timely manner. To meet this commitment, STG has created this software to aid personnel in processing and reviewing data as well as evaluating hardware for signs of instrument malfunction. The output data format for the data is network Common Data Form (netCDF), which meets USGS publication standards. Typically, ADCP data are recorded in beam coordinates. This conforms to the USGS philosophy to post-process rather than internally process data. By preserving the original data quality indicators as well as the initial data set, data can be evaluated and reprocessed for different types of analyses. Beam coordinate data are desirable for internal and surface wave experiments, for example. All the code in this software package is intended to run using the MATLAB program available from The Mathworks, Inc. As such, it is platform independent and can be adapted by the USGS and others for specialized experiments with non-standard requirements. The software is continuously being updated and revised as improvements are required. The most recent revision may be downloaded from: http://woodshole.er.usgs.gov/operations/stg/Pubs/ADCPtools/adcp_index.htm The USGS makes this software available at the user?s discretion and responsibility.

  4. Developing a system for blind acoustic source localization and separation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Raghavendra

    This dissertation presents innovate methodologies for locating, extracting, and separating multiple incoherent sound sources in three-dimensional (3D) space; and applications of the time reversal (TR) algorithm to pinpoint the hyper active neural activities inside the brain auditory structure that are correlated to the tinnitus pathology. Specifically, an acoustic modeling based method is developed for locating arbitrary and incoherent sound sources in 3D space in real time by using a minimal number of microphones, and the Point Source Separation (PSS) method is developed for extracting target signals from directly measured mixed signals. Combining these two approaches leads to a novel technology known as Blind Sources Localization and Separation (BSLS) that enables one to locate multiple incoherent sound signals in 3D space and separate original individual sources simultaneously, based on the directly measured mixed signals. These technologies have been validated through numerical simulations and experiments conducted in various non-ideal environments where there are non-negligible, unspecified sound reflections and reverberation as well as interferences from random background noise. Another innovation presented in this dissertation is concerned with applications of the TR algorithm to pinpoint the exact locations of hyper-active neurons in the brain auditory structure that are directly correlated to the tinnitus perception. Benchmark tests conducted on normal rats have confirmed the localization results provided by the TR algorithm. Results demonstrate that the spatial resolution of this source localization can be as high as the micrometer level. This high precision localization may lead to a paradigm shift in tinnitus diagnosis, which may in turn produce a more cost-effective treatment for tinnitus than any of the existing ones.

  5. Cryogenic Control System

    SciTech Connect

    Goloborod'ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  6. Telerobot control system

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)

    1993-01-01

    This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.

  7. Tracking Three-Dimensional Fish Behavior with a New Marine Acoustic Telemetry System

    NASA Technical Reports Server (NTRS)

    Brosnan, Ian G.; McGarry, Louise P.; Greene, Charles H.; Steig, Tracey W.; Johnston, Samuel V.; Ehrenberg, John E.

    2015-01-01

    The persistent monitoring capability provided by acoustic telemetry systems allows us to study behavior, movement, and resource selection of mobile marine animals. Current marine acoustic telemetry systems are challenged by localization errors and limits in the number of animals that can be tracked simultaneously. We designed a new system to provide detection ranges of up to 1 km, to reduce localization errors to less than 1 m, and to increase to 500 the number of unique tags simultaneously tracked. The design builds on HTIs experience of more than a decade developing acoustic telemetry systems for freshwater environments. A field trial of the prototype system was conducted at the University of Washingtons Friday Harbor Marine Laboratory (Friday Harbor, WA). Copper rockfish (Sebastes caurinus) were selected for field trials of this new system because their high site-fidelity and small home ranges provide ample opportunity to track individual fish behavior while testing our ability to characterize the movements of a species of interest to management authorities.

  8. Dynamitron control systems

    NASA Astrophysics Data System (ADS)

    Lisanti, Thomas F.

    2005-12-01

    The Dynamitron control system utilizes the latest personal computer technology in control circuitry and components. Both the DPC-2000 and newer Millennium series of control systems make use of their modular architecture in both software and hardware to keep up with customer and engineering demands. This also allows the main structure of the software to remain constant for the user while software drivers are easily changed as hardware demands are modified and improved. The system is presented as four units; the Remote I/O (Input/Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the accelerator. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. All process parameters are printed to a report at regular intervals during a process run for record keeping.

  9. Management control system description

    SciTech Connect

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  10. A Device for Fetal Monitoring by Means of Control Over Cardiovascular Parameters Based on Acoustic Data

    NASA Astrophysics Data System (ADS)

    Khokhlova, L. A.; Seleznev, A. I.; Zhdanov, D. S.; Zemlyakov, I. Yu; Kiseleva, E. Yu

    2016-01-01

    The problem of monitoring fetal health is topical at the moment taking into account a reduction in the level of fertile-age women's health and changes in the concept of perinatal medicine with reconsideration of live birth criteria. Fetal heart rate monitoring is a valuable means of assessing fetal health during pregnancy. The routine clinical measurements are usually carried out by the means of ultrasound cardiotocography. Although the cardiotocography monitoring provides valuable information on the fetal health status, the high quality ultrasound devices are expensive, they are not available for home care use. The recommended number of measurement is also limited. The passive and fully non-invasive acoustic recording provides an alternative low-cost measurement method. The article describes a device for fetal and maternal health monitoring by analyzing the frequency and periodicity of heart beats by means of acoustic signal received on the maternal abdomen. Based on the usage of this device a phonocardiographic fetal telemedicine system, which will allow to reduce the antenatal fetal mortality rate significantly due to continuous monitoring over the state of fetus regardless of mother's location, can be built.

  11. The development of a biomimetic acoustic direction finding system for use on multiple platforms

    NASA Astrophysics Data System (ADS)

    Deligeorges, Socrates; Anderson, David; Browning, Cassandra A.; Cohen, Howard; Freedman, David; Gore, Tyler; Karl, Christian; Kelsall, Sarah; Mountain, David; Nourzad, Marianne; Pu, Yirong; Sandifer, Matt; Xue, Shuwan; Ziph-Schatzberg, Leah; Hubbard, Allyn

    2008-04-01

    This paper describes the flow of scientific and technological achievements beginning with a stationary "small, smart, biomimetic acoustic processor" designed for DARPA that led to a program aimed at acoustic characterization and direction finding for multiple, mobile platforms. ARL support and collaboration has allowed us to adapt the core technology to multiple platforms including a Packbot robotic platform, a soldier worn platform, as well as a vehicle platform. Each of these has varying size and power requirements, but miniaturization is an important component of the program for creating practical systems which we address further in companion papers. We have configured the system to detect and localize gunfire and tested system performance with live fire from numerous weapons such as the AK47, the Dragunov, and the AR15. The ARL-sponsored work has led to connections with Natick Labs and the Future Force Warrior program, and in addition, the work has many and obvious applications to homeland defense, police, and civilian needs.

  12. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    NASA Astrophysics Data System (ADS)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  13. The UMC control system

    SciTech Connect

    Dallard, K.E.; Adams, R.J.

    1983-05-01

    The control system for the Central Cormorant Underwater Manifold Centre (UMC) is an important step forward in developing the technology of subsea production. It provides reliable, fast operation of over 250 UMC valves and sensors at a distance of 7 kilometres. Included in the paper is an overview of the complete control system with selected components described in more detail. Principal guidelines which shaped the final design configuration are also discussed and problems encountered during design and manufacture are highlighted. The paper stresses the thorough testing that was an essential requirement prior to installation. Finally, general conclusions are drawn about the approach taken which would be of benefit to similar projects in the future.

  14. Analogy electromagnetism-acoustics: Validation and application to local impedance active control for sound absorption

    NASA Astrophysics Data System (ADS)

    Nicolas, L.; Furstoss, M.; Galland, M. A.

    1998-10-01

    An analogy between electromagnetism and acoustics is presented in 2D. The propagation of sound in presence of absorbing material is modeled using an open boundary microwave package. Validation is performed through analytical and experimental results. Application to local impedance active control for free field sound absorption is finally described. Une analogie entre acoustique et électromagnétisme est présentée en 2D, afin de modéliser la propagation d'ondes acoustiques, en présence de matériau absorbant et à l'aide d'un logiciel de micro-ondes en domaine ouvert. Cette analogie est validée par des résultats analytiques et expérimentaux. Une application au contrôle actif de l'impédance acoustique de surface de matériaux poreux est finalement décrite.

  15. Non-stationary drying of ceramic-like materials controlled through acoustic emission method

    NASA Astrophysics Data System (ADS)

    Kowalski, Stefan Jan; Szadzińska, Justyna

    2012-12-01

    This paper presents results of convective drying of ceramic-like materials in non-stationary conditions. The effect of periodically changing drying parameters at different frequencies and amplitudes on material quality has been investigated. During drying tests the destruction of the material was controlled trough the acoustic emission method and monitored with a digital camera. The experiments were carried out on cylindrically shaped samples made of KOC kaolin clay. The non-stationary drying consisted in periodical changes of the drying medium temperature and humidity. It has been found that a properly arranged methodology of non-stationary drying positively affects the product quality, mainly when drying is carried on with periodical changes of air humidity and to lesser extent with periodical changes of air temperature.

  16. Communication in Pipes Using Acoustic Modems that Provide Minimal Obstruction to Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Archer, Eric D. (Inventor); Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor)

    2016-01-01

    A plurality of phased array acoustic communication devices are used to communicate data along a tubulation, such as a well. The phased array acoustic communication devices employ phased arrays of acoustic transducers, such as piezoelectric transducers, to direct acoustic energy in desired directions along the tubulation. The system is controlled by a computer-based controller. Information, including data and commands, is communicated using digital signaling.

  17. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2007-10-16

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  18. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    SciTech Connect

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  19. System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2003-01-01

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  20. OAJ control system

    NASA Astrophysics Data System (ADS)

    Antón, J. L.; Yanes-Díaz, A.; Rueda-Teruel, S.; Luis-Simoes, R.; Chueca, S.; Lasso-Cabrera, N. M.; Bello, R.; Jiménez, D.; Suárez, O.; Guillén, L.; López-Alegre, G.; Rodríguez, M. A.; de Castro, S.; Nevot, C.; Sánchez-Artigot, J.; Moles, M.; Cenarro, A. J.; Marín-Franch, A.; Ederoclite, A.; Varela, J.; Valdivielso, L.; Cristóbal-Hornillos, D.; López-Sainz, A.; Hernández-Fuertes, J.; Díaz-Martín, M. C.; Iglesias-Marzoa, R.; Abril, J.; Lamadrid, J. L.; Maicas, N.; Rodríguez, S.; Tilve, V.; Civera, T.; Muniesa, D. J.

    2015-05-01

    The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located at the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys leveraging two unprecedented telescopes with unusually large fields of view: the JST/T250, a 2.55 m telescope with a 3 deg field of view, and the JAST/T80, an 83 cm telescope with a 2 deg field of view. The immediate objective of these telescopes for the next years is carrying out two unique photometric surveys covering several thousands square degrees: J-PAS and J-PLUS, each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure and exoplanets. JST and JAST will be equipped with panoramic cameras being developed within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (˜10{k}×10{k}) CCDs covering the entire focal plane. CEFCA engineering team has been designing the OAJ control system as a global concept to manage, monitor, control and service the observatory systems, not only astronomical but also infrastructure and other facilities. We will give an overview of OAJ's control system from an engineering point of view.

  1. Investigation of an acoustical holography system for real-time imaging

    NASA Astrophysics Data System (ADS)

    Fecht, Barbara A.; Andre, Michael P.; Garlick, George F.; Shelby, Ronald L.; Shelby, Jerod O.; Lehman, Constance D.

    1998-07-01

    A new prototype imaging system based on ultrasound transmission through the object of interest -- acoustical holography -- was developed which incorporates significant improvements in acoustical and optical design. This system is being evaluated for potential clinical application in the musculoskeletal system, interventional radiology, pediatrics, monitoring of tumor ablation, vascular imaging and breast imaging. System limiting resolution was estimated using a line-pair target with decreasing line thickness and equal separation. For a swept frequency beam from 2.6 - 3.0 MHz, the minimum resolution was 0.5 lp/mm. Apatite crystals were suspended in castor oil to approximate breast microcalcifications. Crystals from 0.425 - 1.18 mm in diameter were well resolved in the acoustic zoom mode. Needle visibility was examined with both a 14-gauge biopsy needle and a 0.6 mm needle. The needle tip was clearly visible throughout the dynamic imaging sequence as it was slowly inserted into a RMI tissue-equivalent breast biopsy phantom. A selection of human images was acquired in several volunteers: a 25 year-old female volunteer with normal breast tissue, a lateral view of the elbow joint showing muscle fascia and tendon insertions, and the superficial vessels in the forearm. Real-time video images of these studies will be presented. In all of these studies, conventional sonography was used for comparison. These preliminary investigations with the new prototype acoustical holography system showed favorable results in comparison to state-of-the-art pulse-echo ultrasound and demonstrate it to be suitable for further clinical study. The new patient interfaces will facilitate orthopedic soft tissue evaluation, study of superficial vascular structures and potentially breast imaging.

  2. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    SciTech Connect

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  3. Accuracy of an acoustic location system for monitoring the position of duetting songbirds in tropical forest

    PubMed Central

    Mennill, Daniel J.; Burt, John M.; Fristrup, Kurt M.; Vehrencamp, Sandra L.

    2008-01-01

    A field test was conducted on the accuracy of an eight-microphone acoustic location system designed to triangulate the position of duetting rufous-and-white wrens (Thryothorus rufalbus) in Costa Rica’s humid evergreen forest. Eight microphones were set up in the breeding territories of twenty pairs of wrens, with an average inter-microphone distance of 75.2±2.6 m. The array of microphones was used to record antiphonal duets broadcast through stereo loudspeakers. The positions of the loudspeakers were then estimated by evaluating the delay with which the eight microphones recorded the broadcast sounds. Position estimates were compared to coordinates surveyed with a global-positioning system (GPS). The acoustic location system estimated the position of loudspeakers with an error of 2.82±0.26 m and calculated the distance between the “male” and “female” loudspeakers with an error of 2.12±0.42 m. Given the large range of distances between duetting birds, this relatively low level of error demonstrates that the acoustic location system is a useful tool for studying avian duets. Location error was influenced partly by the difficulties inherent in collecting high accuracy GPS coordinates of microphone positions underneath a lush tropical canopy, and partly by the complicating influence of irregular topography and thick vegetation on sound transmission. PMID:16708941

  4. Behavioral and electrophysiological auditory processing measures in traumatic brain injury after acoustically controlled auditory training: a long-term study

    PubMed Central

    Figueiredo, Carolina Calsolari; de Andrade, Adriana Neves; Marangoni-Castan, Andréa Tortosa; Gil, Daniela; Suriano, Italo Capraro

    2015-01-01

    ABSTRACT Objective To investigate the long-term efficacy of acoustically controlled auditory training in adults after tarumatic brain injury. Methods A total of six audioogically normal individuals aged between 20 and 37 years were studied. They suffered severe traumatic brain injury with diffuse axional lesion and underwent an acoustically controlled auditory training program approximately one year before. The results obtained in the behavioral and electrophysiological evaluation of auditory processing immediately after acoustically controlled auditory training were compared to reassessment findings, one year later. Results Quantitative analysis of auditory brainsteim response showed increased absolute latency of all waves and interpeak intervals, bilaterraly, when comparing both evaluations. Moreover, increased amplitude of all waves, and the wave V amplitude was statistically significant for the right ear, and wave III for the left ear. As to P3, decreased latency and increased amplitude were found for both ears in reassessment. The previous and current behavioral assessment showed similar results, except for the staggered spondaic words in the left ear and the amount of errors on the dichotic consonant-vowel test. Conclusion The acoustically controlled auditory training was effective in the long run, since better latency and amplitude results were observed in the electrophysiological evaluation, in addition to stability of behavioral measures after one-year training. PMID:26676270

  5. A Hardware-and-Software System for Experimental Studies of the Acoustic Startle Response in Laboratory Rodents.

    PubMed

    Pevtsov, E F; Storozheva, Z I; Proshin, A T; Pevtsova, E I

    2016-02-01

    We developed and tested a novel hardware-and-software system for recording the amplitude of the acoustic startle response in rodents. In our experiments, the baseline indexes of acoustic startle response in laboratory rats and pre-stimulation inhibition under the standard delivery of acoustic stimulation were similar to those evaluated by other investigators on foreign devices. The proposed system is relatively cheap and provides the possibility of performing experiments on freely moving specimens. It should be emphasized that the results of studies can be processed with free-access software.

  6. Coding Acoustic Metasurfaces.

    PubMed

    Xie, Boyang; Tang, Kun; Cheng, Hua; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo

    2017-02-01

    Coding acoustic metasurfaces can combine simple logical bits to acquire sophisticated functions in wave control. The acoustic logical bits can achieve a phase difference of exactly π and a perfect match of the amplitudes for the transmitted waves. By programming the coding sequences, acoustic metasurfaces with various functions, including creating peculiar antenna patterns and waves focusing, have been demonstrated.

  7. Data Quality Control for Vessel Mounted Acoustic Doppler Current Profiler. Application for the Western Mediterranean Sea

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Front, J.; Candela, J.

    1997-01-01

    A systematic Data Quality Checking Protocol for vessel Mounted Acoustic Doppler Current Profiler observations is proposed. Previous-to-acquisition conditions are considered along with simultaneous ones.

  8. MIRADAS control system

    NASA Astrophysics Data System (ADS)

    Rosich Minguell, Josefina; Garzón Lopez, Francisco

    2012-09-01

    The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS, a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5μm bandpass) was selected in 2010 by the Gran Telescopio Canarias (GTC) partnership as the next-generation near-infrared spectrograph for the world's largest optical/infrared telescope, and is being developed by an international consortium. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofísica de Canarias, Institut de Física d'Altes Energies, Institut d'Estudis Espacials de Catalunya and Universidad Nacional Autónoma de México. This paper shows an overview of the MIRADAS control software, which follows the standards defined by the telescope to permit the integration of this software on the GTC Control System (GCS). The MIRADAS Control System is based on a distributed architecture according to a component model where every subsystem is selfcontained. The GCS is a distributed environment written in object oriented C++, which runs components in different computers, using CORBA middleware for communications. Each MIRADAS observing mode, including engineering, monitoring and calibration modes, will have its own predefined sequence, which are executed in the GCS Sequencer. These sequences will have the ability of communicating with other telescope subsystems.

  9. Crawling the Control System

    SciTech Connect

    Theodore Larrieu

    2009-10-01

    Information about accelerator operations and the control system resides in various formats in a variety of places on the lab network. There are operating procedures, technical notes, engineering drawings, and other formal controlled documents. There are programmer references and API documentation generated by tools such as doxygen and javadoc. There are the thousands of electronic records generated by and stored in databases and applications such as electronic logbooks, training materials, wikis, and bulletin boards and the contents of text-based configuration files and log files that can also be valuable sources of information. The obvious way to aggregate all these sources is to index them with a search engine that users can then query from a web browser. Toward this end, the Google "mini" search appliance was selected and implemented because of its low cost and its simple web-based configuration and management. In addition to crawling and indexing electronic documents, the appliance provides an API that has been used to supplement search results with live control system data such as current values of EPICS process variables and graphs of recent data from the archiver.

  10. Implantable acoustic-beacon automatic fish-tracking system

    NASA Technical Reports Server (NTRS)

    Mayhue, R. J.; Lovelady, R. W.; Ferguson, R. L.; Richards, C. E.

    1977-01-01

    A portable automatic fish tracking system was developed for monitoring the two dimensional movements of small fish within fixed areas of estuarine waters and lakes. By using the miniature pinger previously developed for this application, prototype tests of the system were conducted in the York River near the Virginia Institute of Marine Science with two underwater listening stations. Results from these tests showed that the tracking system could position the miniature pinger signals to within + or - 2.5 deg and + or - 135 m at ranges up to 2.5 km. The pingers were implanted in small fish and were successfully tracked at comparable ranges. No changes in either fish behavior or pinger performance were observed as a result of the implantation. Based on results from these prototype tests, it is concluded that the now commercially available system provides an effective approach to underwater tracking of small fish within a fixed area of interest.

  11. CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES FOR THE VENTILATION SYSTEM AND A PLC SWITCH FOR AUTOMATIC CO (CARBON MONOXIDE) SYSTEM. THE AIR TESTING SYSTEM IS FREE STANDING AND THE FANS ARE COMPUTER-OPERATED. - Alaskan Way Viaduct and Battery Street Tunnel, Seattle, King County, WA

  12. Smog control system

    SciTech Connect

    Eichhorn, C.D.

    1992-01-01

    A smog control system is designed comprised of fans or blowers which are located to introduce air into a smog particle destruction chamber operated with laser energy. The smog particles are broken down and the air is passed into a filtering chamber which may adopt the form of a liquid charcoal chamber. The air may be bubbled through the liquid charcoal and the effluent may then be passed into a freshening agent chamber. The air may then pass as an effluent from the freshening agent chamber. A liquid charcoal supply may be connected to the liquid charcoal chamber and the recovered liquid charcoal which has been spent may be reused for other purposes.

  13. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  14. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  15. Airflow control system

    DOEpatents

    Motszko, Sean Ronald; McEnaney, Ryan Patrick; Brush, Jeffrey Alan; Zimmermann, Daniel E.

    2007-03-13

    A dual airflow control system for an environment having a first air zone and a second air zone. The system includes a first input device operable to generate a first input signal indicative of a desired airflow to the first zone and a second input device operable to generate a second input signal indicative of a desired airflow to the second zone. First and second flow regulators are configured to regulate airflow to the first and second zones, respectively, such that the first and second regulators selectively provide the airflow to each of the first and second zones based on the first and second input signals. A single actuator is associated with the first and second flow regulators. The actuator is operable to simultaneously actuate the first and second flow regulators based on an input from the first and second input devices to allow the desired airflows to the first and the second zones.

  16. Remote full control, by an Internet link, of an underwater acoustics laboratory

    NASA Astrophysics Data System (ADS)

    Ranz-Guerra, Carlos; Cobo-Parra, Pedro; Siguero-Guerra, Manuel; Fernandez-Fernandez, Alejandro

    2002-11-01

    The Underwater Tank Laboratory located at the Instituto de Acustica, CSIC, Madrid, has been fully reshaped. Now, the two bridges (emission and reception) have full automatic motion control by the operator. These capabilities were complemented by a new management of signal generation, signal acquisition, processing and storing of data. This new framework makes many of the tasks to be performed in this kind of facility easier by putting at the hands of the operator specific friendly software programs that attend to the main aspects of the ongoing experiment. In one step forward, the remote control of all the functionalities was considered feasible. The potentialities of the Internet were thought to provide a new dimension to the laboratory by lowering the difficulties of taking over the full control of the installation, by any user around the world. Here is one real example of how this achievement can be carried out. The Underwater Acoustics Laboratory at the Instituto de Acustica, CSIC, is now ready to be run by any one interested. The main lines, over which this problem has been considered, are described in this paper. [Work supported by PN on Science and Technology and CSIC, Spain.

  17. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    NASA Astrophysics Data System (ADS)

    Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.

    2016-07-01

    A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  18. The APL-UW Multiport Acoustic Projector System

    DTIC Science & Technology

    2009-12-01

    2 2.2 Equivalent Electrical Circuit — Theory . . . . . . . . . . . . . . . . . . . 3 2.3 2006 Lake Washington...62 References 65 A 2006 Lake Washington Test Results A1 B System SPICE Netlist B1 TR 0902 v UNIVERSITY OF...electrical circuit for the Multiport Source. . . . . . . . . 3 3 B(ω)/ω versus frequency, 2006 Lake Washington test. . . . . . . . . . . . 6 4

  19. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing

    PubMed Central

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs. PMID:22399990

  20. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.

    PubMed

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.

  1. MEMS based hair flow-sensors as model systems for acoustic perception studies

    NASA Astrophysics Data System (ADS)

    Krijnen, Gijs J. M.; Dijkstra, Marcel; van Baar, John J.; Shankar, Siripurapu S.; Kuipers, Winfred J.; de Boer, Rik J. H.; Altpeter, Dominique; Lammerink, Theo S. J.; Wiegerink, Remco

    2006-02-01

    Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors, allowing for capacitive read-out. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplification) and their susceptibility to noise (stochastic resonance).

  2. MEMS based hair flow-sensors as model systems for acoustic perception studies.

    PubMed

    Krijnen, Gijs J M; Dijkstra, Marcel; van Baar, John J; Shankar, Siripurapu S; Kuipers, Winfred J; de Boer, Rik J H; Altpeter, Dominique; Lammerink, Theo S J; Wiegerink, Remco

    2006-02-28

    Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors, allowing for capacitive read-out. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplification) and their susceptibility to noise (stochastic resonance).

  3. Indoor acoustic gain design

    NASA Astrophysics Data System (ADS)

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  4. An evaluation of fish behavior upstream of the water temperature control tower at Cougar Dam, Oregon, using acoustic cameras, 2013

    USGS Publications Warehouse

    Adams, Noah S.; Smith, Collin; Plumb, John M.; Hansen, Gabriel S.; Beeman, John W.

    2015-07-06

    This report describes the initial year of a 2-year study to determine the feasibility of using acoustic cameras to monitor fish movements to help inform decisions about fish passage at Cougar Dam near Springfield, Oregon. Specifically, we used acoustic cameras to measure fish presence, travel speed, and direction adjacent to the water temperature control tower in the forebay of Cougar Dam during the spring (May, June, and July) and fall (September, October, and November) of 2013. Cougar Dam is a high-head flood-control dam, and the water temperature control tower enables depth-specific water withdrawals to facilitate adjustment of water temperatures released downstream of the dam. The acoustic cameras were positioned at the upstream entrance of the tower to monitor free-ranging subyearling and yearling-size juvenile Chinook salmon (Oncorhynchus tshawytscha). Because of the large size discrepancy, we could distinguish juvenile Chinook salmon from their predators, which enabled us to measure predators and prey in areas adjacent to the entrance of the tower. We used linear models to quantify and assess operational and environmental factors—such as time of day, discharge, and water temperature—that may influence juvenile Chinook salmon movements within the beam of the acoustic cameras. Although extensive milling behavior of fish near the structure may have masked directed movement of fish and added unpredictability to fish movement models, the acoustic-camera technology enabled us to ascertain the general behavior of discrete size classes of fish. Fish travel speed, direction of travel, and counts of fish moving toward the water temperature control tower primarily were influenced by the amount of water being discharged through the dam.

  5. Acoustic Resuspension Measurement System (ARMS): Announcement of Availability.

    DTIC Science & Technology

    1992-04-01

    their controlling circuitry to be con,- Z bined in compact, battery -powered packages. These instrument packages can W 0 be contained in rellatively... Station DTIO QUALITY [INSP8•ECTE"•D 4 3909 Halls Ferry Road. Vicksburg, MS 39180-6199 tzqq o- ,1TEDOf’ rYCjA" PiosJ Mr. E. Clark McNair, Jr., (601... Prickett and Michelle M. Thevenot. Introduction In order to measure in situ properties of the boundary layer above dredged material mounds in open

  6. Development of a Radio Acoustic Sounding System (RASS) for continuous temperature profiling upto lower stratospheric altitudes

    NASA Astrophysics Data System (ADS)

    Chandrasekhar Sarma, T. V.; Tsuda, Toshitaka

    2012-07-01

    The Gadanki (13.46°N, 79.17°E) MST radar is a high power VHF pulsed coherent Doppler radar established for remote probing of atmospheric phenomena in the Mesosphere Stratosphere Troposphere regions. Radio Acoustic Sounding System (RASS) was developed using this radar to obtain height profiles of atmospheric temperature up to lower stratospheric altitudes. RASS uses the effect of temperature on the speed of sound in air as a means to sense the atmospheric temperature. It is the combination of a Doppler radar and acoustic exciters. The radar was augmented with acoustic exciters that were designed and constructed for this purpose. The Doppler radar profiles the speed of refractive index perturbations induced by the acoustic source. RASS has been demonstrated to be a reliable ground-based remote profiling technique to obtain altitude profiles of atmospheric virtual temperature, Tv over the past two decades. This work describes the design of the system and its application to the observation of height profiles of atmospheric virtual temperature up to and beyond tropical tropopause altitudes. Observations were made during 2007, 2008 and 2009 over periods extending up to 72 hours. These observations demonstrate temperature profiling capability up to about 18 km in altitude, though on an occasion height coverage upto 22.8km was obtained briefly; lowest height covered is from about 1.5km onwards. During the period of the RASS observations simultaneous data from radiosonde was used to validate the temperature measurements. Simultaneous satellite-based measurement of outgoing long wave radiation (OLR) and precipitation from ground-based instruments was used to study the atmospheric phenomena of gravity waves and atmospheric stability during a convection event.

  7. Blind deconvolution for non-stationary acoustical systems

    NASA Astrophysics Data System (ADS)

    Gramann, Mark R.; Erling, Josh G.; Roan, Michael J.

    2004-05-01

    Blind deconvolution is a signal-processing technique that has been shown to be highly effective for removing multipath propagation channel-induced corruption of a signal. These algorithms are usually implemented as adaptive filtering processes that learn finite impulse response inverse filters based on measurements of the corrupted signal. A major limitation of these techniques is that a stationary propagation environment is generally assumed. This assumption is not valid for many real-world applications, such as active or passive sonar operating in a shallow-water environment or for communications systems with moving sources or receivers. For slowly varying systems, standard algorithms with adaptive learning rates that improve convergence speed, such as frequency-domain implementations of the Infomax and Natural Gradient algorithms, may be sufficient. However, in systems where either the input signal or impulse response change rapidly, it becomes necessary to provide a means for tracking the statistical changes that occur in the input signal or impulse response. Approaches to tracking these changes through the use of a tracking algorithm such as Kalman filtering are discussed. [Work supported by Dr. David Drumheller, ONR Code 333, Grant No. N00014-00-G-0058.

  8. Thrust-Vector-Control System

    NASA Technical Reports Server (NTRS)

    Murray, Jonathan

    1992-01-01

    Control gains computed via matrix Riccati equation. Software-based system controlling aim of gimbaled rocket motor on spacecraft adaptive and optimal in sense it adjusts control gains in response to feedback, according to optimizing algorithm based on cost function. Underlying control concept also applicable, with modifications, to thrust-vector control on vertical-takeoff-and-landing airplanes, control of orientations of scientific instruments, and robotic control systems.

  9. The Impact of System Latency on Dynamic Performance In Virtual Acoustic Environments

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Ahumada, Albert (Technical Monitor)

    1998-01-01

    Engineering constraints that may be encountered when implementing interactive virtual acoustic displays are examined In particular, system parameters such as the update rate and total system latency are defined and the impact they may have on perception is discussed. For example, examination of the head motions that listeners used to aid localization in a previous study suggests that some head motions may be as fast as about 400 degrees/sec for short time periods. Analysis of latencies in virtual acoustic environments (VAEs) suggests that: (1) commonly-specified parameters such as the audio update rate determine only the "best-case" latency possible in a VAE, (2) total system latency and individual latencies of system components, including head-trackers, are frequently not measured by VAE developers, and (3) typical system latencies may result in under-sampling of relative listener-source motion of 400 degrees/sec as well as positional "jitter" in the simulated source. To clearly specify the dynamic performance of a particular VAE, users and developers need to make measurements of average system latency, update rate, and their variability using standardized rendering scenarios. a parameters such as the minimum audible movement angle can then be used as target guidelines to assess whether a given system meets perceptual requirements.

  10. Acoustic monitoring method and system in laser-induced optical breakdown (LIOB)

    DOEpatents

    O'Donnell, Matthew; Ye, Jing Yong; Norris, Theodore B.; Baker, Jr., James R.; Balogh, Lajos P.; Milas, Susanne M.; Emelianov, Stanislav Y.; Hollman, Kyle W.

    2008-05-06

    An acoustic monitoring method and system in laser-induced optical breakdown (LIOB) provides information which characterize material which is broken down, microbubbles in the material, and/or the microenvironment of the microbubbles. In one embodiment of the invention, femtosecond laser pulses are focused just inside the surface of a volume of aqueous solution which may include dendrimer nanocomposite (DNC) particles. A tightly focused, high frequency, single-element ultrasonic transducer is positioned such that its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a microbubble forms and a shock or pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble may be actively probed with pulse-echo measurements from the same transducer. After the microbubble forms, received pulse-echo signals have an extra pulse, describing the microbubble location and providing a measure of axial microbubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of microbubbles due to optical breakdown. These same plots can also be used to quantify LIOB thresholds.

  11. Generalized Discrete Model of Systems with Distributed Feedback Based on Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Sveshnikov, B. V.; Bagdasaryan, A. S.

    2016-11-01

    We have developed a self-consistent physical model that improves the accuracy of calculating the characteristics of the devices based on both surface and pseudosurface acoustic waves. The model is free from restrictions inherent in the well-known method of coupled modes and other phenomenological methods for studying distributed systems. The compact relationships describing all the characteristics of the acoustoelectric transducers of all types with allowance for the possible directionality of their radiation and its propagation loss are obtained using analytical solution of the difference equations. The method for determining the spatial orientation of the elastic-polarization ellipse in an anisotropic crystal, which allows one to unambiguously calculate the phase shift between the oscillations of two coupled dynamical subsystems, i.e., elastic displacements and the corresponding electric field, is proposed. The obtained results, which considerably facilitate the task of fast and accurate design of various devices on the basis of surface and pseudosurface acoustic waves, are valid in the general case for any frequency, including the harmonics of the frequency of the fundamental acoustic synchronism.

  12. Acoustics and temperature based NDT for damage assessment of concrete masonry system subjected to cyclic loading

    NASA Astrophysics Data System (ADS)

    Khan, Fuad; Bartoli, Ivan; Rajaram, Satish; Vanniamparambil, Prashanth A.; Kontsos, Antonios; Bolhassani, Mohammad; Hamid, Ahmad

    2014-04-01

    This paper represents a hybrid non-destructive testing (HNDT) approach based on infrared thermography (IRT), acoustic emission (AE) and ultrasonic (UT) techniques for effective damage quantification of partially grouted concrete masonry walls (CMW). This integrated approach has the potential to be implemented for the health monitoring of concrete masonry systems. The implementation of this hybrid approach assists the cross validation of in situ recorded information for structural damage assessment. In this context, NDT was performed on a set of partially grouted CMW subjected to cyclic loading. Acoustic emission (AE) signals and Infrared thermography (IRT) images were recorded during each cycle of loading while the ultrasonic (UT) tests were performed in between each loading cycle. Four accelerometers, bonded at the toe of the wall, were used for recording waveforms for both passive (AE) and active (UT) acoustics. For the active approach, high frequency stress waves were generated by an instrumented hammer and the corresponding waveforms were recorded by the accelerometers. The obtained AE, IRT, and UT results were correlated to visually confirm accumulated progressive damage throughout the loading history. Detailed post-processing of these results was performed to characterize the defects at the region of interest. The obtained experimental results demonstrated the potential of the methods to detect flaws on monitored specimens; further experimental investigations are planned towards the quantitative use of these NDT methods.

  13. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  14. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  15. Pollution control system

    SciTech Connect

    Voliva, B.H.; Bernstein, I.B.

    1984-09-25

    A pollution control system is disclosed wherein condensable pollutants are removed from a high-temperature gas stream by counterflow contact in a vertical tower with downwardly flowing, relatively cool absorbent oil. The absorbent is at a sufficiently low temperature so as to rapidly condense a portion of the pollutants in order to form a fog of fine droplets of pollutant entrained by the gas stream, which fog is incapable of being absorbed by the absorbent. The remainder of the condensable pollutants is removed by downwardly flowing absorbent oil, and the gas and entrained fog are directed from the tower to gas/droplet separation means, such as an electrostatic precipitator. The fog is thereby separated from the gas and substantially pollutant-free gas is discharged to the atmosphere.

  16. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  17. Characterisation and testing of the KM3NeT acoustic positioning system

    NASA Astrophysics Data System (ADS)

    Viola, S.; Simeone, F.; Saldaña, M.

    2016-04-01

    In underwater neutrino telescopes, the search of point-like sources through the Cherenkov detection technique requires a precise knowledge of the positions of thousands of optical sensors, spread in a volume of a few cubic kilometres. In KM3NeT the optical sensors are hosted in 700 m high semi-rigid structures, called detection units, which move under the effects of underwater currents. These movements are continuously monitored through an underwater positioning system based on acoustic emitters and receivers. In this work, the tests performed on the key elements of the positioning system are presented.

  18. Passive pavement-mounted acoustical linguistic drive alert system and method

    DOEpatents

    Kisner, Roger A.; Anderson, Richard L.; Carnal, Charles L.; Hylton, James O.; Stevens, Samuel S.

    2001-01-01

    Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.

  19. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  20. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.

  1. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  2. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  3. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  4. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    NASA Technical Reports Server (NTRS)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  5. Acoustic Characteristics of Stridor in Multiple System Atrophy

    PubMed Central

    Lee, Jee Young; Joo, Eun Yeon; Nam, Hyunwoo

    2016-01-01

    Nocturnal stridor is a breathing disorder prevalent in patients with multiple system atrophy (MSA). An improved understanding of this breathing disorder is essential since nocturnal stridor carries a poor prognosis (an increased risk of sudden death). In this study, we aimed to classify types of stridor by sound analysis and to reveal their clinical significance. Patients who met the criteria for probable MSA and had undergone polysomnography (PSG) were recruited. Patients were then assessed clinically with sleep questionnaires, including the Pittsburgh Sleep Quality Index, and the Hoehn and Yahr scale. Nocturnal stridor and snoring were analyzed with the Multi-Dimensional Voice Program. Nocturnal stridor was recorded in 22 patients and snoring in 18 patients using the PSG. Waveforms of stridors were classified into rhythmic or semirhythmic after analysis of the oscillogram. Formants and harmonics were observed in both types of stridor, but not in snoring. Of the 22 patients diagnosed with stridor during the present study, fifteen have subsequently died, with the time to death after the PSG study being 1.9 ± 1.4 years (range 0.8 to 5.0 years). The rhythmic waveform group presented higher scores on the Hoehn and Yahr scale and the survival outcome of this group was lower compared to the semirhythmic waveform group (p = 0.030, p = 0.014). In the Kaplan Meier’s survival curve, the outcome of patients with rhythmic waveform was significantly less favorable than the outcome of patients with semirhythmic waveform (log-rank test, p < 0.001). Stridor in MSA can be classified into rhythmic and semirhythmic types and the rhythmic component signifies a poorer outcome. PMID:27093692

  6. Thermal control system technology discipline

    NASA Technical Reports Server (NTRS)

    Ellis, Wilbert E.

    1990-01-01

    Viewgraphs on thermal control systems technology discipline for Space Station Freedom are presented. Topics covered include: heat rejection; heat acquisition and transport; monitoring and control; passive thermal control; and analysis and test verification.

  7. Active control of membrane-type acoustic metamaterial by electric field

    NASA Astrophysics Data System (ADS)

    Xiao, Songwen; Ma, Guancong; Li, Yong; Yang, Zhiyu; Sheng, Ping

    2015-03-01

    By employing a metal-coated central platelet and a rigid mesh electrode which is transparent to acoustic wave, we show that the membrane-type acoustic metamaterials (MAMs) can be easily tuned by applying an external voltage. With static voltage, the MAM's eigenfrequencies and therefore the phase of the transmitted wave are tunable up to 70 Hz. The MAM's vibration can be significantly suppressed or enhanced by using phase-matched AC voltage. Functionalities such as phase modulation and acoustic switch with on/off ratio up to 21.3 dB are demonstrated.

  8. Environment control system

    DOEpatents

    Sammarone, Dino G.

    1978-01-01

    A system for controlling the environment of an enclosed area in nuclear reactor installations. The system permits the changing of the environment from nitrogen to air, or from air to nitrogen, without the release of any radioactivity or process gas to the outside atmosphere. In changing from a nitrogen to an air environment, oxygen is inserted into the enclosed area at the same rate which the nitrogen-oxygen gas mixture is removed from the enclosed area. The nitrogen-oxygen gas mixture removed from the enclosed area is mixed with hydrogen, the hydrogen recombining with the oxygen present in the gas to form water. The water is then removed from the system and, if it contains any radioactive products, can be utilized to form concrete, which can then be transferred to a licensed burial site. The process gas is purified further by stripping it of carbon dioxide and then distilling it to remove any xenon, krypton, and other fission or non-condensable gases. The pure nitrogen is stored as either a cryogenic liquid or a gas. In changing from an air to nitrogen environment, the gas is removed from the enclosed area, mixed with hydrogen to remove the oxygen present, dried, passed through adsorption beds to remove any fission gases, and reinserted into the enclosed area. Additionally, the nitrogen stored during the nitrogen to air change, is inserted into the enclosed area, the nitrogen from both sources being inserted into the enclosed area at the same rate as the removal of the gas from the containment area. As designed, the amount of nitrogen stored during the nitrogen to air change substantially equals that required to replace oxygen removed during an air to nitrogen change.

  9. NSLS control system upgrade status

    SciTech Connect

    Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

    1993-07-01

    The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

  10. Modeling the Behavior of an Underwater Acoustic Relative Positioning System Based on Complementary Set of Sequences

    PubMed Central

    Aparicio, Joaquín; Jiménez, Ana; Álvarez, Fernando J.; Ureña, Jesús; De Marziani, Carlos; Diego, Cristina

    2011-01-01

    The great variability usually found in underwater media makes modeling a challenging task, but helpful for better understanding or predicting the performance of future deployed systems. In this work, an underwater acoustic propagation model is presented. This model obtains the multipath structure by means of the ray tracing technique. Using this model, the behavior of a relative positioning system is presented. One of the main advantages of relative positioning systems is that only the distances between all the buoys are needed to obtain their positions. In order to obtain the distances, the propagation times of acoustic signals coded by Complementary Set of Sequences (CSS) are used. In this case, the arrival instants are obtained by means of correlation processes. The distances are then used to obtain the position of the buoys by means of the Multidimensional Scaling Technique (MDS). As an early example of an application using this relative positioning system, a tracking of the position of the buoys at different times is performed. With this tracking, the surface current of a particular region could be studied. The performance of the system is evaluated in terms of the distance from the real position to the estimated one. PMID:22247661

  11. Design of a robust underwater acoustic communication system over multipath fading channels

    NASA Astrophysics Data System (ADS)

    Kim, Jangeun; Shim, Taebo

    2012-11-01

    Due to the surface and bottom constraints of the underwater acoustic channel (UAC) in shallow waters, multipath fading occurs and causes degradation of the signal for the UAC system. To overcome these problems, a robust underwater acoustic communication system was designed over multipath fading channels by employing both decision feedback equalization with the RLS algorithm and convolutional coding with interleaving+shuffling block data sequence. The dual use of these two methods simultaneously can reduce the intersymbol interference (ISI) and the adjacent bit and burst errors. The system will retransmit the same signal if the system fails to estimate the channel due to severe multipath fading. To verify the performance of the system, the transmission of an image was tested using a 524,288bit gray-scaled image through the multipath fading channel. The test results showed that the number of bit errors was reduced from 86,824 to 5,106 when the reference SNR was 12 dB.

  12. Acute and Chronic Effect of Acoustic and Visual Cues on Gait Training in Parkinson's Disease: A Randomized, Controlled Study

    PubMed Central

    2015-01-01

    In this randomized controlled study we analyse and compare the acute and chronic effects of visual and acoustic cues on gait performance in Parkinson's Disease (PD). We enrolled 46 patients with idiopathic PD who were assigned to 3 different modalities of gait training: (1) use of acoustic cues, (2) use of visual cues, or (3) overground training without cues. All patients were tested with kinematic analysis of gait at baseline (T0), at the end of the 4-week rehabilitation programme (T1), and 3 months later (T2). Regarding the acute effect, acoustic cues increased stride length and stride duration, while visual cues reduced the number of strides and normalized the stride/stance distribution but also reduced gait speed. As regards the chronic effect of cues, we recorded an improvement in some gait parameters in all 3 groups of patients: all 3 types of training improved gait speed; visual cues also normalized the stance/swing ratio, acoustic cues reduced the number of strides and increased stride length, and overground training improved stride length. The changes were not retained at T2 in any of the experimental groups. Our findings support and characterize the usefulness of cueing strategies in the rehabilitation of gait in PD. PMID:26693384

  13. Characterization of Pump-Induced Acoustics in Space Launch System Main Propulsion System Liquid Hydrogen Feedline Using Airflow Test Data

    NASA Technical Reports Server (NTRS)

    Eberhart, C. J.; Snellgrove, L. M.; Zoladz, T. F.

    2015-01-01

    High intensity acoustic edgetones located upstream of the RS-25 Low Pressure Fuel Turbo Pump (LPFTP) were previously observed during Space Launch System (STS) airflow testing of a model Main Propulsion System (MPS) liquid hydrogen (LH2) feedline mated to a modified LPFTP. MPS hardware has been adapted to mitigate the problematic edgetones as part of the Space Launch System (SLS) program. A follow-on airflow test campaign has subjected the adapted hardware to tests mimicking STS-era airflow conditions, and this manuscript describes acoustic environment identification and characterization born from the latest test results. Fluid dynamics responsible for driving discrete excitations were well reproduced using legacy hardware. The modified design was found insensitive to high intensity edgetone-like discretes over the bandwidth of interest to SLS MPS unsteady environments. Rather, the natural acoustics of the test article were observed to respond in a narrowband-random/mixed discrete manner to broadband noise thought generated by the flow field. The intensity of these responses were several orders of magnitude reduced from those driven by edgetones.

  14. Acoustic evaluation and adjustment of an open-plan office through architectural design and noise control.

    PubMed

    Passero, Carolina Reich Marcon; Zannin, Paulo Henrique Trombetta

    2012-11-01

    Arranging office space into a single open room offers advantages in terms of easy exchange of information and interaction among coworkers, but reduces privacy and acoustic comfort. Thus, the purpose of this work was to evaluate the acoustic quality of a real open-plan office and to propose changes in the room to improve the acoustic conditioning of this office. The computational model of the office under study was calibrated based on RT and STI measurements. Predictions were made of the RT and STI, which generated the radius of distraction r(D), and the rate of spatial decay of sound pressure levels per distance doubling DL(2) in the real conditions of the office and after modifications of the room. The insertion of dividers between work stations and an increase in the ceiling's sound absorption improved the acoustic conditions in the office under study.

  15. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Kendall, Greg T. (Inventor); Morgan, Walter R. (Inventor)

    2010-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  16. Acoustic Beam Forming Array Using Feedback-Controlled Microphones for Tuning and Self-Matching of Frequency Response

    NASA Technical Reports Server (NTRS)

    Radcliffe, Eliott (Inventor); Naguib, Ahmed (Inventor); Humphreys, Jr., William M. (Inventor)

    2014-01-01

    A feedback-controlled microphone includes a microphone body and a membrane operatively connected to the body. The membrane is configured to be initially deflected by acoustic pressure such that the initial deflection is characterized by a frequency response. The microphone also includes a sensor configured to detect the frequency response of the initial deflection and generate an output voltage indicative thereof. The microphone additionally includes a compensator in electric communication with the sensor and configured to establish a regulated voltage in response to the output voltage. Furthermore, the microphone includes an actuator in electric communication with the compensator, wherein the actuator is configured to secondarily deflect the membrane in opposition to the initial deflection such that the frequency response is adjusted. An acoustic beam forming microphone array including a plurality of the above feedback-controlled microphones is also disclosed.

  17. Networked control of microgrid system of systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  18. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  19. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  20. Guidelines for numerical vibration and acoustic analysis of disc brake squeal using simple models of brake systems

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.; Marburg, S.

    2013-04-01

    Brake squeal has become of increasing concern to the automotive industry but guidelines on how to confidently predict squeal propensity are yet to be established. While it is standard practice to use the complex eigenvalue analysis to predict unstable vibration modes, there have been few attempts to calculate their acoustic radiation. Here guidelines are developed for numerical vibration and acoustic analysis of brake squeal using models of simplified brake systems with friction contact by considering (1) the selection of appropriate elements, contact and mesh; (2) the extraction of surface velocities via forced response; and (3) the calculation of the acoustic response itself. Results indicate that quadratic tetrahedral elements offer the best option for meshing more realistic geometry. A mesh has to be sufficiently fine especially in the contact region to predict mesh-independent unstable vibration modes. Regarding the vibration response, only the direct, steady-state method with a pressurised pad and finite sliding formulation (allowing contact separation) should be used. Comparison of different numerical methods suggest that a obroadband fast multi-pole boundary element method with the Burton-Miller formulation would efficiently solve the acoustic radiation of a full brake system. Results also suggest that a pad lift-off can amplify the acoustic radiation similar to a horn effect. A horn effect is also observed for chamfered pads which are used in practice to reduce the number and strength of unstable vibration modes. These results highlight the importance of optimising the pad shape to reduce acoustic radiation of unstable vibration modes.