Science.gov

Sample records for acoustic cutoff frequency

  1. THE ACOUSTIC CUTOFF FREQUENCY OF THE SUN AND THE SOLAR MAGNETIC ACTIVITY CYCLE

    SciTech Connect

    Jimenez, A.; Palle, P. L.; Garcia, R. A.

    2011-12-20

    The acoustic cutoff frequency-the highest frequency for acoustic solar eigenmodes-is an important parameter of the solar atmosphere as it determines the upper boundary of the p-mode resonant cavities. At frequencies beyond this value, acoustic disturbances are no longer trapped but are traveling waves. Interference among them gives rise to higher-frequency peaks-the pseudomodes-in the solar acoustic spectrum. The pseudomodes are shifted slightly in frequency with respect to p-modes, making possible the use of pseudomodes to determine the acoustic cutoff frequency. Using data from the GOLF and VIRGO instruments on board the Solar and Heliospheric Observatory spacecraft, we calculate the acoustic cutoff frequency using the coherence function between both the velocity and intensity sets of data. By using data gathered by these instruments during the entire lifetime of the mission (1996 until the present), a variation in the acoustic cutoff frequency with the solar magnetic activity cycle is found.

  2. Analysis of the acoustic cut-off frequency and high-frequency peaks in six Kepler stars with stochastically excited pulsations

    NASA Astrophysics Data System (ADS)

    Jiménez, A.; García, R. A.; Pérez Hernández, F.; Mathur, S.

    2015-11-01

    Gravito-acoustic modes in the Sun and other stars propagate in resonant cavities with a frequency below a given limit known as the cut-off frequency. At higher frequencies, waves are no longer trapped in the stellar interior and become traveller waves. In this article, we study six pulsating solar-like stars at different evolutionary stages observed by the NASA Kepler mission. These high signal-to-noise targets show a peak structure that extends at very high frequencies and are good candidates for studying the transition region between the modes and interference peaks or pseudo-modes. Following the same methodology successfully applied on Sun-as-a-star measurements, we uncover the existence of pseudo-modes in these stars with one or two dominant interference patterns depending on the evolutionary stage of the star. We also infer their cut-off frequency as the midpoint between the last eigenmode and the first peak of the interference patterns. Using ray theory we show that, while the period of one of the interference patterns is very close to half the large separation, the period of the other interference pattern depends on the time phase of mixed waves, thus carrying additional information on the stellar structure and evolution. Appendix A is available in electronic form at http://www.aanda.org

  3. Cutoff frequency of toroidal plasma waveguide

    SciTech Connect

    Zakeri-Khatir, H.; Aghamir, F. M.

    2015-02-15

    The cutoff frequencies of E and H-modes of empty and plasma filled toroidal waveguides are evaluated. The effects of space curvature and plasma density on cutoff frequencies for both modes are investigated. Using a suitable variable change, a scalar wave equation in the direction of propagation was obtained. The study indicates that the curvature in the direction of wave propagation in toroidal waveguide has an analogous effect as a straight waveguide filled with anisotropic media. The Rayleigh-Schrodinger perturbation method was employed to solve for cutoff frequencies in the first order of approximation. In the limit of small space curvature, the toroidal waveguide cutoff frequencies for both E and H-modes approach those of TM and TE modes of empty cylindrical waveguide with a radius equal to toroidal waveguide minor radius. The analysis shows that the curvature in the direction of propagation in toroidal waveguides leads to the removal of the degeneracy between E and H-modes.

  4. Variation of Acoustic Cutoff Period with Height in the Solar Atmosphere: Theory versus Observations

    NASA Astrophysics Data System (ADS)

    Murawski, K.; Musielak, Z. E.; Konkol, P.; Wiśniewska, A.

    2016-08-01

    Recently Wiśniewska et al. demonstrated observationally how the acoustic cutoff frequency varies with height in the solar atmosphere including the upper photosphere and the lower and middle chromosphere, and showed that the observational results cannot be accounted for by the existing theoretical formulas for the acoustic cutoff. In order to reproduce the observed variation of the cutoff with atmospheric height, numerical simulations of impulsively generated acoustic waves in the solar atmosphere are performed, and the spectral analysis of temporal wave profiles is used to compute numerically changes of the acoustic cutoff with height. Comparison of the numerical results with the observational data shows good agreement, which clearly indicates that the obtained results may be used to determine the structure of the background solar atmosphere.

  5. CMEs and frequency cutoff of solar bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Al.; Konovalenko, Al.; Koval, Ar.; Volvach, Y.; Zarka, P.

    2016-05-01

    Radio observations of solar bursts with high-frequency cutoff by the radio telescope UTR-2 (near Kharkiv, Ukraine) at 8-33 MHz on 17-19 August 2012 are presented. Such cutoff may be attributed to the emergence of the burst sources behind limb of the Sun with respect to an observer on the Earth. The events are strongly associated with solar eruptions occurred in a new active region. Ray tracing simulations show that the CMEs play a constructive role for the behind-limb bursts to be detected in ground-based observations. Likely, due to tunnel-like cavities with low density in CMEs, the radio emission of behind-limb solar bursts can be directed towards the Earth.

  6. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  7. Frequency steerable acoustic transducers

    NASA Astrophysics Data System (ADS)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  8. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  9. High-Frequency Cutoff in Type III Bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Konovalenko, A. A.; Volvach, Ya. S.; Koval, A. A.

    In this article we report about a group of solar bursts with high-frequency cutoff, observed on 19 August of 2012 near 8:23 UT, simultaneously by three different radio telescopes: the Ukrainian decameter radio telescope (8-33 MHz), the French Nancay Decametric Array (10-70 MHz) and the Italian San Vito Solar Observatory of RSTN (25-180 MHz). Morphologically the bursts are very similar to the type III bursts. The solar activity is connected with the emergency of a new group of solar spots on the far side of the Sun with respect to observers on Earth. The solar bursts accompany many moderate flares over eastern limb. The refraction of the behind-limb radio bursts towards the Earth is favorable, if CMEs generate low-density cavities in solar corona.

  10. Acoustic resonance frequency locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  11. The operation cutoff frequency of high electron mobility transistor measured by terahertz method

    SciTech Connect

    Zhu, Y. M. Zhuang, S. L.

    2014-07-07

    Commonly, the cutoff frequency of high electron mobility transistor (HEMT) can be measured by vector network analyzer (VNA), which can only measure the sample exactly in low frequency region. In this paper, we propose a method to evaluate the cutoff frequency of HEMT by terahertz (THz) technique. One example shows the cutoff frequency of our HEMT is measured at ∼95.30 GHz, which is reasonable agreement with that estimated by VNA. It is proved THz technology a potential candidate for the substitution of VNA for the measurement of high-speed devices even up to several THz.

  12. Single-mode waveguide optical isolator based on direction-dependent cutoff frequency.

    PubMed

    Tang, Lingling; Drezdzon, Samuel M; Yoshie, Tomoyuki

    2008-09-29

    A single-mode-waveguide optical isolator based on propagation direction dependent cut-off frequency is proposed. The isolation bandwidth is the difference between the cut-off frequencies of the lowest forward and backward propagating modes. Perturbation theory is used for analyzing the correlation between the material distribution and the bandwidth. The mode profile determines an appropriate distribution of non-reciprocal materials.

  13. A test of two theories for the low-frequency cutoffs of nonthermal continuum radiation

    NASA Technical Reports Server (NTRS)

    Shaw, R. R.; Gurnett, D. A.

    1980-01-01

    A discussion and analysis of two theories that differently identify the low-frequency cutoffs of nonthermal continuum radiation are presented. The cold plasma theory and an alternate one proposed by Jones (1976) are compared experimentally with the use of continuum radiation data obtained in the outer magnetosphere by the Imp 6 and ISEE 1 spacecraft. It is found that the characteristics of this specific radiation are consistent with those expected of ordinary and extraordinary mode waves described by the cold plasma theory and it is shown that the cutoff frequencies occur at the local plasma frequency and R = 0 cutoff frequency as proposed by the same theory. The inconsistencies which were found between the Jones theory (1976) and observation are presented, and in addition no evidence is found for a component of continuum radiation propagating in the Z mode in the outer magnetosphere.

  14. Joint Acoustic and Modulation Frequency

    NASA Astrophysics Data System (ADS)

    Atlas, Les; Shamma, Shihab A.

    2003-12-01

    There is a considerable evidence that our perception of sound uses important features which is related to underlying signal modulations. This topic has been studied extensively via perceptual experiments, yet there are few, if any, well-developed signal processing methods which capitalize on or model these effects. We begin by summarizing evidence of the importance of modulation representations from psychophysical, physiological, and other sources. The concept of a two-dimensional joint acoustic and modulation frequency representation is proposed. A simple single sinusoidal amplitude modulator of a sinusoidal carrier is then used to illustrate properties of an unconstrained and ideal joint representation. Added constraints are required to remove or reduce undesired interference terms and to provide invertibility. It is then noted that the constraints would also apply to more general and complex cases of broader modulation and carriers. Applications in single-channel speaker separation and in audio coding are used to illustrate the applicability of this joint representation. Other applications in signal analysis and filtering are suggested.

  15. Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision

    PubMed Central

    Kwon, MiYoung; Legge, Gordon E.

    2011-01-01

    It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800

  16. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  17. GLOBAL AND LOCAL CUTOFF FREQUENCIES FOR TRANSVERSE WAVES PROPAGATING ALONG SOLAR MAGNETIC FLUX TUBES

    SciTech Connect

    Routh, S.; Musielak, Z. E.; Hammer, R. E-mail: zmusielak@uta.edu

    2013-01-20

    It is a well-established result that the propagation of linear transverse waves along a thin but isothermal magnetic flux tube is affected by the existence of the global cutoff frequency, which separates the propagating and non-propagating waves. In this paper, the wave propagation along a thin and non-isothermal flux tube is considered and a local cutoff frequency is derived. The effects of different temperature profiles on this local cutoff frequency are studied by considering different power-law temperature distributions, as well as the semi-empirical VAL C model of the solar atmosphere. The obtained results show that the conditions for wave propagation strongly depend on the temperature gradients. Moreover, the local cutoff frequency calculated for the VAL C model gives constraints on the range of wave frequencies that are propagating in different parts of the solar atmosphere. These theoretically predicted constraints are compared to observational data and are used to discuss the role played by transverse tube waves in the atmospheric heating and dynamics, and in the excitation of solar atmospheric oscillations.

  18. Photonic states deep into the waveguide cutoff frequency of metallic mesh photonic crystal filters

    NASA Astrophysics Data System (ADS)

    Sang, Hong-Yi; Li, Zhi-Yuan; Gu, Ben-Yuan

    2005-02-01

    We examine the optical properties of three-dimensional metallic photonic crystals made from a periodic stacking of thin metallic mesh layers separated by homogeneous dielectric films by means of a combination of the plane-wave-based transfer-matrix method and analytical modal solution approach. Although each metallic mesh layer can serve as a frequency-selective surface and involves an intrinsic long-wavelength waveguide cutoff to electromagnetic waves, pass bands and new band gaps can exist far below the cutoff frequency due to the global coupling effect among different mesh layers. The results for the transmission spectra and photonic band structures are in good agreement with existing experimental measurements. It is found that the position of the pass bands and band gaps strongly depends on the thickness and composite of the separation layer between the adjacent metallic mesh layers.

  19. Cutoff frequency of sound velocities for a multi-slab Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Rodríguez, O. A.; Solís, M. A.

    2015-03-01

    An inhomogeneous multi-slab 3D Bose gas is produced by applying to the gas a Kronig-Penney potential in one direction, while the bosons are free to move in the other two directions. The variable density produces a dispersive effect over the sound waves, making the phase and group sound velocities frequency dependent. Below the critical temperature the dispersion relation between wavenumber and frequency ω (k) is determined by a constant factor called the curvature of the density, within the Klein-Gordon equation which describes the sound wave propagation in the condensate. Since the curvature of the density profiles between and inside the barriers are completely different, the sound velocities are distinct too. More importantly, in the region occupied by the slabs waves propagate only if their frequencies are greater than a cutoff frequency, otherwise evanescent waves arise. We show the density profile, the phase and group sound velocities and we give the curvature dependent cutoff frequency as obtained from the group velocity equation for the region occupied by the barriers. For high frequencies both phase and group velocities approach to that of a homogeneous gas at the same temperature. We acknowledge partial support from PAPIIT IN111613.

  20. Low frequency acoustic and electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Maccamy, R. C.

    1986-01-01

    This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k/2/ log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.

  1. Low frequency acoustic and electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Maccamy, R. C.

    1983-01-01

    This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k(2) log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.

  2. Asymmetric acoustic transmission in multiple frequency bands

    NASA Astrophysics Data System (ADS)

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-11-01

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  3. Asymmetric acoustic transmission in multiple frequency bands

    SciTech Connect

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  4. An open-structure sound insulator against low-frequency and wide-band acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin

    2015-10-01

    To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.

  5. Analysis of cutoff frequency in a one-dimensional superconductor-metamaterial photonic crystal

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Aghajamali, Alireza; Elsayed, Hussein A.; Mobarak, Mohamed

    2016-09-01

    In this paper, using the two-fluid model and the characteristic matrix method, we investigate the transmission characteristics of the one-dimensional photonic crystal. Our structure composed of the layers of low-temperature superconductor material (NbN) and double-negative metamaterial. We target studying the effect of many parameters such as the thickness of the superconductor material, the thickness of the metamaterial layer, and the operating temperature. We show that the cut-off frequency can be tuned efficiently by the operating temperature as well as the thicknesses of the constituent materials.

  6. Fluctuations of 1/f Noise and the Low-Frequency Cutoff Paradox

    NASA Astrophysics Data System (ADS)

    Niemann, Markus; Kantz, Holger; Barkai, Eli

    2013-04-01

    Recent experiments on blinking quantum dots, weak turbulence in liquid crystals, and nanoelectrodes reveal the fundamental connection between 1/f noise and power law intermittency. The nonstationarity of the process implies that the power spectrum is random—a manifestation of weak ergodicity breaking. Here, we obtain the universal distribution of the power spectrum, which can be used to identify intermittency as the source of the noise. We solve in this case an outstanding paradox on the nonintegrability of 1/f noise and the violation of Parseval’s theorem. We explain why there is no physical low-frequency cutoff and therefore why it cannot be found in experiments.

  7. Effect of electron density on cutoff frequency of III-N HFETs

    NASA Astrophysics Data System (ADS)

    Matulionis, Arvydas; Morkoç, Hadis

    2014-03-01

    Advances in frequency performance of heterostructure field-effect transistors (HFETs) are discussed in terms of dissipative processes. The conditions for fastest dissipation coincide reasonably well with those for fastest operation and slowest device degradation. The correlation has its genesis in dissipation of the hot-phonon heat accumulated by non-equilibrium optical phonons launched by hot electrons. The hot-phonon heat causes defect formation and additional electron scattering in a different manner as compared with the effects due to conventional heat accumulated by acoustic phonons. The desirable ultrafast conversion of hot phonons into acoustic phonons is assisted by plasmons as demonstrated through measurement of hot-phonon lifetime. Signatures of plasmons have been also resolved in hot-electron transport, transistor frequency performance, phase noise, and device reliability. The plasmon-assisted ultrafast dissipation of hot-phonon heat explains the known necessity for application a stronger negative gate bias to a channel with higher as-grown electron density.

  8. Impact cutoff frequency - momentum scaling law inverted from Apollo seismic data

    NASA Astrophysics Data System (ADS)

    Gudkova, Tamara; Lognonné, Philippe; Miljković, Katarina; Gagnepain-Beyneix, Jeannine

    2015-10-01

    We perform the analysis of both long and short period data for 40 large meteoroid impacts event gathered by the Apollo lunar seismic network. We extract the linear momentum released by the impact and the cutoff frequency of the recorded seismic spectrum, related to the radiation process of the shock wave generated by the impact. By using a proxy to the local porosity, based on the density of surface craters and well correlated to the most recent GRAIL observations, we demonstrate that the seismic cutoff frequencies for 40 selected impacts correlate with this proxy and therefore likely with the porosity at the impacted areas. Our finding shows that lunar seismic records of meteoroid impacts represent unique geophysical data documenting medium to high-energy (0.1-1 kt TNT yield) impact processes, including the interaction of shock waves with porous media. This work can be applied to the analysis of the seismic data to be obtained by the InSight mission in 2016 and the investigation of the lateral variations in the Martian regolith.

  9. Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates.

    PubMed

    Wei, Wei; Pallecchi, Emiliano; Haque, Samiul; Borini, Stefano; Avramovic, Vanessa; Centeno, Alba; Amaia, Zurutuza; Happy, Henri

    2016-08-01

    Graphene has been regarded as a promising candidate channel material for flexible devices operating at radio-frequency (RF). In this work we fabricated and fully characterized double bottom-gate graphene field effect transistors on flexible polymer substrates for high frequency applications. We report a record high as-measured current gain cut-off frequency (ft) of 39 GHz. The corresponding maximum oscillation frequency (fmax) is 13.5 GHz. These state of the art high frequency performances are stable against bending, with a typical variation of around 10%, for a bending radius of up to 12 mm. To demonstrate the reliability of our devices, we performed a fatigue stress test for RF-GFETs which were dynamically bend tested 1000 times at 1 Hz. The devices are mechanically robust, and performances are stable with typical variations of 15%. Finally we investigate thermal dissipation, which is a critical parameter for flexible electronics. We show that at the optimum polarization the normalized power dissipated by the GFETs is about 0.35 mW μm(-2) and that the substrate temperature is around 200 degree centigrade. At a higher power, irreversible degradations of the performances are observed. Our study on state of the art flexible GFETs demonstrates mechanical robustness and stability upon heating, two important elements to assess the potential of GFETs for flexible electronics. PMID:27396243

  10. Cutoff frequencies and cross fingerings in baroque, classical, and modern flutes

    NASA Astrophysics Data System (ADS)

    Wolfe, Joe; Smith, John

    2003-10-01

    Baroque, classical, and modern flutes have successively more and larger tone holes. This paper reports measurements of the standing waves in the bores of instruments representing these three classes. It presents the frequency dependence of propagation of standing waves in lattices of open tone holes and compares these measurements with the cutoff frequency: the frequency at which, in an idealized system, the standing waves propagate without loss in such a lattice. It also reports the dependence of the sound field in the bore of the instrument as a function of both frequency and position along the bore for both simple and ``cross fingerings'' (configurations in which one or more tone holes are closed below an open hole). These measurements show how ``cross fingerings'' produce a longer standing wave, a technique used to produce the nondiatonic notes on instruments with a small number of tone holes closed only by the unaided fingers. They also show why the changes from baroque to classical to modern gave the instruments a louder, brighter sound and a greater range.

  11. Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Pallecchi, Emiliano; Haque, Samiul; Borini, Stefano; Avramovic, Vanessa; Centeno, Alba; Amaia, Zurutuza; Happy, Henri

    2016-07-01

    Graphene has been regarded as a promising candidate channel material for flexible devices operating at radio-frequency (RF). In this work we fabricated and fully characterized double bottom-gate graphene field effect transistors on flexible polymer substrates for high frequency applications. We report a record high as-measured current gain cut-off frequency (ft) of 39 GHz. The corresponding maximum oscillation frequency (fmax) is 13.5 GHz. These state of the art high frequency performances are stable against bending, with a typical variation of around 10%, for a bending radius of up to 12 mm. To demonstrate the reliability of our devices, we performed a fatigue stress test for RF-GFETs which were dynamically bend tested 1000 times at 1 Hz. The devices are mechanically robust, and performances are stable with typical variations of 15%. Finally we investigate thermal dissipation, which is a critical parameter for flexible electronics. We show that at the optimum polarization the normalized power dissipated by the GFETs is about 0.35 mW μm-2 and that the substrate temperature is around 200 degree centigrade. At a higher power, irreversible degradations of the performances are observed. Our study on state of the art flexible GFETs demonstrates mechanical robustness and stability upon heating, two important elements to assess the potential of GFETs for flexible electronics.Graphene has been regarded as a promising candidate channel material for flexible devices operating at radio-frequency (RF). In this work we fabricated and fully characterized double bottom-gate graphene field effect transistors on flexible polymer substrates for high frequency applications. We report a record high as-measured current gain cut-off frequency (ft) of 39 GHz. The corresponding maximum oscillation frequency (fmax) is 13.5 GHz. These state of the art high frequency performances are stable against bending, with a typical variation of around 10%, for a bending radius of up to 12 mm. To

  12. Extreme low frequency acoustic measurement system

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor)

    2013-01-01

    The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.

  13. Vibrations of an elastic cylindrical shell near the lowest cut-off frequency

    NASA Astrophysics Data System (ADS)

    Kaplunov, J.; Manevitch, L. I.; Smirnov, V. V.

    2016-05-01

    A new asymptotic approximation of the dynamic equations in the two-dimensional classical theory of thin-elastic shells is established for a circular cylindrical shell. It governs long wave vibrations in the vicinity of the lowest cut-off frequency. At a fixed circumferential wavenumber, the latter corresponds to the eigenfrequency of in-plane vibrations of a thin almost inextensible ring. It is stressed that the well-known semi-membrane theory of cylindrical shells is not suitable for tackling a near-cut-off behaviour. The dispersion relation within the framework of the developed formulation coincides with the asymptotic expansion of the dispersion relation originating from full two-dimensional shell equations. Asymptotic analysis also enables refining the geometric hypotheses underlying various ad hoc set-ups, including the assumption on vanishing of shear and circumferential mid-surface deformations used in the semi-membrane theory. The obtained results may be of interest for dynamic modelling of elongated cylindrical thin-walled structures, such as carbon nanotubes.

  14. Randomly driven acoustic-gravity waves in the solar atmosphere: cutoff period and its observational verification

    NASA Astrophysics Data System (ADS)

    Murawski, K.; Musielak, Z. E.

    2016-09-01

    We study the propagation of acoustic-gravity waves in the solar atmosphere. The waves are excited by a space- and time-dependent random driver, whose action mimics turbulence in the upper part of the solar convection zone. Our main goal is to find vertical variations of wave periods of these waves and compare the obtained results to the recent observations of Wiśniewska et al. (2016). We solve numerically the hydrodynamic equations in the solar atmosphere whose temperature is given by the semi-empirical model of Avrett & Loeser (2008). The obtained numerical results show that wave periods vary along vertical direction in agreement with the recent observational data. We discuss physical consequences of our theoretical results.

  15. Frequency Domain Calculations Of Acoustic Propagation

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Two complex geometry problems are solved using the linearized Euler equations. The impedance mismatch method1 is used to impose the solid surfaces without the need to use a body-fitted grid. The problem is solved in the frequency domain to avoid long run times. Although the harmonic assumption eliminates all time dependence, a pseudo-time term is added to allow conventional iterative methods to be employed. A Jameson type, Runge-Kutta scheme is used to advance the solution in pseudo time. The spatial operator is based on a seven-point, sixth-order finite difference. Constant coefficient, sixth-derivative artificial dissipation is used throughout the domain. A buffer zone technique employing a complex frequency to damp all waves near the boundaries is used to minimize reflections. The results show that the method is capable of capturing the salient features of the scattering, but an excessive number of grid points are required to resolve the phenomena in the vicinity of the solid bodies because the wavelength of the acoustics is relatively short compared with the size of the bodies. Smoothly transitioning into the immersed boundary condition alleviates the difficulties, but a fine mesh is still required.

  16. Influence of the lift-off effect on the cut-off frequency of the EMAT-generated Rayleigh wave signal.

    PubMed

    Yi, Pengxing; Zhang, Kang; Li, Yahui; Zhang, Xuming

    2014-01-01

    The electromagnetic acoustic transducer (EMAT), a non-contact NDT tool with large lift-off, is becoming an attractive method for detecting the cracks in the metal parts. However, the lift-off of the transducer has a direct effect on the feature that is used to characterize the defects. A detailed investigation on the relationship between the feature and the lift-off of the EMAT is crucial in the detection process. This paper investigates the lift-off effect on the feature, cut-off frequency of EMAT in the Rayleigh wave. The study can be divided into two parts. Firstly, with a multi-field coupling environment, 2-D electromagnetic and wave generation EMAT models are built to simulate the interaction of the Rayleigh wave with the surface crack. Then, the lift-off effect on the cut-off frequency is investigated through simulation and experiment. Compared to the previous studies, it is found that lift-off would cause a negative result when the lift-off varies in the testing process. Besides, the calibration obtained from the tests at a random lift-off value can be used in other tests with any different lift off value provided that the lift-off is kept as a constant during the detection process. PMID:25340446

  17. A Study on Theoretical Performance of Graphene FET using Analytical Approach with Reference to High Cutoff Frequency

    NASA Astrophysics Data System (ADS)

    Fahim-Al-Fattah, Md.; Rahman, Md. Tawabur; Islam, Md. Sherajul; Bhuiyan, Ashraful G.

    2016-02-01

    This paper presents a detailed study of theoretical performance of graphene field effect transistor (GFET) using analytical approach. GFET shows promising performance in terms of faster saturation as well as extremely high cutoff frequency (3.9THz). A significant shift of the Dirac point as well as an asymmetrical ambipolar behavior is observed on the transfer characteristics. Similarly, an approximate symmetrical capacitance-voltage (C-V) characteristics is obtained where it has guaranteed the consistency because it shows a significant saturation both in the accumulation and inversion region. In addition, a high transconductance of 6800uS at small channel length (20nm) along with high cutoff frequency (3.9THz) has been observed which demands for high speed field effect devices.

  18. The topographical arrangement of cutoff spatial frequencies across lower and upper visual fields in mouse V1.

    PubMed

    Zhang, Xian; An, Xu; Liu, Hanxiao; Peng, Jing; Cai, Shanshan; Wang, Wei; Lin, Da-Ting; Yang, Yupeng

    2015-01-01

    The visual response to spatial frequency (SF), a characteristic of spatial structure across position in space, is of particular importance for animal survival. A natural challenge for rodents is to detect predators as early as possible while foraging. Whether neurons in mouse primary visual cortex (V1) are functionally organized to meet this challenge remains unclear. Combining intrinsic signal optical imaging and single-unit recording, we found that the cutoff SF was much greater for neurons whose receptive fields were located above the mouse. Specifically, we discovered that the cutoff SF increased in a gradient that was positively correlated with the elevation in the visual field. This organization was present at eye opening and persisted through adulthood. Dark rearing delayed the maturation of the cutoff SF globally, but had little impact on the topographical organization of the cutoff SF, suggesting that this regional distribution is innately determined. This form of cortical organization of different SFs may benefit the mouse for detection of airborne threats in the natural environment.

  19. Frequency effects on the scale and behavior of acoustic streaming.

    PubMed

    Dentry, Michael B; Yeo, Leslie Y; Friend, James R

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U∼P1/2∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers-and hence low jet Reynolds numbers ReJ-where a linear relationship between the beam power and streaming velocity exists: U∼P∼ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  20. Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography

    NASA Astrophysics Data System (ADS)

    Zhang, Qian-Jiang; Dai, Shi-Kun; Chen, Long-Wei; Li, Kun; Zhao, Dong-Dong; Huang, Xing-Xing

    2015-09-01

    We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff boundary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.

  1. Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Li, Shengcai

    2015-09-01

    The acoustical scattering cross section is a paramount parameter determining the scattering ability of cavitation bubbles when they are excited by the incident acoustic waves. This parameter is strongly related with many important applications of acoustic cavitation including facilitating the reaction of chemical process, boosting bubble sonoluminescence, and performing non-invasive therapy and drug delivery. In present paper, both the analytical and numerical solutions of acoustical scattering cross section of gas bubbles under dual-frequency excitation are obtained. The validity of the analytical solution is shown with demonstrating examples. The nonlinear characteristics (e.g., harmonics, subharmonics and ultraharmonics) of the scattering cross section curve under dual-frequency approach are investigated. Compared with single-frequency approach, the dual-frequency approach displays more resonances termed as "combination resonances" and could promote the acoustical scattering cross section significantly within a much broader range of bubble sizes due to the generation of more resonances. The influence of several paramount parameters (e.g., acoustic pressure amplitude, power allocations between two acoustic components, and the ratio of the frequencies) in the dual-frequency system on the predictions of scattering cross section has been discussed.

  2. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    PubMed

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-01

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing.

  3. Coupled vibro-acoustic model updating using frequency response functions

    NASA Astrophysics Data System (ADS)

    Nehete, D. V.; Modak, S. V.; Gupta, K.

    2016-03-01

    Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.

  4. Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz.

    PubMed

    Cao, Yu; Brady, Gerald J; Gui, Hui; Rutherglen, Chris; Arnold, Michael S; Zhou, Chongwu

    2016-07-26

    In this paper, we report record radio frequency (RF) performance of carbon nanotube transistors based on combined use of a self-aligned T-shape gate structure, and well-aligned, high-semiconducting-purity, high-density polyfluorene-sorted semiconducting carbon nanotubes, which were deposited using dose-controlled, floating evaporative self-assembly method. These transistors show outstanding direct current (DC) performance with on-current density of 350 μA/μm, transconductance as high as 310 μS/μm, and superior current saturation with normalized output resistance greater than 100 kΩ·μm. These transistors create a record as carbon nanotube RF transistors that demonstrate both the current-gain cutoff frequency (ft) and the maximum oscillation frequency (fmax) greater than 70 GHz. Furthermore, these transistors exhibit good linearity performance with 1 dB gain compression point (P1dB) of 14 dBm and input third-order intercept point (IIP3) of 22 dBm. Our study advances state-of-the-art of carbon nanotube RF electronics, which have the potential to be made flexible and may find broad applications for signal amplification, wireless communication, and wearable/flexible electronics. PMID:27327074

  5. F-15 inlet/engine test techniques and distortion methodologies studies. Volume 5: Effect of filter cutoff frequency on turbulence plots

    NASA Technical Reports Server (NTRS)

    Stevens, C. H.; Spong, E. D.; Hammock, M. S.

    1978-01-01

    The effect of filter cutoff frequency on turbulence plots were used to determine if peak distortion data taken from a subscale inlet model can be used to predict peak distortion levels for a full scale flight test vehicle.

  6. High frequency cut-off in 1/f conductivity noise of hole-doped La1‑x Ca x MnO3 manganite single crystals

    NASA Astrophysics Data System (ADS)

    Przybytek, Jacek; Fink-Finowicki, Jan; Puźniak, Roman; Jung, Grzegorz

    2016-05-01

    High frequency bias and temperature-dependent Lorentzian cut-off has been observed in the 1/f spectra of the conductivity fluctuations in low hole-doped ferromagnetic insulating La1‑x Ca x MnO3 manganite at low temperatures. The cut-off frequency depends on dc current bias and temperature. The high frequency cut-off has been tentatively associated with intrinsic limits of the appearance of 1/f noise in the hopping regime of the Coulomb glass state. The assumption is validated by the fact that the Efros–Shklovskii temperature {{T}\\text{ES}} , estimated from the fit of the model to the experimentally measured temperature dependence of the cut-off frequency, has the same value as the temperature {{T}\\text{ES}} evaluated independently from the temperature dependence of the resistivity in the corresponding temperature range.

  7. Collector optimization for improving the product of the breakdown voltage-cutoff frequency in SiGe HBT

    NASA Astrophysics Data System (ADS)

    Qiang, Fu; Wanrong, Zhang; Dongyue, Jin; Yanxiao, Zhao; Lianghao, Zhang

    2015-04-01

    Compared with BVCEO, BVCES is more related to collector optimization and more practical significance, so that BVCES × fT rather than BVCEO × fT is employed in representing the limit of the product of the breakdown voltage-cutoff frequency in SiGe HBT for collector engineering design. Instead of a single decrease in collector doping to improve BVCES × fT and BVCEO × fT, a novel thin composite of N- and P+ doping layers inside the CB SCR is presented to improve the well-known tradeoff between the breakdown voltage and cut-off frequency in SiGe HBT, and BVCES and BVCEO are improved respectively with slight degradation in fT. As a result, the BVCES × fT product is improved from 537.57 to 556.4 GHz·V, and the BVCEO × fT product is improved from 309.51 to 326.35 GHz·V. Project supported by the National Natural Science Foundation of China (Nos. 60776051, 61006059, 61006044), the Beijing Natural Science Foundation (Nos. 4082007, 4143059, 4142007, 4122014), and the Beijing Municipal Education Committee (Nos. KM200710005015, KM200910005001).

  8. The Production and Recognition of Acoustic Frequency Cues in Chickadees

    NASA Astrophysics Data System (ADS)

    Lohr, Bernard Stephen

    1995-01-01

    The production and recognition of songs with appropriate species-typical features underlies a songbird's success in defending a breeding territory. The ability to recognize a song that is characteristic of one's own species presents an interesting problem, given the variety of types of information often encoded in song. Information in song may involve cues for individual identity, neighbor/stranger recognition, reproductive status, and motivational state. This thesis is concerned with the use of acoustic frequency as a cue for species-recognition of birdsong, and the various forms of frequency production and perception that may provide such cues. Carolina chickadees (Parus carolinensis) sing songs characterized by a succession of unmodulated, pure -tonal notes that alternate between high (approximately 5400-7000 Hz) and low (approximately 3000-4200 Hz) frequencies. Mechanisms of acoustic frequency perception in male territorial Carolina chickadees were evaluated using playback experiments designed to vary specific note frequencies, note frequency ranges, and the frequency range of the entire song type. Note frequency ranges provide the primary acoustic frequency cues for song recognition in this species. A gap between note frequency ranges exists in this species. Tones in this intermediate frequency range do not receive responses in the context of territorial song recognition. This kind of gap in frequency perception has not been demonstrated for other songbirds. Song playback experiments also were designed to vary systematically the contours (inter-note frequency sequences) of notes in song. Note frequency ranges provide the principal cues for song recognition, while the contour between note frequencies plays a supplementary role. The presence of a single descending interval between notes in the appropriate note frequency ranges of Carolina chickadee song generates full species-typical responses to song. Additionally, response to a descending contour between note

  9. Hybrid acoustically layered foam (HALF) foam for improved low-frequency acoustic mitigation for launch fairings

    NASA Astrophysics Data System (ADS)

    Williams, Andrew D.; Domme, Daniel J.; Ardelean, Emil V.; Henderson, B. Kyle

    2007-04-01

    Launch vehicles produce high levels of acoustic energy and vibration loads that can severely damage satellites during launch. Because of these high loads, the satellite structure is much more robust than it needs to be for on-orbit operations. Traditionally, acoustic foam is used for acoustic mitigation; however, it is ineffective at frequencies below 500 Hz. For this reason we investigated three different modified acoustic foam concepts consisting of a thin metal foil, a semi-rigid spacer, and a melamine foam substrate to improve the low frequency acoustic performance of the melamine foam. The goal of the Hybrid Acoustically Layered Foil (HALF) Foam concept was to excite bending waves within the plane of the foil to cause inter-particle interactions thus increasing the transmission loss of the foam. To determine the performance of the system, a transmission loss tube was constructed, and the normal incidence transmission loss for each sample was measured. The tests confirm the excitation of bending waves at the target frequency of 500 Hz and a significant increase, on the order of 8 dB, in the transmission loss.

  10. Broadband fractal acoustic metamaterials for low-frequency sound attenuation

    NASA Astrophysics Data System (ADS)

    Song, Gang Yong; Cheng, Qiang; Huang, Bei; Dong, Hui Yuan; Cui, Tie Jun

    2016-09-01

    We fabricate and experimentally characterize a broadband fractal acoustic metamaterial that can serve to attenuate the low-frequency sounds at selective frequencies ranging from 225 to 1175 Hz. The proposed metamaterials are constructed by the periodic Hilbert fractal elements made of photosensitive resin via 3D printing. In analogy to electromagnetic fractal structures, it is shown that multiple resonances can also be excited in the acoustic counterpart due to their self-similar properties, which help to attenuate the acoustic energy in a wide spectrum. The confinement of sound waves in such subwavelength element is evidenced by both numerical and experimental results. The proposed metamaterial may provide possible alternative for various applications such as the noise attenuation and the anechoic materials.

  11. Study of Acoustic Parameters in Binary Mixture at Variable Frequencies

    NASA Astrophysics Data System (ADS)

    Nath, G.; Tripathy, A.; Paikaray, R.

    2013-11-01

    The acoustical parameters for two binary liquid mixtures, acetone-toluene and acetone-xylene, have been determined for three different frequencies (1 MHz, 3 MHz, and 5 MHz) at 303 K. The acoustical parameters such as isentropic compressibility (), intermolecular free length (), acoustic impedance (), and their excess values are computed for the two systems from the measured ultrasonic velocity and density values. The extent of interactions between the component molecules has been investigated. For the acetone-toluene system, the more negative values of the different excess parameters suggest that the interactions between acetone-toluene molecules are greater compared to the acetone-xylene system. With an increase of frequency, the extent of the interactions becomes weaker in both systems due to thermal relaxation and agitation of the component molecules.

  12. Amplification of terahertz frequency acoustic phonons by drifting electrons in three-dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Bhargavi, K. S.; Kubakaddi, S. S.

    2016-09-01

    The amplification coefficient α of acoustic phonons is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) driven by a dc electric field E causing the drift of the electrons. It is numerically studied as a function of the frequency ωq, drift velocity vd, electron concentration ne, and temperature T in the Dirac semimetal Cd3As2. We find that the amplification of acoustic phonons (α ˜ hundreds of cm-1) takes place when the electron drift velocity vd is greater than the sound velocity vs. The amplification is found to occur at small E (˜few V/cm) due to large electron mobility. The frequency dependence of α shows amplification in the THz regime with a maximum αm occurring at the same frequency ωqm for different vd. The αm is found to increase with increasing vd. α vs ωq for different ne also shows a maximum, with αm shifting to higher ωq for larger ne. Each maximum is followed by a vanishing α at nearly "2kf cutoff," where kf is the Fermi wave vector. It is found that αm/ne and ωqm/ne1/3 are nearly constant. The αm ˜ ne can be used to identify the 3DDS phase as it differs from αm ˜ ne1/3 dependence in conventional bulk Cd3As2 semiconductor.

  13. Acoustic trapping with a high frequency linear phased array

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-11-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  14. Acoustic trapping with a high frequency linear phased array.

    PubMed

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K Kirk

    2012-11-19

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  15. Swept-frequency acoustic interferometry technique for noninvasive chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.N.; Han, Wei; Lizon, D.C.; Houlton, R.J.

    1997-02-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range from outside a container (e.g., reactor vessel, tank, pipe, industrial containers etc.). From the frequency dependence of sound attenuation, fluid density can also be determined. These physical parameters. when combined together, can be used to identify a range of chemicals. This technique can be adapted for chemical diagnostic applications, particularly in process control where monitoring of acoustic properties of chemicals (liquids, mixtures, emulsions, suspensions, etc.) may provide appropriate feedback information. The SFAI theory is discussed and experimental techniques are presented. Examples of several novel applications of the SFAI technique are also presented.

  16. High switching speed copper phthalocyanine thin film transistors with cut-off frequency up to 25 kHz

    NASA Astrophysics Data System (ADS)

    Wang, Zeying; Wang, Dong Xing; Zhang, Yongshuang; Wang, Yueyue

    2015-12-01

    The characteristics of high frequency and high speed are demonstrated in vertical structure organic thin film transistors (VOTFTs) fabricated by DC magnetron sputtering and vacuum evaporation. The saturated current-voltage characteristics can be determined by drain-source negative bias voltage. Responsive frequency of the device is as high as 20 kHz when rectangular wave dynamic signal is applied to the gate-source electrode, and switch characteristic time reaches the microsecond. The unsaturated current-voltage characteristics are observed when the drain-source bias voltage is positive. In the condition of VDS = 3 V and VGS = 0 V, the drain-source current IDS is 2.986 × 10-5 A, and the current density is 1.194 mA/cm2. Cut-off frequency fc is 25 kHz when a small sine wave dynamic signal is applied to the gate-source electrode. The volt-ampere characteristic of VOTFTs transfers from linear to nonlinear with increasing of drain-source bias voltage.

  17. A frequency selective acoustic transducer for directional Lamb wave sensing.

    PubMed

    Senesi, Matteo; Ruzzene, Massimo

    2011-10-01

    A frequency selective acoustic transducer (FSAT) is proposed for directional sensing of guided waves. The considered FSAT design is characterized by a spiral configuration in wavenumber domain, which leads to a spatial arrangement of the sensing material producing output signals whose dominant frequency component is uniquely associated with the direction of incoming waves. The resulting spiral FSAT can be employed both for directional sensing and generation of guided waves, without relying on phasing and control of a large number of channels. The analytical expression of the shape of the spiral FSAT is obtained through the theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. Testing is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The discrete array approximates the continuous spiral FSAT geometry, and provides the flexibility to test several configurations. The experimental results demonstrate the strong frequency dependent directionality of the spiral FSAT and suggest its application for frequency selective acoustic sensors, to be employed for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health. PMID:21973344

  18. The Suppression of Dominant Acoustic Frequencies in MRI

    NASA Astrophysics Data System (ADS)

    Shou, Xingxian; Brown, Robert

    2011-03-01

    Patient discomfort and brain imaging distortion are serious MRI acoustic noise problems arising from the rapid switching on and off of gradient coils in the presence of the strong Larmor magnetic field. A study is made of dominant frequencies in the acoustic noise spectrum and, motivated by both spring and string ideas, we propose the cancellation of selected frequencies by appropriate gradient pulse sequence design. From both simulations and experiments, vibrations resulting from an impulsive force associated with a ramping up of a gradient pulse are shown to be cancelled upon the application of another impulsive force coming from the appropriately timed ramping down of that pulse. A method for the suppression of multiple-frequency contributions involving a series of gradient pulses with variable timings is developed and confirmed by experiment. Whether we refer to reduction in terms of dB (about 30-40 dB per peak), or to the verdict of a listener, the conclusion is that a marked reduction in sound can be achieved when at least three of the dominant frequency peaks are suppressed. A variety of pulse profiles and timing combinations can be used to attenuate important contributions to the acoustic spectrum. Supported by the Ohio Third Frontier Program.

  19. Acoustic frequency combs for carrier-envelope phase stabilization.

    PubMed

    Borchers, Bastian; Lücking, Fabian; Steinmeyer, Günter

    2014-02-01

    A method for improved performance of feed-forward carrier-envelope phase stabilization in amplified laser sources is presented and experimentally demonstrated. The phase stabilization scheme is applicable for a broad range of repetition rates spanning from subhertz to 100 kHz. The method relies on driving an acousto-optic frequency shifter by few-cycle transients. The phase of these transients suitably controls the grating phase of the generated index grating inside the shifter material. This approach removes beam pointing as well as amplitude noise issues observed in continuously driven feed-forward schemes. The synthesis of these gratings can be understood as the acoustic equivalent of mode-locking or acoustic frequency combs. PMID:24487861

  20. Membrane-constrained acoustic metamaterials for low frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaole; Zhao, Hui; Luo, Xudong; Huang, Zhenyu

    2016-01-01

    We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

  1. Frequency diversity for OFDM mobile communication via underwater acoustic channels

    NASA Astrophysics Data System (ADS)

    Qiao, Gang; Wang, Wei; Guo, Ran; Khan, Rehan; Wang, Yue

    2012-03-01

    The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s·Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.

  2. Lexical frequency and acoustic reduction in spoken Dutch

    NASA Astrophysics Data System (ADS)

    Pluymaekers, Mark; Ernestus, Mirjam; Baayen, R. Harald

    2005-10-01

    This study investigates the effects of lexical frequency on the durational reduction of morphologically complex words in spoken Dutch. The hypothesis that high-frequency words are more reduced than low-frequency words was tested by comparing the durations of affixes occurring in different carrier words. Four Dutch affixes were investigated, each occurring in a large number of words with different frequencies. The materials came from a large database of face-to-face conversations. For each word containing a target affix, one token was randomly selected for acoustic analysis. Measurements were made of the duration of the affix as a whole and the durations of the individual segments in the affix. For three of the four affixes, a higher frequency of the carrier word led to shorter realizations of the affix as a whole, individual segments in the affix, or both. Other relevant factors were the sex and age of the speaker, segmental context, and speech rate. To accommodate for these findings, models of speech production should allow word frequency to affect the acoustic realizations of lower-level units, such as individual speech sounds occurring in affixes.

  3. Shifting fundamental frequency in simulated electric-acoustic listening

    PubMed Central

    Brown, Christopher A.; Scherrer, Nicole M.; Bacon, Sid P.

    2010-01-01

    Previous experiments have shown significant improvement in speech intelligibility under both simulated [Brown, C. A., and Bacon, S. P. (2009a). J. Acoust. Soc. Am. 125, 1658–1665; Brown, C. A., and Bacon, S. P. (2010). Hear. Res. 266, 52–59] and real [Brown, C. A., and Bacon, S. P. (2009b). Ear Hear. 30, 489–493] electric-acoustic stimulation when the target speech in the low-frequency region was replaced with a tone modulated in frequency to track the changes in the target talker’s fundamental frequency (F0), and in amplitude with the amplitude envelope of the target speech. The present study examined the effects in simulation of applying these cues to a tone lower in frequency than the mean F0 of the target talker. Results showed that shifting the frequency of the tonal carrier downward by as much as 75 Hz had no negative impact on the benefit to intelligibility due to the tone, and that even a shift of 100 Hz resulted in a significant benefit over simulated electric-only stimulation when the sensation level of the tone was comparable to that of the tones shifted by lesser amounts. PMID:20815462

  4. Low frequency acoustic pulse propagation in temperate forests.

    PubMed

    Albert, Donald G; Swearingen, Michelle E; Perron, Frank E; Carbee, David L

    2015-08-01

    Measurements of acoustic pulse propagation for a 30-m path were conducted in an open field and in seven different forest stands in the northeastern United States consisting of deciduous, evergreen, or mixed tree species. The waveforms recorded in forest generally show the pulse elongation characteristic of propagation over a highly porous ground surface, with high frequency scattered arrivals superimposed on the basic waveform shape. Waveform analysis conducted to determine ground properties resulted in acoustically determined layer thicknesses of 4-8 cm in summer, within 2 cm of the directly measured thickness of the litter layers. In winter the acoustic thicknesses correlated with the site-specific snow cover depths. Effective flow resistivity values of 50-88 kN s m(-4) were derived for the forest sites in summer, while lower values typical for snow were found in winter. Reverberation times (T60) were typically around 2 s, but two stands (deciduous and pruned spruce planted on a square grid) had lower values of about 1.2 s. One site with a very rough ground surface had very low summer flow resistivity value and also had the longest reverberation time of about 3 s. These measurements can provide parameters useful for theoretical predictions of acoustic propagation within forests. PMID:26328690

  5. Low frequency acoustic pulse propagation in temperate forests.

    PubMed

    Albert, Donald G; Swearingen, Michelle E; Perron, Frank E; Carbee, David L

    2015-08-01

    Measurements of acoustic pulse propagation for a 30-m path were conducted in an open field and in seven different forest stands in the northeastern United States consisting of deciduous, evergreen, or mixed tree species. The waveforms recorded in forest generally show the pulse elongation characteristic of propagation over a highly porous ground surface, with high frequency scattered arrivals superimposed on the basic waveform shape. Waveform analysis conducted to determine ground properties resulted in acoustically determined layer thicknesses of 4-8 cm in summer, within 2 cm of the directly measured thickness of the litter layers. In winter the acoustic thicknesses correlated with the site-specific snow cover depths. Effective flow resistivity values of 50-88 kN s m(-4) were derived for the forest sites in summer, while lower values typical for snow were found in winter. Reverberation times (T60) were typically around 2 s, but two stands (deciduous and pruned spruce planted on a square grid) had lower values of about 1.2 s. One site with a very rough ground surface had very low summer flow resistivity value and also had the longest reverberation time of about 3 s. These measurements can provide parameters useful for theoretical predictions of acoustic propagation within forests.

  6. Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency.

    PubMed

    Zhang, Yuning; Du, Xiaoze; Xian, Haizhen; Wu, Yulin

    2015-03-01

    Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency is theoretically investigated. The critical bubble radii dividing stable and unstable regions of bubbles under dual-frequency acoustic excitation are strongly affected by the amplitudes of dual-frequency acoustic excitation rather than the frequencies of dual-frequency excitation. The limitation of the proposed model is also discussed with demonstrating examples.

  7. The Suppression of Selected Acoustic Noise Frequencies in MRI

    NASA Astrophysics Data System (ADS)

    Shou, Xingxian

    Problems due to Magnetic Resonance Imaging (MRI) acoustic noise have long been an important concern, both in research and clinical applications. A study is made of certain dominant frequencies in the acoustic noise spectrum of the MRI system. Motivated by both spring and string ideas, we investigate whether the contributions to the sound from certain frequencies can be cancelled by the appropriate the gradient pulse sequence design. Ideas for cancelling these frequencies are investigated by carrying out theoretical string calculations. The MRI gradient assembly is modeled as a string and the gradient pulse sequences as a driving force for that string. Analytical results are obtained with different input gradient pulses including boxcars, trapezoids, and multiple trapezoids, along with special "quadratic" pulses. Pulse trains composed of repetitions of these pulse structures are studied. For comparison and to test these ideas, both simulations and experiments are carried out to verify our analytical results for the cancellations of selected frequency peaks. The idea that vibrations resulting from an impulsive force associated with a ramping up of a gradient pulse are shown to be cancelled immediately upon the application of another impulsive force coming from the subsequent appropriately timed ramping down of that pulse is verified both by simulations and experiments. A general approach to suppression of multiple-frequency contributions involving a series of gradient pulses with variable timings is given for the cancellations between pairs of impulse forces. The various examples investigated with string analytics and simulations and the associated MRI experiments are a physical embodiments of general time-invariant linear response theory. The present study also provides a foundation to explain results in previous papers on this subject. The method suggests that a variety of pulse profiles and timing combinations can be used to attenuate important contributions to

  8. Collector optimization for tradeoff between breakdown voltage and cut-off frequency in SiGe HBT

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhang, Wan-Rong; Jin, Dong-Yue; Ding, Chun-Bao; Zhao, Yan-Xiao; Lu, Dong

    2014-11-01

    As is well known, there exists a tradeoff between the breakdown voltage BVCEO and the cut-off frequency fT for a standard heterojunction bipolar transistor (HBT). In this paper, this tradeoff is alleviated by collector doping engineering in the SiGe HBT by utilizing a novel composite of P+ and N- doping layers inside the collector-base (CB) space-charge region (SCR). Compared with the single N-type collector, the introduction of the thin P+ layers provides a reverse electric field weakening the electric field near the CB metallurgical junction without changing the field direction, and the thin N- layer further effectively lowers the electric field near the CB metallurgical junction. As a result, the electron temperature near the CB metallurgical junction is lowered, consequently suppressing the impact ionization, thus BVCEO is improved with a slight degradation in fT. The results show that the product of fT × BVCEO is improved from 309.51 GHz·V to 326.35 GHz·V.

  9. High-frequency shear-horizontal surface acoustic wave sensor

    SciTech Connect

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  10. High-frequency shear-horizontal surface acoustic wave sensor

    SciTech Connect

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  11. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    PubMed

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  12. Acoustics of fish shelters: frequency response and gain properties.

    PubMed

    Lugli, Marco

    2012-11-01

    Many teleosts emit sounds from cavities beneath stones and other types of submerged objects, yet the acoustical properties of fish shelters are virtually unexplored. This study examines the gain properties of shelters commonly used by Mediterranean gobies as hiding places and/or nest sites in the field (flat stones, shells belonging to five bivalve species), or within aquarium tanks (tunnel-shaped plastic covers, concrete blocks, concrete cylinder pipe, halves of terracotta flower pots). All shelters were acoustically stimulated using a small underwater buzzer, placed inside or around the shelter to mimic a fish calling from the nest site, and different types of driving stimuli (white noise, pure tones, and artificial pulse trains). Results showed the presence of significant amplitude gain (3-18 dB) at frequencies in the range 100-150 Hz in all types of natural shelters but one (Mytilus), terracotta flower pots, and concrete blocks. Gain was higher for stones and artificial shelters than for shells. Gain peak amplitude increased with the weight of stones and shells. Conclusions were verified by performing analogous acoustical tests on flat stones in the stream. Results draw attention to the use of suitable shelters for proper recording of sounds produced by fishes kept within laboratory aquaria.

  13. Modelling the influence of high currents on the cutoff frequency in Si/SiGe/Si heterojunction transistors

    NASA Astrophysics Data System (ADS)

    Briggs, P. J.; Walker, A. B.; Herbert, D. C.

    1998-05-01

    A one-dimensional self-consistent bipolar Monte Carlo simulation code has been used to model carrier mobilities in strained doped SiGe and the base-collector region of Si/SiGe/Si and SiC/Si heterojunction bipolar transistors (HBTs) with wide collectors, to study the variation of the cutoff frequency 0268-1242/13/5/005/img6 with collector current density 0268-1242/13/5/005/img7. Our results show that while the presence of strain enhances the electron mobility, the scattering from alloy disorder and from ionized impurities reduces the electron mobility so much that it is less than that of Si at the same doping level, leading to larger base transit times 0268-1242/13/5/005/img8 and hence poorer 0268-1242/13/5/005/img6 performance for large 0268-1242/13/5/005/img7 for an Si/SiGe/Si HBT than for an SiC/Si HBT. At high values of 0268-1242/13/5/005/img7, we demonstrate the formation of a parasitic electron barrier at the base-collector interface which causes a sharp increase in 0268-1242/13/5/005/img8 and hence a dramatic reduction in 0268-1242/13/5/005/img6. Based on a comparison of the height of this parasitic barrier with estimates from an analytical model, we suggest a physical mechanism for base pushout after barrier formation that differs somewhat from that given for the analytical model.

  14. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments

    SciTech Connect

    C.N. Corrado; J.E. Bondaryk; V. Godino

    1998-08-01

    The Nuclear Regulatory Commission has a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and Ieaktightness of metal containment vessels and steel liners of concrete containment in nuclear power plants. One of the program objectives is to identify a technique(s) for inspection of inaccessible portions of the containment pressure boundary. Acoustic imaging has been identified as one of these potential techniques. A numerical feasibility study investigated the use of high-frequency bistatic acoustic imaging techniques for inspection of inaccessible portions of the metallic pressure boundary of nuclear power plant containment. The range-dependent version of the OASES Code developed at the Massachusetts Institute of Technology was utilized to perform a series of numerical simulations. OASES is a well developed and extensively tested code for evaluation of the acoustic field in a system of stratified fluid and/or elastic layers. Using the code, an arbitrary number of fluid or solid elastic layers are interleaved, with the outer layers modeled as halfspaces. High frequency vibrational sources were modeled to simulate elastic waves in the steel. The received field due to an arbitrary source array can be calculated at arbitrary depth and range positions. In this numerical study, waves that reflect and scatter from surface roughness caused by modeled degradations (e.g., corrosion) are detected and used to identify and map the steel degradation. Variables in the numerical study included frequency, flaw size, interrogation distance, and sensor incident angle.Based on these analytical simulations, it is considered unlikely that acoustic imaging technology can be used to investigate embedded steel liners of reinforced concrete containment. The thin steel liner and high signal losses to the concrete make this application difficult. Results for portions of steel containment

  15. Surface acoustic wave coding for orthogonal frequency coded devices

    NASA Technical Reports Server (NTRS)

    Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)

    2011-01-01

    Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.

  16. Low-Frequency Acoustic Signals Propagation in Buried Pipelines

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, A. L.; Lapshin, B. M.

    2016-01-01

    The article deals with the issues concerning acoustic signals propagation in the large-diameter oil pipelines caused by mechanical action on the pipe body. Various mechanisms of signals attenuation are discussed. It is shown that the calculation of the attenuation caused only by internal energy loss, i.e, the presence of viscosity, thermal conductivity and liquid pipeline wall friction lead to low results. The results of experimental studies, carried out using the existing pipeline with a diameter of 1200 mm. are shown. It is experimentally proved that the main mechanism of signal attenuation is the energy emission into the environment. The numerical values of attenuation coefficients that are 0,14- 0.18 dB/m for the pipeline of 1200 mm in diameter, in the frequency range from 50 Hz to 500 Hz, are determined.

  17. Noncontact microrheology at acoustic frequencies using frequency-modulated atomic force microscopy.

    PubMed

    Gavara, Núria; Chadwick, Richard S

    2010-08-01

    We report an atomic force microscopy (AFM) method for assessing elastic and viscous properties of soft samples at acoustic frequencies under non-contact conditions. The method can be used to measure material properties via frequency modulation and is based on hydrodynamics theory of thin gaps we developed here. A cantilever with an attached microsphere is forced to oscillate tens of nanometers above a sample. The elastic modulus and viscosity of the sample are estimated by measuring the frequency-dependence of the phase lag between the oscillating microsphere and the driving piezo at various heights above the sample. This method features an effective area of pyramidal tips used in contact AFM but with only piconewton applied forces. Using this method, we analyzed polyacrylamide gels of different stiffness and assessed graded mechanical properties of guinea pig tectorial membrane. The technique enables the study of microrheology of biological tissues that produce or detect sound. PMID:20562866

  18. Optical Heterodyne Investigation of the Microwave Frequency Acoustic Properties of Liquids.

    NASA Astrophysics Data System (ADS)

    Bonney, Rob

    An optical heterodyne interferometer with a state -of-the-art microwave frequency acoustic transducer was used to measure the acoustic properties of liquids and solutions at frequencies up to 1.5 GHz. Heterodyne detection with a strong optical local oscillator was used to detect a weak optical signal beam produced by Bragg deflection from an acoustic wave coupled into a liquid sample. The acoustic transducer had a frequency range of 0.2-1.5 GHz. Several liquid mixtures were measured for the first time, including aqueous dimethyl sulfoxide, and ethyl acetate in carbon disulphide. In some cases, previously unknown dispersions were characterized. A thermodynamic model (valid in the low frequency limit) involving the heat of mixing was used successfully to predict the variation of velocity with composition of liquid mixtures. With this model as a guide, an attempt was made to identify a liquid mixture which would make a superior medium for the acoustic microscope. The search produced results which supported theoretical predictions, but no superior medium was found. Solutions of biomolecules were also investigated due to interest in possible resonant acoustic modes in DNA. No dispersions or resonances were found in solutions of polyglycines, and results for DNA solutions were inconclusive. Applications of this work include general studies in liquid acoustics at very high frequencies, acoustic studies of DNA solutions, and characterization of media for such technological applications as acoustic microscopy or phase conjugation using stimulated Brillouin scattering.

  19. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    SciTech Connect

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao E-mail: wangzhibiao@haifu.com.cn; Song, Dan; Lei, Guangrong; Lin, Zhou; Zhang, Dong E-mail: wangzhibiao@haifu.com.cn; Wu, Junru

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  20. Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-based structures

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Yuan, Baoguo; Cheng, Ying; Liu, Xiaojun

    2016-02-01

    We have realized the acoustic rainbow trapping in the low frequency region (200-500 Hz) through micro Mie resonance-based structures. The structure has eight channels with a high refractive index obtained by coiling space, that can excite strong interactions with incident waves and support various orders of multipoles due to the Mie resonances of the microstructure. By utilizing the structure, the precise spatial modulation of the acoustic wave is demonstrated both theoretically and experimentally. The effect of trapping broadband acoustic waves and spatially separating different frequency components are ascribed to the monopolar Mie resonances of the structures. The trapping frequency is derived and the trapping positions can be tuned arbitrarily. With enhanced wave-structure interactions and tailored frequency responses, such micro structures show precise spectral-spatial control of acoustic waves and open a diverse venue for high performance acoustic wave detection, sensing, filtering, and a nondestructive test.

  1. The Selection of Basis Functions Systems for Determination of Cutoff Frequency of Waveguides and Resonators of Complex Shape with the Help of R-functions Method

    NASA Astrophysics Data System (ADS)

    Kravchenko, Victor F.; Yurin, Aleksey V.

    2009-03-01

    The work focuses on the problem of determination of cutoff frequency of waveguides and resonators of a complex shape. The problem is sold by method of R-functions. This approach has a lot of advantages, it possesses geometric flexibility, broad capabilities of numerical realization as for the production of the variation problem and for the selection of basis functions system as well. As basis functions the polynomials (trigonometrical, power, Tchebyshev of I and II types, Legendre, Gegenbauer) or local functions (atomic functions, splines) are used. The contrastive analysis of approximate boundary value problem solving is carried out in accordance to the basis functions system selected.

  2. A CMOS Gm—C complex filter with a reconfigurable center and cutoff frequencies in low-IF WiMAX receivers

    NASA Astrophysics Data System (ADS)

    Xin, Cheng; Haigang, Yang; Tongqiang, Gao; Tao, Yin

    2013-07-01

    This paper presents a reconfigurable fifth-order complex Gm—C filter for different data rates in low-IF WiMAX applications. The design procedure and linearized measures to realize the complex filter are described. In order to achieve the reconfigurability of bandwidth window, the center frequency and the cutoff frequency filter are adjusted simultaneously by changing capacitor values while keeping transconductors unchanged. Also, the filter integrates an on-chip automatic frequency tuning circuit based on a PLL. Experimental results show that it has an IRR of 32 dB, a THD of -43 dB, and an input-referred noise of 21 μVrms. The chip is fabricated in 0.13 μm CMOS process, occupies 0.7 × 1 mm2, and consumes 4.8 mA current from a 1.2 V power supply.

  3. Low-frequency tunable acoustic absorber based on split tube resonators

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoxiao; Fu, Caixing; Li, Xin; Meng, Yan; Gao, Yibo; Tian, Jingxuan; Wang, Li; Huang, Yingzhou; Yang, Zhiyu; Wen, Weijia

    2016-07-01

    We demonstrate a high-efficiency tunable acoustic absorber for low frequencies (<500 Hz) with subwavelength thickness. The acoustic absorber is based on split tube resonators and could reach high-efficiency absorption at tunable resonance frequency with wavelength in air at least 30 times larger than its total thickness in simulations and experiments. The resonance frequency and high-efficiency absorption of the absorber are robust under oblique incidence even at large angles. The absorber could have potential applications for acoustic engineering due to its high structural stability, ease of fabrication, subwavelength thickness, and robust high-efficiency.

  4. Eleutherodactylus frogs show frequency but no temporal partitioning: implications for the acoustic niche hypothesis

    PubMed Central

    2014-01-01

    Individuals in acoustic communities compete for the use of the sound resource for communication, a problem that can be studied as niche competition. The acoustic niche hypothesis presents a way to study the partitioning of the resource, but the studies have to take into account the three dimensions of this niche: time, acoustic frequency, and space. I used an Automated Digital Recording System to determine the partitioning of time and acoustic frequency of eight frogs of the genus Eleutherodactylus from Puerto Rico. The calling activity was measured using a calling index. The community exhibited no temporal partitioning since most species called at the same time, between sunset and midnight. The species partitioned the acoustic frequency of their signals, which, in addition to the microhabitat partitioning, can provide some insight into how these species deal with the problem. This data also suggest that monitoring projects with this group should take place only before midnight to avoid false negatives. PMID:25101228

  5. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies.

    PubMed

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-09-16

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.

  6. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies

    PubMed Central

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-01-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. PMID:27633351

  7. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies.

    PubMed

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-01-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. PMID:27633351

  8. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies

    NASA Astrophysics Data System (ADS)

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-09-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.

  9. Dual-frequency acoustic droplet vaporization detection for medical imaging.

    PubMed

    Arena, Christopher B; Novell, Anthony; Sheeran, Paul S; Puett, Connor; Moyer, Linsey C; Dayton, Paul A

    2015-09-01

    Liquid-filled perfluorocarbon droplets emit a unique acoustic signature when vaporized into gas-filled microbubbles using ultrasound. Here, we conducted a pilot study in a tissue-mimicking flow phantom to explore the spatial aspects of droplet vaporization and investigate the effects of applied pressure and droplet concentration on image contrast and axial and lateral resolution. Control microbubble contrast agents were used for comparison. A confocal dual-frequency transducer was used to transmit at 8 MHz and passively receive at 1 MHz. Droplet signals were of significantly higher energy than microbubble signals. This resulted in improved signal separation and high contrast-to-tissue ratios (CTR). Specifically, with a peak negative pressure (PNP) of 450 kPa applied at the focus, the CTR of B-mode images was 18.3 dB for droplets and -0.4 for microbubbles. The lateral resolution was dictated by the size of the droplet activation area, with lower pressures resulting in smaller activation areas and improved lateral resolution (0.67 mm at 450 kPa). The axial resolution in droplet images was dictated by the size of the initial droplet and was independent of the properties of the transmit pulse (3.86 mm at 450 kPa). In post-processing, time-domain averaging (TDA) improved droplet and microbubble signal separation at high pressures (640 kPa and 700 kPa). Taken together, these results indicate that it is possible to generate high-sensitivity, high-contrast images of vaporization events. In the future, this has the potential to be applied in combination with droplet-mediated therapy to track treatment outcomes or as a standalone diagnostic system to monitor the physical properties of the surrounding environment. PMID:26415125

  10. Spin noise spectroscopy from acoustic to GHz frequencies

    NASA Astrophysics Data System (ADS)

    Hübner, Jens

    2010-03-01

    Performing perturbation free measurements on semiconductor quantum systems has long been banished to textbooks on quantum mechanics. The emergent technique of spin noise spectroscopy is challenging this restriction. Empowered only by the ever present intrinsic spin fluctuation dynamics in thermal equilibrium, spin noise spectroscopy is capable to directly deduce several physical properties of carriers spins in semiconductors from these fluctuations. Originating from spin noise measurements on alkali metal vapors in quantum optics [1] the method has become a powerful technique to unravel the intrinsic spin dynamics in semiconductors [2]. In this talk I will present the recent progress of spin noise spectroscopy and how it is used to monitor the spin dynamic in semiconductor quantum wells at thermal equilibrium and as a consequence thereof directly detect the spatial dynamics of the carriers being marked with their own spin on a microscopic scale [3]. Further I will present measurements of how the non-perturbative nature of spin noise spectroscopy gives valuable insight into the delicate dependence of the spin relaxation time of electrons on doping density and temperature in semiconductors n-doped in the vicinity of the metal-insulator transition where hyperfine and intra-band depolarization compete [4]. Also the measurement bandwidth can be extended to GHz frequencies by ultrafast optical probing [5] yielding in conjunction with depth resolved spin noise measurements insights into the origin of inhomogeneous spin dephasing effects at high magnetic fields [5]. Additionally I will present how spin noise spectroscopy can be employed to spatially depth resolve doping profiles with optical resolution [6] and give a summary on easy to implement techniques of spin noise spectroscopy at acoustic frequencies in alkali metal vapors. [4pt] [1] E. Aleksandrov and V. Zapassky, Zh. Eksp. Teor. Fiz. 81, 132 (1981); S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. L. Smith

  11. Field observation of low-to-mid-frequency acoustic propagation characteristics of an estuarine salt wedge.

    PubMed

    Reeder, D Benjamin

    2016-01-01

    The estuarine environment often hosts a salt wedge, the stratification of which is a function of the tide's range and speed of advance, river discharge volumetric flow rate, and river mouth morphology. Competing effects of temperature and salinity on sound speed in this stratified environment control the degree of acoustic refraction occurring along an acoustic path. A field experiment was carried out in the Columbia River Estuary to test the hypothesis: the estuarine salt wedge is acoustically observable in terms of low-to-mid-frequency acoustic propagation. Linear frequency-modulated acoustic signals in the 500-2000 Hz band were transmitted during the advance and retreat of the salt wedge during May 27-29, 2013. Results demonstrate that the salt wedge front is the dominant physical mechanism controlling acoustic propagation in this environment: received signal energy is relatively stable before and after the passage of the salt wedge front when the acoustic path consists of a single medium (either entirely fresh water or entirely salt water), and suffers a 10-15 dB loss and increased variability during salt wedge front passage. Physical parameters and acoustic propagation modeling corroborate and inform the acoustic observations. PMID:26827001

  12. Sound source localization by hearing preservation patients with and without symmetric, low-frequency acoustic hearing

    PubMed Central

    Loiselle, Louise H.; Dorman, Michael F.; Yost, William A.; Gifford, Rene H.

    2015-01-01

    The aim of this paper was to study sound source localization by cochlear implant (CI) listeners with low-frequency (LF) acoustic hearing in both the operated ear and in the contralateral ear. Eight CI listeners had symmetrical LF acoustic hearing (symm) and four had asymmetric LF acoustic hearing (asymm). The effects of two variables were assessed: (i) the symmetry of the LF thresholds in the two ears and (ii) the presence/absence of bilateral acoustic amplification. Stimuli consisted of low-pass, high pass, and wide-band noise bursts presented in the frontal horizontal plane. Localization accuracy was 23 degrees of error for the symm listeners and 76 degrees of error for the asymm listeners. The presence of a unilateral CI used in conjunction with bilateral LF acoustic hearing does not impair sound source localization accuracy, but amplification for acoustic hearing can be detrimental to sound source localization accuracy. PMID:25832907

  13. Mechanisms of acoustical energy transfer by a cylindrical shell near the ring frequency

    NASA Astrophysics Data System (ADS)

    Barbe, M.; Gotteland, M.; Cacciolati, C.

    An analytical model is developed for the propagation of acoustic energy through a long cylinder with a large radius, such as encountered in aerospace applications. An acoustic wave is assumed to strike the exterior of the shell obliquely, part of the energy being reflected, the other absorbed. Account is taken of the displacements of the shell towards the interior, the appearance of a circular mode for the acoustic energy, the acoustic impedance of the shell, and the frequencies of the reflected and transmitted energy. A mass law is obtained for certain frequency zones. The law is useful for predicting when the acoustic energy transmitted to the interior will be zero. The model can be applied to controlling the noise levels transmitted to the interior of a fuselage.

  14. High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams

    SciTech Connect

    Siemens, M.; Li, Q.; Murnane, M.; Kapteyn, H.; Yang, R.; Anderson, E.; Nelson, K.

    2009-03-02

    We study ultrahigh frequency surface acoustic wave propagation in nickel-on-sapphire nanostructures. The use of ultrafast, coherent, extreme ultraviolet beams allows us to extend optical measurements of propagation dynamics of surface acoustic waves to frequencies of nearly 50 GHz, corresponding to wavelengths as short as 125 nm. We repeat the measurement on a sequence of nanostructured samples to observe surface acoustic wave dispersion in a nanostructure series for the first time. These measurements are critical for accurate characterization of thin films using this technique.

  15. An acoustic dual filter in the audio frequencies with two local resonant systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhao-qun; Zhang, Hui; Zhang, Shu-yi; Fan, Li

    2014-08-01

    We report an acoustic dual filter to realize the sound regulation in the audio frequency range, in which resonant vibrations of two membrane-air and metal-elastomer systems generate two sound transmission peaks and a sound blocking below 3000 Hz. The local vibrational profiles manifest that the transmission peak at lower frequency is mainly dependent on the resonant vibration of the membrane-air system, and the coupling vibrations of two systems generate the blocking frequency and transmission peak at higher frequency. Importantly, two transmission peaks can be controlled independently. It is feasible to realize the acoustic device in sound shield and dual filters.

  16. Effects of Low-pass Filtering on Acoustic Analysis of Voice

    PubMed Central

    MacCallum, Julia K.; Olszewski, Aleksandra E.; Zhang, Yu; Jiang, Jack J.

    2010-01-01

    Objective/Hypothesis Low-pass filtering is often applied to eliminate effects of environmental noise when preparing voice recordings for acoustic analysis. This study tested the effects of low-pass filter cutoff frequency on the results of acoustic voice analysis, with a particular interest in the effects of low cutoff frequencies on nonlinear dynamic parameters. Study Design A crossover randomized controlled trial was performed using voice recordings of sustained vowel phonation obtained from the Disordered Voice Database. Methods A second-order Butterworth filter was applied to the voices at cutoff frequencies ranging from 5000 to 40Hz. Percent jitter, percent shimmer, fundamental frequency (F0), signal-to-noise ratio (SNR), D2, and K2 were calculated for each signal. Results Traditional acoustic parameters were validly measured at cutoff frequencies as low as 300Hz. SNR and percent shimmer were improved by cutoff frequencies of 300Hz or higher; F0 and percent jitter were unaffected by filtering at these frequencies. D2 and K2 were measured stably for signals filtered at cutoff frequencies as low as 100Hz. Conclusion To ensure accuracy in acoustic voice analysis, setting the cutoff frequency of a low-pass filter at least one octave above the fundamental frequency (minimum of 300Hz) is recommended. Nonlinear dynamic measures of correlation dimension (D2) and second-order entropy (K2) proved more robust and maintained accuracy at lower frequencies. PMID:20346621

  17. Polarization of ELF waves generated during "beat-wave" heating experiment near cutoff frequency of the Earth-ionosphere waveguide

    NASA Astrophysics Data System (ADS)

    Fedorenko, Yu.; Tereshchenko, E.; Pilgaev, S.; Grigoryev, V.; Blagoveshchenskaya, N.

    2014-12-01

    High-frequency heating of the ionosphere is effective for generating extremely low frequencies (ELF, 3-3000 Hz) through modulation of the auroral electrojet current. While the amplitudes of the resulting ELF waves depend on the auroral electrojet current strength, the polarization of their horizontal magnetic field remains relatively stable. In this work, we determined that at the distance of several wavelengths from an ionospheric ELF source created by two HF heating waves separated by an ELF frequency, polarization parameters are influenced by the Earth-ionosphere waveguide. Previous experiments in the vicinity of the ionospheric ELF source have determined that the right-hand polarization of the magnetic field measured at the ground typically prevails, whereas in this paper we demonstrate that at the distance of 660 km to the east of the European Incoherent Scatter, a circular left-hand polarization dominates. We interpret this effect as a result of "trapping" of the left-hand mode between the upper and lower boundaries of the Earth-ionosphere waveguide, while the right-hand or whistler mode leaks into the ionosphere.

  18. Time-frequency analysis of acoustic signals in the audio-frequency range generated during Hadfield's steel friction

    NASA Astrophysics Data System (ADS)

    Dobrynin, S. A.; Kolubaev, E. A.; Smolin, A. Yu.; Dmitriev, A. I.; Psakhie, S. G.

    2010-07-01

    Time-frequency analysis of sound waves detected by a microphone during the friction of Hadfield’s steel has been performed using wavelet transform and window Fourier transform methods. This approach reveals a relationship between the appearance of quasi-periodic intensity outbursts in the acoustic response signals and the processes responsible for the formation of wear products. It is shown that the time-frequency analysis of acoustic emission in a tribosystem can be applied, along with traditional approaches, to studying features in the wear and friction process.

  19. Ion velocities in the presheath of electronegative, radio-frequency plasmas measured by low-energy cutoff

    NASA Astrophysics Data System (ADS)

    Sobolewski, Mark A.; Wang, Yicheng; Goyette, Amanda

    2016-07-01

    Simple kinematic considerations indicate that, under certain conditions in radio-frequency (rf) plasmas, the amplitude of the low-energy peak in ion energy distributions (IEDs) measured at an electrode depends sensitively on ion velocities upstream, at the presheath/sheath boundary. By measuring this amplitude, the velocities at which ions exit the presheath can be determined and long-standing controversies regarding presheath transport can be resolved. Here, IEDs measured in rf-biased, inductively coupled plasmas in CF4 gas determined the presheath exit velocities of all significant positive ions: CF3+, CF2+, CF+, and F+. At higher bias voltages, we detected essentially the same velocity for all four ions. For all ions, measured velocities were significantly lower than the Bohm velocity and the electropositive ion sound speed. Neither is an accurate boundary condition for rf sheaths in electronegative gases: under certain low-frequency, high-voltage criteria defined here, either yields large errors in predicted IEDs. These results indicate that many widely used sheath models will need to be revised.

  20. Frequency Characteristics of Acoustic Emission Signals from Cementitious Waste-forms with Encapsulated Al

    SciTech Connect

    Spasova, Lyubka M.; Ojovan, Michael I.

    2007-07-01

    Acoustic emission (AE) signals were continuously recorded and their intrinsic frequency characteristics examined in order to evaluate the mechanical performance of cementitious wasteform samples with encapsulated Al waste. The primary frequency in the power spectrum and its range of intensity for the detected acoustic waves were potentially related with appearance of different micro-mechanical events caused by Al corrosion within the encapsulating cement system. In addition the process of cement matrix hardening has been shown as a source of AE signals characterized with essentially higher primary frequency (above 2 MHz) compared with those due to Al corrosion development (below 40 kHz) and cement cracking (above 100 kHz). (authors)

  1. High-frequency acoustic waves are not sufficient to heat the solar chromosphere.

    PubMed

    Fossum, Astrid; Carlsson, Mats

    2005-06-16

    One of the main unanswered questions in solar physics is why the Sun's outer atmosphere is hotter than its surface. Theory predicts abundant production of high-frequency (10-50 mHz) acoustic waves in subsurface layers of the Sun, and such waves are believed by many to constitute the dominant heating mechanism of the chromosphere (the lower part of the outer solar atmosphere) in non-magnetic regions. Such high-frequency waves are difficult to detect because of high-frequency disturbances in Earth's atmosphere (seeing) and other factors. Here we report the detection of high-frequency waves, and we use numerical simulations to show that the acoustic energy flux of these waves is too low, by a factor of at least ten, to balance the radiative losses in the solar chromosphere. Acoustic waves therefore cannot constitute the dominant heating mechanism of the solar chromosphere. PMID:15959510

  2. Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego

    2015-01-01

    The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.

  3. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  4. High-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler.

    PubMed

    Zhu, Jie; Lee, Chuangyuan; Kim, Eun Sok; Wu, Dawei; Hu, Changhong; Zhou, Qifa; Shung, K Kirk; Wang, Gaofeng; Yu, Hongyu

    2010-05-01

    This work reports the potential use of high-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz.

  5. Dual-frequency modes of the dust acoustic surface wave in a semibounded system

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-07-01

    Dual-frequency modes of the dust acoustic surface waves propagating at the interface between a nonmagnetized multicomponent Lorentzian dusty plasma and a vacuum are investigated, including nonthermal and positron effects. The dispersion relation is kinetically derived by employing the specular reflection boundary condition and the dielectric permittivity for dusty plasma containing positrons. We found that there exist two modes of the dust acoustic surface wave; high- and low-frequency modes. We observe that both H and L modes are enhanced by the increase of the pair annihilation rate. However, the effects of positron density are twofold depending on the ratio of annihilated positrons. The effects of nonthermal plasmas are also investigated on the H and L modes of dust acoustic surface waves. We found that the nonthermal plasmas reduce the frequencies of both H and L modes.

  6. Dual-frequency modes of the dust acoustic surface wave in a semibounded system.

    PubMed

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-07-01

    Dual-frequency modes of the dust acoustic surface waves propagating at the interface between a nonmagnetized multicomponent Lorentzian dusty plasma and a vacuum are investigated, including nonthermal and positron effects. The dispersion relation is kinetically derived by employing the specular reflection boundary condition and the dielectric permittivity for dusty plasma containing positrons. We found that there exist two modes of the dust acoustic surface wave; high- and low-frequency modes. We observe that both H and L modes are enhanced by the increase of the pair annihilation rate. However, the effects of positron density are twofold depending on the ratio of annihilated positrons. The effects of nonthermal plasmas are also investigated on the H and L modes of dust acoustic surface waves. We found that the nonthermal plasmas reduce the frequencies of both H and L modes.

  7. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

    SciTech Connect

    Ivry, Yachin E-mail: cd229@eng.cam.ac.uk; Wang, Nan; Durkan, Colm E-mail: cd229@eng.cam.ac.uk

    2014-03-31

    Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.

  8. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  9. Applications of swept-frequency acoustic interferometry technique in chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.; Lizon, D.; Hasse, R.

    1996-09-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range completely noninvasively from outside a container (e.g., pipe, tank, reactor vessel, etc.,). These acoustic parameters, along with their frequency-dependence, can be used to identify various chemicals. This technique can be adapted for a range of chemical diagnostic applications, particularly, in process control where monitoring of acoustic properties of chemicals may provide appropriate feedback information. Both experimental data and theoretical modeling are presented. Examples of several novel applications of the SFAI technique are discussed.

  10. Frequency-Preserved Acoustic Diode Model with High Forward-Power-Transmission Rate

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Du, Zongliang; Sun, Zhi; Gao, Huajian; Guo, Xu

    2015-06-01

    The acoustic diode (AD) can provide brighter and clearer ultrasound images by eliminating acoustic disturbances caused by sound waves traveling in two directions at the same time and interfering with each other. Such an AD could give designers new flexibility in making ultrasonic sources like those used in medical imaging or nondestructive testing. However, current AD designs, based on nonlinear effects, only partially fill this role by converting sound to a new frequency and blocking any backward flow of the original frequency. In this work, an AD model that preserves the frequencies of acoustic waves and has a relatively high forward-power-transmission rate is proposed. Theoretical analysis indicates that the proposed AD has forward, reverse, and breakdown characteristics very similar to electrical diodes. The significant rectifying effect of the proposed AD is verified numerically through a one-dimensional example. Possible schemes for experimental realization of this model as well as more complex and efficient AD designs are also discussed.

  11. Noninvasive identification of fluids by swept-frequency acoustic interferometry

    DOEpatents

    Sinha, Dipen N.

    1998-01-01

    A method for rapid, noninvasive identification and monitoring of chemicals in sealed containers or containers where direct access to the chemical is not possible is described. Multiple ultrasonic acoustic properties (up to four) of a fluid are simultaneously determined. The present invention can be used for chemical identification and for determining changes in known chemicals from a variety of sources. It is not possible to identify all known chemicals based on the measured parameters, but known classes of chemicals in suspected containers, such as in chemical munitions, can be characterized. In addition, a large number of industrial chemicals can be identified.

  12. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    SciTech Connect

    Mazumdar, A.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Ballot, J.; Antia, H. M.; Basu, S.; Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Mathur, S.; García, R. A.; Verner, G. A.; Chaplin, W. J.; Sanderfer, D. T.; Seader, S. E.; Smith, J. C.

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  13. Robustness against distortion of fundamental frequency cues in simulated electro-acoustic hearing.

    PubMed

    Vermeulen, Arthur; Verschuur, Carl

    2016-07-01

    Speech recognition by cochlear implant users can be improved by adding an audible low frequency acoustic signal to electrical hearing; the resulting improvement is deemed "electro-acoustic stimulation (EAS) benefit." However, a crucial low frequency cue, fundamental frequency (F0), can be distorted via the impaired auditory system. In order to understand how F0 distortions may affect EAS benefit, normal-hearing listeners were presented monaurally with vocoded speech (frequencies >250 Hz) and an acoustical signal (frequencies <250 Hz) with differing manipulations of the F0 signal, specifically: a pure tone with the correct mean F0 but with smaller variations around this mean, or a narrowband of white noise centered around F0, at varying bandwidths; a pure tone down-shifted in frequency by 50 Hz but keeping overall frequency modulations. Speech-recognition thresholds improved when tones with reduced frequency modulation were presented, and improved significantly for noise bands maintaining F0 information. A down-shifted tone, or only a tone to indicate voicing, showed no EAS benefit. These results confirm that the presence of the target's F0 is beneficial for EAS hearing in a noisy environment, and they indicate that the benefit is robust to F0 distortion, as long as the mean F0 and frequency modulations of F0 are preserved. PMID:27475149

  14. Propagation of high frequency jet noise using geometric acoustics

    NASA Technical Reports Server (NTRS)

    Khavaran, A.; Krejsa, E. A.

    1993-01-01

    Spherical directivity of noise radiated from a convecting quadrupole source embedded in an arbitrary spreading jet is obtained by ray-tracing methods of geometrical acoustics. The six propagation equations are solved in their general form in a rectangular coordinate system. The noise directivity in the far field is calculated by applying an iteration scheme that finds the required radiation angles at the source resulting in propagation through a given observer point. Factors influencing the zone of silence are investigated. The caustics of geometrical acoustics and the exact locations where it forms is demonstrated by studying the variation in ray tube area obtained from transport equation. For a ring source convecting along the center-axis of an axisymmetric jet, the polar directivity of the radiated noise is obtained by an integration with respect to azimuthal directivity of compact quadrupole sources distributed on the ring. The Doppler factor is shown to vary slightly from point to point on the ring. Finally the scaling of the directivity pattern with power -3 of Doppler factor is investigated and compared with experimental data.

  15. Acoustic angiography: a new high frequency contrast ultrasound technique for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Shelton, Sarah E.; Lindsey, Brooks D.; Gessner, Ryan; Lee, Yueh; Aylward, Stephen; Lee, Hyunggyun; Cherin, Emmanuel; Foster, F. Stuart; Dayton, Paul A.

    2016-05-01

    Acoustic Angiography is a new approach to high-resolution contrast enhanced ultrasound imaging enabled by ultra-broadband transducer designs. The high frequency imaging technique provides signal separation from tissue which does not produce significant harmonics in the same frequency range, as well as high resolution. This approach enables imaging of microvasculature in-vivo with high resolution and signal to noise, producing images that resemble x-ray angiography. Data shows that acoustic angiography can provide important information about the presence of disease based on vascular patterns, and may enable a new paradigm in medical imaging.

  16. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  17. Acoustic properties of pistonphones at low frequencies in the presence of pressure leakage and heat conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; He, Wen; He, Longbiao; Rong, Zuochao

    2015-12-01

    The wide concern on absolute pressure calibration of acoustic transducers at low frequencies prompts the development of the pistonphone method. At low frequencies, the acoustic properties of pistonphones are governed by the pressure leakage and the heat conduction effects. However, the traditional theory for these two effects applies a linear superposition of two independent correction models, which differs somewhat from their coupled effect at low frequencies. In this paper, acoustic properties of pistonphones at low frequencies in full consideration of the pressure leakage and heat conduction effects have been quantitatively studied, and the explicit expression for the generated sound pressure has been derived. With more practical significance, a coupled correction expression for these two effects of pistonphones has been derived. In allusion to two typical pistonphones, the NPL pistonphone and our developed infrasonic pistonphone, comparisons were done for the coupled correction expression and the traditional one, whose results reveal that the traditional one produces maximum insufficient errors of about 0.1 dB above the lower limiting frequencies of two pistonphones, while at lower frequencies, excessive correction errors with an explicit limit of about 3 dB are produced by the traditional expression. The coupled correction expression should be adopted in the absolute pressure calibration of acoustic transducers at low frequencies. Furthermore, it is found that the heat conduction effect takes a limiting deviation of about 3 dB for the pressure amplitude and a small phase difference as frequency decreases, while the pressure leakage effect remarkably drives the pressure amplitude to attenuate and the phase difference tends to be 90° as the frequency decreases. The pressure leakage effect plays a more important role on the low frequency property of pistonphones.

  18. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    PubMed

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz. PMID:27250143

  19. A general low frequency acoustic radiation capability for NASTRAN

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Henderson, F. M.; Schroeder, E. A.; Lipman, R. R.

    1986-01-01

    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads.

  20. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500–2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  1. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500-2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  2. Flat acoustic sources with frequency response correction based on feedback and feed-forward distributed control.

    PubMed

    Ho, Jen-Hsuan; Berkhoff, Arthur P

    2015-04-01

    This paper presents an acoustic source with a small thickness and high bending stiffness. The high bending stiffness is obtained with a sandwich structure in which the face of the sandwich structure internal to the source is perforated to increase the acoustic compliance, thereby leading to increased electroacoustic conversion efficiency. Multiple actuators are used to drive the moving component of the acoustic source. Control of the acoustic resonances and structural resonances is required to obtain an even frequency response. The use of collocated decentralized feedback control based on velocity sensing was found to be ineffective for controlling these resonances due to the destabilizing asymmetric modes caused by the coupling of the internal acoustic cavity and the rigid body vibration of the moving component. Resonances can be controlled by a set of independent combinations of symmetric driving patterns with corresponding velocity feedback controllers such that the fundamental mass-air resonance is effectively controlled, as is the lowest bending mode of the moving component. Finally, a compensation scheme for low frequencies is used which enables a flat frequency response in the range of 30 Hz to 1 kHz with deviations smaller than 3 dB.

  3. A frequency domain linearized Navier-Stokes method including acoustic damping by eddy viscosity using RANS

    NASA Astrophysics Data System (ADS)

    Holmberg, Andreas; Kierkegaard, Axel; Weng, Chenyang

    2015-06-01

    In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic field in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynold's stress, due to the acoustic field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-ε turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is. A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.

  4. On the contribution of sunspots to the observed frequency shifts of solar acoustic modes

    NASA Astrophysics Data System (ADS)

    Santos, A. R. G.; Cunha, M. S.; Avelino, P. P.; Chaplin, W. J.; Campante, T. L.

    2016-09-01

    Activity-related variations in the solar oscillation properties have been known for 30 years. However, the relative importance of the different contributions to the observed variations is not yet fully understood. Our goal is to estimate the relative contribution from sunspots to the observed activity-related variations in the frequencies of the acoustic modes. We use a variational principle to relate the phase differences induced by sunspots on the acoustic waves to the corresponding changes in the frequencies of the global acoustic oscillations. From the sunspot properties (area and latitude as a function of time), we are able to estimate the spot-induced frequency shifts. These are then combined with a smooth frequency shift component, associated with long-term solar-cycle variations, and the results compared with the frequency shifts derived from the Global Oscillation Network Group data. The result of this comparison is consistent with a sunspot contribution to the observed frequency shifts of roughly 30 per cent, with the remaining 70 per cent resulting mostly from a global, non-stochastic variation, possibly related to the changes in the overall magnetic field. Moreover, analysis of the residuals obtained after the subtraction of the model frequency shifts from the observations indicates the presence of a 1.5-yr periodicity in the data in phase with the quasi-biennial variations reported in the literature.

  5. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2013-05-01

    Numerical simulation of chemical reactions inside an isolated spherical bubble of oxygen has been performed for various ambient bubble radii at different frequencies and acoustic amplitudes to study the effects of these two parameters on the range of ambient radius for an active bubble in sonochemical reactions. The employed model combines the dynamic of bubble collapse with the chemical kinetics of single cavitation bubble. Results from this model were compared with some experimental results presented in the literature and good apparent trends between them were observed. The numerical calculations of this study showed that there always exists an optimal ambient bubble radius at which the production of oxidizing species at the end of the bubble collapse attained their upper limit. It was shown that the range of ambient radius for an active bubble increased with increasing acoustic amplitude and decreased with increasing ultrasound frequency. The optimal ambient radius decreased with increasing frequency. Analysis of curves showing optimal ambient radius versus acoustic amplitude for different ultrasonic frequencies indicated that for 200 and 300kHz, the optimal ambient radius increased linearly with increasing acoustic amplitude up to 3atm. However, slight minima of optimal radius were observed for the curves obtained at 500 and 1000kHz. PMID:23187064

  6. Frequency Shift of a Rotating Mass-Imbalance Immersed in an Acoustic Fluid

    SciTech Connect

    Stephen R. Novascone; David M. Weinberg; Michael J. Anderson

    2005-08-01

    In this paper, we describe a physical mechanism that relates a measurable behavior of a vibrating device to the physical properties of a surrounding acoustic medium. The vibrating device under consideration is a rotating imbalance immersed in an unbounded acoustic fluid. It is assumed that the rotating imbalance is driven by an electromagnetic motor excited by a given DC voltage. If nonlinearities are ignored, the steady state operational frequency of such a device is determined by a balance between the applied electromagnetic and opposing frictional torque on the rotating imbalance. If nonlinearities are retained, it is shown that under certain circumstances, the surrounding acoustic medium exerts an additional time-averaged opposing torque on the rotating imbalance that reduces the operational frequency of the device. Consequently, the operational frequency of the device becomes linked to the physical properties of the surrounding medium. Analytical calculations showed that the radiative resistance of an acoustic fluid caused the opposing torque. The shift in frequency is proportional to the radiative resistance and the square of the rotating eccentricity, but inversely proportional the total transducer mass and the damping effect of the DC motor.

  7. Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study

    ERIC Educational Resources Information Center

    Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.

    2012-01-01

    Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…

  8. Enhanced frequency response of a highly transparent PVDF-graphene based thin film acoustic actuator.

    PubMed

    Lee, James S; Shin, Keun-Young; Kim, Chanhoi; Jang, Jyongsik

    2013-12-01

    A high-performance polyvinylidene fluoride (PVDF) based thin film acoustic actuator with chemical vapor deposition (CVD) graphene electrodes was successfully fabricated. Importantly, it showed 60, 19, and 22% enhancement in the bass, middle and treble frequency response, respectively. PMID:24136447

  9. Simulation study of high-frequency energetic particle driven geodesic acoustic mode

    SciTech Connect

    Wang, Hao Ido, Takeshi; Osakabe, Masaki; Todo, Yasushi

    2015-09-15

    High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τ{sub cx}) is sufficiently shorter than the slowing down time (τ{sub s}) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency.

  10. Low-frequency acoustic atomization with oscillatory flow around micropillars in a microfluidic device

    SciTech Connect

    Cheung, Yin Nee E-mail: mtnwong@ntu.edu.sg; Wong, Teck Neng E-mail: mtnwong@ntu.edu.sg; Nguyen, Nam Trung

    2014-10-06

    This letter reports a low frequency acoustic atomization technique with oscillatory extensional flow around micropillars. Large droplets passing through two micropillars are elongated. Small droplets are then produced through the pinch-off process at the spindle-shape ends. As the actuation frequency increases, the droplet size decreases with increasing monodispersity. This method is suitable for in-situ mass production of fine droplets in a multi-phase environment without external pumping. Small particles encapsulation was demonstrated with the current technique.

  11. Imaging Defects in Thin DLC Coatings Using High Frequency Scanning Acoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Fei, Dong; Rebinsky, Douglas A.; Zinin, Pavel; Koehler, Bernd

    2004-02-01

    In this work high frequency scanning acoustic microscopy was employed to nondestructively characterize subsurface defects in chromium containing DLC (Cr-DLC) coatings. Subsurface defects as small as one micron were successfully detected in a flat Cr-DLC coated steel coupon. Depth of the imaged subsurface defects was estimated using a simple geometrical acoustics model. The nature of the subsurface defects was investigated by using FIB/SEM technique. Curved Cr-DLC coated components including a roller and gear tooth were also imaged, and the encountered challenges were addressed.

  12. Visualizing detecting low-frequency underwater acoustic signals by means of optical diffraction.

    PubMed

    Ren, Yao; Miao, Runcai; Su, Xiaoming; Chen, Hua

    2016-03-10

    A novel and simple technique based on the light diffraction effect for visualization of low-frequency underwater acoustic waves (LFUAWs) in real time has been developed in this paper. A cylindrical object has been put on the surface of the water. A low-frequency underwater longitudinal wave can be generated into a water surface transversal capillary wave around the cylinder by our technique. Modulating the phase of a laser beam reflected from a water surface by surface acoustic waves (SAWs) realizes the acousto-optic effect. Then, a steady and visible diffraction pattern is experimentally observed. A physical model of the SAW is established to verify the feasibility of our technique. An analytical expression of wavelength, wave amplitude, and excitation frequency has been derived to study the physical properties of LFUAWs, and it explains the experimental phenomenon very well. As a result, the technique is effective, easy, and practical for visualizing LFUAWs and has significance for applications. PMID:26974797

  13. The effects of probe-tone frequency on the acoustic-reflex growth function.

    PubMed

    Lutolf, John J; O'Malley, Honor; Silman, Shlomo

    2003-01-01

    Acoustic-reflex growth functions (ARGFs) were obtained from 20 normal-hearing listeners. Contralateral acoustic reflexes (ARs) were elicited with pure tones of 2000 Hz. The magnitude of changes in static compliant susceptance (BA) and conductance (GA) were monitored with probe-tone frequencies of 226 Hz, 678 Hz and 1000 Hz. ARGFs were obtained with six combinations of probe-tone frequency/admittance component: 226 Hz BA, 226 Hz GA, 678 Hz BA, 678 Hz GA, 1000 Hz BA, and 1000 Hz GA. Peak conductance (GA) and susceptance (BA) ARs were largest within the 678 Hz GA and 1000 Hz BAARGFs, respectively. Among high-frequency probe tones, the patterns of AR growth were larger and less variable for the 678 Hz GA ARGF and the 1000 Hz BA ARGF as determined by the magnitude of their linear (b1) and quadratic (b2) polynomial coefficients and the value of their squared correlation coefficients (R2).

  14. Low-frequency speech cues and simulated electric-acoustic hearing

    PubMed Central

    Brown, Christopher A.; Bacon, Sid P.

    2009-01-01

    The addition of low-frequency acoustic information to real or simulated electric stimulation (so-called electric-acoustic stimulation or EAS) often results in large improvements in intelligibility, particularly in competing backgrounds. This may reflect the availability of fundamental frequency (F0) information in the acoustic region. The contributions of F0 and the amplitude envelope (as well as voicing) of speech to simulated EAS was examined by replacing the low-frequency speech with a tone that was modulated in frequency to track the F0 of the speech, in amplitude with the envelope of the low-frequency speech, or both. A four-channel vocoder simulated electric hearing. Significant benefit over vocoder alone was observed with the addition of a tone carrying F0 or envelope cues, and both cues combined typically provided significantly more benefit than either alone. The intelligibility improvement over vocoder was between 24 and 57 percentage points, and was unaffected by the presence of a tone carrying these cues from a background talker. These results confirm the importance of the F0 of target speech for EAS (in simulation). They indicate that significant benefit can be provided by a tone carrying F0 and amplitude envelope cues. The results support a glimpsing account of EAS and argue against segregation. PMID:19275323

  15. Time-frequency-aspect analysis and visualization of acoustic scattering from elastic shells submerged in water

    NASA Astrophysics Data System (ADS)

    Yoder, Timothy J.

    2000-05-01

    The solutions for acoustic scattering from objects in separable geometries along with the associated fluid- structure interactions are well established. Closed-form solutions to these problems have either interpretations such as resonance scattering theory, or some limiting situations that provide insight into the physical processes that occur. In contrast, most acoustical scattering problems do not have closed-form solutions. Numerical solutions, like finite and boundary element methods, allow researchers to obtain solutions from scattering problems with more complicated geometries; unfortunately, these methods of solution are limited in that they lack the kind of interpretation that provides insight into the physical processes that occur. It is only through the systematic analysis of the large volume of data produced by numerical solutions that this insight is gained. One way to gain this insight is to analyze the monostatic dependence of echoes in the time-frequency domain. However, traditional three-dimensional graphical analysis of time-frequency signals that vary as a function of a third parameter (the monostatic dependence) does not display all of the signals' information content because two marginals, of this distribution (the time and frequency representations) contain information that is lost in the visual representation of the time-frequency domain. This information is lost because the uncertainty principal prevents simultaneous display of the time and frequency information via a time-frequency transform, and because humans do not possess the innate ability to perform the transforms that extract the information. The problem of how to systematically analyze monostatic scattering data in the time-frequency domain and how to visually display all of the data's information content is overcome by introducing a time-frequency-parameter graphical analysis technique. This technique is applied to farfield acoustic scattering from finite, elastic, cylindrical

  16. Generation of infrasonic waves by low-frequency dust acoustic perturbations in the Earth's lower ionosphere

    NASA Astrophysics Data System (ADS)

    Kopnin, S. I.; Popel, S. I.

    2008-06-01

    It is shown that, during Perseid, Geminid, Orionid, and Leonid meteor showers, the excitation of low-frequency dust acoustic perturbations by modulational instability in the Earth’s ionosphere can lead to the generation of infrasonic waves. The processes accompanying the propagation of these waves are considered, and the possibility of observing the waves from the Earth’s surface is discussed, as well as the possible onset of acoustic gravitational vortex structures in the region of dust acoustic perturbations. The generation of such structures during Perseid, Geminid, Orionid, and Leonid meteor showers can show up as an increase in the intensity of green nightglow by an amount on the order of 10% and can be attributed to the formation of nonlinear (vortex) structures at altitudes of 110-120 km.

  17. Dynamical energy analysis for built-up acoustic systems at high frequencies.

    PubMed

    Chappell, D J; Giani, S; Tanner, G

    2011-09-01

    Standard methods for describing the intensity distribution of mechanical and acoustic wave fields in the high frequency asymptotic limit are often based on flow transport equations. Common techniques are statistical energy analysis, employed mostly in the context of vibro-acoustics, and ray tracing, a popular tool in architectural acoustics. Dynamical energy analysis makes it possible to interpolate between standard statistical energy analysis and full ray tracing, containing both of these methods as limiting cases. In this work a version of dynamical energy analysis based on a Chebyshev basis expansion of the Perron-Frobenius operator governing the ray dynamics is introduced. It is shown that the technique can efficiently deal with multi-component systems overcoming typical geometrical limitations present in statistical energy analysis. Results are compared with state-of-the-art hp-adaptive discontinuous Galerkin finite element simulations.

  18. Generation of infrasonic waves by low-frequency dust acoustic perturbations in the Earth's lower ionosphere

    SciTech Connect

    Kopnin, S. I.; Popel, S. I.

    2008-06-15

    It is shown that, during Perseid, Geminid, Orionid, and Leonid meteor showers, the excitation of low-frequency dust acoustic perturbations by modulational instability in the Earth's ionosphere can lead to the generation of infrasonic waves. The processes accompanying the propagation of these waves are considered, and the possibility of observing the waves from the Earth's surface is discussed, as well as the possible onset of acoustic gravitational vortex structures in the region of dust acoustic perturbations. The generation of such structures during Perseid, Geminid, Orionid, and Leonid meteor showers can show up as an increase in the intensity of green nightglow by an amount on the order of 10% and can be attributed to the formation of nonlinear (vortex) structures at altitudes of 110-120 km.

  19. Monitoring Microbe-Induced Physical Property Changes Using High-Frequency Acoustic Waveform Data

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Brockman, F. J.; Johnson, L. R.

    2002-12-01

    A laboratory investigation was undertaken to determine the effect of microbially generated gas in controlled, saturated sediment columns utilizing a novel technique involving acoustic wave propagation. Specifically, the effect of N2 gas production and the resulting hypothesized plugging of pore throats by gas bubbles was evaluated during denitrification by Pseudomonas stutzeri in pre-sterilized sediment columns. The propagation of high frequency acoustic waves through the sediment columns was used to locate those regions in the column where gas accumulation occurred. Over a period of six weeks, regions of gas accumulation resulted in the attenuation of acoustic wave energies with the decreases in amplitude typically greater than one order of magnitude. The temporal production of N2 gas was evaluated quantitatively using the stable isotope 15N in the form of added Na15NO3. This was done to ascertain the origin (biotic or abiotic) of any produced gas with the results showing a dramatic increase in microbe-respired 15N2. Hydraulic conductivity (Ks) measurements made over the experimental period establish the rate and degree of pore throat blocking with the result being a reduction in Ks by more than 70 percent. The results were compared to a nutrient-amended but non-inoculated control column which showed neither a decrease in acoustic wave amplitudes nor hydraulic conductivity over the same time-period. Final destructive analysis of one column was performed in order to assess the cell density of denitrifying microbes throughout the column. Cell densities were found to be in close agreement with the stoichiometric predictions made prior to initiation of the experiment. Evaluation of the multiple data sets suggests that microbial gas production is both directly detectable using the high frequency acoustic wave approach and capable of significantly altering saturated flow conditions. The acoustic approach may be useful for time-course monitoring of locations of high

  20. [Research on Time-frequency Characteristics of Magneto-acoustic Signal of Different Thickness Medium Based on Wave Summing Method].

    PubMed

    Zhang, Shunqi; Yin, Tao; Ma, Ren; Liu, Zhipeng

    2015-08-01

    Functional imaging method of biological electrical characteristics based on magneto-acoustic effect gives valuable information of tissue in early tumor diagnosis, therein time and frequency characteristics analysis of magneto-acoustic signal is important in image reconstruction. This paper proposes wave summing method based on Green function solution for acoustic source of magneto-acoustic effect. Simulations and analysis under quasi 1D transmission condition are carried out to time and frequency characteristics of magneto-acoustic signal of models with different thickness. Simulation results of magneto-acoustic signal were verified through experiments. Results of the simulation with different thickness showed that time-frequency characteristics of magneto-acoustic signal reflected thickness of sample. Thin sample, which is less than one wavelength of pulse, and thick sample, which is larger than one wavelength, showed different summed waveform and frequency characteristics, due to difference of summing thickness. Experimental results verified theoretical analysis and simulation results. This research has laid a foundation for acoustic source and conductivity reconstruction to the medium with different thickness in magneto-acoustic imaging.

  1. Modulational excitation of low-frequency dust acoustic waves in the Earth's lower ionosphere

    NASA Astrophysics Data System (ADS)

    Kopnin, S. I.; Popel, S. I.; Yu, M. Y.

    2007-04-01

    During the observation of Perseid, Leonid, Gemenid, and Orionid meteor showers, stable low-frequency lines in the frequency range of 20-60 Hz were recorded against the radio-frequency noise background. A physical mechanism for this effect is proposed, and it is established that the effect itself is related to the modulational interaction between electromagnetic and dust acoustic waves. The dynamics of the components of a complex (dusty) ionospheric plasma with dust produced from the evolution of meteoric material is described. The conditions for the existence of dust acoustic waves in the ionosphere are considered, and the waves are shown to dissipate energy mainly in collisions of neutral particles with charged dust grains. The modulational instability of electromagnetic waves in a complex (dusty) ionospheric plasma is analyzed and is found to be driven by the nonlinear Joule heating, the ponderomotive force, and the processes governing dust charging and dynamics. The conditions for the onset of the modulational instability of electromagnetic waves, as well as its growth rate and threshold, are determined for both daytime and nighttime. It is shown that low-frequency perturbations generated in the modulational interaction are related to dust acoustic waves.

  2. Microfluidic pumping through miniaturized channels driven by ultra-high frequency surface acoustic waves

    SciTech Connect

    Shilton, Richie J.; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-18

    Surface acoustic waves (SAWs) are an effective means to pump fluids through microchannel arrays within fully portable systems. The SAW-driven acoustic counterflow pumping process relies on a cascade phenomenon consisting of SAW transmission through the microchannel, SAW-driven fluid atomization, and subsequent coalescence. Here, we investigate miniaturization of device design, and study both SAW transmission through microchannels and the onset of SAW-driven atomization up to the ultra-high-frequency regime. Within the frequency range from 47.8 MHz to 754 MHz, we show that the acoustic power required to initiate SAW atomization remains constant, while transmission through microchannels is most effective when the channel widths w ≳ 10 λ, where λ is the SAW wavelength. By exploiting the enhanced SAW transmission through narrower channels at ultra-high frequencies, we discuss the relevant frequency-dependent length scales and demonstrate the scaling down of internal flow patterns and discuss their impact on device miniaturization strategies.

  3. Modulational excitation of low-frequency dust acoustic waves in the Earth's lower ionosphere

    SciTech Connect

    Kopnin, S. I.; Popel, S. I.; Yu, M. Y.

    2007-04-15

    During the observation of Perseid, Leonid, Gemenid, and Orionid meteor showers, stable low-frequency lines in the frequency range of 20-60 Hz were recorded against the radio-frequency noise background. A physical mechanism for this effect is proposed, and it is established that the effect itself is related to the modulational interaction between electromagnetic and dust acoustic waves. The dynamics of the components of a complex (dusty) ionospheric plasma with dust produced from the evolution of meteoric material is described. The conditions for the existence of dust acoustic waves in the ionosphere are considered, and the waves are shown to dissipate energy mainly in collisions of neutral particles with charged dust grains. The modulational instability of electromagnetic waves in a complex (dusty) ionospheric plasma is analyzed and is found to be driven by the nonlinear Joule heating, the ponderomotive force, and the processes governing dust charging and dynamics. The conditions for the onset of the modulational instability of electromagnetic waves, as well as its growth rate and threshold, are determined for both daytime and nighttime. It is shown that low-frequency perturbations generated in the modulational interaction are related to dust acoustic waves.

  4. Difference-frequency generation in nonlinear scattering of acoustic waves by a rigid sphere.

    PubMed

    Silva, Glauber T; Bandeira, Anderson

    2013-02-01

    In this paper, the partial-wave expansion method is applied to describe the difference-frequency pressure generated in a nonlinear scattering of two acoustic waves with an arbitrary wavefront by means of a rigid sphere. Particularly, the difference-frequency generation is analyzed in the nonlinear scattering with a spherical scatterer involving two intersecting plane waves in the following configurations: collinear, crossing at right angles, and counter-propagating. For the sake of simplicity, the plane waves are assumed to be spatially located in a spherical region which diameter is smaller than the difference-frequency wavelength. Such arrangements can be experimentally accomplished in vibro-acoustography and nonlinear acoustic tomography techniques. It turns out to be that when the sphere radius is of the order of the primary wavelengths, and the downshift ratio (i.e. the ratio between the fundamental frequency and the difference-frequency) is larger than five, difference-frequency generation is mostly due to a nonlinear interaction between the primary scattered waves. The exception to this is the collinear scattering for which the nonlinear interaction of the primary incident waves is also relevant. In addition, the difference-frequency scattered pressure in all scattering configurations decays as r(-1)lnr and 1/r, where r is the radial distance from the scatterer to the observation point.

  5. Confined Mesoscopic Fluid-like Films Analyzed with Frequency Modulation and Acoustic Detection

    NASA Astrophysics Data System (ADS)

    Fernandez Rodriguez, Rodolfo

    Complete understanding of the physics underlying the changes in viscoelasticity, relaxation time, and phase transitions that mesoscopic fluid-like systems undergo at solid-liquid interfaces or under confinement remains one of the major challenges in condensed matter physics. Moreover, studies of confined mesoscopic fluid films are relevant to technological areas like adhesion, wetting processes and nanotribology. This thesis addresses the interaction between two sliding solids interfaces separated by a nanometer sized gap, with emphasis on the role of the mesoscopic fluid film trapped between them. For this purpose we integrated two acoustic techniques, recently introduced by our group, into a sub-nanometer precision and thermal drift corrected scanning probe microscope (SPM): the shear-force/acoustic near-field Microscope (SANM) and the whispering gallery acoustic sensing (WGAS). The SANM monitors the sound waves originating in the probe-layer interaction while the motion of the probe is monitored by the WGAS. Additionally, we decouple the interaction forces by using frequency modulation and measure the local tunneling current to help establish the location of the substrate. Our results show a strong correlation between the elastic component of the probe's interaction and the SANM amplitude, as well as between the phase lag response of the fluid relative to the probe's excitation (represented by the SANM phase) and the onset of the probe-sample contact region. Frequency modulation SANM-WGAS brings a new acoustic sensing mechanism to the challenging characterization of fluid-like physical systems at the nanometer scale.

  6. Characterization of compressed earth blocks using low frequency guided acoustic waves.

    PubMed

    Ben Mansour, Mohamed; Ogam, Erick; Fellah, Z E A; Soukaina Cherif, Amel; Jelidi, Ahmed; Ben Jabrallah, Sadok

    2016-05-01

    The objective of this work was to analyze the influence of compaction pressure on the intrinsic acoustic parameters (porosity, tortuosity, air-flow resistivity, viscous, and thermal characteristic lengths) of compressed earth blocks through their identification by solving an inverse acoustic wave transmission problem. A low frequency acoustic pipe (60-6000 Hz of length 22 m, internal diameter 3.4 cm) was used for the experimental characterization of the samples. The parameters were identified by the minimization of the difference between the transmissions coefficients data obtained in the pipe with that from an analytical interaction model in which the compressed earth blocks were considered as having rigid frames. The viscous and thermal effects in the pores were accounted for by employing the Johnson-Champoux-Allard-Lafarge model. The results obtained by inversion for high-density compressed earth blocks showed some discordance between the model and experiment especially for the high frequency limit of the acoustic characteristics studied. This was as a consequence of applying high compaction pressure rendering them very highly resistive therefore degrading the signal-to-noise ratios of the transmitted waves. The results showed that the airflow resistivity was very sensitive to the degree of the applied compaction pressure used to form the blocks. PMID:27250150

  7. Frequency spectrum of the noise emitted by two interacting cavitation bubbles in strong acoustic fields.

    PubMed

    Jiang, Liang; Liu, Fengbing; Chen, Haosheng; Wang, Jiadao; Chen, Darong

    2012-03-01

    The dynamics and acoustic emission of two interacting cavitation bubbles exposed to strong acoustic fields with a frequency of 515 KHz are investigated numerically in this paper. After comparing the dynamics of a single bubble excited by the given pressure waves, bubbles with ambient radii of 2 and 5 μm were chosen to be studied to discuss the influence of the mutual bubble-bubble interaction on the dynamic behaviors and acoustic emission of the bubbles. The results show that, aside from the external driving pressure waves, the interaction between the bubbles imposes an extra nonlinear effect on the oscillations of the bubbles and that the dynamics of the smaller bubble could be suppressed gradually with the enhancement of this mutual interaction by decreasing the distance between the bubbles. Moreover, the improvement in the oscillation nonlinearity of the bubbles due to the change in the ambient circumstance could readily be observed from the frequency spectra of the bubbles' acoustic emission, which interprets the change by exhibiting an appropriate development of the subharmonics, the ultraharmonics, and the broadband component.

  8. Characterization of compressed earth blocks using low frequency guided acoustic waves.

    PubMed

    Ben Mansour, Mohamed; Ogam, Erick; Fellah, Z E A; Soukaina Cherif, Amel; Jelidi, Ahmed; Ben Jabrallah, Sadok

    2016-05-01

    The objective of this work was to analyze the influence of compaction pressure on the intrinsic acoustic parameters (porosity, tortuosity, air-flow resistivity, viscous, and thermal characteristic lengths) of compressed earth blocks through their identification by solving an inverse acoustic wave transmission problem. A low frequency acoustic pipe (60-6000 Hz of length 22 m, internal diameter 3.4 cm) was used for the experimental characterization of the samples. The parameters were identified by the minimization of the difference between the transmissions coefficients data obtained in the pipe with that from an analytical interaction model in which the compressed earth blocks were considered as having rigid frames. The viscous and thermal effects in the pores were accounted for by employing the Johnson-Champoux-Allard-Lafarge model. The results obtained by inversion for high-density compressed earth blocks showed some discordance between the model and experiment especially for the high frequency limit of the acoustic characteristics studied. This was as a consequence of applying high compaction pressure rendering them very highly resistive therefore degrading the signal-to-noise ratios of the transmitted waves. The results showed that the airflow resistivity was very sensitive to the degree of the applied compaction pressure used to form the blocks.

  9. High-frequency characterization of tissue phantoms using a scanning acoustic microscope (SAM)

    NASA Astrophysics Data System (ADS)

    Farny, Caleb H.; Chklovski, Tara C.; Szabo, T. L.; Roy, Ron A.; Cleveland, Robin O.

    2003-04-01

    A SAM has been developed to measure the acoustic properties of samples. The SAM consists of a wideband (35-75 MHz) ultrasound transducer operating in pulse-echo mode. Waveforms measured from the front and back surfaces of a uniform sample are used to determine the impedance, sound-speed, and attenuation of the sample as a function of frequency. The principle of causality is used to ensure that the sound-speed dispersion and attenuation measurements are consistent. The transducer is scanned over the surface of the sample in a raster scan and a two-dimensional map of the acoustic properties averaged over depth can be obtained. Scans of high-density polyethylene show agreement with previously published properties. The SAM was used to evaluate the high-frequency acoustic properties of a tissue phantom composed of agar, gelatin and silica. The silica content was varied from 2% to 10% and the impact of the silica scattering particles on the acoustic properties was evaluated. The sound-speed showed almost no dependence on silica content but the attenuation at 30 MHz increased from 8.4 to 23.8 dB/cm. This phantom has the potential to be used to mimic the walls of blood vessels. [Work supported by the NSF through the Center for Subsurface Sensing and Imaging Systems.

  10. Development of high frequency focused transducers for single beam acoustic tweezers

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Sheng

    Contactless particle trapping and manipulation have found many potential applications in diverse fields, especially in biological and medical research. Among the various methods, optical tweezers is the most well-known and extensively investigated technique. However, there are some limitations for particle manipulation based on optical tweezers. Due to the conceptual similarity with the optical tweezers and recent advances in high frequency ultrasonic transducer, a single beam acoustic tweezer using high frequency (≥ 20 MHz) focused transducer has recently been considered, and its feasibility was theoretically and experimentally investigated. This dissertation mainly describes the development of high frequency focused ultrasonic transducers for single beam acoustic tweezers applications. Three different types of transducers were fabricated. First, a 60 MHz miniature focused transducer (<1 mm) was made using press-focusing technique. The single beam acoustic trapping experiment was performed to manipulate 15 microm polystyrene microspheres using this transducer. In vitro ultrasonic biomicroscopy imaging on the rabbit eye was also obtained with this device. Second approach is to build a 200 MHz self-focused ZnO transducer by sputtering ZnO film on a curved surface of the aluminum backing material. An individual 10 microm microsphere was effectively manipulated in two dimensions by this type of transducer. Another ultrahigh frequency focused transducer based on silicon lens design has also been developed, where a 330 MHz silicon lens transducer was fabricated and evaluated. Microparticle trapping experiment was carried out to demonstrate that silicon lens transducer can manipulate a single microsphere as small as 5 microm. The realization of single beam acoustic tweezers using high frequency focused transducers can offer wide range of applications in biomedical and chemical sciences including intercellular kinetics studies and cell stimulation. Additionally, we

  11. Generation of terahertz radiation via an electromagnetically induced transparency at ion acoustic frequency region in laser-produced dense plasmas.

    PubMed

    Nakagawa, Makoto; Kodama, Ryosuke; Higashiguchi, Takeshi; Yugami, Noboru

    2009-08-01

    Electromagnetically induced transparency is a well-known quantum phenomena that electromagnetic wave controls the refractive index of medium. It enables us to create a passband for low-frequency electromagnetic wave in a dense plasma even if the plasma is opaque for the electromagnetic wave. This technique can be used to prove the ion acoustic wave because the ion acoustic frequency is lower than the plasma frequency. We have investigated a feasibility of electromagnetic radiation at THz region corresponding to the ion acoustic frequency from a dense plasma. We confirmed that the passband is created at about 7.5 THz corresponding to the ion acoustic frequency in the electron plasma density of 10(21) cm(-3) with a Ti:Sapphire laser with the wavelength of 800 nm and the laser intensity of 10(17) W/cm(2). The estimated radiation power is around 1 MW, which is expected to be useful for nonlinear THz science and applications.

  12. Experimental Study on Effects of Frequency and Mean Pressure on Heat Pumping by Acoustic Oscillation

    NASA Astrophysics Data System (ADS)

    Kawamoto, Akira; Ozawa, Mamoru; Kataoka, Masaki; Takifuji, Tomonari

    Experimental studies were conducted for the fundamental understanding of the thermoacoustic behavior in the simulated resonance-tube refrigerator with special reference to the effect of imposed frequency and mean pressure. The resonance frequency in the case of helium was lower by about 20% than the theoretical prediction, while the experimental value in the case of air was almost the same as the theoretical one. The temperature difference observed along the stack increased with the increase in the amplitude of acoustic pressure, and decreased with the increase in the mean pressure, Based on the simplified model of heat pumping process, the relationship between the temperature variation and the acoustic pressure field was formulated, and thus the characteristic parameter which represents overall heat transfer between gas and stack plates or heat exchangers was obtained.

  13. Multi-input multi-output underwater communications over sparse and frequency modulated acoustic channels.

    PubMed

    Ling, Jun; Zhao, Kexin; Li, Jian; Nordenvaad, Magnus Lundberg

    2011-07-01

    This paper addresses multi-input multi-output (MIMO) communications over sparse acoustic channels suffering from frequency modulations. An extension of the recently introduced SLIM algorithm, which stands for sparse learning via iterative minimization, is presented to estimate the sparse and frequency modulated acoustic channels. The extended algorithm is referred to as generalization of SLIM (GoSLIM). The sparseness is exploited through a hierarchical Bayesian model, and because GoSLIM is user parameter free, it is easy to use in practical applications. Moreover this paper considers channel equalization and symbol detection for various MIMO transmission schemes, including both space-time block coding and spatial multiplexing, under the challenging channel conditions. The effectiveness of the proposed approaches is demonstrated using in-water experimental measurements recently acquired during WHOI09 and ACOMM10 experiments.

  14. Frequency-selective fading statistics of shallow-water acoustic communication channel with a few multipaths

    NASA Astrophysics Data System (ADS)

    Bae, Minja; Park, Jihyun; Kim, Jongju; Xue, Dandan; Park, Kyu-Chil; Yoon, Jong Rak

    2016-07-01

    The bit error rate of an underwater acoustic communication system is related to multipath fading statistics, which determine the signal-to-noise ratio. The amplitude and delay of each path depend on sea surface roughness, propagation medium properties, and source-to-receiver range as a function of frequency. Therefore, received signals will show frequency-dependent fading. A shallow-water acoustic communication channel generally shows a few strong multipaths that interfere with each other and the resulting interference affects the fading statistics model. In this study, frequency-selective fading statistics are modeled on the basis of the phasor representation of the complex path amplitude. The fading statistics distribution is parameterized by the frequency-dependent constructive or destructive interference of multipaths. At a 16 m depth with a muddy bottom, a wave height of 0.2 m, and source-to-receiver ranges of 100 and 400 m, fading statistics tend to show a Rayleigh distribution at a destructive interference frequency, but a Rice distribution at a constructive interference frequency. The theoretical fading statistics well matched the experimental ones.

  15. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  16. The fate of stratospheric potential vorticity cutoffs

    NASA Astrophysics Data System (ADS)

    Portmann, Raphael; Crezee, Bas; Quinting, Julian; Wernli, Heini

    2016-04-01

    Stratospheric cutoffs of potential vorticity (PV) frequently form through non-linear breaking of Rossby waves in mid-latitudes. Through destabilisation of the tropospheric layers beneath, they can trigger convection. Alternatively, through their induced horizontal advection they can produce intense precipitation events near topography and in regions with a background baroclinicity. PV cutoff lifecycles show high variability: their lifetime ranges between 1 and more than 10 days and the end of the lifecycle can occur through diabatic decay - leading to stratosphere-troposphere exchange - or re-absorption by the polar stratospheric reservoir. The relative frequency of these two processes is however unclear, as is the quantitative link between cutoffs and convective and large-scale precipitation. Two case studies are performed by using ECMWF analysis data, backward trajectories and radio soundings to look in detail at the processes involved in the diabatic decay. It is found that latent heating in convective updrafts - and the associated cross-isentropic transport of low PV air - largely explains the diabatic decay of the cutoffs. Using a tracking algorithm we produce an ERA-Interim cutoff climatology that provides information about the statistics of the cutoff lifetime and the relative frequency of stratospheric re-absorption versus diabatic decay. In addition, we track atmospheric stability and total column water beneath the cutoffs in order to investigate why certain cutoffs decay faster than others. The results contribute to a better understanding of the lifecycle of PV cutoffs and a particular process of stratosphere-troposphere exchange.

  17. Comparing surficial sediments maps interpreted by experts with dual-frequency acoustic backscatter on the Scotian Shelf, Canada

    NASA Astrophysics Data System (ADS)

    Cuff, Andrew; Anderson, John T.; Devillers, Rodolphe

    2015-11-01

    Understanding seabed properties is increasingly important to support policy in the marine environment. Such knowledge can be gained from diverse methods, ranging from more traditional expert-interpretations of acoustic and ground-truth data, to maps resulting from fully quantitative analyses of acoustic data. This study directly compares surficial geology maps created through expert-interpretations to near-nadir acoustic backscatter data from two frequencies (38 kHz and 120 kHz) collected using single beam echosounders (SBES) for two 5×1 km study areas on the Scotian Shelf, Canada. Statistical methods were used to analyze and classify both single and dual-frequency acoustic backscatter for comparisons. In particular, spatial scaling of acoustic backscatter responses and acoustic classes created using acoustic seabed classification (ASC) is compared between frequencies and to interpreted sediment units (ISUs) which make up surficial geology maps produced by experts. Seabed morphology layers were included in an ASC approach to reflect the morphological components included in the interpreted geological maps. Results confirmed that higher frequencies and coarser grain sizes generally produced higher backscatter, while more heterogeneous and rougher seabeds produced variable backscatter. Differing acoustic responses within similar substrate units suggest fundamental seabed variations not reflected in the geological interpretations. Spatial scaling of sand and gravel substrates from 38 kHz frequency were closer than the 120 kHz frequency to the spatial scaling of the interpreted geological map. Variable grain size in the sediment volume and surface morphology are both presented as possible reasons for frequency differences. While both frequencies had similar general responses, differences in frequency responses of backscatter occurred at scales of tens to hundreds of meters. Results presented here emphasize the importance of multi-scale seabed mapping and additional

  18. Microstructure Imaging Using Frequency Spectrum Spatially Resolved Acoustic Spectroscopy F-Sras

    NASA Astrophysics Data System (ADS)

    Sharples, S. D.; Li, W.; Clark, M.; Somekh, M. G.

    2010-02-01

    Material microstructure can have a profound effect on the mechanical properties of a component, such as strength and resistance to creep and fatigue. SRAS—spatially resolved acoustic spectroscopy—is a laser ultrasonic technique which can image microstructure using highly localized surface acoustic wave (SAW) velocity as a contrast mechanism, as this is sensitive to crystallographic orientation. The technique is noncontact, nondestructive, rapid, can be used on large components, and is highly tolerant of acoustic aberrations. Previously, the SRAS technique has been demonstrated using a fixed frequency excitation laser and a variable grating period (к-vector) to determine the most efficiently generated SAWs, and hence the velocity. Here, we demonstrate an implementation which uses a fixed grating period with a broadband laser excitation source. The velocity is determined by analyzing the measured frequency spectrum. Experimental results using this "frequency spectrum SRAS" (f-SRAS) method are presented. Images of microstructure on an industrially relevant material are compared to those obtained using the previous SRAS method ("k-SRAS"), excellent agreement is observed. Moreover, f-SRAS is much simpler and potentially much more rapid than k-SRAS as the velocity can be determined at each sample point in one single laser shot, rather than scanning the grating period.

  19. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearinga

    PubMed Central

    Carroll, Jeff; Tiaden, Stephanie; Zeng, Fan-Gang

    2011-01-01

    Cochlear implant (CI) users have been shown to benefit from residual low-frequency hearing, specifically in pitch related tasks. It remains unclear whether this benefit is dependent on fundamental frequency (F0) or other acoustic cues. Three experiments were conducted to determine the role of F0, as well as its frequency modulated (FM) and amplitude modulated (AM) components, in speech recognition with a competing voice. In simulated CI listeners, the signal-to-noise ratio was varied to estimate the 50% correct response. Simulation results showed that the F0 cue contributes to a significant proportion of the benefit seen with combined acoustic and electric hearing, and additionally that this benefit is due to the FM rather than the AM component. In actual CI users, sentence recognition scores were collected with either the full F0 cue containing both the FM and AM components or the 500-Hz low-pass speech cue containing the F0 and additional harmonics. The F0 cue provided a benefit similar to the low-pass cue for speech in noise, but not in quiet. Poorer CI users benefited more from the F0 cue than better users. These findings suggest that F0 is critical to improving speech perception in noise in combined acoustic and electric hearing. PMID:21973360

  20. Differential Influence of Frequency, Timing, and Intensity Cues in a Complex Acoustic Categorization Task

    PubMed Central

    Nagel, Katherine I.; McLendon, Helen M.

    2010-01-01

    Songbirds, which, like humans, learn complex vocalizations, provide an excellent model for the study of acoustic pattern recognition. Here we examined the role of three basic acoustic parameters in an ethologically relevant categorization task. Female zebra finches were first trained to classify songs as belonging to one of two males and then asked whether they could generalize this knowledge to songs systematically altered with respect to frequency, timing, or intensity. Birds' performance on song categorization fell off rapidly when songs were altered in frequency or intensity, but they generalized well to songs that were changed in duration by >25%. Birds were not deaf to timing changes, however; they detected these tempo alterations when asked to discriminate between the same song played back at two different speeds. In addition, when birds were retrained with songs at many intensities, they could correctly categorize songs over a wide range of volumes. Thus although they can detect all these cues, birds attend less to tempo than to frequency or intensity cues during song categorization. These results are unexpected for several reasons: zebra finches normally encounter a wide range of song volumes but most failed to generalize across volumes in this task; males produce only slight variations in tempo, but females generalized widely over changes in song duration; and all three acoustic parameters are critical for auditory neurons. Thus behavioral data place surprising constraints on the relationship between previous experience, behavioral task, neural responses, and perception. We discuss implications for models of auditory pattern recognition. PMID:20610781

  1. Identification of Damaged Wheat Kernels and Cracked-Shell Hazelnuts with Impact Acoustics Time-Frequency Patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with ...

  2. Surface acoustic wave opto-mechanical oscillator and frequency comb generator

    NASA Astrophysics Data System (ADS)

    Savchenkov, A. A.; Matsko, A. B.; Ilchenko, V. S.; Seidel, D.; Maleki, L.

    2011-09-01

    We report on realization of an efficient triply resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyperparametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb by observing the modulation of the light escaping the resonator.

  3. Acoustic analysis of the frequency-dependent coupling between the frog's ears.

    PubMed

    Shofner, William P

    2015-09-01

    The ears of anurans are coupled through the Eustachian tubes and mouth cavity. The degree of coupling varies with frequency showing a bandpass characteristic, but the characteristics differ between empirically measured data based on auditory nerve responses and tympanic membrane vibration. In the present study, the coupling was modeled acoustically as a tube connected with a side branch. This tube corresponds to the Eustachian tubes, whereas the side branch corresponds to the mouth cavity and nares. The analysis accounts for the frequency dependency shown by the empirical data and reconciles the differences observed between the coupling as measured by tympanic membrane vibration and auditory nerve responses.

  4. A high-frequency warm shallow water acoustic communications channel model and measurements.

    PubMed

    Chitre, Mandar

    2007-11-01

    Underwater acoustic communication is a core enabling technology with applications in ocean monitoring using remote sensors and autonomous underwater vehicles. One of the more challenging underwater acoustic communication channels is the medium-range very shallow warm-water channel, common in tropical coastal regions. This channel exhibits two key features-extensive time-varying multipath and high levels of non-Gaussian ambient noise due to snapping shrimp-both of which limit the performance of traditional communication techniques. A good understanding of the communications channel is key to the design of communication systems. It aids in the development of signal processing techniques as well as in the testing of the techniques via simulation. In this article, a physics-based channel model for the very shallow warm-water acoustic channel at high frequencies is developed, which are of interest to medium-range communication system developers. The model is based on ray acoustics and includes time-varying statistical effects as well as non-Gaussian ambient noise statistics observed during channel studies. The model is calibrated and its accuracy validated using measurements made at sea.

  5. On the location of frequencies of maximum acoustic-to-seismic coupling

    SciTech Connect

    Sabatier, J.M.; Bass, H.E.; Elliott, G.R.

    1986-10-01

    Measurements of the acoustic-to-seismic transfer function (ratio of the normal soil particle velocity at a depth d to the acoustic pressure at the surface) for outdoor ground surfaces quite typically reveal a series of maxima and minima. In a publication (Sabatier et al., J. Acoust. Soc. Am. 80, 646--649 (1986)), the location and magnitude of these maxima are measured and predicted for several outdoor ground surfaces using a layered poroelastic model of the ground surface. In this paper, the seismic transfer function for a desert site is compared to the seismic transfer function for holes dug in the desert floor which were filled with pumice (volcanic rock). The hole geometry was rectangular and the hole depths varied from 0.25--2.0 m. The p- and s-wave speeds, densities, porosities, and flow resistivities for the desert floor and pumice were all measured. By varying the hole depth and the fill material, the maxima in the seismic transfer function can be shifted in frequency and the locations of the maxima compare reasonably with that of a hard-backed layer calculation. The area or extent of the acoustic-to-seismic coupling for pumice was determined to be less than 1 m/sup 2/.

  6. Applications of swept-frequency acoustic interferometer for nonintrusive detection and identification of chemical warfare compounds

    SciTech Connect

    Sinha, D.N.; Springer, K.; Han, W.; Lizon, D.; Kogan, S.

    1997-12-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a nonintrusive liquid characterization technique developed specifically for detecting and identifying chemical warfare (CW) compounds inside sealed munitions. The SFAI technique can rapidly (less than 20 seconds) and accurately determine sound speed and sound attenuation of a liquid inside a container over a wide frequency range (1 kHz-15 MHz). From the frequency-dependent sound attenuation measurement, liquid density is determined. These three physical properties are used to uniquely identify the CW compounds. In addition, various chemical relaxation processes in liquids and particle size distribution in emulsions can also be determined from the frequency-dependent attenuation measurement. The SFAI instrument is battery-operated and highly portable (< 6 lb.). The instrument has many potential application in industry ranging from sensitive detection (ppm level) of contamination to process control. The theory of the technique will be described and examples of several chemical industry applications will be presented.

  7. Film resonance on acoustic wave devices: the roles of frequency and contacting fluid.

    PubMed

    Lagier, C M; Efimov, I; Hillman, A R

    2005-01-01

    The dynamics of composite films of polypyrrole and sodium poly(styrenesulfonate) were studied by means of the electrochemical quartz crystal microbalance. Admittance spectra recorded after successive cycles of electrodeposition showed dramatic changes, which were interpreted in terms of acoustic resonance of the film. Reports of this phenomenon are rare and unquantified, presenting a unique opportunity for the first test of a recently reported theoretical model. The model, valid at frequencies in the vicinity of film resonance, is represented in terms of an equivalent electrical circuit with parallel LCR elements in the motional arm of the resonator. Since it was developed for viscoelastic films exposed to a vacuum, this provides an opportunity to test the importance of the fluid necessarily present in in situ electrochemical experiments. Measurements at the fundamental frequency and at higher harmonics reveal the sensitivity of film resonance effects to frequency and provide insights into film dynamics through the variation of shear moduli with time scale (frequency).

  8. Stability of Low-Frequency Residual Hearing in Patients Who Are Candidates for Combined Acoustic Plus Electric Hearing

    ERIC Educational Resources Information Center

    Yao, Wai Na; Turner, Christopher W.; Gantz, Bruce J.

    2006-01-01

    The purpose of this study was to investigate the stability over time of low-frequency auditory thresholds to better determine if the new technique of using a short-electrode cochlear implant that preserves residual low-frequency acoustic hearing can be a long-term solution for those with severe-to-profound hearing loss at high frequencies. The…

  9. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  10. Source implementation to eliminate low-frequency artifacts in finite difference time domain room acoustic simulation.

    PubMed

    Jeong, Hyok; Lam, Yiu Wai

    2012-01-01

    The finite difference time domain (FDTD) method is a numerical technique that is straight forward to implement for the simulation of acoustic propagation. For room acoustics applications, the implementation of efficient source excitation and frequency dependent boundary conditions on arbitrary geometry can be seen as two of the most significant problems. This paper deals with the source implementation problem. Among existing source implementation methods, the hard source implementation is the simplest and computationally most efficient. Unfortunately, it generates a large low-frequency modulation in the measured time response. This paper presents a detailed investigation into these side effects. Surprisingly, some of these side effects are found to exist even if a transparent source implementation is used. By combing a time limited approach with a class of more natural source pulse function, this paper develops a source implementation method in FDTD that is as simple and computationally as efficient as a hard source implementation and yet capable of producing results that are virtually the same as a true transparent source. It is believed that the source implementation method developed in this paper will provide an improvement to the practical usability of the FDTD method for room acoustic simulation. PMID:22280589

  11. Evidence of high-frequency acoustic emissions from the white-beaked dolphin (Lagenorhynchus albirostris).

    PubMed

    Mitson, R B; Morris, R J

    1988-02-01

    Recordings of the signals from a school of white-beaked dolphins show that the frequency of their acoustic emissions extends to at least 305 kHz. These signals were detected by a sector scanning sonar used as a passive listening device of high bearing and time resolution. The records contain three types of signal, one of high intensity, one of a variable high repetition rate, and another showing a time-varying effect. Acoustic signals radiated by dolphins have been recorded and studied over a long period of time by many investigators. The purpose of this letter is to report evidence that acoustic emissions from white-beaked dolphins have significant energy at frequencies around 305 kHz, about one octave higher than previously observed. The observations discussed here were made aboard the fisheries research vessel CLIONE in the Wellbank flat area of the southern North Sea on 13 June 1970 between 1040 and 1110 h. When the dolphin signals were observed, the transmitter of the sector-scanning sonar in use was turned off, and the system was utilized as a passive listening device of high bearing and time resolution.

  12. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    PubMed Central

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-01-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity. PMID:26843283

  13. Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Hou, Hong

    2016-06-01

    This paper investigates ultralow frequency acoustic properties and energy recovery of tetragonal folding beam phononic crystal (TFBPC) and its complementary structure. The dispersion curve relationships, transmission spectra and displacement fields of the eigenmodes are studied with FEA in detail. Compared with the traditional three layer phononic crystal (PC) structure, this structure proposed in this paper not only unfold bandgaps (BGs) in lower frequency range (below 300 Hz), but also has lighter weight because of beam structural cracks. We analyze the relevant physical mechanism behind this phenomenon, and discuss the effects of the tetragonal folding beam geometric parameters on band structure maps. FEM proves that the multi-cell structures with different arrangements have different acoustic BGs when compared with single cell structure. Harmonic frequency response and piezoelectric properties of TFBPC are specifically analyzed. The results confirm that this structure does have the recovery ability for low frequency vibration energy in environment. These conclusions in this paper could be indispensable to PC practical applications such as BG tuning and could be applied in portable devices, wireless sensor, micro-electro mechanical systems which can recycle energy from vibration environment as its own energy supply.

  14. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  15. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  16. Tuning the acoustic frequency of a gold nanodisk through its adhesion layer

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Shun; Wen, Fangfang; Chakraborty, Debadi; Su, Man-Nung; Zhang, Yue; Shuang, Bo; Nordlander, Peter; Sader, John E.; Halas, Naomi J.; Link, Stephan

    2015-05-01

    To fabricate robust metallic nanostructures with top-down patterning methods such as electron-beam lithography, an initial nanometer-scale layer of a second metal is deposited to promote adhesion of the metal of interest. However, how this nanoscale layer affects the mechanical properties of the nanostructure and how adhesion layer thickness controls the binding strength to the substrate are still open questions. Here we use ultrafast laser pulses to impulsively launch acoustic phonons in single gold nanodisks with variable titanium layer thicknesses, and observe an increase in phonon frequencies as a thicker adhesion layer facilitates stronger binding to the glass substrate. In addition to an all-optical interrogation of nanoscale mechanical properties, our results show that the adhesion layer can be used to controllably modify the acoustic phonon modes of a gold nanodisk. This direct coupling between optically excited plasmon modes and phonon modes can be exploited for a variety of emerging optomechanical applications.

  17. High Frequency Acoustic Response Characterization and Analysis of the Deep Throttling Common Extensible Cryogenic Engine

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.

    2011-01-01

    The Common Extensive Cryogenic Engine program demonstrated the operation of a deep throttling engine design. The program, spanning five years from August 2005 to July 2010, funded testing through four separate engine demonstration test series. Along with successful completion of multiple objectives, a discrete response of approximately 4000 Hz was discovered and explored throughout the program. The typical low-amplitude acoustic response was evident in the chamber measurement through almost every operating condition; however, at certain off-nominal operating conditions, the response became discrete with higher amplitude. This paper summarizes the data reduction, characterization, and analysis of the 4,000 Hz response for the entire program duration, using the large amount of data collected. Upon first encountering the response, new objectives and instrumentation were incorporated in future test series to specifically collect 4,000 Hz data. The 4,000 Hz response was identified as being related to the first tangential acoustic mode by means of frequency estimation and spatial decomposition. The latter approach showed that the effective node line of the mode was aligned with the manifold propellant inlets with standing waves and quasi-standing waves present at various times. Contour maps that contain instantaneous frequency and amplitude trackings of the response were generated as a significant improvement to historical manual approaches of data reduction presentation. Signal analysis and dynamic data reduction also uncovered several other features of the response including a stable limit cycle, the progressive engagement of subsequent harmonics, the U-shaped time history, an intermittent response near the test-based neutral stability region, other acoustic modes, and indications of modulation with a separate subsynchronous response. Although no engine damage related to the acoustic mode was noted, the peak-to-peak fluctuating pressure amplitude achieved 12.1% of the

  18. Carrier frequency offset estimation for an acoustic-electric channel using 16 QAM modulation

    NASA Astrophysics Data System (ADS)

    Cunningham, Michael T.; Anderson, Leonard A.; Wilt, Kyle R.; Chakraborty, Soumya; Saulnier, Gary J.; Scarton, Henry A.

    2016-05-01

    Acoustic-electric channels can be used to send data through metallic barriers, enabling communications where electromagnetic signals are ineffective. This paper considers an acoustic-electric channel that is formed by mounting piezoelectric transducers on metallic barriers that are separated by a thin water layer. The transducers are coupled to the barriers using epoxy and the barriers are positioned to axially-align the PZTs, maximizing energy transfer efficiency. The electrical signals are converted by the transmitting transducers into acoustic waves, which propagate through the elastic walls and water medium to the receiving transducers. The reverberation of the acoustic signals in these channels can produce multipath distortion with a significant delay spread that introduces inter-symbol interference (ISI) into the received signal. While the multipath effects can be severe, the channel does not change rapidly which makes equalization easier. Here we implement a 16-QAM system on this channel, including a method for obtaining accurate carrier frequency offset (CFO) estimates in the presence of the quasi-static multipath propagation. A raised-power approach is considered but found to suffer from excessive data noise resulting from the ISI. An alternative approach that utilizes a pilot tone burst at the start of a data packet is used for CFO estimation and found to be effective. The autocorrelation method is used to estimate the frequency of the received burst. A real-time prototype of the 16 QAM system that uses a Texas Instruments MSP430 microcontroller-based transmitter and a personal computer-based receiver is presented along with performance results.

  19. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  20. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  1. The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Zhang, Yuning; Li, Shengcai

    2016-03-01

    The secondary Bjerknes force is one of the essential mechanisms of mutual interactions between bubbles oscillating in a sound field. The dual-frequency acoustic excitation has been applied in several fields such as sonochemistry, biomedicine and material engineering. In this paper, the secondary Bjerknes force under dual-frequency excitation is investigated both analytically and numerically within a large parameter zone. The unique characteristics (i.e., the complicated patterns of the parameter zone for sign change and the combination resonances) of the secondary Bjerknes force under dual-frequency excitation are revealed. Moreover, the influence of several parameters (e.g., the pressure amplitude, the bubble distance and the phase difference between sound waves) on the secondary Bjerknes force is also investigated numerically.

  2. The mass load effect on the resonant acoustic frequencies of colloidal semiconductor nanoplatelets.

    PubMed

    Girard, Adrien; Saviot, Lucien; Pedetti, Silvia; Tessier, Mickaël D; Margueritat, Jérémie; Gehan, Hélène; Mahler, Benoit; Dubertret, Benoit; Mermet, Alain

    2016-07-01

    Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances. PMID:27334524

  3. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    NASA Technical Reports Server (NTRS)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  4. Swept frequency acoustic interferometry technique for chemical weapons verification and monitoring

    SciTech Connect

    Sinha, D.N.; Anthony, B.W.; Lizon, D.C.

    1995-03-01

    Nondestructive evaluation (NDE) techniques are important for rapid on-site verification and monitoring of chemical munitions, such as artillery shells and bulk containers. Present NDE techniques provide only limited characterizations of such munitions. This paper describes the development of a novel noninvasive technique, swept-frequency acoustic interferometry (SFAI), that significantly enhances the capability of munitions characterizations. The SFAI technique allows very accurate and simultaneous determination of sound velocity and attenuation of chemical agents over a large frequency range inside artillery shells, in addition to determining agent density. The frequency-dependent sound velocity and attenuation can, in principle, provide molecular relaxation properties of the chemical agent. The same instrument also enables a direct fill-level measurement in bulk containers. Industrial and other applications of this general-purpose technique are also discussed.

  5. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    NASA Astrophysics Data System (ADS)

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.

  6. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-01-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with the low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for design of intravascular acoustic angiography transducers. PMID:25856384

  7. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography.

    PubMed

    Ma, Jianguo; Martin, K Heath; Li, Yang; Dayton, Paul A; Shung, K Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers. PMID:25856384

  8. The mass load effect on the resonant acoustic frequencies of colloidal semiconductor nanoplatelets

    NASA Astrophysics Data System (ADS)

    Girard, Adrien; Saviot, Lucien; Pedetti, Silvia; Tessier, Mickaël D.; Margueritat, Jérémie; Gehan, Hélène; Mahler, Benoit; Dubertret, Benoit; Mermet, Alain

    2016-07-01

    Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances.Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR07383A

  9. Low frequency finite element models of the acoustical behavior of earmuffs.

    PubMed

    Boyer, Sylvain; Doutres, Olivier; Sgard, Franck; Laville, Frédéric; Boutin, Jérôme

    2015-05-01

    This paper compares different approaches to model the vibroacoustic behavior of earmuffs at low frequency and investigates their accuracy by comparison with objective insertion loss measurements recently carried out by Boyer et al. [(2014). Appl. Acoust. 83, 76-85]. Two models based on the finite element (FE) method where the cushion is either modeled as a spring foundation (SF) or as an equivalent solid (ES), and the well-known lumped parameters model (LPM) are investigated. Modeling results show that: (i) all modeling strategies are in good agreement with measurements, providing that the characterization of the cushion equivalent mechanical properties are performed with great care and as close as possible to in situ loading, boundary, and environmental conditions and that the frequency dependence of the mechanical properties is taken into account, (ii) the LPM is the most simple modeling strategy, but the air volume enclosed by the earmuff must be correctly estimated, which is not as straightforward as it may seem, (iii) similar results are obtained with the SF and the ES FE-models of the cushion, but the SF should be preferred to predict the earmuff acoustic response at low frequency since it requires less parameters and a less complex characterization procedure. PMID:25994693

  10. Laboratory measurements of high-frequency, acoustic broadband backscattering from sea ice and crude oil.

    PubMed

    Bassett, Christopher; Lavery, Andone C; Maksym, Ted; Wilkinson, Jeremy P

    2015-01-01

    Recent decreases in summer sea ice cover are spurring interest in hydrocarbon extraction and shipping in Arctic waters, increasing the risk of an oil spill in ice covered waters. With advances in unmanned vehicle operation, there is an interest in identifying techniques for remote, underwater detection of oil spills from below. High-frequency (200-565 kHz), broadband acoustic scattering data demonstrate that oil can be detected and quantified under laboratory grown sea ice and may be of use in natural settings. A simple scattering model based on the reflection coefficients from the interfaces agrees well with the data. PMID:25618096

  11. Direct observation of low frequency confined acoustic phonons in silver nanoparticles: Terahertz time domain spectroscopy.

    PubMed

    Kumar, Sunil; Kamaraju, N; Karthikeyan, B; Tondusson, M; Freysz, E; Sood, A K

    2010-07-01

    Terahertz time domain spectroscopy has been used to study low frequency confined acoustic phonons of silver nanoparticles embedded in poly(vinyl alcohol) matrix in the spectral range of 0.1-2.5 THz. The real and imaginary parts of the dielectric function show two bands at 0.60 and 2.12 THz attributed to the spheroidal and toroidal modes of silver nanoparticles, thus demonstrating the usefulness of terahertz time domain spectroscopy as a complementary technique to Raman spectroscopy in characterizing the nanoparticles.

  12. Aero-acoustics source separation with sparsity inducing priors in the frequency domain

    NASA Astrophysics Data System (ADS)

    Schwander, Olivier; Picheral, José; Gac, Nicolas; Mohammad-Djafari, Ali; Blacodon, Daniel

    2015-01-01

    The characterization of acoustic sources is of great interest in many industrial applications, in particular for the aeronautic or automotive industry for the development of new products. While localization of sources using observations from a wind tunnel is a well-known subject, the characterization and separation of the sources still needs to be explored. We present here a Bayesian approach for sources separation. Two prior modeling of the sources are considered: a sparsity inducing prior in the frequency domain and an autoregressive model in the time domain. The proposed methods are evaluated on synthetic data simulating noise sources emitting from an airfoil inside a wind tunnel.

  13. Digital Stroboscopic Holography Setup for Deformation Measurement at Both Quasi-Static and Acoustic Frequencies

    NASA Astrophysics Data System (ADS)

    De Greef, Daniël; Soons, Joris; Dirckx, Joris J. J.

    2014-10-01

    A setup for digital stroboscopic holography that combines the advantages of full-field digital holographic interferometry with a high temporal resolution is presented. The setup can be used to identify and visualize complicated vibrational patterns with nanometer amplitudes, ranging from quasi-static to high frequency vibrations. By using a high-energy pulsed laser, single-shot holograms can be recorded and stability issues are avoided. Results are presented for an acoustically stimulated rubber membrane and the technique is evaluated by means of an accuracy and a repeatability test. The presented technique offers wide application possibilities in areas such as biomechanics and industrial testing.

  14. Determination of acoustic properties of thin polymer films utilizing the frequency dependence of the reflection coefficient of ultrasound

    NASA Astrophysics Data System (ADS)

    Tohmyoh, Hironori; Sakamoto, Yuhei

    2015-11-01

    This paper reports on a technique to measure the acoustic properties of a thin polymer film utilizing the frequency dependence of the reflection coefficient of ultrasound reflected back from a system comprising a reflection plate, the film, and a material that covers the film. The frequency components of the echo reflected from the back of the plate, where the film is attached, take their minimum values at the resonant frequency, and from these frequency characteristics, the acoustic impedance, sound velocity, and the density of the film can be determined. We applied this technique to characterize an ion exchange membrane, which has high water absorbability, and successfully determined the acoustic properties of the membrane without getting it wet.

  15. A Fisheries Application of a Dual-Frequency Identification Sonar Acoustic Camera

    SciTech Connect

    Moursund, Russell A.; Carlson, Thomas J.; Peters, Rock D.

    2003-06-01

    The uses of an acoustic camera in fish passage research at hydropower facilities are being explored by the U.S. Army Corps of Engineers. The Dual-Frequency Identification Sonar (DIDSON) is a high-resolution imaging sonar that obtains near video-quality images for the identification of objects underwater. Developed originally for the Navy by the University of Washington?s Applied Physics Laboratory, it bridges the gap between existing fisheries assessment sonar and optical systems. Traditional fisheries assessment sonars detect targets at long ranges but cannot record the shape of targets. The images within 12 m of this acoustic camera are so clear that one can see fish undulating as they swim and can tell the head from the tail in otherwise zero-visibility water. In the 1.8 MHz high-frequency mode, this system is composed of 96 beams over a 29-degree field of view. This high resolution and a fast frame rate allow the acoustic camera to produce near video-quality images of objects through time. This technology redefines many of the traditional limitations of sonar for fisheries and aquatic ecology. Images can be taken of fish in confined spaces, close to structural or surface boundaries, and in the presence of entrained air. The targets themselves can be visualized in real time. The DIDSON can be used where conventional underwater cameras would be limited in sampling range to < 1 m by low light levels and high turbidity, and where traditional sonar would be limited by the confined sample volume. Results of recent testing at The Dalles Dam, on the lower Columbia River in Oregon, USA, are shown.

  16. Ultra-thin smart acoustic metasurface for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xiao, Yong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2016-04-01

    Insulating low-frequency sound is a conventional challenge due to the high areal mass required by mass law. In this letter, we propose a smart acoustic metasurface consisting of an ultra-thin aluminum foil bonded with piezoelectric resonators. Numerical and experimental results show that the metasurface can break the conventional mass law of sound insulation by 30 dB in the low frequency regime (<1000 Hz), with an ultra-light areal mass density (<1.6 kg/m2) and an ultra-thin thickness (1000 times smaller than the operating wavelength). The underlying physical mechanism of such extraordinary sound insulation performance is attributed to the infinite effective dynamic mass density produced by the smart resonators. It is also demonstrated that the excellent sound insulation property can be conveniently tuned by simply adjusting the external circuits instead of modifying the structure of the metasurface.

  17. Acoustic attenuation logging using centroid frequency shift and amplitude ratio methods: A numerical study

    SciTech Connect

    Quan, Y.; Harris, J.M.; Chen, X.

    1994-12-31

    The centroid frequency shift method is proposed to estimate seismic attenuation from full waveform acoustic logs. This approach along with the amplitude ratio method is applied to investigate the attenuation properties of the P head wave in fluid-filled boreholes. The generalized reflection and transmission coefficients method is used to perform forward modeling. The authors suggest an empirical formula to describe the frequency-dependent geometrical spreading of the P-wave in a borehole. They simulate a more realistic borehole by including a mudcake and an invaded zone which are modeled by a large number of radially symmetric thin layers. The numerical tests show that this invaded zone exhibits very strong influence on the attenuation measurement.

  18. Separation of fine particles at different frequencies and HRTs using acoustic standing waves.

    PubMed

    Ahn, Kwang Ho; Ahn, Jaehwan; Kim, I-Tae; Kang, Sungwon; Kim, Seoggu; Chu, Kyoung Hoon; Ko, Kwang Baik

    2015-01-01

    The objective of this study was to evaluate the separation of fine particles using several frequencies and hydraulic retention times (HRTs) in an acoustic standing wave reactor without any separate cooling devices. The acoustic standing wave reactor consisted of sufficient space (over 100 mm) between the transducer and reflector, resulting in a slight increase in temperature. However, the increase in temperature did not affect the formation of standing waves and particle aggregations in our experiments. The results indicated that the turbidity removal efficiencies of fine kaolin particles, when using frequencies of 580 kHz, 1, and 2 MHz, increased with longer standing wave operation time. Especially, the turbidity removal efficiencies for 1 and 2 MHz were higher than that for 580 kHz because the wavelength (λ) of the 580 kHz wave was longer than that of the 1 and 2 MHz waves. Furthermore, the turbidity removal efficiency of kaolin in a continuous reactor improved with increasing hydraulic retention times (HRTs), and the reactor was more effective with 1 and 2 MHz used in parallel instead of 1 and 2 MHz used individually under the same HRT conditions with the entrance length (EL) having no adverse effect.

  19. Frequency-space prediction filtering for acoustic clutter and random noise attenuation in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Shin, Junseob; Huang, Lianjie

    2016-04-01

    Frequency-space prediction filtering (FXPF), also known as FX deconvolution, is a technique originally developed for random noise attenuation in seismic imaging. FXPF attempts to reduce random noise in seismic data by modeling only real signals that appear as linear or quasilinear events in the aperture domain. In medical ultrasound imaging, channel radio frequency (RF) signals from the main lobe appear as horizontal events after receive delays are applied while acoustic clutter signals from off-axis scatterers and electronic noise do not. Therefore, FXPF is suitable for preserving only the main-lobe signals and attenuating the unwanted contributions from clutter and random noise in medical ultrasound imaging. We adapt FXPF to ultrasound imaging, and evaluate its performance using simulated data sets from a point target and an anechoic cyst. Our simulation results show that using only 5 iterations of FXPF achieves contrast-to-noise ratio (CNR) improvements of 67 % in a simulated noise-free anechoic cyst and 228 % in a simulated anechoic cyst contaminated with random noise of 15 dB signal-to-noise ratio (SNR). Our findings suggest that ultrasound imaging with FXPF attenuates contributions from both acoustic clutter and random noise and therefore, FXPF has great potential to improve ultrasound image contrast for better visualization of important anatomical structures and detection of diseased conditions.

  20. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  1. Properties of acoustic sources in the Sun

    NASA Technical Reports Server (NTRS)

    Kumar, Pawan

    1994-01-01

    The power spectrum of solar acoustic oscillations shows peaks extending out to frequencies much greater than the acoustic cutoff frequency of approximately 5.3 mHz, where waves are no longer trapped. Kumar & Lu (1991) proposed that these peaks arise from the interference of traveling waves which are generated by turbulent convection. According to this model, the frequencies of the peaks in the power spectrum depend on the static structure of the Sun as well as the radial location of the sources. Kumar & Lu used this idea to determine the depth of the acoustic sources. However, they ignored dissipative effects and found that the theoretically computed power spectrum was falling off much more rapidly than the observed spectrum. In this paper, we include the interaction of radiation with acoustic waves in the computation of the power spectrum. We find that the theoretically calculated power spectra, when radiative damping is included are in excellent agreement with the observed power spectra over the entire observed frequency range of 5.3 to 7.5 mHz above the acoustic cutoff frequency. Moreover, by matching the peak frequencies in the observed and theoretical spectra we find the mean depth of acoustic sources to be 140 +/- 60 km below the photosphere. We show that the spectrum of solar turbulence near the top of the solar convection zone is consistent with the Kolmogorov spectrum, and that the observed high frequency power spectrum provides strong evidence that the acoustic sources in the Sun are quadrupolar. The data, in fact, rules out dipole sources as significant contributors to acoustic wave generation in the Sun. The radial extent of the sources is poorly determined and is estimated to be less than about 550 km.

  2. Communication: High-frequency acoustic excitations and boson peak in glasses: A study of their temperature dependence

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Baldi, G.; Giordano, V. M.; Orsingher, L.; Rols, S.; Scarponi, F.; Monaco, G.

    2010-07-01

    The results of a combined experimental study of the high-frequency acoustic dynamics and of the vibrational density of states (VDOS) as a function of temperature in a glass of sorbitol are reported here. The excess in the VDOS at ˜4.5 meV over the Debye, elastic continuum prediction (boson peak) is found to be clearly related to anomalies observed in the acoustic dispersion curve in the mesoscopic wavenumber range of few nm-1. The quasiharmonic temperature dependence of the acoustic dispersion curves offers a natural explanation for the observed scaling of the boson peak with the elastic medium properties.

  3. Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.

    PubMed

    Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre

    2012-01-01

    The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer.

  4. Location of acoustic radiators and inversion for energy density using radio-frequency sources and thunder recordings

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J. B.; Arechiga, R. O.; Edens, H. E.; Thomas, R. J.

    2011-12-01

    We use radio frequency (VHF) pulse locations mapped with the New Mexico Tech Lightning Mapping Array (LMA) to study the distribution of thunder sources in lightning channels. A least squares inversion is used to fit channel acoustic energy radiation with broadband (0.01 to 500 Hz) acoustic recordings using microphones deployed local (< 10 km) to the lightning. We model the thunder (acoustic) source as a superposition of line segments connecting the LMA VHF pulses. An optimum branching algorithm is used to reconstruct conductive channels delineated by VHF sources, which we discretize as a superposition of finely-spaced (0.25 m) acoustic point sources. We consider total radiated thunder as a weighted superposition of acoustic waves from individual channels, each with a constant current along its length that is presumed to be proportional to acoustic energy density radiated per unit length. Merged channels are considered as a linear sum of current-carrying branches and radiate proportionally greater acoustic energy. Synthetic energy time series for a given microphone location are calculated for each independent channel. We then use a non-negative least squares inversion to solve for channel energy densities to match the energy time series determined from broadband acoustic recordings across a 4-station microphone network. Events analyzed by this method have so far included 300-1000 VHF sources, and correlations as high as 0.5 between synthetic and recorded thunder energy were obtained, despite the presence of wind noise and 10-30 m uncertainty in VHF source locations.

  5. Response Pattern Based on the Amplitude of Ear Canal Recorded Cochlear Microphonic Waveforms across Acoustic Frequencies in Normal Hearing Subjects

    PubMed Central

    2012-01-01

    Low-frequency otoacoustic emissions (OAEs) are often concealed by acoustic background noise such as those from a patient’s breathing and from the environment during recording in clinics. When using electrocochleaography (ECochG or ECoG), such as cochlear microphonics (CMs), acoustic background noise do not contaminate the recordings. Our objective is to study the response pattern of CM waveforms (CMWs) to explore an alternative approach in assessing cochlear functions. In response to a 14-msec tone burst across several acoustic frequencies, CMWs were recorded at the ear canal from ten normal hearing subjects. A relatively long tone burst has a relatively narrow frequency band. The CMW amplitudes among different frequencies were compared. The CMW amplitudes among different frequencies were compared. Two features were observed in the response pattern of CMWs: the amplitude of CMWs decreased with an increase of stimulus frequency of the tone bursts; and such a decrease occurred at a faster rate at lower frequencies than at higher frequencies. Five factors as potential mechanisms for these features are proposed. Clinical applications such as hearing screening are discussed. Therefore, the response pattern of CMWs suggests that they may be used as an alternative to OAEs in the assessment of cochlear functions in the clinic, especially at low frequencies. PMID:22696071

  6. Acoustic characterization of multi-element, dual-frequency transducers for high-intensity contact ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, M.; N'Djin, W. A.; Persaud, L.; Bronskill, M.; Chopra, R.

    2012-10-01

    High-intensity contact ultrasound therapy can generate precise volumes of thermal damage in deep-seated tissue using interstitial or intracavitary devices. Multi-element, dual-frequency transducers offer increased spatial control of the heating pattern by enabling modulation of ultrasound power and frequency along the device. The performance and acoustic coupling between elements of simple, multi-element, dual-frequency transducers was measured. Transducer arrays were fabricated by cutting halfway through a rectangular plate of PZT, creating individual 4 × 5 mm segments with fundamental frequency (4.1 MHz) and third harmonic (13.3 MHz). Coupling between elements was investigated using a scanning laser vibrometer to measure transducer surface displacements at each frequency and different acoustic powers (0, 10, 20 W/cm2). The measured acoustic power was proportional to the input electrical power with no hysteresis and efficiencies >50% at both frequencies. Maximum transducer surface displacements were observed near element centers, reducing to ˜1/3-maximum near edges. The power and frequency of neighboring transducer segments had little impact on an element's output. In the worst case, an element operating at 4.1 MHz and 20 W/cm2 coupled only 1.5 W/cm2 to its immediate neighboring element. Multi-element, dual-frequency transducers were successfully constructed using a simple dicing method. Coupling between elements was minor, therefore the power and frequency of each transducer element could be considered independent.

  7. Quadratic Time-Frequency Analysis of Hydroacoustic Signals as Applied to Acoustic Emissions of Large Whales

    NASA Astrophysics Data System (ADS)

    Le Bras, Ronan; Victor, Sucic; Damir, Malnar; Götz, Bokelmann

    2014-05-01

    In order to enrich the set of attributes in setting up a large database of whale signals, as envisioned in the Baleakanta project, we investigate methods of time-frequency analysis. The purpose of establishing the database is to increase and refine knowledge of the emitted signal and of its propagation characteristics, leading to a better understanding of the animal migrations in a non-invasive manner and to characterize acoustic propagation in oceanic media. The higher resolution for signal extraction and a better separation from other signals and noise will be used for various purposes, including improved signal detection and individual animal identification. The quadratic class of time-frequency distributions (TFDs) is the most popular set of time-frequency tools for analysis and processing of non-stationary signals. Two best known and most studied members of this class are the spectrogram and the Wigner-Ville distribution. However, to be used efficiently, i.e. to have highly concentrated signal components while significantly suppressing interference and noise simultaneously, TFDs need to be optimized first. The optimization method used in this paper is based on the Cross-Wigner-Ville distribution, and unlike similar approaches it does not require prior information on the analysed signal. The method is applied to whale signals, which, just like the majority of other real-life signals, can generally be classified as multicomponent non-stationary signals, and hence time-frequency techniques are a natural choice for their representation, analysis, and processing. We present processed data from a set containing hundreds of individual calls. The TFD optimization method results into a high resolution time-frequency representation of the signals. It allows for a simple extraction of signal components from the TFD's dominant ridges. The local peaks of those ridges can then be used for the signal components instantaneous frequency estimation, which in turn can be used as

  8. Acoustical effects of a large ridge on low-frequency sound propagation in stationary and moving atmospheres

    NASA Technical Reports Server (NTRS)

    Robertson, J. S.; Jacobson, M. J.; Siegmann, W. L.; Santandrea, D. P.

    1989-01-01

    The effects of a ridge on a low-frequency acoustic propagation in quiescent and windy atmospheres are investigated using a parabolic approximation. A logarithmic wind-speed profile, commonly employed to model atmospheric wind currents, is modified and used to model two-dimensional atmospheric flow over a triangularly-shaped hill. The parabolic equation is solved using an implicit finite-difference algorithm. Several examples are examined to determine the combined effects of source-ridge distance, ridge dimensions, wind-speed profile, and CW source frequency on the received acoustic field.

  9. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    PubMed Central

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  10. High-Frequency Pulsed-Electro-Acoustic (PEA) Measurements for Mapping Charge Distribution

    NASA Astrophysics Data System (ADS)

    Sorensen, Kristina; Pearson, Lee; Dennison, J. R.; Doyle, Timothy; Hartley, Kent

    2012-10-01

    High-frequency pulsed-electro-acoustic (PEA) measurements are a non-destructive method used to investigate internal charge distributions in dielectric materials. This presentation discusses the theory and signal processing of simple PEA experiments and shows results of PEA measurements. PEA experiments involve a thin dielectric positioned between two conducting electrodes. A voltage signal on the two electrodes generates an electric field across the dielectric, which stimulates embedded charge and creates a pressure wave that propagates within the capacitor. A coupled acoustic sensor then measures the ensuing pressure pulse response. Spatial distributions of the charge profile are obtained from the resultant pressure waveform. Gaussian filters and other signal processing methods are used to increase the signal-to-noise ratio in this waveform. Estimates of the charge distribution inside the dielectric are extracted from this analysis. Our ultimate objective is to develop high resolution PEA methods to investigate in vacuo charge deposition in thin film polymeric, ceramic, or glass dielectric materials using medium to high energy (approximately 103 to 107 eV) electron beams.

  11. High-frequency hopping conductivity in the quantum Hall effect regime: Acoustical studies

    NASA Astrophysics Data System (ADS)

    Drichko, I. L.; Diakonov, A. M.; Smirnov, I. Yu.; Galperin, Yu. M.; Toropov, A. I.

    2000-09-01

    The high-frequency conductivity of Si δ-doped GaAs/AlGaAs heterostructures is studied in the integer quantum Hall effect (QHE) regime, using acoustic methods. Both the real and the imaginary parts of the complex conductivity are determined from the experimentally observed magnetic field and temperature dependencies of the velocity and the attenuation of a surface acoustic wave. It is demonstrated that in structures with carrier density (1.3-2.8)×1011 cm-2 and mobility (1-2)×105 cm2/V s the mechanism of low-temperature conductance near the QHE plateau centers is hopping. It is also shown that at magnetic fields corresponding to filling factors 2 and 4, the doped Si δ layer efficiently shunts the conductance in the two-dimensional electron gas (2DEG) channel. A method to separate the two contributions to the real part of the conductivity is developed, and the localization length in the 2DEG channel is estimated within the context of a nearest-neighbor hopping model.

  12. Amplitude-Frequency Analysis of Signals of Acoustic Emission from Granite Fractured at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Chmel‧, A. E.

    2015-05-01

    The problem of stability of underground structures serving to store radioactive waste, to gasify carbon, and to utilize geothermal energy is associated with the action of elevated temperatures and pressures. The acoustic-emission method makes it possible to monitor the accumulation of microcracks arising in stress fields of both thermal and mechanical origin. In this report, the authors give results of a laboratory investigation into the acoustic emission from granite subjected to impact fracture at temperatures of up to 600°C. An amplitude-frequency analysis of acousticemission signals has enabled the authors to evaluate the dimension of the arising microcracks and to determine their character (intergranular or intragranular). It has been shown that intergranular faults on the boundaries between identical minerals predominate at room temperature (purely mechanical action); at a temperature of 300°C (impact plus thermoelastic stresses), there also appear cracks on the quartz-feldspar boundaries; finally, at temperatures of 500-600°C, it is intragranular faults that predominate in feldspar. The dimensions of the above three types of microcracks are approximately 2, 0.8, and 0.3 mm respectively.

  13. Stabilization and Low-Frequency Oscillation of Capillary Bridges with Modulated Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.

    1996-01-01

    In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.

  14. Acoustic Reflection and Transmission of 2-Dimensional Rotors and Stators, Including Mode and Frequency Scattering Effects

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1999-01-01

    A reduced order modeling scheme has been developed for the unsteady acoustic and vortical coupling between blade rows of a turbomachine. The essential behavior of the system is governed by modal scattering coefficients (i.e., reflection and transmission coefficients) of the rotor, stator, inlet and nozzle, which are calculated as if they were connected to non-reflecting ducts. The objective of this report is to identify fundamental behavior of these scattering coefficients for a better understanding of the role of blade row reflection and transmission in noise generation. A 2D flat plate unsteady cascade model is used for the analysis with the expectation that the general behavior presented herein will carry over to models that include more realistic flow and geometry. It is shown that stators scatter input waves into many modes at the same frequency whereas rotors scatter on frequency, or harmonic order. Important cases are shown here the rotor reflection coefficient is greater than unity; a mode at blade passing frequency (BPF) traveling from the stator with unit sound power is reflected by the rotor with more than unit power at 2xBPF and 3xBPE Analysis is presented to explain this unexpected phenomenon. Scattering curves are presented in a format chosen for design use and for physical interpretation. To aid in interpretation of the curves, formulas are derived for special condition where waveforms are parallel to perpendicular to the rotor.

  15. Low-frequency magnetohydrodynamics and geodesic acoustic modes in toroidally rotating tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Wahlberg, C.

    2009-08-01

    This paper analyses low-frequency magnetohydrodynamic (MHD) modes, especially the geodesic acoustic modes (GAMs), in toroidal plasmas with large aspect ratio and circular cross section, including the effects of toroidal plasma rotation. A system of equations describing MHD modes with frequency of the order of the sound frequency in such plasmas is derived from the Frieman-Rotenberg equation, using a technique where the plasma perturbation ξ and the perturbed magnetic field Q are expanded separately in the inverse aspect ratio ɛ = r/R, where r and R denote the minor and major radii of the plasma torus, respectively. The large-scale, ideal MHD properties of the GAM induced by toroidal rotation (Wahlberg 2008 Phys. Rev. Lett. 101 115003) are thereafter analysed in more detail employing this system of equations. It is shown that both the axisymmetric GAMs existing in rotating plasmas are localized on a specific magnetic surface only to leading order in ɛ, and that a 'halo' consisting of finite components of both ξ and Q with dominant poloidal mode numbers m = ±2 appears outside this magnetic surface to higher orders in ɛ.

  16. Frequency-dependent damping in propagating slow magneto-acoustic waves

    SciTech Connect

    Prasad, S. Krishna; Banerjee, D.; Van Doorsselaere, T.

    2014-07-10

    Propagating slow magneto-acoustic waves are often observed in polar plumes and active region fan loops. The observed periodicities of these waves range from a few minutes to a few tens of minutes and their amplitudes were found to decay rapidly as they travel along the supporting structure. Previously, thermal conduction, compressive viscosity, radiation, density stratification, and area divergence were identified to be some of the causes for change in the slow wave amplitude. Our recent studies indicate that the observed damping in these waves is frequency-dependent. We used imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly to study this dependence in detail and for the first time via observations we attempted to deduce a quantitative relation between the damping length and frequency of these oscillations. We developed a new analysis method to obtain this relation. The observed frequency dependence does not seem to agree with the current linear wave theory and it was found that the waves observed in the polar regions show a different dependence from those observed in the on-disk loop structures despite the similarity in their properties.

  17. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-09-01

    In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.

  18. Comparison of spatial frequency domain features for the detection of side attack explosive ballistics in synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Dowdy, Josh; Anderson, Derek T.; Luke, Robert H.; Ball, John E.; Keller, James M.; Havens, Timothy C.

    2016-05-01

    Explosive hazards in current and former conflict zones are a threat to both military and civilian personnel. As a result, much effort has been dedicated to identifying automated algorithms and systems to detect these threats. However, robust detection is complicated due to factors like the varied composition and anatomy of such hazards. In order to solve this challenge, a number of platforms (vehicle-based, handheld, etc.) and sensors (infrared, ground penetrating radar, acoustics, etc.) are being explored. In this article, we investigate the detection of side attack explosive ballistics via a vehicle-mounted acoustic sensor. In particular, we explore three acoustic features, one in the time domain and two on synthetic aperture acoustic (SAA) beamformed imagery. The idea is to exploit the varying acoustic frequency profile of a target due to its unique geometry and material composition with respect to different viewing angles. The first two features build their angle specific frequency information using a highly constrained subset of the signal data and the last feature builds its frequency profile using all available signal data for a given region of interest (centered on the candidate target location). Performance is assessed in the context of receiver operating characteristic (ROC) curves on cross-validation experiments for data collected at a U.S. Army test site on different days with multiple target types and clutter. Our preliminary results are encouraging and indicate that the top performing feature is the unrolled two dimensional discrete Fourier transform (DFT) of SAA beamformed imagery.

  19. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    NASA Astrophysics Data System (ADS)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  20. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  1. An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Fan, Li; Chen, Zhe; Zhang, Shu-yi; Ding, Jin; Li, Xiao-juan; Zhang, Hui

    2015-04-01

    Insulating against low-frequency sound (below 500 Hz ) remains challenging despite the progress that has been achieved in sound insulation and absorption. In this work, an acoustic metamaterial based on membrane-coated perforated plates is presented for achieving sound insulation in a low-frequency range, even covering the lower audio frequency limit, 20 Hz . Theoretical analysis and finite element simulations demonstrate that this metamaterial can effectively block acoustic waves over a wide low-frequency band regardless of incident angles. Two mechanisms, non-resonance and monopolar resonance, operate in the metamaterial, resulting in a more powerful sound insulation ability than that achieved using periodically arranged multi-layer solid plates.

  2. Experimental demonstration of an acoustic magnifying hyperlens.

    PubMed

    Li, Jensen; Fok, Lee; Yin, Xiaobo; Bartal, Guy; Zhang, Xiang

    2009-12-01

    Acoustic metamaterials can manipulate sound waves in surprising ways, which include collimation, focusing, cloaking, sonic screening and extraordinary transmission. Recent theories suggested that imaging below the diffraction limit using passive elements can be realized by acoustic superlenses or magnifying hyperlenses. These could markedly enhance the capabilities in underwater sonar sensing, medical ultrasound imaging and non-destructive materials testing. However, these proposed approaches suffer narrow working frequency bands and significant resonance-induced loss, which hinders them from successful experimental realization. Here, we report the experimental demonstration of an acoustic hyperlens that magnifies subwavelength objects by gradually converting evanescent components into propagating waves. The fabricated acoustic hyperlens relies on straightforward cutoff-free propagation and achieves deep-subwavelength resolution with low loss over a broad frequency bandwidth.

  3. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    PubMed

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  4. Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation

    PubMed Central

    Siegert, M. E.; Römer, H.; Hartbauer, M.

    2014-01-01

    SUMMARY We examined acoustic masking in a chirping katydid species of the Mecopoda elongata complex due to interference with a sympatric Mecopoda species where males produce continuous trills at high amplitudes. Frequency spectra of both calling songs range from 1 to 80 kHz; the chirper species has more energy in a narrow frequency band at 2 kHz and above 40 kHz. Behaviourally, chirper males successfully phase-locked their chirps to playbacks of conspecific chirps under masking conditions at signal-to-noise ratios (SNRs) of −8 dB. After the 2 kHz band in the chirp had been equalised to the level in the masking trill, the breakdown of phase-locked synchrony occurred at a SNR of +7 dB. The remarkable receiver performance is partially mirrored in the selective response of a first-order auditory interneuron (TN1) to conspecific chirps under these masking conditions. However, the selective response is only maintained for a stimulus including the 2 kHz component, although this frequency band has no influence on the unmasked TN1 response. Remarkably, the addition of masking noise at 65 dB sound pressure level (SPL) to threshold response levels of TN1 for pure tones of 2 kHz enhanced the sensitivity of the response by 10 dB. Thus, the spectral dissimilarity between masker and signal at a rather low frequency appears to be of crucial importance for the ability of the chirping species to communicate under strong masking by the trilling species. We discuss the possible properties underlying the cellular/synaptic mechanisms of the ‘novelty detector’. PMID:24307713

  5. Classification of Hazelnut Kernels by Using Impact Acoustic Time-Frequency Patterns

    NASA Astrophysics Data System (ADS)

    Kalkan, Habil; Ince, Nuri Firat; Tewfik, Ahmed H.; Yardimci, Yasemin; Pearson, Tom

    2007-12-01

    Hazelnuts with damaged or cracked shells are more prone to infection with aflatoxin producing molds ( Aspergillus flavus). These molds can cause cancer. In this study, we introduce a new approach that separates damaged/cracked hazelnut kernels from good ones by using time-frequency features obtained from impact acoustic signals. The proposed technique requires no prior knowledge of the relevant time and frequency locations. In an offline step, the algorithm adaptively segments impact signals from a training data set in time using local cosine packet analysis and a Kullback-Leibler criterion to assess the discrimination power of different segmentations. In each resulting time segment, the signal is further decomposed into subbands using an undecimated wavelet transform. The most discriminative subbands are selected according to the Euclidean distance between the cumulative probability distributions of the corresponding subband coefficients. The most discriminative subbands are fed into a linear discriminant analysis classifier. In the online classification step, the algorithm simply computes the learned features from the observed signal and feeds them to the linear discriminant analysis (LDA) classifier. The algorithm achieved a throughput rate of 45 nuts/s and a classification accuracy of 96% with the 30 most discriminative features, a higher rate than those provided with prior methods.

  6. Active noise reduction systems: Their interaction with very low frequency acoustical energy

    NASA Astrophysics Data System (ADS)

    Crabtree, R. Brian

    1994-08-01

    Active noise reduction (ANR) is used for reducing noise at the ears of an observer through the action of interfering sound waves. Noise sensed by a microphone built into the observer's headset or helmet is processed and reintroduced into the ear cup cavity out of phase with the original sound, thus cancelling the noise at the ear. Recent field experience has shown that system exposure to very high amplitude low-frequency sound, such as during the operation of helicopters, can lead to saturation or overload of the ANR electronics. Experiments using acoustical maniquins were conducted to assess the low-frequency behavior of ANR equipment. Results of measurement of the threshold of overload indicated large differences in the saturation thresholds among systems tested. Performance strongly depended on the integrity of the ear seal. Those systems offering active attenuation into the infrasound region tended to saturate most easily, but did create the best listening condition for the user when operated below the saturation threshold.

  7. Acoustic information available to bats using frequency-modulated sounds for the perception of insect prey.

    PubMed

    Moss, C F; Zagaeski, M

    1994-05-01

    Through the present study, the acoustic information available to an echolocating bat that uses brief frequency-modulated (FM) sonar sounds for the pursuit and capture of insect prey has been characterized. Computer-generated sonar pulses were broadcast at tethered insects, and the returning echoes were recorded on analog tape at high speed for off-line analyses. Echoes from stationary and fluttering insects were displayed using time waveform, spectrogram, power spectrum, and cross-correlation representations. The results show echo signatures for the different insect species studied, which change with the angle of incident sound. Sequences of echoes from fluttering insects show irregular changes in sound amplitude and time-frequency structure, reflecting a random temporal relation between the changing wing position and the arrival of incident sound. A set of recordings that controlled the temporal relation between incident sound and insect wing position suggests that information about the spatial profile of a flying insect could be enhanced if the bat were to produce a sequence of sounds that synchronized briefly with the moving target's wing-beat cycle. From this study, it has been proposed that the FM bat receives stroboscopic-like glimpses of fluttering prey whose spatial representation depends on the operation of the bat's sonar receiver.

  8. Multi-bearing defect detection with trackside acoustic signal based on a pseudo time-frequency analysis and Dopplerlet filter

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Lu, Siliang; He, Qingbo; Kong, Fanrang

    2016-03-01

    The diagnosis of train bearing defects based on the acoustic signal acquired by a trackside microphone plays a significant role in the transport system. However, the wayside acoustic signal suffers from the Doppler distortion due to the high moving speed and also contains the multi-source signals from different train bearings. This paper proposes a novel solution to overcome the two difficulties in trackside acoustic diagnosis. In the method a pseudo time-frequency analysis (PTFA) based on an improved Dopplerlet transform (IDT) is presented to acquire the time centers for different bearings. With the time centers, we design a series of Dopplerlet filters (DF) in time-frequency domain to work on the signal's time-frequency distribution (TFD) gained by the short time Fourier transform (STFT). Then an inverse STFT (ISTFT) is utilized to get the separated signals for each sound source which means bearing here. Later the resampling method based on certain motion parameters eliminates the Doppler Effect and finally the diagnosis can be made effectively according to the envelope spectrum of each separated signal. With the effectiveness of the technique validated by both simulated and experimental cases, the proposed wayside acoustic diagnostic scheme is expected to be available in wayside defective bearing detection.

  9. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers.

    PubMed

    Moore, S A; Le Coz, J; Hurther, D; Paquier, A

    2013-04-01

    Multi-frequency acoustic backscatter profiles recorded with side-looking acoustic Doppler current profilers are used to monitor the concentration and size of sedimentary particles suspended in fluvial environments. Data at 300, 600, and 1200 kHz are presented from the Isère River in France where the dominant particles in suspension are silt and clay sizes. The contribution of suspended sediment to the through-water attenuation was determined for three high concentration (> 100 mg/L) events and compared to theoretical values for spherical particles having size distributions that were measured by laser diffraction in water samples. Agreement was good for the 300 kHz data, but it worsened with increasing frequency. A method for the determination of grain size using multi-frequency attenuation data is presented considering models for spherical and oblate spheroidal particles. When the resulting size estimates are used to convert sediment attenuation to concentration, the spheroidal model provides the best agreement with optical estimates of concentration, but the aspect ratio and grain size that provide the best fit differ between events. The acoustic estimates of size were one-third the values from laser grain sizing. This agreement is encouraging considering optical and acoustical instruments measure different parameters. PMID:23556566

  10. Acoustic Beam Forming Array Using Feedback-Controlled Microphones for Tuning and Self-Matching of Frequency Response

    NASA Technical Reports Server (NTRS)

    Radcliffe, Eliott (Inventor); Naguib, Ahmed (Inventor); Humphreys, Jr., William M. (Inventor)

    2014-01-01

    A feedback-controlled microphone includes a microphone body and a membrane operatively connected to the body. The membrane is configured to be initially deflected by acoustic pressure such that the initial deflection is characterized by a frequency response. The microphone also includes a sensor configured to detect the frequency response of the initial deflection and generate an output voltage indicative thereof. The microphone additionally includes a compensator in electric communication with the sensor and configured to establish a regulated voltage in response to the output voltage. Furthermore, the microphone includes an actuator in electric communication with the compensator, wherein the actuator is configured to secondarily deflect the membrane in opposition to the initial deflection such that the frequency response is adjusted. An acoustic beam forming microphone array including a plurality of the above feedback-controlled microphones is also disclosed.

  11. Mid-Frequency Acoustic Backscattering from Finite Cylindrical Shells, and, the Influence of Helical Membrane Waves.

    NASA Astrophysics Data System (ADS)

    Corrado, Charles N., Jr.

    The measurements and analyses were conducted over a mid-frequency range of 2 < ka < 12 corresponding to about 1/2 to 3 times the ring frequency of the empty shell. The measurements were all conducted with the use of wide-band pulses yielding good time resolution of propagating waves. Various time and frequency domain representations of the scattered field are presented to illustrate the evolution of observed backscattering processes. Although the field measured at all aspect angles is reviewed, emphasis is placed on interpretation of the backscatter observed over a range within 30 degrees of beam aspect where phase matched (coincident) excitation of membrane waves occurs. Coincident shear wave radiation is the dominant source of backscatter generated by the empty shell at oblique angles of incidence within 30^circ of beam aspect. Peak levels of backscatter are generally found at combinations of aspect angle and frequency where coincidence and peak levels of length-scale modulation coexist. Coincident back radiation of shear waves remains evident in the backscatter of the ring stiffened shell, but the backscatter is smeared in time and frequency because the rings directly scatter energy to the acoustic medium, as well as from one membrane wave type to another, and to subsonic flexural waves. The decay rate of the empty shell backscatter exceeds that of the ring stiffened shell by a factor of 2-3 because the rings scatter energy to poorly radiating waves. Although details of the backscatter produced by the empty and ring stiffened shells differ, peak levels of target strength consistently fall within a range of -20 to -15 dB re 1 m. The internal loading further impairs coincident radiation but increases the target strength by about 2 dB for ka > 5.5. The damping provided by the resilient mounts increases backscatter decay rates by roughly 1.2 to 1.4 relative to those of the ring stiffened shell. Bistatic measurements of the internally loaded shell also demonstrate

  12. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing

    PubMed Central

    Dietz, Mathias; Hohmann, Volker; Jürgens, Tim

    2015-01-01

    For normal-hearing listeners, speech intelligibility improves if speech and noise are spatially separated. While this spatial release from masking has already been quantified in normal-hearing listeners in many studies, it is less clear how spatial release from masking changes in cochlear implant listeners with and without access to low-frequency acoustic hearing. Spatial release from masking depends on differences in access to speech cues due to hearing status and hearing device. To investigate the influence of these factors on speech intelligibility, the present study measured speech reception thresholds in spatially separated speech and noise for 10 different listener types. A vocoder was used to simulate cochlear implant processing and low-frequency filtering was used to simulate residual low-frequency hearing. These forms of processing were combined to simulate cochlear implant listening, listening based on low-frequency residual hearing, and combinations thereof. Simulated cochlear implant users with additional low-frequency acoustic hearing showed better speech intelligibility in noise than simulated cochlear implant users without acoustic hearing and had access to more spatial speech cues (e.g., higher binaural squelch). Cochlear implant listener types showed higher spatial release from masking with bilateral access to low-frequency acoustic hearing than without. A binaural speech intelligibility model with normal binaural processing showed overall good agreement with measured speech reception thresholds, spatial release from masking, and spatial speech cues. This indicates that differences in speech cues available to listener types are sufficient to explain the changes of spatial release from masking across these simulated listener types. PMID:26721918

  13. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  14. Evidence of Increasing Acoustic Emissivity at High Frequency with Solar Cycle 23 in Sun-as-a-star Observations

    SciTech Connect

    Simoniello, R.; Finsterle, W.

    2009-09-16

    We used long high-quality unresolved (Sun-as-a-star observations) data collected by GOLF and VIRGO instruments on board the ESA/NASA SOHO satellite to investigate the amplitude variation with solar cycle 23 in the high-frequency band (5.7<{nu}<6.3 mHz). We found an enhancement of acoustic emissivity over the ascending phase of about 18{+-}3 in velocity observations and a slight enhancement of 3{+-}2 in intensity. Mode conversion from fast acoustic to fast magneto-acoustic waves could explain the enhancement in velocity observations. These findings open up the possibility to apply the same technique to stellar intensity data, in order to investigate stellar-magnetic activity.

  15. Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface.

    PubMed

    Senne, J; Song, A; Badiey, M; Smith, K B

    2012-09-01

    The present paper examines the temporal evolution of acoustic fields by modeling forward propagation subject to sea surface dynamics with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Surface waves are generated from surface wave spectra, and stepped in time using a Runge-Kutta integration technique applied to linear evolution equations. This evolving, range-dependent surface information is combined with other environmental parameters and input to the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. This merged acoustic model is validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the model is able to approximate the ensemble-averaged acoustic intensity at ranges of about a kilometer for acoustic signals of around 15 kHz. Furthermore, the model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds.

  16. Liquid-glass transition as the freezing of characteristic acoustic frequencies

    SciTech Connect

    Sanditov, D. S.

    2010-11-15

    Half-quantum interpretation is proposed for the liquid-glass transition as the freezing of characteristic acoustic frequencies (degrees of freedom) that are related to the molecular mobility of delocalized excited kinetic units, namely, linear quantum oscillators. There exists a correlation between the energy quantum of an elementary excitation (atom delocalization energy) and the glass transition temperature, which is proportional to the characteristic Einstein temperature. By analogy with the Einstein theory of the heat capacity of solids, the temperature range of the concentration of excited atoms in an amorphous medium is divided into the following two regions: a high-temperature region with a linear temperature dependence of this concentration and a low-temperature region, where the concentration of excited atoms decreases exponentially to the limiting minimum value (about 3%). At this value, the viscosity increases to a critical value (about 10{sup 12} Pa s), which corresponds to the glass transition temperature, i.e., the temperature of freezing the mobility of excited kinetic units. The temperature dependence of the free activation energy of viscous flow in the glass transition range is specified by the temperature dependence of the relative number of excited atoms.

  17. Measurements of high-frequency acoustic scattering from glacially eroded rock outcrops.

    PubMed

    Olson, Derek R; Lyons, Anthony P; Sæbø, Torstein O

    2016-04-01

    Measurements of acoustic backscattering from glacially eroded rock outcrops were made off the coast of Sandefjord, Norway using a high-frequency synthetic aperture sonar (SAS) system. A method by which scattering strength can be estimated from data collected by a SAS system is detailed, as well as a method to estimate an effective calibration parameter for the system. Scattering strength measurements from very smooth areas of the rock outcrops agree with predictions from both the small-slope approximation and perturbation theory, and range between -33 and -26 dB at 20° grazing angle. Scattering strength measurements from very rough areas of the rock outcrops agree with the sine-squared shape of the empirical Lambertian model and fall between -30 and -20 dB at 20° grazing angle. Both perturbation theory and the small-slope approximation are expected to be inaccurate for the very rough area, and overestimate scattering strength by 8 dB or more for all measurements of very rough surfaces. Supporting characterization of the environment was performed in the form of geoacoustic and roughness parameter estimates. PMID:27106331

  18. Multipath Effects on High-Frequency Coherent Acoustic Communications in Shallow Water

    NASA Astrophysics Data System (ADS)

    Son, Su-Uk; Kim, Hyeonsu; Joo, Jongmin; Choi, Jee Woong

    2013-07-01

    Shallow-water acoustic communication channel, referred to as a multipath-limited channel, produces inter-symbol interference that poses a significant obstacle to reliable communication. Accordingly, signal-to-multipath ratio (SMR), rather than signal-to-noise ratio (SNR), becomes an important factor affecting communication performance. However, it is difficult to estimate SMR from measured communication data, especially at higher frequency (>10 kHz) because many arrivals scattered from rough ocean boundaries produce a significant intrapath time spreading, which acts as random noise in communication. In this paper, the energy fraction of the channel impulse response existing in one symbol duration is proposed as a parameter for estimating the quality of shallow-water communication channels. This parameter is compared with the bit-error-rate performance for data acquired in shallow water off the south coast of Korea, where the water depth is 45 m and the bottom consists of sandy clay sediment. The results imply that the energy fraction in one symbol duration may be used as a parameter for describing shallow-water communication channels and applied to the quick decision of a symbol or bit rate in a shallow-water field for reliable underwater communication.

  19. Measurements of high-frequency acoustic scattering from glacially eroded rock outcrops.

    PubMed

    Olson, Derek R; Lyons, Anthony P; Sæbø, Torstein O

    2016-04-01

    Measurements of acoustic backscattering from glacially eroded rock outcrops were made off the coast of Sandefjord, Norway using a high-frequency synthetic aperture sonar (SAS) system. A method by which scattering strength can be estimated from data collected by a SAS system is detailed, as well as a method to estimate an effective calibration parameter for the system. Scattering strength measurements from very smooth areas of the rock outcrops agree with predictions from both the small-slope approximation and perturbation theory, and range between -33 and -26 dB at 20° grazing angle. Scattering strength measurements from very rough areas of the rock outcrops agree with the sine-squared shape of the empirical Lambertian model and fall between -30 and -20 dB at 20° grazing angle. Both perturbation theory and the small-slope approximation are expected to be inaccurate for the very rough area, and overestimate scattering strength by 8 dB or more for all measurements of very rough surfaces. Supporting characterization of the environment was performed in the form of geoacoustic and roughness parameter estimates.

  20. Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Finneran, James J.; Carder, Donald A.; Ridgway, Sam H.

    2002-01-01

    The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.

  1. An experimental study on resonance of oscillating air/vapor bubbles in water using a two-frequency acoustic apparatus

    NASA Astrophysics Data System (ADS)

    Ohsaka, K.

    2003-05-01

    A two-frequency acoustic apparatus is employed to study the growth behavior of vapor-saturated bubbles driven in a volumetric mode. A unique feature of the apparatus is its capability of trapping a bubble by an ultrasonic standing wave while independently driving it into oscillations by a second lower-frequency acoustic wave. It is observed that the growing vapor bubbles exhibit a periodic shape transition between the volumetric and shape modes due to resonant coupling. In order to explain this observation, we performed an experimental investigation on resonant coupling of air bubbles and obtained the following results: First, the induced shape oscillations are actually a mixed mode that contains the volume component, thus, vapor bubbles can grow while they exhibit shape oscillations. Second, the acoustically levitated bubbles are deformed and therefore, degeneracy in resonant frequency is partially removed. As a result, the vapor bubbles exhibit the shape oscillations in both the axisymmetric mode and asymmetric (three-dimensional) modes. Nonlinear effects in addition to the frequency shift and split due to deformation creates overlapping of the coupling ranges for different modes, which leads to the continuous shape oscillations above a certain bubble radius as the bubble grows.

  2. A role for acoustic distortion in novel rapid frequency modulation behaviour in free-flying male mosquitoes.

    PubMed

    Simões, Patrício M V; Ingham, Robert A; Gibson, Gabriella; Russell, Ian J

    2016-07-01

    We describe a new stereotypical acoustic behaviour by male mosquitoes in response to the fundamental frequency of female flight tones during mating sequences. This male-specific free-flight behaviour consists of phonotactic flight beginning with a steep increase in wing-beat frequency (WBF) followed by rapid frequency modulation (RFM) of WBF in the lead up to copula formation. Male RFM behaviour involves remarkably fast changes in WBF and can be elicited without acoustic feedback or physical presence of the female. RFM features are highly consistent, even in response to artificial tones that do not carry the multi-harmonic components of natural female flight tones. Comparison between audiograms of the robust RFM behaviour and the electrical responses of the auditory Johnston's organ (JO) reveals that the male JO is tuned not to the female WBF per se but, remarkably, to the difference between the male and female WBFs. This difference is generated in the JO responses as a result of intermodulation distortion products (DPs) caused by non-linear interaction between male-female flight tones in the vibrations of the antenna. We propose that male mosquitoes rely on their own flight tones in making use of DPs to acoustically detect, locate and orientate towards flying females. We argue that the previously documented flight-tone harmonic convergence of flying male and female mosquitoes could be a consequence of WBF adjustments so that DPs generated through flight-tone interaction fall within the optimal frequency ranges for JO detection. PMID:27122548

  3. Towards a reference cavitating vessel Part III—design and acoustic pressure characterization of a multi-frequency sonoreactor

    NASA Astrophysics Data System (ADS)

    Wang, Lian; Memoli, Gianluca; Hodnett, Mark; Butterworth, Ian; Sarno, Dan; Zeqiri, Bajram

    2015-08-01

    A multi-frequency cavitation vessel (RV-multi) has been commissioned at the National Physical Laboratory (NPL, UK), with the aim of establishing a standard source of acoustic cavitation in water, with reference to which details of the cavitation process can be studied and cavitation measurement techniques evaluated. The vessel is a cylindrical cavity with a maximum capacity up to 17 L, and is designed to work at six frequency ranges, from 21 kHz to 136 kHz, under controlled temperature conditions. This paper discusses the design of RV-multi and reports experiments carried out to establish the reproducibility of the acoustic pressure field established within the vessel and its operating envelope, including sensitivity to aspects such as water depth and temperature. The acoustic field distribution was determined along the radial and depth directions within the vessel using a miniature hydrophone, for two input voltage levels under low power transducer excitation conditions (e.g. below the cavitation threshold). Particular care was taken in determining peak acoustic pressure locations, as these are critical for accompanying cavitation studies. Perturbations of the vessel by the measuring hydrophone were also monitored with a bottom-mounted pressure sensor.

  4. The stability and the growth rate of the electron acoustic traveling wave under transverse perturbations in a magnetized quantum plasma

    NASA Astrophysics Data System (ADS)

    Gao, Dong-Ning; Wang, Cang-Long; Yang, Xue; Duan, Wen-Shan; Yang, Lei

    2012-12-01

    Theoretical and numerical studies are carried out for the stability of the electron acoustic waves under the transverse perturbation in a magnetized quantum plasma. The Zakharov-Kuznetsov (ZK) equation of the electron-acoustic waves (EAWs) is given by using the reductive perturbation technique. The cut-off frequency is obtained by applying a transverse sinusoidal perturbation to the plane soliton solution of the ZK equation. The propagation velocity of solitary waves, the real cut-off frequency, as well as the growth rate of the higher order perturbation to the traveling solitary wave are obtained.

  5. The stability and the growth rate of the electron acoustic traveling wave under transverse perturbations in a magnetized quantum plasma

    SciTech Connect

    Gao Dongning; Wang Canglong; Yang Xue; Duan Wenshan; Yang Lei

    2012-12-15

    Theoretical and numerical studies are carried out for the stability of the electron acoustic waves under the transverse perturbation in a magnetized quantum plasma. The Zakharov-Kuznetsov (ZK) equation of the electron-acoustic waves (EAWs) is given by using the reductive perturbation technique. The cut-off frequency is obtained by applying a transverse sinusoidal perturbation to the plane soliton solution of the ZK equation. The propagation velocity of solitary waves, the real cut-off frequency, as well as the growth rate of the higher order perturbation to the traveling solitary wave are obtained.

  6. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

    2009-07-01

    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  7. Relationship Between Distortion Product – Otoacoustic Emissions (DPOAEs) and High-Frequency Acoustic Immittance Measures

    PubMed Central

    De Paula Campos, Ualace; Hatzopoulos, Stavros; Śliwa, Lech K.; Skarżyński, Piotr H.; Jędrzejczak, Wiesław W.; Skarżyński, Henryk; Carvallo, Renata Mota Mamede

    2016-01-01

    Background Pathologies that alter the impedance of the middle ear may consequently modify the DPOAE amplitude. The aim of this study was to correlate information from 2 different clinical procedures assessing middle ear status. Data from DPOAE responses (both DP-Gram and DP I/O functions) were correlated with data from multi-component tympanometry at 1000 Hz. Material/Methods The subjects were divided into a double-peak group (DPG) and a single-peak group (SPG) depending on 1000 Hz tympanogram pattern. Exclusion criteria (described in the Methods section) were applied to both groups and finally only 31 ears were assigned to each group. The subjects were also assessed with traditional tympanometry and behavioral audiometry. Results Compared to the single-peak group, in terms of the 226 Hz tympanometry data, subjects in the DPG group presented: (i) higher values of ear canal volume; (ii) higher peak pressure, and (iii) significantly higher values of acoustic admittance. DPOAE amplitudes were lower in the DPG group only at 6006 Hz, but the difference in amplitude between the DPG and SPG groups decreased as the frequency increased. Statistical differences were observed only at 1001 Hz and a borderline difference at 1501 Hz. In terms of DPOAE I/O functions, significant differences were observed only in 4 of the 50 tested points. Conclusions The 1000-Hz tympanometric pattern significantly affects the structure of DPOAE responses only at 1001 Hz. In this context, changes in the properties of the middle ear (as detected by the 1000 Hz tympanometry) can be considered as prime candidates for the observed variability in the DP-grams and the DP I/O functions. PMID:27299792

  8. Strong Destabilization of Stable Modes with a Half-Frequency Associated with Chirping Geodesic Acoustic Modes in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ido, T.; Itoh, K.; Osakabe, M.; Lesur, M.; Shimizu, A.; Ogawa, K.; Toi, K.; Nishiura, M.; Kato, S.; Sasaki, M.; Ida, K.; Inagaki, S.; Itoh, S.-I.

    2016-01-01

    Abrupt and strong excitation of a mode has been observed when the frequency of a chirping energetic-particle driven geodesic acoustic mode (EGAM) reaches twice the geodesic acoustic mode (GAM) frequency. The frequency of the secondary mode is the GAM frequency, which is a half-frequency of the primary EGAM. Based on the analysis of spatial structures, the secondary mode is identified as a GAM. The phase relation between the secondary mode and the primary EGAM is locked, and the evolution of the growth rate of the secondary mode indicates nonlinear excitation. The results suggest that the primary mode (EGAM) contributes to nonlinear destabilization of a subcritical mode.

  9. Multi-cavity coupling acoustic metamaterials with low-frequency broad band gaps based on negative mass density

    NASA Astrophysics Data System (ADS)

    Yang, Chuanhui; Wu, Jiu Hui; Cao, Songhua; Jing, Li

    2016-08-01

    This paper studies a novel kind of low-frequency broadband acoustic metamaterials with small size based on the mechanisms of negative mass density and multi-cavity coupling. The structure consists of a closed resonant cavity and an open resonant cavity, which can be equivalent to a homogeneous medium with effective negative mass density in a certain frequency range by using the parameter inversion method. The negative mass density makes the anti-resonance area increased, which results in broadened band gaps greatly. Owing to the multi-cavity coupling mechanism, the local resonances of the lower frequency mainly occur in the closed cavity, while the local resonances of the higher frequency mainly in the open cavity. Upon the interaction between the negative mass density and the multi-cavity coupling, there exists two broad band gaps in the range of 0-1800 Hz, i.e. the first-order band gap from 195 Hz to 660 Hz with the bandwidth of 465 Hz and the second-order band gap from 1157 Hz to 1663 Hz with the bandwidth of 506 Hz. The acoustic metamaterials with small size presented in this paper could provide a new approach to reduce the low-frequency broadband noises.

  10. An acoustical assessment of pitch-matching accuracy in relation to speech frequency, speech frequency range, age and gender in preschool children

    NASA Astrophysics Data System (ADS)

    Trollinger, Valerie L.

    This study investigated the relationship between acoustical measurement of singing accuracy in relationship to speech fundamental frequency, speech fundamental frequency range, age and gender in preschool-aged children. Seventy subjects from Southeastern Pennsylvania; the San Francisco Bay Area, California; and Terre Haute, Indiana, participated in the study. Speech frequency was measured by having the subjects participate in spontaneous and guided speech activities with the researcher, with 18 diverse samples extracted from each subject's recording for acoustical analysis for fundamental frequency in Hz with the CSpeech computer program. The fundamental frequencies were averaged together to derive a mean speech frequency score for each subject. Speech range was calculated by subtracting the lowest fundamental frequency produced from the highest fundamental frequency produced, resulting in a speech range measured in increments of Hz. Singing accuracy was measured by having the subjects each echo-sing six randomized patterns using the pitches Middle C, D, E, F♯, G and A (440), using the solfege syllables of Do and Re, which were recorded by a 5-year-old female model. For each subject, 18 samples of singing were recorded. All samples were analyzed by the CSpeech for fundamental frequency. For each subject, deviation scores in Hz were derived by calculating the difference between what the model sang in Hz and what the subject sang in response in Hz. Individual scores for each child consisted of an overall mean total deviation frequency, mean frequency deviations for each pattern, and mean frequency deviation for each pitch. Pearson correlations, MANOVA and ANOVA analyses, Multiple Regressions and Discriminant Analysis revealed the following findings: (1) moderate but significant (p < .001) relationships emerged between mean speech frequency and the ability to sing the pitches E, F♯, G and A in the study; (2) mean speech frequency also emerged as the strongest

  11. Spatial Correlation of the Low-Frequency Acoustic Reverberation in Oceanic Waveguides

    NASA Astrophysics Data System (ADS)

    Raevsky, M. A.; Khil'ko, A. I.

    2016-05-01

    We analyze spatial correlations of the surface reverberation in a plane-layered acoustic channel. The horizontal correlation function of the wind reverberation for the developed waves with an isotropic spectrum is theoretically studied within the framework of the mode representation of an acoustic field. The correlation function of monostatic reverberation is shown to have a universal form, while in the case of a bistatic radiation regime, the characteristic correlation scale of the reverberation significantly depends on its delay time.

  12. Scanning Acoustic Microscopy Investigation of Frequency-Dependent Reflectance of Acid-Etched Human Dentin Using Homotopic Measurements

    PubMed Central

    Marangos, Orestes; Misra, Anil; Spencer, Paulette; Katz, J. Lawrence

    2013-01-01

    Composite restorations in modern restorative dentistry rely on the bond formed in the adhesive-infiltrated acid-etched dentin. The physical characteristics of etched dentin are, therefore, of paramount interest. However, characterization of the acid-etched zone in its natural state is fraught with problems stemming from a variety of sources including its narrow size, the presence of water, heterogeneity, and spatial scale dependency. We have developed a novel homotopic (same location) measurement methodology utilizing scanning acoustic microscopy (SAM). Homotopic measurements with SAM overcome the problems encountered by other characterization/ imaging methods. These measurements provide us with acoustic reflectance at the same location of both the pre- and post-etched dentin in its natural state. We have applied this methodology for in vitro measurements on dentin samples. Fourier spectra from acid-etched dentin showed amplitude reduction and shifts of the central frequency that were location dependent. Through calibration, the acoustic reflectance of acid-etched dentin was found to have complex and non-monotonic frequency dependence. These data suggest that acid-etching of dentin results in a near-surface graded layer of varying thickness and property gradations. The measurement methodology described in this paper can be applied to systematically characterize mechanical properties of heterogeneous soft layers and interfaces in biological materials. PMID:21429849

  13. Changing the average frequency of contact calls is associated with changes in other acoustic parameters in the budgerigar (Melopsittacus undulatus)

    NASA Astrophysics Data System (ADS)

    Osmanski, Michael; Dooling, Robert

    2001-05-01

    The most-often produced vocalization of the budgerigar, a small parrot native to Australia, is the short (100-150 ms) frequency-modulated contact call. These calls play a role in maintaining flock dynamics and are believed to act as vocal signatures in these birds. Previous findings in our lab have shown that budgerigars can control the intensity of their vocal behavior and exhibit a robust Lombard effect (Manabe et al., 1998). Recently, we have shown that there is a high degree of stereotypy in contact calls across a number of acoustic parameters (Osmanski and Dooling, 2004). Questions arise concerning the limits of plasticity in these calls and the relation or interdependence among the various parameters. As a first approach to answering these questions, four budgerigars were trained using operant conditioning methods to change the average peak frequency of their contact calls (both upward and downward in frequency) to obtain access to a food reward. Results show that these birds can both increase and decrease the average frequency of their contact calls. Such changes are associated with modifications in a number of other acoustic parameters, suggesting constraints on vocal plasticity. [Work supported by NIH DC-00198 to RJD and NIDCD Training Grant DC-00046.

  14. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  15. Parameterizing both path amplitude and delay variations of underwater acoustic channels for block decoding of orthogonal frequency division multiplexing.

    PubMed

    Xu, Xiaoka; Wang, Zhaohui; Zhou, Shengli; Wan, Lei

    2012-06-01

    There are no commonly-agreed mathematical models for the input-output relationship of underwater acoustic channels. For each path in a time-varying multipath channel within a short period of time (e.g., one short data block), this paper proposes to use one polynomial to approximate the amplitude variation and another polynomial up to the first order to approximate the delay variation within a block duration. Under such a channel parameterization, the discrete-time channel input- output relationship tailored to zero-padded orthogonal-frequency-division-multiplexing (OFDM) transmissions is then derived, based on which an OFDM receiver is validated using experimental data collected during the 2008 Surface Processes and Acoustic Communications Experiment. For channels with a short coherence time, the numerical results show that incorporating both the amplitude and delay variations improves the system performance.

  16. Beam paths of flexural Lamb waves at high frequency in the first band within phononic crystal-based acoustic lenses

    SciTech Connect

    Zhao, J.; Boyko, O.; Bonello, B.

    2014-12-15

    This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.

  17. An Alternative Realization of Gauss-Newton for Frequency-Domain Acoustic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, J.; Chi, B.; Dong, L.

    2014-12-01

    Since FWI was studied under the least-square misfit optimization proposed by Tarantola (1984) in time domain, it has been greatly improved by many researchers. Pratt (1998) developed FWI in frequency domain using a Gauss-Newton optimization. In recent years, FWI has been widely studied under the framework of adjoint-state methods, as summarized by Plessix (2006). Preconditioning and high order gradients are important for FWI. Many researches have focused on the Newton optimization, in which the calculation of inverse Hessian is the key problem. Pseudo Hessian such as the diagonal Hessian was firstly used to approximate inverse Hessian (Choi & Shin, 2007). Then Gauss-Newton or l-BFGS method was widely studied to iteratively calculate the inverse approximate Hessian Haor full Hessian (Sheen et al., 2006). Full Hessian is the base of the exact Newton optimization. Fichtner and Trampert (2011) presented an extension of the adjoint-state method to directly compute the full Hessian; Métivier et al. (2012) proposed a general second-order adjoint-state formula for Hessian-vector product to tackle Gauss-Newton and exact Newton. Liu et al. (2014) proposed a matrix-decomposition FWI (MDFWI) based on Born kernel. They used the Born Fréchet kernel to explicitly calculate the gradient of the objective function through matrix decomposition, no full Fréchet kernel being stored in memory beforehand. However, they didn't give a method to calculate the Gauss-Newton. In this paper, We propose a method based on Born Fréchet kernel to calculate the Gauss-Newton for acoustic full waveform inversion (FWI). The Gauss-Newton is iteratively constructed without needing to store the huge approximate Hessian (Ha) or Fréchet kernel beforehand, and the inverse of Ha is not need to be calculated either. This procedure can be efficiently accomplished through matrix decomposition. More resolved result and faster convergence are obtained when this Gauss-Newton is applied in FWI based on the Born

  18. High-frequency volume and boundary acoustic backscatter fluctuations in shallow water.

    PubMed

    Gallaudet, Timothy C; de Moustier, Christian P

    2003-08-01

    Volume and boundary acoustic backscatter envelope fluctuations are characterized from data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz cylindrical array capable of 360 degrees multibeam imaging in the vertical plane perpendicular to its axis. The data are processed to form acoustic backscatter images of the seafloor, sea surface, and horizontal and vertical planes in the volume, which are used to attribute nonhomogeneous spatial distributions of zooplankton, fish, bubbles and bubble clouds, and multiple boundary interactions to the observed backscatter amplitude statistics. Three component Rayleigh mixture probability distribution functions (PDFs) provided the best fit to the empirical distribution functions of seafloor acoustic backscatter. Sea surface and near-surface volume acoustic backscatter PDFs are better described by Rayleigh mixture or log-normal distributions, with the high density portion of the distributions arising from boundary reverberation, and the tails arising from nonhomogeneously distributed scatterers such as bubbles, fish, and zooplankton. PDF fits to the volume and near-surface acoustic backscatter data are poor compared to PDF fits to the boundary backscatter, suggesting that these data may be better described by mixture distributions with component densities from different parametric families. For active sonar target detection, the results demonstrate that threshold detectors which assume Rayleigh distributed envelope fluctuations will experience significantly higher false alarm rates in shallow water environments which are influenced by near-surface microbubbles, aggregations of zooplankton and fish, and boundary reverberation.

  19. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  20. Wide-range frequency selectivity in an acoustic sensor fabricated using a microbeam array with non-uniform thickness

    NASA Astrophysics Data System (ADS)

    Shintaku, Hirofumi; Kobayashi, Takayuki; Zusho, Kazuki; Kotera, Hidetoshi; Kawano, Satoyuki

    2013-11-01

    In this study, we have demonstrated the fabrication of a microbeam array (MBA) with various thicknesses and investigated the suitability it for an acoustic sensor with wide-range frequency selectivity. For this, an MBA composed of 64 beams, with thicknesses varying from 2.99-142 µm, was fabricated by using single gray-scale lithography and a thick negative photoresist. The vibration of the beams in air was measured using a laser Doppler vibrometer; the resonant frequencies of the beams were measured to be from 11.5 to 290 kHz. Lastly, the frequency range of the MBA with non-uniform thickness was 10.9 times that of the MBA with uniform thickness.

  1. Single-carrier frequency-domain turbo equalization without cyclic prefix or zero padding for underwater acoustic communications.

    PubMed

    Wang, Longbao; Tao, Jun; Zheng, Yahong Rosa

    2012-12-01

    A frequency-domain turbo equalization (FDTE) scheme without cyclic prefix (CP) or zero padding is proposed for single-carrier, multiple-input-multiple-output underwater acoustic communication. In the first iteration of the FDTE, the received continuous data stream is divided into consecutive blocks and a combined inter-block-interference (IBI) cancellation and overlapped windowing scheme is used to diagonalize each data block for low-complexity detection in the frequency domain. Since the second iteration, IBI cancellation and CP reconstruction are applied on each block to enable effective symbol detection. This work extends the authors' previous work on frequency-domain hard-decision equalization to soft-decision turbo equalization so that it not only retains high data transmission efficiency, but also improves the bit error rate performance with slightly increased complexity due to multiple iterations. Its feasibility and effectiveness have been tested by field trial data from the ACOMM09 underwater communication experiment. PMID:23231110

  2. Single-carrier frequency-domain turbo equalization without cyclic prefix or zero padding for underwater acoustic communications.

    PubMed

    Wang, Longbao; Tao, Jun; Zheng, Yahong Rosa

    2012-12-01

    A frequency-domain turbo equalization (FDTE) scheme without cyclic prefix (CP) or zero padding is proposed for single-carrier, multiple-input-multiple-output underwater acoustic communication. In the first iteration of the FDTE, the received continuous data stream is divided into consecutive blocks and a combined inter-block-interference (IBI) cancellation and overlapped windowing scheme is used to diagonalize each data block for low-complexity detection in the frequency domain. Since the second iteration, IBI cancellation and CP reconstruction are applied on each block to enable effective symbol detection. This work extends the authors' previous work on frequency-domain hard-decision equalization to soft-decision turbo equalization so that it not only retains high data transmission efficiency, but also improves the bit error rate performance with slightly increased complexity due to multiple iterations. Its feasibility and effectiveness have been tested by field trial data from the ACOMM09 underwater communication experiment.

  3. Optical Generation And Spatially Distinct Interferometric Detection Of Ultrahigh Frequency Surface Acoustic Waves

    SciTech Connect

    David H. Hurley

    2006-05-01

    Generation and interferometric detection of 22 GHz surface acoustic waves (SAWs) using two laterally separated absorption gratings on a Si substrate are presented. Optical phase sensitive detection of SAWs is demonstrated using a modified Sagnac interferometer. The reflection characteristics of the suboptical wavelength grating necessitate the use of only linear polarization. This is accomplished by employing a Faraday rotator to ensure path reversal of the reference and signal pulses. The enhanced sensitivity of the interferometer is exploited to measure the acoustic disturbance on an identical absorption grating at a distance of ~4.5 µm from the generation site.

  4. Numerical and experimental analysis of high frequency acoustic microscopy and infrared reflectance system for early detection of melanoma

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios; Apostolidis, Georgios; Georgoulias, Panagiotis

    2016-03-01

    Melanoma is a very malicious type of cancer as it metastasizes early and hence its late diagnosis leads to death. Consequently, early diagnosis of melanoma and its removal is considered the most effective way of treatment. We present a design of a high frequency acoustic microscopy and infrared reflectance system for the early detection of melanoma. Specifically, the identification of morphological changes related to carcinogenesis is required. In this work, we simulate of the propagation of the ultrasonic waves of the order of 100 MHz as well as of electromagnetic waves of the order of 100 THz in melanoma structures targeting to the estimation and optimization of the basic characteristics of the systems. The simulation results of the acoustic microscopy subsystem aim to provide information such as the geometry of the transducer, the center frequency of operation, the focal length where the power transmittance is optimum and the spot size in focal length. As far as the infrared is concerned the optimal frequency range and the spot illumination size of the external probe is provided. This information is next used to assemble a properly designed system which is applied to melanoma phantoms as well as real skin lesions. Finally, the measurement data are visualized to reveal the information of the experimented structures, proving noteworthy accuracy.

  5. Depression Diagnoses and Fundamental Frequency-Based Acoustic Cues in Maternal Infant-Directed Speech

    ERIC Educational Resources Information Center

    Porritt, Laura L.; Zinser, Michael C.; Bachorowski, Jo-Anne; Kaplan, Peter S.

    2014-01-01

    F[subscript 0]-based acoustic measures were extracted from a brief, sentence-final target word spoken during structured play interactions between mothers and their 3- to 14-month-old infants and were analyzed based on demographic variables and DSM-IV Axis-I clinical diagnoses and their common modifiers. F[subscript 0] range (?F[subscript 0]) was…

  6. Acoustic measurement of suspensions of clay and silt particles using single frequency attenuation and backscatter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of ultrasonic acoustic technology to measure the concentration of fine suspended sediments has the potential to greatly increase the temporal and spatial resolution of sediment measurements while reducing the need for personnel to be present at gauging stations during storm events. The conv...

  7. Aerodynamic and Acoustic Effects of Abrupt Frequency Changes in Excised Larynges

    ERIC Educational Resources Information Center

    Alipour, Fariborz; Finnegan, Eileen M.; Scherer, Ronald C.

    2009-01-01

    Purpose: To determine the aerodynamic and acoustic effects due to a sudden change from chest to falsetto register or vice versa. It was hypothesized that the continuous change in subglottal pressure and flow rate alone (pressure-flow sweep [PFS]) can trigger a mode change in the canine larynx. Method: Ten canine larynges were each mounted over a…

  8. Seafloor roughness estimation employing bathymetric systems: An appraisal of the classification and characterization of high-frequency acoustic data

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bishwajit; Haris, K.

    2012-11-01

    The study of the seafloor is important for living and non-living resource estimation along with the related processes identification. To understand the fine-scale seafloor processes, various methods such as application of acoustic remote sensing, seafloor photographic and geological samplings are well established. Among these, the high-frequency single beam echo-sounding system (SBES) and multi-beam echo-sounding system (MBES) became more familiar due to their rapid data acquisition advantages. These systems are extensively used to study the seafloor morphology etc. Seafloor acoustic backscatter information provides fine-scale seafloor roughness and associated sediment processes. The angular and normal incidence backscatter strength data can be utilized to estimate seafloor roughness parameters using physics based numerical inversion models. However, for such applications, the segmentation of the backscatter data is essential, especially before initiating any numerical based models to characterize the seafloor. Under such situations, the employment of the soft-computational techniques e.g., artificial neural networks (ANNs) are found to be suitable for seafloor acoustic data segmentation and classifications. Seafloor studies are carried out at the National Institute of Oceanography, Goa during the last two decades employing similar techniques, and study results related to the seafloor classification and characterizations are documented in this research review.

  9. Age group estimation in free-ranging African elephants based on acoustic cues of low-frequency rumbles

    PubMed Central

    Stoeger, Angela S.; Zeppelzauer, Matthias; Baotic, Anton

    2015-01-01

    Animal vocal signals are increasingly used to monitor wildlife populations and to obtain estimates of species occurrence and abundance. In the future, acoustic monitoring should function not only to detect animals, but also to extract detailed information about populations by discriminating sexes, age groups, social or kin groups, and potentially individuals. Here we show that it is possible to estimate age groups of African elephants (Loxodonta africana) based on acoustic parameters extracted from rumbles recorded under field conditions in a National Park in South Africa. Statistical models reached up to 70 % correct classification to four age groups (infants, calves, juveniles, adults) and 95 % correct classification when categorising into two groups (infants/calves lumped into one group versus adults). The models revealed that parameters representing absolute frequency values have the most discriminative power. Comparable classification results were obtained by fully automated classification of rumbles by high-dimensional features that represent the entire spectral envelope, such as MFCC (75 % correct classification) and GFCC (74 % correct classification). The reported results and methods provide the scientific foundation for a future system that could potentially automatically estimate the demography of an acoustically monitored elephant group or population. PMID:25821348

  10. [Thermoelastic excitation of acoustic waves in biological models under the effect of the high peak-power pulsed electromagnetic radiation of extremely high frequency].

    PubMed

    Gapeev, A B; Rubanik, A V; Pashovkin, T N; Chemeris, N K

    2007-01-01

    The capability of high peak-power pulsed electromagnetic radiation of extremely high frequency (35,27 GHz, pulse widths of 100 and 600 ns, peak power of 20 kW) to excite acoustic waves in model water-containing objects and muscular tissue of animals has been experimentally shown for the first time. The amplitude and duration of excited acoustic pulses are within the limits of accuracy of theoretical assessments and have a complex nonlinear dependence on the energy input of electromagnetic radiation supplied. The velocity of propagation of acoustic pulses in water-containing models and isolated muscular tissue of animals was close to the reference data. The excitation of acoustic waves in biological systems under the action of high peak-power pulsed electromagnetic radiation of extremely high frequency is the important phenomenon, which essentially contributes to the understanding of the mechanisms of biological effects of these electromagnetic fields.

  11. Observations and transport theory analysis of low frequency, acoustic mode propagation in the Eastern North Pacific Ocean.

    PubMed

    Chandrayadula, Tarun K; Colosi, John A; Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Howe, Bruce M

    2013-10-01

    Second order mode statistics as a function of range and source depth are presented from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX). During LOAPEX, low frequency broadband signals were transmitted from a ship-suspended source to a mode-resolving vertical line array. Over a one-month period, the ship occupied seven stations from 50 km to 3200 km distance from the receiver. At each station broadband transmissions were performed at a near-axial depth of 800 m and an off-axial depth of 350 m. Center frequencies at these two depths were 75 Hz and 68 Hz, respectively. Estimates of observed mean mode energy, cross mode coherence, and temporal coherence are compared with predictions from modal transport theory, utilizing the Garrett-Munk internal wave spectrum. In estimating the acoustic observables, there were challenges including low signal to noise ratio, corrections for source motion, and small sample sizes. The experimental observations agree with theoretical predictions within experimental uncertainty.

  12. Empirical dependence of acoustic transmission scintillation statistics on bandwidth, frequency, and range in New Jersey continental shelf.

    PubMed

    Andrews, Mark; Chen, Tianrun; Ratilal, Purnima

    2009-01-01

    The scintillation statistics of broadband acoustic transmissions are determined as a function of signal bandwidth B, center frequency f(c), and range with experimental data in the New Jersey continental shelf. The received signal intensity is shown to follow the Gamma distribution implying that the central limit theorem has led to a fully saturated field from independent multimodal propagation contributions. The Gamma distribution depends on the mean intensity and the number of independent statistical fluctuations or coherent cells micro of the received signal. The latter is calculated for the matched filter, the Parseval sum, and the bandpassed center frequency, all of which are standard ocean acoustic receivers. The number of fluctuations mu of the received signal is found to be an order of magnitude smaller than the time-bandwidth product TB of the transmitted signal, and to increase monotonically with relative bandwidth Bfc. A computationally efficient numerical approach is developed to predict the mean intensity and the corresponding broadband transmission loss of a fluctuating, range-dependent ocean waveguide by range and depth averaging the output of a time-harmonic stochastic propagation model. This model enables efficient and accurate estimation of transmission loss over wide areas, which has become essential in wide-area sonar imaging applications.

  13. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    NASA Astrophysics Data System (ADS)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  14. Monitoring microbe-induced physical property changes using high-frequency acoustic waveform data: Toward the development of a microbial megascope

    SciTech Connect

    Williams, Kenneth Hurst

    2002-05-20

    A laboratory investigation was undertaken to determine the effect of microbe generated gas bubbles in controlled, saturated sediment columns utilizing a novel technique involving acoustic wave propagation. Specifically, the effect of denitrifying bacteria on saturated flow conditions was evaluated in light of the stimulated production of N{sub 2} gas and the resulting plugging of the pore throats. The propagation of high frequency acoustic waves through the sediment columns was used to locate those regions in the column where gas accumulation occurred. Over a period of six weeks, regions of gas accumulation resulted in the attenuation of acoustic wave energies with the decreases in amplitude typically greater than one order of magnitude.

  15. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water.

    PubMed

    Ferkous, Hamza; Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-09-01

    In the present work, comprehensive experimental and numerical investigations of the effects of frequency and acoustic intensity on the sonochemical degradation of naphthol blue black (NBB) in water have been carried out. The experiments have been examined at three frequencies (585, 860 and 1140 kHz) and over a wide range of acoustic intensities. The observed experimental results have been discussed using a more realistic approach that combines the single bubble sonochemistry and the number of active bubbles. The single bubble yield has been predicted using a model that combines the bubble dynamics with chemical kinetics consisting of series of chemical reactions (73 reversible reactions) occurring inside an air bubble during the strong collapse. The experimental results showed that the sonochemical degradation rate of NBB increased substantially with increasing acoustic intensity and decreased with increasing ultrasound frequency. The numerical simulations revealed that NBB degraded mainly through the reaction with hydroxyl radical (OH), which is the dominant oxidant detected in the bubble during collapse. The production rate of OH radical inside a single bubble followed the same trend as that of NBB degradation rate. It increased with increasing acoustic intensity and decreased with increasing frequency. The enhancing effect of acoustic intensity toward the degradation of NBB was attributed to the rise of both the individual chemical bubble yield and the number of active bubbles with increasing acoustic intensity. The reducing effect of frequency was attributed to the sharp decrease in the chemical bubble yield with increasing frequency, which would not compensated by the rise of the number of active bubbles with the increase in ultrasound frequency. PMID:25753313

  16. Fundamental frequency and voice perturbation measures in smokers and non-smokers: An acoustic and perceptual study

    NASA Astrophysics Data System (ADS)

    Freeman, Allison

    This research examined the fundamental frequency and perturbation (jitter % and shimmer %) measures in young adult (20-30 year-old) and middle-aged adult (40-55 year-old) smokers and non-smokers; there were 36 smokers and 36 non-smokers. Acoustic analysis was carried out utilizing one task: production of sustained /a/. These voice samples were analyzed utilizing Multi-Dimensional Voice Program (MDVP) software, which provided values for fundamental frequency, jitter %, and shimmer %.These values were analyzed for trends regarding smoking status, age, and gender. Statistical significance was found regarding the fundamental frequency, jitter %, and shimmer % for smokers as compared to non-smokers; smokers were found to have significantly lower fundamental frequency values, and significantly higher jitter % and shimmer % values. Statistical significance was not found regarding fundamental frequency, jitter %, and shimmer % for age group comparisons. With regard to gender, statistical significance was found regarding fundamental frequency; females were found to have statistically higher fundamental frequencies as compared to males. However, the relationships between gender and jitter % and shimmer % lacked statistical significance. These results indicate that smoking negatively affects voice quality. This study also examined the ability of untrained listeners to identify smokers and non-smokers based on their voices. Results of this voice perception task suggest that listeners are not accurately able to identify smokers and non-smokers, as statistical significance was not reached. However, despite a lack of significance, trends in data suggest that listeners are able to utilize voice quality to identify smokers and non-smokers.

  17. Solar-cycle variations of large frequency separations of acoustic modes: implications for asteroseismology

    NASA Astrophysics Data System (ADS)

    Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; New, R.

    2011-06-01

    We have studied solar-cycle changes in the large frequency separations that can be observed in Birmingham Solar Oscillations Network (BiSON) data. The large frequency separation is often one of the first outputs from asteroseismic studies because it can help constrain stellar properties like mass and radius. We have used three methods for estimating the large separations: use of individual p-mode frequencies, computation of the autocorrelation of frequency-power spectra, and computation of the power spectrum of the power spectrum. The values of the large separations obtained by the different methods are offset from each other and have differing sensitivities to the realization noise. A simple model was used to predict solar-cycle variations in the large separations, indicating that the variations are due to the well-known solar-cycle changes to mode frequency. However, this model is only valid over a restricted frequency range. We discuss the implications of these results for asteroseismology.

  18. A method for achieving monotonic frequency-temperature response for langasite surface-acoustic-wave high-temperature sensor

    NASA Astrophysics Data System (ADS)

    Shaoming, Bao; Yabing, Ke; Yanqing, Zheng; Lina, Cheng; Honglang, Li

    2016-02-01

    To achieve the monotonic frequency-temperature response for a high-temperature langasite (LGS) surface-acoustic-wave (SAW) sensor in a wide temperature range, a method utilizing two substrate cuts with different propagation angles on the same substrate plane was proposed. In this method, the theory of effective permittivity is adopted to calculate the temperature coefficients of frequency (TCF), electromechanical coupling coefficients (k2), and power flow angle (PFA) for different propagation angles on the same substrate plane, and then the two substrate cuts were chosen to have large k2 and small PFA, as well as the difference in their TCFs (ΔTCF) to always have the same sign of their values. The Z-cut LGS substrate plane was taken as an example, and the two suitable substrate cuts with propagation angles of 74 and 80° were chosen to derive a monotonic frequency-temperature response for LGS SAW sensors at -50 to 540 °C. Experiments on a LGS SAW sensor using the above two substrate cuts were designed, and its measured frequency-temperature response at -50 to 540 °C agreed well with the theory, demonstrating the high accuracy of the proposed method.

  19. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    SciTech Connect

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  20. Gaseous bubble oscillations in anisotropic non-Newtonian fluids under influence of high-frequency acoustic field

    NASA Astrophysics Data System (ADS)

    Golykh, R. N.

    2016-06-01

    Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.

  1. Bandwidth-efficient frequency-domain equalization for single carrier multiple-input multiple-output underwater acoustic communications.

    PubMed

    Zhang, Jian; Zheng, Yahong Rosa

    2010-11-01

    This paper proposes a single carrier (SC) receiver scheme with bandwidth-efficient frequency-domain equalization (FDE) for underwater acoustic (UWA) communications employing multiple transducers and multiple hydrophones. Different from the FDE methods that perform FDE on a whole data block, the proposed algorithm implements an overlapped-window FDE by partitioning a large block into small subblocks. A decision-directed channel estimation scheme is incorporated with the overlapped-window FDE to track channel variations and improve the error performance. The proposed algorithm significantly increases the length of each block and keeps the same number of training symbols per block, hence achieving better data efficiency without performance degradation. The proposed scheme is tested by the undersea data collected in the Rescheduled Acoustic Communications Experiment (RACE) in March 2008. Without coding, the 2-by-12 MIMO overlapped-window FDE reduces the average bit error rate (BER) over traditional SC-FDE schemes by 74.4% and 84.6% for the 400 m and 1000 m range systems, respectively, at the same data efficiency. If the same BER performance is required, the proposed algorithm has only 8.4% transmission overhead, comparing to over 20% overhead in other existing UWA OFDM and SC-FDE systems. The improved data efficiency and/or error performance of the proposed FDE scheme is achieved by slightly increased computational complexity over traditional SC-FDE schemes.

  2. Flight parameter estimation using instantaneous frequency and time delay measurements from a three-element planar acoustic array.

    PubMed

    Lo, Kam W

    2016-05-01

    The acoustic signal emitted by a turbo-prop aircraft consists of a strong narrowband tone superimposed on a broadband random component. A ground-based three-element planar acoustic array can be used to estimate the full set of flight parameters of a turbo-prop aircraft in transit by measuring the time delay (TD) between the signal received at the reference sensor and the signal received at each of the other two sensors of the array over a sufficiently long period of time. This paper studies the possibility of using instantaneous frequency (IF) measurements from the reference sensor to improve the precision of the flight parameter estimates. A simplified Cramer-Rao lower bound analysis shows that the standard deviations in the estimates of the aircraft velocity and altitude can be greatly reduced when IF measurements are used together with TD measurements. Two flight parameter estimation algorithms that utilize both IF and TD measurements are formulated and their performances are evaluated using both simulated and real data. PMID:27250134

  3. Studies of horizontal refraction and scattering of low-frequency acoustic signals using a modal approach in signal processing of NPAL data

    NASA Astrophysics Data System (ADS)

    Voronovich, Alexander G.; Ostashev, Vladimir E.

    2003-04-01

    In our previous paper [J. Acoust. Soc. Am. 112, 2232], we obtained a time dependence of the horizontal refraction angle (HRA) of acoustic signals propagating over a range of about 4000 km in the ocean. This dependence was computed by processing of acoustic signals recorded during the North Pacific Acoustic Laboratory (NPAL) experiment using a ray-type approach. In the present paper, we consider the results obtained in signal processing of the same data using a modal approach. In this approach, the acoustic field is represented as a sum of local acoustic modes with amplitudes depending on a frequency and arrival angle. We obtained a time dependence of HRA for a time interval of about a year. Time evolution of HRA exhibits long-period variations which could be associated with seasonal trends in the sound speed profiles. The results are consistent with those obtained by the ray approach. Different horizontal angles within arrivals were impossible to resolve due to sound scattering by internal waves. A theoretical estimate of the angular width of the acoustic signals in a horizontal plane was obtained. It appears to be consistent with the observed variance of HRA data. [Work supported by ONR.] a)J. A. Colosi, B. D. Cornuelle, B. D. Dushaw, M. A. Dzieciuch, B. M. Howe, J. A. Mercer, R. C. Spindel, and P. F. Worcester.

  4. Lexical frequency effects and phonetic duration of English homophones: An acoustic study

    NASA Astrophysics Data System (ADS)

    Cohn, Abigail C.; Brugman, Johanna; Crawford, Clifford; Joseph, Andrew

    2005-09-01

    Some current views of phonology assume a single abstract representation for each lexical item, while others assume extensive encoding of fine-grained detail. Some proponents of the latter view have claimed that differences in lexical (token) frequency are manifested as differences in phonetic duration. This claim was investigated in three experiments measuring the phonetic durations of heterographic pairs of homophonous English nouns differing in token frequency. Homophonous pairs were grouped according to magnitude of frequency difference within pairs: large difference (time ~ thyme), medium difference (pain ~ pane), and no difference (son ~ sun). Four participants read (a) words in a list in a frame sentence; (b) target items in composed sentences; and (c) pairs in contrast. No systematic differences of ratio of duration (more frequent/less frequent) were found for individual speakers or across speakers in (a) or (b). Preliminary results for (c) show differences in duration correlated with contrastive focus and final lengthening, but not lexical frequency. The lack of positive correlation between duration and frequency calls into question the hypothesis that greater frequency leads to shorter duration, and underlines the need for a better understanding of the locus of frequency effects in the lexicon and speech production.

  5. Computed Linear/Nonlinear Acoustic Response of a Cascade for Single/Multi Frequency Excitation

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Hixon, R.; Sawyer, S.

    2004-01-01

    This paper examines mode generation and propagation characteristics of a 2-D cascade due to incident vortical disturbances using a time domain approach. Full nonlinear Euler equations are solved employing high order accurate spatial differencing and time marching techniques. The solutions show the generation and propagation of mode orders that are expected from theory. Single frequency excitations show linear response over a wide range of amplitudes. The response for multi-frequency excitations tend to become nonlinear due to interaction between frequencies and self interaction.

  6. Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry.

    PubMed

    Fischer, Andreas; König, Jörg; Haufe, Daniel; Schlüssler, Raimund; Büttner, Lars; Czarske, Jürgen

    2013-08-01

    To reduce the noise of machines such as aircraft engines, the development and propagation of sound has to be investigated. Since the applicability of microphones is limited due to their intrusiveness, contactless measurement techniques are required. For this reason, the present study describes an optical method based on the Doppler effect and its application for acoustic particle velocity (APV) measurements. While former APV measurements with Doppler techniques are point measurements, the applied system is capable of simultaneous measurements at multiple points. In its current state, the system provides linear array measurements of one component of the APV demonstrated by multi-tone experiments with tones up to 17 kHz for the first time.

  7. Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry.

    PubMed

    Fischer, Andreas; König, Jörg; Haufe, Daniel; Schlüssler, Raimund; Büttner, Lars; Czarske, Jürgen

    2013-08-01

    To reduce the noise of machines such as aircraft engines, the development and propagation of sound has to be investigated. Since the applicability of microphones is limited due to their intrusiveness, contactless measurement techniques are required. For this reason, the present study describes an optical method based on the Doppler effect and its application for acoustic particle velocity (APV) measurements. While former APV measurements with Doppler techniques are point measurements, the applied system is capable of simultaneous measurements at multiple points. In its current state, the system provides linear array measurements of one component of the APV demonstrated by multi-tone experiments with tones up to 17 kHz for the first time. PMID:23927110

  8. Course of hearing recovery according to frequency in patients with acute acoustic sensorineural hearing loss.

    PubMed

    Harada, Hirofumi; Ichikawa, Daisuke; Imamura, Akihide

    2008-01-01

    Through pure-tone audiometry, we studied the course of hearing recovery in 24 ears of 20 men (ages 18-48 years) who had acute acoustic sensorineural hearing loss (ASHL). All subjects were members of the Japanese Self-Defense Force. The hearing level in 5 ears returned to normal, the hearing level of 13 ears recovered but was not within the normal range, and the hearing level of 6 ears was unchanged. The time from noise exposure to presentation was longer in patients with unchanged hearing than in other patients. Recovery of hearing was poorest at 4,000 Hz, followed by 8,000 and 2,000 Hz. We concluded that hearing in patients with acute ASHL is likely to return to normal when the hearing level at 4,000 Hz recovers gradually; partial recovery of hearing is expected when the hearing level at 4,000 Hz reaches an early plateau. PMID:18616091

  9. Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Shen, Huijie; Zhang, Linke; Su, Yongsheng; Yu, Dianlong

    2016-07-01

    Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range.

  10. Blind source separation based on time-frequency morphological characteristics for rigid acoustic scattering by underwater objects

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Li, Xiukun

    2016-06-01

    Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.

  11. Time-varying autoregressive modelling for nonstationary acoustic signal and its frequency analysis

    NASA Astrophysics Data System (ADS)

    Sodsri, Chukiet

    2003-06-01

    A time-varying autoregressive (TVAR) approach is used for modeling nonstationary signals, and frequency information is then extracted from the TVAR parameters. Two methods may be used for estimating the TVAR parameters: the adaptive algorithm approach and the basis function approach. Adaptive algorithms, such as the least mean square (LMS) and the recursive least square (RLS), use a dynamic model for adapting the TVAR parameters and are capable of tracking time-varying frequency, provided that the variation is slow. It is observed that, if the signals have a single time-frequency component, the RLS with a fixed pole on the unit circle yields the fastest convergence. The basis function method employs an explicit model for the TVAR parameter variation, and model parameters are estimated via a block calculation. We proposed a modification to the basis function method by utilizing both forward and backward predictors for estimating the time-varying spectral density of nonstationary signals. It is shown that our approach yields better accuracy than the existing basis function approach, which uses only the forward predictor. The selection of the basis functions and limitations are also discussed in this thesis. Finally, the proposed approach is applied to analyze violin vibrato. Our results showed superior frequency resolution and spectral line smoothness using the proposed approach, compared to conventional analysis with the short time Fourier transform (STFT) whose frequency resolution is very limited. It was also found that frequency modulation of vibrato occurs at the rate of 6 Hz, and the frequency variations for each partial are different and increase nonlinearly with the partial number.

  12. Iterative Frequency Domain Decision Feedback Equalization and Decoding for Underwater Acoustic Communications

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Ge, Jian-Hua

    2012-12-01

    Single-carrier (SC) transmission with frequency-domain equalization (FDE) is today recognized as an attractive alternative to orthogonal frequency-division multiplexing (OFDM) for communication application with the inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel. In this paper, we investigate an iterative receiver based on minimum mean square error (MMSE) decision feedback equalizer (DFE) with symbol rate and fractional rate samplings in the frequency domain (FD) and serially concatenated trellis coded modulation (SCTCM) decoder. Based on sound speed profiles (SSP) measured in the lake and finite-element ray tracking (Bellhop) method, the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. Performance results show that the proposed iterative receiver can significantly improve the performance and obtain better data transmission than FD linear and adaptive decision feedback equalizers, especially in adopting fractional rate sampling.

  13. Decomposition of frequency characteristics of acoustic emission signals for different types of partial discharges sources

    NASA Astrophysics Data System (ADS)

    Witos, F.; Gacek, Z.; Paduch, P.

    2006-11-01

    The problem touched in the article is decomposition of frequency characteristic of AE signals into elementary form of three-parametrical Gauss function. At the first stage, for modelled curves in form of sum of three-parametrical Gauss peaks, accordance of modelled curve and a curve resulting from a solutions obtained using method with dynamic windows, Levenberg-Marquardt algorithm, genetic algorithms and differential evolution algorithm are discussed. It is founded that analyses carried out by means differential evolution algorithm are effective and the computer system served an analysis of AE signal frequency characteristics was constructed. Decomposition of frequency characteristics for selected AE signals coming from modelled PD sources using different ends of the bushing, and real PD sources in generator coil bars are carried out.

  14. The cutoff phenomenon in finite Markov chains.

    PubMed Central

    Diaconis, P

    1996-01-01

    Natural mixing processes modeled by Markov chains often show a sharp cutoff in their convergence to long-time behavior. This paper presents problems where the cutoff can be proved (card shuffling, the Ehrenfests' urn). It shows that chains with polynomial growth (drunkard's walk) do not show cutoffs. The best general understanding of such cutoffs (high multiplicity of second eigenvalues due to symmetry) is explored. Examples are given where the symmetry is broken but the cutoff phenomenon persists. PMID:11607633

  15. The stability of the dust acoustic waves under transverse perturbations in a magnetized and collisionless dusty plasma

    NASA Astrophysics Data System (ADS)

    Gao, Dong-Ning; Qi, Xin; Hong, Xue-Ren; Yang, Xue; Duan, Wen-Shan; Yang, Lei; Yang

    2014-06-01

    Numerical and theoretical investigations are carried out for the stability of the dust acoustic waves (DAWs) under the transverse perturbation in a two-ion temperature magnetized and collisionless dusty plasma. The Zakharov-Kuznetsov (ZK) equation, modified ZK equation, and Extended ZK (EZK) equation of the DAWs are given by using the reductive perturbation technique. The cut-off frequency is obtained by applying higher-order transverse perturbations to the soliton solution of the EZK equation. The propagation velocity of solitary waves, the real cut-off frequency, as well as the growth rate of the higher-order perturbation to the solitary wave are obtained.

  16. Frequency and time pattern differences in acoustic signals produced by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae)in stored maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acoustic signals emitted by the last stage larval instars and adults of Prostephanus truncatus and Sitophilus zeamais in stored maize were investigated. Analyses were performed to identify brief, 1-10-ms broadband sound impulses of five different frequency patterns produced by larvae and adults,...

  17. Stability and efficacy of synthetic cationic antimicrobial peptides nebulized using high frequency acoustic waves.

    PubMed

    Wang, Ying; Rezk, Amgad R; Khara, Jasmeet Singh; Yeo, Leslie Y; Ee, Pui Lai Rachel

    2016-05-01

    Surface acoustic wave (SAW), a nanometer amplitude electroelastic wave generated and propagated on low-loss piezoelectric substrates (such as LiNbO3), is an extremely efficient solid-fluid energy transfer mechanism. The present study explores the use of SAW nebulization as a solution for effective pulmonary peptide delivery. In vitro deposition characteristics of the nebulized peptides were determined using a Next Generation Cascade Impactor. 70% of the peptide-laden aerosols generated were within a size distribution favorable for deep lung distribution. The integrity of the nebulized peptides was found to be retained, as shown via mass spectrometry. The anti-mycobacterial activity of the nebulized peptides was found to be uncompromised compared with their non-nebulized counterparts, as demonstrated by the minimum inhibition concentration and the colony forming inhibition activity. The peptide concentration and volume recoveries for the SAW nebulizer were significantly higher than 90% and found to be insensitive to variation in the peptide sequences. These results demonstrate the potential of the SAW nebulization platform as an effective delivery system of therapeutic peptides through the respiratory tract to the deep lung. PMID:27375820

  18. Parametric study of a Schamel equation for low-frequency dust acoustic waves in dusty electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Sabetkar, Akbar; Dorranian, Davoud

    2015-08-01

    In this paper, our attention is first concentrated on obliquely propagating properties of low-frequency (ω ≪ ωcd) "fast" and "slow" dust acoustic waves, in the linear regime, in dusty electronegative plasmas with Maxwellian electrons, kappa distributed positive ions, negative ions (following the combination of kappa-Schamel distribution), and negatively charged dust particles. So, an explicit expression for dispersion relation is derived by linearizing a set of dust-fluid equations. The results show that wave frequency ω in long and short-wavelengths limit is conspicuously affected by physical parameters, namely, positive to negative temperature ion ratio (βp), trapping parameter of negative ions (μ), magnitude of the magnetic field B0 (via ωcd), superthermal index ( κn,κp ), and positive ion to dust density ratio (δp). The signature of the penultimate parameter (i.e., κn) on wave frequency reveals that the frequency gap between the modes reduces (escalates) for k kc r ), where kcr is critical wave number. Alternatively, for weakly nonlinear analysis, reductive perturbation theory has been used to construct 1D and 3D Schamel Korteweg-de Vries (S-KdV) equations, whose nonlinearity coefficient prescribes only compressive soliton for all parameter values of interest. The survey manifests that deviation of ions from Maxwellian behavior leads intrinsic properties of solitary waves to be evolved in opposite trend. Additionally, at lower proportion of trapped negative ions, solitary wave amplitude mitigates, whilst the trapping parameter has no effect on both spatial width and the linear wave. The results are discussed in the context of the Earth's mesosphere of dusty electronegative plasma.

  19. Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency

    NASA Technical Reports Server (NTRS)

    Dean, L. W.

    1975-01-01

    An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.

  20. Laboratory investigation of the acoustic response of seagrass tissue in the frequency band 0.5-2.5 kHz.

    PubMed

    Wilson, Preston S; Dunton, Kenneth H

    2009-04-01

    Previous in situ investigations of seagrass have revealed acoustic phenomena that depend on plant density, tissue gas content, and free bubbles produced by photosynthetic activity, but corresponding predictive models that could be used to optimize acoustic remote sensing, shallow water sonar, and mine hunting applications have not appeared. To begin to address this deficiency, low frequency (0.5-2.5 kHz) acoustic laboratory experiments were conducted on three freshly collected Texas Gulf Coast seagrass species. A one-dimensional acoustic resonator technique was used to assess the biomass and effective acoustic properties of the leaves and rhizomes of Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass), and Halodule wrightii (shoal grass). Independent biomass and gas content estimates were obtained via microscopic cross-section imagery. The acoustic results were compared to model predictions based on Wood's equation for a two-phase medium. The effective sound speed in the plant-filled resonator was strongly dependent on plant biomass, but the Wood's equation model (based on tissue gas content alone) could not predict the effective sound speed for the low irradiance conditions of the experiment, in which no free bubbles were generated by photosynthesis. The results corroborate previously published results obtained in situ for another seagrass species, Posidonia oceanica. PMID:19354371

  1. Laboratory investigation of the acoustic response of seagrass tissue in the frequency band 0.5-2.5 kHz.

    PubMed

    Wilson, Preston S; Dunton, Kenneth H

    2009-04-01

    Previous in situ investigations of seagrass have revealed acoustic phenomena that depend on plant density, tissue gas content, and free bubbles produced by photosynthetic activity, but corresponding predictive models that could be used to optimize acoustic remote sensing, shallow water sonar, and mine hunting applications have not appeared. To begin to address this deficiency, low frequency (0.5-2.5 kHz) acoustic laboratory experiments were conducted on three freshly collected Texas Gulf Coast seagrass species. A one-dimensional acoustic resonator technique was used to assess the biomass and effective acoustic properties of the leaves and rhizomes of Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass), and Halodule wrightii (shoal grass). Independent biomass and gas content estimates were obtained via microscopic cross-section imagery. The acoustic results were compared to model predictions based on Wood's equation for a two-phase medium. The effective sound speed in the plant-filled resonator was strongly dependent on plant biomass, but the Wood's equation model (based on tissue gas content alone) could not predict the effective sound speed for the low irradiance conditions of the experiment, in which no free bubbles were generated by photosynthesis. The results corroborate previously published results obtained in situ for another seagrass species, Posidonia oceanica.

  2. Analysis and experimental validation of the middle-frequency vibro-acoustic coupling property for aircraft structural model based on the wave coupling hybrid FE-SEA method

    NASA Astrophysics Data System (ADS)

    Yan, Yunju; Li, Pengbo; Lin, Huagang

    2016-06-01

    The finite element (FE) method is suitable for low frequency analysis and the statistical energy analysis (SEA) for high frequency analysis, but the vibro-acoustic coupling analysis at middle frequency, especially with a certain range of uncertainty system, requires some new methods. A hybrid FE-SEA method is proposed in this study and the Monte Carlo method is used to check the hybrid FE-SEA method through the energy response analysis of a beam-plate built-up structure with some uncertainty, and the results show that two kinds of calculation results match well consistently. Taking the advantage of the hybrid FE-SEA method, the structural vibration and the cabin noise field responses under the vibro-acoustic coupling for an aircraft model are numerically analyzed, and, also, the corresponding experiment is carried out to verify the simulated results. Results show that the structural vibration responses at low frequency accord well with the experiment, but the error at high frequency is greater. The error of sound pressure response level in cabin throughout the spectrum is less than 3 dB. The research proves the reliability of the method proposed in this paper. This indicates that the proposed method can overcome the strict limitations of the traditional method for a large complex structure with uncertainty factors, and it can also avoid the disadvantages of solving complex vibro-acoustic system using the finite element method or statistical energy analysis in the middle frequency.

  3. Comparison of experiment and models of geodesic acoustic mode frequency and amplitude geometric scaling in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Simon, P.; Conway, G. D.; Stroth, U.; Biancalani, A.; Palermo, F.; the ASDEX Upgrade Team

    2016-04-01

    In a set of dedicated ASDEX Upgrade shape-scan experiments, the influence of plasma geometry on the frequency and amplitude behaviour of the geodesic acoustic mode (GAM), measured by Doppler reflectometry, is studied. In both limiter and divertor configurations, the plasma elongation was varied between circular and highly elongated states (1.1<κ <1.8 ). Also, the edge safety factor was scanned between 3  <  q  <  5. The GAM frequency {ω\\text{GAM}} and amplitude are used to test several models (heuristic, fluid and gyrokinetic based), which incorporate various plasma geometry effects. The experimentally observed effect of decreasing {ω\\text{GAM}} with increasing κ is predicted by most models. Other geometric factors, such as inverse aspect ratio ε and Shafranov shift gradient {Δ\\prime} are also seen to be influential in determining a reliable lower {ω\\text{GAM}} boundary. The GAM amplitude is found to vary with boundary elongation {κ\\text{b}} and safety factor q. The collisional damping is compared to multiple models for the collisionless damping. Collisional damping appears to play a stronger role in the divertor configuration, while collisional and collisionless damping both may contribute to the GAM amplitude in the limiter configuration.

  4. Low-frequency sound speed and attenuation in sandy seabottom from long-range broadband acoustic measurements.

    PubMed

    Wan, Lin; Zhou, Ji-Xun; Rogers, Peter H

    2010-08-01

    A joint China-U.S. underwater acoustics experiment was conducted in the Yellow Sea with a very flat bottom and a strong and sharp thermocline. Broadband explosive sources were deployed both above and below the thermocline along two radial lines up to 57.2 km and a quarter circle with a radius of 34 km. Two inversion schemes are used to obtain the seabottom sound speed. One is based on extracting normal mode depth functions from the cross-spectral density matrix. The other is based on the best match between the calculated and measured modal arrival times for different frequencies. The inverted seabottom sound speed is used as a constraint condition to extract the seabottom sound attenuation by three methods. The first method involves measuring the attenuation coefficients of normal modes. In the second method, the seabottom sound attenuation is estimated by minimizing the difference between the theoretical and measured modal amplitude ratios. The third method is based on finding the best match between the measured and modeled transmission losses (TLs). The resultant seabottom attenuation, averaged over three independent methods, can be expressed as alpha=(0.33+/-0.02)f(1.86+/-0.04)(dB/m kHz) over a frequency range of 80-1000 Hz.

  5. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  6. High-frequency acoustic sensors for operation in a gaseous medium. Final report

    SciTech Connect

    Kino, G.S.

    1990-12-31

    Photothermal microscopy is a technique for measuring thermal properties on a small scale by using focused laser beams as heat sources and as temperature probes. Typically used for nondestructive evaluation (NDE) of materials, its main advantage is its ability to measure types of flaws that are not visible optically or acoustically. Because of the optical nature of photothermal microscopy, sub-micron resolutions can be obtained in many of these thermal measurements. The greatest limitation of these systems is their relatively poor signal-to-noise ratios and, consequently, slow imaging speeds. To circumvent this problem, a variety of approaches to the detection of thermal waves has been pursued in recent years. This thesis compares the relative merits of a common class of techniques that rely on direct observation of physical changes in the heated sample, including a novel approach to interferometric measurement of the thermal expansion. It is found that the optimum approach depends not only on the physical properties of the sample being studies, but also upon the resolution of the experiment and the damage threshold of the specimen. Finally, this dissertation describes the applications of photothermal microscopy to the study of the anisotropic thermal properties of the new high-{Tc} superconductors. By adding a high-vacuum cryostat to the microscope, the authors have been able to study the influence of the superconducting transition on the thermal conductivity. The measurements of the anisotropic thermal conductivity demonstrate that the heat flow along the superconducting planes is enhanced below the transition, and that no such enhancement exists in the non-superconducting direction. Material examined was Bi-Ca-Sr-Cu-O.

  7. Articulation and vocal tract acoustics at soprano subject's high fundamental frequencies.

    PubMed

    Echternach, Matthias; Birkholz, Peter; Traser, Louisa; Flügge, Tabea V; Kamberger, Robert; Burk, Fabian; Burdumy, Michael; Richter, Bernhard

    2015-05-01

    The role of the vocal tract for phonation at very high soprano fundamental frequencies (F0s) is not yet understood in detail. In this investigation, two experiments were carried out with a single professional high soprano subject. First, using two dimensional (2D) dynamic real-time magnetic resonance imaging (MRI) (24 fps) midsagittal and coronal vocal tract shapes were analyzed while the subject sang a scale from Bb5 (932 Hz) to G6 (1568 Hz). In a second experiment, volumetric vocal tract MRI data were recorded from sustained phonations (13 s) for the pitches C6 (1047 Hz) and G6 (1568 Hz). Formant frequencies were measured in physical models created by 3D printing, and calculated from area functions obtained from the 3D vocal tract shapes. The data showed that there were only minor modifications of the vocal tract shape. These changes involved a decrease of the piriform sinus as well as small changes of tongue position. Formant frequencies did not exhibit major differences between C6 and G6 for F1 and F3, respectively. Only F2 was slightly raised for G6. For G6, however, F2 is not excited by any voice source partial. Therefore, this investigation was not able to confirm that the analyzed professional soprano subject adjusted formants to voice source partials for the analyzed F0s. PMID:25994691

  8. Articulation and vocal tract acoustics at soprano subject's high fundamental frequencies.

    PubMed

    Echternach, Matthias; Birkholz, Peter; Traser, Louisa; Flügge, Tabea V; Kamberger, Robert; Burk, Fabian; Burdumy, Michael; Richter, Bernhard

    2015-05-01

    The role of the vocal tract for phonation at very high soprano fundamental frequencies (F0s) is not yet understood in detail. In this investigation, two experiments were carried out with a single professional high soprano subject. First, using two dimensional (2D) dynamic real-time magnetic resonance imaging (MRI) (24 fps) midsagittal and coronal vocal tract shapes were analyzed while the subject sang a scale from Bb5 (932 Hz) to G6 (1568 Hz). In a second experiment, volumetric vocal tract MRI data were recorded from sustained phonations (13 s) for the pitches C6 (1047 Hz) and G6 (1568 Hz). Formant frequencies were measured in physical models created by 3D printing, and calculated from area functions obtained from the 3D vocal tract shapes. The data showed that there were only minor modifications of the vocal tract shape. These changes involved a decrease of the piriform sinus as well as small changes of tongue position. Formant frequencies did not exhibit major differences between C6 and G6 for F1 and F3, respectively. Only F2 was slightly raised for G6. For G6, however, F2 is not excited by any voice source partial. Therefore, this investigation was not able to confirm that the analyzed professional soprano subject adjusted formants to voice source partials for the analyzed F0s.

  9. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2012-01-01

    obtained acoustic impedances do not necessarily correspond to a nowadays available material. Consequently, the values of the acoustic impedances are switched to the nearest values in a large material database. The switched values of the acoustic impedances do not generally give efficient transmission coefficients. Therefore, we proposed, in a second step, the use of a genetic algorithm (GA) to select the best acoustic impedances for matching layers from the material database for a narrow band ultrasonic transducer that work at frequency below the 2.5MHz by considering attenuation. However this bank is rich, the results get better. So the accuracy of the propose method increase by using a lot of materials with exact data for acoustic impedance and their attenuation, especially in high frequency. This yields highly more efficient transmission coefficient. In fact by using increasing number of layer we can increase our chance to find the best sets of materials with valuable both in acoustic impedance and low attenuation. Precisely, the transmission coefficient is almost equal to unity for the all studied cases. Finally the effect of thickness on transmission coefficient is investigated for different layers. The results showed that the transmission coefficient for air media is a function of thickness and sensitive to it even for small variation in thickness. In fact, the sensitivity increases when the differences of acoustic impedances to be high (difference between PZT and air).

  10. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    NASA Astrophysics Data System (ADS)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  11. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  12. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  13. Use of SDWBA predictions for acoustic volume backscattering and the Self-Organizing Map to discern frequencies identifying Meganyctiphanes norvegica from mesopelagic fish species

    NASA Astrophysics Data System (ADS)

    Peña, M.; Calise, L.

    2016-04-01

    To acoustically assess the biomass of multiple species or taxa within a survey region, the volume backscatter data should be apportioned to the constituent sound scatterers. Typically, measured backscatter is attributed to certain species using predictions at different frequencies, mostly based on the difference in scattering at the frequencies of 38 and 120 kHz (dual frequency method). We used the full version of the stochastic distortedwave Born approximation (SDWBA) model to predict backscatter spectra for Meganyctiphanes norvegica and to explore the sensitivities of ΔMVBS to the model parameters, e.g. acoustic frequency and incidence angle, and animal density and sound speed contrast, length, and shape. The orientation is almost the unique parameter responsible for variation, with fatness affecting longer lengths. We present a summary of ΔMVBS that can serve as the basis for identification algorithms. Next, we simulate the scenario encountered in the Balearic Sea (western Mediterranean) where Northern krill are mixed with mesopelagic fish species (bristlemouths and lanternfishes), which are modeled with a prolate spheroid model. Simulated numerical data are employed to emulate the discrimination process with the most common identification techniques and typical survey frequencies. The importance of using density-independent techniques for acoustic classification is highlighted. Finally, an unsupervised neural network, the Self-Organizing Map (SOM), is used to cluster these theoretical data and identify the frequencies that provide, in this case, the most classification potential. The simulation results confirm that pairs of frequencies spanning the Rayleigh and geometric scattering regimes of the targets are the most useful for clustering; a minimum of four frequencies are necessary to separate the three species, while three frequencies are able to differentiate krill from mesopelagic fish species.

  14. Monitoring fin whale (Balaenoptera physalus) acoustic presence by means of a low frequency seismic hydrophone in Western Ionian Sea, EMSO site.

    NASA Astrophysics Data System (ADS)

    Sciacca, Virginia; Caruso, Francesco; Chierici, Francesco; De Domenico, Emilio; Embriaco, Davide; Favali, Paolo; Giovanetti, Gabriele; Larosa, Giuseppina; Pavan, Gianni; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Simeone, Francesco; Viola, Salvatore; Beranzoli, Laura; Marinaro, Giuditta

    2015-04-01

    In 2012, the NEMO-SN1 multidisciplinary seafloor platform was deployed in the Gulf of Catania at a depth of 2100 m. By using the low bandwidth seismic hydrophone SMID DT405D (1Hz acoustically monitored for the first time, over a yearlong campaign, fin whales (Balaenoptera physalus) acoustic activity in the area. The presence of a genetically isolated population of fin whales has been confirmed in recent years in highly productive areas of the Mediterranean Sea. The species acoustic activity has also been monitored in the past within the Western Mediterranean. Despite this, still very little is known about the routes the population follows seasonally throughout the whole basin and, particularly, in the Ionian area. The most common vocalizations attributed to this population are known as "20Hz pulses" and they are grouped in two main types of calls: type "A", downsweep (17Hz frequency lasting about 0,8-1 seconds. From July 2012 to May 2013, low frequency (<1kHz) acoustic data were continuously acquired, saved in 10 minutes long files and analyzed through a MATLAB® software developed for the study, which automatically saves the spectrogram of the band below 50Hz. About 7.000 hours of acoustic recordings have been investigated through spectrograms analysis. The low frequency hydrophone installed aboard the NEMO-SN1/SMO station allowed the detection of both types of the Mediterranean fin whale acoustic signals, recorded for the first time in the area. Furthermore, our results show a previous unknown acoustic presence of fin whales offshore Eastern Sicily throughout all seasons of the investigated year. The new long-term multidisciplinary projects connected to "KM3NeT" and "EMSO" will give us the chance to better understand the animals' occurrence in the area and to investigate their acoustic behavior and population dynamics.

  15. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  16. Objective low-frequency audiometry by distortion-product acoustic emissions.

    PubMed

    Bonfils, P; Avan, P; Londero, A; Trotoux, J; Narcy, P

    1991-10-01

    The aim of this study was to measure distortion-product otoacoustic emissions (DPOEs) in a clinical setting. First, DPOE input-output functions were automatically realized to determine the ratio of the pure tones (primaries) f2 and f1 that would elicit the most significant DPOE input-output function. The DPOE input-output functions presented two separate portions for the f2/f1 ratio, ranging from 1.18 to 1.26: (1) below 60-dB sound pressure level (SPL), a saturating portion with a DPOE detection threshold at 36-dB SPL; and (2) above 66-dB SPL, a linear portion. For other f2/f1 ratios, DPOE input-output functions had a more linear behavior. The DPOEs generated by primary intensities below 60-dB SPL, which show saturating behavior, probably have their origin in the properties of outer hair cells. This indicates that DPOE measurements in a clinical setting must be realized with precise stimulus values: (1) f2/f1 ratio near 1.22, and (2) primary intensities below 60-dB SPL. Second, DPOE input-output functions were realized for DPOEs varying from 707.5 to 342 Hz. No more saturating plateau could be observed with DPOEs below 512.5 Hz, suggesting that active mechanisms are absent below 725 Hz within the human cochlea. These data permit us to establish the bases of an objective low-frequency audiometric test. PMID:1910706

  17. Conjugating time and frequency: hemispheric specialization, acoustic uncertainty, and the mustached bat.

    PubMed

    Washington, Stuart D; Tillinghast, John S

    2015-01-01

    A prominent hypothesis of hemispheric specialization for human speech and music states that the left and right auditory cortices (ACs) are respectively specialized for precise calculation of two canonically-conjugate variables: time and frequency. This spectral-temporal asymmetry does not account for sex, brain-volume, or handedness, and is in opposition to closed-system hypotheses that restrict this asymmetry to humans. Mustached bats have smaller brains, but greater ethological pressures to develop such a spectral-temporal asymmetry, than humans. Using the Heisenberg-Gabor Limit (i.e., the mathematical basis of the spectral-temporal asymmetry) to frame mustached bat literature, we show that recent findings in bat AC (1) support the notion that hemispheric specialization for speech and music is based on hemispheric differences in temporal and spectral resolution, (2) discredit closed-system, handedness, and brain-volume theories, (3) underscore the importance of sex differences, and (4) provide new avenues for phonological research. PMID:25926767

  18. Conjugating time and frequency: hemispheric specialization, acoustic uncertainty, and the mustached bat

    PubMed Central

    Washington, Stuart D.; Tillinghast, John S.

    2015-01-01

    A prominent hypothesis of hemispheric specialization for human speech and music states that the left and right auditory cortices (ACs) are respectively specialized for precise calculation of two canonically-conjugate variables: time and frequency. This spectral-temporal asymmetry does not account for sex, brain-volume, or handedness, and is in opposition to closed-system hypotheses that restrict this asymmetry to humans. Mustached bats have smaller brains, but greater ethological pressures to develop such a spectral-temporal asymmetry, than humans. Using the Heisenberg-Gabor Limit (i.e., the mathematical basis of the spectral-temporal asymmetry) to frame mustached bat literature, we show that recent findings in bat AC (1) support the notion that hemispheric specialization for speech and music is based on hemispheric differences in temporal and spectral resolution, (2) discredit closed-system, handedness, and brain-volume theories, (3) underscore the importance of sex differences, and (4) provide new avenues for phonological research. PMID:25926767

  19. Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear acoustic dynamics in glycerol and DC704 studied by time-domain Brillouin scattering.

    PubMed

    Klieber, Christoph; Hecksher, Tina; Pezeril, Thomas; Torchinsky, Darius H; Dyre, Jeppe C; Nelson, Keith A

    2013-03-28

    This paper presents and discusses the temperature and frequency dependence of the longitudinal and shear viscoelastic response at MHz and GHz frequencies of the intermediate glass former glycerol and the fragile glass former tetramethyl-tetraphenyl-trisiloxane (DC704). Measurements were performed using the recently developed time-domain Brillouin scattering technique, in which acoustic waves are generated optically, propagated through nm thin liquid layers of different thicknesses, and detected optically after transmission into a transparent detection substrate. This allows for a determination of the frequency dependence of the speed of sound and the sound-wave attenuation. When the data are converted into mechanical moduli, a linear relationship between longitudinal and shear acoustic moduli is revealed, which is consistent with the generalized Cauchy relation. In glycerol, the temperature dependence of the shear acoustic relaxation time agrees well with literature data for dielectric measurements. In DC704, combining the new data with data from measurements obtained previously by piezo-ceramic transducers yields figures showing the longitudinal and shear sound velocities at frequencies from mHz to GHz over an extended range of temperatures. The shoving model's prediction for the relaxation time's temperature dependence is fairly well obeyed for both liquids as demonstrated from a plot with no adjustable parameters. Finally, we show that for both liquids the instantaneous shear modulus follows an exponential temperature dependence to a good approximation, as predicted by Granato's interstitialcy model. PMID:23556795

  20. Vibrations of three-dimensional pipe systems with acoustic coupling

    NASA Astrophysics Data System (ADS)

    El-Raheb, M.

    1981-09-01

    A general algorithm is developed for estimating the beam type dynamic response of three dimensional multiplane pipe systems consisting of elbows and straight segments with smooth interface. The transfer matrix approach is adopted in modeling the elastodynamics of each duct with allowance for distributed loads. The formulation includes the acoustic coupling of a plane wave and elbow curvature. Secondary loads from plane wave distortion are considered from a modal solution of the Helmholtz equation in an equivalent rigid waveguide with square cross section. The effect of path imperfection is introduced as a perturbation from the hypothetical perfectly straight pipe. The one dimensional plane wave assumption is valid for frequencies below half the first cut-off frequency. Wave asymmetry from elbow curvature produces substantial increase in response level near and above cut-off.

  1. The effects of a hot outer atmosphere on acoustic-gravity waves

    NASA Technical Reports Server (NTRS)

    Hindman, Bradley W.; Zweibel, Ellen G.

    1994-01-01

    We examine the effects of a hot chromosphere and corona on acoustic-gravity waves in the Sun. We use a simple solar model consisting of a neutrally stable polytrope smoothly matched to an isothermal chromosphere or corona. The temperature of the isothermal region is higher than the minimum temperature of the model. We ignore sphericity, magnetic fields, changes in the gravitational potential, and nonadiabatic effects. We find a family of atmospheric g-modes whose cavity is formed by the extremum in the buoyancy frequency at the transition region. The f-mode is the zero-order member of this family. For large values of the harmonic degree l, f-mode frequencies are below the classic f-mode frequency, mu=(gk)(exp 1/2), whereas at small values of l, the f-mode is identical to the classical f-mode solution. We also find a family of g-modes residing in the low chromosphere. Frequency shifts of p-modes can be positive or negative. When the frequency is less than the acoustic cutoff frequency of the upper isothermal atmsophere, the frequency of the upper isothermal atmosphere, the frequency shift is negative, but when the frequency is above this cutoff, the shifts can be positive. High-frequency acoustic waves which are not reflected by the photospheric cutoff are reflected at the corona by the high sound speed for moderate values of l and v. This result is independent of the solar model as long as the corona is very hot. The data are inconsistent with this result, and reasons for this discrepancy are discussed.

  2. Frequencies of the geodesic acoustic mode and Alfvén gap modes in high-q{sup 2}β plasmas with non-circular cross section

    SciTech Connect

    Fesenyuk, O. P.; Kolesnichenko, Ya. I.; Yakovenko, Yu. V.

    2013-12-15

    This work generalizes recent results [O. P. Fesenyuk et al., Plasma Phys. Controlled Fusion 54, 085014 (2012)] to plasmas with elongated cross section. It suggests new expressions for the frequencies of the geodesic acoustic mode and Alfvén gap modes in tokamaks, with a large ratio of the plasma pressure to the magnetic field pressure and a large safety factor (q≫1, which takes place in discharges with reversed-shear configuration and, especially, in hollow-current discharges)

  3. MHD-model for low-frequency waves in a tokamak with toroidal plasma rotation and problem of existence of global geodesic acoustic modes

    SciTech Connect

    Lakhin, V. P.; Sorokina, E. A. E-mail: vilkiae@gmail.com; Ilgisonis, V. I.; Konovaltseva, L. V.

    2015-12-15

    A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.

  4. Theoretical and experimental study of the microwave cut-off probe for electron density measurements in low-temperature plasmas

    SciTech Connect

    Li Bin; Li Hong; Wang Huihui; Xie Jinlin; Liu Wandong

    2011-10-01

    The microwave cut-off probe for the electron density measurement in low-temperature plasmas is described in this article. It is based on the wave cutoff in an unmagnetized plasma. The measurement principle is analyzed theoretically using a model of plasma slab. Because of the high-pass characteristic of plasma, the waves above the cut-off frequency can penetrate the plasma slab, whereas the lower frequency waves are reflected from the cut-off layer. Therefore, an obvious critical point can be observed in the wave transmission spectrum. The abscissa of the critical point indicates the cut-off frequency, which is directly related to the maximum electron density between transmitting/receiving antennas of the cut-off probe. The measured electron densities are in agreement with the data obtained by the Langmuir probe. Experimental results show that the microwave cut-off probe can be used to diagnose the plasmas with a wide range of parameters.

  5. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators.

  6. Acoustic characterization of contrast-to-tissue ratio and axial resolution for dual-frequency contrast-specific acoustic angiography imaging.

    PubMed

    Lindsey, Brooks D; Rojas, Juan D; Martin, K Heath; Shelton, Sarah E; Dayton, Paul A

    2014-10-01

    Recently, dual-frequency transducers have enabled high-spatial-resolution and high-contrast imaging of vasculature with minimal tissue artifacts by transmitting at a low frequency and receiving broadband superharmonic echoes scattered by microbubble contrast agents. In this work, we examine the imaging parameters for optimizing contrast-to-tissue ratio (CTR) for dual-frequency imaging and the relationship with spatial resolution. Confocal piston transducers are used in a water bath setup to measure the SNR, CTR, and axial resolution for ultrasound imaging of nonlinear scattering of microbubble contrast agents when transmitting at a lower frequency (1.5 to 8 MHz) and receiving at a higher frequency (7.5 to 25 MHz). Parameters varied include the frequency and peak negative pressure of transmitted waves, center frequency of the receiving transducer, microbubble concentration, and microbubble size. CTR is maximized at the lowest transmission frequencies but would be acceptable for imaging in the 1.5 to 3.5 MHz range. At these frequencies, CTR is optimized when a receiving transducer with a center frequency of 10 MHz is used, with the maximum CTR of 25.5 dB occurring when transmitting at 1.5 MHz with a peak negative pressure of 1600 kPa and receiving with a center frequency of 10 MHz. Axial resolution is influenced more heavily by the receiving center frequency, with a weak decrease in measured pulse lengths associated with increasing transmit frequency. A microbubble population containing predominately 4-μm-diameter bubbles yielded the greatest CTR, followed by 1- and then 2-μm bubbles. Varying concentration showed little effect over the tested parameters. CTR dependence on transmit frequency and peak pressure were confirmed through in vivo imaging in two rodents. These findings may lead to improved imaging of vascular remodeling in superficial or luminal cancers such as those of the breast, prostate, and colon. PMID:25265176

  7. Strong terahertz emission from electromagnetic diffusion near cutoff in plasma

    NASA Astrophysics Data System (ADS)

    Cho, M.-H.; Kim, Y.-K.; Suk, H.; Ersfeld, B.; Jaroszynski, D. A.; Hur, M. S.

    2015-04-01

    A new mechanism for electromagnetic emission in the terahertz (THz) frequency regime from laser-plasma interactions is described. A localized and long-lasting transverse current is produced by two counter-propagating short laser pulses in weakly magnetized plasma. We show that the electromagnetic wave radiating from this current source, even though its frequency is close to cut-off of the ambient plasma, grows and diffuses towards the plasma-vacuum boundary, emitting a strong monochromatic THz wave. With driving laser pulses of moderate power, the THz wave has a field strength of tens of MV m-1, a frequency of a few THz and a quasi-continuous power that exceeds all previous monochromatic THz sources. The novelty of the mechanism lies in a diffusing electromagnetic wave close to cut-off, which is modelled by a continuously driven complex diffusion equation.

  8. Detecting vocal fatigue in student singers using acoustic measures of mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Sisakun, Siphan

    2000-12-01

    The purpose of this study is to explore the ability of four acoustic parameters, mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio, to detect vocal fatigue in student singers. The participants are 15 voice students, who perform two distinct tasks, data collection task and vocal fatiguing task. The data collection task includes the sustained vowel /a/, reading a standard passage, and self-rate on a vocal fatigue form. The vocal fatiguing task is the vocal practice of musical scores for a total of 45 minutes. The four acoustic parameters are extracted using the software EZVoicePlus. The data analyses are performed to answer eight research questions. The first four questions relate to correlations of the self-rating scale and each of the four parameters. The next four research questions relate to differences in the parameters over time using one-factor repeated measures analysis of variance (ANOVA). The result yields a proposed acoustic profile of vocal fatigue in student singers. This profile is characterized by increased fundamental frequency; slightly decreased jitter; slightly decreased shimmer; and slightly increased harmonics-to-noise ratio. The proposed profile requires further investigation.

  9. Acoustic Mode Measurements in the Inlet of a Model Turbofan Using a Continuously Rotating Rake

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Hall, David G.

    1992-01-01

    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.

  10. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Hall, David G.

    1993-01-01

    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.

  11. Flow Structure and Channel Change in a Chute Cutoff along a Large Meandering River

    NASA Astrophysics Data System (ADS)

    Rhoads, B. L.; Best, J.; Johnson, K.; Engel, F. L.

    2009-12-01

    Meander cutoffs, which develop when flow cuts across the narrow neck of a bend, are common features along actively migrating meandering rivers. Despite the importance of cutoffs in the dynamics of river meandering and floodplain sedimentation, few, if any, studies have documented in detail the fluvial processes involved in the development of a meander cutoff. This paper examines the morphodynamics of a chute cutoff along the Wabash River, Illinois-Indiana, immediately following initiation of the cutoff. The original cutoff channel formed across the neck of Mackey Bend, a meander loop immediately upstream of the confluence with the Ohio River, during a major flood in June 2008. The formation of the cutoff channel likely involved migration of a headcut from the downstream side to the upstream side of the meander neck along the path of a floodplain slough. A key focus of the investigation has been to document flow structure at the upstream and downstream ends of the cutoff channel so that patterns of flow can be related to morphological change. Three separate measurement campaigns using an acoustic doppler current profiler (ADCP) and single-beam echosounder were conducted between January and May 2009 to determine 3D flow structure and bed morphology during events with different discharges and flow stages. In addition, channel dimensions were surveyed using a dGPS system in September 2008 and in August 2009. Results indicate that the cutoff channel has widened dramatically over a one-year period, increasing its width by as much as 100 percent. Curvature of flow into the entrance of the cutoff channel from the Wabash River generates strong helical motion that advects momentum toward the outer bank, resulting in high velocities near the bank toe and ongoing bank retreat through slab failures. This flow pattern, accentuated by dramatic widening of the cutoff channel, has resulted in deposition along the inner bank and development of a large bar platform at this location

  12. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  13. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  14. Diagnostics principle of microwave cut-off probe for measuring absolute electron density

    SciTech Connect

    Jun, Hyun-Su

    2014-08-15

    A generalized diagnostics principle of microwave cut-off probe is presented with a full analytical solution. In previous studies on the microwave cut-off measurement of weakly ionized plasmas, the cut-off frequency ω{sub c} of a given electron density is assumed to be equal to the plasma frequency ω{sub p} and is predicted using electromagnetic simulation or electric circuit model analysis. However, for specific plasma conditions such as highly collisional plasma and a very narrow probe tip gap, it has been found that ω{sub c} and ω{sub p} are not equal. To resolve this problem, a generalized diagnostics principle is proposed by analytically solving the microwave cut-off condition Re[ε{sub r,eff}(ω = ω{sub c})] = 0. In addition, characteristics of the microwave cut-off condition are theoretically tested for correct measurement of the absolute electron density.

  15. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  16. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  17. Numerical and experimental analysis of the modulation of fiber Bragg gratings by low-frequency complex acoustic waves

    NASA Astrophysics Data System (ADS)

    Silva, Ricardo E.; Franco, Marcos A. R.; Neves, Paulo T.; Bartelt, Hartmut; Pohl, Alexandre A. P.

    2016-07-01

    The acoustically modulated bandwidth of fiber Bragg gratings is simulated and experimentally demonstrated. Finite element and transfer matrix methods are used to investigate a superposition of flexural and longitudinal acoustic waves and the induced complex strain in the grating, for the first time. The results show that the longitudinal strain is suitable to generate a bandwidth-voltage response. The modeling is useful for the design and characterization of acousto-optic modulators, which is attractive for the fast control of several photonic devices.

  18. Lamb waves from airborne explosion sources: Viscous effects and comparisons to ducted acoustic arrivals

    SciTech Connect

    Revelle, D.O.; Whitaker, R.W.

    1996-12-31

    Observations of large explosions in the atmosphere at long range are dominated by a leading pulse of large amplitude and long period that is often followed by a series of higher frequency impulses usually of smaller amplitude. This description can be interpreted using linearized acoustic-gravity wave theory in terms of a Lamb wave arrival followed by ducted acoustic and/or gravity waves. This pattern of arrivals is not the same at all ranges nor is it independent of the source energy or of the altitude of the source. Earlier, Pierce, using an isothermal, windless atmospheric model, theoretically formulated the distances beyond which the Lamb wave would just be discernible and also where it would dominate the arriving signals for a specified explosion source. In this work the authors have evaluated these distances for the cases of both an inviscid and a viscous fluid for the source energies of interest to the CTBT (Comprehensive Test Ban Treaty) R and D work at Los Alamos. Although the inviscid results are analytic, the fully viscous solutions are iterative. For the inviscid solutions, the authors find that the Lamb wave domination distance is proportional to wave frequency at frequencies large with respect to the acoustic waveguide cut-off frequency. Under similar conditions they also find that the computed distances are linearly proportional to the source height. At 1 Hz for example, the Lamb wave must propagate about 200 km before having a significant amplitude. For a viscous fluid they found slight increases in the distances compared to an inviscid fluid with the lower frequencies, near the acoustic cut-off frequency, exhibiting the greatest changes. During the period from 1981--1994 at Los Alamos, they have also observed infrasound from eight point source, near-surface ANFO explosions at White Sands Missile Range events even though the ducted acoustic waves were observed. In this work, they will compare the current theory against some of these observations.

  19. Chloride-driven Electromechanical Phase Lags at Acoustic Frequencies Are Generated by SLC26a5, the Outer Hair Cell Motor Protein

    PubMed Central

    Santos-Sacchi, Joseph; Song, Lei

    2014-01-01

    Outer hair cells (OHC) possess voltage-dependent membrane bound molecular motors, identified as the solute carrier protein SLC26a5, that drive somatic motility at acoustic frequencies. The electromotility (eM) of OHCs provides for cochlear amplification, a process that enhances auditory sensitivity by up to three orders of magnitude. In this study, using whole cell voltage clamp and mechanical measurement techniques, we identify disparities between voltage sensing and eM that result from stretched exponential electromechanical behavior of SLC26a5, also known as prestin, for its fast responsiveness. This stretched exponential behavior, which we accurately recapitulate with a new kinetic model, the meno presto model of prestin, influences the protein’s responsiveness to chloride binding and provides for delays in eM relative to membrane voltage driving force. The model predicts that in the frequency domain, these delays would result in eM phase lags that we confirm by measuring OHC eM at acoustic frequencies. These lags may contribute to canceling viscous drag, a requirement for many models of cochlear amplification. PMID:24988347

  20. Chloride-driven electromechanical phase lags at acoustic frequencies are generated by SLC26a5, the outer hair cell motor protein.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2014-07-01

    Outer hair cells (OHC) possess voltage-dependent membrane bound molecular motors, identified as the solute carrier protein SLC26a5, that drive somatic motility at acoustic frequencies. The electromotility (eM) of OHCs provides for cochlear amplification, a process that enhances auditory sensitivity by up to three orders of magnitude. In this study, using whole cell voltage clamp and mechanical measurement techniques, we identify disparities between voltage sensing and eM that result from stretched exponential electromechanical behavior of SLC26a5, also known as prestin, for its fast responsiveness. This stretched exponential behavior, which we accurately recapitulate with a new kinetic model, the meno presto model of prestin, influences the protein's responsiveness to chloride binding and provides for delays in eM relative to membrane voltage driving force. The model predicts that in the frequency domain, these delays would result in eM phase lags that we confirm by measuring OHC eM at acoustic frequencies. These lags may contribute to canceling viscous drag, a requirement for many models of cochlear amplification.

  1. Natural cutoffs via compact symplectic manifolds

    NASA Astrophysics Data System (ADS)

    Nozari, K.; Gorji, M. A.; Hosseinzadeh, V.; Vakili, B.

    2016-01-01

    In the context of phenomenological models of quantum gravity, it is claimed that ultraviolet (UV) and infrared (IR) natural cutoffs can be realized from local deformations of the Hamiltonian systems. In this paper, we scrutinize this hypothesis and formulate a cutoff-regularized Hamiltonian system. The results show that while local deformations are necessary to have cutoffs, they are not sufficient. In fact, the cutoffs can be realized from globally-deformed Hamiltonian systems that are defined on compact symplectic manifolds. By taking the universality of quantum gravity effects into account, we then conclude that quantum gravity cutoffs are global (topological) properties of the symplectic manifolds. We justify our results by considering three well-known examples: the Moyal, Snyder and polymer-deformed Hamiltonian systems.

  2. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography.

    PubMed

    Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A; Jiang, Xiaoning

    2015-12-01

    In this paper, we present phantom evaluation results of a stacked-type dual-frequency 1-3 piezoelectric composite transducer as a feasibility study for intracavitary acoustic angiography. Our previous design (6.5/30 MHz PMN-PT single crystal transducer) for intravascular contrast ultrasound imaging exhibited a contrast-to-tissue ratio (CTR) of 12 dB with a penetration depth of 2.5 mm. For improved penetration depth (>3 mm) and comparable contrast-to-tissue ratio (>12 dB), we evaluated a lower frequency 2/14 MHz PZT 1-3 composite transducer. Superharmonic imaging performance of this transducer and a detailed characterization of key parameters for acoustic angiography are presented. The 2/14 MHz arrangement demonstrated a -6 dB fractional bandwidth of 56.5% for the transmitter and 41.8% for the receiver, and produced sufficient peak-negative pressures (>1.5 MPa) at 2 MHz to induce a strong nonlinear harmonic response from microbubble contrast agents. In an in-vitro contrast ultrasound study using a tissue mimicking phantom and 200 μm cellulose microvessels, higher harmonic microbubble responses, from the 5th through the 7th harmonics, were detected with a signal-to-noise ratio of 16 dB. The microvessels were resolved in a two-dimensional image with a -6dB axial resolution of 615 μm (5.5 times the wavelength of 14 MHz waves) and a contrast-to-tissue ratio of 16 dB. This feasibility study, including detailed explanation of phantom evaluation and characterization procedures for key parameters, will be useful for the development of future dual-frequency array transducers for intracavitary acoustic angiography. PMID:26112426

  3. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography.

    PubMed

    Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A; Jiang, Xiaoning

    2015-12-01

    In this paper, we present phantom evaluation results of a stacked-type dual-frequency 1-3 piezoelectric composite transducer as a feasibility study for intracavitary acoustic angiography. Our previous design (6.5/30 MHz PMN-PT single crystal transducer) for intravascular contrast ultrasound imaging exhibited a contrast-to-tissue ratio (CTR) of 12 dB with a penetration depth of 2.5 mm. For improved penetration depth (>3 mm) and comparable contrast-to-tissue ratio (>12 dB), we evaluated a lower frequency 2/14 MHz PZT 1-3 composite transducer. Superharmonic imaging performance of this transducer and a detailed characterization of key parameters for acoustic angiography are presented. The 2/14 MHz arrangement demonstrated a -6 dB fractional bandwidth of 56.5% for the transmitter and 41.8% for the receiver, and produced sufficient peak-negative pressures (>1.5 MPa) at 2 MHz to induce a strong nonlinear harmonic response from microbubble contrast agents. In an in-vitro contrast ultrasound study using a tissue mimicking phantom and 200 μm cellulose microvessels, higher harmonic microbubble responses, from the 5th through the 7th harmonics, were detected with a signal-to-noise ratio of 16 dB. The microvessels were resolved in a two-dimensional image with a -6dB axial resolution of 615 μm (5.5 times the wavelength of 14 MHz waves) and a contrast-to-tissue ratio of 16 dB. This feasibility study, including detailed explanation of phantom evaluation and characterization procedures for key parameters, will be useful for the development of future dual-frequency array transducers for intracavitary acoustic angiography.

  4. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.

    PubMed

    Trujillo, Francisco Javier; Knoerzer, Kai

    2011-11-01

    High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound.

  5. Combination of spatial diversity and parallel decision feedback equalizer in a Single Input Multiple Output underwater acoustic communication system operating at very high frequencies

    NASA Astrophysics Data System (ADS)

    Skoro Kaskarovska, Violeta; Beaujean, Pierre-Philippe

    2013-05-01

    Single Input Multiple Output (SIMO) acoustic communication system using an adaptive spatial diversity combined with parallel Decision Feedback Equalizer (DFE) is presented in this document. The SIMO system operates at high frequencies with high data rate over a limited range (less than 200 m) in very shallow waters. The SIMO system consists of a single source transmitting Phase Shift Keying (PSK) messages modulated at 300 kHz and received by multiple receivers. In a first configuration, the symbols collected at each receiver are equalized using a decision feedback equalizer and combined using Maximum Ratio Combining (MRC). In a second configuration, the MRC outputs are used as decision symbols in the DFE. This second configuration is a form of turbo equalization: the process can be repeated over and over, leading to a better estimate of the received message as the number of iterations increases. The adaptive process of diversity is repeated until the best possible result is achieved or a predefined error criterion is met. Bit Error Rate (BER) and Signal-to-Noise-and-Interference Ratio (SNIR) are used as performance metrics of the acoustic channel. Experimental results using SIMO system with three, four or five receivers and pre-processed real recorded data demonstrate ability to improve the performance of the acoustic channel in challenging environments. Using received messages with non-zero BER, adaptive spatial diversity can achieve BER of 0% and increased SNIR of 3 dB with number of iterations depending on the number of receivers used.

  6. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    PubMed

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis.

  7. Causal determination of acoustic group velocity and frequency derivative of attenuation with finite-bandwidth Kramers-Kronig relations

    NASA Astrophysics Data System (ADS)

    Mobley, Joel; Waters, Kendall R.; Miller, James G.

    2005-07-01

    Kramers-Kronig (KK) analyses of experimental data are complicated by the extrapolation problem, that is, how the unexamined spectral bands impact KK calculations. This work demonstrates the causal linkages in resonant-type data provided by acoustic KK relations for the group velocity (cg) and the derivative of the attenuation coefficient (α') (components of the derivative of the acoustic complex wave number) without extrapolation or unmeasured parameters. These relations provide stricter tests of causal consistency relative to previously established KK relations for the phase velocity (cp) and attenuation coefficient (α) (components of the undifferentiated acoustic wave number) due to their shape invariance with respect to subtraction constants. For both the group velocity and attenuation derivative, three forms of the relations are derived. These relations are equivalent for bandwidths covering the entire infinite spectrum, but differ when restricted to bandlimited spectra. Using experimental data from suspensions of elastic spheres in saline, the accuracy of finite-bandwidth KK predictions for cg and α' is demonstrated. Of the multiple methods, the most accurate were found to be those whose integrals were expressed only in terms of the phase velocity and attenuation coefficient themselves, requiring no differentiated quantities.

  8. Causal determination of acoustic group velocity and frequency derivative of attenuation with finite-bandwidth Kramers-Kronig relations.

    PubMed

    Mobley, Joel; Waters, Kendall R; Miller, James G

    2005-07-01

    Kramers-Kronig (KK) analyses of experimental data are complicated by the extrapolation problem, that is, how the unexamined spectral bands impact KK calculations. This work demonstrates the causal linkages in resonant-type data provided by acoustic KK relations for the group velocity (c(g)) and the derivative of the attenuation coefficient (alpha') (components of the derivative of the acoustic complex wave number) without extrapolation or unmeasured parameters. These relations provide stricter tests of causal consistency relative to previously established KK relations for the phase velocity (c(p)) and attenuation coefficient (alpha) (components of the undifferentiated acoustic wave number) due to their shape invariance with respect to subtraction constants. For both the group velocity and attenuation derivative, three forms of the relations are derived. These relations are equivalent for bandwidths covering the entire infinite spectrum, but differ when restricted to bandlimited spectra. Using experimental data from suspensions of elastic spheres in saline, the accuracy of finite-bandwidth KK predictions for c(g) and alpha' is demonstrated. Of the multiple methods, the most accurate were found to be those whose integrals were expressed only in terms of the phase velocity and attenuation coefficient themselves, requiring no differentiated quantities.

  9. Low-frequency target strength and abundance of shoaling Atlantic herring (Clupea harengus) in the Gulf of Maine during the Ocean Acoustic Waveguide Remote Sensing 2006 Experiment.

    PubMed

    Gong, Zheng; Andrews, Mark; Jagannathan, Srinivasan; Patel, Ruben; Jech, J Michael; Makris, Nicholas C; Ratilal, Purnima

    2010-01-01

    The low-frequency target strength of shoaling Atlantic herring (Clupea harengus) in the Gulf of Maine during Autumn 2006 spawning season is estimated from experimental data acquired simultaneously at multiple frequencies in the 300-1200 Hz range using (1) a low-frequency ocean acoustic waveguide remote sensing (OAWRS) system, (2) areal population density calibration with several conventional fish finding sonar (CFFS) systems, and (3) low-frequency transmission loss measurements. The OAWRS system's instantaneous imaging diameter of 100 km and regular updating enabled unaliased monitoring of fish populations over ecosystem scales including shoals of Atlantic herring containing hundreds of millions of individuals, as confirmed by concurrent trawl and CFFS sampling. High spatial-temporal coregistration was found between herring shoals imaged by OAWRS and concurrent CFFS line-transects, which also provided fish depth distributions. The mean scattering cross-section of an individual shoaling herring is found to consistently exhibit a strong, roughly 20 dB/octave roll-off with decreasing frequency in the range of the OAWRS survey over all days of the roughly 2-week experiment, consistent with the steep roll-offs expected for sub-resonance scattering from fish with air-filled swimbladders.

  10. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  11. Speed of pulled fronts with a cutoff.

    PubMed

    Benguria, R D; Depassier, M C

    2007-05-01

    We study the effect of a small cutoff epsilon on the velocity of a pulled front in one dimension by means of a variational principle. We obtain a lower bound on the speed dependent on the cutoff, for which the two leading order terms correspond to the Brunet-Derrida expression. To do so we cast a known variational principle for the speed of propagation of fronts in different variables which makes it more suitable for applications. PMID:17677021

  12. Near-continuous suspended sediment monitoring of the Rio Grande using multi-frequency acoustic instrumentation in Big Bend National Park, USA

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; Topping, D. J.; Schmidt, J. C.; Sabol, T. A.; Griffiths, R. E.

    2011-12-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, is in disequilibrium. The river in this reach rapidly narrows during low-flow years, and widens during rare, large magnitude floods. One management strategy to improve in-channel habitat for the native ecosystem is to limit the rate and magnitude of channel narrowing during low-flow years through water releases from re-operated upstream dams. The proposed purpose of these dam re-operations is to maximize fine-sediment transport downstream, thereby limiting fine-sediment deposition within the channel and channel narrowing. A suspended-sediment monitoring program consisting of two suspended-sediment gages was established in November 2010 at two sites in Big Bend National Park (BBNP), Texas, to inform these management efforts. Suspended-sediment gages consist of two single-frequency sideways-looking acoustic-Doppler profilers that collect data at 15-minute intervals. Acoustic attenuation is used to calculate silt-and-clay concentration, and acoustic backscatter is used to calculate sand concentration in two size classes. Acoustic attenuation and backscatter are calibrated to velocity-weighted suspended silt-and-clay and sand concentrations in the cross sections near the acoustic instrumentation by using standard depth-integrating samplers deployed according to the Equal-Width-Increment (EWI) method. During flood periods, when depth-integrated samples cannot be collected, automatic pump samplers collect suspended-sediment samples to augment the EWI dataset. Initial analyses indicate that steady, long-duration dam releases are able to transport a consistent load of silt and clay through the study reach in BBNP. However, when tributary flash floods are superimposed on dam releases, the large influx of silt and clay from these tributary floods is not transported through the study reach, even though discharge remains high. When tributary flash floods occur during low-flow periods on

  13. Underwater sand acoustics: A perspective derived from the sediment acoustics experiment (SAX99)

    NASA Astrophysics Data System (ADS)

    Williams, Kevin L.; Thorsos, Eric I.; Jackson, Darrell R.; Tang, Dajun; Kargl, Steve G.

    2003-04-01

    The sediment acoustics experiment (SAX99) included investigations of the following three questions. What are the dominant mechanisms responsible for backscattering from sand sediment? What are the dominant mechanisms responsible for subcritical penetration into sand? What are the appropriate constitutive equations for sand? In this paper a summary is presented of APL-UW SAX99 experiments and data/model comparisons relevant to each question. Perspectives are also given on some of the issues that remain or arose during SAX99 and the associated analyses. In general, these issues are tied to the frequency dependencies seen in the data but not fully captured by present models. For backscattering the issue is that as the frequency increases the measured backscattering strength does not follow predictions based on surface roughness scattering models. In the case of penetration it is a frequency cutoff effect seen in SAX99 buried array data but seemingly violated in the detection of buried objects near the SAX99 site. Regarding the constitutive equations, it is the frequency dependence of the attenuation above 50 kHz. Recent experiments will be described that have been motivated by these issues. Finally, research proposed as part of a follow-on sediment acoustics experiment (SAX04) will be outlined. [Work supported by ONR.

  14. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface

    PubMed Central

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-01-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772

  15. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface.

    PubMed

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-01-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772

  16. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-06-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices.

  17. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  18. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    PubMed

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  19. Human interface and transmit frequency control for the through-air acoustic real-time high resolution vision substitute system.

    PubMed

    Taki, Hirofumi; Sato, Toru

    2005-01-01

    Existing vision substitute systems are not useful as navigation system due to the limitation of spatial and time resolution. In this study we propose a transmit control method free from range aliasing for a high resolution acoustic vision substitute systems, which we previously proposed. We also examine a human-machine information transfer method with a vibrotactile stimulator array consisting of 13 × 21 elements. It presents the target area of 30 degree × 60 degree by the sampling interval of 1 degree at the center. The system presents range, direction, and surface topography of targets to the subject.

  20. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force.

    PubMed

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-01

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young's moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young's moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  1. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - a response surface approach.

    PubMed

    González-Centeno, María Reyes; Knoerzer, Kai; Sabarez, Henry; Simal, Susana; Rosselló, Carmen; Femenia, Antoni

    2014-11-01

    Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120kHz), ultrasonic power density (50, 100, 150W/L) and extraction time (5, 15, 25min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (p<0.05). The Box-Behnken Design (BBD) generated satisfactory mathematical models which accurately explain the behavior of the system; allowing to predict both the extraction yield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40kHz, a power density of 150W/L and 25min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31mg GA/100g fw for total phenolics and 2.04mg quercetin/100g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66mg Trolox/100g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors' knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published.

  2. A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging.

    PubMed

    Ma, Jianguo; Martin, K; Dayton, Paul A; Jiang, Xiaoning

    2014-05-01

    Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, -6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226

  3. A Preliminary Engineering Design of Intravascular Dual-Frequency Transducers for Contrast-Enhanced Acoustic Angiography and Molecular Imaging

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Dayton, Paul A.; Jiang, Xiaoning

    2014-01-01

    Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, −6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226

  4. Acoustic Levitator Maintains Resonance

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.

    1986-01-01

    Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.

  5. Low-frequency Acoustic/Seismic Coupling in Deep Sediments: Skyquakes Look Like Earthquakes in the Mississippi Embayment (Invited)

    NASA Astrophysics Data System (ADS)

    Langston, C. A.

    2010-12-01

    Space Shuttle Discovery passed over the southern Mississippi River valley on November 7, 2007, and again on April 20, 2010, creating audible sonic booms that were recorded by seismic stations and infrasound sensors in the area. The seismoacoustic interaction of the infrasound N-wave with the deep, unconsolidated sediments of the Mississippi embayment created large 1-3 sec period fundamental and higher mode surface waves that were precursory to the atmospheric acoustic wave arrival at many stations. Seismoacoustic coupling was facilitated by the very low S and P wave velocity structure of the sediments, the relatively uniform regional extent of sedimentary strata, and the relatively high horizontal phase velocity of the N-wave as it interacted with the Earth's surface within 20 km of the trajectory ground track. These unusual data are used to infer the physical properties of the sediments to depths of approximately a kilometer. Analysis of the particle motion of the acoustic wave arrival gives additional information on the near-surface site response of individual stations for the upper 10's of meters. The complexity and duration of seismic signals from these large sonic boom sources are similar in character to shallow earthquakes and explosions within nearby seismic zones and provide useful information that can be used in wave propagation and site response studies for evaluating local earthquake shaking hazards.

  6. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  7. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-01

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad2/Hz at 1 kHz offset and -150 dB rad2/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10-9 at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10-11 τ-1/2 up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  8. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.

    PubMed

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-01

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24,000 at 68 °C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad(2)/Hz at 1 kHz offset and -150 dB rad(2)/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10(-9) at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10(-11) τ(-1/2) up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  9. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

    SciTech Connect

    Daugey, Thomas; Friedt, Jean-Michel; Martin, Gilles; Boudot, Rodolphe

    2015-11-15

    This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 °C, is frequency multiplied by 2–4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be −23 ppm/ °C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is −105 dB rad{sup 2}/Hz at 1 kHz offset and −150 dB rad{sup 2}/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 × 10{sup −9} at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 × 10{sup −11} τ{sup −1/2} up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance.

  10. Frequency specificity of chirp-evoked auditory brainstem responses.

    PubMed

    Wegner, Oliver; Dau, Torsten

    2002-03-01

    This study examines the usefulness of the upward chirp stimulus developed by Dau et al. [J. Acoust. Soc. Am. 107, 1530-1540 (2000)] for retrieving frequency-specific information. The chirp was designed to produce simultaneous displacement maxima along the cochlear partition by compensating for frequency-dependent traveling-time differences. In the first experiment, auditory brainstem responses (ABR) elicited by the click and the broadband chirp were obtained in the presence of high-pass masking noise, with cutoff frequencies of 0.5, 1, 2, 4, and 8 kHz. Results revealed a larger wave-V amplitude for chirp than for click stimulation in all masking conditions. Wave-V amplitude for the chirp increased continuously with increasing high-pass cutoff frequency while it remains nearly constant for the click for cutoff frequencies greater than 1 kHz. The same two stimuli were tested in the presence of a notched-noise masker with one-octave wide spectral notches corresponding to the cutoff frequencies used in the first experiment. The recordings were compared with derived responses, calculated offline, from the high-pass masking conditions. No significant difference in response amplitude between click and chirp stimulation was found for the notched-noise responses as well as for the derived responses. In the second experiment, responses were obtained using narrow-band stimuli. A low-frequency chirp and a 250-Hz tone pulse with comparable duration and magnitude spectrum were used as stimuli. The narrow-band chirp elicited a larger response amplitude than the tone pulse at low and medium stimulation levels. Overall, the results of the present study further demonstrate the importance of considering peripheral processing for the formation of ABR. The chirp might be of particular interest for assessing low-frequency information.

  11. Acoustic resonance phase locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  12. The acoustical cues to sound location in the guinea pig (Cavia porcellus).

    PubMed

    Greene, Nathaniel T; Anbuhl, Kelsey L; Williams, Whitney; Tollin, Daniel J

    2014-10-01

    There are three main acoustical cues to sound location, each attributable to space- and frequency-dependent filtering of the propagating sound waves by the outer ears, head, and torso: Interaural differences in time (ITD) and level (ILD) as well as monaural spectral shape cues. While the guinea pig has been a common model for studying the anatomy, physiology, and behavior of binaural and spatial hearing, extensive measurements of their available acoustical cues are lacking. Here, these cues were determined from directional transfer functions (DTFs), the directional components of the head-related transfer functions, for 11 adult guinea pigs. In the frontal hemisphere, monaural spectral notches were present for frequencies from ∼10 to 20 kHz; in general, the notch frequency increased with increasing sound source elevation and in azimuth toward the contralateral ear. The maximum ITDs calculated from low-pass filtered (2 kHz cutoff frequency) DTFs were ∼250 μs, whereas the maximum ITD measured with low-frequency tone pips was over 320 μs. A spherical head model underestimates ITD magnitude under normal conditions, but closely approximates values when the pinnae were removed. Interaural level differences (ILDs) strongly depended on location and frequency; maximum ILDs were <10 dB for frequencies <4 kHz and were as large as 40 dB for frequencies >10 kHz. Removal of the pinna reduced the depth and sharpness of spectral notches, altered the acoustical axis, and reduced the acoustical gain, ITDs, and ILDs; however, spectral shape features and acoustical gain were not completely eliminated, suggesting a substantial contribution of the head and torso in altering the sounds present at the tympanic membrane. PMID:25051197

  13. The acoustical cues to sound location in the Guinea pig (cavia porcellus)

    PubMed Central

    Greene, Nathanial T; Anbuhl, Kelsey L; Williams, Whitney; Tollin, Daniel J.

    2014-01-01

    There are three main acoustical cues to sound location, each attributable to space-and frequency-dependent filtering of the propagating sound waves by the outer ears, head, and torso: Interaural differences in time (ITD) and level (ILD) as well as monaural spectral shape cues. While the guinea pig has been a common model for studying the anatomy, physiology, and behavior of binaural and spatial hearing, extensive measurements of their available acoustical cues are lacking. Here, these cues were determined from directional transfer functions (DTFs), the directional components of the head-related transfer functions, for eleven adult guinea pigs. In the frontal hemisphere, monaural spectral notches were present for frequencies from ~10 to 20 kHz; in general, the notch frequency increased with increasing sound source elevation and in azimuth toward the contralateral ear. The maximum ITDs calculated from low-pass filtered (2 kHz cutoff frequency) DTFs were ~250 µs, whereas the maximum ITD measured with low frequency tone pips was over 320 µs. A spherical head model underestimates ITD magnitude under normal conditions, but closely approximates values when the pinnae were removed. Interaural level differences (ILDs) strongly depended on location and frequency; maximum ILDs were < 10 dB for frequencies < 4 kHz and were as large as 40 dB for frequencies > 10 kHz. Removal of the pinna reduced the depth and sharpness of spectral notches, altered the acoustical axis, and reduced the acoustical gain, ITDs, and ILDs; however, spectral shape features and acoustical gain were not completely eliminated, suggesting a substantial contribution of the head and torso in altering the sounds present at the tympanic membrane. PMID:25051197

  14. The acoustical cues to sound location in the guinea pig (Cavia porcellus).

    PubMed

    Greene, Nathaniel T; Anbuhl, Kelsey L; Williams, Whitney; Tollin, Daniel J

    2014-10-01

    There are three main acoustical cues to sound location, each attributable to space- and frequency-dependent filtering of the propagating sound waves by the outer ears, head, and torso: Interaural differences in time (ITD) and level (ILD) as well as monaural spectral shape cues. While the guinea pig has been a common model for studying the anatomy, physiology, and behavior of binaural and spatial hearing, extensive measurements of their available acoustical cues are lacking. Here, these cues were determined from directional transfer functions (DTFs), the directional components of the head-related transfer functions, for 11 adult guinea pigs. In the frontal hemisphere, monaural spectral notches were present for frequencies from ∼10 to 20 kHz; in general, the notch frequency increased with increasing sound source elevation and in azimuth toward the contralateral ear. The maximum ITDs calculated from low-pass filtered (2 kHz cutoff frequency) DTFs were ∼250 μs, whereas the maximum ITD measured with low-frequency tone pips was over 320 μs. A spherical head model underestimates ITD magnitude under normal conditions, but closely approximates values when the pinnae were removed. Interaural level differences (ILDs) strongly depended on location and frequency; maximum ILDs were <10 dB for frequencies <4 kHz and were as large as 40 dB for frequencies >10 kHz. Removal of the pinna reduced the depth and sharpness of spectral notches, altered the acoustical axis, and reduced the acoustical gain, ITDs, and ILDs; however, spectral shape features and acoustical gain were not completely eliminated, suggesting a substantial contribution of the head and torso in altering the sounds present at the tympanic membrane.

  15. Fitting stress relaxation experiments with fractional Zener model to predict high frequency moduli of polymeric acoustic foams

    NASA Astrophysics Data System (ADS)

    Guo, Xinxin; Yan, Guqi; Benyahia, Lazhar; Sahraoui, Sohbi

    2016-03-01

    This paper presents a time domain method to determine viscoelastic properties of open-cell foams on a wide frequency range. This method is based on the adjustment of the stress-time relationship, obtained from relaxation tests on polymeric foams' samples under static compression, with the four fractional derivatives Zener model. The experimental relaxation function, well described by the Mittag-Leffler function, allows for straightforward prediction of the frequency-dependence of complex modulus of polyurethane foams. To show the feasibility of this approach, complex shear moduli of the same foams were measured in the frequency range between 0.1 and 16 Hz and at different temperatures between -20 °C and 20 °C. A curve was reconstructed on the reduced frequency range (0.1 Hz-1 MHz) using the time-temperature superposition principle. Very good agreement was obtained between experimental complex moduli values and the fractional Zener model predictions. The proposed time domain method may constitute an improved alternative to resonant and non-resonant techniques often used for dynamic characterization of polymers for the determination of viscoelastic moduli on a broad frequency range.

  16. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  17. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  18. Ex Vivo Porcine Arterial and Chorioallantoic Membrane Acoustic Angiography Using Dual-Frequency Intravascular Ultrasound Probes.

    PubMed

    Martin, K Heath; Lindsey, Brooks D; Ma, Jianguo; Nichols, Timothy C; Jiang, Xiaoning; Dayton, Paul A

    2016-09-01

    The presence of blood vessels within a developing atherosclerotic plaque has been found to be correlated with increased plaque vulnerability and ensuing cardiac events, however, detection of coronary intraplaque neovascularization poses a significant challenge in the clinic. We describe here a new in vivo intravascular ultrasound imaging method using a dual-frequency transducer to visualize contrast flow in microvessels with high specificity. This method uses a specialized transducer capable of exciting contrast agents at a low frequency (5.5 MHz) while detecting their nonlinear superhamonics at a much higher frequency (37 MHz). In vitro evaluation of the approach was performed in a microvascular phantom to produce 3-D renderings of simulated vessel patterns and to determine image quality metrics as a function of depth. Furthermore, we describe the ability of the system to detect microvessels both ex vivo using porcine arteries and in vivo using the chorioallantoic membrane of a developing chicken embryo with optical confirmation. Dual-frequency contrast-specific imaging was able to resolve vessels similar in size to those found in vulnerable atherosclerotic plaques at clinically relevant depths. The results of this study add to the support for further evaluation and translation of contrast-specific imaging in intravascular ultrasound for the detection of vulnerable plaques in atherosclerosis. PMID:27260246

  19. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-01-01

    Central events of ultrasonic action are the bubbles of cavitation that can be considered as powered microreactors within which high-energy chemistry occurs. This work presents the results of a comprehensive numerical assessment of frequency and saturating gases effects on single bubble sonochemistry. Computer simulations of chemical reactions occurring inside a bubble oscillating in liquid water irradiated by an ultrasonic wave have been performed for a wide range of ultrasonic frequencies (213-1100kHz) under different saturating gases (O2, air, N2 and H2). For O2 and H2 bubbles, reactions mechanism consisting in 25 reversible chemical reactions were proposed for studying the internal bubble-chemistry whereas 73 reversible reactions were taken into account for air and N2 bubbles. The numerical simulations have indicated that radicals such as OH, H, HO2 and O are created in the bubble during the strong collapse. In all cases, hydroxyl radical (OH) is the main oxidant created in the bubble. The production rate of the oxidants decreases as the driving ultrasonic frequency increases. The production rate of OH radical followed the order O2>air>N2>H2 and the order becomes more remarkable at higher ultrasonic frequencies. The effect of ultrasonic frequency on single bubble sonochemistry was attributed to its significant impact on the cavitation process whereas the effects of gases were attributed to the nature of the chemistry produced in the bubble at the strong collapse. It was concluded that, in addition to the gas solubility, the nature of the internal bubble chemistry is another parameter of a paramount importance that controls the overall sonochemical activity in aqueous solutions. PMID:25112684

  20. Effects of core position of locally resonant scatterers on low-frequency acoustic absorption in viscoelastic panel

    NASA Astrophysics Data System (ADS)

    Zhong, Jie; Wen, Ji-Hong; Zhao, Hong-Gang; Yin, Jian-Fei; Yang, Hai-Bin

    2015-08-01

    Locally resonant sonic materials, due to their ability to control the propagation of low-frequency elastic waves, have become a promising option for underwater sound absorption materials. In this paper, the finite element method is used to investigate the absorption characteristics of a viscoelastic panel periodically embedded with a type of infinite-long non-coaxially cylindrical locally resonant scatterers (LRSs). The effect of the core position in the coating layer of the LRS on the low-frequency (500 Hz-3000 Hz) sound absorption property is investigated. With increasing the longitudinal core eccentricity e, there occur few changes in the absorptance at the frequencies below 1500 Hz, however, the absorptance above 1500 Hz becomes gradually better and the valid absorption (with absorptance above 0.8) frequency band (VAFB) of the viscoelastic panel becomes accordingly broader. The absorption mechanism is revealed by using the displacement field maps of the viscoelastic panel and the steel slab. The results show two typical resonance modes. One is the overall resonance mode (ORM) caused by steel backing, and the other is the core resonance mode (CRM) caused by LRS. The absorptance of the viscoelastic panel by ORM is induced mainly by the vibration of the steel slab and affected little by core position. On the contrary, with increasing the core eccentricity, the CRM shifts toward high frequency band and decouples with the ORM, leading to two separate absorption peaks and the broadened VAFB of the panel. Project supported by the National Natural Science Foundation of China (Grant No. 51275519).

  1. Characterizing riverbed sediment using high-frequency acoustics 2: scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  2. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region.

    PubMed

    Feng, Q S; Xiao, C Z; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T

    2016-08-01

    The properties of the nonlinear frequency shift (NFS), especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas, have been researched by Vlasov simulation. Pictures of the nonlinear frequency shift from harmonic generation and particle trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given, and the results of Vlasov simulation are consistent with the theoretical result of multi-ion species plasmas. When the wave number kλ_{De} is small, such as kλ_{De}=0.1, the fluid NFS dominates in the total NFS and will reach as large as nearly 15% when the wave amplitude |eϕ/T_{e}|∼0.1, which indicates that in the condition of small kλ_{De}, the fluid NFS dominates in the saturation of stimulated Brillouin scattering, especially when the nonlinear IAW amplitude is large. PMID:27627405

  3. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Xiao, C. Z.; Wang, Q.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; He, X. T.

    2016-08-01

    The properties of the nonlinear frequency shift (NFS), especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas, have been researched by Vlasov simulation. Pictures of the nonlinear frequency shift from harmonic generation and particle trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given, and the results of Vlasov simulation are consistent with the theoretical result of multi-ion species plasmas. When the wave number k λD e is small, such as k λD e=0.1 , the fluid NFS dominates in the total NFS and will reach as large as nearly 15 % when the wave amplitude |e ϕ / Te|˜0.1 , which indicates that in the condition of small k λD e , the fluid NFS dominates in the saturation of stimulated Brillouin scattering, especially when the nonlinear IAW amplitude is large.

  4. Characterizing riverbed sediment using high-frequency acoustics: 2. Scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2014-12-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length and amplitude scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by georeferenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum and the intercept and slope from a power law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration and surveys made at calibration sites at different times were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well-understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  5. Liquid Helium Acoustic Microscope.

    NASA Astrophysics Data System (ADS)

    Steer, Andrew Paul

    Available from UMI in association with The British Library. In an acoustic microscope, images are generated by monitoring the intensity of the ultrasonic reflection, or echo, from the surface of a sample. In order to achieve this a pulse of acoustic energy is produced by the excitation of a thin film transducer. The pulse thus generated propagates through a crystal and is incident upon the acoustic lens surface, which is the boundary between the crystal and an acoustic coupling liquid. The acoustic lens is a converging element, and brings the ultrasonic beam to a focus within the liquid. A sample, placed at the focus, can act as a reflector, and the returned pulse then contains information regarding the acoustic reflectivity of this specimen. Acoustic pulses are repeatedly launched and detected while the acoustic lens is scanned over the surface of the sample. In this manner an acoustic image is constructed. Acoustic losses in room temperature liquid coupling media represent a considerable source of difficulty in the recovery of acoustic echo signals. At the frequencies of operation required in a microscope which is capable of high resolution, the ultrasonic attenuation is not only large but increases with the square of frequency. In superfluid liquid helium at temperatures below 0.1 K, however, the ultrasonic attenuation becomes negligible. Furthermore, the low sound velocity in liquid helium results in an increase in resolution, since the acoustic wavelength is proportional to velocity. A liquid helium acoustic microscope has been designed and constructed. Details of the various possible detection methods are given, and comparisons are made between them. Measurements of the performance of the system that was adopted are reported. The development of a cooled preamplifier is also described. The variation of reflected signal with object distance has been measured and compared with theoretical predictions. This variation is important in the analysis of acoustic

  6. Low and High Frequency Models of Response Statistics of a Cylindrical Orthogrid Vehicle Panel to Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Teague, David; Gardner, Bryce; Cotoni, Vincent

    2010-01-01

    This presentation further develops the orthogrid vehicle panel work. Employed Hybrid Module capabilities to assess both low/mid frequency and high frequency models in the VA One simulation environment. The response estimates from three modeling approaches are compared to ground test measurements. Detailed Finite Element Model of the Test Article -Expect to capture both the global panel modes and the local pocket mode response, but at a considerable analysis expense (time & resources). A Composite Layered Construction equivalent global stiffness approximation using SEA -Expect to capture response of the global panel modes only. An SEA approximation using the Periodic Subsystem Formulation. A finite element model of a single periodic cell is used to derive the vibroacoustic properties of the entire periodic structure (modal density, radiation efficiency, etc. Expect to capture response at various locations on the panel (on the skin and on the ribs) with less analysis expense

  7. Substantial fluctuation of acoustic intensity transmittance through a bone-phantom plate and its equalization by modulation of ultrasound frequency.

    PubMed

    Saito, Osamu; Wang, Zuojun; Mitsumura, Hidetaka; Ogawa, Takeki; Iguchi, Yasuyuki; Yokoyama, Masayuki

    2015-05-01

    For safe and efficient sonothrombolysis therapies, accurate estimation of ultrasound transmittance through the human skull is essential. The present study clarifies uncertainty surrounding this transmittance and experimentally verifies the equalization of transmittance through the modulation of ultrasound frequency. By changing three factors (ultrasound frequency, the thickness of a bone-phantom plate, and the distance between a transducer and a bone-phantom plate), we measured the intensity of ultrasound passing through the plate. Two activating methods, sinusoidal waves at 500 kHz and modulated waves, were compared. When we changed (1) the distance between a transducer and a bone-phantom plate and (2) the thickness of the bone-phantom plate, ultrasound transmittance through the plates substantially fluctuated. The substantial fluctuation in transmittance was observed also for a cut piece of human temporal skull bone. This fluctuation significantly declined for the modulated wave. In conclusion, modulation of ultrasound frequency can equalize the transmittance with an approximately 30-65% fluctuation drop and an approximately 40% fluctuation drop for a bone-phantom plate and for a cut piece of skull bone, respectively. By using modulated waves, we can develop safer and more effective sonothrombolysis therapies.

  8. Isentropic acoustic propagation in a viscous fluid with uniform circular pipeline flow.

    PubMed

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-10-01

    Isentropic wave propagation in a viscous fluid with a uniform mean flow confined by a rigid-walled circular pipeline is considered. A method based on the Fourier-Bessel theory, which is complete and orthogonal in Lebesgue space, is introduced to solve the convected acoustic equations. After validating the method's convergence, the cut-off frequency of wave modes is addressed. Furthermore, the effect of flow profile on wave attenuation is analyzed. Meanwhile, measurement performance of an ultrasonic flow meter based on wave propagation is numerically accounted.

  9. Isentropic acoustic propagation in a viscous fluid with uniform circular pipeline flow.

    PubMed

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-10-01

    Isentropic wave propagation in a viscous fluid with a uniform mean flow confined by a rigid-walled circular pipeline is considered. A method based on the Fourier-Bessel theory, which is complete and orthogonal in Lebesgue space, is introduced to solve the convected acoustic equations. After validating the method's convergence, the cut-off frequency of wave modes is addressed. Furthermore, the effect of flow profile on wave attenuation is analyzed. Meanwhile, measurement performance of an ultrasonic flow meter based on wave propagation is numerically accounted. PMID:24116397

  10. Acoustic detection of pneumothorax

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (<2000 Hz) acoustic methods for medical diagnosis. Several candidate methods of pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (p<0.0001). The ratio of acoustic energy between low (<220 Hz) and mid (550-770 Hz) frequency bands was significantly different in the control (healthy) and pneumothorax states (p<0.0001). The second approach measured breath sounds in the absence of an external acoustic input. Pneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (p<0.01 for each). Finally, chest percussion was implemented. Pneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  11. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  12. Cutoff lensing: predicting catalytic sites in enzymes

    NASA Astrophysics Data System (ADS)

    Aubailly, Simon; Piazza, Francesco

    2015-10-01

    Predicting function-related amino acids in proteins with unknown function or unknown allosteric binding sites in drug-targeted proteins is a task of paramount importance in molecular biomedicine. In this paper we introduce a simple, light and computationally inexpensive structure-based method to identify catalytic sites in enzymes. Our method, termed cutoff lensing, is a general procedure consisting in letting the cutoff used to build an elastic network model increase to large values. A validation of our method against a large database of annotated enzymes shows that optimal values of the cutoff exist such that three different structure-based indicators allow one to recover a maximum of the known catalytic sites. Interestingly, we find that the larger the structures the greater the predictive power afforded by our method. Possible ways to combine the three indicators into a single figure of merit and into a specific sequential analysis are suggested and discussed with reference to the classic case of HIV-protease. Our method could be used as a complement to other sequence- and/or structure-based methods to narrow the results of large-scale screenings.

  13. Acoustic wave propagation in the solar atmosphere 1. Rediscussion of the linearized theory including nonstationary solutions

    NASA Technical Reports Server (NTRS)

    Wang, Zhengzhi; Ulrich, Roger K.; Coroniti, Ferdinand V.

    1995-01-01

    The normal dispersion analysis for linear adiabatic wave propagation in stratified atmospheres adopts a real frequency and solves for the complex vertical wavenumber. We show that an exponentially stratified atmosphere does not have any spatially bounded normal modes for real frequencies. The usual treatment involves a representation where the imaginary part of the vertical wavenumber yields a rho(sup -1/2) dependence of the velocity amplitude which diverges as the absolute value of z approaches infinity. This solution includes a cutoff frequency below which acoustic modes cannot propagate. The standard dispersion analysis is a local representation of the wave behavior in both space and time but which is assumed to represent the motion throughout - infinity is less than t is less than infinity and 0 is less than infinity. However, any solution which has a purely sinusoidal time dependence extends through this full domain and is divergent due to the rho(sup -1/2) dependence. We show that a proper description is in terms of a near field of a boundary piston which is driven arbitrarily as a function of space and time. The atmosphere which responds to this piston is a semi-infinite layer which has an initially constant sound speed but which has the usual gravitational stratification. In a restricted domain of space and time above this boundary, the wavelike behavior of the medium may be described by frequencies and vertical wavenumbers which are both complex. When both parameters are allowed to have imaginary components, a new range of solutions is found for which there is virtually no cutoff frequency. We show that vertical energy propagation can take place through the solar atmosphere as a result of oscillations below the nominal cutoff frequency. Previously, the largest amplitude oscillations which generally have low frequencies were dropped from the calculation of energy flux becuase their frequencies are below the cutoff frequency. This new family of near

  14. Cutoff nonlinearities in the low-temperature vibrations of glasses and crystals.

    PubMed

    Mizuno, Hideyuki; Silbert, Leonardo E; Sperl, Matthias; Mossa, Stefano; Barrat, Jean-Louis

    2016-04-01

    We present a computer simulation study of glassy and crystalline states using the standard Lennard-Jones interaction potential that is truncated at a finite cutoff distance, as is typical of many computer simulations. We demonstrate that the discontinuity at the cutoff distance in the first derivative of the potential (corresponding to the interparticle force) leads to the appearance of cutoff nonlinearities. These cutoff nonlinearities persist into the very-low-temperature regime thereby affecting low-temperature thermal vibrations, which leads to a breakdown of the harmonic approximation for many eigenmodes, particularly for low-frequency vibrational modes. Furthermore, while expansion nonlinearities which are due to higher order terms in the Taylor expansion of the interaction potential are usually ignored at low temperatures and show up as the temperature increases, cutoff nonlinearities can become most significant at the lowest temperatures. Anharmonic effects readily show up in the elastic moduli which not only depend on the eigenfrequencies, but are crucially sensitive to the eigenvectors of the normal modes. In contrast, those observables that rely mainly on static structural information or just the eigenfrequencies, such as the vibrational density of states, total potential energy, and specific heat, show negligible dependence on the presence of the cutoff. Similar aspects of nonlinear behavior have recently been reported in model granular materials, where the constituent particles interact through finite-range, purely repulsive potentials. These nonlinearities have been ascribed to the nature of the sudden cutoff at contact in the force law. As a consequence, we demonstrate that cutoff nonlinearities emerge as a general feature of ordered and disordered solid state systems interacting through truncated potentials.

  15. Cutoff nonlinearities in the low-temperature vibrations of glasses and crystals.

    PubMed

    Mizuno, Hideyuki; Silbert, Leonardo E; Sperl, Matthias; Mossa, Stefano; Barrat, Jean-Louis

    2016-04-01

    We present a computer simulation study of glassy and crystalline states using the standard Lennard-Jones interaction potential that is truncated at a finite cutoff distance, as is typical of many computer simulations. We demonstrate that the discontinuity at the cutoff distance in the first derivative of the potential (corresponding to the interparticle force) leads to the appearance of cutoff nonlinearities. These cutoff nonlinearities persist into the very-low-temperature regime thereby affecting low-temperature thermal vibrations, which leads to a breakdown of the harmonic approximation for many eigenmodes, particularly for low-frequency vibrational modes. Furthermore, while expansion nonlinearities which are due to higher order terms in the Taylor expansion of the interaction potential are usually ignored at low temperatures and show up as the temperature increases, cutoff nonlinearities can become most significant at the lowest temperatures. Anharmonic effects readily show up in the elastic moduli which not only depend on the eigenfrequencies, but are crucially sensitive to the eigenvectors of the normal modes. In contrast, those observables that rely mainly on static structural information or just the eigenfrequencies, such as the vibrational density of states, total potential energy, and specific heat, show negligible dependence on the presence of the cutoff. Similar aspects of nonlinear behavior have recently been reported in model granular materials, where the constituent particles interact through finite-range, purely repulsive potentials. These nonlinearities have been ascribed to the nature of the sudden cutoff at contact in the force law. As a consequence, we demonstrate that cutoff nonlinearities emerge as a general feature of ordered and disordered solid state systems interacting through truncated potentials. PMID:27176435

  16. Properties of LiNbO3 Thin Film Deposited by Chemical Vapor Deposition and Frequency Characteristics of Film Bulk Acoustic Wave Resonator

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Suzuki, Yusuke; Ito, Yoshihiro

    2011-07-01

    We have realized the fabrication of a film bulk acoustic wave resonator (FBAR) using a thin LiNbO3 film deposited by chemical vapor deposition (CVD) for the first time. As a result, a 2.9 GHz FBAR with an impedance ratio of 40 dB at resonant ( fr) and antiresonant ( fa) frequencies was realized. The LiNbO3 film has a mixed polarity. As a result of scanning nonlinear dielectric microscopy (SNDM), -c domains and +c domains occupy 82 and 18% of the LiNbO3 film, respectively. A shear mode was not excited on the fabricated FABR. According to a calculation, it is found that the shear wave mode can be suppressed by selecting the thickness of electrodes without any changes in the main responses of the longitudinal mode wave. It is important to deposit another oriented LiNbO3 film with a larger coupling factor to realize a wider-band device.

  17. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  18. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  19. Time-Frequency Feature Representation Using Multi-Resolution Texture Analysis and Acoustic Activity Detector for Real-Life Speech Emotion Recognition

    PubMed Central

    Wang, Kun-Ching

    2015-01-01

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech. PMID:25594590

  20. Acoustically enhanced bubble growth at low frequencies and its implications for human diver and marine mammal safety.

    PubMed

    Crum, L A; Mao, Y

    1996-05-01

    Computations are made of the conditions necessary to obtain bubble growth by rectified diffusion under a variety of conditions associated with low-frequency sonar propagation in the ocean. The complex issue of microbubble nuclei stabilization is treated by assuming either a sufficient level of supersaturation to stabilize the initial bubble size, or by examining a microbubble nucleus with zero surface tension. The bubble growth rates and thresholds are obtained for a ranged of sound-pressure levels (re: 1 microPa) from 150-220 dB, for initial bubble radii from 1-10 microns, and for levels of the dissolved gas concentration from 100% to 223% of saturation. It was determined that for the range of conditions examined, it was necessary to utilize three different formulations of the equations for bubble growth. The results of these calculations (and assumptions concerning nuclei stabilization) indicate that for SPL's in excess of 210 dB, significant bubble growth can be expected to occur, and divers and marine mammals exposed to these conditions could be at risk. For SPL's below about 190 dB, however, except under relatively extreme conditions of supersaturation, significant bubble growth is unexpected.

  1. Pseudo-continuous-wave acoustic instrument

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Stone, F. D.

    1978-01-01

    Simple, inexpensive, and portable ultrasonic device accurately measures acoustic properties of liquids, gases, and solids, using pseudo-continuous wave responses from samples to measure change in resonant frequency or amplitude in acoustic signal.

  2. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  3. Calibration of interphase fluorescence in situ hybridization cutoff by mathematical models.

    PubMed

    Du, Qinghua; Li, Qingshan; Sun, Daochun; Chen, Xiaoyan; Yu, Bizhen; Ying, Yi

    2016-03-01

    Fluorescence in situ hybridization (FISH) continues to play an important role in clinical investigations. Laboratories may create their own cutoff, a percentage of positive nuclei to determine whether a specimen is positive or negative, to eliminate false positives that are created by signal overlap in most cases. In some cases, it is difficult to determine the cutoff value because of differences in both the area of nuclei and the number of signals. To address these problems, we established two mathematical models using probability theory. To verify these two models, normal disomy cells from healthy individuals were used to simulate cells with different numbers of signals by hybridization with different probes. We used an X/Y probe to obtain the average distance between two signals and the probability of signal overlap in different nuclei area. Frequencies of all signal patterns were scored and compared with theoretical frequencies, and models were assessed using a goodness of fit test. We used five BCR/ABL1-positive samples, 20 BCR/ABL1-negative samples and two samples with ambiguous results to verify the cutoff calibrated by these two models. The models were in agreement with experimental results. The dynamic cutoff can classify cases in routine analysis correctly, and it can also correct for influences from nuclei area and the number of signals in some ambiguous cases. The probability models can be used to assess the effect of signal overlap and calibrate the cutoff. PMID:26580488

  4. Classical cutoffs for laser-induced nonsequential double ionization

    SciTech Connect

    Milosevic, D.B.; Becker, W.

    2003-12-01

    Classical cutoffs for the momenta of electrons ejected in laser-induced nonsequential double ionization are derived for the recollision-impact-ionization scenario. Such simple cutoff laws can aid in the interpretation of the observed electron spectra.

  5. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  6. A parallel algorithm for 2D visco-acoustic frequency-domain full-waveform inversion: application to a dense OBS data set

    NASA Astrophysics Data System (ADS)

    Sourbier, F.; Operto, S.; Virieux, J.

    2006-12-01

    We present a distributed-memory parallel algorithm for 2D visco-acoustic full-waveform inversion of wide-angle seismic data. Our code is written in fortran90 and use MPI for parallelism. The algorithm was applied to real wide-angle data set recorded by 100 OBSs with a 1-km spacing in the eastern-Nankai trough (Japan) to image the deep structure of the subduction zone. Full-waveform inversion is applied sequentially to discrete frequencies by proceeding from the low to the high frequencies. The inverse problem is solved with a classic gradient method. Full-waveform modeling is performed with a frequency-domain finite-difference method. In the frequency-domain, solving the wave equation requires resolution of a large unsymmetric system of linear equations. We use the massively parallel direct solver MUMPS (http://www.enseeiht.fr/irit/apo/MUMPS) for distributed-memory computer to solve this system. The MUMPS solver is based on a multifrontal method for the parallel factorization. The MUMPS algorithm is subdivided in 3 main steps: a symbolic analysis step that performs re-ordering of the matrix coefficients to minimize the fill-in of the matrix during the subsequent factorization and an estimation of the assembly tree of the matrix. Second, the factorization is performed with dynamic scheduling to accomodate numerical pivoting and provides the LU factors distributed over all the processors. Third, the resolution is performed for multiple sources. To compute the gradient of the cost function, 2 simulations per shot are required (one to compute the forward wavefield and one to back-propagate residuals). The multi-source resolutions can be performed in parallel with MUMPS. In the end, each processor stores in core a sub-domain of all the solutions. These distributed solutions can be exploited to compute in parallel the gradient of the cost function. Since the gradient of the cost function is a weighted stack of the shot and residual solutions of MUMPS, each processor

  7. Cutoff regulators in chiral nuclear effective field theory

    NASA Astrophysics Data System (ADS)

    Long, Bingwei; Mei, Ying

    2016-04-01

    Three-dimensional cutoff regulators are frequently employed in multinucleon calculations, but they violate chiral symmetry and Lorentz invariance. A cutoff regularization scheme is proposed to compensate systematically at subleading orders for these symmetry violations caused by regulator artifacts. This is especially helpful when a soft momentum cutoff has to be used for technical reasons. It is also shown that dimensional regularization can still be used for some Feynman (sub)diagrams while cutoff regulators are used for the rest.

  8. Cutoff probe using Fourier analysis for electron density measurement

    NASA Astrophysics Data System (ADS)

    Na, Byung-Keun; You, Kwang-Ho; Kim, Dae-Woong; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung

    2012-01-01

    This paper proposes a new method for cutoff probe using a nanosecond impulse generator and an oscilloscope, instead of a network analyzer. The nanosecond impulse generator supplies a radiating signal of broadband frequency spectrum simultaneously without frequency sweeping, while frequency sweeping method is used by a network analyzer in a previous method. The transmission spectrum (S21) was obtained through a Fourier analysis of the transmitted impulse signal detected by the oscilloscope and was used to measure the electron density. The results showed that the transmission frequency spectrum and the electron density obtained with a new method are very close to those obtained with a previous method using a network analyzer. And also, only 15 ns long signal was necessary for spectrum reconstruction. These results were also compared to the Langmuir probe's measurements with satisfactory results. This method is expected to provide not only fast measurement of absolute electron density, but also function in other diagnostic situations where a network analyzer would be used (a hairpin probe and an impedance probe) by replacing the network analyzer with a nanosecond impulse generator and an oscilloscope.

  9. Cutoff probe using Fourier analysis for electron density measurement

    SciTech Connect

    Na, Byung-Keun; You, Kwang-Ho; Kim, Dae-Woong; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung

    2012-01-15

    This paper proposes a new method for cutoff probe using a nanosecond impulse generator and an oscilloscope, instead of a network analyzer. The nanosecond impulse generator supplies a radiating signal of broadband frequency spectrum simultaneously without frequency sweeping, while frequency sweeping method is used by a network analyzer in a previous method. The transmission spectrum (S21) was obtained through a Fourier analysis of the transmitted impulse signal detected by the oscilloscope and was used to measure the electron density. The results showed that the transmission frequency spectrum and the electron density obtained with a new method are very close to those obtained with a previous method using a network analyzer. And also, only 15 ns long signal was necessary for spectrum reconstruction. These results were also compared to the Langmuir probe's measurements with satisfactory results. This method is expected to provide not only fast measurement of absolute electron density, but also function in other diagnostic situations where a network analyzer would be used (a hairpin probe and an impedance probe) by replacing the network analyzer with a nanosecond impulse generator and an oscilloscope.

  10. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  11. Caregiver's Feeding Styles Questionnaire. Establishing cutoff points.

    PubMed

    Hughes, Sheryl O; Cross, Matthew B; Hennessy, Erin; Tovar, Alison; Economos, Christina D; Power, Thomas G

    2012-02-01

    Researchers use the Caregiver's Feeding Styles Questionnaire (CFSQ) to categorize parent feeding into authoritative, authoritarian, indulgent, and uninvolved styles. The CFSQ assesses self-reported feeding and classifies parents using median splits which are used in a substantial body of parenting literature and allow for direct comparison across studies on dimensions of demandingness and responsiveness. No national norms currently exist for the CFSQ. This paper establishes and recommends cutoff points most relevant for low-income, minority US samples that researchers and clinicians can use to assign parents to feeding styles. Median scores for five studies are examined and the average across these studies reported.

  12. 46 CFR 109.333 - Fire main cutoff valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire main cutoff valves. 109.333 Section 109.333... OPERATIONS Operation and Stowage of Safety Equipment § 109.333 Fire main cutoff valves. The master or person in charge shall insure that each fire main cutoff valve is open and sealed to prevent closing,...

  13. 46 CFR 109.333 - Fire main cutoff valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire main cutoff valves. 109.333 Section 109.333... OPERATIONS Operation and Stowage of Safety Equipment § 109.333 Fire main cutoff valves. The master or person in charge shall insure that each fire main cutoff valve is open and sealed to prevent closing,...

  14. 49 CFR 229.93 - Safety cut-off device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Safety cut-off device. 229.93 Section 229.93 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.93 Safety cut-off device. The fuel line shall have a safety cut-off device that— (a)...

  15. The effect of refraction on acoustic wave-angle emission from free jets

    NASA Astrophysics Data System (ADS)

    Hall, S.-L.

    Good quality optical photographs of supersonic helium free jets show three principal types of acoustic waves: (1) nozzle centered radiation in the form of high-frequency, closely-spaced waves which steepen with distance away from the jet; (2) wider-spaced high-frequency waves emanating from the first six diameters from the exit and inclined at approximately the same angle as the initial nozzle-centered waves, but with little steepening; and (3) low-angled low-frequency waves which originate from the end of the potential jet core and are cut off at the end of the sonic core. A theoretical method developed for ideally-expanded air jets has been modified for refraction and convection effects due to significantly different density and sound-speed jets exhausting into the quiescent atmosphere. The predicted acoustic wave angles are within 3 deg of the measured angles for six correctly-expanded air and helium jets; the additional shock noise contribution for 13 helium and air jets operating in the 50-150% expansion range are underestimated by 4-8 deg. The predicted angle for the low-frequency radiation is within 3 deg of the cone-of-silence angle in the 15 cases where the acoustic cut-off is within the optical field of view.

  16. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  17. Stable And Oscillating Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  18. Anesthesia cutoff phenomenon: Interfacial hydrogen bonding

    SciTech Connect

    Chiou, J.S.; Ma, S.M.; Kamaya, H.; Ueda, I. )

    1990-05-04

    Anesthesia cutoff refers to the phenomenon of loss of anesthetic potency in a homologous series of alkanes and their derivatives when their sizes become too large. In this study, hydrogen bonding of 1-alkanol series (ethanol to eicosanol) to dipalmitoyl-L-alpha-phosphatidylcholine (DPPC) was studied by Fourier transform infrared spectroscopy (FTIR) in DPPC-D2O-in-CCl4 reversed micelles. The alkanols formed hydrogen bonds with the phosphate moiety of DPPC and released the DPPC-bound deuterated water, evidenced by increases in the bound O-H stretching signal of the alkanol-DPPC complex and also in the free O-D stretching band of unbound D2O. These effects increased according to the elongation of the carbon chain of 1-alkanols from ethanol (C2) to 1-decanol (C10), but suddenly almost disappeared at 1-tetradecanol (C14). Anesthetic potencies of these alkanols, estimated by the activity of brine shrimps, were linearly related to hydrogen bond-breaking activities below C10 and agreed with the FTIR data in the cutoff at C10.

  19. Acoustic asymmetric transmission based on time-dependent dynamical scattering

    PubMed Central

    Wang, Qing; Yang, Yang; Ni, Xu; Xu, Ye-Long; Sun, Xiao-Chen; Chen, Ze-Guo; Feng, Liang; Liu, Xiao-ping; Lu, Ming-Hui; Chen, Yan-Feng

    2015-01-01

    An acoustic asymmetric transmission device exhibiting unidirectional transmission property for acoustic waves is extremely desirable in many practical scenarios. Such a unique property may be realized in various configurations utilizing acoustic Zeeman effects in moving media as well as frequency-conversion in passive nonlinear acoustic systems and in active acoustic systems. Here we demonstrate a new acoustic frequency conversion process in a time-varying system, consisting of a rotating blade and the surrounding air. The scattered acoustic waves from this time-varying system experience frequency shifts, which are linearly dependent on the blade’s rotating frequency. Such scattering mechanism can be well described theoretically by an acoustic linear time-varying perturbation theory. Combining such time-varying scattering effects with highly efficient acoustic filtering, we successfully develop a tunable acoustic unidirectional device with 20 dB power transmission contrast ratio between two counter propagation directions at audible frequencies. PMID:26038886

  20. Euphausiid distribution along the Western Antarctic Peninsula—Part A: Development of robust multi-frequency acoustic techniques to identify euphausiid aggregations and quantify euphausiid size, abundance, and biomass

    NASA Astrophysics Data System (ADS)

    Lawson, Gareth L.; Wiebe, Peter H.; Stanton, Timothy K.; Ashjian, Carin J.

    2008-02-01

    Methods were refined and tested for identifying the aggregations of Antarctic euphausiids ( Euphausia spp.) and then estimating euphausiid size, abundance, and biomass, based on multi-frequency acoustic survey data. A threshold level of volume backscattering strength for distinguishing euphausiid aggregations from other zooplankton was derived on the basis of published measurements of euphausiid visual acuity and estimates of the minimum density of animals over which an individual can maintain visual contact with its nearest neighbor. Differences in mean volume backscattering strength at 120 and 43 kHz further served to distinguish euphausiids from other sources of scattering. An inversion method was then developed to estimate simultaneously the mean length and density of euphausiids in these acoustically identified aggregations based on measurements of mean volume backscattering strength at four frequencies (43, 120, 200, and 420 kHz). The methods were tested at certain locations within an acoustically surveyed continental shelf region in and around Marguerite Bay, west of the Antarctic Peninsula, where independent evidence was also available from net and video systems. Inversion results at these test sites were similar to net samples for estimated length, but acoustic estimates of euphausiid density exceeded those from nets by one to two orders of magnitude, likely due primarily to avoidance and to a lesser extent to differences in the volumes sampled by the two systems. In a companion study, these methods were applied to the full acoustic survey data in order to examine the distribution of euphausiids in relation to aspects of the physical and biological environment [Lawson, G.L., Wiebe, P.H., Ashjian, C.J., Stanton, T.K., 2008. Euphausiid distribution along the Western Antarctic Peninsula—Part B: Distribution of euphausiid aggregations and biomass, and associations with environmental features. Deep-Sea Research II, this issue [doi:10.1016/j.dsr2.2007.11.014

  1. Acoustic Waves Generated by Impulsive Disturbances in a Gravitationally Stratified Medium

    NASA Astrophysics Data System (ADS)

    Chae, Jongchul; Goode, Philip R.

    2015-08-01

    Even though it is well-known from observations of the Sun that three-minute period chromospheric oscillations persist in the internetwork quiet regions and sunspot umbrae, until now their origin and persistence has defied clear explanation. Here we provide a clear and simple explanation for it with a demonstration of how such oscillations at the chromosphere's cutoff frequency naturally arise in a gravitationally stratified medium when it is disturbed. The largest-wavenumber vertical components of a chromospheric disturbance produce the highest-frequency wave packets, which propagate out of the disturbed region at group speeds that are close to the sound speed. Meanwhile, the smallest-wavenumber components develop into wave packets of frequencies close to the acoustic cutoff frequency that propagate at group speeds that are much lower than the sound speed. Because of their low propagation speed, these low-frequency wave packets linger in the disturbed region and nearby, and thus, are the ones that an observer would identify as the persistent, chromospheric three-minute oscillations. We emphasize that we can account for the power of the persistent chromospheric oscillations as coming from the repeated occurrence of disturbances with length scales greater than twice the pressure scale height in the upper photosphere.

  2. ACOUSTIC WAVES GENERATED BY IMPULSIVE DISTURBANCES IN A GRAVITATIONALLY STRATIFIED MEDIUM

    SciTech Connect

    Chae, Jongchul; Goode, Philip R.

    2015-08-01

    Even though it is well-known from observations of the Sun that three-minute period chromospheric oscillations persist in the internetwork quiet regions and sunspot umbrae, until now their origin and persistence has defied clear explanation. Here we provide a clear and simple explanation for it with a demonstration of how such oscillations at the chromosphere's cutoff frequency naturally arise in a gravitationally stratified medium when it is disturbed. The largest-wavenumber vertical components of a chromospheric disturbance produce the highest-frequency wave packets, which propagate out of the disturbed region at group speeds that are close to the sound speed. Meanwhile, the smallest-wavenumber components develop into wave packets of frequencies close to the acoustic cutoff frequency that propagate at group speeds that are much lower than the sound speed. Because of their low propagation speed, these low-frequency wave packets linger in the disturbed region and nearby, and thus, are the ones that an observer would identify as the persistent, chromospheric three-minute oscillations. We emphasize that we can account for the power of the persistent chromospheric oscillations as coming from the repeated occurrence of disturbances with length scales greater than twice the pressure scale height in the upper photosphere.

  3. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  4. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  5. Aid cutoff threatens condom program in Pakistan.

    PubMed

    Barron, T

    1991-01-01

    The Pressler Amendment, a law prohibiting US assistance to any country that does not sign the UN Nuclear Nonproliferation Treaty, is forcing USAID to shut down its highly successful Social Marketing of Contraceptives (SMC) program in Pakistan. Adopted in 1985, the amendment calls for an end of funding for projects in Pakistan as of fiscal year 1991, since the country has refused to sign the treaty. Only previously committed funds have kept SMC running, but it may soon have a close shop. The cutoff comes at an especially inopportune time--just when SMC had begun to make an impact. Introduced 5 years ago, Sathi condoms (the project's main product) account for 2/3 of all condoms used in Pakistan. Sales jumped from 30 million in 1978 to 74 million last year. SMC administrators explain that the country has a vast potential for social marketing. But because of the cutoff in aid, the program will exhaust its supply of condoms by March 1992. The end of the SMC program will mean a serious setback for Pakistan, which already has the 2nd largest population in southern Asia, and which has double the fertility of the most populous country in the region, India. Only 7% of the women in Pakistan rely on a modern method of contraception, compared to 42% in India and 26% in Bangladesh. USAID officials explain that the organization is working with the Pakistani government to find ways to continue funding the program after US funds run out. They add that this development will provide Pakistani Prime Minister Nawaz Sharif an opportunity to demonstrate his stated commitment to curb population growth.

  6. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  7. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  8. The electron geodesic acoustic mode

    SciTech Connect

    Chakrabarti, N.; Kaw, P. K.

    2012-09-15

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  9. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  10. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  11. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  12. The Acoustical Apparatus of Rudolph Koenig.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1992-01-01

    Discusses the history of Rudolph Koenig's contribution to the development of acoustical apparatus. Contributions include the clock fork to determine absolute acoustic frequencies, a forerunner of the oscilloscope called the manometric flame, and an acoustic interference apparatus used in the Fourier synthesis of musical sounds. (MDH)

  13. Approximation to cutoffs of higher modes of Rayleigh waves for a layered earth model

    USGS Publications Warehouse

    Xu, Y.; Xia, J.; Miller, R.D.

    2009-01-01

    A cutoff defines the long-period termination of a Rayleigh-wave higher mode and, therefore is a key characteristic of higher mode energy relationship to several material properties of the subsurface. Cutoffs have been used to estimate the shear-wave velocity of an underlying half space of a layered earth model. In this study, we describe a method that replaces the multilayer earth model with a single surface layer overlying the half-space model, accomplished by harmonic averaging of velocities and arithmetic averaging of densities. Using numerical comparisons with theoretical models validates the single-layer approximation. Accuracy of this single-layer approximation is best defined by values of the calculated error in the frequency and phase velocity estimate at a cutoff. Our proposed method is intuitively explained using ray theory. Numerical results indicate that a cutoffs frequency is controlled by the averaged elastic properties within the passing depth of Rayleigh waves and the shear-wave velocity of the underlying half space. ?? Birkh??user Verlag, Basel 2009.

  14. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  15. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  16. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators. PMID:26812132

  17. Geomagnetic cutoffs: a review for space dosimetry applications.

    PubMed

    Smart, D F; Shea, M A

    1994-10-01

    The earth's magnetic field acts as a shield against charged particle radiation from interplanetary space, technically described as the geomagnetic cutoff. The cutoff rigidity problem (except for the dipole special case) has "no solution in closed form". The dipole case yields the Stormer equation which has been repeatedly applied to the earth in hopes of providing useful approximations of cutoff rigidities. Unfortunately the earth's magnetic field has significant deviations from dipole geometry, and the Stormer cutoffs are not adequate for most applications. By application of massive digital computer power it is possible to determine realistic geomagnetic cutoffs derived from high order simulation of the geomagnetic field. Using this technique, "world-grids" of directional cutoffs for the earth's surface and for a limited number of satellite altitudes have been derived. However, this approach is so expensive and time consuming it is impractical for most spacecraft orbits, and approximations must be used. The world grids of cutoff rigidities are extensively used as lookup tables, normalization points and interpolation aids to estimate the effective geomagnetic cutoff rigidity of a specific location in space. We review the various options for estimating the cutoff rigidity for earth-orbiting satellites.

  18. Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.

    PubMed

    Hudak, Paul F

    2004-01-01

    This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network. PMID:15887367

  19. Controlling Sample Rotation in Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.

    1985-01-01

    Rotation of acoustically levitated object stopped or controlled according to phase-shift monitoring and control concept. Principle applies to square-cross-section levitation chamber with two perpendicular acoustic drivers operating at same frequency. Phase difference between X and Y acoustic excitation measured at one corner by measuring variation of acoustic amplitude sensed by microphone. Phase of driver adjusted to value that produces no rotation or controlled rotation of levitated object.

  20. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    NASA Astrophysics Data System (ADS)

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  1. CHARACTERIZING LOCALIZED STRAIN OF IN0.83Al0.17As/In0.83Ga0.17As DETECTOR USING LOW FREQUENCY ATOMIC FORCE ACOUSTIC MICROSCOPE

    NASA Astrophysics Data System (ADS)

    Su, Weitao; Dou, Honglei; Huo, Dexuan; Yu, Guolin; Dai, Ning

    2016-01-01

    Localized strain accumulation and related defects strongly affect the performance of optoelectronic detectors. However, characterizing distribution of the localized strain and defects still challenges usability and spatial resolution of many measurements. In current study, the defects and surface strain accumulation of In0.83Al0.17As/In0.83Ga0.17As multilayer detectors are investigated using low-frequency atomic force acoustic microscope (AFAM) and Raman spectroscopy. With AFAM, the strain accumulation and defects can be easily identified and measured with spatial resolution as good as that of atomic force microscope (AFM).

  2. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. II. High-frequency electron-acoustic solitons

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-12-15

    A three-component plasma model composed of ions, cool electrons, and hot electrons is adopted to investigate the existence of large amplitude electron-acoustic solitons not only for the model for which inertia and pressure are retained for all plasma species which are assumed to be adiabatic but also neglecting inertial effects of the hot electrons. Using the Sagdeev potential formalism, the Mach number ranges supporting the existence of large amplitude electron-acoustic solitons are presented. The limitations on the attainable amplitudes of electron-acoustic solitons having negative potentials are attributed to a number of different physical reasons, such as the number density of either the cool electrons or hot electrons ceases to be real valued beyond the upper Mach number limit, or, alternatively, a negative potential double layer occurs. Electron-acoustic solitons having positive potentials are found to be supported only if inertial effects of the hot electrons are retained and these are found to be limited only by positive potential double layers.

  3. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. I. Low-frequency ion-acoustic solitons

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-07-15

    Using the Sagdeev pseudopotential technique, the existence of large amplitude ion-acoustic solitons is investigated for a plasma composed of ions, and hot and cool electrons. Not only are all species treated as adiabatic fluids but the model for which inertial effects of the hot electrons is neglected whilst retaining inertia and pressure for the ions and cool electrons has also been considered. The focus of this investigation has been on identifying the admissible Mach number ranges for large amplitude nonlinear ion-acoustic soliton structures. The lower Mach number limit yields a minimum velocity for the existence of ion-acoustic solitons. The upper Mach number limit for positive potential solitons is found to coincide with the limiting value of the potential (positive) beyond which the ion number density ceases to be real valued, and ion-acoustic solitons can no longer exist. Small amplitude solitons having negative potentials are found to be supported when the temperature of the cool electrons is negligible.

  4. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France

    USGS Publications Warehouse

    Piegay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E.

    2008-01-01

    Floodplain development is associated with lateral accretion along stable channel geometry. Along shifting rivers, the floodplain sedimentation is more complex because of changes in channel position but also cutoff channel presence, which exhibit specific overflow patterns. In this contribution, the spatial and temporal variability of sedimentation rates in cutoff channel infill deposits is related to channel changes of a shifting gravel bed river (Ain River, France). The sedimentation rates estimated from dendrogeomorphic analysis are compared between and within 14 cutoff channel infills. Detailed analyses along a single channel infill are performed to assess changes in the sedimentation rates through time by analyzing activity profiles of the fallout radionuclides 137Cs and unsupported 210Pb. Sedimentation rates are also compared within the channel infills with rates in other plots located in the adjacent floodplain. Sedimentation rates range between 0.65 and 2.4 cm a -1 over a period of 10 to 40 years. The data provide additional information on the role of distance from the bank, overbank flow frequency, and channel geometry in controlling the sedimentation rate. Channel infills, lower than adjacent floodplains, exhibit higher sedimentation rates and convey overbank sediment farther away within the floodplain. Additionally, channel degradation, aggradation, and bank erosion, which reduce or increase the distance between the main channel and the cutoff channel aquatic zone, affect local overbank flow magnitude and frequency and therefore sedimentation rates, thereby creating a complex mosaic of sedimentation zones within the floodplain and along the cutoff channel infills. Last, the dendrogeomorphic and 137Cs approaches are cross validated for estimating the sedimentation rate within a channel infill. Copyright 2008 by the American Geophysical Union.

  5. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  6. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  7. Acoustic and Slow Sausage Oscillations in the Stratified Solar Photosphere: Hinode Observations and Phase Relationships

    NASA Astrophysics Data System (ADS)

    Tsap, Y. T.; Stepanov, A. V.; Kopylova, Y. G.

    2016-09-01

    Based on the linearized magnetohydrodynamic (MHD) equations within the framework of the thin flux tube approximation, the phase relationships between the disturbed quantities of evanescent acoustic and slow sausage MHD modes excited in the adiabatically stratified solar atmosphere are considered. It has been shown that the sign of the phase differences (equal to ±π/2) between the velocity and other disturbed quantities such as pressure, density, magnetic field, and temperature, depends on the wave frequency ω. The obtained phase relationships agree well with SOT/Hinode observations obtained by Fujimura and Tsuneta (Astrophys. J. 702, 1443, 2009) when ω≈ωc, where ωc is the cutoff frequency. The role of various modes excited in the solar atmosphere in the light of the chromospheric and coronal heating problems are discussed.

  8. Acoustic transducer for nuclear reactor monitoring

    DOEpatents

    Ahlgren, Frederic F.; Scott, Paul F.

    1977-01-01

    A transducer to monitor a parameter and produce an acoustic signal from which the monitored parameter can be recovered. The transducer comprises a modified Galton whistle which emits a narrow band acoustic signal having a frequency dependent upon the parameter being monitored, such as the temperature of the cooling media of a nuclear reactor. Multiple locations within a reactor are monitored simultaneously by a remote acoustic receiver by providing a plurality of transducers each designed so that the acoustic signal it emits has a frequency distinct from the frequencies of signals emitted by the other transducers, whereby each signal can be unambiguously related to a particular transducer.

  9. LOOKING DOWNSTREAM FROM KACHESS DAM CREST, 1910 RIVER CUTOFF CHANNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOOKING DOWNSTREAM FROM KACHESS DAM CREST, 1910 RIVER CUTOFF CHANNEL WITH CRIB STRUCTURE IN CENTER. BRIDGE FOOTING CRIB STRUCTURE AT RIGHT (Upstream face of Kachess Dam in foreground) - Kachess Dam, Cutoff Channel and Crib Structures, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  10. CUTOFF: A FORTRAN Program for Establishing Thresholds for Screening Indices.

    ERIC Educational Resources Information Center

    McKenzie, Dean P.; Clarke, David M.

    1992-01-01

    A FORTRAN program is described that aids in construction of screening tests by performing a type of Receiver Operating Characteristic analysis as well as calculating measures such as sensitivity and specificity. CUTOFF could be applied in any setting where the optional cutoff for separating persons into two classes is required. (Author/SLD)

  11. RIASEC Interest and Confidence Cutoff Scores: Implications for Career Counseling

    ERIC Educational Resources Information Center

    Bonitz, Verena S.; Armstrong, Patrick Ian; Larson, Lisa M.

    2010-01-01

    One strategy commonly used to simplify the joint interpretation of interest and confidence inventories is the use of cutoff scores to classify individuals dichotomously as having high or low levels of confidence and interest, respectively. The present study examined the adequacy of cutoff scores currently recommended for the joint interpretation…

  12. Low-Cutoff, High-Pass Digital Filtering of Neural Signals

    NASA Technical Reports Server (NTRS)

    Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard

    2004-01-01

    The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).

  13. Measurement of electron density using reactance cutoff probe

    NASA Astrophysics Data System (ADS)

    You, K. H.; You, S. J.; Kim, D. W.; Na, B. K.; Seo, B. H.; Kim, J. H.; Seong, D. J.; Chang, H. Y.

    2016-05-01

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure the electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).

  14. Quasi-chemical theory with a soft cutoff

    SciTech Connect

    Chempath, Shaji; Pratt, Lawrence R; Paulaitis, Michael E

    2008-01-01

    In view of the wide success of molecular quasichemical theory of liquids, this paper develops the soft-cutoff version of that theory. This development allows molecular dynamics simulations to be used for the calculation of solvation free energy, whereas the hard-cutoff version of the theory needs Monte Carlo simulations. This development also shows how fluids composed of molecules with smooth repulsive interactions can be treated analogously to the molecular-field theory of the hard-sphere fluid. In the treatment of liquid water, quasichemical theory with soft-cutoff conditioning does not change the fundamental convergence characteristics of the theory using hard-cutoff conditioning. In fact, hard cutoffs are found here to work better than softer ones in that case.

  15. Acoustic Characterization of Mesoscale Objects

    SciTech Connect

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  16. Absorption cross section of canonical acoustic holes

    SciTech Connect

    Crispino, Luis C. B.; Oliveira, Ednilton S.; Matsas, George E. A.

    2007-11-15

    We compute numerically the absorption cross section of a canonical acoustic hole for sound waves with arbitrary frequencies. Our outputs are in full agreement with the expected low- and high-frequency limits.

  17. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  18. Quantum Čerenkov Radiation: Spectral Cutoffs and the Role of Spin and Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Kaminer, Ido; Mutzafi, Maor; Levy, Amir; Harari, Gal; Herzig Sheinfux, Hanan; Skirlo, Scott; Nemirovsky, Jonathan; Joannopoulos, John D.; Segev, Mordechai; Soljačić, Marin

    2016-01-01

    We show that the well-known Čerenkov effect contains new phenomena arising from the quantum nature of charged particles. The Čerenkov transition amplitudes allow coupling between the charged particle and the emitted photon through their orbital angular momentum and spin, by scattering into preferred angles and polarizations. Importantly, the spectral response reveals a discontinuity immediately below a frequency cutoff that can occur in the optical region. Near this cutoff, the intensity of the conventional Čerenkov radiation (ČR) is very small but still finite, while our quantum calculation predicts exactly zero intensity above the cutoff. Below that cutoff, with proper shaping of electron beams (ebeams), we predict that the traditional ČR angle splits into two distinctive cones of photonic shockwaves. One of the shockwaves can move along a backward cone, otherwise considered impossible for conventional ČR in ordinary matter. Our findings are observable for ebeams with realistic parameters, offering new applications including novel quantum optics sources, and opening a new realm for Čerenkov detectors involving the spin and orbital angular momentum of charged particles.

  19. Acoustic positioning and orientation prediction

    NASA Astrophysics Data System (ADS)

    Barmatz, Martin B.; Aveni, Glenn; Putterman, Seth; Rudnick, Joseph

    1990-10-01

    A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.

  20. Acoustic positioning and orientation prediction

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Aveni, Glenn (Inventor); Putterman, Seth (Inventor); Rudnick, Joseph (Inventor)

    1990-01-01

    A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.

  1. Vowel Acoustic Space Development in Children: A Synthesis of Acoustic and Anatomic Data

    ERIC Educational Resources Information Center

    Vorperian, Houri K.; Kent, Ray D.

    2007-01-01

    Purpose: This article integrates published acoustic data on the development of vowel production. Age specific data on formant frequencies are considered in the light of information on the development of the vocal tract (VT) to create an anatomic-acoustic description of the maturation of the vowel acoustic space for English. Method: Literature…

  2. Fifty years of progress in geomagnetic cutoff rigidity determinations

    NASA Astrophysics Data System (ADS)

    Smart, D. F.; Shea, M. A.

    2009-11-01

    This paper is a review of the progress made in geomagnetic cutoff rigidity calculations over the past 50 years. Determinations of cosmic ray trajectories, and hence cutoff rigidities, using digital computers began in 1956 and progressed slowly until 1962 when McCracken developed an efficient computer program to determine cosmic ray trajectories in a high degree simulation of the geomagnetic field. The application of this cosmic ray trajectory technique was limited by the available computer power. As computers became faster it was possible to determine vertical cutoff rigidity values for cosmic ray stations and coarse world grids; however, the computational effort required was formidable for the computers of the 1960s. Since most cosmic ray experiments were conducted on the surface of the Earth, the vertical cutoff rigidity was adopted as a standard reference value. The effective cutoff value derived from trajectory calculations appeared to be adequate for ordering cosmic ray data from latitude surveys. As the geomagnetic field evolution became more apparent, it was found necessary to update the world grid of cutoff rigidity values using more accurate descriptions of the geomagnetic field. In the 1970s and 1980s it became possible to do experimental verification of the accuracy of these cosmic ray cutoff determinations and also to design experiments based on these cutoff rigidity calculations. The extensive trajectory calculations done in conjunction with the HEAO-3 satellite and a comparison between these experimental measurements and the trajectory calculations verified the Störmer theory prediction regarding angular cutoff variations and also confirmed that the structure of the first order penumbra is very stable and could be used for isotope separation. Contemporary work in improving cutoff rigidities seems to be concentrating on utilizing improved magnetospheric models in an effort to determine more accurate geomagnetic cutoff values. When using geomagnetic

  3. Temperature Dependence of Surface Acoustic Wave Propagation Velocity in InxGa1-xN Films Obtained by High-Resolution Brillouin Spectroscopy: Determination of Temperature Coefficient of Frequency

    NASA Astrophysics Data System (ADS)

    Riobóo, Rafael J. Jiménez; Prieto, Carlos; Cuscó, Ramón; Artús, Lluís; Boney, Chris; Bensaoula, Abdelhak; Yamaguchi, Tomohiro; Nanishi, Yasushi

    2013-05-01

    Temperature-dependent surface acoustic wave (SAW) propagation velocity and temperature coefficient of frequency (TCF) have been determined for the first time in InxGa1-xN alloys by means of high-resolution Brillouin spectroscopy (HRBS). HRBS offers an alternative way of determining TCF. The obtained TCF values present a non-linear behavior with the In concentration. TCF of pure InN (-13.75 ppm/K) is similar to those of AlN and GaN (-19 and -17.7 ppm/K, respectively). InxGa1-xN samples exhibit frequency values that are very stable against temperature changes, which makes InxGa1-xN a good candidate for current SAW-based technological applications.

  4. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  5. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  6. Latticed pentamode acoustic cloak.

    PubMed

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  7. Latticed pentamode acoustic cloak

    PubMed Central

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  8. Acoustic metafluids.

    PubMed

    Norris, Andrew N

    2009-02-01

    Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic metafluids are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials. The derivation uses the notion of finite deformation to define the transformation of one region to another. The main result is found by considering energy density in the original and transformed regions. Properties of acoustic metafluids are discussed, and general conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially opens up the possibility of achieving broadband cloaking. PMID:19206861

  9. Simulation of reflectometry Bragg backscattering spectral responses in the absence of a cutoff layer

    SciTech Connect

    Silva, F. da; Graca, S. da; Conway, G. D.; Collaboration: ASDEX Upgrade Team

    2010-10-15

    Experimental reflectometry signals obtained in the absence of a cutoff layer, with the possibility of interferometric operation excluded, show a coherent and recurrent frequency spectrum signature similar to an Alfven cascade signature. A possible explanation resides in the modulation of a resonant Bragg backscattering response by an Alfven mode structure located at the center of the plasma whose frequency of oscillation modulates the backscattered signal in a conformable way. This situation is modeled and simulated using an O-mode full-wave Maxwell finite-difference time-domain code and the resulting signatures are discussed.

  10. Acoustic Imaging in Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Chang, Hsiang-Kuang; Sun, Ming-Tsung; LaBonte, Barry; Chen, Huei-Ru; Yeh, Sheng-Jen; Team, The TON

    1999-04-01

    The time-variant acoustic signal at a point in the solar interior can be constructed from observations at the surface, based on the knowledge of how acoustic waves travel in the Sun: the time-distance relation of the p-modes. The basic principle and properties of this imaging technique are discussed in detail. The helioseismic data used in this study were taken with the Taiwan Oscillation Network (TON). The time series of observed acoustic signals on the solar surface is treated as a phased array. The time-distance relation provides the phase information among the phased array elements. The signal at any location at any time can be reconstructed by summing the observed signal at array elements in phase and with a proper normalization. The time series of the constructed acoustic signal contains information on frequency, phase, and intensity. We use the constructed intensity to obtain three-dimensional acoustic absorption images. The features in the absorption images correlate with the magnetic field in the active region. The vertical extension of absorption features in the active region is smaller in images constructed with shorter wavelengths. This indicates that the vertical resolution of the three-dimensional images depends on the range of modes used in constructing the signal. The actual depths of the absorption features in the active region may be smaller than those shown in the three-dimensional images.

  11. [Acoustic characteristics of classrooms].

    PubMed

    Koszarny, Zbigniew; Chyla, Andrzej

    2003-01-01

    Quality and usefulness of school rooms for transmission of verbal information depends on the two basic parameters: form and quantity of the reverberation time, and profitable line measurements of school rooms from the acoustic point of view. An analysis of the above-mentioned parameters in 48 class rooms and two gymnasiums in schools, which were built in different periods, shows that the most important problem is connected with too long reverberation time and inappropriate acoustic proportions. In schools built in the 1970s, the length of reverberation time is mostly within a low frequency band, while in schools built contemporarily, the maximum length of disappearance time takes place in a quite wide band of 250-2000 Hz. This exceeds optimal values for that kind of rooms at least twice, and five times in the newly built school. A long reverberation time is connected with a low acoustic absorption of school rooms. Moreover, school rooms are characterised by inappropriate acoustic proportions. The classrooms, in their relation to the height, are too long and too wide. It is connected with deterioration of the transmission of verbal information. The data show that this transmission is unequal. Automatically, it leads to a speech disturbance and difficulties with understanding. There is the need for adaptation of school rooms through increase of an acoustic absorption.

  12. Determining Equilibrium Position For Acoustical Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  13. Fast wideband acoustical holography.

    PubMed

    Hald, Jørgen

    2016-04-01

    Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient. PMID:27106299

  14. LLNL`s acoustic spectrometer

    SciTech Connect

    Baker, J.

    1997-03-17

    This paper describes the development of a frequency sensitive acoustic transducer that operates in the 10 Hz to 10 kHz regime. This device uses modem silicon microfabrication techniques to form mechanical tines that resonate at specified frequencies. This high-sensitivity device is intended for low-power battery powered applications.

  15. 10 CFR 26.161 - Cutoff levels for validity testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...., bleach, iodine, fluoride) is verified using either a general oxidant colorimetric test (with a cutoff....g., bleach, iodine, fluoride) is determined using the same halogen colorimetric test with a...

  16. 10 CFR 26.161 - Cutoff levels for validity testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...., bleach, iodine, fluoride) is verified using either a general oxidant colorimetric test (with a cutoff....g., bleach, iodine, fluoride) is determined using the same halogen colorimetric test with a...

  17. 10 CFR 26.161 - Cutoff levels for validity testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...., bleach, iodine, fluoride) is verified using either a general oxidant colorimetric test (with a cutoff....g., bleach, iodine, fluoride) is determined using the same halogen colorimetric test with a...

  18. 10 CFR 26.161 - Cutoff levels for validity testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...., bleach, iodine, fluoride) is verified using either a general oxidant colorimetric test (with a cutoff....g., bleach, iodine, fluoride) is determined using the same halogen colorimetric test with a...

  19. 41. SWITCH BACK IN DAVIS CUTOFF ROAD AT LITTLE CRANE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. SWITCH BACK IN DAVIS CUT-OFF ROAD AT LITTLE CRANE CREEK. NOTE STONE CULVERT BRIDGE AT BOTTOM AND CRANE FALLS BRIDGE AT TOP. - Yosemite National Park Roads & Bridges, Yosemite Village, Mariposa County, CA

  20. 14 CFR § 1214.1103 - Application cutoff date.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Astronaut Candidate Recruitment and Selection Program § 1214.1103 Application cutoff date. (a) The JSC Director, or designee, is responsible for identifying the need for additional astronaut candidates and...

  1. 14 CFR 1214.1103 - Application cutoff date.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Astronaut Candidate Recruitment and Selection Program § 1214.1103 Application cutoff date. (a) The JSC Director, or designee, is responsible for identifying the need for additional astronaut candidates and...

  2. 14 CFR 1214.1103 - Application cutoff date.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Astronaut Candidate Recruitment and Selection Program § 1214.1103 Application cutoff date. (a) The JSC Director, or designee, is responsible for identifying the need for additional astronaut candidates and...

  3. 14 CFR 1214.1103 - Application cutoff date.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Astronaut Candidate Recruitment and Selection Program § 1214.1103 Application cutoff date. (a) The JSC Director, or designee, is responsible for identifying the need for additional astronaut candidates and...

  4. 14 CFR 1214.1103 - Application cutoff date.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Astronaut Candidate Recruitment and Selection Program § 1214.1103 Application cutoff date. (a) The JSC Director, or designee, is responsible for identifying the need for additional astronaut candidates and...

  5. 36. FLOAT WELL AND PIPE ENCASEMENT EAST CUTOFF WALL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. FLOAT WELL AND PIPE ENCASEMENT - EAST CUTOFF WALL, REINFORCEMENT DETAILS. Sheet A-17, October, 1940. File no. SA 342/2. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  6. 27. SPILLWAY CHANNEL: PLAN AND SECTIONS OF CRIB CUTOFF. Sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. SPILLWAY CHANNEL: PLAN AND SECTIONS OF CRIB CUTOFF. Sheet S-27, May, 1939. File no. SA 342/36. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  7. Measurement of effective sheath width around the cutoff probe based on electromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; You, S. J.; Kim, J. H.; Chang, H. Y.; Yoon, J.-S.; Oh, W. Y.

    2016-05-01

    We inferred the effective sheath width using the cutoff probe and incorporating a full-wave three-dimensional electromagnetic (EM) simulation. The EM simulation reproduced the experimentally obtained plasma-sheath resonance (PSR) on the microwave transmission (S21) spectrum well. The PSR frequency has a one-to-one correspondence with the width of the vacuum layer assumed to be the effective sheath in the EM simulation model. The sheath width was estimated by matching the S21 spectra of the experiment and the EM simulation for different widths of the sheath. We found that the inferred sheath widths quantitatively and qualitatively agree with the sheath width measured by incorporating an equivalent circuit model. These results demonstrate the excellent potential of the cutoff probe for inferring the effective sheath width from its experimental spectrum data.

  8. Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides

    NASA Astrophysics Data System (ADS)

    Hou, Haowen; Teng, Jinghua; Palacios, Tomás; Chua, Soojin

    2016-07-01

    Graphene nano-ribbon waveguides with ultra-short plasmon wavelength are a promising candidate for nanoscale photonic applications. Graphene edge plasmons are the fundamental and lowest losses mode. Through finite element method, edge plasmons show large effective refractive index and strong field confinement on nanoscale ribbons. The edge plasmons follow a k1/2 dispersion relation. The wavelengths of the edge plasmons and center plasmons differ by a fixed factor. The width of edge plasmon is inversely proportional to wave vector of edge plasmon kedge. Edge defects associate with graphene nano-ribbon induce extra losses and reduce the propagation length. Cut-off width of edge plasmons reduces with increasing frequency. Cut-off width of center plasmon is enlarged by edge component but the enlargement effect diminishing with the increase of kedge. The results are important for the application of graphene plasmon towards ultra-compact photonic devices.

  9. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range

  10. Simplified Rotation In Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  11. Design of radial phononic crystal using annular soft material with low-frequency resonant elastic structures

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang

    2016-10-01

    Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  12. Lateral Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Arnac, Sarah R.; Hill, Michael A.

    2016-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center (AFRC) and the NASA Langley Research Center (LaRC), in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics near the sonic boom carpet extremity. The FaINT was an effort that collected finely-space sonic boom data across the entire lateral cutoff transition region. A major objective of the effort was to investigate the acoustic phenomena that occur at the audible edge of a sonic boom carpet, including the transition and shadow zones. A NASA F-18B aircraft made supersonic passes such that its sonic boom carpet transition zone would intersect a linear 60-microphone, 7500-ft long array. A TG-14 motor glider equipped with a microphone on its wing also attempted to capture the same sonic boom rays that were measured on the ground, at altitudes of 3000 - 6000 ft above ground level. This paper determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, and established a value of 65 dB as a limit for the acoustic levels defining the lateral extent of a sonic boom's noise region; analyzed the change in sonic boom levels as a function of distance from flight path both on the ground and 4500 ft above the ground; and compared between sonic boom measurements and numerical predictions.

  13. Tripling the detection view of high-frequency linear-array-based photoacoustic computed tomography by using two planar acoustic reflectors

    PubMed Central

    Li, Guo; Xia, Jun; Wang, Kun; Maslov, Konstantin; Anastasio, Mark A.

    2015-01-01

    Background Linear-array-based photoacoustic computed tomography (PACT) suffers from a limited view. Circular scanning does increase the detection view angle but is time-consuming. Therefore, it is desirable to increase the detection view angle of linear-array-based PACT without sacrificing imaging speed. Methods Two planar acoustic reflectors placed at 120 degrees to each other were added to a linear-array-based PACT system. Each reflector redirects originally undetectable photoacoustic waves back to the transducer array elements, and together they triple the original detection view angle of the PACT system. Results Adding two reflectors increased the detection view angle from 80 to 240 degrees. As a comparison, a single-reflector PACT has a detection view angle of only 160 degrees. A leaf skeleton phantom with a rich vascular network was imaged with the double-reflector PACT, and most of its features were recovered. Conclusions The two acoustic reflectors triple the detection view angle of a linear-array-based PACT without compromising the original imaging speed. This nearly full-view detection capability produces higher-quality images than single-reflector PACT or conventional PACT without reflectors. PMID:25694954

  14. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  15. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  16. Underwater Acoustics.

    ERIC Educational Resources Information Center

    Creasey, D. J.

    1981-01-01

    Summarizes the history of underwater acoustics and describes related research studies and teaching activities at the University of Birmingham (England). Also includes research studies on transducer design and mathematical techniques. (SK)

  17. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  18. Arctic acoustics ultrasonic modeling studies

    NASA Astrophysics Data System (ADS)

    Chamuel, Jacques R.

    1990-03-01

    A unique collection of laboratory ultrasonic modeling results are presented revealing and characterizing hidden pulsed seismoacoustic wave phenomena from 3-D range dependent liquid/solid boundaries. The research succeeded in isolating and identifying low frequency (10 to 500 Hz) transmission loss mechanisms and provided physical insight into Arctic acoustic problems generally beyond the state-of-the-art of theoretical and numerical analysis. The ultrasonic modeling studies dealt with controversial issues and existing discrepancies on seismo-acoustic waves at water/ice interface, sea ice thickness determination, low frequency transmission loss, and bottom leaky Rayleigh waves. The areas investigated include leaky Rayleigh waves at water/ice interface, leaky flexural waves in floating ice plates, effects of dry/wet cracks in sea ice on plate waves and near grazing acoustic waves, edge waves in floating plates, low frequency backscatter from ice keel width resonances, conversion of underwater acoustic waves into plate waves by keels, nondispersive flexural wave along apex of small angle solid wedge, Scholte and leaky Rayleigh waves along apex of immersed 90 ice wedge, backscatter from trailing edge of floes, floating plate resonances associated with near-grazing underwater acoustic waves, acoustic coupling between adjacent floes, and multiple bottom leaky Rayleigh wave components in water layer over solid bottom.

  19. Contrasted sediment processes and morphological adjustments in three successive cutoff meanders of the Danube delta

    NASA Astrophysics Data System (ADS)

    Tiron Duţu, Laura; Provansal, Mireille; Le Coz, Jérôme; Duţu, Florin

    2014-01-01

    Since the 1980s intensive anthropogenic disturbances have affected the channel of the St. George branch, the southern distributary of the Danube River. The meander cutoff programme since 1984-1988 induced different hydrosedimentary impacts on the local distribution of river flow velocities, discharge, and sediment fluxes between the former meanders and the man-made canals (Ichim and Radoane, 1986; Popa, 1997; Panin, 2003). This paper selects three large cutoff meander reaches of the St. George branch (the Mahmudia, Dunavăţ de Sus, and Dunavăţ de Jos meanders noted here as M1, M2, and M3, respectively) as an example to analyse the human impact in the Danube River delta. The diversion of the flow induces strong modifications by acceleration of the fluxes through the artificial canals combined with dramatically enhanced deposition in the former meander where it was observed in two cases (M1 and M3) with slight modifications in M2. An exceptional flood that occurred in April 2006 offered a good opportunity for scanning different cross sections of the meander systems. Bathymetry, flow velocity, suspended-load concentration, and liquid and solid discharge data were acquired throughout several cross sections of both natural channels and artificial canals of the three cutoffs, using acoustic Doppler current profiler (ADCP) technology, in order to investigate the distribution of the flow and sediment and its impact on the hydrosedimentary processes in each channelized reach and adjacent former meander. Therefore, the results obtained during the 2006 flood were referred to a long-term evolution (1970-2006), analysed by GIS techniques.

  20. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.