Sample records for acoustic cutoff period

  1. On Computations of Duct Acoustics with Near Cut-Off Frequency

    NASA Technical Reports Server (NTRS)

    Dong, Thomas Z.; Povinelli, Louis A.

    1997-01-01

    The cut-off is a unique feature associated with duct acoustics due to the presence of duct walls. A study of this cut-off effect on the computations of duct acoustics is performed in the present work. The results show that the computation of duct acoustic modes near cut-off requires higher numerical resolutions than others to avoid being numerically cut off. Duct acoustic problems in Category 2 are solved by the DRP finite difference scheme with the selective artificial damping method and results are presented and compared to reference solutions.

  2. Observation of frequency cutoff for self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.

    2009-11-01

    Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.

  3. High sensitivity of p-modes near the acoustic cutoff frequency to solar model parameters

    NASA Technical Reports Server (NTRS)

    Guenther, D. B.

    1991-01-01

    The p-mode frequencies of low l have been calculated for solar models with initial helium mass fraction varying from Y = 0.2753-0.2875. The differences in frequency of the p-modes in the frequency range, 2500-4500 microHz, do not exceed 1-5 microHz among the models. But in the vicinity of the acoustic cutoff frequency, near 5000 microHz the p-mode frequency differences are enhanced by a factor of 4. The enhanced sensitivity of p-modes near the acoustic cutoff frequency was further tested by calculating and comparing p-mode frequencies of low l for two solar models one incorporating the Eddington T-tau relation and the other the Krishna Swamy T-tau relation. Again, it is found that p-modes with frequencies near the acoustic cutoff frequency show a significant increase in sensitivity to the different T-tau relations, compared to lower frequency p-modes. It is noted that frequencies above the acoustic cutoff frequency are complex, hence, cannot be modeled by the adiabatic pulsation code (assumes real eigenfrequencies) used in these calculations.

  4. Modal analysis and cut-off conditions of multichannel surface-acoustic-waveguide structures.

    PubMed

    Griffel, G; Golan, G; Ruschin, S; Seidman, A; Croitoru, N

    1988-01-01

    Multichannel guides for surface acoustic waves can improve the efficiency of SAW (surface acoustic-wave) devices significantly. Focusing, steering, and modulating the propagating acoustical modes can be achieved similarly to optical waveguided devices. A general formulation is presented for the analysis of the lateral waveguiding properties of Rayleigh modes in surfaces loaded with deposited strips of different materials. General expressions are obtained for the number of modes and cutoff conditions in these structures. As examples of applications, a simple directional coupler and an electrically controlled coupler are proposed.

  5. Inlet noise suppressor design method based upon the distribution of acoustic power with mode cutoff ratio

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1976-01-01

    A liner design for noise suppressors with outer wall treatment such as in an engine inlet is presented which potentially circumvents the problems of resolution in modal measurement. The method is based on the fact that the modal optimum impedance and the maximum possible sound power attenuation at this optimum can be expressed as functions of cutoff ratio alone. Modes with similar cutoff ratios propagate similarly in the duct and in addition propagate similarly to the far field. Thus there is no need to determine the acoustic power carried by these modes individually, and they can be grouped together as one entity. With the optimum impedance and maximum attenuation specified as functions of cutoff ratio, the off-optimum liner performance can be estimated using an approximate attenuation equation.

  6. Optimum wall impedance for spinning modes: A correlation with mode cut-off ratio

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1978-01-01

    A correlating equation relating the optimum acoustic impedance for the wall lining of a circular duct to the acoustic mode cut-off ratio, is presented. The optimum impedance was correlated with cut-off ratio because the cut-off ratio appears to be the fundamental parameter governing the propagation of sound in the duct. Modes with similar cut-off ratios respond in a similar way to the acoustic liner. The correlation is a semi-empirical expression developed from an empirical modification of an equation originally derived from sound propagation theory in a thin boundary layer. This correlating equation represents a part of a simplified liner design method, based upon modal cut-off ratio, for multimodal noise propagation.

  7. Combined Electric and Acoustic Stimulation With Hearing Preservation: Effect of Cochlear Implant Low-Frequency Cutoff on Speech Understanding and Perceived Listening Difficulty.

    PubMed

    Gifford, René H; Davis, Timothy J; Sunderhaus, Linsey W; Menapace, Christine; Buck, Barbara; Crosson, Jillian; O'Neill, Lori; Beiter, Anne; Segel, Phil

    The primary objective of this study was to assess the effect of electric and acoustic overlap for speech understanding in typical listening conditions using semidiffuse noise. This study used a within-subjects, repeated measures design including 11 experienced adult implant recipients (13 ears) with functional residual hearing in the implanted and nonimplanted ear. The aided acoustic bandwidth was fixed and the low-frequency cutoff for the cochlear implant (CI) was varied systematically. Assessments were completed in the R-SPACE sound-simulation system which includes a semidiffuse restaurant noise originating from eight loudspeakers placed circumferentially about the subject's head. AzBio sentences were presented at 67 dBA with signal to noise ratio varying between +10 and 0 dB determined individually to yield approximately 50 to 60% correct for the CI-alone condition with full CI bandwidth. Listening conditions for all subjects included CI alone, bimodal (CI + contralateral hearing aid), and bilateral-aided electric and acoustic stimulation (EAS; CI + bilateral hearing aid). Low-frequency cutoffs both below and above the original "clinical software recommendation" frequency were tested for all patients, in all conditions. Subjects estimated listening difficulty for all conditions using listener ratings based on a visual analog scale. Three primary findings were that (1) there was statistically significant benefit of preserved acoustic hearing in the implanted ear for most overlap conditions, (2) the default clinical software recommendation rarely yielded the highest level of speech recognition (1 of 13 ears), and (3) greater EAS overlap than that provided by the clinical recommendation yielded significant improvements in speech understanding. For standard-electrode CI recipients with preserved hearing, spectral overlap of acoustic and electric stimuli yielded significantly better speech understanding and less listening effort in a laboratory-based, restaurant

  8. Acoustic radiation efficiency of a periodically corrugated rigid piston

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Uris, Antonio; Meseguer, Francisco

    2012-09-01

    The radiation of sound by a periodically corrugated rigid piston is explored using theoretical and numerical approaches and compared with the radiation of flat rigid piston. The depth and the period of the corrugation are considered to be comparable with the wavelength in the surrounding fluid. Radiation enhancement is predicted due to cavity resonances and coherent diffraction. In addition, broad regions of low radiation efficiency are observed. Both effects could have an impact in acoustic transducers technology, either to increase the piston radiated power or to create a source of evanescent acoustic waves. The possibilities offered by this strategy in the nonlinear acoustic regime are also briefly discussed.

  9. Acoustic waves in the solar atmosphere at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.

    2009-12-01

    Aims. The energy supply for the radiative losses of the quiet solar chromosphere is studied. On the basis of high spatial resolution data, we investigate the amount of energy flux carried by acoustic waves in the solar photosphere. Methods: Time sequences from quiet Sun disc centre were obtained with the “Göttingen” Fabry-Perot spectrometer at the Vacuum Tower Telescope, Observatorio del Teide/Tenerife, in the non-magnetic Fe i 5576 Å line. The data were reconstructed with speckle methods. The velocity and intensity fluctuations at line minimum were subjected to Fourier and wavelet analyses. The energy fluxes at frequencies higher than the acoustic cutoff frequency (period U ≈ 190 s) were corrected for the transmission of the solar atmosphere, which reduces the signal from short-period waves. Results: Both Fourier and wavelet analysis give an amount of energy flux of ~3000 W m-2 at a height h = 250 km. Approximately 2/3 of it is carried by waves in the 5-10 mHz range, and 1/3 in the 10-20 mHz band. Extrapolation of the flux spectra gives an energy flux of 230-400 W m-2 at frequencies ν > 20 mHz. We find that the waves occur predominantly above inter-granular areas. Conclusions: We conclude that the acoustic flux in waves with periods shorter than the acoustic cutoff period can contribute to the basal heating of the solar chromosphere, in addition to the atmospheric gravity waves found recently.

  10. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods.

    PubMed

    Kurtoğlu, Selim; Hatipoğlu, Nihal; Mazıcıoğlu, Mümtaz; Kendirici, Mustafa; Keskin, Mehmet; Kondolot, Meda

    2010-01-01

    Childhood obesity is associated with an increased risk for insulin resistance. The underlying mechanism for the physiological increase in insulin levels in puberty is not clearly understood. The aim of the present study was to determine the cut-off values for homeostasis model assessment for insulin resistance (HOMA-IR) in obese children and adolescents according to gender and pubertal status. Two hundred and eight obese children and adolescents (141 girls, 127 boys) aged between 5 and 18 years were included in the study. The children were divided into prepubertal and pubertal groups. A standard oral glucose tolerance test (OGTT) was carried out in all children. A total insulin level exceeding 300 μU/mL in the blood samples, collected during the test period, was taken as the insulin resistance criterion. Cut-off values for HOMA-IR were calculated by receiver operating characteristic (ROC) analysis. In the prepubertal period, the rate of insulin resistance was found to be 37% in boys and 27.8% in girls,while in the pubertal period, this rate was 61.7% in boys and 66.7% in girls. HOMA-IR cut-off values for insulin resistance in the prepubertal period were calculated to be 2.67 (sensitivity 88.2%, specificity 65.5%) in boys and 2.22 (sensitivity 100%, specificity 42.3%) in girls, and in the pubertal period, they were 5.22 (sensitivity 56%, specificity 93.3%) in boys and 3.82 (sensitivity 77.1%, specificity 71.4%) in girls. Since gender, obesity and pubertal status are factors affecting insulin resistance, cut-off values which depend on gender and pubertal status, should be used in evaluation of insulin resistance.

  11. Non-reciprocal wave propagation in one-dimensional nonlinear periodic structures

    NASA Astrophysics Data System (ADS)

    Luo, Benbiao; Gao, Sha; Liu, Jiehui; Mao, Yiwei; Li, Yifeng; Liu, Xiaozhou

    2018-01-01

    We study a one-dimensional nonlinear periodic structure which contains two different spring stiffness and an identical mass in each period. The linear dispersion relationship we obtain indicates that our periodic structure has obvious advantages compared to other kinds of periodic structures (i.e. those with the same spring stiffness but two different mass), including its increased flexibility for manipulating the band gap. Theoretically, the optical cutoff frequency remains unchanged while the acoustic cutoff frequency shifts to a lower or higher frequency. A numerical simulation verifies the dispersion relationship and the effect of the amplitude-dependent signal filter. Based upon this, we design a device which contains both a linear periodic structure and a nonlinear periodic structure. When incident waves with the same, large amplitude pass through it from opposite directions, the output amplitude of the forward input is one order magnitude larger than that of the reverse input. Our devised, non-reciprocal device can potentially act as an acoustic diode (AD) without an electrical circuit and frequency shifting. Our result represents a significant step forwards in the research of non-reciprocal wave manipulation.

  12. Characteristics of Helical Flow through Neck Cutoffs

    NASA Astrophysics Data System (ADS)

    Richards, D.; Konsoer, K. M.; Turnipseed, C.; Willson, C. S.

    2017-12-01

    Meander cutoffs and oxbows lakes are a ubiquitous feature of riverine landscapes yet there is a paucity of detailed investigations concentrated on the three-dimensional flow structure through evolving neck cutoffs. The purpose of this research is to investigate and characterize helical flow through neck cutoffs with two different planform configurations: elongate meander loops and serpentine loops. Three-dimensional velocity measurements was collected with an acoustic Doppler current profiler for five cutoffs on the White River, Arkansas. Pronounced helical flow was found through all elongate loop cutoff sites, formed from the balance between centrifugal force resulting from the curving of flow through the cutoff channel and pressure gradient force resulting from water surface super-elevation between primary flow and flow at the entrance and exit of the abandoned loop. The sense of motion of the helical flow caused near-surface fluid to travel outward toward the abandoned loop while near-bed fluid was redirected toward the downstream channel. Another characteristic of the helical flow structure for elongate loop cutoffs was the reversal of helical flow over a relatively short distance, causing patterns of secondary circulation that differed from typical patterns observed through curved channels with point bars. Lastly, helical flow was revealed within zones of strong flow recirculation, enhanced by an exchange of streamwise momentum between shear layers.

  13. Mach Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A, Jr.

    2016-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center,in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation in the Mach cutoff shadow zone. The effort was conducted in fall of 2012 and named the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a data set that will go toward further understanding of the unique acoustic propagation characteristics below Mach cutoff altitude.

  14. Mach Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A., Jr.

    2016-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation in the Mach cutoff shadow zone. The effort was conducted in the fall of 2012 and named the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics below Mach cutoff altitude. FaINT was able to correlate sonic boom noise levels measured below cutoff altitude with precise airplane flight conditions, potentially increasing the accuracy over previous studies. A NASA F-18B airplane made supersonic passes such that its Mach cutoff caustic would be at varying distances above a linear 60-microphone, 7375-ft (2247.9 m) long array. A TG-14 motor glider equipped with a microphone on its wing-tip also attempted to capture the same sonic boom waves above ground, but below the Mach cutoff altitude. This paper identified an appropriate metric for sonic boom waveforms in the Mach cutoff shadow zone called Perceived Sound Exposure Level; derived an empirical relationship between Mach cutoff flight conditions and noise levels in the shadow zone; validated a safe cutoff altitude theory presented by previous studies; analyzed the sensitivity of flight below Mach cutoff to unsteady atmospheric conditions and realistic aircraft perturbations; and demonstrated the ability to record sonic boom measurements over 5000 ft (1524.0 m) above ground level, but below Mach cutoff altitude.

  15. Periodic Time-Domain Nonlocal Nonreflecting Boundary Conditions for Duct Acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.

    1996-01-01

    Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a nonreflecting wave field in an infinite uniform duct and is implemented by impulse-response operators that are applied at the boundary of the computational domain. These operators are generated by convolution integrals of the corresponding frequency-domain operators. The acoustic solution is obtained by advancing the Euler equations to a periodic state with the MacCormack scheme. The MacCormack scheme utilizes the boundary condition to limit the computational space and preserve the radiation boundary condition. The success of the boundary condition is attributed to the fact that it is nonreflecting to periodic acoustic waves. In addition, transient waves can pass rapidly out of the solution domain. The boundary condition is tested for a pure tone and a multitone source in a linear setting. The effects of various initial conditions are assessed. Computational solutions with the boundary condition are consistent with the known solutions for nonreflecting wave fields in an infinite uniform duct.

  16. Acoustic wave filter based on periodically poled lithium niobate.

    PubMed

    Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain

    2012-09-01

    Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

  17. A tunable acoustic barrier based on periodic arrays of subwavelength slits

    NASA Astrophysics Data System (ADS)

    Rubio, Constanza; Uris, Antonio; Candelas, Pilar; Belmar, Francisco; Gomez-Lozano, Vicente

    2015-05-01

    The most usual method to reduce undesirable enviromental noise levels during its transmission is the use of acoustic barriers. A novel type of acoustic barrier based on sound transmission through subwavelength slits is presented. This system consists of two rows of periodic repetition of vertical rigid pickets separated by a slit of subwavelength width and with a misalignment between them. Here, both the experimental and the numerical analyses are presented. The acoustic barrier proposed can be easily built and is frequency tunable. The results demonstrated that the proposed barrier can be tuned to mitigate a band noise without excesive barrier thickness. The use of this system as an environmental acoustic barrier has certain advantages with regard to the ones currently used both from the constructive and the acoustical point of view.

  18. Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Sánchez-Pérez, J. V.; Garcia-Raffi, L. M.

    2011-07-01

    The physical properties of a periodic distribution of absorbent resonators is used in this work to design a tunable wideband bandstop acoustic filter. Analytical and numerical simulations as well as experimental validations show that the control of the resonances and the absorption of the scatterers along with their periodic arrangement in air introduce high technological possibilities to control noise. Sound manipulation is perhaps the most obvious application of the structures presented in this work. We apply this methodology to develop a device as an alternative to the conventional acoustic barriers with several properties from the acoustical point of view but also with additional esthetic and constructive characteristics.

  19. Acoustic waves in M dwarfs: Maintaining a corona

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Cheng, Q. Q.

    1994-01-01

    We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.

  20. Multimodal far-field acoustic radiation pattern: An approximate equation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1977-01-01

    The far-field sound radiation theory for a circular duct was studied for both single mode and multimodal inputs. The investigation was intended to develop a method to determine the acoustic power produced by turbofans as a function of mode cut-off ratio. With reasonable simplifying assumptions the single mode radiation pattern was shown to be reducible to a function of mode cut-off ratio only. With modal cut-off ratio as the dominant variable, multimodal radiation patterns can be reduced to a simple explicit expression. This approximate expression provides excellent agreement with an exact calculation of the sound radiation pattern using equal acoustic power per mode.

  1. Tunable acoustic absorbers with periodical micro-perforations having varying pore shapes

    NASA Astrophysics Data System (ADS)

    Ren, Shuwei; Liu, Xuewei; Gong, Junqing; Tang, Yufan; Xin, Fengxian; Huang, Lixi; Lu, Tian Jian

    2017-11-01

    Circular pores with sub-millimeter diameters have been widely used to construct micro-perforated panels (MPPs), the acoustical performance of which can be predicted well using the Maa theory (MAA D.-Y., J. Acoust. Soc. Am., 104 (1998) 2861). We present a tunable MPP absorber with periodically arranged cylindrical pores, with their cross-sectional shapes systematically altered around the circle while maintaining their cross-sectional areas unchanged. Numerical analyses based on the viscous-thermal coupled acoustical equations are utilized to investigate the tunable acoustic performance of the proposed absorbers and to reveal the underlying physical mechanisms. We demonstrate that pore morphology significantly affects the sound absorbption of MPPs by modifying the velocity field (and hence viscous dissipation) in the pores. Pore shapes featured as meso-scale circular pores accompanied with micro-scale bulges along the boundaries can lead to perfect sound absorption at relatively low frequencies. This work not only enriches the classical Maa theory on MPPs having circular perforations, but it also opens a new avenue for designing subwavelength acoustic metamaterials of superior sound absorption in target frequency ranges.

  2. Grating-assisted surface acoustic wave directional couplers

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1991-07-01

    Physical properties of novel grating-assisted Y directional couplers are examined using the coupled-mode theory. A general formalism for the analysis of the lateral perturbed directional coupler properties is presented. Explicit expressions for waveguide key parameters such as coupling length, grating period, and other structural characterizations, are obtained. The influence of other physical properties such as time and frequency response or cutoff conditions are also analyzed. A plane grating-assisted directional coupler is presented and examined as a basic component in the integrated acoustic technology.

  3. High efficiency and broadband acoustic diodes

    NASA Astrophysics Data System (ADS)

    Fu, Congyi; Wang, Bohan; Zhao, Tianfei; Chen, C. Q.

    2018-01-01

    Energy transmission efficiency and working bandwidth are the two major factors limiting the application of current acoustic diodes (ADs). This letter presents a design of high efficiency and broadband acoustic diodes composed of a nonlinear frequency converter and a linear wave filter. The converter consists of two masses connected by a bilinear spring with asymmetric tension and compression stiffness. The wave filter is a linear mass-spring lattice (sonic crystal). Both numerical simulation and experiment show that the energy transmission efficiency of the acoustic diode can be improved by as much as two orders of magnitude, reaching about 61%. Moreover, the primary working band width of the AD is about two times of the cut-off frequency of the sonic crystal filter. The cut-off frequency dependent working band of the AD implies that the developed AD can be scaled up or down from macro-scale to micro- and nano-scale.

  4. Sensitivity Enhancement in Low Cutoff Wavelength Long-Period Fiber Gratings by Cladding Diameter Reduction.

    PubMed

    Del Villar, Ignacio; Partridge, Matthew; Rodriguez, Wenceslao Eduardo; Fuentes, Omar; Socorro, Abian Bentor; Diaz, Silvia; Corres, Jesus Maria; James, Stephen Wayne; Tatam, Ralph Peter

    2017-09-13

    The diameter of long-period fiber gratings (LPFGs) fabricated in optical fibers with a low cutoff wavelength was be reduced by hydrofluoric acid etching, enhancing the sensitivity to refractive index by more than a factor of 3, to 2611 nm/refractive index unit in the range from 1.333 to 1.4278. The grating period selected for the LPFGs allowed access to the dispersion turning point at wavelengths close to the visible range of the optical spectrum, where optical equipment is less expensive. As an example of an application, a pH sensor based on the deposition of a polymeric coating was analyzed in two situations: with an LPFG without diameter reduction and with an LPFG with diameter reduction. Again, a sensitivity increase of a factor of near 3 was obtained, demonstrating the ability of this method to enhance the sensitivity of thin-film-coated LPFG chemical sensors.

  5. Bi-layer plate-type acoustic metamaterials with Willis coupling

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui

    2018-01-01

    Dynamic effective negative parameters are principal to the representation of the physical properties of metamaterials. In this paper, a bi-layer plate-type unit was proposed with both a negative mass density and a negative bulk modulus; moreover, through analysis of these bi-layer structures, some important problems about acoustic metamaterials were studied. First, dynamic effective mass densities and the bulk modulus of the bi-layer plate-type acoustic structure were clarified through both the direct and the retrieval methods, and, in addition, the intrinsic relationship between the sound transmission (absorption) characteristics and the effective parameters was analyzed. Furthermore, the properties of dynamic effective parameters for an asymmetric bi-layer acoustic structure were further considered through an analysis of experimental data, and the modified effective parameters were then obtained through consideration of the Willis coupling in the asymmetric passive system. In addition, by taking both the clamped and the periodic boundary conditions into consideration in the bi-layer plate-type acoustic system, new perspectives were presented for study on the effective parameters and sound insulation properties in the range below the cut-off frequency. The special acoustic properties established by these effective parameters could enrich our knowledge and provide guidance for the design and installation of acoustic metamaterial structures in future sound engineering practice.

  6. Periodic acoustic radiation from a low aspect ratio propeller

    NASA Astrophysics Data System (ADS)

    Muench, John David

    An experimental program was conducted with the objective of providing high fidelity measurements of propeller inflow, unsteady blade surface pressures, and discrete acoustic radiation over a wide range of speeds. Anechoic wind tunnel experiments were preformed using the SISUP propeller. The upstream stator blades generate large wake deficits that result in periodic unsteady blade forces that acoustically radiate at blade passing frequency and higher harmonics. The experimental portion of this research successfully measured the inflow velocity, blade span unsteady pressures and directive characteristics of the blade-rate radiated noise associated with this complex propeller geometry while the propeller was operating on design. The spatial harmonic decomposition of the inflow revealed significant coefficients at 8, 16 and 24. The magnitude of the unsteady blade forces scale as U4 and linearly shift in frequency with speed. The magnitude of the discrete frequency acoustic levels associated with blade rate scale as U6 and also shift linearly with speed. At blade-rate, the far-field acoustic directivity has a dipole-like directivity oriented perpendicular to the inflow. At the first harmonic of blade-rate, the far-field directivity is not as well defined. The experimental inflow and blade surface pressure results were used to generate an acoustic prediction at blade rate based on a blade strip theory model developed by Blake (1986). The predicted acoustic levels were compared to the experimental results. The model adequately predicts the measured sound field at blade rate at 120 ft/sec. Radiated noise at blade-rate for 120 ft/s can be described by a dipole, whose orientation is perpendicular to the flow and is generated by the interaction of the rotating propeller with the 8th harmonic of the inflow. At blade-rate for 60 ft/s, the model under predicts measured levels. At the first harmonic of blade-rate, for 120 ft/s, the sound field is described as a combination of

  7. Distributed Acoustic Sensing (DAS) Data for Periodic Hydraulic Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Thomas; Becker, Matthew

    California State University Long Beach evaluated hydraulic connectivity among geothermal wells using Periodic Hydraulic Testing (PHT) and Distributed Acoustic Sensing (DAS). The principal was to create a pressure signal in one well and observe the responding pressure signals in one or more observation wells to assess the permeability and storage of the fracture network that connects the two wells. DAS measured strain at mHz frequency in monitoring wells in response to PHT.

  8. Homogenization-based interval analysis for structural-acoustic problem involving periodical composites and multi-scale uncertain-but-bounded parameters.

    PubMed

    Chen, Ning; Yu, Dejie; Xia, Baizhan; Liu, Jian; Ma, Zhengdong

    2017-04-01

    This paper presents a homogenization-based interval analysis method for the prediction of coupled structural-acoustic systems involving periodical composites and multi-scale uncertain-but-bounded parameters. In the structural-acoustic system, the macro plate structure is assumed to be composed of a periodically uniform microstructure. The equivalent macro material properties of the microstructure are computed using the homogenization method. By integrating the first-order Taylor expansion interval analysis method with the homogenization-based finite element method, a homogenization-based interval finite element method (HIFEM) is developed to solve a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters. The corresponding formulations of the HIFEM are deduced. A subinterval technique is also introduced into the HIFEM for higher accuracy. Numerical examples of a hexahedral box and an automobile passenger compartment are given to demonstrate the efficiency of the presented method for a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters.

  9. Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Weyna, S.

    2014-08-01

    Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above "cut-off" frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.

  10. Equalizing secondary path effects using the periodicity of fMRI acoustic noise.

    PubMed

    Kannan, Govind; Milani, Ali A; Panahi, Issa; Briggs, Richard

    2008-01-01

    Non-minimum phase secondary path has a direct effect on achieving a desired noise attenuation level in active noise control (ANC) systems. The adaptive noise canceling filter is often a causal FIR filter which may not be able to sufficiently equalize the effect of a non-minimum phase secondary path, since in theory only a non-causal filter can equalize it. However a non-causal stable filter can be found to equalize the non-minimum phase effect of secondary path. Realization of non-causal stable filters requires knowledge of future values of input signal. In this paper we develop methods for equalizing the non-minimum phase property of the secondary path and improving the performance of an ANC system by exploiting the periodicity of fMRI acoustic noise. It has been shown that the scanner noise component is highly periodic and hence predictable which enables easy realization of non-causal filtering. Improvement in performance due to the proposed methods (with and without the equalizer) is shown for periodic fMRI acoustic noise.

  11. Acoustic imaging and mirage effects with high transmittance in a periodically perforated metal slab

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Dong; Wang, Yue-Sheng; Zhang, Chuanzeng

    2016-11-01

    In this paper, we present a high-quality superlens to focus acoustic waves using a periodically perforated metallic structure which is made of zinc and immersed in water. By changing a geometrical parameter gradually, a kind of gradient-index phononic crystal lens is designed to attain the mirage effects. The acoustic waves can propagate along an arc-shaped trajectory which is precisely controlled by the angle and frequency of the incident waves. The negative refraction imaging effect depends delicately on the transmittance of the solid structure. The acoustic impedance matching between the solid and the liquid proposed in this article, which is determined by the effective density and group velocity of the unit-cell, is significant for overcoming the inefficiency problem of acoustic devices. This study focuses on how to obtain the high transmittance imaging and mirage effects based on the adequate material selection and geometrical design.

  12. Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.

    2009-12-01

    The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.

  13. Apparent Negative Reflection with the Gradient Acoustic Metasurface by Integrating Supercell Periodicity into the Generalized Law of Reflection.

    PubMed

    Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan

    2016-12-05

    As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell's law. However, the critical angle that derived from the generalized Snell's law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device.

  14. Apparent Negative Reflection with the Gradient Acoustic Metasurface by Integrating Supercell Periodicity into the Generalized Law of Reflection

    PubMed Central

    Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan

    2016-01-01

    As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell’s law. However, the critical angle that derived from the generalized Snell’s law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device. PMID:27917909

  15. On the energy flux in acoustic waves in the solar atmosphere .

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.

    The energy supply for the radiative losses of the quiet solar chromosphere is studied. Time sequences from quiet Sun disc centre were obtained with the ``Göttingen'' Fabry-Pérot spectrometer at the Vacuum Tower Telescope, Observatorio del Teide/Tenerife, in the non-magnetic Fe I 5576 Å line. The data were reconstructed with speckle methods. The velocities as measured at the line minimum were subjected to Fourier and wavelet analysis. The energy fluxes were corrected for the transmission of the solar atmosphere. We find an energy flux of ˜ 3 000 W m-2 at a height of h=250 km. Approximately 2/3 of it is carried by waves in the 5-10 mHz range, and 1/3 in the 10-20 mHz band. The waves occur predominantly above inter-granular areas. We speculate that the acoustic flux in waves with periods shorter than the acoustic cutoff period (U≈190 s) can contribute to the basal heating of the solar chromosphere, in addition to atmospheric gravity waves.

  16. Equilibrium properties of blackbody radiation with an ultraviolet energy cut-off

    NASA Astrophysics Data System (ADS)

    Mishra, Dheeraj Kumar; Chandra, Nitin; Vaibhav, Vinay

    2017-10-01

    We study various equilibrium thermodynamic properties of blackbody radiation (i.e. a photon gas) with an ultraviolet energy cut-off. We find that the energy density, specific heat etc. follow usual acoustic phonon dynamics as have been well studied by Debye. Other thermodynamic quantities like pressure, entropy etc. have also been calculated. The usual Stefan-Boltzmann law gets modified. We observe that the values of the thermodynamic quantities with the energy cut-off is lower than the corresponding values in the theory without any such scale. The phase-space measure is also expected to get modified for an exotic spacetime appearing at Planck scale, which in turn leads to the modification of Planck energy density distribution and the Wien's displacement law. We found that the non-perturbative nature of the thermodynamic quantities in the SR limit (for both unmodified and modified cases), due to nonanalyticity of the leading term, is a general feature of the theory accompanied with an ultraviolet energy cut-off. We have also discussed the possible modification in the case of Big Bang and the Stellar objects and have suggested a table top experiment for verification in effective low energy case.

  17. Sound transmission through an acoustic porous metasurface with periodic structures

    NASA Astrophysics Data System (ADS)

    Fang, Yi; Zhang, Xin; Zhou, Jie

    2017-04-01

    We report an analytical, numerical, and experimental study of sound transmission through a metasurface fabricated by porous materials, detailing systematically the factors that influence acoustic properties. The design of the metasurface is composed of four elements with varying properties, which are aligned in a periodic manner. The structures are carefully designed to form a uniform phase shift profile in one period. It is able to refract an incidence wave in an anomalous yet controllable way. A good agreement of refraction behavior between simulated and experimental results is achieved by the study. Furthermore, we systemically summarize the relationships between the refraction and the incidence angles for structures with various ratios of wavelengths and period lengths. Remarkably, the study proves that the propagation directions and the number of refracted waves are only affected by period lengths at a specified frequency. The phase shift profile only has an influence on energy distribution in the refraction region. The study suggests that a careful design of phase shift profile plays an important role in controlling sound energy distribution of the periodic structure, which is vital for applying this kind of porous metasurface in sound absorption and isolation in the future.

  18. Assessment of corrosion fatigue damage by acoustic emission and periodic proof tests

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, P.

    1976-03-01

    The development of a better nondestructive inspection method for detecting corrosion fatigue damage based on acoustic emission (AE) and periodic proof testing (PPT) is studied for corrosion fatigue tests in salt water solution under tension-tension loading. It is shown that PPT combined with AE monitoring can be a sensitive method for assessing the progress of corrosion fatigue damage as the continuous AE monitoring method. The AE-PPT technique is shown to be dependent on the geometry and size of the crack relative to the test specimen. A qualitative method based on plateauing of acoustic emission counts during proof tests due to changes in the fracture mode is used to predict the remaining fatigue life up to 70% of the actual values. PPT is shown to have no adverse effect on fatigue performance in salt water.

  19. Acoustic Measurement Of Periodic Motion Of Levitated Object

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Barmatz, Martin B.

    1992-01-01

    Some internal vibrations, oscillations in position, and rotations of acoustically levitated object measured by use of microphone already installed in typical levitation chamber for tuning chamber to resonance and monitoring operation. Levitating acoustic signal modulated by object motion of lower frequency. Amplitude modulation detected and analyzed spectrally to determine amplitudes and frequencies of motions.

  20. The influence of aminotransferase levels on liver stiffness assessed by Acoustic Radiation Force Impulse Elastography: a retrospective multicentre study.

    PubMed

    Bota, Simona; Sporea, Ioan; Peck-Radosavljevic, Markus; Sirli, Roxana; Tanaka, Hironori; Iijima, Hiroko; Saito, Hidetsugu; Ebinuma, Hirotoshi; Lupsor, Monica; Badea, Radu; Fierbinteanu-Braticevici, Carmen; Petrisor, Ana; Friedrich-Rust, Mireen; Sarrazin, Christoph; Takahashi, Hirokazu; Ono, Naofumi; Piscaglia, Fabio; Marinelli, Sara; D'Onofrio, Mirko; Gallotti, Anna; Salzl, Petra; Popescu, Alina; Danila, Mirela

    2013-09-01

    Acoustic Radiation Force Impulse Elastography is a new method for non-invasive evaluation of liver fibrosis. To evaluate the impact of elevated alanine aminotransferase levels on liver stiffness assessment by Acoustic Radiation Force Impulse Elastography. A multicentre retrospective study including 1242 patients with chronic liver disease, who underwent liver biopsy and Acoustic Radiation Force Impulse. Transient Elastography was also performed in 512 patients. The best Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis was 1.29 m/s in cases with normal alanine aminotransferase levels and 1.44 m/s in patients with alanine aminotransferase levels>5 × the upper limit of normal. The best cut-off for predicting liver cirrhosis were 1.59 and 1.75 m/s, respectively. Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis and cirrhosis were relatively similar in patients with normal alanine aminotransferase and in those with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal: 1.29 m/s vs. 1.36 m/s and 1.59 m/s vs. 1.57 m/s, respectively. For predicting cirrhosis, the Transient Elastography cut-offs were significantly higher in patients with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal compared to those with normal alanine aminotransferase: 12.3 kPa vs. 9.1 kPa. Liver stiffness values assessed by Acoustic Radiation Force Impulse and Transient Elastography are influenced by high aminotransferase levels. Transient Elastography was also influenced by moderately elevated aminotransferase levels. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  1. Active sources in the cutoff of centrifugal fans to reduce the blade tones at higher-order duct mode frequencies

    NASA Astrophysics Data System (ADS)

    Neise, W.; Koopmann, G. H.

    1991-01-01

    A previously developed (e.g., Neise and Koopmann, 1984; Koopmann et al., 1988) active noise control technique in which the unwanted acoustic signals from centrifugal fans are suppressed by placing two externally driven sources near the cutoff of the casing was applied to the frequency region where not only plane sound waves are propagational in the fan ducts but also higher-order acoustic modes. Using a specially designed fan noise testing facility, the performance of two fans (280-mm impeller diam and 508 mm diam) was monitored with static pressure taps mounted peripherally around the inlet nozzle. Experimental results show that the aerodynamically generated source pressure field around the cutoff is too complex to be successfully counterimaged by only two active sources introduced in this region. It is suggested that, for an efficient application of this noise control technique in the higher-order mode frequency regime, it is neccessary to use an active source involving larger number of individually driven loudspeakers.

  2. Cutoff Finder: A Comprehensive and Straightforward Web Application Enabling Rapid Biomarker Cutoff Optimization

    PubMed Central

    Budczies, Jan; Klauschen, Frederick; Sinn, Bruno V.; Győrffy, Balázs; Schmitt, Wolfgang D.; Darb-Esfahani, Silvia; Denkert, Carsten

    2012-01-01

    Gene or protein expression data are usually represented by metric or at least ordinal variables. In order to translate a continuous variable into a clinical decision, it is necessary to determine a cutoff point and to stratify patients into two groups each requiring a different kind of treatment. Currently, there is no standard method or standard software for biomarker cutoff determination. Therefore, we developed Cutoff Finder, a bundle of optimization and visualization methods for cutoff determination that is accessible online. While one of the methods for cutoff optimization is based solely on the distribution of the marker under investigation, other methods optimize the correlation of the dichotomization with respect to an outcome or survival variable. We illustrate the functionality of Cutoff Finder by the analysis of the gene expression of estrogen receptor (ER) and progesterone receptor (PgR) in breast cancer tissues. This distribution of these important markers is analyzed and correlated with immunohistologically determined ER status and distant metastasis free survival. Cutoff Finder is expected to fill a relevant gap in the available biometric software repertoire and will enable faster optimization of new diagnostic biomarkers. The tool can be accessed at http://molpath.charite.de/cutoff. PMID:23251644

  3. Measurement of geomagnetic cutoff rigidities and particle fluxes below geomagnetic cutoff near Palestine, Texas.

    NASA Technical Reports Server (NTRS)

    Pennypacker, C. R.; Smoot, G. F.; Buffington, A.; Muller, R. A.; Smith, L. H.

    1973-01-01

    We report a high-statistics magnetic spectrometer measurement of the geomagnetic cutoff rigidity and related effects at Palestine, Texas. The effective cutoffs we observe are in agreement with computer-calculated cutoffs. We also report measured spectra of albedo and atmospheric secondary particles that come below geomagnetic cutoff.

  4. Measurement of geomagnetic cutoff rigidities and particle fluxes below geomagnetic cutoff near Palestine, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennypacker, C.R.; Smoot, G.F.; Buffington, A.

    1973-04-01

    A high-statistics magnetic spectrometer measurement of the geomagnetic cutoff rigidity and related effects at Palestine, Texas is reported. The effective cutoffs observed are in agreement with computer-calculated cutoffs. Measured spectra of albedo and atmospheric secondary particles that come below geomagnetic cutoff are also reported. (auth)

  5. Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound

    NASA Astrophysics Data System (ADS)

    Perelomova, Anna

    2006-08-01

    The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,ρ) and caloric e(p,ρ) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed.

  6. Prediction of the acoustic pressure above periodically uneven facings in industrial workplaces

    NASA Astrophysics Data System (ADS)

    Ducourneau, J.; Bos, L.; Planeau, V.; Faiz, Adil; Skali Lami, Salah; Nejade, A.

    2010-05-01

    The aim of this work is to predict sound pressure in front of wall facings based on periodic sound scattering surface profiles. The method involves investigating plane wave reflections randomly incident upon an uneven surface. The waveguide approach is well suited to the geometries usually encountered in industrial workplaces. This method simplifies the profile geometry by using elementary rectangular volumes. The acoustic field in the profile interstices can then be expressed as the superposition of waveguide modes. In past work, walls considered are of infinite dimensions and are subjected to a periodic surface profile in only one direction. We therefore generalise this approach by extending its applicability to "double-periodic" wall facings. Free-field measurements have been taken and the observed agreement between numerical and experimental results supports the validity of the waveguide method.

  7. Climatological Features of Cutoff Low Systems in the Northern Hemisphere.

    NASA Astrophysics Data System (ADS)

    Nieto, Raquel; Gimeno, Luis; de La Torre, Laura; Ribera, Pedro; Gallego, David; García-Herrera, Ricardo; Agustín García, José; Nuñez, Marcelino; Redaño, Angel; Lorente, Jerónimo

    2005-08-01

    This study presents the first multidecadal climatology of cutoff low systems in the Northern Hemisphere. The climatology was constructed by using 41 yr (1958-98) of NCEP-NCAR reanalysis data and identifying cutoff lows by means of an objective method based on imposing the three main physical characteristics of the conceptual model of cutoff low (the 200-hPa geopotential minimum, cutoff circulation, and the specific structure of both equivalent thickness and thermal front parameter fields).Several results were confirmed and climatologically validated: 1) the existence of three preferred areas of cutoff low occurrence (the first one extends through southern Europe and the eastern Atlantic coast, the second one is the eastern North Pacific, and the third one is the northern China-Siberian region extending to the northwestern Pacific coast; the European area is the most favored region); 2) the known seasonal cycle, with cutoff lows forming much more frequently in summer than in winter; 3) the short lifetime of cutoff lows, most cutoff lows lasted 2-3 days and very few lasted more than 5 days; and 4) the mobility of the system, with few cutoff lows being stationary. Furthermore, the long study period has made it possible (i) to find a bimodal distribution in the geographical density of cutoff lows for the European sector in all the seasons (with the exception of winter), a summer displacement to the ocean in the American region, and a summer extension to the continent in the Asian region, and (ii) to detect northward and westward motion especially in the transitions from the second to third day of occurrence and from the third to fourth day of occurrence.The long-term cutoff low database built in this study is appropriate to study the interannual variability of cutoff low occurrence and the links between cutoff lows and jet stream systems, blocking, or major modes of climate variability as well as the global importance of cutoff low in the stratosphere

  8. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.

    PubMed

    Johnston, Keith; Tapia-Siles, Cecilia; Gerold, Bjoern; Postema, Michiel; Cochran, Sandy; Cuschieri, Alfred; Prentice, Paul

    2014-12-01

    Single clouds of cavitation bubbles, driven by 254kHz focused ultrasound at pressure amplitudes in the range of 0.48-1.22MPa, have been observed via high-speed shadowgraphic imaging at 1×10(6) frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48MPa generated shock-waves with an average period of 7.9±0.5μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8±0.3, 15.8±0.3, 19.8±0.2μs, at pressure amplitudes of 0.64, 0.92 and 1.22MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r=0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  10. Large scale modulation of high frequency acoustic waves in periodic porous media.

    PubMed

    Boutin, Claude; Rallu, Antoine; Hans, Stephane

    2012-12-01

    This paper deals with the description of the modulation at large scale of high frequency acoustic waves in gas saturated periodic porous media. High frequencies mean local dynamics at the pore scale and therefore absence of scale separation in the usual sense of homogenization. However, although the pressure is spatially varying in the pores (according to periodic eigenmodes), the mode amplitude can present a large scale modulation, thereby introducing another type of scale separation to which the asymptotic multi-scale procedure applies. The approach is first presented on a periodic network of inter-connected Helmholtz resonators. The equations governing the modulations carried by periodic eigenmodes, at frequencies close to their eigenfrequency, are derived. The number of cells on which the carrying periodic mode is defined is therefore a parameter of the modeling. In a second part, the asymptotic approach is developed for periodic porous media saturated by a perfect gas. Using the "multicells" periodic condition, one obtains the family of equations governing the amplitude modulation at large scale of high frequency waves. The significant difference between modulations of simple and multiple mode are evidenced and discussed. The features of the modulation (anisotropy, width of frequency band) are also analyzed.

  11. Study of Proton cutoffs during geomagnetically disturbed times

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Looper, M. D.; Baker, D. N.; Blake, J. B.

    Solar energetic particles SEP are currently classified into impulsive and gradual events The former are understood be accelerated at solar flares and the latter at interplanetary shocks driven by coronal mass ejections CMEs It is well known that CMEs also cause intense geomagnetic storms during which the geomagnetic field can be highly distorted During these times SEP fluxes penetrate the terrestrial magnetosphere and reach regions which may not be normally accessible to them The SEP access is of course controlled by the geomagnetic field configuration The cutoff latitude is a well defined latitude below which a charged particle of a given rigidity momentum per unit charge arriving from a given direction cannot penetrate SEPs constitute a radiation hazard to spacecraft and humans and measurement and prediction of the cutoff location are an important aspect of space weather This paper reports on the measurements of solar energetic proton cutoffs made by two satellites SAMPEX and Polar during geomagnetically disturbed times We study select SEP events occuring during the period 1996 to 2005 when both SAMPEX and Polar provide high quality data We will compare our measurements with cutoffs calculated by a charged particle tracing code which utilizes several currently used models of the geomagnetic field The measured SEP proton cutoffs cover a range of rigidities and are obtained at high-altitudes by the HIST detector onboard Polar and at low-altitudes by the PET and HILT detctors onboard SAMPEX

  12. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  13. The effects of a hot outer atmosphere on acoustic-gravity waves

    NASA Technical Reports Server (NTRS)

    Hindman, Bradley W.; Zweibel, Ellen G.

    1994-01-01

    We examine the effects of a hot chromosphere and corona on acoustic-gravity waves in the Sun. We use a simple solar model consisting of a neutrally stable polytrope smoothly matched to an isothermal chromosphere or corona. The temperature of the isothermal region is higher than the minimum temperature of the model. We ignore sphericity, magnetic fields, changes in the gravitational potential, and nonadiabatic effects. We find a family of atmospheric g-modes whose cavity is formed by the extremum in the buoyancy frequency at the transition region. The f-mode is the zero-order member of this family. For large values of the harmonic degree l, f-mode frequencies are below the classic f-mode frequency, mu=(gk)(exp 1/2), whereas at small values of l, the f-mode is identical to the classical f-mode solution. We also find a family of g-modes residing in the low chromosphere. Frequency shifts of p-modes can be positive or negative. When the frequency is less than the acoustic cutoff frequency of the upper isothermal atmsophere, the frequency of the upper isothermal atmosphere, the frequency shift is negative, but when the frequency is above this cutoff, the shifts can be positive. High-frequency acoustic waves which are not reflected by the photospheric cutoff are reflected at the corona by the high sound speed for moderate values of l and v. This result is independent of the solar model as long as the corona is very hot. The data are inconsistent with this result, and reasons for this discrepancy are discussed.

  14. A summary of the lateral cutoff analysis and results from NASA's Farfield Investigation of No-boom Thresholds

    NASA Astrophysics Data System (ADS)

    Cliatt, Larry J.; Hill, Michael A.; Haering, Edward A.; Arnac, Sarah R.

    2015-10-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, NASA, in partnership with other industry organizations, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The research from FaINT determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, established a value of 65 dB as a limit for the acoustic lateral extent of a sonic boom's noise region, analyzed change in sonic boom levels near lateral cutoff, and compared between real sonic boom measurements and numerical predictions.

  15. A Summary of the Lateral Cutoff Analysis and Results from Nasa's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A., Jr.; Arnac, Sarah R.

    2015-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, NASA, in partnership with other industry organizations, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The research from FaINT determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, established a value of 65 dB as a limit for the acoustic lateral extent of a sonic boom's noise region, analyzed change in sonic boom levels near lateral cutoff, and compared between real sonic boom measurements and numerical predictions.

  16. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-11-01

    Acoustic metasurfaces provide useful wavefront shaping capabilities, such as beam steering, acoustic focusing, and asymmetric transmission, in a compact structure. Most acoustic metasurfaces described in the literature are transmissive devices and focus their performance on steering sound beam of the fundamental diffractive order. In addition, the range of incident angles studied is usually below the critical incidence predicted by generalized Snell's law of reflection. In this work, we comprehensively analyze the wave interaction with a generic periodic phase-modulating structure in order to predict the behavior of all diffractive orders, especially for cases beyond critical incidence. Under the guidance of the presented analysis, a broadband reflective metasurface is designed based on an expanded library of labyrinthine acoustic metamaterials. Various local and nonlocal wavefront shaping properties are experimentally demonstrated, and enhanced absorption of higher order diffractive waves is experimentally shown for the first time. The proposed methodology provides an accurate approach for predicting practical diffracted wave behaviors and opens a new perspective for the study of acoustic periodic structures. The designed metasurface extends the functionalities of acoustic metasurfaces and paves the way for the design of thin planar reflective structures for broadband acoustic wave manipulation and extraordinary absorption.

  17. Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography

    NASA Astrophysics Data System (ADS)

    Zhang, Qian-Jiang; Dai, Shi-Kun; Chen, Long-Wei; Li, Kun; Zhao, Dong-Dong; Huang, Xing-Xing

    2015-09-01

    We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff boundary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.

  18. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2016-08-05

    JPAnalytics LLC CC: DCMA Boston DTIC Director, NRL Progress Report #8 Coupled Research in Ocean Acoustics and Signal Processing for the Next...Generation of Underwater Acoustic Communication Systems Principal Investigator’s Name: Dr. James Preisig Period Covered By Report: 1/20/2016 to 4/19/2016...Technical work this period has spanned two areas. The first of these is VHF Acoustics . During this time period, the Principle Investigator worked with Dr

  19. Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas

    NASA Astrophysics Data System (ADS)

    Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta

    2018-04-01

    Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.

  20. Cutoff Probe for Tokamak SOL Measurement

    NASA Astrophysics Data System (ADS)

    Na, Byung-Keun; You, Kwang-Ho; Kim, Dae-Woong; You, Shin-Jae; Kim, Jung-Hyung; Chang, Hong-Young

    2013-09-01

    Since a cutoff probe was developed, there have been a lot of improvements in methodology and analysis for low temperature plasmas. However, in order to apply the cutoff probe to the Tokamak scrape-off layer (SOL), three important issues should be solved - speed, thermal protection, and short-distance (a few mm) wave propagation in magnetized plasmas. In this presentation, the improvement of cutoff probe for Tokamak is shown. The above problems can be solved using the following methods: (a) the cutoff probe can be used with short impulse of a few nano-seconds for speed improvement. (b) Ceramic covers were used for thermal protection. (c) In magnetized plasmas, the cutoff peak can be analyzed using circuit modeling and CST Microwave studio. To verify the proposed methods, the cutoff probe was applied to a Helicon plasma, and the results were compared to laser Thomson scattering results. Based on the result in the Helicon plasma, the cutoff probe will be applied to far-SOL region at the KSTAR 2013 campaign, and SOL region at the later campaign.

  1. Correlation Between Acoustic Measurements and Self-Reported Voice Disorders Among Female Teachers.

    PubMed

    Lin, Feng-Chuan; Chen, Sheng Hwa; Chen, Su-Chiu; Wang, Chi-Te; Kuo, Yu-Ching

    2016-07-01

    Many studies focused on teachers' voice problems and most of them were conducted using questionnaires, whereas little research has investigated the relationship between self-reported voice disorders and objective quantification of voice. This study intends to explore the relationship of acoustic measurements according to self-reported symptoms and its predictive value of future dysphonia. This is a case-control study. Voice samples of 80 female teachers were analyzed, including 40 self-reported voice disorders (VD) and 40 self-reported normal voice (NVD) subjects. The acoustic measurements included jitter, shimmer, and noise-to-harmonics ratio (NHR). Levene's t test and logistic regression were used to analyze the differences between VD and NVD and the relationship between self-reported voice conditions and the acoustic measurements. To examine whether acoustic measurements can be used to predict further voice disorders, we applied a receiver operating characteristic (ROC) curve to determine the cutoff values and the associated sensitivity and specificity. The results showed that jitter, shimmer, and the NHR of VD were significantly higher than those of NVD. Among the parameters, the NHR and shimmer demonstrated the highest correlation with self-reported voice disorders. By using the NHR ≥0.138 and shimmer ≥0.470 dB as the cutoff values, the ROC curve displayed 72.5% of sensitivity and 75% of specificity, and the overall positive predictive value for subsequent dysphonia achieved 60%. This study demonstrated a significant correlation between acoustic measurements and self-reported dysphonic symptoms. NHR and ShdB are two acoustic parameters that are more able to reflect vocal abnormalities and, probably, to predict subsequent subjective voice disorder. Future research recruiting more subjects in other occupations and genders shall validate the preliminary results revealed in this study. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All

  2. Material fabrication using acoustic radiation forces

    DOEpatents

    Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ

    2015-12-01

    Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.

  3. Enhancing acoustic signal response and absorption of an underwater coated plate by embedding periodical inhomogeneities.

    PubMed

    Zhang, Yanni; Pan, Jie

    2017-12-01

    An underwater structure is proposed for simultaneous detection and stealth purposes by embedding periodic signal conditioning plates (SCPs) at the interface of two elastic coatings attached to an elastic plate. Results show that the embedded SCPs can enhance sound absorption at frequencies below the coincidence frequency of the plate (f c ). Significantly enhanced absorption occurs at five peaks, of which the peak due to excited localized bending resonance in the outer coating between SCPs is the most significant. When the dilatational velocity of the outer coating equals that of the inner coating, nearly total absorption occurs in a wideband, owing to strong coupling between the localized waveguide resonance in the outer coating and that in the inner coating, and the diffraction waves by the SCPs. Meanwhile, an amplified acoustic signal of over 14 dB is observed at most frequencies within 0 ∼ f c at the coatings' interface close to the SCPs' edges, owing to focused stress formed there. Peaks in the signal response at maximal 30 dB are also observed. These peak frequencies are coincident with or close to the peak frequencies of absorption, demonstrating that significantly enhanced acoustic signal and absorption can be achieved simultaneously through the use of embedded periodic SCPs.

  4. The cutoff phenomenon in finite Markov chains.

    PubMed Central

    Diaconis, P

    1996-01-01

    Natural mixing processes modeled by Markov chains often show a sharp cutoff in their convergence to long-time behavior. This paper presents problems where the cutoff can be proved (card shuffling, the Ehrenfests' urn). It shows that chains with polynomial growth (drunkard's walk) do not show cutoffs. The best general understanding of such cutoffs (high multiplicity of second eigenvalues due to symmetry) is explored. Examples are given where the symmetry is broken but the cutoff phenomenon persists. PMID:11607633

  5. Acoustic behavior of a rigidly backed poroelastic layer with periodic resonant inclusions by a multiple scattering approach.

    PubMed

    Weisser, Thomas; Groby, Jean-Philippe; Dazel, Olivier; Gaultier, François; Deckers, Elke; Futatsugi, Sideto; Monteiro, Luciana

    2016-02-01

    The acoustic response of a rigidly backed poroelastic layer with a periodic set of elastic cylindrical inclusions embedded is studied. A semi-analytical approach is presented, based on Biot's 1956 theory to account for the deformation of the skeleton, coupling mode matching technique, Bloch wave representation, and multiple scattering theory. This model is validated by comparing the derived absorption coefficients to finite element simulations. Numerical results are further exposed to investigate the influence of the properties of the inclusions (type, material properties, size) of this structure, while a modal analysis is performed to characterize the dynamic behaviors leading to high acoustic absorption. Particularly, in the case of thin viscoelastic membranes, an absorption coefficient larger than 0.8 is observed on a wide frequency band. This property is found to be due to the coupling between the first volume mode of the inclusion and the trapped mode induced by the periodic array and the rigid backing, for a wavelength in the air smaller than 11 times the material thickness.

  6. Elongation cutoff technique armed with quantum fast multipole method for linear scaling.

    PubMed

    Korchowiec, Jacek; Lewandowski, Jakub; Makowski, Marcin; Gu, Feng Long; Aoki, Yuriko

    2009-11-30

    A linear-scaling implementation of the elongation cutoff technique (ELG/C) that speeds up Hartree-Fock (HF) self-consistent field calculations is presented. The cutoff method avoids the known bottleneck of the conventional HF scheme, that is, diagonalization, because it operates within the low dimension subspace of the whole atomic orbital space. The efficiency of ELG/C is illustrated for two model systems. The obtained results indicate that the ELG/C is a very efficient sparse matrix algebra scheme. Copyright 2009 Wiley Periodicals, Inc.

  7. Rayleigh and Wood anomalies in the diffraction of acoustic waves from the periodically corrugated surface of an elastic medium

    NASA Astrophysics Data System (ADS)

    Maradudin, A. A.; Simonsen, I.

    2016-05-01

    By the use of the Rayleigh method we have calculated the angular dependence of the reflectivity and the efficiencies of several other diffracted orders when the periodically corrugated surface of an isotropic elastic medium is illuminated by a volume acoustic wave of shear horizontal polarization. These dependencies display the signatures of Rayleigh and Wood anomalies, usually associated with the diffraction of light from a metallic grating. The Rayleigh anomalies occur at angles of incidence at which a diffracted order appears or disappears; the Wood anomalies here are caused by the excitation of the shear horizontal surface acoustic waves supported by the periodically corrugated surface of an isotropic elastic medium. The dispersion curves of these waves in both the nonradiative and radiative regions of the frequency-wavenumber plane are calculated, and used in predicting the angles of incidence at which the Wood anomalies are expected to occur.

  8. Relationship between cutoff frequency and accuracy in time-interval photon statistics applied to oscillating signals

    NASA Astrophysics Data System (ADS)

    Rebolledo, M. A.; Martinez-Betorz, J. A.

    1989-04-01

    In this paper the accuracy in the determination of the period of an oscillating signal, when obtained from the photon statistics time-interval probability, is studied as a function of the precision (the inverse of the cutoff frequency of the photon counting system) with which time intervals are measured. The results are obtained by means of an experiment with a square-wave signal, where the Fourier or square-wave transforms of the time-interval probability are measured. It is found that for values of the frequency of the signal near the cutoff frequency the errors in the period are small.

  9. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  10. Double negative acoustic metastructure for attenuation of acoustic emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Bhushan, Pulak; Prakash, Om; Bhattacharya, Shantanu

    2018-03-01

    Acoustic metamaterials hold great potential for attenuation of low frequency acoustic emissions. However, a fundamental challenge is achieving high transmission loss over a broad frequency range. In this work, we report a double negative acoustic metastructure for absorption of low frequency acoustic emissions in an aircraft. This is achieved by utilizing a periodic array of hexagonal cells interconnected with a neck and mounted with an elastic membrane on both ends. An average transmission loss of 56 dB under 500 Hz and an overall absorption of over 48% have been realized experimentally. The negative mass density is derived from the dipolar resonances created as a result of the in-phase movement of the membranes. Further, the negative bulk modulus is ascribed to the combined effect of out-of-phase acceleration of the membranes and the Helmholtz resonator. The proposed metastructure enables absorption of low frequency acoustic emissions with improved functionality that is highly desirable for varied applications.

  11. Geomagnetic cutoffs: A review for space dosimetry applications

    NASA Astrophysics Data System (ADS)

    Smart, D. F.; Shea, M. A.

    1994-10-01

    The earth's magnetic field acts as a shield against charged particle radiation from interplanetary space, technically described as the geomagnetic cutoff. The cutoff rigidity problem (except for the dipole special case) has 'no solution in closed form'. The dipole case yields the Stormer equation which has been repeatedly applied to the earth in hopes of providing useful approximations of cutoff rigidities. Unfortunately the earth's magnetic field has significant deviations from dipole geometry, and the Stormer cutoffs are not adequate for most applications. By application of massive digital computer power it is possible to determine realistic geomagnetic cutoffs derived from high order simulation of the geomagnetic field. Using this technique, 'world-grids' of directional cutoffs for the earth's surface and for a limited number of satellite altitudes have been derived. However, this approach is so expensive and time comsuming it is impractical for most spacecraft orbits, and approximations must be used. The world grids of cutoff rigidities are extensively used as lookup tables, normalization points and interpolation aids to estimate the effective geomagnetic cutoff rigidity of a specific location in space. We review the various options for estimating the cutoff rigidity for earth-orbiting satellites.

  12. Acoustic representation of tomographic data

    NASA Astrophysics Data System (ADS)

    Wampler, Cheryl; Zahrt, John D.; Hotchkiss, Robert S.; Zahrt, Rebecca; Kust, Mark

    1993-04-01

    Tomographic data and tomographic reconstructions are naturally periodic in the angle of rotation of the turntable and the polar angel of the coordinates in the object, respectively. Similarly, acoustic waves are periodic and have amplitude and wavelength as free parameters that can be fit to another representation. Work has been in progress for some time in bringing the acoustic senses to bear on large data sets rather than just the visual sense. We will provide several different acoustic representations of both raw data and density maps. Rather than graphical portrayal of the data and reconstructions, you will be presented various 'tone poems.'

  13. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  14. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  15. Azimuth cut-off model for significant wave height investigation along coastal water of Kuala Terengganu, Malaysia

    NASA Astrophysics Data System (ADS)

    Marghany, Maged; Ibrahim, Zelina; Van Genderen, Johan

    2002-11-01

    The present work is used to operationalize the azimuth cut-off concept in the study of significant wave height. Three ERS-1 images have been used along the coastal waters of Terengganu, Malaysia. The quasi-linear transform was applied to map the SAR wave spectra into real ocean wave spectra. The azimuth cut-off was then used to model the significant wave height. The results show that azimuth cut-off varied with the different period of the ERS-1 images. This is because of the fact that the azimuth cut-off is a function of wind speed and significant wave height. It is of interest to find that the significant wave height modeled from azimuth cut-off is in good relation with ground wave conditions. It can be concluded that ERS-1 can be used as a monitoring tool in detecting the significant wave height variation. The azimuth cut-off can be used to model the significant wave height. This means that the quasi-linear transform could be a good application to significant wave height variation during different seasons.

  16. Investigating Various Thresholds as Immunohistochemistry Cutoffs for Observer Agreement.

    PubMed

    Ali, Asif; Bell, Sarah; Bilsland, Alan; Slavin, Jill; Lynch, Victoria; Elgoweini, Maha; Derakhshan, Mohammad H; Jamieson, Nigel B; Chang, David; Brown, Victoria; Denley, Simon; Orange, Clare; McKay, Colin; Carter, Ross; Oien, Karin A; Duthie, Fraser R

    2017-10-01

    Clinical translation of immunohistochemistry (IHC) biomarkers requires reliable and reproducible cutoffs or thresholds for interpretation of immunostaining. Most IHC biomarker research focuses on the clinical relevance (diagnostic, prognostic, or predictive utility) of cutoffs, with less emphasis on observer agreement using these cutoffs. From the literature, we identified 3 commonly used cutoffs of 10% positive epithelial cells, 20% positive epithelial cells, and moderate to strong staining intensity (+2/+3 hereafter) to use for investigating observer agreement. A series of 36 images of microarray cores stained for 4 different IHC biomarkers, with variable staining intensity and percentage of positive cells, was used for investigating interobserver and intraobserver agreement. Seven pathologists scored the immunostaining in each image using the 3 cutoffs for positive and negative staining. Kappa (κ) statistic was used to assess the strength of agreement for each cutoff. The interobserver agreement between all 7 pathologists using the 3 cutoffs was reasonably good, with mean κ scores of 0.64, 0.59, and 0.62, respectively, for 10%, 20%, and +2/+3 cutoffs. A good agreement was observed for experienced pathologists using the 10% cutoff, and their agreement was statistically higher than for junior pathologists (P=0.02). In addition, the mean intraobserver agreement for all 7 pathologists using the 3 cutoffs was reasonably good, with mean κ scores of 0.71, 0.60, and 0.73, respectively, for 10%, 20%, and +2/+3 cutoffs. For all 3 cutoffs, a positive correlation was observed with perceived ease of interpretation (P<0.003). Finally, cytoplasmic-only staining achieved higher agreement using all 3 cutoffs than mixed staining patterns. All 3 cutoffs investigated achieve reasonable strength of agreement, modestly decreasing interobserver and intraobserver variability in IHC interpretation. These cutoffs have previously been used in cancer pathology, and this study provides

  17. Evolution of cutoffs across meander necks in Powder River, Montana, USA

    USGS Publications Warehouse

    Gay, G.R.; Gay, H.H.; Gay, W.H.; Martinson, H.A.; Meade, R.H.; Moody, J.A.

    1998-01-01

    Over a period of several decades, gullies have been observed in various stages of forming, growing and completing the cutoff of meander necks in Powder River. During one episode of overbank flow, water flowing over the down-stream bank of the neck forms a headctu. The headcut migrates up-valley, forming a gully in its wake, until it has traversed the entire neck, cutting off the meander. The river then follows the course of the gully, which is subsequently enlarged as the river develops its new channel. The complete process usually requires several episodes of high water: in only one of the five cases described herein was a meander cutoff initiated and completed during a single large flood.

  18. Approximation to cutoffs of higher modes of Rayleigh waves for a layered earth model

    USGS Publications Warehouse

    Xu, Y.; Xia, J.; Miller, R.D.

    2009-01-01

    A cutoff defines the long-period termination of a Rayleigh-wave higher mode and, therefore is a key characteristic of higher mode energy relationship to several material properties of the subsurface. Cutoffs have been used to estimate the shear-wave velocity of an underlying half space of a layered earth model. In this study, we describe a method that replaces the multilayer earth model with a single surface layer overlying the half-space model, accomplished by harmonic averaging of velocities and arithmetic averaging of densities. Using numerical comparisons with theoretical models validates the single-layer approximation. Accuracy of this single-layer approximation is best defined by values of the calculated error in the frequency and phase velocity estimate at a cutoff. Our proposed method is intuitively explained using ray theory. Numerical results indicate that a cutoffs frequency is controlled by the averaged elastic properties within the passing depth of Rayleigh waves and the shear-wave velocity of the underlying half space. ?? Birkh??user Verlag, Basel 2009.

  19. A Spherically-Shaped PZT Thin Film Ultrasonic Transducer with an Acoustic Impedance Gradient Matching Layer Based on a Micromachined Periodically Structured Flexible Substrate

    PubMed Central

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-01-01

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20–50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a −6 dB bandwidth of approximately 65%. PMID:24113683

  20. A spherically-shaped PZT thin film ultrasonic transducer with an acoustic impedance gradient matching layer based on a micromachined periodically structured flexible substrate.

    PubMed

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-10-09

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20-50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a -6 dB bandwidth of approximately 65%.

  1. Lateral Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Arnac, Sarah R.; Hill, Michael A.

    2016-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center (AFRC) and the NASA Langley Research Center (LaRC), in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics near the sonic boom carpet extremity. The FaINT was an effort that collected finely-space sonic boom data across the entire lateral cutoff transition region. A major objective of the effort was to investigate the acoustic phenomena that occur at the audible edge of a sonic boom carpet, including the transition and shadow zones. A NASA F-18B aircraft made supersonic passes such that its sonic boom carpet transition zone would intersect a linear 60-microphone, 7500-ft long array. A TG-14 motor glider equipped with a microphone on its wing also attempted to capture the same sonic boom rays that were measured on the ground, at altitudes of 3000 - 6000 ft above ground level. This paper determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, and established a value of 65 dB as a limit for the acoustic levels defining the lateral extent of a sonic boom's noise region; analyzed the change in sonic boom levels as a function of distance from flight path both on the ground and 4500 ft above the ground; and compared between sonic boom measurements and numerical predictions.

  2. Acoustic waves in the solar atmosphere at high spatial resolution. II. Measurement in the Fe I 5434 Å line

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O.; Shchukina, N.

    2010-11-01

    Aims: We investigate the energy supply of the solar chromosphere by acoustic waves. Methods: A time sequence with high spatial and temporal resolution from the quiet Sun disc centre in Fe i 5434 Å (Landé factor g = 0) is analysed. We used models from a numerical simulation of granular convection and apply NLTE spectral line transfer to determine the height of formation. For estimates of acoustic energy flux, we adopted wave propagation with inclinations of the wave vector with respect to the vertical of 0°, 30°, and 45°. For a granular and an intergranular model, the transmissions of the atmosphere to high-frequency waves were determined for the three inclination angles. Wavelet and Fourier analyses were performed and the resulting power spectra were corrected for atmospheric transmission. Results: We find waves with periods down to ~40 s. They occur intermittently in space and time. The velocity signal is formed at a height of 500 km in the granular model and at 620 km in the intergranule. At periods shorter than the acoustic cutoff (~190 s), ~40% of the waves occur above granules and ~60% above intergranules. By adopting vertical propagation, we estimate total fluxes above granules of 2750-3360 W m-2, and of 910-1 000 W m-2 above intergranules. The weighted average is 1730-2 060 W m-2. The estimates of the total fluxes increase by 15% when inclined wave propagation of 45° is assumed.

  3. Short period sound speed oscillation measured by intensive XBT survey and its role on GNSS/acoustic positioning

    NASA Astrophysics Data System (ADS)

    Kido, M.; Matsui, R.; Imano, M.; Honsho, C.

    2017-12-01

    In the GNSS/acoustic measurement, sound speed in ocean plays a key role of accuracy of final positioning. We have shown than longer period sound speed undulation can be properly estimated from GNSS-A analysis itself in our previous work. In this work, we have carried out intensive XBT measurement to get temporal variation of sound speed in short period to be compared with GNSS-A derived one. In the individual temperature profile obtained by intensive XBT measurements (10 minutes interval up to 12 times of cast), clear vertical oscillation up to 20 m of amplitude in the shallow part were observed. These can be interpreted as gravitational internal wave with short-period and hence short wavelength anomaly. Kido et al. (2007) proposed that horizontal variation of the ocean structure can be considered employing five or more transponders at once if the structure is expressed by two quantities, i.e., horizontal gradient in x/y directions. However, this hypothesis requires that the variation must has a large spatial scale (> 2-5km) so that the horizontal variation can be regarded as linear within the extent of acoustic path to seafloor transponders. Therefore the wavelength of the above observed internal wave is getting important. The observed period of internal wave was 30-60 minute. However its wavelength cannot be directly measured. It must be estimate based on density profile of water column. In the comparison between sound speed change and positioning, the delay of their phases were 90 degree, which indicates that most steep horizontal slope of internal wave correspond to largest apparent positioning shift.

  4. Distributed Acoustic Sensing (DAS) Data for Periodic Hydraulic Tests: Hydraulic Data

    DOE Data Explorer

    Cole, Matthew

    2015-07-31

    Hydraulic responses from periodic hydraulic tests conducted at the Mirror Lake Fractured Rock Research Site, during the summer of 2015. These hydraulic responses were measured also using distributed acoustic sensing (DAS) which is cataloged in a different submission under this grant number. The tests are explained in detail in Matthew Cole's MS Thesis which is cataloged here. The injection and drawdown data and the codes used to analyze the data. Sinusoidal Data is a Matlab data file containing a data table for each period-length test. Within each table is a column labeled: time (seconds since beginning of pumping), Inj_m3pm (formation injection in cubic meters per minute), and head for each observation well (meters). The three Matlab script files (*.m) were used to analyze hydraulic responses from the data file above. High-Pass Sinusoid is a routine for filtering the data, computing the FFT, and extracting phase and amplitude values. Borestore is a routine which contains the borehole storage analytic solution and compares modeled amplitude and phase from this solution to computed amplitude and phase from the data. Patsearch Borestore is a routine containing the built-in pattern search optimization method. This minimizes the total error between modeled and actual amplitude and phase in Borestore. Comments within the script files contain more specific instructions for their use.

  5. Montreal Cognitive Assessment: One Cutoff Never Fits All.

    PubMed

    Wong, Adrian; Law, Lorraine S N; Liu, Wenyan; Wang, Zhaolu; Lo, Eugene S K; Lau, Alexander; Wong, Lawrence K S; Mok, Vincent C T

    2015-12-01

    The objective of this study is to examine the discrepancy between single versus age and education corrected cutoff scores in classifying performance on the Montreal Cognitive Assessment (MoCA) in patients with stroke or transient ischemic attack. MoCA norms were collected from 794 functionally independent and stroke- and dementia-free persons aged ≥65 years. magnetic resonance imaging was used to exclude healthy controls with significant brain pathology and medial temporal lobe atrophy. Cutoff scores at 16th, 7th, and 2nd percentiles by age and education were derived for the MoCA and MoCA 5-minute Protocol. MoCA performance in 919 patients with stroke or transient ischemic attack was classified using the single and norm-derived cutoff scores. The norms for the Hong Kong version of the MoCA total and domain scores and the total score of the MoCA 5-minute protocol are described. Only 65.1% and 25.7% healthy controls and 45.2% and 19.0% patients scored above the conventional cutoff scores of 21/22 and 25/26 on the MoCA. Using classification with norm-derived cutoff scores as reference, locally derived cutoff score of 21/22 yielded a classification discrepancy of ≤42.4%. Discrepancy increased with higher age and lower education level, with the majority being false positives by single cutoffs. With the 25/26 cutoff of the original MoCA, discrepancy further increased to ≤74.3%. Conventional single cutoff scores are associated with substantially high rates of misclassification especially in older and less-educated patients with stroke. These results caution against the use of one-size-fits-all cutoffs on the MoCA. © 2015 American Heart Association, Inc.

  6. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    PubMed

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  7. Cutoff for the East Process

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Lubetzky, E.; Martinelli, F.

    2015-05-01

    The East process is a 1 d kinetically constrained interacting particle system, introduced in the physics literature in the early 1990s to model liquid-glass transitions. Spectral gap estimates of Aldous and Diaconis in 2002 imply that its mixing time on L sites has order L. We complement that result and show cutoff with an -window. The main ingredient is an analysis of the front of the process (its rightmost zero in the setup where zeros facilitate updates to their right). One expects the front to advance as a biased random walk, whose normal fluctuations would imply cutoff with an -window. The law of the process behind the front plays a crucial role: Blondel showed that it converges to an invariant measure ν, on which very little is known. Here we obtain quantitative bounds on the speed of convergence to ν, finding that it is exponentially fast. We then derive that the increments of the front behave as a stationary mixing sequence of random variables, and a Stein-method based argument of Bolthausen (`82) implies a CLT for the location of the front, yielding the cutoff result. Finally, we supplement these results by a study of analogous kinetically constrained models on trees, again establishing cutoff, yet this time with an O(1)-window.

  8. An open-structure sound insulator against low-frequency and wide-band acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin

    2015-10-01

    To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.

  9. 49 CFR 229.93 - Safety cut-off device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Safety cut-off device. 229.93 Section 229.93 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.93 Safety cut-off device. The fuel line shall have a safety cut-off device that— (a) Is...

  10. 49 CFR 229.93 - Safety cut-off device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Safety cut-off device. 229.93 Section 229.93 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.93 Safety cut-off device. The fuel line shall have a safety cut-off device that— (a) Is...

  11. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    NASA Astrophysics Data System (ADS)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  12. Solitary Waves, Periodic Peakons and Pseudo-Peakons of the Nonlinear Acoustic Wave Model in Rotating Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Li, Jibin

    The dynamical model of the nonlinear acoustic wave in rotating magnetized plasma is governed by a partial differential equation system. Its traveling system is a singular traveling wave system of first class depending on two parameters. By using the bifurcation theory and method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as different solitary wave solutions.

  13. [Treatment of giant acoustic neuromas].

    PubMed

    Samprón, Nicolás; Altuna, Xabier; Armendáriz, Mikel; Urculo, Enrique

    2014-01-01

    To analyze the treatment modality and outcome of a series of patients with giant acoustic neuromas, a particular type of tumour characterised by their size (extracanalicular diameter of 4cm or more) and high morbidity and mortality. This was a retrospective unicentre study of patients with acoustic neuromas treated in a period of 12 years. In our institutional series of 108 acoustic neuromas operated on during that period, we found 13 (12%) cases of giant acoustic neuromas. We reviewed the available data of these cases, including presentation and several clinical, anatomical, and microsurgical aspects. All patients were operated on by the same neurosurgeon and senior author (EU) using the suboccipital retrosigmoid approach and complete microsurgical removal was achieved in 10 cases. In one case, near total removal was deliberately performed, in another case a CSF shunt was placed as the sole treatment measure, and in the remaining case no direct treatment was given. One patient died in the immediate postoperative period. One year after surgery, 4 patients showed facial nerve function of iii or more in the House-Brackman scale. The 4 most important prognostic characteristics of giant acoustic neuromas are size, adhesion to surrounding structures, consistency and vascularity. Only the first of these is evident in neuroimaging. Giant acoustic neuromas are characterised by high morbidity at presentation as well as after treatment. Nevertheless, the objective of complete microsurgical removal with preservation of cranial nerve function is attainable in some cases through the suboccipital retrosigmoid approach. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  14. The Effects of Acoustic Bandwidth on Simulated Bimodal Benefit in Children and Adults with Normal Hearing.

    PubMed

    Sheffield, Sterling W; Simha, Michelle; Jahn, Kelly N; Gifford, René H

    2016-01-01

    The primary purpose of this study was to examine the effect of acoustic bandwidth on bimodal benefit for speech recognition in normal-hearing children with a cochlear implant (CI) simulation in one ear and low-pass filtered stimuli in the contralateral ear. The effect of acoustic bandwidth on bimodal benefit in children was compared with the pattern of adults with normal hearing. Our hypothesis was that children would require a wider acoustic bandwidth than adults to (1) derive bimodal benefit, and (2) obtain asymptotic bimodal benefit. Nineteen children (6 to 12 years) and 10 adults with normal hearing participated in the study. Speech recognition was assessed via recorded sentences presented in a 20-talker babble. The AzBio female-talker sentences were used for the adults and the pediatric AzBio sentences (BabyBio) were used for the children. A CI simulation was presented to the right ear and low-pass filtered stimuli were presented to the left ear with the following cutoff frequencies: 250, 500, 750, 1000, and 1500 Hz. The primary findings were (1) adults achieved higher performance than children when presented with only low-pass filtered acoustic stimuli, (2) adults and children performed similarly in all the simulated CI and bimodal conditions, (3) children gained significant bimodal benefit with the addition of low-pass filtered speech at 250 Hz, and (4) unlike previous studies completed with adult bimodal patients, adults and children with normal hearing gained additional significant bimodal benefit with cutoff frequencies up to 1500 Hz with most of the additional benefit gained with energy below 750 Hz. Acoustic bandwidth effects on simulated bimodal benefit were similar in children and adults with normal hearing. Should the current results generalize to children with CIs, these results suggest pediatric CI recipients may derive significant benefit from minimal acoustic hearing (<250 Hz) in the nonimplanted ear and increasing benefit with broader bandwidth

  15. Saturn systems holddown acoustic efficiency and normalized acoustic power spectrum.

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1972-01-01

    Saturn systems field acoustic data are used to derive mid- and far-field prediction parameters for rocket engine noise. The data were obtained during Saturn vehicle launches at the Kennedy Space Center. The data base is a sorted set of acoustic data measured during the period 1961 through 1971 for Saturn system launches SA-1 through AS-509. The model assumes hemispherical radiation from a simple source located at the intersection of the longitudinal axis of each booster and the engine exit plane. The model parameters are evaluated only during vehicle holddown. The acoustic normalized power spectrum and efficiency for each system are isolated as a composite from the data using linear numerical methods. The specific definitions of each allows separation. The resulting power spectra are nondimensionalized as a function of rocket engine parameters. The nondimensional Saturn system acoustic spectrum and efficiencies are compared as a function of Strouhal number with power spectra from other systems.

  16. Picosecond ultrasonic study of surface acoustic waves on periodically patterned layered nanostructures.

    PubMed

    Colletta, Michael; Gachuhi, Wanjiru; Gartenstein, Samuel A; James, Molly M; Szwed, Erik A; Daly, Brian C; Cui, Weili; Antonelli, George A

    2018-07-01

    We have used the ultrafast pump-probe technique known as picosecond ultrasonics to generate and detect surface acoustic waves on a structure consisting of nanoscale Al lines on SiO 2 on Si. We report results from ten samples with varying pitch (1000-140 nm) and SiO 2 film thickness (112 nm or 60 nm), and compare our results to an isotropic elastic calculation and a coarse-grained molecular dynamics simulation. In all cases we are able to detect and identify a Rayleigh-like surface acoustic wave with wavelength equal to the pitch of the lines and frequency in the range of 5-24 GHz. In some samples, we are able to detect additional, higher frequency surface acoustic waves or independent modes of the Al lines with frequencies close to 50 GHz. We also describe the effects of probe beam polarization on the measurement's sensitivity to the different surface modes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface

    PubMed Central

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-01-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772

  18. Measurement of electron density using reactance cutoff probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, K. H.; Seo, B. H.; Kim, J. H.

    2016-05-15

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure themore » electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).« less

  19. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake

    NASA Astrophysics Data System (ADS)

    Heidelberg, Laurence J.; Hall, David G.

    1993-01-01

    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.

  20. Acoustic Mode Measurements in the Inlet of a Model Turbofan Using a Continuously Rotating Rake

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Hall, David G.

    1992-01-01

    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.

  1. 14 CFR 1214.1103 - Application cutoff date.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Application cutoff date. 1214.1103 Section 1214.1103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1103 Application cutoff date. (a) The JSC...

  2. 14 CFR 1214.1103 - Application cutoff date.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Application cutoff date. 1214.1103 Section 1214.1103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1103 Application cutoff date. (a) The JSC...

  3. Bound acoustic modes in the radiation continuum in isotropic layered systems without periodic structures

    NASA Astrophysics Data System (ADS)

    Maznev, A. A.; Every, A. G.

    2018-01-01

    We study the existence of guided acoustic modes in layered structures whose phase velocity is higher than that of bulk waves in a solid substrate or an adjacent fluid half space, which belong to the class of bound states in the radiation continuum (BICs). We demonstrate that in contrast to the electromagnetic case, non-symmetry-protected BICs exist in isotropic layered systems without periodic structures. Two systems supporting non-symmetry-protected sagittally polarized BICs have been identified: (i) a supported solid layer yields BICs whose phase velocity is higher than the transverse velocity of the substrate but lower than the longitudinal velocity; (ii) a supported solid layer loaded by a fluid half space supports BICs whose velocity is higher that the bulk velocity of the fluid but lower than acoustic velocities of the substrate. The latter case is a unique example of BICs in the sense that it does not involve an evanescent field in the fluid half space providing the radiation continuum. In either case, BICs are represented by isolated points in the dispersion relations located within "leaky" branches. We show that these BICs are robust with respect to small perturbations of the system parameters. Numerical results are provided for realistic materials combinations. We also show that no BICs exist in all-fluid layered structures, whereas in solid layered structures there are no shear horizontal BICs and no sagittally polarized BICs whose velocity exceeds the longitudinal velocity of the substrate.

  4. Chronological analysis of architectural and acoustical indices in music performance halls.

    PubMed

    Kwon, Youngmin; Siebein, Gary W

    2007-05-01

    This study aims to identify the changes in architectural and acoustical indices in halls for music performance built in the 18th through the 20th Centuries. Seventy-one halls are classified in five specific periods from the Classical Period (1751-1820) to the Contemporary Period (1981-2000) based on chronology in music and architectural acoustics. Architectural indices such as room shape, seating capacity, room volume, balcony configuration, and the like as well as acoustical indices such as RT, EDT, G, C80, IACC, and the like for the halls found in the literature are chronologically tabulated and statistically analyzed to identify trends and relationships in architectural and acoustical design for each of the historical periods identified. Some indices appear correlated with each other.

  5. Transverse vetoes with rapidity cutoff in SCET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornig, Andrew; Kang, Daekyoung; Makris, Yiannis

    We consider di-jet production in hadron collisions where a transverse veto is imposed on radiation for (pseudo-)rapidities in the central region only, where this central region is defined with rapidity cutoff. For the case where the transverse measurement (e.g., transverse energy or min p T for jet veto) is parametrically larger relative to the typical transverse momentum beyond the cutoff, the cross section is insensitive to the cutoff parameter and is factorized in terms of collinear and soft degrees of freedom. The virtuality for these degrees of freedom is set by the transverse measurement, as in typical transverse-momentum dependent observablesmore » such as Drell-Yan, Higgs production, and the event shape broadening. This paper focuses on the other region, where the typical transverse momentum below and beyond the cutoff is of similar size. In this region the rapidity cutoff further resolves soft radiation into (u)soft and soft-collinear radiation with different rapidities but identical virtuality. This gives rise to rapidity logarithms of the rapidity cutoff parameter which we resum using renormalization group methods. We factorize the cross section in this region in terms of soft and collinear functions in the framework of soft-collinear effective theory, then further refactorize the soft function as a convolution of the (u)soft and soft-collinear functions. All these functions are calculated at one-loop order. As an example, we calculate a differential cross section for a specific partonic channel, qq ' → qq ' , for the jet shape angularities and show that the refactorization allows us to resum the rapidity logarithms and significantly reduce theoretical uncertainties in the jet shape spectrum.« less

  6. Transverse vetoes with rapidity cutoff in SCET

    DOE PAGES

    Hornig, Andrew; Kang, Daekyoung; Makris, Yiannis; ...

    2017-12-11

    We consider di-jet production in hadron collisions where a transverse veto is imposed on radiation for (pseudo-)rapidities in the central region only, where this central region is defined with rapidity cutoff. For the case where the transverse measurement (e.g., transverse energy or min p T for jet veto) is parametrically larger relative to the typical transverse momentum beyond the cutoff, the cross section is insensitive to the cutoff parameter and is factorized in terms of collinear and soft degrees of freedom. The virtuality for these degrees of freedom is set by the transverse measurement, as in typical transverse-momentum dependent observablesmore » such as Drell-Yan, Higgs production, and the event shape broadening. This paper focuses on the other region, where the typical transverse momentum below and beyond the cutoff is of similar size. In this region the rapidity cutoff further resolves soft radiation into (u)soft and soft-collinear radiation with different rapidities but identical virtuality. This gives rise to rapidity logarithms of the rapidity cutoff parameter which we resum using renormalization group methods. We factorize the cross section in this region in terms of soft and collinear functions in the framework of soft-collinear effective theory, then further refactorize the soft function as a convolution of the (u)soft and soft-collinear functions. All these functions are calculated at one-loop order. As an example, we calculate a differential cross section for a specific partonic channel, qq ' → qq ' , for the jet shape angularities and show that the refactorization allows us to resum the rapidity logarithms and significantly reduce theoretical uncertainties in the jet shape spectrum.« less

  7. Analysis of the effect of a rectangular cavity resonator on acoustic wave transmission in a waveguide

    NASA Astrophysics Data System (ADS)

    Porter, R.; Evans, D. V.

    2017-11-01

    The transmission of acoustic waves along a two-dimensional waveguide which is coupled through an opening in its wall to a rectangular cavity resonator is considered. The resonator acts as a classical band-stop filter, significantly reducing acoustic transmission across a range of frequencies. Assuming wave frequencies below the first waveguide cut-off, the solution for the reflected and transmitted wave amplitudes is formulated exactly within the framework of inviscid linear acoustics. The main aim of the paper is to develop an approximation in closed form for reflected and transmitted amplitudes when the gap in the thin wall separating the waveguide and the cavity resonator is assumed to be small. This approximation is shown to accurately capture the effect of all cavities resonances, not just the fundamental Helmholtz resonance. It is envisaged this formula (and more generally the mathematical approach adopted) could be used in the development of acoustic metamaterial devices containing resonator arrays.

  8. Acoustics and psychosocial environment in intensive coronary care

    PubMed Central

    Blomkvist, V; Eriksen, C; Theorell, T; Ulrich, R; Rasmanis, G

    2005-01-01

    Aims: To examine the influence of different acoustic conditions on the work environment and the staff in a coronary critical care unit (CCU). Method: Psychosocial work environment data from start and end of each individual shift were obtained from three shifts (morning, afternoon, and night) for a one-week baseline period and for two four-week periods during which either sound reflecting or sound absorbing tiles were installed. Results: Reverberation times and speech intelligibility improved during the study period when the ceiling tiles were changed from sound reflecting tiles to sound absorbing ones of identical appearance. Improved acoustics positively affected the work environment; the afternoon shift staff experienced significantly lower work demands and reported less pressure and strain. Conclusions: Important gains in the psychosocial work environment of healthcare can be achieved by improving room acoustics. The study points to the importance of further research on possible effects of acoustics in healthcare on staff turnover, quality of patient care, and medical errors. PMID:15723873

  9. Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Collins, David J.; Ai, Ye; Neild, Adrian

    2017-04-01

    Periodic pattern generation using time-averaged acoustic forces conventionally requires the intersection of counterpropagating wave fields, where suspended micro-objects in a microfluidic system collect along force potential minimizing nodal or antinodal lines. Whereas this effect typically requires either multiple transducer elements or whole channel resonance, we report the generation of scalable periodic patterning positions without either of these conditions. A single propagating surface acoustic wave interacts with the proximal channel wall to produce a knife-edge effect according to the Huygens-Fresnel principle, where these cylindrically propagating waves interfere with classical wave fronts emanating from the substrate. We simulate these conditions and describe a model that accurately predicts the lateral spacing of these positions in a robust and novel approach to acoustic patterning.

  10. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  11. Study of Proton cutoffs during geomagnetically disturbed times

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Looper, M. D.; Baker, D. N.; Blake, J. B.

    2005-12-01

    It is currently believed that solar energetic particles (SEP) may be accelerated at solar flares and/or at interplanetary shocks driven by coronal mass ejections (CMEs). CMEs also cause intense geomagnetic storms during which the geomagnetic field can be highly distorted.SEP fluxes penetrate the terrestrial magnetosphere and reach specific regions depending upon the geomagnetic field configuration. The cutoff latitude is a well defined latitude below which a charged particle of a given rigidity (momentum per unit charge) arriving from a given direction cannot penetrate. SEP cutoff location can therefore be potentially useful in determining the geomagnetic field configuration. This paper reports on the measurements of solar energetic proton cutoffs made by two satellites, SAMPEX and Polar during geomagnetically disturbed times. We study select SEP events and compare our measurements with cutoffs calculated by a charged particle tracing code which utilizes several currently used models of the geomagnetic field. The measured SEP proton cutoffs cover a wide range of rigidities and are obtained at high-altitudes by the HIST detector onboard Polar and at low-altitudes by the PET detctor onboard SAMPEX.

  12. Metasurface-based angle-selective multichannel acoustic refractor

    NASA Astrophysics Data System (ADS)

    Liu, Bingyi; Jiang, Yongyuan

    2018-05-01

    We theoretically study the angle-selective refractions of an impedance-matched acoustic gradient-index metasurface, which is integrated with a rigid bar array of a deep subwavelength period. An interesting refraction order appears under the all-angle incidence despite the existence of a critical angle, and notably, the odevity of the phase-discretization level apparently selects the transmitted diffraction orders. We utilize the strategy of multilayered media design to realize a three-channel acoustic refractor, which shows good promise for constructing multifunctional diffractive acoustic elements for acoustic communication.

  13. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  14. Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.

    PubMed

    Hudak, Paul F

    2004-01-01

    This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network.

  15. The use of the McIlwain L-parameter to estimate cosmic ray vertical cutoff rigidities for different epochs of the geomagnetic field

    NASA Technical Reports Server (NTRS)

    Shea, M. A.; Smart, D. F.; Gentile, L. C.

    1985-01-01

    Secular changes in the geomagnetic field between 1955 and 1980 have been large enough to produce significant differences in both the verical cutoff rigidities and in the L-value for a specified position. A useful relationship employing the McIlwain L-parameter to estimate vertical cutoff rigidities has been derived for the twenty-five year period.

  16. Periodic Peakons, Pseudo-Peakons and Compactons of Ion-Acoustic Wave Model in Electronegative Plasmas with Electrons Featuring Tsallis Distribution

    NASA Astrophysics Data System (ADS)

    Li, Jibin

    The dynamical model of the nonlinear ion-acoustic oscillations is governed by a partial differential equation system. Its traveling system is just a singular traveling wave system of first class depending on four parameters. By using the method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as kink and anti-kink wave solutions.

  17. Differentiation of benign from malignant liver masses with Acoustic Radiation Force Impulse technique.

    PubMed

    Yu, Hojun; Wilson, Stephanie R

    2011-12-01

    The objective of the study was to determine the performance of Acoustic Radiation Force Impulse (ARFI) imaging to differentiate benign from malignant liver masses, both of hepatocellular origin and metastases, by quantification of their stiffness. This study has institutional review board approval and informed consent. Eighty-nine patients (42 female and 47 male patients) with 105 liver masses had ARFI evaluation on ultrasound, S2000 (Siemens, Mountain View, Calif). Mean age of the patients was 53.67 years (range, 27-83 years). Mean diameter of the masses was 2.77 cm (range, 1.0-13.0 cm). Final diagnoses, confirmed by imaging on contrast-enhanced computed tomography, magnetic resonance, or ultrasound or biopsy, include hepatocellular carcinoma (n = 28), metastasis (n = 13), hemangioma (n = 35), focal nodular hyperplasia (n = 15), focal fat sparing (n = 8), focal fat deposit (n = 4), and adenoma (n = 2). Receiver operating characteristic analysis was performed to evaluate the diagnostic accuracy of the ARFI measurement and to extract the optimal cutoff values in the differentiation of benign from malignant disease. Acoustic Radiation Force Impulse values showed a statistically significant difference between benign (1.73 [SD, 0.8] m/sec) and malignant masses (2.57 [SD, 1.01] m/sec) (P < 0.001). However, the area under the receiver operating characteristic curve was 0.744, suggesting only fair accuracy. For differentiation of malignant from benign masses, the sensitivity, specificity, positive predictive value, and negative predictive value were 68% (28/41), 69% (44/64), 58% (28/48), and 77% (44/57), respectively, when 1.9 m/sec was chosen as a cutoff value, reflective of a wide variation of ARFI values in each diagnosis. For differentiation of metastasis from benign masses, sensitivity, specificity, positive predictive value, and NPV were 69% (9/13), 89% (57/64), 56% (9/16), and 93% (57/61), respectively, when 2.72 m/sec was chosen as a cutoff value. Acoustic

  18. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  19. Reproducibility of the cutoff probe for the measurement of electron density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D. W.; Oh, W. Y.; You, S. J., E-mail: sjyou@cnu.ac.kr

    2016-06-15

    Since a plasma processing control based on plasma diagnostics attracted considerable attention in industry, the reproducibility of the diagnostics using in this application has become a great interest. Because the cutoff probe is one of the potential candidates for this application, knowing the reproducibility of the cutoff probe measurement becomes quit important in the cutoff probe application research. To test the reproducibility of the cutoff probe measurement, in this paper, a comparative study among the different cutoff probe measurements was performed. The comparative study revealed remarkable result: the cutoff probe has a great reproducibility for the electron density measurement, i.e.,more » there are little differences among measurements by different probes made by different experimenters. The discussion including the reason for the result was addressed via this paper by using a basic measurement principle of cutoff probe and a comparative experiment with Langmuir probe.« less

  20. Implication of the Observable Spectral Cutoff Energy Evolution in XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational appearances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational apperances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow

  1. Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Krynkin, A.; Garcia-Raffi, L. M.; Umnova, O.; Sánchez-Pérez, J. V.

    2013-01-01

    An acoustic metamaterial made of a two-dimensional (2D) periodic array of multi-resonant acoustic scatterers is analyzed both experimentally and theoretically. The building blocks consist of a combination of elastic beams of low-density polyethylene foam (LDPF) with cavities of known area. Elastic resonances of the beams and acoustic resonances of the cavities can be excited by sound producing several attenuation peaks in the low frequency range. Due to this behavior the periodic array with long wavelength multi-resonant structural units can be classified as a locally multi-resonant acoustic metamaterial (LMRAM) with strong dispersion of its effective properties.The results presented in this paper could be used to design effective tunable acoustic filters for the low frequency range.

  2. Ion acoustic turbulence in a 100-A LaB6 hollow cathode

    NASA Astrophysics Data System (ADS)

    Jorns, Benjamin A.; Mikellides, Ioannis G.; Goebel, Dan M.

    2014-12-01

    The temporal fluctuations in the near plume of a 100-A LaB6 hollow cathode are experimentally investigated. A probe array is employed to measure the amplitude and dispersion of axial modes in the plume, and these properties are examined parametrically as a function of cathode operating conditions. The onset of ion acoustic turbulence is observed at high current and is characterized by a power spectrum that exhibits a cutoff at low frequency and an inverse dependence on frequency at high values. The amplitude of the turbulence is found to decrease with flow rate but to depend nonmonotonically on discharge current. Estimates of the anomalous collision frequency based on experimental measurements indicate that the ion acoustic turbulence collision frequency can exceed the classical rate at high discharge current densities by nearly two orders of magnitude.

  3. Characterization of low-frequency acoustic wave propagation through a periodic corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Jiang, Changyong; Huang, Lixi

    2018-03-01

    In this paper, a periodic corrugated waveguide structure is proposed, and its unit-cell is analyzed by the wave finite element method. In low-frequency range, the unit-cell is treated as an equivalent fluid through a homogenization process, and the equivalent acoustic parameters are obtained, which are validated by finite structure simulations and experiments. The proposed structure is shown to add tortuosity to the waveguide, hence higher equivalent fluid density is achieved, while the system elastic modulus remains unchanged. As a result, the equivalent speed of sound is smaller than normal air. The application of such change of speed of sound is demonstrated in the classic quarter-wavelength resonator based on the corrugated waveguide, which gives a lower resonance frequency with the same side branch length. When the waveguide is filled with porous materials, the added tortuosity enhances the broadband, low-frequency sound absorption by increasing the equivalent mass without bringing in excess damping, the latter being partly responsible for the poor performance of usual porous materials in the low-frequency region. Therefore, the proposed structure provides another dimension for the design and optimization of porous sound absorption materials.

  4. Optical and Acoustic Device Applications of Ferroelastic Crystals

    NASA Astrophysics Data System (ADS)

    Meeks, Steven Wayne

    This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use

  5. Dynamics of the solar chromosphere. I - Long-period network oscillations

    NASA Technical Reports Server (NTRS)

    Lites, B. W.; Rutten, R. J.; Kalkofen, W.

    1993-01-01

    We analyze differences in solar oscillations between the chromospheric network and internetwork regions from a 1 hr sequence of spectrograms of a quiet region near disk center. The spectrograms contain Ca II H, Ca I 422.7 nm, and various Fe I blends in the Ca II H wing. They permit vertical tracing of oscillations throughout the photosphere and into the low chromosphere. We find that the rms amplitude of Ca II H line center Doppler fluctuations is about 1.5 km/s for both network and internetwork, but that the character of the oscillations differs markedly in these two regions. Within internetwork areas the chromospheric velocity power spectrum is dominated by oscillations with frequencies at and above the acoustic cutoff frequency. They are well correlated with the oscillations in the underlying photosphere, but they are much reduced in the network. In contrast, the network Ca II H line center velocity and intensity power spectra are dominated by low-frequency oscillations with periods of 5-20 min. Their signature is much clearer in our Ca II H line center measurements than in previously used diagnostics which are contaminated by signals from deeper layers. We find that these long-period oscillations are not correlated with underlying photospheric disturbances, and we discuss their nature.

  6. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-Hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A study of acoustic halos in active region NOAA 11330 using multi-height SDO observations

    NASA Astrophysics Data System (ADS)

    Tripathy, S. C.; Jain, K.; Kholikov, S.; Hill, F.; Rajaguru, S. P.; Cally, P. S.

    2018-01-01

    We analyze data from the Helioseismic Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory (SDO) to characterize the spatio-temporal acoustic power distribution in active regions as a function of the height in the solar atmosphere. For this, we use Doppler velocity and continuum intensity observed using the magnetically sensitive line at 6173 Å as well as intensity at 1600 Å and 1700 Å. We focus on the power enhancements seen around AR 11330 as a function of wave frequency, magnetic field strength, field inclination and observation height. We find that acoustic halos occur above the acoustic cutoff frequency and extends up to 10 mHz in HMI Doppler and AIA 1700 Å observations. Halos are also found to be strong functions of magnetic field and their inclination angle. We further calculate and examine the spatially averaged relative phases and cross-coherence spectra and find different wave characteristics at different heights.

  8. Influence of thyroid gland status on the thyroglobulin cutoff level in washout fluid from cervical lymph nodes of patients with recurrent/metastatic papillary thyroid cancer.

    PubMed

    Lee, Jun Ho; Lee, Hyun Chul; Yi, Ha Woo; Kim, Bong Kyun; Bae, Soo Youn; Lee, Se Kyung; Choe, Jun-Ho; Kim, Jung-Han; Kim, Jee Soo

    2016-04-01

    The influence of serum thyroglobulin (Tg) and thyroidectomy status on Tg in fine-needle aspiration cytology (FNAC) washout fluid is unclear. A total of 282 lymph nodes were prospectively subjected to FNAC, fine-needle aspiration (FNA)-Tg measurement, and frozen and permanent biopsies. We evaluated the diagnostic performance of several predetermined FNA-Tg cutoff values for recurrence/metastasis in lymph nodes according to thyroidectomy status. The diagnostic performance of FNA-Tg varied according to thyroidectomy status. The optimized cutoff value of FNA-Tg was 2.2 ng/mL. However, among FNAC-negative lymph nodes, the FNA-Tg cutoff value of 0.9 ng/mL showed better diagnostic performance in patients with a thyroid gland. An FNA-Tg/serum-Tg cutoff ratio of 1 showed the best diagnostic performance in patients without a thyroid gland. Applying the optimal cutoff values of FNA-Tg according to thyroid gland status and serum Tg level facilitates the diagnostic evaluation of neck lymph node recurrences/metastases in patients with papillary thyroid carcinoma (PTC). © 2015 Wiley Periodicals, Inc. Head Neck 38: E1705-E1712, 2016. © 2015 Wiley Periodicals, Inc.

  9. New Acoustic Arena Qualified at NASA Glenn's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P.

    2004-01-01

    A new acoustic arena has been qualified in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. This arena is outfitted specifically for conducting fan noise research with the Advanced Noise Control Fan (ANCF) test rig. It features moveable walls with large acoustic wedges (2 by 2 by 1 ft) that create an acoustic environment usable at frequencies as low as 250 Hz. The arena currently uses two dedicated microphone arrays to acquire fan inlet and exhaust far-field acoustic data. It was used successfully in fiscal year 2003 to complete three ANCF tests. It also allowed Glenn to improve the operational efficiency of the four test rigs at AAPL and provided greater flexibility to schedule testing. There were a number of technical challenges to overcome in bringing the new arena to fruition. The foremost challenge was conflicting acoustic requirements of four different rigs. It was simply impossible to construct a static arena anywhere in the facility without intolerably compromising the acoustic test environment of at least one of the test rigs. This problem was overcome by making the wall sections of the new arena movable. Thus, the arena can be reconfigured to meet the operational requirements of any particular rig under test. Other design challenges that were encountered and overcome included structural loads of the large wedges, personnel access requirements, equipment maintenance requirements, and typical time and budget constraints. The new acoustic arena improves operations at the AAPL facility in several significant ways. First, it improves productivity by allowing multiple rigs to operate simultaneously. Second, it improves research data quality by providing a unique test area within the facility that is optimal for conducting fan noise research. Lastly, it reduces labor and equipment costs by eliminating the periodic need to transport the ANCF into and out of the primary AAPL acoustic arena. The investment to design, fabricate, and

  10. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...

    2015-07-30

    Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscalemore » convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.« less

  11. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-01-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  12. Statistical Considerations for Establishing CBTE Cut-Off Scores.

    ERIC Educational Resources Information Center

    Trzasko, Joseph A.

    This report gives the basic definition and purpose of competency-based teacher education (CBTE) cut-off scores. It describes the basic characteristics of CBTE as a yes-no dichotomous decision regarding the presence of a specific ability or knowledge, which necesitates the establishment of a cut-off point to designate competency vs. incompetency on…

  13. Speed of pulled fronts with a cutoff

    NASA Astrophysics Data System (ADS)

    Benguria, R. D.; Depassier, M. C.

    2007-05-01

    We study the effect of a small cutoff γ on the velocity of a pulled front in one dimension by means of a variational principle. We obtain a lower bound on the speed dependent on the cutoff, for which the two leading order terms correspond to the Brunet-Derrida expression. To do so we cast a known variational principle for the speed of propagation of fronts in different variables which makes it more suitable for applications.

  14. The Long Exercise Test in Periodic Paralysis: A Bayesian Analysis.

    PubMed

    Simmons, Daniel B; Lanning, Julie; Cleland, James C; Puwanant, Araya; Twydell, Paul T; Griggs, Robert C; Tawil, Rabi; Logigian, Eric L

    2018-05-12

    The long exercise test (LET) is used to assess the diagnosis of periodic paralysis (PP), but LET methodology and normal "cut-off" values vary. To determine optimal LET methodology and cut-offs, we reviewed LET data (abductor digiti minimi (ADM) motor response amplitude, area) from 55 PP patients (32 genetically definite) and 125 controls. Receiver operating characteristic (ROC) curves were constructed and area-under-the-curve (AUC) calculated to compare 1) peak-to-nadir versus baseline-to-nadir methodologies, and 2) amplitude versus area decrements. Using Bayesian principles, optimal "cut-off" decrements that achieved 95% post-test probability of PP were calculated for various pre-test probabilities (PreTPs). AUC was highest for peak-to-nadir methodology and equal for amplitude and area decrements. For PreTP ≤50%, optimal decrement cut-offs (peak-to-nadir) were >40% (amplitude) or >50% (area). For confirmation of PP, our data endorse the diagnostic utility of peak-to-nadir LET methodology using 40% amplitude or 50% area decrement cut-offs for PreTPs ≤50%. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  15. Energy Efficient Engine acoustic supporting technology report

    NASA Technical Reports Server (NTRS)

    Lavin, S. P.; Ho, P. Y.

    1985-01-01

    The acoustic development of the Energy Efficient Engine combined testing and analysis using scale model rigs and an integrated Core/Low Spool demonstration engine. The scale model tests show that a cut-on blade/vane ratio fan with a large spacing (S/C = 2.3) is as quiet as a cut-off blade/vane ratio with a tighter spacing (S/C = 1.27). Scale model mixer tests show that separate flow nozzles are the noisiest, conic nozzles the quietest, with forced mixers in between. Based on projections of ICLS data the Energy Efficient Engine (E3) has FAR 36 margins of 3.7 EPNdB at approach, 4.5 EPNdB at full power takeoff, and 7.2 EPNdB at sideline conditions.

  16. Impact of age cutoffs on a lynch syndrome screening program.

    PubMed

    Gudgeon, James M; Belnap, Thomas W; Williams, Janet L; Williams, Marc S

    2013-07-01

    To determine the impact of applying an age cutoff to tumor-based Lynch syndrome (LS) screening, specifically focusing on changes in relative effectiveness, efficiency, and cost. The project was undertaken to answer questions about implementation of the LS screening program in an integrated health care delivery system. Clinical data extracted from an internal cancer registry, previous modeling efforts, published literature, and gray data were used to populate decision models designed to answer questions about the impact of age cutoffs in LS screening. Patients with colorectal cancer (CRC) were stratified at 10-year intervals from ages 50 to 80 years and compared with no age cutoff. Outcomes are reported for a cohort of 325 patients screened and includes total cost to screen, LS cases present in the cutoff category, number of LS cases expected to be identified by screening, cost per LS case detected, and total number and percentage of LS cases missed. Applying an age cutoff to an LS screening program has considerable potential for decreasing total screening costs and increasing efficiency, but at a loss of effectiveness. Imposing an age cutoff of 50 years reduces the cost of the screening program to 16% of a program with no age cutoff, but at the expense of missing more than half of the cases. Failure to identify LS cases is magnified by a cascade effect in family members. The results of this analysis influenced the final policy in our system.

  17. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  18. Improved Bacterial and Viral Recoveries from 'Complex' Samples using Electrophoretically Assisted Acoustic Focusing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, K; Rose, K; Jung, B

    2008-03-27

    Automated front-end sample preparation technologies can significantly enhance the sensitivity and reliability of biodetection assays [1]. We are developing advanced sample preparation technologies for biowarfare detection and medical point-of-care diagnostics using microfluidic systems with continuous sample processing capabilities. Here we report an electrophoretically assisted acoustic focusing technique to rapidly extract and enrich viral and bacterial loads from 'complex samples', applied in this case to human nasopharyngeal samples as well as simplified surrogates. The acoustic forces capture and remove large particles (> 2 {micro}m) such as host cells, debris, dust, and pollen from the sample. We simultaneously apply an electric fieldmore » transverse to the flow direction to transport small ({le} 2 {micro}m), negatively-charged analytes into a separate purified recovery fluid using a modified H-filter configuration [Micronics US Patent 5,716,852]. Hunter and O'Brien combined transverse electrophoresis and acoustic focusing to measure the surface charge on large particles, [2] but to our knowledge, our work is the first demonstration combining these two techniques in a continuous flow device. Marina et al. demonstrated superimposed dielectrophoresis (DEP) and acoustic focusing for enhanced separations [3], but these devices have limited throughput due to the rapid decay of DEP forces. Both acoustic standing waves and electric fields exert significant forces over the entire fluid volume in microchannels, thus allowing channels with larger dimensions (> 100 {micro}m) and high throughputs (10-100 {micro}L/min) necessary to process real-world volumes (1 mL). Previous work demonstrated acoustic focusing of microbeads [4] and biological species [5] in various geometries. We experimentally characterized our device by determining the biological size-cutoff where acoustic radiation pressure forces no longer transport biological particles. Figure 1 shows images of E

  19. Unravelling the Drivers of Chute Cutoff and the Commonality of Oxbow Production

    NASA Astrophysics Data System (ADS)

    Constantine, J. A.; Edmonds, D. A.; David, S.

    2017-12-01

    Chute cutoff is the principal means of channel shortening along steep, sparsely vegetated, or perturbed meandering river floodplains. Although flood waters are capable of unravelling the floodplain in a variety of ways, only a small number of mechanisms of chute cutoff have been observed in nature, each with seemingly different controls on their occurrence. The complexity of these controls partly explains the difficulty of deterministically incorporating chute cutoff into channel evolution models. Despite the challenges, recent field observations have allowed us not only to identify particular mechanisms but also to highlight first-order controls. We provide a summary of these findings and describe the processes that drive the various mechanisms of cutoff and their resulting oxbow lakes. For example, many agricultural floodplains show evidence of pervasive gully incision as a precursor to chute cutoff. And perhaps surprising given the diversity of cutoff mechanisms, oxbows globally share characteristic dimensions that are a function of the sinuosity and width of the rivers from which they are derived. Our results suggest that, in spite of the many processes involved, aspects of the mechanisms of chute cutoff can be generalised, providing a means for improving cutoff prediction and for assessing the impacts of cutoffs on the meandering river floodplain.

  20. Optimal BMI Cut-off Points for Prediction of Incident Diabetes in Chinese population.

    PubMed

    Ma, Hao; Wu, Xiaoyan; Guo, Xiaoyu; Yang, Jianjun; Ma, Xiaohui; Lv, Mengfan; Li, Ying

    2018-05-26

    The current BMI classifications have been established based on risk of obesity-related conditions, but not specifically on type 2 diabetes mellitus (T2DM). This study aimed to identify the optimal BMI cutoffs for assessing incident T2DM risk in Chinese population. The longitudinal study cohort consisted of 8,735 non-diabetic participants aged 20-74 years at baseline, with a mean follow-up period of 6.0 years. Body mass index (BMI), 2-h glucose of 75-g oral glucose tolerance test, and glycosylated hemoglobin were measured at baseline and follow-up survey. During the follow-up period, 825 participants were diagnosed with T2DM. In multivariable Cox regression analyses, adjusting for covariates, a strong positive association between BMI and incident T2DM was found among whole population, when stratified by age groups (20-39 years, 40-59 years, 60-74 years), the risk associations between BMI and incident T2DM decreased with increasing age-specific groups, and extinguished in the 60-74 age group (P-value of interaction<0.001). The optimal BMI cut-offs (kg/m 2 ) for predicting T2DM risk for men and women were 25.5 and 24.4 in the 20-39 age group, and 23.5 and 23.0 in the 40-59 age group, respectively. But no predictive performance was observed in the 60-74 age group in both sexes. Our results suggested that the performance of BMI in predicting T2DM risk was the best in younger age and decreased with age. Age- and sex-specific BMI cut-offs should be considered for T2DM risk stratification in Chinese population. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold.

    PubMed

    Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel; Ten Have, Arjen

    2018-01-01

    Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following URL: https://github.com/BBCMdP/HMMERCTTER.

  2. HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold

    PubMed Central

    Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel

    2018-01-01

    Background Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. Results HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. Conclusions HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following URL: https://github.com/BBCMdP/HMMERCTTER. PMID:29579071

  3. Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, Gazi N., E-mail: g.aliev@bath.ac.uk; Goller, Bernhard

    2014-09-07

    A one-dimensional Fibonacci phononic crystal and a distributed Bragg reflector were constructed from porous silicon. The structures had the same number of layers and similar acoustic impedance mismatch, and were electrochemically etched in highly boron doped silicon wafers. The thickness of the individual layers in the stacks was approximately 2 μm. Both types of hypersonic band gap structure were studied by direct measurement of the transmittance of longitudinal acoustic waves in the 0.1–2.6 GHz range. Acoustic band gaps deeper than 50 dB were detected in both structures. The experimental results were compared with model calculations employing the transfer matrix method. The acoustic propertiesmore » of periodic and quasi-periodic structures in which half-wave retarding bi-layers do not consist of two quarter-wave retarding layers are discussed. The strong correlation between width and depth of gaps in the transmission spectra is demonstrated. The dominant mechanisms of acoustic losses in porous multilayer structures are discussed. The elastic constants remain proportional over our range of porosity, and hence, the Grüneisen parameter is constant. This simplifies the expression for the porosity dependence of the Akhiezer damping.« less

  4. The Feasibility of Generalized Acoustic Sensor Operator Training. Final Report for Period February 1974-February 1975.

    ERIC Educational Resources Information Center

    Daniels, Richard W.; Alden, David G.

    The feasibility of generalized approaches to training military personnel in the use of different types of sonar/acoustic warfare systems was explored. The initial phase of the project consisted of the analysis of representative sonar and acoustic equipment to identify training areas and operator performance requirements that could be subjected to…

  5. Are lower TSH cutoffs in neonatal screening for congenital hypothyroidism warranted?

    PubMed Central

    Lain, Samantha; Trumpff, Caroline; Grosse, Scott D; Olivieri, Antonella; Van Vliet, Guy

    2018-01-01

    When newborn screening (NBS) for congenital hypothyroidism (CH) using thyroid-stimulating hormone (TSH) as a primary screening test was introduced, typical TSH screening cutoffs were 20–50 U/L of whole blood. Over the years, lowering of TSH cutoffs has contributed to an increased prevalence of detected CH. However, a consensus on the benefit deriving from lowering TSH cutoffs at screening is lacking. The present paper outlines arguments both for and against the lowering of TSH cutoffs at NBS. It includes a review of recently published evidence from Australia, Belgium and Italy. A section focused on economic implications of lowering TSH cutoffs is also provided. One issue that bears further examination is the extent to which mild iodine deficiency at the population level might affect the association of neonatal TSH values with cognitive and developmental outcomes. A debate on TSH cutoffs provides the opportunity to reflect on how to make NBS for CH more effective and to guarantee optimum neurocognitive development and a good quality of life to babies with mild as well as with severe CH. All authors of this debate article agree on the need to establish optimal TSH cutoffs for screening programs in various settings and to ensure the benefits of screening and access to care for newborns worldwide. PMID:28694389

  6. 10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Cutoff levels for drugs and drug metabolites. 26.163... the Department of Health and Human Services § 26.163 Cutoff levels for drugs and drug metabolites. (a) Initial drug testing. (1) HHS-certified laboratories shall apply the following cutoff levels for initial...

  7. 10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Cutoff levels for drugs and drug metabolites. 26.163... the Department of Health and Human Services § 26.163 Cutoff levels for drugs and drug metabolites. (a) Initial drug testing. (1) HHS-certified laboratories shall apply the following cutoff levels for initial...

  8. 10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Cutoff levels for drugs and drug metabolites. 26.163... the Department of Health and Human Services § 26.163 Cutoff levels for drugs and drug metabolites. (a) Initial drug testing. (1) HHS-certified laboratories shall apply the following cutoff levels for initial...

  9. 10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Cutoff levels for drugs and drug metabolites. 26.163... the Department of Health and Human Services § 26.163 Cutoff levels for drugs and drug metabolites. (a) Initial drug testing. (1) HHS-certified laboratories shall apply the following cutoff levels for initial...

  10. 10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Cutoff levels for drugs and drug metabolites. 26.163... the Department of Health and Human Services § 26.163 Cutoff levels for drugs and drug metabolites. (a) Initial drug testing. (1) HHS-certified laboratories shall apply the following cutoff levels for initial...

  11. Assessment of the current D-dimer cutoff point in pulmonary embolism workup at a single institution: Retrospective study.

    PubMed

    Alhassan, S; Bihler, E; Patel, K; Lavudi, S; Young, M; Balaan, M

    2018-06-06

    The currently used D-dimer (DD) cutoff point is associated with a large number of negative CT-pulmonary angiographies (CTPA). We hypothesized presence of deficiency in the current cutoff and a need to look for a better DD threshold. We conducted a retrospective medical records analysis of all patients who had a CTPA as part of pulmonary embolism (PE) workup over a 1-year period. All emergency room (ER) patients who had DD assay checked prior to CTPA were included in the analysis. We assessed our institutional cutoff point and tried to test other presumptive DD thresholds retrospectively. At our institution 1591 CTPA were performed in 2014, with 1220 scans (77%) performed in the ER. DD test was ordered prior to CTPA imaging in 238 ER patients (19.5%) as part of the PE workup. PE was diagnosed in 14 cases (6%). The sensitivity and specificity of the currently used DD cutoff (0.5 mcg/mL) were found to be 100% and 13%, respectively. Shifting the cutoff value from 0.5 to 0.85 mcg/mL would result in a significant increase in the specificity from 13% to 51% while maintaining the same sensitivity of 100%. This would make theoretically 84 CTPA scans, corresponding to 35% of CTPA imaging, unnecessary because DD would be considered negative based on this presumptive threshold. Our results suggest a significant deficiency in the institutional DD cutoff point with the need to find a better threshold through a large multicenter prospective trial to minimize unnecessary CTPA scans and to improve patient safety.

  12. 10 CFR 26.133 - Cutoff levels for drugs and drug metabolites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Cutoff levels for drugs and drug metabolites. 26.133... § 26.133 Cutoff levels for drugs and drug metabolites. Subject to the provisions of § 26.31(d)(3)(iii), licensees and other entities may specify more stringent cutoff levels for drugs and drug metabolites than...

  13. 10 CFR 26.133 - Cutoff levels for drugs and drug metabolites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Cutoff levels for drugs and drug metabolites. 26.133... § 26.133 Cutoff levels for drugs and drug metabolites. Subject to the provisions of § 26.31(d)(3)(iii), licensees and other entities may specify more stringent cutoff levels for drugs and drug metabolites than...

  14. 10 CFR 26.133 - Cutoff levels for drugs and drug metabolites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Cutoff levels for drugs and drug metabolites. 26.133... § 26.133 Cutoff levels for drugs and drug metabolites. Subject to the provisions of § 26.31(d)(3)(iii), licensees and other entities may specify more stringent cutoff levels for drugs and drug metabolites than...

  15. Joint Acoustic Propagation Experiment (JAPE)

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Olsen, Robert O.; Kennedy, Bruce W.

    1993-01-01

    The Joint Acoustic Propagation Experiment (JAPE), performed under the auspices of NATO and the Acoustics Working Group, was conducted at White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of 220 trials using various acoustic sources including speakers, propane cannon, various types of military vehicles, helicopters, a 155mm howitzer, and static high explosives. Of primary importance to the performance of these tests was the intensive characterization of the atmosphere before and during the trials. Because of the wide range of interests on the part of the participants, JAPE was organized in such a manner to provide a broad cross section of test configurations. These included short and long range propagation from fixed and moving vehicles, terrain masking, and vehicle detection. A number of independent trials were also performed by individual participating agencies using the assets available during JAPE. These tests, while not documented in this report, provided substantial and important data to those groups. Perhaps the most significant feature of JAPE is the establishment of a permanent data base which can be used by not only the participants but by others interested in acoustics. A follow-on test was performed by NASA LaRC during the period 19-29 Aug. 1991 at the same location. These trials consisted of 59 overflights of supersonic aircraft in order to establish the relationship between atmospheric turbulence and the received sonic boom energy at the surface.

  16. ARFI cut-off values and significance of standard deviation for liver fibrosis staging in patients with chronic liver disease.

    PubMed

    Goertz, Ruediger S; Sturm, Joerg; Pfeifer, Lukas; Wildner, Dane; Wachter, David L; Neurath, Markus F; Strobel, Deike

    2013-01-01

    Acoustic radiation force impulse (ARFI) elastometry quantifies hepatic stiffness, and thus degree of fibrosis, non-invasively. Our aim was to analyse the diagnostic accuracy of ARFI cut-off values, and the significance of a defined limit of standard deviation (SD) as a potential quality parameter for liver fibrosis staging in patients with chronic liver diseases (CLD). 153 patients with CLD (various aetiologies) undergoing liver biopsy, and an additional 25 patients with known liver cirrhosis, were investigated. ARFI measurements were performed in the right hepatic lobe, and correlated with the histopathological Ludwig fibrosis score (inclusion criteria: at least 6 portal tracts). The diagnostic accuracy of cut-off values was analysed with respect to an SD limit of 30% of the mean ARFI value. The mean ARFI elastometry showed 1.95 ± 0.87 m/s (range 0.79-4.40) in 178 patients (80 female, 98 male, mean age: 52 years). The cut-offs were 1.25 m/s for F ≥ 2, 1.72 m/s for F ≥ 3 and 1.75 m/s for F = 4, and the corresponding AUROC 80.7%, 86.2% and 88.7%, respectively. Exclusion of 31 patients (17.4%) with an SD higher than 30% of the mean ARFI improved the diagnostic accuracy: The AUROC for F ≥ 2, F ≥ 3 and F = 4 were 86.1%, 91.2% and 91.5%, respectively. The diagnostic accuracy of ARFI can be improved by applying a maximum SD of 30% of the mean ARFI as a quality parameter--which however leads to an exclusion of a relevant number of patients. ARFI results with a high SD should be interpreted with caution.

  17. Experimental observation of the generation of cutoff solitons in a discrete L C nonlinear electrical line

    NASA Astrophysics Data System (ADS)

    Koon, K. Tse Ve; Marquié, P.; Dinda, P. Tchofo

    2014-11-01

    We address the problem of supratransmission of waves in a discrete nonlinear system, driven at one end by a periodic excitation at a frequency lying above the phonon band edge. In an experimental electrical transmission line made of 200 inductance-capacitance LC cells, we establish the existence of a voltage threshold for a supratransmission enabling the generation and propagation of cut-off solitons within the line. The decisive role of modulational instability in the onset and development of the process of generation of cut-off solitons is clearly highlighted. The phenomenon of dissipation is identified as being particularly harmful for the soliton generation, but we show that its impact can be managed by a proper choice of the amplitude of the voltage excitation of the system.

  18. Measurements of acoustic environments for urban soundscapes: choice of homogeneous periods, optimization of durations, and selection of indicators.

    PubMed

    Brocolini, Laurent; Lavandier, Catherine; Quoy, Mathias; Ribeiro, Carlos

    2013-07-01

    In order to minimize the duration of acoustic measurements and to characterize homogeneous areas from a temporal point of view, a series of six location measurements was carried out continuously during three months in Paris. Around fifty thousand samples of 5-min, 10-min, 15-min, 20-min, 30-min, and 1-h duration measurements were extracted for each location. Each sample is characterized by eleven energy indicators and ten event descriptors. In this paper, analysis of a crossroad location is detailed. Through hierarchical ascendant classification and artificial neural networks classification, it is shown that four homogeneous periods can be detected: two during the night, one during the day, and one transition corresponding either to the awakening or to the moment when the city falls asleep. 10-min measurements are necessary to discriminate these time periods at the crossroad location. At the end of the paper, a comparison with the other locations shows that minimum duration states in between 10 and 20 min. The homogeneous periods are connected to the human activities and depend on the location. Energy indicators such as LAeq, LA10, or LA90 and event indicators are necessary to characterize the different clusters.

  19. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    NASA Astrophysics Data System (ADS)

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  20. Hair ethyl glucuronide concentrations in teetotalers: Should we re-evaluate the lower cut-off?

    PubMed

    Crunelle, Cleo L; Yegles, Michel; De Doncker, Mireille; Cappelle, Delphine; Covaci, Adrian; van Nuijs, Alexander L N; Neels, Hugo

    2017-05-01

    Ethyl glucuronide in hair (hEtG) can be used to assess the retrospective consumption of alcohol. A lower cut-off of 7pg/mg hair in the 0-3cm proximal scalp hair segment has been used for repeated alcohol consumption in the previous three months. While a concentration below this cut-off is stated not to contradict self reported abstinence, it is often used to assess whether an individual has remained abstinent in the period prior to hair sampling. Here, we address hEtG concentrations in alcohol consuming individuals and critically evaluate this cut-off value. Ten individuals remained abstinent from alcohol for 12 weeks. A lock of hair was cut before the start of the study, and the regrown hairs were cut after twelve weeks of abstinence. Hair EtG concentrations were measured both at baseline and after 12 weeks of abstinence. Study compliance was assessed by urine analysis every 2-3 days by liquid chromatography-tandem mass spectrometry with a lower limit of quantification (LLOQ) of 0.1μg/mL. HEtG concentrations were assessed in the first 3cm hair using gas chromatography-tandem mass spectrometry with an LLOQ of 0.2pg/mg. At the beginning of the study, participants had hEtG concentrations ranging between period. Although the number of specimens was low, this study reports measurable h

  1. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France

    USGS Publications Warehouse

    Piégay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E.

    2008-01-01

    Floodplain development is associated with lateral accretion along stable channel geometry. Along shifting rivers, the floodplain sedimentation is more complex because of changes in channel position but also cutoff channel presence, which exhibit specific overflow patterns. In this contribution, the spatial and temporal variability of sedimentation rates in cutoff channel infill deposits is related to channel changes of a shifting gravel bed river (Ain River, France). The sedimentation rates estimated from dendrogeomorphic analysis are compared between and within 14 cutoff channel infills. Detailed analyses along a single channel infill are performed to assess changes in the sedimentation rates through time by analyzing activity profiles of the fallout radionuclides 137Cs and unsupported 210Pb. Sedimentation rates are also compared within the channel infills with rates in other plots located in the adjacent floodplain. Sedimentation rates range between 0.65 and 2.4 cm a−1 over a period of 10 to 40 years. The data provide additional information on the role of distance from the bank, overbank flow frequency, and channel geometry in controlling the sedimentation rate. Channel infills, lower than adjacent floodplains, exhibit higher sedimentation rates and convey overbank sediment farther away within the floodplain. Additionally, channel degradation, aggradation, and bank erosion, which reduce or increase the distance between the main channel and the cutoff channel aquatic zone, affect local overbank flow magnitude and frequency and therefore sedimentation rates, thereby creating a complex mosaic of sedimentation zones within the floodplain and along the cutoff channel infills. Last, the dendrogeomorphic and 137Cs approaches are cross validated for estimating the sedimentation rate within a channel infill.

  2. A Method of Implementing Cutoff Conditions for Saturn V Lunar Missions Out of Earth Parking Orbit Assuming a Continuous Ground Launch Window

    NASA Technical Reports Server (NTRS)

    Cooper, F. D.

    1965-01-01

    A method of implementing Saturn V lunar missions from an earth parking orbit is presented. The ground launch window is assumed continuous over a four and one-half hour period. The iterative guidance scheme combined with a set of auxiliary equations that define suitable S-IVB cutoff conditions, is the approach taken. The four inputs to the equations that define cutoff conditions are represented as simple third-degree polynomials as a function of ignition time. Errors at lunar arrival caused by the separate and combined effects of the guidance equations, cutoff conditions, hypersurface errors, and input representations are shown. Vehicle performance variations and parking orbit injection errors are included as perturbations. Appendix I explains how aim vectors were computed for the cutoff equations. Appendix II presents all guidance equations and related implementation procedures. Appendix III gives the derivation of the auxiliary cutoff equations. No error at lunar arrival was large enough to require a midcourse correction greater than one meter per second assuming a transfer time of three days and the midcourse correction occurs five hours after injection. Since this result is insignificant when compared to expected hardware errors, the implementation procedures presented are adequate to define cutoff conditions for Saturn V lunar missions.

  3. Acoustic changes of the voice as signs of vocal fatigue in radio broadcasters: preliminary findings.

    PubMed

    Guzmán, Marco; Malebrán, María Celina; Zavala, Paulina; Saldívar, Patricio; Muñoz, Daniel

    2013-01-01

    Vocal fatigue is one of the most common voice symptoms. It usually refers to the sensation of vocal tiredness after a long period of speaking or singing. The purpose of this study was to compare the acoustic characteristics of the voice before and after a long period of voice use in a group of radio broadcasters. Eight radio broadcasters with normal voices were assessed. We used cepstrum, energy ratio, noise to harmonic ratio and soft phonation index as acoustic variables to assess the possible pre-post vocal loading changes objectively. There were no statistically significant pre-post differences in any of the acoustic parameters. Although cepstrum at high pitch did not show a significant difference, it obtained the greatest difference among the acoustic variables. The acoustic measurements used in the present study might not be sensitive enough or appropriate for detecting vocal changes after a long period of voice use, whether in reading (as reported in previous research) or speaking tasks. Moreover, a longer period of vocal loading would eventually reveal more evident and consistent acoustic voice changes. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  4. [The acoustic changes of the voice in the singing boys during the permutation period].

    PubMed

    Chernobel'sky, S I

    2016-01-01

    The present study was based on the assumption that the determination of the fundamental frequency (Fo) of the speech by means of computer-assisted acoustic analysis makes it possible to detect the onset of vocal mutation in the singing boys. A total of 30 singing boys were available for the examination. They were allocated to two groups. Group 1 was comprised of 15 boys at the age between 11 years 10 months and 12 years 4 months. Group 2 consisted of 15 boys aged between 12 years 10 months and 13 years 2 months. All the participants of the study underwent an acoustic test in combination with indirect laryngoscopy. It was shown that fundamental frequency of the speech in the boys of group 2 was significantly lower than in group 1. The difference amounted to two half-tones and could be regarded as the onset of vocal pre-mutation. It is concluded that the acoustic analysis of the speech should be employed to determine the time of vocal pre-mutation in the singing boys. The singing teachers can use this method all by themselves.

  5. Acoustic vibration effects in classical nucleation theory

    NASA Astrophysics Data System (ADS)

    Baird, James K.; Su, C.-H.

    2018-04-01

    Acoustic vibration is often used to improve the yield of crystals and nanoparticles growing from solutions and melts. As there is still a debate on how acoustic vibration actually works, we have examined the possibility that acoustic pressure can affect the rate of nucleation. Our method is based on an expansion of the free energy of the nucleus in powers of the acoustic pressure. With the assumption that the period of the sound wave is short as compared to the time scale for nucleation, we replace the powers of the acoustic pressure by their time averages, retaining the average of the square of the acoustic pressure as the leading term. By assuming a nucleus having spherical shape, we use the Young-Laplace equation to relate the pressure inside the nucleus to the ambient pressure. Without making further approximations not already standard in classical nucleation theory, we find that the proximate effect of acoustic pressure is to reduce both the size of the critical nucleus as well as the work required to form it from monomers. As the work serves as the activation energy, the ultimate effect of acoustic pressure is to increase the rate of nucleation. If we assume that the atomic structure of the nucleus is the same as that of an ordinary solid, however, we find the compressibility is too small for acoustic vibration effects to be noticeable. If on the other hand, we assume that the structure is similar to that of a loosely bound colloidal particle, then the effects of acoustic vibration become potentially observable.

  6. Period for Normalization of Voice Acoustic Parameters in Indian Pediatric Cochlear Implantees.

    PubMed

    Joy, Jeena V; Deshpande, Shweta; Vaid, Dr Neelam

    2017-05-01

    The purpose of this study was to investigate the duration required by children with cochlear implants to approximate the norms of voice acoustic parameters. The study design is retrospective. Thirty children with cochlear implants (chronological ages ranging between 4.1 and 6.7 years) were divided into three groups, based on the postimplantation duration. Ten normal-hearing children (chronological ages ranging between 4 and 7 years) were selected as the control group. All implanted children underwent an objective voice analysis using Dr. Speech software (Tiger DRS, Inc., Seattle, WA, USA) at 6 months and at 1 and 2 years of implant use. Voice analysis was done for the children in the control group and means were derived for all the parameters analyzed to obtain the normal values. Habitual fundamental frequency (HFF), jitter (frequency variation), and shimmer (amplitude variation) were the voice acoustic parameters analyzed for the vowels |a|, |i|, and |u|. The obtained values of these parameters were then compared with the norms. HFF for the children with implant use for 6 months and 1 year did significantly differ from the control group. However, there was no significant difference (P > 0.5) observed in the children with implant use for 2 years, thus matching the norms. Jitter and shimmer showed a significant difference (P < 0.5) even at 2 years of implant use when compared with the control group. The findings of the study divulge that children with cochlear implants approximate age-matched normal-hearing kids with respect to the voice acoustic parameter of HFF by 2 years of implant use. However, jitter and shimmer were not found to stabilize for the duration studied. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Spatial filtering of audible sound with acoustic landscapes

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun; Cheng, Jianchun

    2017-07-01

    Acoustic metasurfaces manipulate waves with specially designed structures and achieve properties that natural materials cannot offer. Similar surfaces work in audio frequency range as well and lead to marvelous acoustic phenomena that can be perceived by human ears. Being intrigued by the famous Maoshan Bugle phenomenon, we investigate large scale metasurfaces consisting of periodic steps of sizes comparable to the wavelength of audio frequency in both time and space domains. We propose a theoretical method to calculate the scattered sound field and find that periodic corrugated surfaces work as spatial filters and the frequency selective character can only be observed at the same side as the incident wave. The Maoshan Bugle phenomenon can be well explained with the method. Finally, we demonstrate that the proposed method can be used to design acoustical landscapes, which transform impulsive sound into famous trumpet solos or other melodious sound.

  8. 49 CFR 40.87 - What are the cutoff concentrations for drug tests?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.87 What are the cutoff concentrations for drug tests? (a) As a laboratory, you must use the cutoff concentrations displayed in the... 49 Transportation 1 2010-10-01 2010-10-01 false What are the cutoff concentrations for drug tests...

  9. 49 CFR 40.87 - What are the cutoff concentrations for drug tests?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.87 What are the cutoff concentrations for drug tests? (a) As a laboratory, you must use the cutoff concentrations displayed in the... 49 Transportation 1 2014-10-01 2014-10-01 false What are the cutoff concentrations for drug tests...

  10. 49 CFR 40.87 - What are the cutoff concentrations for drug tests?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.87 What are the cutoff concentrations for drug tests? (a) As a laboratory, you must use the cutoff concentrations displayed in the... 49 Transportation 1 2013-10-01 2013-10-01 false What are the cutoff concentrations for drug tests...

  11. 49 CFR 40.87 - What are the cutoff concentrations for drug tests?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.87 What are the cutoff concentrations for drug tests? (a) As a laboratory, you must use the cutoff concentrations displayed in the... 49 Transportation 1 2012-10-01 2012-10-01 false What are the cutoff concentrations for drug tests...

  12. 49 CFR 40.87 - What are the cutoff concentrations for drug tests?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.87 What are the cutoff concentrations for drug tests? (a) As a laboratory, you must use the cutoff concentrations displayed in the... 49 Transportation 1 2011-10-01 2011-10-01 false What are the cutoff concentrations for drug tests...

  13. The acoustical cues to sound location in the Guinea pig (cavia porcellus)

    PubMed Central

    Greene, Nathanial T; Anbuhl, Kelsey L; Williams, Whitney; Tollin, Daniel J.

    2014-01-01

    There are three main acoustical cues to sound location, each attributable to space-and frequency-dependent filtering of the propagating sound waves by the outer ears, head, and torso: Interaural differences in time (ITD) and level (ILD) as well as monaural spectral shape cues. While the guinea pig has been a common model for studying the anatomy, physiology, and behavior of binaural and spatial hearing, extensive measurements of their available acoustical cues are lacking. Here, these cues were determined from directional transfer functions (DTFs), the directional components of the head-related transfer functions, for eleven adult guinea pigs. In the frontal hemisphere, monaural spectral notches were present for frequencies from ~10 to 20 kHz; in general, the notch frequency increased with increasing sound source elevation and in azimuth toward the contralateral ear. The maximum ITDs calculated from low-pass filtered (2 kHz cutoff frequency) DTFs were ~250 µs, whereas the maximum ITD measured with low frequency tone pips was over 320 µs. A spherical head model underestimates ITD magnitude under normal conditions, but closely approximates values when the pinnae were removed. Interaural level differences (ILDs) strongly depended on location and frequency; maximum ILDs were < 10 dB for frequencies < 4 kHz and were as large as 40 dB for frequencies > 10 kHz. Removal of the pinna reduced the depth and sharpness of spectral notches, altered the acoustical axis, and reduced the acoustical gain, ITDs, and ILDs; however, spectral shape features and acoustical gain were not completely eliminated, suggesting a substantial contribution of the head and torso in altering the sounds present at the tympanic membrane. PMID:25051197

  14. On the Coriolis effect in acoustic waveguides.

    PubMed

    Wegert, Henry; Reindl, Leonard M; Ruile, Werner; Mayer, Andreas P

    2012-05-01

    Rotation of an elastic medium gives rise to a shift of frequency of its acoustic modes, i.e., the time-period vibrations that exist in it. This frequency shift is investigated by applying perturbation theory in the regime of small ratios of the rotation velocity and the frequency of the acoustic mode. In an expansion of the relative frequency shift in powers of this ratio, upper bounds are derived for the first-order and the second-order terms. The derivation of the theoretical upper bounds of the first-order term is presented for linear vibration modes as well as for stable nonlinear vibrations with periodic time dependence that can be represented by a Fourier series.

  15. Biological Significance of Acoustic Impacts on Marine Mammals: Examples Using an Acoustic Recording tag to Define Acoustic Exposure of Sperm Whales, Physeter catodon, Exposed to Airgun Sounds in Controlled Exposure Experiments

    NASA Astrophysics Data System (ADS)

    Tyack, P. L.; Johnson, M. P.; Madsen, P. T.; Miller, P. J.; Lynch, J.

    2006-05-01

    the array with received levels of analyzed pulses falling between 131-167 dB re. 1μPa (pp) [111-147 dB re. 1μPa (rms) & 100-135 dB re. 1μPa2s]. The acoustic energy produced by airguns centers in the 50-250 Hz band, with spectral levels about 40 dB lower at 1 kHz for the on-axis signature. However, some arrivals recorded near the surface in 2002 had energy predominantly above 500Hz. A surface duct in the 2002 sound speed profile had a cutoff frequency calculated at 250 Hz. Poor propagation below this cutoff and efficient propagation above it helps to explain this effect. Our empirical measurements demonstrate that airguns expose animals to significant sound energy above 500Hz, which increases concern about the potential impact on toothed whales with poor low frequency hearing. The measurements are consistent with ray trace and parabolic equation propagation models, which can predict the relative timing of the multipath arrivals. The results indicate that on-axis source levels and simple spreading assumptions alone cannot predict airgun pulse propagation and the extent of exposure zones.

  16. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating.

    PubMed

    Groby, J-P; Duclos, A; Dazel, O; Boeckx, L; Lauriks, W

    2011-05-01

    The acoustic properties of a periodic rigid frame porous layer with multiple irregularities in the rigid backing and embedded rigid circular inclusions are investigated theoretically and numerically. The theoretical representation of the sound field in the structure is obtained using a combination of multipole method that accounts for the periodic inclusions and multi-modal method that accounts for the multiple irregularities of the rigid backing. The theoretical model is validated against a finite element method. The predictions show that the acoustic response of this structure exhibits quasi-total, high absorption peaks at low frequencies which are below the frequency of the quarter-wavelength resonance typical for a flat homogeneous porous layer backed by a rigid plate. This result is explained by excitation of additional modes in the porous layer and by a complex interaction between various acoustic modes. These modes relate to the resonances associated with the presence of a profiled rigid backing and rigid inclusions in the porous layer.

  17. Synthesis of soluble conducting polymers by acoustic mixing

    DOEpatents

    Kane, Marie C.

    2016-09-13

    A method including combining an aniline monomer, an oxidant, water and an organic solvent; subjecting the combination to acoustic mixing to form an emulsion; and recovering a polyaniliine from the combination. A method including combining a aniline monomer, an oxidant, water and an organic solvent; forming a polyaniline by acoustic mixing the combination; and recovering the polyaniliine from the combination. A method including forming a combination of an aniline monomer, an oxidant, water and an organic solvent in the absence of an emulsifier; acoustic mixing the combination for a time period to form a polyaniline; and recovering a polyaniliine from the combination.

  18. Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision

    PubMed Central

    Kwon, MiYoung; Legge, Gordon E.

    2011-01-01

    It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800

  19. Controls on cutoff formation along a tropical meandering river in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ahmed, J.; Constantine, J. A.

    2016-12-01

    The termination of meander bends is an inherent part of the evolution of meandering rivers. Cutoffs are produced by one of two mechanisms: neck cutoffs occur when two adjacent meanders converge, while chute cutoffs are generated by flood-driven floodplain incision, resulting in a shorter, steeper channel path. Here we use an annually-resolved record of Landsat imagery, coupled with daily discharge data to assess the role of high-magnitude discharges (Q ≥ QBF) on cutoff formation along the Rio Beni, Bolivia. Our results suggest that despite numerous above-bankfull events, the dominant cutoff mechanism operating on the Beni is neck cutoff. Evaluating the formation of these cutoffs reveals that migration rates accelerate during years of high discharge, and eventually cause the migrating bends to breach. The density of floodplain vegetation and the medium into which the channel migrated was also responsible for the patterns of cutoff documented along this river. The presence of existing floodplain channels permitted the river to divert its flow along shorter courses thereby facilitating cutoff, and limiting sinuosity growth. Understanding the long-term evolution of meandering channels is important since their morphodynamics are responsible for the creation of highly biodiverse riparian habitats, as well as the store and release of alluvial material. Moreover, the interactions between discharge and the channel-floodplain system are integral for the functioning and long-term evolution of these landscapes, particularly in the face of global climate change.

  20. Acoustic performance of inlet suppressors on an engine generating a single mode

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Rice, E. J.; Homyak, L.

    1981-01-01

    Three single degree of freedom liners with different open area ratio face sheets were designed for a single spinning mode in order to evaluate an inlet suppressor design method based on mode cutoff ratio. This mode was generated by placing 41 rods in front of the 28 blade fan of a JT15D turbofan engine. At the liner design this near cutoff mode has a theoretical maximum attenuation of nearly 200 dB per L/D. The data show even higher attenuations at the design condition than predicted by the theory for dissipation of a single mode within the liner. This additional attenuation is large for high open area ratios and should be accounted for in the theory. The data show the additional attenuation to be inversely proportional to acoustic resistance. It was thought that the additional attenuation could be caused by reflection and modal scattering at the hard to soft wall interface. A reflection model was developed, and then modified to fit the data. This model was checked against independent (multiple pure tone) data with good agreement.

  1. One-dimensional rigid film acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-11-01

    We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves.

  2. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.

    PubMed

    El-Shamy, E F

    2015-03-01

    The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.

  3. Triad Resonance in the Gravity-Acoustic Family

    NASA Astrophysics Data System (ADS)

    Kadri, U.

    2015-12-01

    Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic

  4. Coronado National Monument : acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2014-04-01

    During the summer (September October) of 2010, Volpe Center personnel deployed acoustic measurement system at Fort Bowie National Historic Site (FOBO) for approximately one month. The baseline data collected during this period will help park mana...

  5. Spectral and temporal resolutions of information-bearing acoustic changes for understanding vocoded sentencesa)

    PubMed Central

    Stilp, Christian E.; Goupell, Matthew J.

    2015-01-01

    Short-time spectral changes in the speech signal are important for understanding noise-vocoded sentences. These information-bearing acoustic changes, measured using cochlea-scaled entropy in cochlear implant simulations [CSECI; Stilp et al. (2013). J. Acoust. Soc. Am. 133(2), EL136–EL141; Stilp (2014). J. Acoust. Soc. Am. 135(3), 1518–1529], may offer better understanding of speech perception by cochlear implant (CI) users. However, perceptual importance of CSECI for normal-hearing listeners was tested at only one spectral resolution and one temporal resolution, limiting generalizability of results to CI users. Here, experiments investigated the importance of these informational changes for understanding noise-vocoded sentences at different spectral resolutions (4–24 spectral channels; Experiment 1), temporal resolutions (4–64 Hz cutoff for low-pass filters that extracted amplitude envelopes; Experiment 2), or when both parameters varied (6–12 channels, 8–32 Hz; Experiment 3). Sentence intelligibility was reduced more by replacing high-CSECI intervals with noise than replacing low-CSECI intervals, but only when sentences had sufficient spectral and/or temporal resolution. High-CSECI intervals were more important for speech understanding as spectral resolution worsened and temporal resolution improved. Trade-offs between CSECI and intermediate spectral and temporal resolutions were minimal. These results suggest that signal processing strategies that emphasize information-bearing acoustic changes in speech may improve speech perception for CI users. PMID:25698018

  6. Using acoustic cavitation to enhance chemotherapy of DOX liposomes: experiment in vitro and in vivo.

    PubMed

    Zhao, Ying-Zheng; Dai, Dan-Dan; Lu, Cui-Tao; Lv, Hai-Feng; Zhang, Yan; Li, Xing; Li, Wen-Feng; Wu, Yan; Jiang, Lei; Li, Xiao-Kun; Huang, Pin-Tong; Chen, Li-Juan; Lin, Min

    2012-09-01

    Experiments in vitro and in vivo were designed to investigate tumor growth inhibition of chemotherapeutics-loaded liposomes enhanced by acoustic cavitation. Doxorubicin-loaded liposomes (DOX liposomes) were used in experiments to investigate acoustic cavitation mediated effects on cell viability and chemotherapeutic function. The influence of lingering sensitive period after acoustic cavitation on tumor inhibition was also investigated. Animal experiment was carried out to verify the practicability of this technique in vivo. From experiment results, blank phospholipid-based microbubbles (PBM) combined with ultrasound (US) at intensity below 0.3 W/cm² could produce acoustic cavitation which maintained cell viability at high level. Compared with DOX solution, DOX liposomes combined with acoustic cavitation exerted effective tumor inhibition in vitro and in vivo. The lingering sensitive period after acoustic cavitation could also enhance the susceptibility of tumor to chemotherapeutic drugs. DOX liposomes could also exert certain tumor inhibition under preliminary acoustic cavitation. Acoustic cavitation could enhance the absorption efficiency of DOX liposomes, which could be used to reduce DOX adverse effect on normal organs in clinical chemotherapy.

  7. Petroglyph National Monument : acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2013-01-01

    During the summer of 2010 (August September), the Volpe Center collected baseline acoustical data at Petroglyph National Monument (PETR) at two sites deployed for approximately 30 days each. The baseline data collected during this period will hel...

  8. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  9. Molecular dynamics simulations of acoustic absorption by a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Ayub, M.; Zander, A. C.; Huang, D. M.; Howard, C. Q.; Cazzolato, B. S.

    2018-06-01

    Acoustic absorption by a carbon nanotube (CNT) was studied using molecular dynamics (MD) simulations in a molecular domain containing a monatomic gas driven by a time-varying periodic force to simulate acoustic wave propagation. Attenuation of the sound wave and the characteristics of the sound field due to interactions with the CNT were studied by evaluating the behavior of various acoustic parameters and comparing the behavior with that of the domain without the CNT present. A standing wave model was developed for the CNT-containing system to predict sound attenuation by the CNT and the results were verified against estimates of attenuation using the thermodynamic concept of exergy. This study demonstrates acoustic absorption effects of a CNT in a thermostatted MD simulation, quantifies the acoustic losses induced by the CNT, and illustrates their effects on the CNT. Overall, a platform was developed for MD simulations that can model acoustic damping induced by nanostructured materials such as CNTs, which can be used for further understanding of nanoscale acoustic loss mechanisms associated with molecular interactions between acoustic waves and nanomaterials.

  10. Translational illusion of acoustic sources by transformation acoustics.

    PubMed

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  11. The Hubble IR cutoff in holographic ellipsoidal cosmologies

    NASA Astrophysics Data System (ADS)

    Cataldo, Mauricio; Cruz, Norman

    2018-01-01

    It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω =p/ρ , whose range belongs to quintessence or even phantom matter.

  12. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, K. H.; Seo, B. H.; Kim, J. H.

    2016-03-15

    As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less

  13. Global warming precipitation accumulation increases above the current-climate cutoff scale

    PubMed Central

    Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-01-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff. PMID:28115693

  14. Global warming precipitation accumulation increases above the current-climate cutoff scale

    NASA Astrophysics Data System (ADS)

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.

    2017-02-01

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  15. Global warming precipitation accumulation increases above the current-climate cutoff scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing withmore » event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.« less

  16. Global warming precipitation accumulation increases above the current-climate cutoff scale.

    PubMed

    Neelin, J David; Sahany, Sandeep; Stechmann, Samuel N; Bernstein, Diana N

    2017-02-07

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.

  17. Global warming precipitation accumulation increases above the current-climate cutoff scale

    DOE PAGES

    Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; ...

    2017-01-23

    Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing withmore » event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.« less

  18. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides.

    PubMed

    Beck, David A C; Armen, Roger S; Daggett, Valerie

    2005-01-18

    The correct treatment of van der Waals and electrostatic nonbonded interactions in molecular force fields is essential for performing realistic molecular dynamics (MD) simulations of solvated polypeptides. The most computationally tractable treatment of nonbonded interactions in MD utilizes a spherical distance cutoff (typically, 8-12 A) to reduce the number of pairwise interactions. In this work, we assess three spherical atom-based cutoff approaches for use with all-atom explicit solvent MD: abrupt truncation, a CHARMM-style electrostatic shift truncation, and our own force-shifted truncation. The chosen system for this study is an end-capped 17-residue alanine-based alpha-helical peptide, selected because of its use in previous computational and experimental studies. We compare the time-averaged helical content calculated from these MD trajectories with experiment. We also examine the effect of varying the cutoff treatment and distance on energy conservation. We find that the abrupt truncation approach is pathological in its inability to conserve energy. The CHARMM-style shift truncation performs quite well but suffers from energetic instability. On the other hand, the force-shifted spherical cutoff method conserves energy, correctly predicts the experimental helical content, and shows convergence in simulation statistics as the cutoff is increased. This work demonstrates that by using proper and rigorous techniques, it is possible to correctly model polypeptide dynamics in solution with a spherical cutoff. The inherent computational advantage of spherical cutoffs over Ewald summation (and related) techniques is essential in accessing longer MD time scales.

  19. Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum.

    PubMed

    Chatwin-Davies, Aidan; Kempf, Achim; Martin, Robert T W

    2017-07-21

    We calculate the impact of quantum gravity-motivated ultraviolet cutoffs on inflationary predictions for the cosmic microwave background spectrum. We model the ultraviolet cutoffs fully covariantly to avoid possible artifacts of covariance breaking. Imposing these covariant cutoffs results in the production of small, characteristically k-dependent oscillations in the spectrum. The size of the effect scales linearly with the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative size of the effect could be as large as one part in 10^{5}; i.e., eventual observability may not be ruled out.

  20. The phononic crystals: An unending quest for tailoring acoustics

    NASA Astrophysics Data System (ADS)

    Kushwaha, M.

    Periodicity (in time or space) is a part and parcel of every living being: One can see, hear, and feel it. Everyday examples are locomotion, respiration, and heart beat. The reinforced N-dimensional periodicity over two or more crystalline solids results in the so-called phononic band-gap crystals. These can have dramatic consequences on the propagation of phonons, vibrations, and sound. The fundamental physics of cleverly fabricated phononic crystals can offer a systematic route to realize the Anderson localization of sound and vibrations. As to the applications, the phononic crystals are envisaged to find ways in the architecture, acoustic waveguides, designing transducers, elastic/acoustic filters, noise control, ultrasonics, medical imaging, and acoustic cloaking, to mention a few. This review focuses on the brief sketch of the progress made in the field that seems to have prospered even more than was originally imagined in the early nineties.

  1. Wupatki National Monument : Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-05-01

    During the summer of 2010 (July - August), the Volpe Center collected baseline acoustical data at Wupatki National Monument (WUPA) at two sites deployed for approximately 30 days at each site. The baseline data collected during this period will help ...

  2. Tuzigoot National Monument: Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-05-01

    During the summer of 2010 (July-August), the Volpe Center collected baseline acoustical data at Tuzigoot National Monument (TUZI) at a site deployed for approximately 30 days. The baseline data collected during this period will help park managers and...

  3. Numerical methods for large eddy simulation of acoustic combustion instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton T.

    Acoustic combustion instabilities occur when interaction between the combustion process and acoustic modes in a combustor results in periodic oscillations in pressure, velocity, and heat release. If sufficiently large in amplitude, these instabilities can cause operational difficulties or the failure of combustor hardware. In many situations, the dominant instability is the result of the interaction between a low frequency acoustic mode of the combustor and the large scale hydrodynamics. Large eddy simulation (LES), therefore, is a promising tool for the prediction of these instabilities, since both the low frequency acoustic modes and the large scale hydrodynamics are well resolved in LES. Problems with the tractability of such simulations arise, however, due to the difficulty of solving the compressible Navier-Stokes equations efficiently at low Mach number and due to the large number of acoustic periods that are often required for such instabilities to reach limit cycles. An implicit numerical method for the solution of the compressible Navier-Stokes equations has been developed which avoids the acoustic CFL restriction, allowing for significant efficiency gains at low Mach number, while still resolving the low frequency acoustic modes of interest. In the limit of a uniform grid the numerical method causes no artificial damping of acoustic waves. New, non-reflecting boundary conditions have also been developed for use with the characteristic-based approach of Poinsot and Lele (1992). The new boundary conditions are implemented in a manner which allows for significant reduction of the computational domain of an LES by eliminating the need to perform LES in regions where one-dimensional acoustics significantly affect the instability but details of the hydrodynamics do not. These new numerical techniques have been demonstrated in an LES of an experimental combustor. The new techniques are shown to be an efficient means of performing LES of acoustic combustion

  4. Damping of acoustic flexural phonons in silicene: influence on high-field electronic transport

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Mokhtar Hamham, El; Martín, María J.

    2018-06-01

    Silicene is a two-dimensional buckled material with broken horizontal mirror symmetry and Dirac-like dispersion. Under such conditions, flexural acoustic (ZA) phonons play a dominant role. Consequently, it is necessary to consider some suppression mechanism for electron–phonon interactions with long wavelengths in order to reach mobilities useful for electronic applications. In this work, we analyze, by means of an ensemble Monte Carlo simulator, the influence of several possibilities for the description of the effect of ZA phonon damping on electronic transport in silicene. The results show that a hard cutoff situation (total suppression for phonons with a wavelength longer than a critical one), as it has been proposed in the literature, does not yield a realistic picture regarding the electronic distribution function, and it artificially induces a negative differential resistance at moderate and high fields. Sub-parabolic dispersions, on the other hand, may provide a more realistic description in terms of the behavior of the electron distribution in the momentum space, but need extremely short cutoff wavelengths to reach functional mobility and drift velocity values.

  5. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications.

    PubMed

    Segura-Garcia, Jaume; Navarro-Ruiz, Juan Miguel; Perez-Solano, Juan J; Montoya-Belmonte, Jose; Felici-Castell, Santiago; Cobos, Maximo; Torres-Aranda, Ana M

    2018-02-26

    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system.

  6. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications

    PubMed Central

    Montoya-Belmonte, Jose; Cobos, Maximo; Torres-Aranda, Ana M.

    2018-01-01

    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system. PMID:29495407

  7. Performance Evaluation of Different d-Dimer Cutoffs in Bedridden Hospitalized Elderly Patients.

    PubMed

    Kassim, Nevine A; Farid, Tamer M; Pessar, Shaimaa Abdelmalik; Shawkat, Salma A

    2017-11-01

    A rapid and accurate diagnosis of venous thromboembolism (VTE) in the elderly individuals represents a dilemma due to nonspecific clinical presentation, confusing laboratory results, and the hazards of radiological examination in this age-group. d-Dimer test is used mainly in combination with non-high clinical pretest probability (PTP) to exclude VTE. d-Dimer testing retains its sensitivity, however, its specificity decreases in the elderly individuals. Raising the cutoff level improves the specificity of the d-dimer test without compromising its sensitivity. The current study aimed to explore the reliability of higher d-dimer cutoff values for the diagnosis of asymptomatic VTE in a population of bedridden hospitalized elderly patients with non-high clinical PTP. This retrospective study included 252 bedridden hospitalized elderly patients (>65 years) who were admitted to the Ain shams University Specialized Hospital with non-high clinical probability and developed later reduced mobility; all underwent quantitation of d-dimer and Doppler examination. Considering the whole population (>65 years), the age-adjusted cutoff achieved the best performance in comparison with the conventional and receiver operating characteristic (ROC)-derived cutoffs. When stratified according to age, the age-adjusted cutoff showed the best performance in the age-group 65-70 and comparable performance with the ROC-derived cutoff in the age-group 71-80, however, its sensitivity compromised in those older than 80 years. In conclusion, it is recommended to use age-adjusted cutoff value of d-dimer together with the clinical probability score in elderly individuals (65-80 years).

  8. Speech waveform perturbation analysis: a perceptual-acoustical comparison of seven measures.

    PubMed

    Askenfelt, A G; Hammarberg, B

    1986-03-01

    The performance of seven acoustic measures of cycle-to-cycle variations (perturbations) in the speech waveform was compared. All measures were calculated automatically and applied on running speech. Three of the measures refer to the frequency of occurrence and severity of waveform perturbations in special selected parts of the speech, identified by means of the rate of change in the fundamental frequency. Three other measures refer to statistical properties of the distribution of the relative frequency differences between adjacent pitch periods. One perturbation measure refers to the percentage of consecutive pitch period differences with alternating signs. The acoustic measures were tested on tape recorded speech samples from 41 voice patients, before and after successful therapy. Scattergrams of acoustic waveform perturbation data versus an average of perceived deviant voice qualities, as rated by voice clinicians, are presented. The perturbation measures were compared with regard to the acoustic-perceptual correlation and their ability to discriminate between normal and pathological voice status. The standard deviation of the distribution of the relative frequency differences was suggested as the most useful acoustic measure of waveform perturbations for clinical applications.

  9. NuSTAR constraints on coronal cutoffs in Swift-BAT selected Seyfert 1 AGN

    NASA Astrophysics Data System (ADS)

    Kamraj, Nikita; Harrison, Fiona; Balokovic, Mislav; Brightman, Murray; Stern, Daniel

    2017-08-01

    The continuum X-ray emission from Active Galactic Nuclei (AGN) is believed to originate in a hot, compact corona above the accretion disk. Compton upscattering of UV photons from the inner accretion disk by coronal electrons produces a power law X-ray continuum with a cutoff at energies determined by the electron temperature. The NuSTAR observatory, with its high sensitivity in hard X-rays, has enabled detailed broadband modeling of the X-ray spectra of AGN, thereby allowing tight constraints to be placed on the high-energy cutoff of the X-ray continuum. Recent detections of low cutoff energies in Seyfert 1 AGN in the NuSTAR band have motivated us to pursue a systematic search for low cutoff candidates in Swift-BAT detected Seyfert 1 AGN that have been observed with NuSTAR. We use our constraints on the cutoff energy to map out the location of these sources on the compactness - temperature diagram for AGN coronae, and discuss the implications of low cutoff energies for the cooling and thermalization mechanisms in the corona.

  10. FODMAPs: food composition, defining cutoff values and international application.

    PubMed

    Varney, Jane; Barrett, Jacqueline; Scarlata, Kate; Catsos, Patsy; Gibson, Peter R; Muir, Jane G

    2017-03-01

    The low-FODMAP diet is a new dietary therapy for the management of irritable bowel syndrome that is gaining in popularity around the world. Developing the low-FODMAP diet required not only extensive food composition data but also the establishment of "cutoff values" to classify foods as low-FODMAP. These cutoff values relate to each particular FODMAP present in a food, including oligosaccharides (fructans and galacto-oligosaccharides), sugar polyols (mannitol and sorbitol), lactose, and fructose in excess of glucose. Cutoff values were derived by considering the FODMAP levels in typical serving sizes of foods that commonly trigger symptoms in individuals with irritable bowel syndrome, as well as foods that were generally well tolerated. The reliability of these FODMAP cutoff values has been tested in a number of dietary studies. The development of the techniques to quantify the FODMAP content of foods has greatly advanced our understanding of food composition. FODMAP composition is affected by food processing techniques and ingredient selection. In the USA, the use of high-fructose corn syrups may contribute to the higher FODMAP levels detected (via excess fructose) in some processed foods. Because food processing techniques and ingredients can vary between countries, more comprehensive food composition data are needed for this diet to be more easily implemented internationally. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  11. Acoustic Probe for Solid-Gas-Liquid Suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavlarides, L.L.; Sangani, Ashok

    The primary objective of the research project during the first funding period was to develop an acoustic probe to measure volume percent solids in solid-liquid slurries in the presence of small amounts of gas bubbles. This problem was addressed because of the great need for a non-invasive, accurate and reliable method for solids monitoring in liquid slurries in the presence of radiolytically generated gases throughout the DOE complex. These measurements are necessary during mobilization of salts and sediments in tanks, transport of these slurries in transfer lines to processing facilities across a site, and, in some instances, during high levelmore » waste processing. Although acoustic probes have been commonly used for monitoring flows in single-phase fluids (McLeod, 1967), their application to monitor two-phase mixtures has not yet fully realized its potential. A number of investigators in recent years have therefore been involved in developing probes for measuring the volume fractions in liquid solid suspensions (Atkinson and Kytomaa, 1993; Greenwood et al., 1993; Martin et al., 1995) and in liquid-liquid suspensions (Bonnet and Tavlarides, 1987; Tavlarides and Bonnet, 1988, Yi and Tavlarides, 1990; Tsouris and Tavlarides, 1993, Tsouris et al., 1995). In particular, Atkinson and Kytomaa (1993) showed that the acoustic technique can be used to determine both the velocity and the volume fraction of solids while Martin et al. (1995) and Spelt et al. (1999) showed that the acoustic probe can also be used to obtain information on the size distribution of the particles. In a recent testing of in-line slurry monitors with radioactive slurries suspended with Pulsair Mixers (Hylton & Bayne, 1999), an acoustic probe did not compare well with other instruments most probably due to presence of entrained gases and improper acoustic frequency range of interrogation. The work of the investigators cited has established the potential of the acoustic probe for characterizing

  12. Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz Resonators.

    PubMed

    Lan, Jun; Li, Yifeng; Xu, Yue; Liu, Xiaozhou

    2017-09-06

    We designed a gradient acoustic metasurface to manipulate acoustic wavefront freely. The broad bandwidth and high efficiency transmission are achieved by the acoustic metasurface which is constructed with a series of unit cells to provide desired discrete acoustic velocity distribution. Each unit cell is composed of a decorated metal plate with four periodically arrayed Helmholtz resonators (HRs) and a single slit. The design employs a gradient velocity to redirect refracted wave and the impedance matching between the metasurface and the background medium can be realized by adjusting the slit width of unit cell. The theoretical and numerical results show that some excellent wavefront manipulations are demonstrated by anomalous refraction, non-diffracting Bessel beam, sub-wavelength flat focusing, and effective tunable acoustic negative refraction. Our designed structure may offer potential applications for the imaging system, beam steering and acoustic lens.

  13. Fractional Flow Reserve: Does a Cut-off Value add Value?

    PubMed Central

    Mohdnazri, Shah R; Keeble, Thomas R

    2016-01-01

    Fractional flow reserve (FFR) has been shown to improve outcomes when used to guide percutaneous coronary intervention (PCI). There have been two proposed cut-off points for FFR. The first was derived by comparing FFR against a series of non-invasive tests, with a value of ≤0.75 shown to predict a positive ischaemia test. It was then shown in the DEFER study that a vessel FFR value of ≥0.75 was associated with safe deferral of PCI. During the validation phase, a ‘grey zone’ for FFR values of between 0.76 and 0.80 was demonstrated, where a positive non-invasive test may still occur, but sensitivity and specificity were sub-optimal. Clinical judgement was therefore advised for values in this range. The FAME studies then moved the FFR cut-off point to ≤0.80, with a view to predicting outcomes. The ≤0.80 cut-off point has been adopted into clinical practice guidelines, whereas the lower value of ≤0.75 is no longer widely used. Here, the authors discuss the data underpinning these cut-off values and the practical implications for their use when using FFR guidance in PCI. PMID:29588700

  14. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  15. Methods and apparatus for non-acoustic speech characterization and recognition

    DOEpatents

    Holzrichter, John F.

    1999-01-01

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  16. Methods and apparatus for non-acoustic speech characterization and recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J.F.

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  17. The Research and Training Activities for the Joint Institute for Aeronautics and Acoustics

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian

    1995-01-01

    This proposal requests continued support for the program of activities to be undertaken by the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the period 1 Oct. 1995 - 30 Sept. 1996. The emphasis in this program is on training and research in experimental and computational methods with application to aerodynamics, acoustics and the important interactions between them. The program comprises activities in active flow control, Large Eddy Simulation of jet noise, flap aerodynamics and acoustics and high lift modeling studies. During the proposed period there will be a continued emphasis on the interaction between NASA Ames, Stanford University and Industry, particularly in connection with the high lift activities.

  18. Classifying post-stroke fatigue: Optimal cut-off on the Fatigue Assessment Scale.

    PubMed

    Cumming, Toby B; Mead, Gillian

    2017-12-01

    Post-stroke fatigue is common and has debilitating effects on independence and quality of life. The Fatigue Assessment Scale (FAS) is a valid screening tool for fatigue after stroke, but there is no established cut-off. We sought to identify the optimal cut-off for classifying post-stroke fatigue on the FAS. In retrospective analysis of two independent datasets (the '2015' and '2007' studies), we evaluated the predictive validity of FAS score against a case definition of fatigue (the criterion standard). Area under the curve (AUC) and sensitivity and specificity at the optimal cut-off were established in the larger 2015 dataset (n=126), and then independently validated in the 2007 dataset (n=52). In the 2015 dataset, AUC was 0.78 (95% CI 0.70-0.86), with the optimal ≥24 cut-off giving a sensitivity of 0.82 and specificity of 0.66. The 2007 dataset had an AUC of 0.83 (95% CI 0.71-0.94), and applying the ≥24 cut-off gave a sensitivity of 0.84 and specificity of 0.67. Post-hoc analysis of the 2015 dataset revealed that using only the 3 most predictive FAS items together ('FAS-3') also yielded good validity: AUC 0.81 (95% CI 0.73-0.89), with sensitivity of 0.83 and specificity of 0.75 at the optimal ≥8 cut-off. We propose ≥24 as a cut-off for classifying post-stroke fatigue on the FAS. While further validation work is needed, this is a positive step towards a coherent approach to reporting fatigue prevalence using the FAS. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Publications on acoustics research at the Langley Research Center, January 1987 - September 1992

    NASA Technical Reports Server (NTRS)

    Sutherland, Linda W. (Compiler)

    1992-01-01

    This report is a compilation of publications from acoustics research at the Langley Research Center. The reports listed are in chronological order and summarize the research output of the Acoustics Division for the period January 1987 - September 1992.

  20. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    PubMed

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  1. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, Vladmir

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  2. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  3. CUTOFF POINT OF THE PHASE ANGLE IN PRE-RADIOTHERAPY CANCER PATIENTS.

    PubMed

    Souza Thompson Motta, Rachel; Alves Castanho, Ivany; Guillermo Coca Velarde, Luis

    2015-11-01

    malnutrition is a common complication for cancer patients. The phase angle (PA), direct measurement of bioelectrical impedance analysis (BIA), has been considered a predictor of body cell mass and prognostic indicator. Cutoff points for phase angle (PA) associated with nutritional risk in cancer patients have not been determined yet. assess the possibility of determining the cutoff point for PA to identify nutritional risk in pre-radiotherapy cancer patients. sample group: Patients from both genders diagnosed with cancer and sent for ambulatory radiotherapy. body mass index (BMI), percentage of weight loss (% WL), mid-arm circumference (MAC), triceps skinfold thickness (TST), mid-arm muscle circumference (MAMC), mid-arm muscle area (MAMA), score and categorical assessment obtained using the Patient-Generated Subjective Global Assessment (PG-SGA) form, PA and standardized phase angle (SPA). Kappa coefficient was used to test the degree of agreement between the diagnoses of nutritional risk obtained from several different methods of nutritional assessment. Cutoff points for the PA through anthropometric indicators and PG-SGA were determined by using Receiver Operating Characteristic (ROC) curves, and patient survival was analyzed with the Cox regression method. the cutoff points with the greatest discriminatory power were those obtained from BMI (5.2) and the categorical assessment of PG-SGA (5.4). The diagnosis obtained using these cutoff points showed a significant association with risk of death for the patients in the sample group. we recommend using the cutoff point 5.2 for the PA as a criterion for identifying nutritional risk in pre-radiotherapy cancer patients. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  5. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  6. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  7. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1994-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  8. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    range acoustic systems, whether for acoustic surveillance, communication, or remote sensing of the ocean interior . The data from the NPAL network, and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water... Acoustics PI James A. Mercer Applied Physics Laboratory, University of Washington 1013 NE 40th Street Seattle, WA 98105 phone: (206) 543-1361 fax

  9. Tumacacori National Historic Park : acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2014-11-01

    During September 2010, Volpe Center personnel deployed two acoustic measurement sites at Tumaccori National Historical Park (TUMA) for approximately 30 days each. The baseline data collected during this period will help park managers and planners e...

  10. Fort Bowie National Historic Site : acoustical monitoring

    DOT National Transportation Integrated Search

    2014-04-01

    During the summer (September October) of 2010, Volpe Center personnel deployed acoustic measurement system at Fort Bowie National Historic Site (FOBO) for approximately one month. The baseline data collected during this period will help park mana...

  11. Acoustic Signatures of a Model Fan in the NASA-Lewis Anechoic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Dietrich, D. A.; Heidmann, M. F.; Abbott, J. M.

    1977-01-01

    One-third octave band and narrowband spectra and continuous directivity patterns radiated from an inlet are presented over ranges of fan operating conditions, tunnel velocity, and angle of attack. Tunnel flow markedly reduced the unsteadiness and level of the blade passage tone, revealed the cutoff design feature of the blade passage tone, and exposed a lobular directivity pattern for the second harmonic tone. The full effects of tunnel flow are shown to be complete above a tunnel velocity of 20 meters/second. The acoustic signatures are also shown to be strongly affected by fan rotational speed, fan blade loading, and inlet angle of attack.

  12. Systematic approach to cutoff frequency selection in continuous-wave electron paramagnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hirata, Hiroshi; Itoh, Toshiharu; Hosokawa, Kouichi; Deng, Yuanmu; Susaki, Hitoshi

    2005-08-01

    This article describes a systematic method for determining the cutoff frequency of the low-pass window function that is used for deconvolution in two-dimensional continuous-wave electron paramagnetic resonance (EPR) imaging. An evaluation function for the criterion used to select the cutoff frequency is proposed, and is the product of the effective width of the point spread function for a localized point signal and the noise amplitude of a resultant EPR image. The present method was applied to EPR imaging for a phantom, and the result of cutoff frequency selection was compared with that based on a previously reported method for the same projection data set. The evaluation function has a global minimum point that gives the appropriate cutoff frequency. Images with reasonably good resolution and noise suppression can be obtained from projections with an automatically selected cutoff frequency based on the present method.

  13. Diagnostic performance of an acoustic-based system for coronary artery disease risk stratification.

    PubMed

    Winther, Simon; Nissen, Louise; Schmidt, Samuel Emil; Westra, Jelmer Sybren; Rasmussen, Laust Dupont; Knudsen, Lars Lyhne; Madsen, Lene Helleskov; Kirk Johansen, Jane; Larsen, Bjarke Skogstad; Struijk, Johannes Jan; Frost, Lars; Holm, Niels Ramsing; Christiansen, Evald Høj; Botker, Hans Erik; Bøttcher, Morten

    2018-06-01

    Diagnosing coronary artery disease (CAD) continues to require substantial healthcare resources. Acoustic analysis of transcutaneous heart sounds of cardiac movement and intracoronary turbulence due to obstructive coronary disease could potentially change this. The aim of this study was thus to test the diagnostic accuracy of a new portable acoustic device for detection of CAD. We included 1675 patients consecutively with low to intermediate likelihood of CAD who had been referred for cardiac CT angiography. If significant obstruction was suspected in any coronary segment, patients were referred to invasive angiography and fractional flow reserve (FFR) assessment. Heart sound analysis was performed in all patients. A predefined acoustic CAD-score algorithm was evaluated; subsequently, we developed and validated an updated CAD-score algorithm that included both acoustic features and clinical risk factors. Low risk is indicated by a CAD-score value ≤20. Haemodynamically significant CAD assessed from FFR was present in 145 (10.0%) patients. In the entire cohort, the predefined CAD-score had a sensitivity of 63% and a specificity of 44%. In total, 50% had an updated CAD-score value ≤20. At this cut-off, sensitivity was 81% (95% CI 73% to 87%), specificity 53% (95% CI 50% to 56%), positive predictive value 16% (95% CI 13% to 18%) and negative predictive value 96% (95% CI 95% to 98%) for diagnosing haemodynamically significant CAD. Sound-based detection of CAD enables risk stratification superior to clinical risk scores. With a negative predictive value of 96%, this new acoustic rule-out system could potentially supplement clinical assessment to guide decisions on the need for further diagnostic investigation. ClinicalTrials.gov identifier NCT02264717; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Phase I Project: Fiber Optic Distributed Acoustic Sensing for Periodic Hydraulic Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Matthew

    The extraction of heat from hot rock requires circulation of fluid through fracture networks. Because the geometry and connectivity of these fractures determines the efficiency of fluid circulation, many tools are used to characterize fractures before and after development of the reservoir. Under this project, a new tool was developed that allows hydraulic connectivity between geothermal boreholes to be identified. Nanostrain in rock fractures is measured using fiber optic distributed acoustic sensing (DAS). This strain is measured in one borehole in response to periodic pressure pulses induced in another borehole. The strain in the fractures represents hydraulic connectivity between wells.more » DAS is typically used at frequencies of Hz to kHz, but strain at mHz frequencies were measured for this project. The tool was demonstrated in the laboratory and in the field. In the laboratory, strain in fiber optic cables was measured in response to compression due to oscillating fluid pressure. DAS recorded strains as small as 10 picometer/m in response to 1 cm of water level change. At a fractured crystalline rock field site, strain was measured in boreholes. Fiber-optic cable was mechanically coupled borehole walls using pressured flexible liners. In one borehole 30 m from the oscillating pumping source, pressure and strain were measured simultaneously. The DAS system measured fracture displacement at frequencies of less than 1 mHz (18 min periods) and amplitudes of less than 1 nm, in response to fluid pressure changes of less 20 Pa (2 mm of water). The attenuation and phase shift of the monitored strain signal is indicative of the permeability and storage (compliance) of the fracture network that connects the two wells. The strain response as a function of oscillation frequency is characteristic of the hydraulic structure of the formation. This is the first application of DAS to the measurement of low frequency strain in boreholes. It has enormous potential for

  15. Pecos National Historic Park : acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2013-03-01

    During the summer of 2010 (August September), the Volpe Center collected baseline acoustical data at Pecos National Historical Park (PECO) at four sites deployed for approximately 30 days each. The baseline data collected during this period will ...

  16. Wright Brothers National Memorial : acoustical monitoring 2011

    DOT National Transportation Integrated Search

    2014-11-01

    During the winter of 2011(September - November) baseline acoustical data were collected at Wright Brothers National Memorial (WRBR) at two sites deployed for approximately 30 days each. The baseline data collected during these periods will help park ...

  17. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  18. A surface impedance-based three-channel acoustic metasurface retroreflector

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Díaz-Rubio, Ana; Li, Junfei; Cummer, Steven A.

    2018-04-01

    We propose the design and measurement of an acoustic metasurface retroreflector that works at three discrete incident angles. An impedance model is developed such that for acoustic waves impinging at -60°, the reflected wave is defined by the surface impedance of the metasurface, which is realized by a periodic grating. At 0° and 60°, the retroreflection condition can be fulfilled by the diffraction of the surface. The thickness of the metasurface is about half of the operating wavelength and the retroreflector functions without parasitic diffraction associated with conventional gradient-index metasurfaces. Such highly efficient and compact retroreflectors open up possibilities in metamaterial-based acoustic sensing and communications.

  19. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  20. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Yang; Wu, Ying; Zhang, Xiao-Liu; Ni, Xu; Chen, Ze-Guo; Lu, Ming-Hui; Chen, Yan-Feng

    2013-10-01

    We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  1. Nonlinear acoustic detection of weathered, low compliance landmines

    NASA Astrophysics Data System (ADS)

    Sabatier, James M.; Alberts, W. C. Kirkpatrick; Korman, Murray S.

    2005-09-01

    Two potential impediments to acoustic landmine detection are soil weathering processes and low compliance landmines. To bury landmines, the soil within a mine diameter is removed and replaced such that bulk density, compression, and shear strength all decrease, leaving an acoustic scar detectable with the linear acoustic measurement technique. After a few soil wetting and drying cycles, this contrast is reduced. Linear acoustic mine detection measurements were made on a low impedance contrast landmine before the first rainfall on several occasions over the subsequent 5 years. During this period of time, both the spatial and frequency resolution had to be increased to maintain an on/off target velocity ratio that allowed detection. In some cases, the landmine remains undetectable. To address this, two-tone nonlinear acoustic measurements have been made on these landmines. When the landmine is detectable with linear acoustics, two tones are broadcast at the frequency where the on/off target velocity ratio is the largest. For the cases when the landmine is undetectable, a two-tone sweep is performed and the operator observes the real-time velocity FFT, noting nonlinear sidebands. Next, two-tone tests are conducted at these sidebands to determine nonlinear velocity profiles. [Work supported by U.S. Army RDECOM, NVESD.

  2. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, John F.; Ng, Lawrence C.

    1998-01-01

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching.

  3. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, J.F.; Ng, L.C.

    1998-03-17

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.

  4. Fort Davis National Historic Site : acoustical monitoring

    DOT National Transportation Integrated Search

    2013-06-01

    During the summer of 2010 (September - October 2010), the Volpe Center collected baseline acoustical data at Fort Davis National Historic Site (FODA)at two sites deployed for approximately 30 days each. The baseline data collected during this period ...

  5. Phase-Locked Loop for Precisely Timed Acoustic Stimulation during Sleep

    PubMed Central

    Santostasi, Giovanni; Malkani, Roneil; Riedner, Brady; Bellesi, Michele; Tononi, Giulio; Paller, Ken A.; Zee, Phyllis C.

    2016-01-01

    Background A Brain-Computer Interface could potentially enhance the various benefits of sleep. New Method We describe a strategy for enhancing slow-wave sleep (SWS) by stimulating the sleeping brain with periodic acoustic stimuli that produce resonance in the form of enhanced slow-wave activity in the electroencephalogram (EEG). The system delivers each acoustic stimulus at a particular phase of an electrophysiological rhythm using a Phase-Locked Loop (PLL). Results The PLL is computationally economical and well suited to follow and predict the temporal behavior of the EEG during slow-wave sleep. Comparison with Existing Methods Acoustic stimulation methods may be able to enhance SWS without the risks inherent in electrical stimulation or pharmacological methods. The PLL method differs from other acoustic stimulation methods that are based on detecting a single slow wave rather than modeling slow-wave activity over an extended period of time. Conclusions By providing real-time estimates of the phase of ongoing EEG oscillations, the PLL can rapidly adjust to physiological changes, thus opening up new possibilities to study brain dynamics during sleep. Future application of these methods hold promise for enhancing sleep quality and associated daytime behavior and improving physiologic function. PMID:26617321

  6. Predicting the cosmological constant with the scale-factor cutoff measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Simone, Andrea; Guth, Alan H.; Salem, Michael P.

    2008-09-15

    It is well known that anthropic selection from a landscape with a flat prior distribution of cosmological constant {lambda} gives a reasonable fit to observation. However, a realistic model of the multiverse has a physical volume that diverges with time, and the predicted distribution of {lambda} depends on how the spacetime volume is regulated. A very promising method of regulation uses a scale-factor cutoff, which avoids a number of serious problems that arise in other approaches. In particular, the scale-factor cutoff avoids the 'youngness problem' (high probability of living in a much younger universe) and the 'Q and G catastrophes'more » (high probability for the primordial density contrast Q and gravitational constant G to have extremely large or small values). We apply the scale-factor cutoff measure to the probability distribution of {lambda}, considering both positive and negative values. The results are in good agreement with observation. In particular, the scale-factor cutoff strongly suppresses the probability for values of {lambda} that are more than about 10 times the observed value. We also discuss qualitatively the prediction for the density parameter {omega}, indicating that with this measure there is a possibility of detectable negative curvature.« less

  7. Ionospheric response to infrasonic-acoustic waves generated by natural hazard events

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.

    2015-09-01

    Recent measurements of GPS-derived total electron content (TEC) reveal acoustic wave periods of ˜1-4 min in the F region ionosphere following natural hazard events, such as earthquakes, severe weather, and volcanoes. Here we simulate the ionospheric responses to infrasonic-acoustic waves, generated by vertical accelerations at the Earth's surface or within the lower atmosphere, using a compressible atmospheric dynamics model to perturb a multifluid ionospheric model. Response dependencies on wave source geometry and spectrum are investigated at middle, low, and equatorial latitudes. Results suggest constraints on wave amplitudes that are consistent with observations and that provide insight on the geographical variability of TEC signatures and their dependence on the geometry of wave velocity field perturbations relative to the ambient geomagnetic field. Asymmetries of responses poleward and equatorward from the wave sources indicate that electron perturbations are enhanced on the equatorward side while field aligned currents are driven principally on the poleward side, due to alignments of acoustic wave velocities parallel and perpendicular to field lines, respectively. Acoustic-wave-driven TEC perturbations are shown to have periods of ˜3-4 min, which are consistent with the fraction of the spectrum that remains following strong dissipation throughout the thermosphere. Furthermore, thermospheric acoustic waves couple with ion sound waves throughout the F region and topside ionosphere, driving plasma disturbances with similar periods and faster phase speeds. The associated magnetic perturbations of the simulated waves are calculated to be observable and may provide new observational insight in addition to that provided by GPS TEC measurements.

  8. Nondestructive Evaluation of One-Dimensional Periodic Structures by Transmission of Laser-Excited Wide-Band Acoustic Pulses

    NASA Astrophysics Data System (ADS)

    Karabutov, A. A.; Kozhushko, V. V.; Pelivanov, I. M.; Podymova, N. B.

    2001-03-01

    The propagation of ultrasound in a one-dimensional model and actual periodic structures (PSs) is studied experimentally by the method of optoacoustic spectroscopy based on the laser thermooptical excitation and wide-band piezodetection of short acoustic pulses. It is shown that the ultrasound transmission spectrum of a PS has stop and pass bands, and the greater the number of layers in the PSs, the deeper the stop bands. The case where the thickness, density, and ultrasound velocity of one or several layers in the PS are modified is studied in detail. In this case, a narrow local maximum of ultrasound transmission appears in the stop band, whose location depends considerably on the position of the "defective" layer in the PS. The experimental data obtained coincide well with the theoretical calculation. The nondestructive evaluation of actual PSs consisting of two epoxy-glued identical aluminum plates is carried out by the optoacoustic method. Such materials are widely used in aircraft industry. It is shown that the ultrasound transmission spectrum for these materials depends considerably on the thickness of the epoxy-glue layer.

  9. 10 CFR 26.133 - Cutoff levels for drugs and drug metabolites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Cutoff levels for drugs and drug metabolites. 26.133 Section 26.133 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.133 Cutoff levels for drugs and drug metabolites. Subject to the provisions of § 26.31(d)(3)(iii...

  10. 10 CFR 26.133 - Cutoff levels for drugs and drug metabolites.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Cutoff levels for drugs and drug metabolites. 26.133 Section 26.133 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.133 Cutoff levels for drugs and drug metabolites. Subject to the provisions of § 26.31(d)(3)(iii...

  11. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).

    PubMed

    Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian

    2017-10-11

    Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.

  12. Publications on acoustics research at the Langley Research Center during 1980-1986

    NASA Technical Reports Server (NTRS)

    Sutherland, Linda W. (Compiler)

    1988-01-01

    This report is a compilation of publications from acoustics research at the Langley Research Center. The reports are listed in chronological order and summarize the written output of the Acoustics Division and its predecessor, The Acoustics and Noise Reduction Division, for the period 1980 through 1986. The information assembled has been extracted from the 1980 through 1986 issues for the Technical Memorandum entitled, Scientific and Technical Information Output of the Langley Research Center for the Calendar Year.

  13. Walnut Canyon National Monument : Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-06-01

    During the summer of 2010 (July - August), the Volpe Center collected baseline acoustical data at Walnut Canyon National Monument (WACA) at a site deployed for approximately 30 days. The baseline data collected during this period will help park manag...

  14. Big Bend National Park: Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-06-01

    During the summer of 2010 (September October 2010), the Volpe Center collected baseline acoustical data at Big Bend National Park (BIBE) at four sites deployed for approximately 30 days each. The baseline data collected during this period will he...

  15. Montezuma Castle National Monument : acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2013-03-01

    During the summer of 2010 (July-August), the Volpe Center collected baseline acoustical data at Montezuma Castle National Monument (MOCA) at two sites deployed for approximately 30 days each. The baseline data collected during this period will help p...

  16. Analyzing the acoustic beat with mobile devices

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik; Hirth, Michael

    2014-04-01

    In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency Δf. The resulting auditory sensation is a tone with a volume that varies periodically. Acoustic beats can be perceived repeatedly in day-to-day life and have some interesting applications. For example, string instruments are still tuned with the help of an acoustic beat, even with modern technology. If a reference tone (e.g., 440 Hz) and, for example, a slightly out-of-tune violin string produce a tone simultaneously, a beat can be perceived. The more similar the frequencies, the longer the duration of the beat. In the extreme case, when the frequencies are identical, a beat no longer arises. The string is therefore correctly tuned. Using the Oscilloscope app,4 it is possible to capture and save acoustic signals of this kind and determine the beat frequency fS of the signal, which represents the difference in frequency Δf of the two overlapping tones (for Android smartphones, the app OsciPrime Oscilloscope can be used).

  17. The effect of a periodic absorptive strip arrangement on an interior sound field in a room.

    PubMed

    Park, Joo-Bae; Grosh, Karl; Kim, Yang-Hann

    2005-02-01

    In this paper we study the effect of periodically arranged sound absorptive strips on the mean acoustic potential energy density distribution of a room. The strips are assumed to be attached on the room's surface of interest. In order to determine their effect, the mean acoustic potential energy density variation is evaluated as the function of a ratio of the strip's arrangement period to wavelength. The evaluation demonstrates that the mean acoustic potential energy density tends to converge. In addition, a comparison with a case in which absorptive materials completely cover the selected absorptive plane shows that a periodic arrangement that uses only half of the absorptive material can be more efficient than a total covering, unless the frequency of interest does not coincide with the room's resonant frequencies. Consequently, the results prove that the ratio of the arrangement period to the wavelength plays an important role in the effectiveness of a periodic absorptive strip arrangement to minimize a room's mean acoustic potential energy density.

  18. Effects of acoustic deterrents on foraging bats

    USGS Publications Warehouse

    Johnson, Joshua B.; Ford, W. Mark; Rodrigue, Jane L.; Edwards, John W.

    2012-01-01

    Significant bat mortality events associated with wind energy expansion, particularly in the Appalachians, have highlighted the need for development of possible mitigation practices to reduce or prevent strike mortality. Other than increasing turbine cut-in speed, acoustic deterrents probably hold the greatest promise for reducing bat mortality. However, acoustic deterrent effectiveness and practicality has not been experimentally examined and is limited to site-specific case studies. Accordingly, we used a crossover experimental design with prior control period to show that bat activity was reduced 17.1 percent by the deployment of ultrasonic deterrents placed around gauged watershed weir ponds on the Fernow Experimental Forest in West Virginia. We caution that while our results should not be extrapolated to the scope of a typical wind energy production facility, the results warrant further research on the use of acoustic deterrents to reduce bat fatalities.

  19. Raised BMI cut-off for overweight in Greenland Inuit--a review.

    PubMed

    Andersen, Stig; Fleischer Rex, Karsten; Noahsen, Paneeraq; Sørensen, Hans Christian Florian; Mulvad, Gert; Laurberg, Peter

    2013-01-01

    Obesity is associated with increased morbidity and premature death. Obesity rates have increased worldwide and the WHO recommends monitoring. A steep rise in body mass index (BMI), a measure of adiposity, was detected in Greenland from 1963 to 1998. Interestingly, the BMI starting point was in the overweight range. This is not conceivable in a disease-free, physically active, pre-western hunter population. This led us to reconsider the cut-off point for overweight among Inuit in Greenland. We found 3 different approaches to defining the cut-off point of high BMI in Inuit. First, the contribution to the height by the torso compared to the legs is relatively high. This causes relatively more kilograms per centimetre of height that increases the BMI by approximately 10% compared to Caucasian whites. Second, defining the cut-off by the upper 90-percentile of BMI from height and weight in healthy young Inuit surveyed in 1963 estimated the cut-off point to be around 10% higher compared to Caucasians. Third, if similar LDL-cholesterol and triglycerides are assumed for a certain BMI in Caucasians, the corresponding BMI in Inuit in both Greenland and Canada is around 10% higher. However, genetic admixture of Greenland Inuit and Caucasian Danes will influence this difference and hamper a clear distinction with time. Defining overweight according to the WHO cut-off of a BMI above 25 kg/m(2) in Greenland Inuit may overestimate the number of individuals with elevated BMI.

  20. Changes In the Pickup Ion Cutoff Under Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Bower, J.; Moebius, E.; Taut, A.; Berger, L.; Drews, C.; Lee, M. A.; Farrugia, C. J.

    2017-12-01

    We present the first systematic analysis to determine pickup ion (PUI) cutoff speed variations,both during compression regions, identified by their structure, and during times of highly variablesolar wind (SW) speed or magnetic field strength. This study is motivated by the attempt toremove or correct these effects on the determination of the longitude of the interstellar neutralgas flow from the flow pattern related variation of the PUI cutoff with ecliptic longitude. At thesame time, this study sheds light on the physical mechanisms that lead to energy transferbetween the SW and the embedded PUI population. Using 2007-2014 STEREO A PLASTICobservations we identify compression regions in the solar wind and analyze the PUI velocitydistribution function (VDF). We developed a routine to identify stream interaction regions andCIRs, by identifying the stream interface and the successive velocity increase in the solar windspeed and density. Characterizing these individual compression events and combining them in asuperposed epoch analysis allows us to analyze the PUI population in similar conditions andfind the local cutoff shift with adequate statistics. The result of this method yields cutoff shifts forcompression regions with large solar wind speed gradients. Additionally, through sorting theentire set of PUI VDFs at high time resolution we obtain a noticeable correlation of the cutoffshift with gradients in the SW speed and interplanetary magnetic field strength. We willdiscuss implications for the understanding of the PUI VDF evolution and the PUI cutoff analysisof the interstellar gas flow.

  1. Cochlear microphonic responses to acoustic clicks in guinea pig and their relation with microphonic responses to pure tones.

    PubMed

    Echeverría, E L; Robles, L W

    1983-02-01

    Cochlear microphonic (CM) responses to acoustic transient stimuli were studied at the three more basal turns of the cochlea in the guinea pig. The responses to rarefaction and condensation pressure pulses of less than 100-mus duration were recorded using the differential electrode technique. In some animals the CM response to pure tones was recorded at the same position at which the transient response was obtained. The transient responses recorded at the three turns of the cochlea displayed a damped oscillation at a frequency consistent with the values of cutoff frequency already known for the electrode positions. Some of the responses were significantly less damped than click responses previously reported. There was a good correlation between the cutoff frequency in the frequency response curve and the frequency of oscillation in the transient response for recordings obtained at the same position in the cochlea. A nonlinear effect was observed for changes in stimulus intensity. There was a less than proportional decrease in amplitude of the initial part of the damped oscillation for a decrease of the stimulus intensity, while the late part of the response behaved almost linearly. This nonlinearity observed in the CM transient response could not be explained by a nonlinear characteristic of the sort reported in the basilar membrane of the squirrel monkey by Robles et al. [J. Acoust. Soc. Am. 59, 926-939 (1976)]; rather it seems to be a saturation nonlinearity similar to the one known for sinusoidal stimulation.

  2. Low-Cutoff, High-Pass Digital Filtering of Neural Signals

    NASA Technical Reports Server (NTRS)

    Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard

    2004-01-01

    The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).

  3. High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory, J.; Soibel, Alexander; Bandara, Sumith V.; Gunapala, Sarath D.

    2011-01-01

    A mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector (HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths. The HOT-BIRD can be built with the quaternary alloy GaInAsSb as the absorber, GaAlSbAs as the barrier, on a lattice-matching GaSb substrate. The cutoff wavelength of the GaInAsSb can be tailored by adjusting the alloy composition. To build a HOT-BIRD requires a matching pair of absorber and barrier materials with the following properties: (1) their valence band edges must be approximately the same to allow unimpeded hole flow, while their conduction band edges should have a large difference to form an electron barrier; and (2) the absorber and the barrier must be respectively lattice-matched and closely lattice-matched to the substrate to ensure high material quality and low defect density. To make a HOT-BIRD with cutoff wavelength shorter than 4 microns, a GaInAsSb quaternary alloy was used as the absorber, and a matching GaAlSbAs quaternary alloy as the barrier. By changing the alloy composition, the band gap of the quaternary alloy absorber can be continuously adjusted with cutoff wavelength ranging from 4 microns down to the short wavelength infrared (SWIR). By carefully choosing the alloy composition of the barrier, a HOT-BIRD structure can be formed. With this method, a HOT-BIRD can be made with continuously tailorable cutoff wavelengths from 4 microns down to the SWIR. The HOT-BIRD detector technology is suitable for making very-large-format MWIR/SWIR focal plane arrays that can be operated by passive cooling from low Earth orbit. High-operating temperature

  4. Variations in the short wavelength cut-off of the solar UV spectra.

    PubMed

    Parisi, A V; Turner, J

    2006-03-01

    Cloud and solar zenith angle (SZA) are two major factors that influence the magnitude of the biologically damaging UV (UVBD) irradiances for humans. However, the effect on the short wavelength cut-off due to SZA and due to clouds has not been investigated for biologically damaging UV for cataracts. This research aims to investigate the influence of cloud and SZA on the short wavelength cut-off of the spectral UVBD for cataracts. The spectral biologically damaging UV for cataracts on a horizontal plane was calculated by weighting the spectral UV measured with a spectroradiometer with the action spectrum for the induction of cataracts in a porcine lens. The UV spectra were obtained on an unshaded plane at a latitude of 29.5 degrees S. The cut-off wavelength (lambdac) was defined as the wavelength at which the biologically damaging spectral irradiance was 0.1% of the maximum biologically damaging irradiance for that scan. For the all sky conditions, the short wavelength cut-off ranged by 12 nm for the SZA range of 5 to 80 degrees and the maximum in the spectral UVBD ranged by 15 nm. Similarly, for the cloud free cases, the short wavelength cut-off ranged by 9 nm for the same SZA range. Although, cloud has a large influence on the magnitude of the biologically damaging UV for cataracts, the influence of cloud on the short wavelength cut-off for the biologically damaging UV for cataracts is less than the influence of the solar zenith angle.

  5. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.

    PubMed

    Rader, Tobias; Adel, Youssef; Fastl, Hugo; Baumann, Uwe

    2015-01-01

    The aim of this study is to simulate speech perception with combined electric-acoustic stimulation (EAS), verify the advantage of combined stimulation in normal-hearing (NH) subjects, and then compare it with cochlear implant (CI) and EAS user results from the authors' previous study. Furthermore, an automatic speech recognition (ASR) system was built to examine the impact of low-frequency information and is proposed as an applied model to study different hypotheses of the combined-stimulation advantage. Signal-detection-theory (SDT) models were applied to assess predictions of subject performance without the need to assume any synergistic effects. Speech perception was tested using a closed-set matrix test (Oldenburg sentence test), and its speech material was processed to simulate CI and EAS hearing. A total of 43 NH subjects and a customized ASR system were tested. CI hearing was simulated by an aurally adequate signal spectrum analysis and representation, the part-tone-time-pattern, which was vocoded at 12 center frequencies according to the MED-EL DUET speech processor. Residual acoustic hearing was simulated by low-pass (LP)-filtered speech with cutoff frequencies 200 and 500 Hz for NH subjects and in the range from 100 to 500 Hz for the ASR system. Speech reception thresholds were determined in amplitude-modulated noise and in pseudocontinuous noise. Previously proposed SDT models were lastly applied to predict NH subject performance with EAS simulations. NH subjects tested with EAS simulations demonstrated the combined-stimulation advantage. Increasing the LP cutoff frequency from 200 to 500 Hz significantly improved speech reception thresholds in both noise conditions. In continuous noise, CI and EAS users showed generally better performance than NH subjects tested with simulations. In modulated noise, performance was comparable except for the EAS at cutoff frequency 500 Hz where NH subject performance was superior. The ASR system showed similar behavior

  6. A new D-dimer cutoff in bedridden hospitalized elderly patients.

    PubMed

    Granziera, Serena; Rechichi, Alfonsina; De Rui, Marina; De Carlo, Paola; Bertozzo, Giulia; Marigo, Lucia; Nante, Giovanni; Manzato, Enzo

    2013-03-01

    Asymptomatic deep vein thrombosis (DVT) and pulmonary embolism are leading causes of morbidity following the hospitalization of elderly people. The diagnosis of DVT is supported by the D-dimer laboratory assay. The concentration of D-dimer increases in patients with DVT, but may be high in other conditions too (i.e. cancer, infections and inflammation). Old age coincides with a physiological increase in D-dimer values, and that is why D-dimer assay in the elderly is characteristically highly sensitive but scarcely specific. The aim of our study was to explore the reliability of different D-dimer cutoffs for the diagnosis of asymptomatic DVT in a population of bedridden hospitalized elderly patients. We studied 199 patients who were a mean 86.3 ± 6.7 years old. All participants underwent lower limb Doppler ultrasound (DUS) and D-dimer venous blood sampling on admission. In our cohort, the usual cutoff proved highly sensitive (100%), but its specificity was very poor (20.1%). To find a higher cutoff that could improve the method's specificity, we analyzed our data using a receiver operating characteristic curve analysis. The resulting D-dimer cutoff of 492 μg/l enabled us to retain the same sensitivity while improving the test's specificity to 39.1%, with a consequent improvement in its positive predictive value and accuracy. In addition to improving the method's reliability, this result may be helpful in clinical practice, in both medical wards and nursing homes. By adopting a cutoff of 492 μg/l, clinicians could significantly increase the proportion of older patients in whom DVT can be safely ruled out, reducing referrals for DUS and administration of heparin, with consequent clinical, practical and economic advantages.

  7. Propagation of thickness shear waves in a periodically corrugated quartz crystal plate and its application exploration in acoustic wave filters.

    PubMed

    Li, Peng; Cheng, Li

    2017-05-01

    The propagation of thickness shear waves in a periodically corrugated quartz crystal plate is investigated in the present paper using a power series expansion technique. In the proposed simulation model, an equivalent continuity of shear stress moment is introduced as an approximation to handle sectional interfaces with abrupt thickness changes. The Bloch theory is applied to simulate the band structures for three different thickness variation patterns. It is shown that the power series expansion method exhibits good convergence and accuracy, in agreement with results by finite element method (FEM). A broad stop band can be obtained in the power transmission spectra owing to the trapped thickness shear modes excited by the thickness variation, whose physical mechanism is totally different from the well-known Bragg scattering effect and is insensitive to the structural periodicity. Based on the observed energy trapping phenomenon, an acoustic wave filter is proposed in a quartz plate with sectional decreasing thickness, which inhibits wave propagation in different regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The CV period minimum

    NASA Astrophysics Data System (ADS)

    Kolb, Ulrich; Baraffe, Isabelle

    Using improved, up-to-date stellar input physics tested against observations of low-mass stars and brown dwarfs we calculate the secular evolution of low-donor-mass CVs, including those which form with a brown dwarf donor star. Our models confirm the mismatch between the calculated minimum period (plus or minus in ~= 70 min) and the observed short-period cut-off (~= 80 min) in the CV period histogram. Theoretical period distributions synthesized from our model sequences always show an accumulation of systems at the minimum period, a feature absent in the observed distribution. We suggest that non-magnetic CVs become unobservable as they are effectively trapped in permanent quiescence before they reach plus or minus in, and that small-number statistics may hide the period spike for magnetic CVs. We calculate the minimum period for high mass transfer rate sequences and discuss the relevance of these for explaining the location of CV secondaries in the orbital-period-spectral-type diagram. We also show that a recently suggested revised mass-radius relation for low-mass main-sequence stars cannot explain the CV period gap.

  9. Emission Enhancement of Sound Emitters using an Acoustic Metamaterial Cavity

    PubMed Central

    Song, Kyungjun; Lee, Seong-Hyun; Kim, Kiwon; Hur, Shin; Kim, Jedo

    2014-01-01

    The emission enhancement of sound without electronic components has wide applications in a variety of remote systems, especially when highly miniaturized (smaller than wavelength) structures can be used. The recent advent of acoustic metamaterials has made it possible to realize this. In this study, we propose, design, and demonstrate a new class of acoustic cavity using a double-walled metamaterial structure operating at an extremely low frequency. Periodic zigzag elements which exhibit Fabry-Perot resonant behavior below the phononic band-gap are used to yield strong sound localization within the subwavelength gap, thus providing highly effective emission enhancement. We show, both theoretically and experimentally, 10 dB sound emission enhancement near 1060 Hz that corresponds to a wavelength approximately 30 times that of the periodicity. We also provide a general guideline for the independent tuning of the quality factor and effective volume of acoustic metamaterials. This approach shows the flexibility of our design in the efficient control of the enhancement rate. PMID:24584552

  10. A tunable acoustic metamaterial with double-negativity driven by electromagnets

    PubMed Central

    Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Li, Xiao-juan; Zhang, Hui; Ding, Jin

    2016-01-01

    With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings. PMID:27443196

  11. Acoustic Resonance and Vortex Shedding from Tube Banks of Boiler Plant

    NASA Astrophysics Data System (ADS)

    Hamakawa, Hiromitsu; Matsue, Hiroto; Nishida, Eiichi; Fukano, Tohru

    This paper focuses on the relationship between acoustic resonance and vortex shedding from the tube banks of a boiler plant. We have built a model similar to the actual boiler plant to clarify the characteristics of acoustic resonance phenomena and vortex shedding. The model used in-line tube banks with a small tube pitch ratio. We examined the relationship between the acoustic resonance of the actual plant and that of the model, and measured the sound pressure level, acoustic pressure mode shape, spectrum of velocity fluctuation, and gap velocity. Gap velocity was defined as the mean velocity in the smallest gaps between two neighboring tubes in the transverse direction. As a result, the resonant frequencies and mode shapes of the acoustic resonances in the actual boiler plant agreed well with those in the similar model. We found many peak frequencies in the sound pressure level spectrum when acoustic resonances occurred. The typical Strouhal numbers at the onset velocity of acoustic resonances were about 0.19, 0.26 and 0.52. Periodic velocity fluctuation caused by vortex shedding was observed inside the tube banks without acoustic resonance. The Strouhal number measured for vortex shedding was 0.15. Acoustic resonances of higher-order modes were generated in this plant.

  12. A field test of cut-off importance sampling for bole volume

    Treesearch

    Jeffrey H. Gove; Harry T. Valentine; Michael J. Holmes

    2000-01-01

    Cut-off importance sampling has recently been introduced as a technique for estimating bole volume to some point below the tree tip, termed the cut-off point. A field test of this technique was conducted on a small population of eastern white pine trees using dendrometry as the standard for volume estimation. Results showed that the differences in volume estimates...

  13. Inappropriate Use of Homeostasis Model Assessment Cutoff Values for Diagnosing Insulin Resistance in Pediatric Studies.

    PubMed

    Fox, Carrie; Bernardino, Lourdes; Cochran, Jill; Essig, Mary; Bridges, Kristie Grove

    2017-11-01

    Assessing pediatric patients for insulin resistance is one way to identify those who are at a high risk of developing type 2 diabetes mellitus. The homoeostasis model assessment (HOMA) is a measure of insulin resistance based on fasting blood glucose and insulin levels. Although this measure is widely used in research, cutoff values for pediatric populations have not been established. To assess the validity of HOMA cutoff values used in pediatric studies published in peer-reviewed journals. Studies published from January 2010 to December 2015 were identified through MEDLINE. Initial screening of abstracts was done to select studies that were conducted in pediatric populations and used HOMA to assess insulin resistance. Subsequent full-text review narrowed the list to only those studies that used a specific HOMA score to diagnose insulin resistance. Each study was classified as using a predetermined fixed HOMA cutoff value or a cutoff that was a percentile specific to that population. For studies that used a predetermined cutoff value, the references cited to provide evidence in support of that cutoff were evaluated. In the 298 articles analyzed, 51 different HOMA cutoff values were used to classify patients as having insulin resistance. Two hundred fifty-five studies (85.6%) used a predetermined fixed cutoff value, but only 72 (28.2%) of those studies provided a reference that supported its use. One hundred ten studies (43%) that used a fixed cutoff either cited a study that did not mention HOMA or provided no reference at all. Tracing of citation history indicated that the most commonly used cutoff values were ultimately based on studies that did not validate their use for defining insulin resistance. Little evidence exists to support HOMA cutoff values commonly used to define insulin resistance in pediatric studies. These findings highlight the importance of validating study design elements when training medical students and novice investigators. Using available

  14. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J.F.; Ng, L.C.

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used formore » purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.« less

  15. Using Acoustic Structure Quantification During B-Mode Sonography for Evaluation of Hashimoto Thyroiditis.

    PubMed

    Rhee, Sun Jung; Hong, Hyun Sook; Kim, Chul-Hee; Lee, Eun Hye; Cha, Jang Gyu; Jeong, Sun Hye

    2015-12-01

    This study aimed to evaluate the usefulness of Acoustic Structure Quantification (ASQ; Toshiba Medical Systems Corporation, Nasushiobara, Japan) values in the diagnosis of Hashimoto thyroiditis using B-mode sonography and to identify a cutoff ASQ level that differentiates Hashimoto thyroiditis from normal thyroid tissue. A total of 186 thyroid lobes with Hashimoto thyroiditis and normal thyroid glands underwent sonography with ASQ imaging. The quantitative results were reported in an echo amplitude analysis (Cm(2)) histogram with average, mode, ratio, standard deviation, blue mode, and blue average values. Receiver operating characteristic curve analysis was performed to assess the diagnostic ability of the ASQ values in differentiating Hashimoto thyroiditis from normal thyroid tissue. Intraclass correlation coefficients of the ASQ values were obtained between 2 observers. Of the 186 thyroid lobes, 103 (55%) had Hashimoto thyroiditis, and 83 (45%) were normal. There was a significant difference between the ASQ values of Hashimoto thyroiditis glands and those of normal glands (P < .001). The ASQ values in patients with Hashimoto thyroiditis were significantly greater than those in patients with normal thyroid glands. The areas under the receiver operating characteristic curves for the ratio, blue average, average, blue mode, mode, and standard deviation were: 0.936, 0.902, 0.893, 0.855, 0.846, and 0.842, respectively. The ratio cutoff value of 0.27 offered the best diagnostic performance, with sensitivity of 87.38% and specificity of 95.18%. The intraclass correlation coefficients ranged from 0.86 to 0.94, which indicated substantial agreement between the observers. Acoustic Structure Quantification is a useful and promising sonographic method for diagnosing Hashimoto thyroiditis. Not only could it be a helpful tool for quantifying thyroid echogenicity, but it also would be useful for diagnosis of Hashimoto thyroiditis. © 2015 by the American Institute of

  16. Critical period for acoustic preference in mice.

    PubMed

    Yang, Eun-Jin; Lin, Eric W; Hensch, Takao K

    2012-10-16

    Preference behaviors are often established during early life, but the underlying neural circuit mechanisms remain unknown. Adapting a unique nesting behavior assay, we confirmed a "critical period" for developing music preference in C57BL/6 mice. Early music exposure between postnatal days 15 and 24 reversed their innate bias for silent shelter, which typically could not be altered in adulthood. Instead, exposing adult mice treated acutely with valproic acid or carrying a targeted deletion of the Nogo receptor (NgR(-/-)) unmasked a strong plasticity of preference consistent with a reopening of the critical period as seen in other systems. Imaging of cFos expression revealed a prominent neuronal activation in response to the exposed music in the prelimbic and infralimbic medial prefrontal cortex only under conditions of open plasticity. Neither behavioral changes nor selective medial prefrontal cortex activation was observed in response to pure tone exposure, indicating a music-specific effect. Open-field center crossings were increased concomitant with shifts in music preference, suggesting a potential anxiolytic effect. Thus, music may offer both a unique window into the emotional state of mice and a potentially efficient assay for molecular "brakes" on critical period plasticity common to sensory and higher order brain areas.

  17. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., measurement accuracy, and cut-off. 53.53 Section 53.53 Protection of Environment ENVIRONMENTAL PROTECTION..., measurement accuracy, and cut-off. (a) Overview. This test procedure is designed to evaluate a candidate... measurement accuracy, coefficient of variability measurement accuracy, and the flow rate cut-off function. The...

  18. Martini straight: Boosting performance using a shorter cutoff and GPUs

    NASA Astrophysics Data System (ADS)

    de Jong, Djurre H.; Baoukina, Svetlana; Ingólfsson, Helgi I.; Marrink, Siewert J.

    2016-02-01

    In molecular dynamics simulations, sufficient sampling is of key importance and a continuous challenge in the field. The coarse grain Martini force field has been widely used to enhance sampling. In its original implementation, this force field applied a shifted Lennard-Jones potential for the non-bonded van der Waals interactions, to avoid problems related to a relatively short cutoff. Here we investigate the use of a straight cutoff Lennard-Jones potential with potential modifiers. Together with a Verlet neighbor search algorithm, the modified potential allows the use of GPUs to accelerate the computations in Gromacs. We find that this alternative potential has little influence on most of the properties studied, including partitioning free energies, bulk liquid properties and bilayer properties. At the same time, energy conservation is kept within reasonable bounds. We conclude that the newly proposed straight cutoff approach is a viable alternative to the standard shifted potentials used in Martini, offering significant speedup even in the absence of GPUs.

  19. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  20. Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak

    NASA Astrophysics Data System (ADS)

    Bi, Yafeng; Jia, Han; Sun, Zhaoyong; Yang, Yuzhen; Zhao, Han; Yang, Jun

    2018-05-01

    We present the design, architecture, and detailed performance of a three-dimensional (3D) underwater acoustic carpet cloak (UACC). The proposed system of the 3D UACC is an octahedral pyramid, which is composed of periodical steel strips. This underwater acoustic device, placed over the target to hide, is able to manipulate the scattered wavefront to mimic a reflecting plane. The effectiveness of the prototype is experimentally demonstrated in an anechoic tank. The measured acoustic pressure distributions show that the 3D UACC can work in all directions in a wide frequency range. This experimental verification of 3D device paves the way for guidelines on future practical applications.

  1. Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

    NASA Astrophysics Data System (ADS)

    El-Hanbaly, A. M.; El-Shewy, E. K.; Elgarayhi, A.; Kassem, A. I.

    2015-11-01

    The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

  2. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  3. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  4. SAMPEX Measurements of Geomagnetic-Cutoff Variations During the 4/21/02 Solar Energetic Particle Event

    NASA Astrophysics Data System (ADS)

    Labrador, A.; Leske, R.; Kanekal, S.; Klecker, B.; Looper, M.; Mazur, J.; Mewaldt, R.

    2002-12-01

    During large solar energetic particle (SEP) events the entry of solar and interplanetary energetic particles into the upper atmosphere is controlled by the geomagnetic cutoff. We define the cutoff latitude (Λ c) for a given rigidity particle to be effectively the minimum invariant latitude down to which particles can reach the upper atmosphere. The instruments on the polar-orbiting SAMPEX spacecraft have been used to measure geomagnetic cutoffs during a large sample of SEP events from solar cycle 23. During those events in which there is an associated geomagnetic storm, there are often large cutoff variations of as much as 5° to 10° in invariant latitude over the course of the event. This paper will combine measurements from the HILT, MAST, and PET instruments on SAMPEX to provide a comprehensive view of geomagnetic cutoff variations during the large SEP event of 4/21/02. We find that during the first two days of the event the cutoff latitude for ~30 MeV protons was at typical quiet-time levels. On April 23, following the arrival of a strong interplanetary shock, there was a sudden drop in the cutoff that lasted ~12 hours, with sizable local-time differences. During the next two days the cutoff steadily increased, giving a total variation of ~5° over the five days of the event. We combine these measurements of cutoff variations with measurements of the composition and energy spectra in the 4/21/02 event in order to estimate changes in the area of the polar caps over which particles of a given rigidity had access to the upper atmosphere.

  5. Microscopic study of spin cut-off factors of nuclear level densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholami, M.; Kildir, M.; Behkami, A. N.

    Level densities and spin cut-off factors have been investigated within the microscopic approach based on the BCS Hamiltonian. In particular, the spin cut-off parameters have been calculated at neutron binding energies over a large range of nuclear mass using the BCS theory. The spin cut-off parameters {sigma}{sup 2}(E) have also been obtained from the Gilbert and Cameron expression and from rigid body calculations. The results were compared with their corresponding macroscopic values. It was found that the values of {sigma}{sup 2}(E) did not increase smoothly with A as expected based on macroscopic theory. Instead, the values of {sigma}{sup 2}(E) showmore » structure reflecting the angular momentum of the shell model orbitals near the Fermi energy.« less

  6. Calculating broad neutron resonances in a cut-off Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Baran, Á.; Noszály, Cs.; Salamon, P.; Vertse, T.

    2015-07-01

    In a cut-off Woods-Saxon (CWS) potential with realistic depth S -matrix poles being far from the imaginary wave number axis form a sequence where the distances of the consecutive resonances are inversely proportional with the cut-off radius value, which is an unphysical parameter. Other poles lying closer to the imaginary wave number axis might have trajectories with irregular shapes as the depth of the potential increases. Poles being close repel each other, and their repulsion is responsible for the changes of the directions of the corresponding trajectories. The repulsion might cause that certain resonances become antibound and later resonances again when they collide on the imaginary axis. The interaction is extremely sensitive to the cut-off radius value, which is an apparent handicap of the CWS potential.

  7. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-07

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  8. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity.

    PubMed

    Cole, T J; Lobstein, T

    2012-08-01

    The international (International Obesity Task Force; IOTF) body mass index (BMI) cut-offs are widely used to assess the prevalence of child overweight, obesity and thinness. Based on data from six countries fitted by the LMS method, they link BMI values at 18 years (16, 17, 18.5, 25 and 30 kg m(-2)) to child centiles, which are averaged across the countries. Unlike other BMI references, e.g. the World Health Organization (WHO) standard, these cut-offs cannot be expressed as centiles (e.g. 85th). To address this, we averaged the previously unpublished L, M and S curves for the six countries, and used them to derive new cut-offs defined in terms of the centiles at 18 years corresponding to each BMI value. These new cut-offs were compared with the originals, and with the WHO standard and reference, by measuring their prevalence rates based on US and Chinese data. The new cut-offs were virtually identical to the originals, giving prevalence rates differing by < 0.2% on average. The discrepancies were smaller for overweight and obesity than for thinness. The international and WHO prevalences were systematically different before/after age 5. Defining the international cut-offs in terms of the underlying LMS curves has several benefits. New cut-offs are easy to derive (e.g. BMI 35 for morbid obesity), and they can be expressed as BMI centiles (e.g. boys obesity = 98.9th centile), allowing them to be compared with other BMI references. For WHO, median BMI is relatively low in early life and high at older ages, probably due to its method of construction. © 2012 The Authors. Pediatric Obesity © 2012 International Association for the Study of Obesity.

  9. Canadian global village reality: anthropometric surrogate cutoffs and metabolic abnormalities among Canadians of East Asian, South Asian, and European descent.

    PubMed

    He, Meizi; Li, E T S; Harris, Stewart; Huff, Murray W; Yau, Chun Y; Anderson, G Harvey

    2010-05-01

    To test the appropriateness of body mass index (BMI) and waist circumference (WC) cutoff points derived in largely white populations (ie, those of European descent) for detecting obesity-related metabolic abnormalities among East Asian and South Asian Canadians. Cross-sectional survey. Primary care and community settings in Ontario. Canadians of East Asian (n = 130), South Asian (n = 113), and European (n = 111) descent. Variables for metabolic syndromes, including BMI, WC, body fat percentage, blood pressure, lipid profile, and fasting blood glucose and insulin levels, were measured. Receiver operating characteristics curve analysis was used to generate BMI and WC cutoff points based on various criteria for metabolic syndromes. Adjusting for sex and age, East Asian Canadians had a significantly lower mean BMI (23.2 kg/m(2)) and mean WC (79.6 cm) than did those of South Asian (26.1 kg/m(2) and 90.3 cm) and European (26.5 kg/m(2) and 89.3 cm) descent (P < .05). The BMI cutoffs for an increased risk of metabolic abnormalities ranged from 23.1 to 24.4 kg/m(2) in East Asian Canadians; 26.6 to 26.8 kg/m(2) in South Asian Canadians; and 26.3 to 28.2 kg/m(2) in European Canadians. Waist circumference cutoffs for increased risk of metabolic abnormalities were relatively low in East Asian men (83.3 to 85.2 cm) and women (74.1 to 76.7 cm), compared with South Asian men (98.8 cm) and women (90.1 to 93.5 cm), as well as European men (91.6 to 95.2 cm) and women (82.8 to 88.3 cm). The BMI and WC cutoffs used for defining risk of metabolic abnormalities should be lowered for East Asian Canadians but not for South Asian Canadians. The World Health Organization ethnic-specific BMI and WC cutoffs should be used with caution, particularly with Asian migrants who have resided in Canada for a long period of time.

  10. Kings Mountain National Military Park : acoustical monitoring 2012

    DOT National Transportation Integrated Search

    2014-11-01

    During the winter of 2012(November-December) baseline acoustical data were collected at Kings Mountain National Military Park (KIMO)at two sites deployed for approximately 30 days each. The baseline data collected during these periods will help park ...

  11. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: I. Method and Terminology.

    PubMed

    Haller, Julian; Wilkens, Volker; Shaw, Adam

    2018-02-01

    A method to determine acoustic cavitation probabilities in tissue-mimicking materials (TMMs) is described that uses a high-intensity focused ultrasound (HIFU) transducer for both inducing and detecting the acoustic cavitation events. The method was evaluated by studying acoustic cavitation probabilities in agar-based TMMs with and without scatterers and for different sonication modes like continuous wave, single pulses (microseconds to milliseconds) and repeated burst signals. Acoustic cavitation thresholds (defined here as the peak rarefactional in situ pressure at which the acoustic cavitation probability reaches 50%) at a frequency of 1.06 MHz were observed between 1.1 MPa (for 1 s of continuous wave sonication) and 4.6 MPa (for 1 s of a repeated burst signal with 25-cycle burst length and 10-ms burst period) in a 3% (by weight) agar phantom without scatterers. The method and its evaluation are described, and general terminology useful for standardizing the description of insonation conditions and comparing results is provided. In the accompanying second part, the presented method is used to systematically study the acoustic cavitation thresholds in the same material for a range of sonication modes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Acoustic discrimination of Southern Ocean zooplankton

    NASA Astrophysics Data System (ADS)

    Brierley, Andrew S.; Ward, Peter; Watkins, Jonathan L.; Goss, Catherine

    Acoustic surveys in the vicinity of the sub-Antarctic island of South Georgia during a period of exceptionally calm weather revealed the existence of a number of horizontally extensive yet vertically discrete scattering layers in the upper 250 m of the water column. These layers were fished with a Longhurst-Hardy plankton recorder (LHPR) and a multiple-opening 8 m 2 rectangular mid-water trawl (RMT8). Analysis of catches suggested that each scattering layer was composed predominantly of a single species (biovolume>95%) of either the euphausiids Euphausia frigida or Thysanöessa macrura, the hyperiid amphipod Themisto gaudichaudii, or the eucalaniid copepod Rhincalanus gigas. Instrumentation on the nets allowed their trajectories to be reconstructed precisely, and thus catch data to be related directly to the corresponding acoustic signals. Discriminant function analysis of differences between mean volume backscattering strength at 38, 120 and 200 kHz separated echoes originating from each of the dominant scattering layers, and other signals identified as originating from Antarctic krill ( Euphausia superba), with an overall correct classification rate of 77%. Using echo intensity data alone, gathered using hardware commonly employed for fishery acoustics, it is therefore possible to discriminate in situ between several zooplanktonic taxa, taxa which in some instances exhibit similar gross morphological characteristics and have overlapping length- frequency distributions. Acoustic signals from the mysid Antarctomysis maxima could also be discriminated once information on target distribution was considered, highlighting the value of incorporating multiple descriptors of echo characteristics into signal identification procedures. The ability to discriminate acoustically between zooplankton taxa could be applied to provide improved acoustic estimates of species abundance, and to enhance field studies of zooplankton ecology, distribution and species interactions.

  13. Waist-to-height: cutoff matters in predicting metabolic syndrome in Mexican children.

    PubMed

    Elizondo-Montemayor, Leticia; Serrano-González, Mónica; Ugalde-Casas, Patricia A; Bustamante-Careaga, Humberto; Cuello-García, Carlos

    2011-06-01

    Body-mass index (BMI), waist circumference (WC), and, recently, waist-to-height ratio (WHtR) have been proposed as clinical indexes to identify children at cardiometabolic risk. The aim was to identify the usefulness of WHtR cutoffs, WC, and BMI as predictors of metabolic syndrome in Mexican children, according to BMI z-scores, and the severity of obesity to cardiometabolic risk factors and metabolic syndrome. This was a cross-sectional study of 214 overweight/obese and 47 normal-weight Mexican children 6-12 years old. Children were divided in groups according to BMI z-scores. Anthropometric and biochemical measurements were determined. Receiver-operating characteristic (ROC) curves and areas under the curves were calculated to compare the abilities of the anthropometric measurements to predict metabolic syndrome. The overall prevalence of metabolic syndrome was 23.3%, ranging from 11.0% in the overweight group to 73.9% in the severely obese one. Children with metabolic syndrome had significantly higher WHtR, WC, BMI, percentage of body fat, triglycerides, total cholesterol, low-density lipoprotein cholesterol (LDL-C), systolic and diastolic blood pressure, and lower high-density lipoprotein cholesterol (HDL-C). A WHtR cutoff point of 0.59 from the ROC curve was identified as strong predictor of metabolic syndrome in our population, whereas a cutoff of 0.5 showed very poor specificity (22.7%). WC predicted metabolic syndrome as well. Cutoff values for WHtR make a difference in predicting metabolic syndrome. A cutoff of 0.59 for WHtR strongly predicted metabolic syndrome; it might be a simpler to use screening tools and counters for short people. Further studies are required to determine the cutoff points for an accurate prediction, because there are few in children and none in Mexico.

  14. Sunset Crater Volcano National Monument : Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-05-01

    During the summer of 2010 (July - August), the Volpe Center collected baseline acoustical data at Sunset Crater Volcano National Monument (SUCR) at a site deployed for approximately 30 days. The baseline data collected during this period will help pa...

  15. Tuzigoot National Monument : acoustical monitoring 2010 and 2012

    DOT National Transportation Integrated Search

    2014-03-01

    During the summer of 2010 (July - August) and winter of 2012 (March-April) baseline acoustical data were collected at Tuzigoot National Monument (TUZI) at a site deployed for approximately 30 days during each period. The baseline data collected durin...

  16. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  17. Investigation of Acoustic Structure Quantification in the Diagnosis of Thyroiditis.

    PubMed

    Park, Jisang; Hong, Hyun Sook; Kim, Chul-Hee; Lee, Eun Hye; Jeong, Sun Hye; Lee, A Leum; Lee, Heon

    2016-03-01

    The objective of this study was to evaluate the ability of acoustic structure quantification (ASQ) to diagnose thyroiditis. The echogenicity of 439 thyroid lobes, as determined using ASQ, was quantified and analyzed retrospectively. Thyroiditis was categorized into five subgroups. The results were presented in a modified chi-square histogram as the mode, average, ratio, blue mode, and blue average. We determined the cutoff values of ASQ from ROC analysis to detect and differentiate thyroiditis from a normal thyroid gland. We obtained data on the sensitivity and specificity of the cutoff values to distinguish between euthyroid patients with thyroiditis and patients with a normal thyroid gland. The mean ASQ values for patients with thyroiditis were statistically significantly greater than those for patients with a normal thyroid gland (p < 0.001). The AUCs were as follows: 0.93 for the ratio, 0.91 for the average, 0.90 for the blue average, 0.87 for the mode, and 0.87 for the blue mode. For the diagnosis of thyroiditis, the cutoff values were greater than 0.27 for the ratio, greater than 116.7 for the mean, and greater than 130.7 for the blue average. The sensitivities and specificities were as follows: 84.0% and 96.6% for the ratio, 85.3% and 83.0%, for the average, and 79.1% and 93.2% for the blue average, respectively. The ASQ parameters were successful in distinguishing patients with thyroiditis from patients with a normal thyroid gland, with likelihood ratios of 24.7 for the ratio, 5.0 for the average, and 11.6 for the blue average. With the use of the aforementioned cutoff values, the sensitivities and specificities for distinguishing between patients with thyroiditis and euthyroid patients without thyroiditis were 77.05% and 94.92% for the ratio, 85.25% and 82.20% for the average, and 77.05% and 92.37% for the blue average, respectively. ASQ can provide objective and quantitative analysis of thyroid echogenicity. ASQ parameters were successful in

  18. Underwater Acoustic Carbon Nanotube Thermophone

    DTIC Science & Technology

    2016-09-23

    temperature radiation by the carbon nanotube material chip. [0033] Furthermore, the wooden spacers 20 provide heat insulation between the carbon nanotube...based on an energy conversion of heat to sound. (2) Description of the Prior Art [0004] The principle of thermal acoustic transduction is that when...alternating current is passed through a comparatively thin transducer; periodic heating takes place in the conductor following variations in current

  19. Mass-number and excitation-energy dependence of the spin cutoff parameter

    DOE PAGES

    Grimes, S. M.; Voinov, A. V.; Massey, T. N.

    2016-07-12

    Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J 2 z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3) 1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonlymore » used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.« less

  20. An Application of the Acoustic Similarity Law to the Numerical Analysis of Centrifugal Fan Noise

    NASA Astrophysics Data System (ADS)

    Jeon, Wan-Ho; Lee, Duck-Joo; Rhee, Huinam

    Centrifugal fans, which are frequently used in our daily lives and various industries, usually make severe noise problems. Generally, the centrifugal fan noise consists of tones at the blade passing frequency and its higher harmonics. These tonal sounds come from the interaction between the flow discharged from the impeller and the cutoff in the casing. Prediction of the noise from a centrifugal fan becomes more necessary to optimize the design to meet both the performance and noise criteria. However, only some limited studies on noise prediction method exist because there are difficulties in obtaining detailed information about the flow field and casing effect on noise radiation. This paper aims to investigate the noise generation mechanism of a centrifugal fan and to develop a prediction method for the unsteady flow and acoustic pressure fields. In order to do this, a numerical analysis method using acoustic similarity law is proposed, and it is verified that the method can predict the noise generation mechanism very well by comparing the predicted results with available experimental results.

  1. Panel acoustic contribution analysis.

    PubMed

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  2. Acoustic Effects in Classical Nucleation Theory

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Su, C.-H.

    2017-01-01

    The effect of sound wave oscillations on the rate of nucleation in a parent phase can be calculated by expanding the free energy of formation of a nucleus of the second phase in powers of the acoustic pressure. Since the period of sound wave oscillation is much shorter than the time scale for nucleation, the acoustic effect can be calculated as a time average of the free energy of formation of the nucleus. The leading non-zero term in the time average of the free energy is proportional to the square of the acoustic pressure. The Young-Laplace equation for the surface tension of the nucleus can be used to link the time average of the square of the pressure in the parent phase to its time average in the nucleus of the second phase. Due to the surface tension, the pressure in the nuclear phase is higher than the pressure in the parent phase. The effect is to lower the free energy of formation of the nucleus and increase the rate of nucleation.

  3. Stream-power model of meander cutoff in gravel beds

    NASA Astrophysics Data System (ADS)

    Pannone, M.; De Vincenzo, A.

    2016-12-01

    In the present study we propose a one-dimensional model for the prediction of the large-time evolution of river meanders (pre-cutoff conditions) characterized by gravel bed and negligible suspended load. Due to its relatively simple structure, it may be a fast and easy tool to forecast the time evolution of a bend when the symptoms of an incipient instability suggest quantifying the time left for river exploitation as a naturalistic or a commercial resource and timely planning, if needed, the site management and restoration. Most of the previous research on meandering rivers focused on linearized theories that apply to very small bend amplitudes and very large radii of curvature. The dynamics of meander growth and cutoff was typically afforded by case-sensitive numerical simulations or by descriptive methods aimed at deriving purely empirical laws relating the hydraulics to some geomorphological parameters. The present approach combines the immediacy of a general analytical model with the accuracy of a fluid-mechanical background. The model focuses on energetic principles and interprets the mechanism of meander cutoff as the achievement of limit conditions in terms of river stream power. The corresponding analytical solution, which consists in a 1-D deterministic integro-differential equation governing the meander pre-cutoff phase, accounts for the influence of the morphological and sedimentological parameters by the downstream migration rate and the radius of the meander osculating circle. The results, expressed in terms of instable meander lifetime, are in good agreement with the data obtained from a number of field surveys documented in literature. Additionally, the proposed fluid-mechanical model allows identifying the physical mechanisms responsible for some peculiarities of large-time meander evolution like the decreasing skewness and asymmetry.

  4. Observation of acoustic Dirac-like cone and double zero refractive index

    PubMed Central

    Dubois, Marc; Shi, Chengzhi; Zhu, Xuefeng; Wang, Yuan; Zhang, Xiang

    2017-01-01

    Zero index materials where sound propagates without phase variation, holds a great potential for wavefront and dispersion engineering. Recently explored electromagnetic double zero index metamaterials consist of periodic scatterers whose refractive index is significantly larger than that of the surrounding medium. This requirement is fundamentally challenging for airborne acoustics because the sound speed (inversely proportional to the refractive index) in air is among the slowest. Here, we report the first experimental realization of an impedance matched acoustic double zero refractive index metamaterial induced by a Dirac-like cone at the Brillouin zone centre. This is achieved in a two-dimensional waveguide with periodically varying air channel that modulates the effective phase velocity of a high-order waveguide mode. Using such a zero-index medium, we demonstrated acoustic wave collimation emitted from a point source. For the first time, we experimentally confirm the existence of the Dirac-like cone at the Brillouin zone centre. PMID:28317927

  5. Is dust acoustic wave a new plasma acoustic mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, C.B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi {ital et al.} [J. Plasma Phys. {bold 41}, 219 (1989)]. It is suggested that both correct and more usable nomenclature of themore » ALM should be the so-called acoustic mode. {copyright} {ital 1997 American Institute of Physics.}« less

  6. Induced clustering of Escherichia coli by acoustic fields.

    PubMed

    Gutiérrez-Ramos, Salomé; Hoyos, Mauricio; Ruiz-Suárez, J C

    2018-03-16

    Brownian or self-propelled particles in aqueous suspensions can be trapped by acoustic fields generated by piezoelectric transducers usually at frequencies in the megahertz. The obtained confinement allows the study of rich collective behaviours like clustering or spreading dynamics in microgravity-like conditions. The acoustic field induces the levitation of self-propelled particles and provides secondary lateral forces to capture them at nodal planes. Here, we give a step forward in the field of confined active matter, reporting levitation experiments of bacterial suspensions of Escherichia coli. Clustering of living bacteria is monitored as a function of time, where different behaviours are clearly distinguished. Upon the removal of the acoustic signal, bacteria rapidly spread, impelled by their own swimming. Nevertheless, long periods of confinement result in irreversible bacteria entanglements that could act as seeds for levitating bacterial aggregates.

  7. Casa Grande Ruins National Monument acoustical monitoring 2010

    DOT National Transportation Integrated Search

    2014-11-01

    During September 2010, The Volpe Center collected baseline acoustical data at Casa Grande National Monument (CAGR), at one site for 28 days. The baseline data collected during this period will help park managers and planners estimate the effects of f...

  8. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    NASA Astrophysics Data System (ADS)

    Rahman, Aowabin

    also showed "transient" behavior, meaning that the RMS amplitudes of TA signals varied over a time interval much greater than the time period of acoustic cycles. Acoustic amplitudes in the range of 75-95 dB were obtained using solar energy as the heat source, within the frequency range of 200 Hz-3 kHz.

  9. Hypertriglyceridemic waist phenotype in primary health care: comparison of two cutoff points

    PubMed Central

    Braz, Marina Augusta Dias; Vieira, Jallyne Nunes; Gomes, Flayane Oliveira; da Silva, Priscilla Rafaella; Santos, Ohanna Thays de Medeiros; da Rocha, Ilanna Marques Gomes; de Sousa, Iasmin Matias; Fayh, Ana Paula Trussardi

    2017-01-01

    Objective We aimed to evaluate the prevalence of hypertriglyceridemic waist (HTGW) phenotype among users of primary health care using two different cutoff points used in the literature. Methods We evaluated adults and elderly individuals of both sexes who attended the same level of primary health care. HTGW phenotype was determined with measurements of waist circumference (WC) and triglyceride levels and compared using cutoff points proposed by the National Cholesterol Education Program – NCEP/ATP III (WC ≥102 cm for men and ≥88 cm for women; triglyceride levels ≥150 mg/dL for both sexes) and by Lemieux et al (WC ≥90 cm for men and ≥85 cm for women; triglyceride levels ≥177 mg/dL for both). Results Within the sample of 437 individuals, 73.7% was female. The prevalence of HTGW phenotype was high and statistically different with the use of different cutoff points from the literature. The prevalence was higher using the NCEP/ATP III criteria compared to those proposed by Lemieux et al (36.2% and 32.5%, respectively, p<0.05). Individuals with the presence of the phenotype also presented alterations in other traditional cardiovascular risk markers. Conclusion The HTGW phenotype identified high prevalence of cardiovascular risk in the population, with higher cutoff points from the NCEP/ATP III criteria. The difference in frequency of risk alerts us to the need to establish cutoff points for the Brazilian population. PMID:28979152

  10. Effects of Nanoparticulate Additives on Acoustically Coupled Fuel Droplet Combustion

    NASA Astrophysics Data System (ADS)

    Vargas, Andres; Plascencia, Miguel; Sim, Hyung Sub; Smith, Owen; Karagozian, Ann

    2017-11-01

    The present study investigates interactions between applied acoustic perturbations and burning ethanol droplets containing nano particulate additives. Reactive nanoscale aluminum (nAl) as well as inert silica (nSiO2), each with an 80 nm average diameter. Continuously-fed fuel droplet combustion experiments were conducted in the vicinity of a pressure node created in a closed acoustic waveguide, with a range of applied forcing frequencies, pressure or velocity perturbation amplitudes, and particle loading concentrations. Simultaneous phase-locked OH* chemiluminescence and high-speed visible imaging enabled quantification of the influences of nanoparticle concentration on burning rate constant K and combustion-acoustic coupling. Results indicated that nAl particles in ethanol yielded measurable increases in K with increasing applied perturbation amplitudes, as compared to pure ethanol in the presence of acoustic excitation. Droplets with nAl exposed to moderate acoustic excitation exhibited sustained combustion for much longer periods of time than for unforced conditions. Post analysis of particulate matter collected from residue via electron microscopy aids in interpreting these trends and findings. Supported by AFOSR Grant FA9550-15-1-0339.

  11. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  12. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  13. Acoustic and elastic waves in metamaterials for underwater applications

    NASA Astrophysics Data System (ADS)

    Titovich, Alexey S.

    Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson

  14. Spectrum interrogation of fiber acoustic sensor based on self-fitting and differential method.

    PubMed

    Fu, Xin; Lu, Ping; Ni, Wenjun; Liao, Hao; Wang, Shun; Liu, Deming; Zhang, Jiangshan

    2017-02-20

    In this article, we propose an interrogation method of fiber acoustic sensor to recover the time-domain signal from the sensor spectrum. The optical spectrum of the sensor will show a ripple waveform when responding to acoustic signal due to the scanning process in a certain wavelength range. The reason behind this phenomenon is the dynamic variation of the sensor spectrum while the intensity of different wavelength is acquired at different time in a scanning period. The frequency components can be extracted from the ripple spectrum assisted by the wavelength scanning speed. The signal is able to be recovered by differential between the ripple spectrum and its self-fitted curve. The differential process can eliminate the interference caused by environmental perturbations such as temperature or refractive index (RI), etc. The proposed method is appropriate for fiber acoustic sensors based on gratings or interferometers. A long period grating (LPG) is adopted as an acoustic sensor head to prove the feasibility of the interrogation method in experiment. The ability to compensate the environmental fluctuations is also demonstrated.

  15. Lower Cutoffs for LC-MS/MS Urine Drug Testing Indicates Better Patient Compliance.

    PubMed

    Krock, Kevin; Pesce, Amadeo; Ritz, Dennis; Thomas, Richard; Cua, Agnes; Rogers, Ryan; Lipnick, Phil; Kilbourn, Kristen

    2017-11-01

    Urine drug testing is used by health care providers to determine a patient's compliance to their prescribed regimen and to detect non-prescribed medications and illicit drugs. However, the cutoff levels used by clinical labs are often arbitrarily set and may not reflect the urine drug concentrations of compliant patients. Our aim was to test the hypothesis that commonly used cutoffs for many prescribed and illicit drugs were set too high, and methods using these cutoffs may yield a considerable number of false-negative results. The goals of this study were to outline the way to analyze patient results and estimate a more appropriate cutoff, develop and validate a high sensitivity analytical method capable of quantitating drugs and metabolites at lower than the commonly used cutoffs, and determine the number of true positive results that would have been missed when using the common cutoffs. This was a retrospective study of urine specimens submitted for urine drug testing as part of the monitoring of prescription drug compliance described in chronic opioid therapy treatment guidelines. The study was set in a clinical toxicology laboratory, using specimens submitted for routine analysis by health care providers in the normal course of business. Lognormal distributions of test results were generated and fitted with a trendline to estimate the required cutoff level necessary to capture the normal distributions of each drug for the patient population study. A validated laboratory derived liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis capable of achieving the required cutoff levels was developed for each drug and/or metabolite. The study shows that a lognormal distribution of patient urine test results fitted with a trendline is appropriate for estimating the required cutoff levels needed to assess medication adherence. The study showed a wide variation in the false-negative rate, ranging from 1.5% to 94.3% across a range of prescribed and illicit

  16. Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Casadei, Filippo; Bertoldi, Katia

    2014-01-01

    The design of phononic crystals and acoustic metamaterials with tunable and adaptive wave properties remains one of the outstanding challenges for the development of next generation acoustic devices. We report on the numerical and experimental demonstration of a locally resonant acoustic metamaterial with dispersion characteristics, which autonomously adapt in response to changes of an incident aerodynamic flow. The metamaterial consists of a slender beam featuring a periodic array or airfoil-shaped masses supported by a linear and torsional springs. The resonance characteristics of the airfoils lead to strong attenuation at frequencies defined by the properties of the airfoils and the speed on the incident fluid. The proposed concept expands the ability of existing acoustic bandgap materials to autonomously adapt their dispersion properties through fluid-structure interactions, and has the potential to dramatically impact a variety of applications, such as robotics, civil infrastructures, and defense systems.

  17. Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casadei, Filippo; Bertoldi, Katia; Kavli Institute for Bionano Science, Harvard University, Cambridge, Massachusetts 02138

    The design of phononic crystals and acoustic metamaterials with tunable and adaptive wave properties remains one of the outstanding challenges for the development of next generation acoustic devices. We report on the numerical and experimental demonstration of a locally resonant acoustic metamaterial with dispersion characteristics, which autonomously adapt in response to changes of an incident aerodynamic flow. The metamaterial consists of a slender beam featuring a periodic array or airfoil-shaped masses supported by a linear and torsional springs. The resonance characteristics of the airfoils lead to strong attenuation at frequencies defined by the properties of the airfoils and the speedmore » on the incident fluid. The proposed concept expands the ability of existing acoustic bandgap materials to autonomously adapt their dispersion properties through fluid-structure interactions, and has the potential to dramatically impact a variety of applications, such as robotics, civil infrastructures, and defense systems.« less

  18. Speaker verification system using acoustic data and non-acoustic data

    DOEpatents

    Gable, Todd J [Walnut Creek, CA; Ng, Lawrence C [Danville, CA; Holzrichter, John F [Berkeley, CA; Burnett, Greg C [Livermore, CA

    2006-03-21

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  19. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.

  20. Determination of the optimal cutoff value for a serological assay: an example using the Johne's Absorbed EIA.

    PubMed Central

    Ridge, S E; Vizard, A L

    1993-01-01

    Traditionally, in order to improve diagnostic accuracy, existing tests have been replaced with newly developed diagnostic tests with superior sensitivity and specificity. However, it is possible to improve existing tests by altering the cutoff value chosen to distinguish infected individuals from uninfected individuals. This paper uses data obtained from an investigation of the operating characteristics of the Johne's Absorbed EIA to demonstrate a method of determining a preferred cutoff value from several potentially useful cutoff settings. A method of determining the financial gain from using the preferred rather than the current cutoff value and a decision analysis method to assist in determining the optimal cutoff value when critical population parameters are not known with certainty are demonstrated. The results of this study indicate that the currently recommended cutoff value for the Johne's Absorbed EIA is only close to optimal when the disease prevalence is very low and false-positive test results are deemed to be very costly. In other situations, there were considerable financial advantages to using cutoff values calculated to maximize the benefit of testing. It is probable that the current cutoff values for other diagnostic tests may not be the most appropriate for every testing situation. This paper offers methods for identifying the cutoff value that maximizes the benefit of medical and veterinary diagnostic tests. PMID:8501227

  1. Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics

    NASA Astrophysics Data System (ADS)

    Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.

    2018-01-01

    Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p , a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.

  2. Using Empirical Data to Set Cutoff Scores.

    ERIC Educational Resources Information Center

    Hills, John R.

    Six experimental approaches to the problems of setting cutoff scores and choosing proper test length are briefly mentioned. Most of these methods share the premise that a test is a random sample of items, from a domain associated with a carefully specified objective. Each item is independent and is scored zero or one, with no provision for…

  3. Inverse medium scattering from periodic structures with fixed-direction incoming waves

    NASA Astrophysics Data System (ADS)

    Gibson, Peter; Hu, Guanghui; Zhao, Yue

    2018-07-01

    This paper is concerned with inverse time-harmonic acoustic and electromagnetic scattering from an infinite biperiodic medium (diffraction grating) in three dimensions. In the acoustic case, we prove that the near-field data of fixed-direction plane waves incited at multiple frequencies uniquely determine a refractive index function which depends on two variables. An analogous uniqueness result holds for time-harmonic Maxwell’s system if the inhomogeneity is periodic in one direction and remains invariant along the other two directions. Uniqueness for recovering (non-periodic) compactly supported contrast functions are also presented.

  4. 10 CFR 26.131 - Cutoff levels for validity screening and initial validity tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Cutoff levels for validity screening and initial validity tests. 26.131 Section 26.131 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.131 Cutoff levels for validity screening and initial validity tests. (a) Each...

  5. 10 CFR 26.131 - Cutoff levels for validity screening and initial validity tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Cutoff levels for validity screening and initial validity tests. 26.131 Section 26.131 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.131 Cutoff levels for validity screening and initial validity tests. (a) Each...

  6. Cut-off levels for breath carbon monoxide as a marker for cigarette smoking.

    PubMed

    Javors, Martin A; Hatch, John P; Lamb, Richard J

    2005-02-01

    Current clinical studies often use a breath carbon monoxide (BCO) cut-off level of 8 parts per million (p.p.m.) or higher to identify smoking. In this study, the cut-off level of BCO as an indicator of smoking over the past 24 hours was re-examined. BCO and self-reported smoking were obtained each weekday for up to 14 weeks in 213 subjects paid to deliver reduced BCO values. Analysis of 12 386 paired values for reported smoking and BCO were analyzed. The 25% quartile, median and 75% quartile values for BCO were 1, 1 and 2 p.p.m. on non-smoking days and 2, 5 and 12 p.p.m. on smoking days, respectively. Receiver-operating characteristic (ROC) analysis indicated that BCO provided high diagnostic accuracy to distinguish between smoking and non-smoking days [area under the curve (AUC) = 0.853, P < 0.0001]. The highest combined sensitivity and specificity was observed at a BCO cut-off level of 3 p.p.m. (sensitivity = 71.5%; specificity = 84.8%). At a BCO cut-off of 8 p.p.m. sensitivity and specificity were 40.6% and 98.2%, respectively, indicating that many smokers would be falsely classified as abstinent. Finally, the percentage of true tests (positive and negative) was highest at a BCO cut-off of 2 p.p.m. (80.2%). BCO cut-off levels well below 8 p.p.m and as low as 2-3 p.p.m. may be more useful when it is important to maximize identification of smoking abstinence with a high degree of certainty.

  7. Spatio-temporal variation in click production rates of beaked whales: Implications for passive acoustic density estimation.

    PubMed

    Warren, Victoria E; Marques, Tiago A; Harris, Danielle; Thomas, Len; Tyack, Peter L; Aguilar de Soto, Natacha; Hickmott, Leigh S; Johnson, Mark P

    2017-03-01

    Passive acoustic monitoring has become an increasingly prevalent tool for estimating density of marine mammals, such as beaked whales, which vocalize often but are difficult to survey visually. Counts of acoustic cues (e.g., vocalizations), when corrected for detection probability, can be translated into animal density estimates by applying an individual cue production rate multiplier. It is essential to understand variation in these rates to avoid biased estimates. The most direct way to measure cue production rate is with animal-mounted acoustic recorders. This study utilized data from sound recording tags deployed on Blainville's (Mesoplodon densirostris, 19 deployments) and Cuvier's (Ziphius cavirostris, 16 deployments) beaked whales, in two locations per species, to explore spatial and temporal variation in click production rates. No spatial or temporal variation was detected within the average click production rate of Blainville's beaked whales when calculated over dive cycles (including silent periods between dives); however, spatial variation was detected when averaged only over vocal periods. Cuvier's beaked whales exhibited significant spatial and temporal variation in click production rates within vocal periods and when silent periods were included. This evidence of variation emphasizes the need to utilize appropriate cue production rates when estimating density from passive acoustic data.

  8. Determination of optimal cutoff value to accurately identify glucose-6-phosphate dehydrogenase-deficient heterozygous female neonates.

    PubMed

    Miao, Jing-Kun; Chen, Qi-Xiong; Bao, Li-Ming; Huang, Yi; Zhang, Juan; Wan, Ke-Xing; Yi, Jing; Wang, Shi-Yi; Zou, Lin; Li, Ting-Yu

    2013-09-23

    Conventional screening tests to assess G6PD deficiency use a low cutoff value of 2.10 U/gHb which may not be adequate for detecting females with heterozygous deficiency. The aim of present study was to determine an appropriate cutoff value with increased sensitivity in identifying G6PD-deficient heterozygous females. G6PD activity analysis was performed on 51,747 neonates using semi-quantitative fluorescent spot test. Neonates suspected with G6PD deficiency were further analyzed using quantitatively enzymatic assay and for common G6PD mutations. The cutoff values of G6PD activity were estimated using the receiver operating characteristic curve. Our results demonstrated that using 2.10 U/g Hb as a cutoff, the sensitivity of the assay to detect female neonates with G6PD heterozygous deficiency was 83.3%, as compared with 97.6% using 2.55 U/g Hb as a cutoff. The high cutoff identified 21% (8/38) of the female neonates with partial G6PD deficiency which were not detected with 2.10 U/g Hb. Our study found that high cutoffs, 2.35 and 2.55 U/g Hb, would increase assay's sensitivity to identify male and female G6PD deficiency neonates, respectively. We established a reliable cutoff value of G6PD activity with increased sensitivity in identifying female newborns with partial G6PD deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  10. Raised BMI cut-off for overweight in Greenland Inuit – a review

    PubMed Central

    Andersen, Stig; Fleischer Rex, Karsten; Noahsen, Paneeraq; Sørensen, Hans Christian Florian; Mulvad, Gert; Laurberg, Peter

    2013-01-01

    Background Obesity is associated with increased morbidity and premature death. Obesity rates have increased worldwide and the WHO recommends monitoring. A steep rise in body mass index (BMI), a measure of adiposity, was detected in Greenland from 1963 to 1998. Interestingly, the BMI starting point was in the overweight range. This is not conceivable in a disease-free, physically active, pre-western hunter population. Objective This led us to reconsider the cut-off point for overweight among Inuit in Greenland. Design and findings We found 3 different approaches to defining the cut-off point of high BMI in Inuit. First, the contribution to the height by the torso compared to the legs is relatively high. This causes relatively more kilograms per centimetre of height that increases the BMI by approximately 10% compared to Caucasian whites. Second, defining the cut-off by the upper 90-percentile of BMI from height and weight in healthy young Inuit surveyed in 1963 estimated the cut-off point to be around 10% higher compared to Caucasians. Third, if similar LDL-cholesterol and triglycerides are assumed for a certain BMI in Caucasians, the corresponding BMI in Inuit in both Greenland and Canada is around 10% higher. However, genetic admixture of Greenland Inuit and Caucasian Danes will influence this difference and hamper a clear distinction with time. Conclusion Defining overweight according to the WHO cut-off of a BMI above 25 kg/m2 in Greenland Inuit may overestimate the number of individuals with elevated BMI. PMID:23986904

  11. Joint Acoustic Propagation Experiment (JAPE-91) Workshop

    NASA Technical Reports Server (NTRS)

    Willshire, William L., Jr. (Compiler); Chestnutt, David (Compiler)

    1993-01-01

    The Joint Acoustic Propagation Experiment (JAPE), was conducted at the White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of various short and long range propagation experiments using various acoustic sources including speakers, propane cannons, helicopters, a 155 mm howitzer, and static high explosives. Of primary importance to the performance of theses tests was the extensive characterization of the atmosphere during these tests. This atmospheric characterization included turbulence measurements. A workshop to disseminate the results of JAPE-91 was held in Hampton, VA, on 28 Apr. 1993. This report is a compilation of the presentations made at the workshop along with a list of attendees and the agenda.

  12. An acoustic switch.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2014-01-01

    The benefits derived from the development of acoustic transistors which act as switches or amplifiers have been reported in the literature. Here we propose a model of acoustic switch. We theoretically demonstrate that the device works: the input signal is totally restored at the output when the switch is on whereas the output signal nulls when the switch is off. The switch, on or off, depends on a secondary acoustic field capable to manipulate the main acoustic field. The model relies on the attenuation effect of many oscillating bubbles on the main travelling wave in the liquid, as well as on the capacity of the secondary acoustic wave to move the bubbles. This model evidences the concept of acoustic switch (transistor) with 100% efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The 2013 Frank Stinchfield Award: Diagnosis of infection in the early postoperative period after total hip arthroplasty.

    PubMed

    Yi, Paul H; Cross, Michael B; Moric, Mario; Sporer, Scott M; Berger, Richard A; Della Valle, Craig J

    2014-02-01

    Diagnosis of periprosthetic joint infection (PJI) can be difficult in the early postoperative period after total hip arthroplasty (THA) because normal cues from the physical examination often are unreliable, and serological markers commonly used for diagnosis are elevated from the recent surgery. The purposes of this study were to determine the optimal cutoff values for erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), synovial fluid white blood cell (WBC) count, and differential for diagnosing PJI in the early postoperative period after primary THA. We reviewed 6033 consecutive primary THAs and identified 73 patients (1.2%) who underwent reoperation for any reason within the first 6 weeks postoperatively. Thirty-six of these patients were infected according to modified Musculoskeletal Infection Society criteria. Mean values for the diagnostic tests were compared between groups and receiver operating characteristic curves generated along with an area under the curve (AUC) to determine test performance and optimal cutoff values to diagnose infection. The best test for the diagnosis of PJI was the synovial fluid WBC count (AUC = 98%; optimal cutoff value 12,800 cells/μL) followed by the CRP (AUC = 93%; optimal cutoff value 93 mg/L), and synovial fluid differential (AUC = 91%; optimal cutoff value 89% PMN). The mean ESR (infected = 69 mm/hr, not infected = 46 mm/hr), CRP (infected = 192 mg/L, not infected = 30 mg/L), synovial fluid WBC count (infected = 84,954 cells/μL, not infected = 2391 cells/μL), and differential (infected = 91% polymorphonuclear cells [PMN], not infected = 63% PMN) all were significantly higher in the infected group. Optimal cutoff values for the diagnosis of PJI in the acute postoperative period were higher than those traditionally used for the diagnosis of chronic PJI. The serum CRP is an excellent screening test, whereas the synovial fluid WBC count is more specific.

  14. The Effect of Microphone Type on Acoustical Measures of Synthesized Vowels.

    PubMed

    Kisenwether, Jessica Sofranko; Sataloff, Robert T

    2015-09-01

    The purpose of this study was to compare microphones of different directionality, transducer type, and cost, with attention to their effects on acoustical measurements of period perturbation, amplitude perturbation, and noise using synthesized sustained vowel samples. This was a repeated measures design. Synthesized sustained vowel stimuli (with known acoustic characteristics and systematic changes in jitter, shimmer, and noise-to-harmonics ratio) were recorded by a variety of dynamic and condenser microphones. Files were then analyzed for mean fundamental frequency (fo), fo standard deviation, absolute jitter, shimmer in dB, peak-to-peak amplitude variation, and noise-to-harmonics ratio. Acoustical measures following recording were compared with the synthesized, known acoustical measures before recording. Although informal analyses showed some differences among microphones, and analyses of variance showed that type of microphone is a significant predictor, t-tests revealed that none of the microphones generated different means compared with the generated acoustical measures. In this sample, microphone type, directionality, and cost did not have a significant effect on the validity of acoustic measures. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Systematic review of the evidence for Trails B cut-off scores in assessing fitness-to-drive.

    PubMed

    Roy, Mononita; Molnar, Frank

    2013-01-01

    Fitness-to-drive guidelines recommend employing the Trail Making B Test (a.k.a. Trails B), but do not provide guidance regarding cut-off scores. There is ongoing debate regarding the optimal cut-off score on the Trails B test. The objective of this study was to address this controversy by systematically reviewing the evidence for specific Trails B cut-off scores (e.g., cut-offs in both time to completion and number of errors) with respect to fitness-to-drive. Systematic review of all prospective cohort, retrospective cohort, case-control, correlation, and cross-sectional studies reporting the ability of the Trails B to predict driving safety that were published in English-language, peer-reviewed journals. Forty-seven articles were reviewed. None of the articles justified sample sizes via formal calculations. Cut-off scores reported based on research include: 90 seconds, 133 seconds, 147 seconds, 180 seconds, and < 3 errors. There is support for the previously published Trails B cut-offs of 3 minutes or 3 errors (the '3 or 3 rule'). Major methodological limitations of this body of research were uncovered including (1) lack of justification of sample size leaving studies open to Type II error (i.e., false negative findings), and (2) excessive focus on associations rather than clinically useful cut-off scores.

  16. The Effects of Low- and High-Energy Cutoffs on Solar Flare Microwave and Hard X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Oegerle, William (Technical Monitor)

    2002-01-01

    Microwave and hard x-ray spectra provide crucial information about energetic electrons and their environment in solar flares. These spectra are becoming better determined with the Owens Valley Solar Array (OVSA) and the recent launch of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The proposed Frequency Agile Solar Radiotelescope (FASR) promises even greater advances in radio observations of solar flares. Both microwave and hard x-ray spectra are sensitive to cutoffs in the electron distribution function. The determination of the high-energy cutoff from these spectra establishes the highest electron energies produced by the acceleration mechanism, while determination of the low-energy cutoff is crucial to establishing the total energy in accelerated electrons. This paper will show computations of the effects of both high- and low-energy cutoffs on microwave and hard x-ray spectra. The optically thick portion of a microwave spectrum is enhanced and smoothed by a low-energy cutoff, while a hard x-ray spectrum is flattened below the cutoff energy. A high-energy cutoff steepens the microwave spectrum and increases the wavelength at which the spectrum peaks, while the hard x-ray spectrum begins to steepen at photon energies roughly an order of magnitude below the electron cutoff energy. This work discusses how flare microwave and hard x-ray spectra can be analyzed together to determine these electron cutoff energies. This work is supported in part by the NASA Sun-Earth Connection Program.

  17. Acoustic levitation of an object larger than the acoustic wavelength.

    PubMed

    Andrade, Marco A B; Okina, Fábio T A; Bernassau, Anne L; Adamowski, Julio C

    2017-06-01

    Levitation and manipulation of objects by sound waves have a wide range of applications in chemistry, biology, material sciences, and engineering. However, the current acoustic levitation techniques are mainly restricted to particles that are much smaller than the acoustic wavelength. In this work, it is shown that acoustic standing waves can be employed to stably levitate an object much larger than the acoustic wavelength in air. The levitation of a large slightly curved object weighting 2.3 g is demonstrated by using a device formed by two 25 kHz ultrasonic Langevin transducers connected to an aluminum plate. The sound wave emitted by the device provides a vertical acoustic radiation force to counteract gravity and a lateral restoring force that ensure horizontal stability to the levitated object. In order to understand the levitation stability, a numerical model based on the finite element method is used to determine the acoustic radiation force that acts on the object.

  18. Acoustic neuromas in the elderly.

    PubMed

    Perry, B P; Gantz, B J; Rubinstein, J T

    2001-05-01

    To determine if an "observation" protocol with serial scanning is a safe and effective management paradigm for acoustic neuromas in the elderly. A retrospective case review was performed. This study was performed in an academic, tertiary care center. Forty-one patients over the age of 65 years were identified with the primary diagnosis of unilateral acoustic neuroma, without prior treatment or observation. The patients were followed with serial, gadolinium-enhanced magnetic resonance imaging (MRI) scans performed at 6 months and then yearly, if no significant growth occurred. The patients were monitored for tumor growth, cranial nerve deficits, and hydrocephalus. The patients were followed for an average of 3.5 years (range, 6 months to 9 years). The average tumor size at presentation was 1.14 cm, with a range of growth rates from 0 to 1.2 cm per year. Twenty-one patients demonstrated tumor growth at an average rate of 0.322 cm per year. Only five patients (12%) required further intervention. Three patients underwent translabyrinthine excision, and two patients were treated with radiation. No patients developed significant complications during the observation period. Acoustic neuromas in the older population can be managed safely using serial MRI scanning. No correlation could be made between initial tumor size and subsequent growth rate.

  19. Cape Hatteras National Seashore acoustical monitoring 2008 and 2011

    DOT National Transportation Integrated Search

    2014-11-01

    During the summer of 2008(May) and winter of 2011 (September-November) baseline acoustical data were collected at Cape Hatteras National Seashore at three sites deployed for approximately 30 days each. The baseline data collected during these periods...

  20. Acoustic valley edge states in a graphene-like resonator system

    NASA Astrophysics Data System (ADS)

    Yang, Yahui; Yang, Zhaoju; Zhang, Baile

    2018-03-01

    The concept of valley physics, as inspired by the recent development in valleytronic materials, has been extended to acoustic crystals for manipulation of air-borne sound. Many valleytronic materials follow the model of a gapped graphene. Yet the previously demonstrated valley acoustic crystal adopted a mirror-symmetry-breaking mechanism, lacking a direct counterpart in condensed matter systems. In this paper, we investigate a two-dimensional (2D) periodic acoustic resonator system with inversion symmetry breaking, as an analogue of a gapped graphene monolayer. It demonstrates the quantum valley Hall topological phase for sound waves. Similar to a gapped graphene, gapless topological valley edge states can be found at a zigzag domain wall separating different domains with opposite valley Chern numbers, while an armchair domain wall hosts no gapless edge states. Our study offers a route to simulate novel valley phenomena predicted in gapped graphene and other 2D materials with classical acoustic waves.

  1. Voice Tremor in Parkinson's Disease: An Acoustic Study.

    PubMed

    Gillivan-Murphy, Patricia; Miller, Nick; Carding, Paul

    2018-01-30

    Voice tremor associated with Parkinson disease (PD) has not been characterized. Its relationship with voice disability and disease variables is unknown. This study aimed to evaluate voice tremor in people with PD (pwPD) and a matched control group using acoustic analysis, and to examine correlations with voice disability and disease variables. Acoustic voice tremor analysis was completed on 30 pwPD and 28 age-gender matched controls. Voice disability (Voice Handicap Index), and disease variables of disease duration, Activities of Daily Living (Unified Parkinson's Disease Rating Scale [UPDRS II]), and motor symptoms related to PD (UPDRS III) were examined for relationship with voice tremor measures. Voice tremor was detected acoustically in pwPD and controls with similar frequency. PwPD had a statistically significantly higher rate of amplitude tremor (Hz) than controls (P = 0.001). Rate of amplitude tremor was negatively and significantly correlated with UPDRS III total score (rho -0.509). For pwPD, the magnitude and periodicity of acoustic tremor was higher than for controls without statistical significance. The magnitude of frequency tremor (Mftr%) was positively and significantly correlated with disease duration (rho 0.463). PwPD had higher Voice Handicap Index total, functional, emotional, and physical subscale scores than matched controls (P < 0.001). Voice disability did not correlate significantly with acoustic voice tremor measures. Acoustic analysis enhances understanding of PD voice tremor characteristics, its pathophysiology, and its relationship with voice disability and disease symptomatology. Copyright © 2018 The Voice Foundation. All rights reserved.

  2. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  3. Re-evaluation of cosmic ray cutoff terminology

    NASA Technical Reports Server (NTRS)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  4. Upper and lower bounds for the speed of pulled fronts with a cut-off

    NASA Astrophysics Data System (ADS)

    Benguria, R. D.; Depassier, M. C.; Loss, M.

    2008-02-01

    We establish rigorous upper and lower bounds for the speed of pulled fronts with a cut-off. For all reaction terms of KPP type a simple analytic upper bound is given. The lower bounds however depend on details of the reaction term. For a small cut-off parameter the two leading order terms in the asymptotic expansion of the upper and lower bounds coincide and correspond to the Brunet-Derrida formula. For large cut-off parameters the bounds do not coincide and permit a simple estimation of the speed of the front.

  5. Experimental infection of a periodical cicada (Magicicada cassinii) with a parasitoid (Emblemasoma auditrix) of a proto-periodical cicada (Okanagana rimosa).

    PubMed

    Lakes-Harlan, Reinhard; de Vries, Thomas

    2014-12-14

    The proto-periodical cicada Okanagana rimosa is subject to infection by the acoustically orientating parasitoid fly Emblemasoma auditrix. Furthermore, it is also the only known host of E. auditrix. Here we test the question, whether the highly adapted parasitoid can also infect other cicadas, like the periodical cicada (Magicicada cassinii) and which steps of the parasitization process can be completed. The experiments might also reveal whether such a parasitoid could hypothetically have been involved in the evolution of periodicity. The hearing threshold of E. auditrix matches with the spectrum of the calling song of M. cassinii, indicating potential host localization. Behaviourally, host localization is possible by the parasitoid as it approaches a loudspeaker broadcasting the buzz part of the calling song of M. cassinii. Magicicada cassinii is readily accepted as host and for host infection the parasitoid uses the same behavioural sequence as for its host O. rimosa. A larva is deposited into the timbal of the cicada. By contrast to O. rimosa the development of the fly larva is delayed and eventually suppressed in M. cassinii. The host range of E. auditrix is mainly determined by acoustic parameters. This filter is important, as other sensory cues seem not to be involved in the host selection process and larva will not develop in unsuited host. Although the recent parasitoid-host system seems to be stable in terms of coexistence of both species, an acoustically hunting parasitoid could have been a selective force during evolution of prime numbered periodicity in cicadas.

  6. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires, light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  7. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  8. Acoustic neuroma

    MedlinePlus

    ... Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... that makes it hard to hear conversations Ringing ( tinnitus ) in the affected ear Less common symptoms include: ...

  9. Determination of glucose-6-phosphate dehydrogenase cut-off values in a Tunisian population.

    PubMed

    Laouini, Naouel; Sahli, Chaima Abdelhafidh; Jouini, Latifa; Haloui, Sabrine; Fredj, Sondes Hadj; Daboubi, Rym; Siala, Hajer; Ouali, Faida; Becher, Meriam; Toumi, Nourelhouda; Bibi, Amina; Messsaoud, Taieb

    2017-07-26

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the commonest enzymopathy worldwide. The incidence depends essentially on the methods used for the assessment. In this respect, we attempted in this study to set cut-off values of G6PD activity to discriminate among normal, heterozygous, and deficient individuals using the World Health Organization (WHO) classification and the receiver operating characteristics (ROC) curve analysis. Blood samples from 250 female and 302 male subjects were enrolled in this study. The G6PD activity was determined using a quantitative assay. The common G6PD mutations in Tunisia were determined using the amplification refractory mutation system (ARMS-PCR) method. The ROC curve was used to choice the best cut-off. Normal G6PD values were 7.69±2.37, 7.86±2.39, and 7.51±2.35 U/g Hb for the entire, male, and female groups, respectively. Cut-off values for the total, male, and female were determined using the WHO classification and ROC curves analysis. In the male population, both cut-offs established using ROC curve analysis (4.00 U/g Hb) and the 60% level (3.82 U/g Hb), respectively are sensitive and specific resulting in a good efficiency of discrimination between deficient and normal males. For the female group the ROC cut-off (5.84 U/g Hb) seems better than the 60% level cut-off (3.88 U/g Hb) to discriminate between normal and heterozygote or homozygote women with higher Youden Index. The establishment of the normal values for a population is important for a better evaluation of the assay result. The ROC curve analysis is an alternative method to determine the status of patients since it correlates DNA analysis and G6PD activity.

  10. Program for the feasibility of developing a high pressure acoustic levitator

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.

    1988-01-01

    This is the final report for the program for the feasibility of developing a high-pressure acoustic levitator (HPAL). It includes work performed during the period from February 15, 1987 to October 26, 1987. The program was conducted for NASA under contract number NAS3-25115. The HPAL would be used for containerless processing of materials in the 1-g Earth environment. Results show that the use of increased gas pressure produces higher sound pressure levels. The harmonics produced by the acoustic source are also reduced. This provides an improvement in the capabilities of acoustic levitation in 1-g. The reported processing capabilities are directly limited by the design of the Medium Pressure Acoustic Levitator used for this study. Data show that sufficient acoustic intensities can be obtained to levitate and process a specimen of density 5 g/cu cm at 1500 C. However, it is recommended that a working engineering model of the HPAL be developed. The model would be used to establish the maximum operating parameters of furnace temperature and sample density.

  11. Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Gui; Geng, Zhi-Guo; Zhu, Xue-Feng

    2018-03-01

    Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.

  12. Portuguese Cistercian Churches - An acoustic legacy

    NASA Astrophysics Data System (ADS)

    Rodrigues, Fabiel G.; Lanzinha, João C. G.; Martins, Ana M. T.

    2017-10-01

    The Cistercian Order (11th century) stands out as an apologist of the simplicity and austerity of the space. According to the Order of Cîteaux, only with an austere space, without any distractions, the true spiritual contemplation is achieved. This Order was an aggregator and consolidator pole during the Christian Reconquest. Thus, as it happens with other Religious Orders, Cîteaux has a vast heritage legacy. This heritage is witness, not only of the historical, but also social, political, and spiritual evolution. This legacy resumes the key principles to an austere liturgy, which requirements, in the beginning, are based on the simplicity of worship and of the connection between man and God. Later, these requirements allowed the development of the liturgy itself and its relation with the believers. Consequently, it can be concisely established an empirical approach between the Cistercian churches and the acoustics conditioning of these spaces. This outcome is fundamental in order to understand the connection between liturgy and the conception of the Cistercian churches as well as the constructed space and its history. So, an analysis of these principles is essential to establish the relation between acoustic and religious buildings design throughout history. It is also a mean of understanding the knowledge of acoustics principles that the Cistercian Order bequeathed to Portugal. This paper presents an empirical approach on Cistercian monastic churches acoustics. These spaces are the place where the greatest acoustic efforts are concentrated and it is also the space where the liturgy reaches greater importance. On the other hand, Portugal is a country which has an important Cistercian legacy over several periods of history. Consequently, the Portuguese Cistercian monastic churches are representative of the development of the liturgy, the design of spaces and of the acoustic requirements of their churches since the 12th century until the 21st century and it is of

  13. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection

    PubMed Central

    Qiu, Gongzhe

    2017-01-01

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly. PMID:29186790

  14. Optimization of a Focusable and Rotatable Shear-Wave Periodic Permanent Magnet Electromagnetic Acoustic Transducers for Plates Inspection.

    PubMed

    Song, Xiaochun; Qiu, Gongzhe

    2017-11-24

    Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.

  15. Cutoffs of Short-Term Heart Rate Variability Parameters in Brazilian Adolescents Male.

    PubMed

    Farah, Breno Quintella; Christofaro, Diego Giulliano Destro; Cavalcante, Bruno Remígio; Andrade-Lima, Aluísio; Germano-Soares, Antonio Henrique; Vanderlei, Luiz Carlos Marques; Lanza, Fernanda Cordoba; Ritti-Dias, Raphael Mendes

    2018-05-15

    A low heart rate variability (HRV) has been associated with cardiovascular risk factors in adolescents. However, no cut-off points are known for HRV parameters in this age group, making it difficult to use in clinical practice. Thus, the aims of the current study were to establish cutoffs of HRV parameters and to examine their association with cardiovascular risk in Brazilian adolescents male. For this reason, this cross-sectional study included 1152 adolescent boys (16.6 ± 1.2 years old). HRV measures of time (SD of all RR intervals, root mean square of the squared differences between adjacent normal RR intervals, and the percentage of adjacent intervals over 50 ms), frequency domains [low (LF) and high (HF) frequency], and Poincaré plot (SD1, SD2 and SD1/SD2 ratio) were assessed. Cardiovascular risk was assessed by sum of abdominal obesity, high blood pressure, overweight, and low physical activity level. The proposed cutoffs showed moderate to high sensitivity, specificity, and area under curve values (p < 0.05). HRV frequency parameters were statistically superior when compared to time-domain and Poincaré plot parameters. The binary logistic regression analysis indicated that all proposed HRV cutoffs were independently associated with a clustering of cardiovascular risk factors, with greater magnitude of HF and SD1/SD2 ratio (two or more risk factors: OR = 3.59 and 95% CI 1.76-7.34). In conclusion, proposed HRV cutoffs have moderate to high sensitivity in detecting of the cardiovascular risk factor and HRV frequency-domain were better discriminants of cardiovascular risk than time-domain and Poincaré plot parameters.

  16. Reducing the dimensions of acoustic devices using anti-acoustic-null media

    NASA Astrophysics Data System (ADS)

    Li, Borui; Sun, Fei; He, Sailing

    2018-02-01

    An anti-acoustic-null medium (anti-ANM), a special homogeneous medium with anisotropic mass density, is designed by transformation acoustics (TA). Anti-ANM can greatly compress acoustic space along the direction of its main axis, where the size compression ratio is extremely large. This special feature can be utilized to reduce the geometric dimensions of classic acoustic devices. For example, the height of a parabolic acoustic reflector can be greatly reduced. We also design a brass-air structure on the basis of the effective medium theory to materialize the anti-ANM in a broadband frequency range. Numerical simulations verify the performance of the proposed anti-ANM.

  17. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea

    DTIC Science & Technology

    2016-06-21

    the "Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical Society of America (Vol. 134, No . 4, Pt. 2 of 2 , October20 13...also listed. Fourteen (14) of these publications appeared in the " Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical

  18. Relationships between objective acoustic indices and acoustic comfort evaluation in nonacoustic spaces

    NASA Astrophysics Data System (ADS)

    Kang, Jian

    2004-05-01

    Much attention has been paid to acoustic spaces such as concert halls and recording studios, whereas research on nonacoustic buildings/spaces has been rather limited, especially from the viewpoint of acoustic comfort. In this research a series of case studies has been carried out on this topic, considering various spaces including shopping mall atrium spaces, library reading rooms, football stadia, swimming spaces, churches, dining spaces, as well as urban open public spaces. The studies focus on the relationships between objective acoustic indices such as sound pressure level and reverberation time and perceptions of acoustic comfort. The results show that the acoustic atmosphere is an important consideration in such spaces and the evaluation of acoustic comfort may vary considerably even if the objective acoustic indices are the same. It is suggested that current guidelines and technical regulations are insufficient in terms of acoustic design of these spaces, and the relationships established from the case studies between objective and subjective aspects would be useful for developing further design guidelines. [Work supported partly by the British Academy.

  19. Systematic review of the evidence for Trails B cut-off scores in assessing fitness-to-drive

    PubMed Central

    Roy, Mononita; Molnar, Frank

    2013-01-01

    Background Fitness-to-drive guidelines recommend employing the Trail Making B Test (a.k.a. Trails B), but do not provide guidance regarding cut-off scores. There is ongoing debate regarding the optimal cut-off score on the Trails B test. The objective of this study was to address this controversy by systematically reviewing the evidence for specific Trails B cut-off scores (e.g., cut-offs in both time to completion and number of errors) with respect to fitness-to-drive. Methods Systematic review of all prospective cohort, retrospective cohort, case-control, correlation, and cross-sectional studies reporting the ability of the Trails B to predict driving safety that were published in English-language, peer-reviewed journals. Results Forty-seven articles were reviewed. None of the articles justified sample sizes via formal calculations. Cut-off scores reported based on research include: 90 seconds, 133 seconds, 147 seconds, 180 seconds, and < 3 errors. Conclusions There is support for the previously published Trails B cut-offs of 3 minutes or 3 errors (the ‘3 or 3 rule’). Major methodological limitations of this body of research were uncovered including (1) lack of justification of sample size leaving studies open to Type II error (i.e., false negative findings), and (2) excessive focus on associations rather than clinically useful cut-off scores. PMID:23983828

  20. Acoustic metamaterials with circular sector cavities and programmable densities.

    PubMed

    Akl, W; Elsabbagh, A; Baz, A

    2012-10-01

    Considerable interest has been devoted to the development of various classes of acoustic metamaterials that can control the propagation of acoustical wave energy throughout fluid domains. However, all the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of composite one-dimensional acoustic metamaterials with effective densities that are programmed to adapt to any prescribed pattern along the metamaterial. The proposed acoustic metamaterial is composed of a periodic arrangement of cell structures, in which each cell consists of a circular sector cavity bounded by actively controlled flexible panels to provide the capability for manipulating the overall effective dynamic density. The theoretical analysis of this class of multilayered composite active acoustic metamaterials (CAAMM) is presented and the theoretical predictions are determined for a cascading array of fluid cavities coupled to flexible piezoelectric active boundaries forming the metamaterial domain with programmable dynamic density. The stiffness of the piezoelectric boundaries is electrically manipulated to control the overall density of the individual cells utilizing the strong coupling with the fluid domain and using direct acoustic pressure feedback. The interaction between the neighboring cells of the composite metamaterial is modeled using a lumped-parameter approach. Numerical examples are presented to demonstrate the performance characteristics of the proposed CAAMM and its potential for generating prescribed spatial and spectral patterns of density variation.

  1. Virtual acoustics displays

    NASA Astrophysics Data System (ADS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-03-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  2. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  3. Simulation of Acoustics for Ares I Scale Model Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Putnam, Gabriel; Strutzenberg, Louise L.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.

  4. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  5. Experimental study of outdoor propagation of spherically speading periodic acoustic waves of finite amplitude

    NASA Technical Reports Server (NTRS)

    Theobald, M. A.

    1977-01-01

    The outdoor propagation of spherically spreading sound waves of finite amplitude was investigated. The main purpose of the experiments was to determine the extent to which the outdoor environment, mainly random inhomogeneity of the medium, affects finite amplitude propagation. Periodic sources with fundamental frequencies in the range 6 to 8 kHz and source levels SPLlm from 140 to 149 dB were used. The sources were an array of 7 to 10 horn drivers and a siren. The propagation path was vertical and parallel to an 85 m tower, whose elevator carried the traveling microphone. The general conclusions drawn from the experimental results were as follows. The inhomogeneities caused significant fluctuations in the instantaneous acoustic signal, but with sufficient time averaging of the measured harmonic levels, the results were comparable to results expected for propagation in a quiet medium. Propagation data for the fundamental of the siren approached within 1 dB of the weak shock saturation levels. Extra attenuation on the order of 8 dB was observed. The measurements generally confirmed the predictions of several theoretical models. The maximum propagation distance was 36 m. The narrowbeam arrays were much weaker sources. Nonlinear propagation distortion was produced, but the maximum value of extra attenuation measured was 1.5 dB. The maximum propagation distance was 76 m. The behavior of the asymetric waveforms received in one experiment qualitatively suggested that beam type diffraction effects were present. The role of diffraction of high intensity sound waves in radiation from a single horn was briefly investigated.

  6. A Cutoff in the X-Ray Fluctuation Power Density Spectrum of the Seyfert 1 Galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Edelson, Rick; Nandra, Kirpal

    1999-01-01

    During 1997 March-July, RXTE observed the bright, strongly variable Seyfert 1 galaxy NGC 3516 once every approx. 12.8 hr for 4.5 months and nearly continuously (with interruptions due to SAA passage but not Earth occultation) for a 4.2 day period in the middle. These were followed by ongoing monitoring once every approx. 4.3 days. These data are used to construct the first well-determined X-ray fluctuation power density spectrum (PDS) of an active galaxy to span more than 4 decades of usable temporal frequency. The PDS shows no signs of any strict or quasi-periodicity, but does show a progressive flattening of the power-low slope from -1.74 at short time scales to -0.73 at longer time scales. This is the clearest observation to date of the long-predicted cutoff in the PDS. The characteristic variability time scale corresponding to this cutoff temporal frequency is approx. 1 month. Although it is unclear how this time scale may be interpreted in terms of a physical size or process, there are several promising candidate models. The PDS appears similar to those seen for Galactic black hole candidates such as Cyg X-1, suggesting that these two classes of objects with very different luminosities and putative black hole masses (differing by more than a factor of 10(exp 5)) may have similar X-ray generation processes and structures.

  7. Nonlinear ionospheric responses to large-amplitude infrasonic-acoustic waves generated by undersea earthquakes

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.

    2017-02-01

    Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.

  8. Quantifying flood duration controls on chute cutoff formation in a wandering gravel-bed river

    NASA Astrophysics Data System (ADS)

    Sawyer, A.; Wilcox, A. C.

    2014-12-01

    Chute cutoffs, which occur when a bypass or "chute" channel incises across a point or braid bar, distribute water and sediment, regulate sinuosity, and create off-channel habitat in wandering gravel-bed rivers. Cutoffs have been hypothesized to occur by progressive migration preparing a bend for cutoff, after which overbank flow events provide a trigger to excavate new channels. This trigger may depend on the magnitude and duration of floods and their associated sediment fluxes. Here we investigated how overbank flow duration impacts cutoff formation in a wandering gravel-bed river. To explore this, we applied a two-dimensional hydrodynamic model to a recently reconstructed reach of the Clark Fork River in western Montana that experienced chute cutoffs during a long-duration flood event in 2011. Hydrographs exceeding bankfull and with varying durations were simulated to constrain the role of overbank flow duration on erosional work in chute cutoff channels. For each magnitude-frequency-duration combination, cumulative excess shear stress (i.e., above the threshold of sediment mobilization) was quantified for in-channel and overbank areas. Locations of shear stress divergence associated with morphological change were identified along chute pathways. Preliminary results suggest that overbank areas containing concentrated flowpaths such as swales follow cumulative excess shear stress curve patterns similar to in-channel areas. This work describes a dynamic system characteristic of wandering gravel-bed rivers in the Pacific Northwest, and has implications for understanding morphodynamic evolution, river restoration targeting off-channel habitat for fish, and geomorphic flow regime management in regulated rivers.

  9. Liquid-assisted tunable metasurface for simultaneous manipulation of surface elastic and acoustic waves

    NASA Astrophysics Data System (ADS)

    Yuan, Si-Min; Ma, Tian-Xue; Chen, A.-Li; Wang, Yue-Sheng

    2018-03-01

    A tunable and multi-functional one-dimensional metasurface, which is formed by engraving periodic semi-ellipse grooves on the surface of an aluminum half-space, is proposed in this paper. One characteristic of the metasurface is the manipulation of multi-physical fields, i.e. it could be utilized to manipulate surface elastic and acoustic waves simultaneously. The dispersion curves of the elastic and acoustic waves can be effectively tuned by adding liquids into the grooves. Based on the tunability different applications can be realized by adding different volumes of different liquids into the grooves. As an example, simultaneous rainbow trapping of the surface elastic and acoustic waves is demonstrated in the metasurface. Moreover, a resonant cavity where the elastic and acoustic waves are highly confined is reported. The proposed metasurface paves the way to the design of multi-functional devices for simultaneous control of elastic and acoustic waves.

  10. The Development of a Dynamic Geomagnetic Cutoff Rigidity Model for the International Space Station

    NASA Technical Reports Server (NTRS)

    Smart, D. F.; Shea, M. A.

    1999-01-01

    We have developed a computer model of geomagnetic vertical cutoffs applicable to the orbit of the International Space Station. This model accounts for the change in geomagnetic cutoff rigidity as a function of geomagnetic activity level. This model was delivered to NASA Johnson Space Center in July 1999 and tested on the Space Radiation Analysis Group DEC-Alpha computer system to ensure that it will properly interface with other software currently used at NASA JSC. The software was designed for ease of being upgraded as other improved models of geomagnetic cutoff as a function of magnetic activity are developed.

  11. The critical wave speed for the Fisher Kolmogorov Petrowskii Piscounov equation with cut-off

    NASA Astrophysics Data System (ADS)

    Dumortier, Freddy; Popovic, Nikola; Kaper, Tasso J.

    2007-04-01

    The Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation with cut-off was introduced in (Brunet and Derrida 1997 Shift in the velocity of a front due to a cut-off Phys. Rev. E 56 2597-604) to model N-particle systems in which concentrations less than ɛ = 1/N are not attainable. It was conjectured that the cut-off function, which sets the reaction terms to zero if the concentration is below the small threshold ɛ, introduces a substantial shift in the propagation speed of the corresponding travelling waves. In this paper, we prove the conjecture of Brunet and Derrida, showing that the speed of propagation is given by c_crit(\\varepsilon)=2-{\\pi^2}/{(\\ln\\varepsilon)^2}+\\cal{O}((\\ln\\varepsilon)^{-3}) , as ɛ → 0, for a large class of cut-off functions. Moreover, we extend this result to a more general family of scalar reaction-diffusion equations with cut-off. The main mathematical techniques used in our proof are the geometric singular perturbation theory and the blow-up method, which lead naturally to the identification of the reasons for the logarithmic dependence of ccrit on ɛ as well as for the universality of the corresponding leading-order coefficient (π2).

  12. Numerical Analysis of the Acoustic Field of Tip-Clearance Flow

    NASA Astrophysics Data System (ADS)

    Alavi Moghadam, S. M.; M. Meinke Team; W. Schröder Team

    2015-11-01

    Numerical simulations of the acoustic field generated by a shrouded axial fan are studied by a hybrid fluid-dynamics-acoustics method. In a first step, large-eddy simulations are performed to investigate the dynamics of tip clearance flow for various tip gap sizes and to determine the acoustic sources. The simulations are performed for a single blade out of five blades with periodic boundary conditions in the circumferential direction on a multi-block structured mesh with 1.4 ×108 grid points. The turbulent flow is simulated at a Reynolds number of 9.36 ×105 at undisturbed inflow condition and the results are compared with experimental data. The diameter and strength of the tip vortex increase with the tip gap size, while simultaneously the efficiency of the fan decreases. In a second step, the acoustic field on the near field is determined by solving the acoustic perturbation equations (APE) on a mesh for a single blade consisting of approx. 9.8 ×108 grid points. The overall agreement of the pressure spectrum and its directivity with measurements confirm the correct identification of the sound sources and accurate prediction of the acoustic duct propagation. The results show that the longer the tip gap size the higher the broadband noise level. Senior Scientist, Institute of Aerodynamics, RWTH Aachen University.

  13. Acoustic measurement study 40 by 80 foot subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An acoustical study conducted during the period from September 1, 1973 to April 30, 1974 measured sound pressure levels and vibration amplitudes inside and outside of the subsonic tunnel and on the tunnel structure. A discussion of the technical aspects of the study, the field measurement and data reduction procedures, and results are presentd, and conclusions resulting from the study which bear upon near field and far field tunnel noise, upon the tunnel as an acoustical enclosure, and upon the sources of noise within the tunnel drive system are given.

  14. Sediment acoustic index method for computing continuous suspended-sediment concentrations

    USGS Publications Warehouse

    Landers, Mark N.; Straub, Timothy D.; Wood, Molly S.; Domanski, Marian M.

    2016-07-11

    Once developed, sediment acoustic index ratings must be validated with additional suspended-sediment samples, beyond the period of record used in the rating development, to verify that the regression model continues to adequately represent sediment conditions within the stream. Changes in ADVM configuration or installation, or replacement with another ADVM, may require development of a new rating. The best practices described in this report can be used to develop continuous estimates of suspended-sediment concentration and load using sediment acoustic surrogates to enable more informed and accurate responses to diverse sedimentation issues.

  15. Remote Acoustic Monitoring of North Atlantic Right Whales (Eubalaena glacialis) Reveals Seasonal and Diel Variations in Acoustic Behavior

    PubMed Central

    Matthews, Leanna P.; McCordic, Jessica A.; Parks, Susan E.

    2014-01-01

    Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis) is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the “gunshot” sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for females or as an agonistic signal toward other males. This study uses remote acoustic monitoring to analyze the presence of gunshots over a two-year period at two sites on the Scotian Shelf to determine if there is evidence that North Atlantic right whales may use these locations for breeding activities. Seasonal analyses at both locations indicate that gunshot sound production is highly seasonal, with an increase in the autumn. One site, Roseway West, had significantly more gunshot sounds overall and exhibited a clear diel trend in production of these signals at night. The other site, Emerald South, also showed a seasonal increase in gunshot production during the autumn, but did not show any significant diel trend. This difference in gunshot signal production at the two sites indicates variation either in the number or the behavior of whales at each location. The timing of the observed seasonal increase in gunshot sound production is consistent with the current understanding of the right whale breeding season, and our results demonstrate that detection of gunshots with remote acoustic monitoring can be a reliable way to track shifts in distribution and changes in acoustic behavior including possible mating activities. PMID:24646524

  16. Remote acoustic monitoring of North Atlantic right whales (Eubalaena glacialis) reveals seasonal and diel variations in acoustic behavior.

    PubMed

    Matthews, Leanna P; McCordic, Jessica A; Parks, Susan E

    2014-01-01

    Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis) is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the "gunshot" sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for females or as an agonistic signal toward other males. This study uses remote acoustic monitoring to analyze the presence of gunshots over a two-year period at two sites on the Scotian Shelf to determine if there is evidence that North Atlantic right whales may use these locations for breeding activities. Seasonal analyses at both locations indicate that gunshot sound production is highly seasonal, with an increase in the autumn. One site, Roseway West, had significantly more gunshot sounds overall and exhibited a clear diel trend in production of these signals at night. The other site, Emerald South, also showed a seasonal increase in gunshot production during the autumn, but did not show any significant diel trend. This difference in gunshot signal production at the two sites indicates variation either in the number or the behavior of whales at each location. The timing of the observed seasonal increase in gunshot sound production is consistent with the current understanding of the right whale breeding season, and our results demonstrate that detection of gunshots with remote acoustic monitoring can be a reliable way to track shifts in distribution and changes in acoustic behavior including possible mating activities.

  17. Capacity, cutoff rate, and coding for a direct-detection optical channel

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1980-01-01

    It is shown that Pierce's pulse position modulation scheme with 2 to the L pulse positions used on a self-noise-limited direct detection optical communication channel results in a 2 to the L-ary erasure channel that is equivalent to the parallel combination of L completely correlated binary erasure channels. The capacity of the full channel is the sum of the capacities of the component channels, but the cutoff rate of the full channel is shown to be much smaller than the sum of the cutoff rates. An interpretation of the cutoff rate is given that suggests a complexity advantage in coding separately on the component channels. It is shown that if short-constraint-length convolutional codes with Viterbi decoders are used on the component channels, then the performance and complexity compare favorably with the Reed-Solomon coding system proposed by McEliece for the full channel. The reasons for this unexpectedly fine performance by the convolutional code system are explored in detail, as are various facets of the channel structure.

  18. Critical analysis of forensic cut-offs and legal thresholds: A coherent approach to inference and decision.

    PubMed

    Biedermann, A; Taroni, F; Bozza, S; Augsburger, M; Aitken, C G G

    2018-07-01

    In this paper we critically discuss the definition and use of cut-off values by forensic scientists, for example in forensic toxicology, and point out when and why such values - and ensuing categorical conclusions - are inappropriate concepts for helping recipients of expert information with their questions of interest. Broadly speaking, a cut-off is a particular value of results of analyses of a target substance (e.g., a toxic substance or one of its metabolites in biological sample from a person of interest), defined in a way such as to enable scientists to suggest conclusions regarding the condition of the person of interest. The extent to which cut-offs can be reliably defined and used is not unanimously agreed within the forensic science community, though many practitioners - especially in operational laboratories - rely on cut-offs for reasons such as ease of use and simplicity. In our analysis, we challenge this practice by arguing that choices made for convenience should not be to the detriment of balance and coherence. To illustrate our discussion, we will choose the example of alcohol markers in hair, used widely by forensic toxicologists to reach conclusions regarding the drinking behaviour of individuals. Using real data from one of the co-authors' own work and recommendations of cut-offs published by relevant professional organisations, we will point out in what sense cut-offs are incompatible with current evaluative guidelines (e.g., [31]) and show how to proceed logically without cut-offs by using a standard measure for evidential value. Our conclusions run counter to much current practice, but are inevitable given the inherent definitional and conceptual shortcomings of scientific cut-offs. We will also point out the difference between scientific cut-offs and legal thresholds and argue that the latter - but not the former - are justifiable and can be dealt with in logical evaluative procedures. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Physical and genetic-interaction density reveals functional organization and informs significance cutoffs in genome-wide screens

    PubMed Central

    Dittmar, John C.; Pierce, Steven; Rothstein, Rodney; Reid, Robert J. D.

    2013-01-01

    Genome-wide experiments often measure quantitative differences between treated and untreated cells to identify affected strains. For these studies, statistical models are typically used to determine significance cutoffs. We developed a method termed “CLIK” (Cutoff Linked to Interaction Knowledge) that overlays biological knowledge from the interactome on screen results to derive a cutoff. The method takes advantage of the fact that groups of functionally related interacting genes often respond similarly to experimental conditions and, thus, cluster in a ranked list of screen results. We applied CLIK analysis to five screens of the yeast gene disruption library and found that it defined a significance cutoff that differed from traditional statistics. Importantly, verification experiments revealed that the CLIK cutoff correlated with the position in the rank order where the rate of true positives drops off significantly. In addition, the gene sets defined by CLIK analysis often provide further biological perspectives. For example, applying CLIK analysis retrospectively to a screen for cisplatin sensitivity allowed us to identify the importance of the Hrq1 helicase in DNA crosslink repair. Furthermore, we demonstrate the utility of CLIK to determine optimal treatment conditions by analyzing genome-wide screens at multiple rapamycin concentrations. We show that CLIK is an extremely useful tool for evaluating screen quality, determining screen cutoffs, and comparing results between screens. Furthermore, because CLIK uses previously annotated interaction data to determine biologically informed cutoffs, it provides additional insights into screen results, which supplement traditional statistical approaches. PMID:23589890

  20. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water.

    PubMed

    Simão, André G; Guimarães, Luiz G

    2016-01-01

    The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert's period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium.

  1. Detecting Defects Within Soil-Bentonite Slurry Cutoff Walls Using Electrical Resistivity Methods

    NASA Astrophysics Data System (ADS)

    Aborn, L.; Jacob, R. W.; Mucelli, A.

    2016-12-01

    Installed in the subsurface, vertical cutoff walls may limit groundwater movement. The effectiveness of these walls can be undermined by defects, for example high permeability material, within the wall. An efficient way of detecting these defects in a soil-bentonite slurry cutoff wall has yet to be established. We installed an approximately 200-meter long and 7-meter deep soil-bentonite slurry cutoff wall for the purposes of research. The wall was constructed adjacent to a natural wetland, the Montandon Marsh near Lewisburg, PA. The wall is composed of soil-bentonite backfill and was designed to be a typical low permeability material. We evaluate the capability of non-invasive geophysical techniques, specifically electrical resistivity, to detect high permeability defects that are expected to have higher electrical resistivity values than the backfill material. The laboratory measured electrical resistivity of the backfill used for construction was 12.27-ohm meters. During construction, designed defects of saturated fine-grained sand bags were deployed at different positions and depths within the wall. To create larger defects multiple bags were tied together. Laboratory resistivity testing of the sand and the filled sand bags indicates values between 125-ohm meters at full saturation and 285-ohm meters at partial saturation. Post construction, we collected electrical resistivity data using a 28-channel system along the centerline of the cutoff wall, which indicated the backfill material to have a resistivity value of 15-ohm meters. The electrical resistivity profile was affected by the sidewalls of the trench, as expected, which may explain the difference between laboratory results and field measurements. To minimize the sidewalls obscuring the defects, we developed electrodes that are pushed into the backfill at different depths to collect subsurface resistivity. Different arrays and electrode spacings are being tested. Our presentation will report the most

  2. Cut-off proposal for the detection of ketamine in hair.

    PubMed

    Salomone, A; Gerace, E; Diana, P; Romeo, M; Malvaso, V; Di Corcia, D; Vincenti, M

    2015-03-01

    Ketamine is a powerful anesthetic drug used in both human and veterinary surgery, but it is also commonly misused because of its psychotropic properties. Since the abuse of this drug has been reported in many countries worldwide, its determination in hair samples is offered as a specialist test by hundreds of laboratories. However, unlike other common drugs of abuse, a cut-off level for ketamine in hair has not been fixed yet. Therefore, aim of this study is to propose a concentration value for ketamine in hair analysis, in order to discriminate between chronic and occasional use, and between active use and external contamination. After considering the chemical properties of this molecule, and the experimental data collected in our laboratory or reported in several other published studies, we propose a cut-off level of 0.5ng/mg, as indicative of repeated exposure to ketamine. Additionally, we suggest that the detection of the metabolite norketamine should be mandatory to prove active intake and exclude false positive result from external contamination. Thus, a reasonable cut-off value for norketamine could be fixed at 0.1ng/mg, while the minimal concentration ratio norketamine/ketamine may be positively established at 0.05. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Development and validation of optimal cut-off value in inter-arm systolic blood pressure difference for prediction of cardiovascular events.

    PubMed

    Hirono, Akira; Kusunose, Kenya; Kageyama, Norihito; Sumitomo, Masayuki; Abe, Masahiro; Fujinaga, Hiroyuki; Sata, Masataka

    2018-01-01

    An inter-arm systolic blood pressure difference (IAD) is associated with cardiovascular disease. The aim of this study was to develop and validate the optimal cut-off value of IAD as a predictor of major adverse cardiac events in patients with arteriosclerosis risk factors. From 2009 to 2014, 1076 patients who had at least one cardiovascular risk factor were included in the analysis. We defined 700 randomly selected patients as a development cohort to confirm that IAD was the predictor of cardiovascular events and to determine optimal cut-off value of IAD. Next, we validated outcomes in the remaining 376 patients as a validation cohort. The blood pressure (BP) of both arms measurements were done simultaneously using the ankle-brachial blood pressure index (ABI) form of automatic device. The primary endpoint was the cardiovascular event and secondary endpoint was the all-cause mortality. During a median period of 2.8 years, 143 patients reached the primary endpoint in the development cohort. In the multivariate Cox proportional hazards analysis, IAD was the strong predictor of cardiovascular events (hazard ratio: 1.03, 95% confidence interval: 1.01-1.05, p=0.005). The receiver operating characteristic curve revealed that 5mmHg was the optimal cut-off point of IAD to predict cardiovascular events (p<0.001). In the validation cohort, the presence of a large IAD (IAD ≥5mmHg) was significantly associated with the primary endpoint (p=0.021). IAD is significantly associated with future cardiovascular events in patients with arteriosclerosis risk factors. The optimal cut-off value of IAD is 5mmHg. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  4. Seismo-acoustic signals associated with degassing explosions recorded at Shishaldin Volcano, Alaska, 2003-2004

    USGS Publications Warehouse

    Petersen, T.

    2007-01-01

    In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.

  5. Environmental Effects of Tennessee-Tombigbee Project Cutoff Bendways.

    DTIC Science & Technology

    1982-08-01

    Congdon 1971, Barton et al. 1972, King and Carlander 1976). The most signifi- cant result of a study of two cutoff bendways on the Lower Alabama River...34Statewide Lake and Stream Survey: Completion Report Appendix," Mississippi Game and Fish Commission Project F-8-R, Jackson, Miss. Congdon , James C. 1971

  6. Seismo-acoustic Signals Recorded at KSIAR, the Infrasound Array Installed at PS31

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Che, I. Y.; Jeon, J. S.; Chi, H. C.; Kang, I. B.

    2014-12-01

    One of International Monitoring System (IMS)'s primary seismic stations, PS31, called Korea Seismic Research Station (KSRS), was installed around Wonju, Korea in 1970s. It has been operated by US Air Force Technical Applications Center (AFTAC) for more than 40 years. KSRS is composed of 26 seismic sensors including 19 short period, 6 long period and 1 broad band seismometers. The 19 short period sensors were used to build an array with a 10-km aperture while the 6 long period sensors were used for a relatively long period array with a 40-km aperture. After KSRS was certified as an IMS station in 2006 by Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), Korea Institute of Geoscience and Mineral Resources (KIGAM) which is the Korea National Data Center started to take over responsibilities on the operation and maintenance of KSRS from AFTAC. In April of 2014, KIGAM installed an infrasound array, KSIAR, on the existing four short period seismic stations of KSRS, the sites KS05, KS06, KS07 and KS16. The collocated KSIAR changed KSRS from a seismic array into a seismo-acoustic array. The aperture of KSIAR is 3.3 km. KSIAR also has a 100-m small aperture infrasound array at KS07. The infrasound data from KSIAR except that from the site KS06 is being transmitted in real time to KIGAM with VPN and internet line. An initial analysis on seismo-acoustic signals originated from local and regional distance ranges has been performed since May 2014. The analysis with the utilization of an array process called Progressive Multi-Channel Correlation (PMCC) detected seismo-acoustic signals caused by various sources including small explosions in relation to constructing local tunnels and roads. Some of them were not found in the list of automatic bulletin of KIGAM. The seismo-acoustic signals recorded by KSIAR are supplying a useful information for discriminating local and regional man-made events from natural events.

  7. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives.

    ERIC Educational Resources Information Center

    Hu, Li-tze; Bentler, Peter M.

    1999-01-01

    The adequacy of "rule of thumb" conventional cutoff criteria and several alternatives for fit indices in covariance structure analysis was evaluated through simulation. Analyses suggest that, for all recommended fit indexes except one, a cutoff criterion greater than (or sometimes smaller than) the conventional rule of thumb is required…

  8. 36. FLOAT WELL AND PIPE ENCASEMENT EAST CUTOFF WALL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. FLOAT WELL AND PIPE ENCASEMENT - EAST CUTOFF WALL, REINFORCEMENT DETAILS. Sheet A-17, October, 1940. File no. SA 342/2. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  9. Critical period for acoustic preference in mice

    PubMed Central

    Yang, Eun-Jin; Lin, Eric W.; Hensch, Takao K.

    2012-01-01

    Preference behaviors are often established during early life, but the underlying neural circuit mechanisms remain unknown. Adapting a unique nesting behavior assay, we confirmed a “critical period” for developing music preference in C57BL/6 mice. Early music exposure between postnatal days 15 and 24 reversed their innate bias for silent shelter, which typically could not be altered in adulthood. Instead, exposing adult mice treated acutely with valproic acid or carrying a targeted deletion of the Nogo receptor (NgR−/−) unmasked a strong plasticity of preference consistent with a reopening of the critical period as seen in other systems. Imaging of cFos expression revealed a prominent neuronal activation in response to the exposed music in the prelimbic and infralimbic medial prefrontal cortex only under conditions of open plasticity. Neither behavioral changes nor selective medial prefrontal cortex activation was observed in response to pure tone exposure, indicating a music-specific effect. Open-field center crossings were increased concomitant with shifts in music preference, suggesting a potential anxiolytic effect. Thus, music may offer both a unique window into the emotional state of mice and a potentially efficient assay for molecular “brakes” on critical period plasticity common to sensory and higher order brain areas. PMID:23045690

  10. Publications in acoustic and noise control from NASA Langley Research Center during 1940-1979. [bibliographies

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1980-01-01

    Reference lists of approximately 900 published Langley Research Center reports in various areas of acoustics and noise control for the period 1940-1979 are presented. Specific topic areas covered include: duct acoustics; propagation and operations; rotating blade noise; jet noise; sonic boom; flow surface interaction noise; structural response/interior noise; human response; and noise prediction.

  11. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  12. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    PubMed

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  13. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults

    PubMed Central

    Papalambros, Nelly A.; Santostasi, Giovanni; Malkani, Roneil G.; Braun, Rosemary; Weintraub, Sandra; Paller, Ken A.; Zee, Phyllis C.

    2017-01-01

    Acoustic stimulation methods applied during sleep in young adults can increase slow wave activity (SWA) and improve sleep-dependent memory retention. It is unknown whether this approach enhances SWA and memory in older adults, who generally have reduced SWA compared to younger adults. Additionally, older adults are at risk for age-related cognitive impairment and therefore may benefit from non-invasive interventions. The aim of this study was to determine if acoustic stimulation can increase SWA and improve declarative memory in healthy older adults. Thirteen participants 60–84 years old completed one night of acoustic stimulation and one night of sham stimulation in random order. During sleep, a real-time algorithm using an adaptive phase-locked loop modeled the phase of endogenous slow waves in midline frontopolar electroencephalographic recordings. Pulses of pink noise were delivered when the upstate of the slow wave was predicted. Each interval of five pulses (“ON interval”) was followed by a pause of approximately equal length (“OFF interval”). SWA during the entire sleep period was similar between stimulation and sham conditions, whereas SWA and spindle activity were increased during ON intervals compared to matched periods during the sham night. The increases in SWA and spindle activity were sustained across almost the entire five-pulse ON interval compared to matched sham periods. Verbal paired-associate memory was tested before and after sleep. Overnight improvement in word recall was significantly greater with acoustic stimulation compared to sham and was correlated with changes in SWA between ON and OFF intervals. Using the phase-locked-loop method to precisely target acoustic stimulation to the upstate of sleep slow oscillations, we were able to enhance SWA and improve sleep-dependent memory storage in older adults, which strengthens the theoretical link between sleep and age-related memory integrity. PMID:28337134

  14. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  15. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Treesearch

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  16. Artillery/mortar type classification based on detected acoustic transients

    NASA Astrophysics Data System (ADS)

    Morcos, Amir; Grasing, David; Desai, Sachi

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  17. Cutoff in Potency Implicates Alcohol Inhibition of N-Methyl-D-Aspartate Receptors in Alcohol Intoxication

    NASA Astrophysics Data System (ADS)

    Peoples, Robert W.; Weight, Forrest F.

    1995-03-01

    As the number of carbon atoms in an aliphatic n-alcohol is increased from one to five, intoxicating potency, lipid solubility, and membrane lipid disordering potency all increase in a similar exponential manner. However, the potency of aliphatic n-alcohols for producing intoxication reaches a maximum at six to eight carbon atoms and then decreases. The molecular basis of this "cutoff" effect is not understood, as it is not correlated with either the lipid solubility or the membrane disordering potency of the alcohols, which continue to increase exponentially. Since it has been suggested that inhibition of N-methyl-D-aspartate (NMDA) receptors by alcohols may play a role in alcohol intoxication, we investigated whether a series of aliphatic n-alcohols would exhibit a cutoff in potency for inhibition of NMDA receptors. We found that although potency for inhibition of NMDA receptors increased exponentially for alcohols with one to five carbon atoms, potency for inhibition of NMDA receptors reached a maximum at six to eight carbon atoms and then abruptly disappeared. This cutoff for alcohol inhibition of NMDA receptors is consistent with an interaction of the alcohols with a hydrophobic pocket on the receptor protein. In addition, the similarity of the cutoffs for alcohol inhibition of NMDA receptors and alcohol intoxication suggests that the cutoff for NMDA receptor inhibition may contribute to the cutoff for alcohol intoxication, which is consistent with an important role of NMDA receptors in alcohol intoxication.

  18. Cosmic Rays In The Magnetosphere, 2. Apparent Cut-off Rigidities and Coupling Functions

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Danilova, O. A.; Iucci, N.; Parisi, M.; Ptitsyna, N. G.; Tyasto, M. I.; Villoresi, G.

    We calculate the apparent cut-off rigidities along the survey Italy-Antarctica-Italy** on the basis of results of Danilova et al. (2001) on trajectory calculations for inclined cut- off rigidities at eight azimuths (through 45?) and five zeniths angles (through 15?) along the survey. For calculations of apparent cut-off rigidities we use also the infor- mation on integral multiplicities of secondary neutrons in dependence of zenith angle of incident primary cosmic ray particles, as theoretically computed. This information is based on the theoretical calculations of meson-nuclear cascades for primary protons with different rigidities arriving to the EarthSs atmosphere at different zenith angles (Dorman and Pakhomov, 1979). These results have been checked and normalized by using coupling functions obtained in the same survey [Dorman et al. (2000)]. The determined apparent cut-off rigidities have been compared with results obtained by Clem et al. (1997) and with those used by Dorman et al. (2000) computed by using vertical cut-off rigidities, for trajectories especially calculated for the survey. On the basis of the apparent cut-off rigidities along the latitude survey, the coupling functions for neutron monitor and bare neutron counters found by Dorman et al. (2000) are now determined more accurately. **Survey realized with logistic and financial support of the Italian Antarctic Program (PNRA) and with the co-operation of IFSI-CNR. REFERENCES: Clem, J.M., et al. J. Geophys. Res., 102, 26,919 (1997). Danilova, O.A., et al., Latitude survey in December 1996-March 1997, 1. Cut-off rigidities for different azimuth and zenith angles, Paper ST13, This issue (2001) Dorman L.I. and Pakhomov N.I., "The dependence of the integral generation multiplicity of neutron component at various depths in the atmosphere on zenith angle on primary particle in- cidence". Proc. 16-th ICRC, Kyoto, 4, 416-420 (1979) Dorman, L.I., et al., J. Geophys. Res. 105 , 21,047 (2000).

  19. Probability of acoustic transmitter detections by receiver lines in Lake Huron: results of multi-year field tests and simulations

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher M.; Binder, Thomas; Dettmers, John M.; Cooke, Steven J.; Vandergoot, Christopher S.; Krueger, Charles C.

    2016-01-01

    BackgroundAdvances in acoustic telemetry technology have led to an improved understanding of the spatial ecology of many freshwater and marine fish species. Understanding the performance of acoustic receivers is necessary to distinguish between tagged fish that may have been present but not detected and from those fish that were absent from the area. In this study, two stationary acoustic transmitters were deployed 250 m apart within each of four acoustic receiver lines each containing at least 10 receivers (i.e., eight acoustic transmitters) located in Saginaw Bay and central Lake Huron for nearly 2 years to determine whether the probability of detecting an acoustic transmission varied as a function of time (i.e., season), location, and distance between acoustic transmitter and receiver. Distances between acoustic transmitters and receivers ranged from 200 m to >10 km in each line. The daily observed probability of detecting an acoustic transmission was used in simulation models to estimate the probability of detecting a moving acoustic transmitter on a line of receivers.ResultsThe probability of detecting an acoustic transmitter on a receiver 1000 m away differed by month for different receiver lines in Lake Huron and Saginaw Bay but was similar for paired acoustic transmitters deployed 250 m apart within the same line. Mean probability of detecting an acoustic transmitter at 1000 m calculated over the study period varied among acoustic transmitters 250 m apart within a line and differed among receiver lines in Lake Huron and Saginaw Bay. The simulated probability of detecting a moving acoustic transmitter on a receiver line was characterized by short periods of time with decreased detection. Although increased receiver spacing and higher fish movement rates decreased simulated detection probability, the location of the simulated receiver line in Lake Huron had the strongest effect on simulated detection probability.ConclusionsPerformance of receiver

  20. Experimental observation of acoustic sub-harmonic diffraction by a grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jingfei, E-mail: benjamin.jf.liu@gatech.edu; Declercq, Nico F., E-mail: declercqdepatin@gatech.edu

    2014-06-28

    A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described the diffraction phenomena caused by gratings. However, in this work, we show experimental observation of the so-called sub-harmonic diffraction in acoustics that cannot be explained by the classical grating equation. Experiments indicate two physical phenomena causing the effect: internal scattering effects within the corrugation causing a phase shift and nonlinear acoustic effects generating new frequencies. This discovery expandsmore » our current understanding of the diffraction phenomenon, and it also makes it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery reveals also a possibly new technique to study nonlinear acoustics by exploitation of the natural spatial filtering effect inherent to an acoustic diffraction grating.« less

  1. Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Erin Hoffmann

    In this report, we study the correlation between thunderstorm activity and ionospheric gravity and acoustic waves in the low-latitude ionosphere. We use ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World- Wide Lightning Location Network (WWLLN). We find that ionospheric acoustic waves show a strong diurnal pattern in summer, peaking in the pre-midnight time period. However, the peak magnitude does not correspond to thunderstorm area, and the peak time is significantly after the peak in thunderstorm activity. Wintertime acoustic wave activity has no discernable pattern in these data. Themore » coverage area of ionospheric gravity waves in the summer was found to increase with increasing thunderstorm activity. Wintertime gravity wave activity has an observable diurnal pattern unrelated to thunderstorm activity. These findings show that while thunderstorms are not the only, or dominant source of ionospheric perturbations at low-latitudes, they do have an observable effect on gravity wave activity and could be influential in acoustic wave activity.« less

  2. Minority game with arbitrary cutoffs

    NASA Astrophysics Data System (ADS)

    Johnson, N. F.; Hui, P. M.; Zheng, Dafang; Tai, C. W.

    1999-07-01

    We study a model of a competing population of N adaptive agents, with similar capabilities, repeatedly deciding whether to attend a bar with an arbitrary cutoff L. Decisions are based upon past outcomes. The agents are only told whether the actual attendance is above or below L. For L∼ N/2, the game reproduces the main features of Challet and Zhang's minority game. As L is lowered, however, the mean attendances in different runs tend to divide into two groups. The corresponding standard deviations for these two groups are very different. This grouping effect results from the dynamical feedback governing the game's time-evolution, and is not reproduced if the agents are fed a random history.

  3. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  4. Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7

    NASA Astrophysics Data System (ADS)

    Walker, R.

    1984-12-01

    The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.

  5. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  6. Tunable two-dimensional acoustic meta-structure composed of funnel-shaped unit cells with multi-band negative acoustic property

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin; Kim, Boseung; Min, Dongki; Park, Junhong

    2015-10-01

    This paper presents a two-dimensional heat-exhaust and sound-proof acoustic meta-structure exhibiting tunable multi-band negative effective mass density. The meta-structure was composed of periodic funnel-shaped units in a square lattice. Each unit cell operates simultaneously as a Helmholtz resonator (HR) and an extended pipe chamber resonator (EPCR), leading to a negative effective mass density creating bandgaps for incident sound energy dissipation without transmission. This structure allowed large heat-flow through the cross-sectional area of the extended pipe since the resonance was generated by acoustic elements without using solid membranes. The pipes were horizontally directed to a flow source to enable small flow resistance for cooling. Measurements of the sound transmission were performed using a two-load, four-microphone method for a unit cell and small reverberation chamber for two-dimensional panel to characterize the acoustic performance. The effective mass density showed significant frequency dependent variation exhibiting negative values at the specific bandgaps, while the effective bulk modulus was not affected by the resonator. Theoretical models incorporating local resonances in the multiple resonator units were proposed to analyze the noise reduction mechanism. The acoustic meta-structure parameters to create broader frequency bandgaps were investigated using the theoretical model. The negative effective mass density was calculated to investigate the creation of the bandgaps. The effects of design parameters such as length, cross-sectional area, and volume of the HR; length and cross-sectional area of the EPCR were analyzed. To maximize the frequency band gap, the suggested acoustic meta-structure panel, small neck length, and cross-sectional area of the HR, large EPCR length was advantageous. The bandgaps became broader when the two resonant frequencies were similar.

  7. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    NASA Astrophysics Data System (ADS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  8. Broadband acoustic focusing by Airy-like beams based on acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Chen, Di-Chao; Zhu, Xing-Feng; Wei, Qi; Wu, Da-Jian; Liu, Xiao-Jun

    2018-01-01

    An acoustic metasurface (AM) composed of space-coiling subunits is proposed to generate acoustic Airy-like beams (ALBs) by manipulating the transmitted acoustic phase. The self-accelerating, self-healing, and non-diffracting features of ALBs are demonstrated using finite element simulations. We further employ two symmetrical AMs to realize two symmetrical ALBs, resulting in highly efficient acoustic focusing. At the working frequency, the focal intensity can reach roughly 20 times that of the incident wave. It is found that the highly efficient acoustic focusing can circumvent obstacles in the propagating path and can be maintained in a broad frequency bandwidth. In addition, simply changing the separation between the two AMs can modulate the focal length of the proposed AM lens. ALBs generated by AMs and the corresponding AM lens may benefit applications in medical ultrasound imaging, biomedical therapy, and particle trapping and manipulation.

  9. Study of Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  10. Cut-off characterisation of energy spectra of bright Fermi sources: Current instrument limits and future possibilities

    NASA Astrophysics Data System (ADS)

    Romoli, Carlo; Taylor, Andrew M.; Aharonian, Felix

    2017-01-01

    The cut-off region of the gamma-ray spectrum of astrophysical sources encodes important information about the acceleration processes producing the parent particle population. For bright AGNs the cut-off happens in an energy range around a few tens of GeV, a region where satellites are limited by their effective area and current ground based telescopes by energy threshold. In the attempt to maximise the statistics, we have looked at two of the brightest AGNs seen by the Fermi-LAT (3C 454.3 and 3C 279) during extremely luminous flares. Our analysis showed the difficulty to obtain good constraints on the cut-off parameters when a power-law with modified exponential cut-off was assumed to fit the SEDs. We discuss the potential of future low-threshold Cherenkov telescope arrays, in particular CTA, showing the impact that a much bigger effective area can have on the determination of spectral parameters in the cut-off region. This preliminary study serves as an example, demonstrating the importance of having good wide-energy coverage around 10 GeV.

  11. Distress or no distress, that's the question: A cutoff point for distress in a working population

    PubMed Central

    van Rhenen, Willem; van Dijk, Frank JH; Schaufeli, Wilmar B; Blonk, Roland WB

    2008-01-01

    Background The objective of the present study is to establish an optimal cutoff point for distress measured with the corresponding scale of the 4DSQ, using the prediction of sickness absence as a criterion. The cutoff point should result in a measure that can be used as a credible selection instrument for sickness absence in occupational health practice and in future studies on distress and mental disorders. Methods Distress is measured using the Four Dimensional Symptom Questionnaire (4DSQ), a 50-item self-report questionnaire, in a working population with and without sickness absence due to distress. Sensitivity and specificity were compared for various potential cutoff points, and a receiver operating characteristics analysis was conducted. Results and conclusion A distress cutoff point of ≥11 was defined. The choice was based on a challenging specificity and negative predictive value and indicates a distress level at which an employee is presumably at risk for subsequent sick leave on psychological grounds. The defined distress cutoff point is appropriate for use in occupational health practice and in studies of distress in working populations. PMID:18205912

  12. Distress or no distress, that's the question: A cutoff point for distress in a working population.

    PubMed

    van Rhenen, Willem; van Dijk, Frank Jh; Schaufeli, Wilmar B; Blonk, Roland Wb

    2008-01-18

    The objective of the present study is to establish an optimal cutoff point for distress measured with the corresponding scale of the 4DSQ, using the prediction of sickness absence as a criterion. The cutoff point should result in a measure that can be used as a credible selection instrument for sickness absence in occupational health practice and in future studies on distress and mental disorders. Distress is measured using the Four Dimensional Symptom Questionnaire (4DSQ), a 50-item self-report questionnaire, in a working population with and without sickness absence due to distress. Sensitivity and specificity were compared for various potential cutoff points, and a receiver operating characteristics analysis was conducted. A distress cutoff point of >/=11 was defined. The choice was based on a challenging specificity and negative predictive value and indicates a distress level at which an employee is presumably at risk for subsequent sick leave on psychological grounds. The defined distress cutoff point is appropriate for use in occupational health practice and in studies of distress in working populations.

  13. Effects of increasing the PSA cutoff to perform additional biomarker tests before prostate biopsy.

    PubMed

    Nordström, Tobias; Adolfsson, Jan; Grönberg, Henrik; Eklund, Martin

    2017-10-03

    Multi-step testing might enhance performance of the prostate cancer diagnostic pipeline. Using PSA >1 ng/ml for first-line risk stratification and the Stockholm 3 Model (S3M) blood-test >10% risk of Gleason Score > 7 prostate cancer to inform biopsy decisions has been suggested. We aimed to determine the effects of changing the PSA cutoff to perform reflex testing with S3M and the subsequent S3M cutoff to recommend prostate biopsy while maintaining the sensitivity to detect Gleason Score ≥ 7 prostate cancer. We used data from the prospective, population-based, paired, diagnostic Stockholm 3 (STHLM3) study with participants invited by date of birth from the Swedish Population Register during 2012-2014. All participants underwent testing with PSA and S3M (a combination of plasma protein biomarkers [PSA, free PSA, intact PSA, hK2, MSMB, MIC1], genetic polymorphisms, and clinical variables [age, family, history, previous prostate biopsy, prostate exam]). Of 47,688 men in the STHLM3 main study, we used data from 3133 men with S3M >10% and prostate biopsy data. Logistic regression models were used to calculate prostate cancer detection rates and proportion saved biopsies. 44.2%, 62.5% and 67.9% of the participants had PSA <1, <1.5 and <1.7 ng/ml, respectively. Increasing the PSA cut-off for additional work-up from 1 ng/ml to 1.5 ng/ml would thus save 18.3% of the performed tests, 4.9% of the biopsies and 1.3% (10/765) of Gleason Grade ≥ 7 cancers would be un-detected. By lowering the S3M cutoff to recommend biopsy, sensitivity to high-grade prostate cancer can be restored, to the cost of increasing the number of performed biopsies modestly. The sensitivity to detect prostate cancer can be maintained when using different PSA cutoffs to perform additional testing. Biomarker cut-offs have implications on number of tests and prostate biopsies performed. A PSA cutoff of 1.5 ng/ml to perform additional testing such as the S3M test might be considered. ISRCTN

  14. Acoustic integrated extinction.

    PubMed

    Norris, Andrew N

    2015-05-08

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122 , 3206-3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  15. Extinction cross-section suppression and active acoustic invisibility cloaking

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-10-01

    Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility.

  16. Chords and harmonies in mixed optical and acoustical stimuli

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius; Dannenberg, Florian; Dörfler, Joachim; Weber, Bernhard; Weyer, Cornelia; Gercke-Hahn, Harald; Freimuth, Steffen; Heucke, Sören; Gutzmann, Holger Ludwig

    2014-09-01

    The paper is a follow up of the work presented in last year's Optics and Music session on the perception of coherence between low frequency power modulated light and periodical acoustic stimuli. The composition of chords and harmonies from power modulated light sources and their effect as stand-alone stimulus and in conjunction with the equivalent acoustic signal is discussed. Of special interest here is the modulation near perceptible flicker frequency. The substitution of acoustical chord components by their optical counterpart and vice versa is investigated. Further, concepts of a training application for trombone players and other instrumentalists are presented: since the mean slide of the trombone does not have fixed positions, the note must be found and two players might influence each other. The possibility of helping them to synchronize by optical stimuli derived from their playing is investigated. Beside possible applications in emotional reinforcing multimedia oriented entertainment and training support for musicians, again implications for occupational medicine are discussed.

  17. Importance of the cutoff value in the quadratic adaptive integrate-and-fire model.

    PubMed

    Touboul, Jonathan

    2009-08-01

    The quadratic adaptive integrate-and-fire model (Izhikevich, 2003 , 2007 ) is able to reproduce various firing patterns of cortical neurons and is widely used in large-scale simulations of neural networks. This model describes the dynamics of the membrane potential by a differential equation that is quadratic in the voltage, coupled to a second equation for adaptation. Integration is stopped during the rise phase of a spike at a voltage cutoff value V(c) or when it blows up. Subsequently the membrane potential is reset, and the adaptation variable is increased by a fixed amount. We show in this note that in the absence of a cutoff value, not only the voltage but also the adaptation variable diverges in finite time during spike generation in the quadratic model. The divergence of the adaptation variable makes the system very sensitive to the cutoff: changing V(c) can dramatically alter the spike patterns. Furthermore, from a computational viewpoint, the divergence of the adaptation variable implies that the time steps for numerical simulation need to be small and adaptive. However, divergence of the adaptation variable does not occur for the quartic model (Touboul, 2008 ) and the adaptive exponential integrate-and-fire model (Brette & Gerstner, 2005 ). Hence, these models are robust to changes in the cutoff value.

  18. Specificities of Acoustic Streaming in Cylindrical Cavity with Increasing Nonlinearity of the Process

    NASA Astrophysics Data System (ADS)

    Gubaidullin, A. A.; Pyatkova, A. V.

    2018-01-01

    This paper presents a numerical study of a gas acoustic streaming in a cylindrical cavity under a vibratory action. The walls of the cavity are considered impermeable and maintained at a constant temperature. The test gas is air. Variations in acoustic streaming and period-average temperature of the gas in the cavity with increasing nonlinearity of the process are shown. The increase in the nonlinearity is caused by an increase in the vibration amplitude.

  19. An optimal cut-off point for the calving interval may be used as an indicator of bovine abortions.

    PubMed

    Bronner, Anne; Morignat, Eric; Gay, Emilie; Calavas, Didier

    2015-10-01

    The bovine abortion surveillance system in France aims to detect as early as possible any resurgence of bovine brucellosis, a disease of which the country has been declared free since 2005. It relies on the mandatory notification and testing of each aborting cow, but under-reporting is high. This research uses a new and simple approach which considers the calving interval (CI) as a "diagnostic test" to determine optimal cut-off point c and estimate diagnostic performance of the CI to identify aborting cows, and herds with multiple abortions (i.e. three or more aborting cows per calving season). The period between two artificial inseminations (AI) was considered as a "gold standard". During the 2006-2010 calving seasons, the mean optimal CI cut-off point for identifying aborting cows was 691 days for dairy cows and 703 days for beef cows. Depending on the calving season, production type and scale at which c was computed (individual or herd), the average sensitivity of the CI varied from 42.6% to 64.4%; its average specificity from 96.7% to 99.7%; its average positive predictive value from 27.6% to 65.4%; and its average negative predictive value from 98.7% to 99.8%. When applied to the French bovine population as a whole, this indicator identified 2-3% of cows suspected to have aborted, and 10-15% of herds suspected of multiple abortions. The optimal cut-off point and CI performance were consistent over calving seasons. By applying an optimal CI cut-off point to the cattle demographics database, it becomes possible to identify herds with multiple abortions, carry out retrospective investigations to find the cause of these abortions and monitor a posteriori compliance of farmers with their obligation to report abortions for brucellosis surveillance needs. Therefore, the CI could be used as an indicator of abortions to help improve the current mandatory notification surveillance system. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Interacting Multiscale Acoustic Vortices as Coherent Excitations in Dust Acoustic Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Lin, Po-Cheng; I, Lin

    2018-03-01

    In this work, using three-dimensional intermittent dust acoustic wave turbulence in a dusty plasma as a platform and multidimensional empirical mode decomposition into different-scale modes in the 2 +1 D spatiotemporal space, we demonstrate the experimental observation of the interacting multiscale acoustic vortices, winding around wormlike amplitude hole filaments coinciding with defect filaments, as the basic coherent excitations for acoustic-type wave turbulence. For different decomposed modes, the self-similar rescaled stretched exponential lifetime histograms of amplitude hole filaments, and the self-similar power spectra of dust density fluctuations, indicate that similar dynamical rules are followed over a wide range of scales. In addition to the intermode acoustic vortex pair generation, propagation, or annihilation, the intra- and intermode interactions of acoustic vortices with the same or opposite helicity, their entanglement and synchronization, are found to be the key dynamical processes in acoustic wave turbulence, akin to the interacting multiscale vortices around wormlike cores observed in hydrodynamic turbulence.

  1. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  2. Perception of power modulation of light in conjunction with acoustic stimulation

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius F.; Weyer, Cornelia; Gercke-Hahn, Harald; Gutzmann, Holger L.; Brahmann, Andre; Rothe, Hendrik

    2013-09-01

    The present paper is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems of occupational medicine concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects which are interesting in the context of Optics and Music. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we questioned if such coherence is perceivable at all. Concept, experimental set-up and first results are discussed in short.

  3. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  4. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  5. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  6. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  7. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H [Albuquerque, NM; Fleming, James G [Albuquerque, NM; Tuck, Melanie R [Albuquerque, NM

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  8. Effect of cutoff radius, long range interaction and temperature controller on thermodynamic properties of fluids: Methanol as an example

    NASA Astrophysics Data System (ADS)

    Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind

    2018-04-01

    The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.

  9. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  10. The acoustic vector sensor: a versatile battlefield acoustics sensor

    NASA Astrophysics Data System (ADS)

    de Bree, Hans-Elias; Wind, Jelmer W.

    2011-06-01

    The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.

  11. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  12. The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.

    PubMed

    Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh

    2015-07-01

    Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry. © The Author(s) 2015.

  13. Biodiversity Sampling Using a Global Acoustic Approach: Contrasting Sites with Microendemics in New Caledonia

    PubMed Central

    Gasc, Amandine; Sueur, Jérôme; Pavoine, Sandrine; Pellens, Roseli; Grandcolas, Philippe

    2013-01-01

    New Caledonia is a Pacific island with a unique biodiversity showing an extreme microendemism. Many species distributions observed on this island are extremely restricted, localized to mountains or rivers making biodiversity evaluation and conservation a difficult task. A rapid biodiversity assessment method based on acoustics was recently proposed. This method could help to document the unique spatial structure observed in New Caledonia. Here, this method was applied in an attempt to reveal differences among three mountain sites (Mandjélia, Koghis and Aoupinié) with similar ecological features and species richness level, but with high beta diversity according to different microendemic assemblages. In each site, several local acoustic communities were sampled with audio recorders. An automatic acoustic sampling was run on these three sites for a period of 82 successive days. Acoustic properties of animal communities were analysed without any species identification. A frequency spectral complexity index (NP) was used as an estimate of the level of acoustic activity and a frequency spectral dissimilarity index (Df) assessed acoustic differences between pairs of recordings. As expected, the index NP did not reveal significant differences in the acoustic activity level between the three sites. However, the acoustic variability estimated by the index Df, could first be explained by changes in the acoustic communities along the 24-hour cycle and second by acoustic dissimilarities between the three sites. The results support the hypothesis that global acoustic analyses can detect acoustic differences between sites with similar species richness and similar ecological context, but with different species assemblages. This study also demonstrates that global acoustic methods applied at broad spatial and temporal scales could help to assess local biodiversity in the challenging context of microendemism. The method could be deployed over large areas, and could help to compare

  14. Biodiversity sampling using a global acoustic approach: contrasting sites with microendemics in New Caledonia.

    PubMed

    Gasc, Amandine; Sueur, Jérôme; Pavoine, Sandrine; Pellens, Roseli; Grandcolas, Philippe

    2013-01-01

    New Caledonia is a Pacific island with a unique biodiversity showing an extreme microendemism. Many species distributions observed on this island are extremely restricted, localized to mountains or rivers making biodiversity evaluation and conservation a difficult task. A rapid biodiversity assessment method based on acoustics was recently proposed. This method could help to document the unique spatial structure observed in New Caledonia. Here, this method was applied in an attempt to reveal differences among three mountain sites (Mandjélia, Koghis and Aoupinié) with similar ecological features and species richness level, but with high beta diversity according to different microendemic assemblages. In each site, several local acoustic communities were sampled with audio recorders. An automatic acoustic sampling was run on these three sites for a period of 82 successive days. Acoustic properties of animal communities were analysed without any species identification. A frequency spectral complexity index (NP) was used as an estimate of the level of acoustic activity and a frequency spectral dissimilarity index (Df ) assessed acoustic differences between pairs of recordings. As expected, the index NP did not reveal significant differences in the acoustic activity level between the three sites. However, the acoustic variability estimated by the index Df , could first be explained by changes in the acoustic communities along the 24-hour cycle and second by acoustic dissimilarities between the three sites. The results support the hypothesis that global acoustic analyses can detect acoustic differences between sites with similar species richness and similar ecological context, but with different species assemblages. This study also demonstrates that global acoustic methods applied at broad spatial and temporal scales could help to assess local biodiversity in the challenging context of microendemism. The method could be deployed over large areas, and could help to

  15. Hybrid Electrostatic/Acoustic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won K.; Trinh, Eugene H.; Chung, Sang K.; Elleman, Daniel D.

    1987-01-01

    Because electrostatic and acoustic forces independent of each other, hybrid levitator especially suitable for studies of drop dynamics. Like all-acoustic or all-electrostatic systems, also used in studies of containerless material processing. Vertical levitating force applied to sample by upper and lower electrodes. Torques or vibrational forces in horizontal plane applied by acoustic transducers. Electrically charged water drop about 4 mm in diameter levitated electrostatically and rotated acoustically until it assumed dumbell shape and broke apart.

  16. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  17. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  18. 27. SPILLWAY CHANNEL: PLAN AND SECTIONS OF CRIB CUTOFF. Sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. SPILLWAY CHANNEL: PLAN AND SECTIONS OF CRIB CUTOFF. Sheet S-27, May, 1939. File no. SA 342/36. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  19. Review of Progress in Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2018-04-01

    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  20. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com; Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235; Pal, Nikhil

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, usingmore » the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.« less

  1. Identification of cutoff points for Homeostatic Model Assessment for Insulin Resistance index in adolescents: systematic review

    PubMed Central

    de Andrade, Maria Izabel Siqueira; Oliveira, Juliana Souza; Leal, Vanessa Sá; da Lima, Niedja Maria Silva; Costa, Emília Chagas; de Aquino, Nathalia Barbosa; de Lira, Pedro Israel Cabral

    2016-01-01

    Abstract Objective: To identify cutoff points of the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index established for adolescents and discuss their applicability for the diagnosis of insulin resistance in Brazilian adolescents. Data source: A systematic review was performed in the PubMed, Lilacs and SciELO databases, using the following descriptors: "adolescents", "insulin resistance" and "Receiver Operating Characteristics Curve". Original articles carried out with adolescents published between 2005 and 2015 in Portuguese, English or Spanish languages, which included the statistical analysis using Receiver Operating Characteristics Curve to determine the index cutoff (HOMA-IR) were included. Data synthesis: A total of 184 articles were identified and after the study phases were applied, seven articles were selected for the review. All selected studies established their cutoffs using a Receiver Operating Characteristics Curve, with the lowest observed cutoff of 1.65 for girls and 1.95 for boys and the highest of 3.82 for girls and 5.22 for boys. Of the studies analyzed, one proposed external validity, recommending the use of the HOMA-IR cutoff>2.5 for both genders. Conclusions: The HOMA-IR index constitutes a reliable method for the detection of insulin resistance in adolescents, as long as it uses cutoffs that are more adequate for the reality of the study population, allowing early diagnosis of insulin resistance and enabling multidisciplinary interventions aiming at health promotion of this population. PMID:26559605

  2. [Identification of cutoff points for Homeostatic Model Assessment for Insulin Resistance index in adolescents: systematic review].

    PubMed

    Andrade, Maria Izabel Siqueira de; Oliveira, Juliana Souza; Leal, Vanessa Sá; Lima, Niedja Maria da Silva; Costa, Emília Chagas; Aquino, Nathalia Barbosa de; Lira, Pedro Israel Cabral de

    2016-06-01

    To identify cutoff points of the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index established for adolescents and discuss their applicability for the diagnosis of insulin resistance in Brazilian adolescents. A systematic review was performed in the PubMed, Lilacs and SciELO databases, using the following descriptors: "Adolescents", "insulin resistance" and "ROC curve". Original articles carried out with adolescents published between 2005 and 2015 in Portuguese, English or Spanish languages, which included the statistical analysis using ROC curve to determine the index cutoff (HOMA-IR) were included. A total of 184 articles were identified and after the study phases were applied, seven articles were selected for the review. All selected studies established their cutoffs using a ROC curve, with the lowest observed cutoff of 1.65 for girls and 1.95 for boys and the highest of 3.82 for girls and 5.22 for boys. Of the studies analyzed, one proposed external validity, recommending the use of the HOMA-IR cutoff >2.5 for both genders. The HOMA-IR index constitutes a reliable method for the detection of insulin resistance in adolescents, as long as it uses cutoffs that are more adequate for the reality of the study population, allowing early diagnosis of insulin resistance and enabling multidisciplinary interventions aiming at health promotion of this population. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  3. Cut-off characterisation of energy spectra of bright fermi sources: Current instrument limits and future possibilities

    NASA Astrophysics Data System (ADS)

    Romoli, C.; Taylor, A. M.; Aharonian, F.

    2017-02-01

    In this paper some of the brightest GeV sources observed by the Fermi-LAT were analysed, focusing on their spectral cut-off region. The sources chosen for this investigation were the brightest blazar flares of 3C 454.3 and 3C 279 and the Vela pulsar with a reanalysis with the latest Fermi-LAT software. For the study of the spectral cut-off we first explored the Vela pulsar spectrum, whose statistics in the time interval of the 3FGL catalog allowed strong constraints to be obtained on the parameters. We subsequently performed a new analysis of the flaring blazar SEDs. For these sources we obtained constraints on the cut-off parameters under the assumption that their underlying spectral distribution is described by a power-law with a stretched exponential cut-off. We then highlighted the significant potential improvements on such constraints by observations with next generation ground based Cherenkov telescopes, represented in our study by the Cherenkov Telescope Array (CTA). Adopting currently available simulations for this future observatory, we demonstrate the considerable improvement in cut-off constraints achievable by observations with this new instrument when compared with that achievable by satellite observations.

  4. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  5. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  6. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    PubMed

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  7. The Interaction of Temporal and Spectral Acoustic Information with Word Predictability on Speech Intelligibility

    NASA Astrophysics Data System (ADS)

    Shahsavarani, Somayeh Bahar

    High-level, top-down information such as linguistic knowledge is a salient cortical resource that influences speech perception under most listening conditions. But, are all listeners able to exploit these resources for speech facilitation to the same extent? It was found that children with cochlear implants showed different patterns of benefit from contextual information in speech perception compared with their normal-haring peers. Previous studies have discussed the role of non-acoustic factors such as linguistic and cognitive capabilities to account for this discrepancy. Given the fact that the amount of acoustic information encoded and processed by auditory nerves of listeners with cochlear implants differs from normal-hearing listeners and even varies across individuals with cochlear implants, it is important to study the interaction of specific acoustic properties of the speech signal with contextual cues. This relationship has been mostly neglected in previous research. In this dissertation, we aimed to explore how different acoustic dimensions interact to affect listeners' abilities to combine top-down information with bottom-up information in speech perception beyond the known effects of linguistic and cognitive capacities shown previously. Specifically, the present study investigated whether there were any distinct context effects based on the resolution of spectral versus slowly-varying temporal information in perception of spectrally impoverished speech. To that end, two experiments were conducted. In both experiments, a noise-vocoded technique was adopted to generate spectrally-degraded speech to approximate acoustic cues delivered to listeners with cochlear implants. The frequency resolution was manipulated by varying the number of frequency channels. The temporal resolution was manipulated by low-pass filtering of amplitude envelope with varying low-pass cutoff frequencies. The stimuli were presented to normal-hearing native speakers of American

  8. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    PubMed

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  9. Acoustic analysis of trill sounds.

    PubMed

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.

  10. Millimeter waves: acoustic and electromagnetic.

    PubMed

    Ziskin, Marvin C

    2013-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. Copyright © 2012 Wiley Periodicals, Inc.

  11. Chromospheric heating

    NASA Technical Reports Server (NTRS)

    Kalkofen, Wolfgang

    1989-01-01

    The solar chromosphere is identified with the atmosphere inside magnetic flux tubes. Between the temperature minimum and the 7000 K level, the chromosphere in the bright points of the quiet sun is heated by large-amplitude, long-period, compressive waves with periods mainly between 2 and 4 minutes. These waves do not observe the cutoff condition according to which acoustic waves with periods longer than 3 minutes do not propagate vertically in the upper solar photosphere. It is concluded that the long-period waves probably supply all the energy required for the heating of the bright points in the quiet solar chromosphere.

  12. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. High temperature acoustic and hybrid microwave/acoustic levitators for materials processing

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin

    1990-01-01

    The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.

  14. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  15. Research on Acoustical Scattering, Diffraction Catastrophes, Optics of Bubbles, Photoacoustics, and Acoustical Phase Conjugation.

    DTIC Science & Technology

    1987-09-15

    optical levitation of bubbles; D. Acoustical and optical diffraction catastrophes (theory and optical simulation of transverse cusps, experiments with...35 C. Optical Levitation of Bubbles in Water by the Radiation Pressure of a Laser Beam: An Acoustically Quiet Levitator ...radiation pressure of a laser beam: an acoustically quiet levitator ," J. Acoust . Soc. Am. (submitted July 1987). C. Books (and sections thereof) Published

  16. Accuracy and adequacy of waist circumference cut-off points currently recommended in Brazilian adults.

    PubMed

    Vianna, Carolina Avila; da Silva Linhares, Rogério; Bielemann, Renata Moraes; Machado, Eduardo Coelho; González-Chica, David Alejandro; Matijasevich, Alicia Manitto; Gigante, Denise Petrucci; da Silva Dos Santos, Iná

    2014-04-01

    To evaluate the adequacy and accuracy of cut-off values currently recommended by the WHO for assessment of cardiovascular risk in southern Brazil. Population-based study aimed at determining the predictive ability of waist circumference for cardiovascular risk based on the use of previous medical diagnosis for hypertension, diabetes mellitus and/or dyslipidaemia. Descriptive analysis was used for the adequacy of current cut-off values of waist circumference, receiver operating characteristic curves were constructed and the most accurate criteria according to the Youden index and points of optimal sensitivity and specificity were identified. Pelotas, southern Brazil. Individuals (n 2112) aged ≥20 years living in the city were selected by multistage sampling, since these individuals did not report the presence of previous myocardial infarction, angina pectoris or stroke. The cut-off values currently recommended by WHO were more appropriate in men than women, with overestimation of cardiovascular risk in women. The area under the receiver operating characteristic curve showed moderate predictive ability of waist circumference in men (0.74, 95% CI 0.71, 0.76) and women (0.75, 95% CI 0.73, 0.77). The method of optimal sensitivity and specificity showed better performance in assessing the accuracy, identifying the values of 95 cm in men and 87 cm in women as the best cut-off values of waist circumference to assess cardiovascular risk. The cut-off values currently recommended for waist circumference are not suitable for women. Longitudinal studies should be conducted to evaluate the consistency of the findings.

  17. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  18. Epidemiological cut-off values for Flavobacterium psychrophilum MIC data generated by a standard test protocol.

    PubMed

    Smith, P; Endris, R; Kronvall, G; Thomas, V; Verner-Jeffreys, D; Wilhelm, C; Dalsgaard, I

    2016-02-01

    Epidemiological cut-off values were developed for application to antibiotic susceptibility data for Flavobacterium psychrophilum generated by standard CLSI test protocols. The MIC values for ten antibiotic agents against Flavobacterium psychrophilum were determined in two laboratories. For five antibiotics, the data sets were of sufficient quality and quantity to allow the setting of valid epidemiological cut-off values. For these agents, the cut-off values, calculated by the application of the statistically based normalized resistance interpretation method, were ≤16 mg L(-1) for erythromycin, ≤2 mg L(-1) for florfenicol, ≤0.025 mg L(-1) for oxolinic acid (OXO), ≤0.125 mg L(-1) for oxytetracycline and ≤20 (1/19) mg L(-1) for trimethoprim/sulphamethoxazole. For ampicillin and amoxicillin, the majority of putative wild-type observations were 'off scale', and therefore, statistically valid cut-off values could not be calculated. For ormetoprim/sulphadimethoxine, the data were excessively diverse and a valid cut-off could not be determined. For flumequine, the putative wild-type data were extremely skewed, and for enrofloxacin, there was inadequate separation in the MIC values for putative wild-type and non-wild-type strains. It is argued that the adoption of OXO as a class representative for the quinolone group would be a valid method of determining susceptibilities to these agents. © 2014 John Wiley & Sons Ltd.

  19. Publications in acoustics and noise control from the NASA Langley Research Center during 1940-1976

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1977-01-01

    Reference lists are presented of published research papers in various areas of acoustics and noise control for the period 1940-1976. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics; (2) propagation and operations; (3) rotating blade noise; (4) jet noise; (5) sonic boom; (6) flow-surface interaction noise; (7) human response; (8) structural response; (9) prediction; and (10) miscellaneous.

  20. A lightweight vibro-acoustic metamaterial demonstrator: Numerical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Claeys, C.; Deckers, E.; Pluymers, B.; Desmet, W.

    2016-03-01

    In recent years metamaterials gained a lot of attention due to their superior noise and vibration insulation properties, be it at least in some targeted and tuneable frequency ranges, referred to as stopbands. These are frequency zones for which free wave propagation is prevented throughout the metamaterial, resulting in frequency zones of pronounced wave attenuation. Metamaterials are achieved due to addition of an, often periodic, grid of resonant structures to a host material or structure. The interaction between resonant inclusions and host structure can lead to a performance which is superior to the ones of any of the constituent materials. A key element in this concept is that waves can be affected by incorporating structural resonant elements of sub-wavelength sizes, i.e. features that are actually smaller than the wavelength of the waves to be affected. This paves the way towards compact and light vibro-acoustic solutions in the lower frequency ranges. This paper discusses the numerical design and experimental validation of acoustic insulation based on the concept of metamaterials: a hollow core periodic sandwich structure with added local resonant structures. In order to investigate the sensitivity to specific parameters in the metamaterial design and the robustness of the design, a set of variations on the nominal design are investigated. The stop bands are numerically predicted through unit cell modelling after which a full vibro-acoustic finite element model is applied to predict the insertion loss of the demonstrator. The results of these analyses are compared with measurements; both indicate that this metamaterials concept can be applied to combine light weight, compact volume and good acoustic behaviour.

  1. Hybrid finite-difference/lattice Boltzmann simulations of microchannel and nanochannel acoustic streaming driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Yeo, Leslie Y.

    2018-04-01

    A two-dimensional hybrid numerical method that allows full coupling of the elastic motion in a piezoelectric solid (modeled using a finite-difference time-domain technique) with the resultant compressional flow in a fluid (simulated using a lattice Boltzmann scheme) is developed to study the acoustic streaming that arises in both microchannels and nanochannels under surface acoustic wave (SAW) excitation. In addition to verifying the model through a comparison of the simulations with results from experimental and numerical studies of microchannel and nanochannel flows driven by both standing and traveling SAWs in the literature, we highlight salient features of the flow field that arise and discuss the underlying mechanisms responsible for the flow. In microchannels, boundary layer streaming is the dominant mechanism when the channel height is below the sound wavelength in the liquid, whereas Eckart streaming—arising as a consequence of the attenuation of the sound wave in the liquid—dominates in the form of periodic vortices for larger channel heights. The absence of Eckart streaming and the overlapping of boundary layers in nanochannels with heights below the boundary layer thickness, on the other hand, give rise to a time-averaged dynamic acoustic pressure that results in an inertial-dominant flow, which paradoxically possesses a parabolic-like velocity profile resembling pressure-driven laminar flow. In contrast, if the nanochannel were to be filled instead with air, the significantly lower fluid density leads to a considerable reduction in the dynamic acoustic pressure and hence inertial forcing such that boundary layer streaming once again dominates, asymptotically imposing a slip condition along the channel surface that results in a negative pluglike velocity profile.

  2. Overview of hydro-acoustic current-measurement applications by the U.S. geological survey in Indiana

    USGS Publications Warehouse

    Morlock, Scott E.; Stewart, James A.

    1999-01-01

    The U.S. Geological Survey (USGS) maintains a network of 170 streamflow-gaging stations in Indiana to collect data from which continuous records of river discharges are produced. Traditionally, the discharge record from a station is produced by recording river stage and making periodic discharge measurements through a range of stage, then developing a relation between stage and discharge. Techniques that promise to increase data collection accuracy and efficiency include the use of hydro-acoustic instrumentation to measure river velocities. The velocity measurements are used to compute river discharge. In-situ applications of hydro-acoustic instruments by the USGS in Indiana include acoustic velocity meters (AVM's) at six streamflow-gaging stations and newly developed Doppler velocity meters (DVM's) at two stations. AVM's use reciprocal travel times of acoustic signals to measure average water velocities along acoustic paths, whereas DVM's use the Doppler shift of backscattered acoustic signals to compute water velocities. In addition to the in-situ applications, three acoustic Doppler current profilers (ADCP's) are used to make river-discharge measurements from moving boats at streamflow-gaging stations in Indiana. The USGS has designed and is testing an innovative unmanned platform from which to make ADCP discharge measurements.

  3. Evaluating autonomous acoustic surveying techniques for rails in tidal marshes

    USGS Publications Warehouse

    Stiffler, Lydia L.; Anderson, James T.; Katzner, Todd

    2018-01-01

    There is a growing interest toward the use of autonomous recording units (ARUs) for acoustic surveying of secretive marsh bird populations. However, there is little information on how ARUs compare to human surveyors or how best to use ARU data that can be collected continuously throughout the day. We used ARUs to conduct 2 acoustic surveys for king (Rallus elegans) and clapper rails (R. crepitans) within a tidal marsh complex along the Pamunkey River, Virginia, USA, during May–July 2015. To determine the effectiveness of an ARU in replacing human personnel, we compared results of callback point‐count surveys with concurrent acoustic recordings and calculated estimates of detection probability for both rail species combined. The success of ARUs at detecting rails that human observers recorded decreased with distance (P ≤ 0.001), such that at <25 m, 90.3% of human‐recorded rails also were detected by the ARU, but at >75 m, only 34.0% of human‐detected rails were detected by the ARU. To determine a subsampling scheme for continuous ARU data that allows for effective surveying of presence and call rates of rails, we used ARUs to conduct 15 continuous 48‐hr passive surveys, generating 720 hr of recordings. We established 5 subsampling periods of 5, 10, 15, 30, and 45 min to evaluate ARU‐based presence and vocalization detections of rails compared with each of the full 60‐min sampling of ARU‐based detection of rails. All subsampling periods resulted in different (P ≤ 0.001) detection rates and unstandardized vocalization rates compared with the hourly sampling period. However, standardized vocalization counts from the 30‐min subsampling period were not different from vocalization counts of the full hourly sampling period. When surveying rail species in estuarine environments, species‐, habitat‐, and ARU‐specific limitations to ARU sampling should be considered when making inferences about abundances and distributions from ARU

  4. Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response.

    PubMed

    Fazenda, Bruno; Scarre, Chris; Till, Rupert; Pasalodos, Raquel Jiménez; Guerra, Manuel Rojo; Tejedor, Cristina; Peredo, Roberto Ontañón; Watson, Aaron; Wyatt, Simon; Benito, Carlos García; Drinkall, Helen; Foulds, Frederick

    2017-09-01

    During the 1980 s, acoustic studies of Upper Palaeolithic imagery in French caves-using the technology then available-suggested a relationship between acoustic response and the location of visual motifs. This paper presents an investigation, using modern acoustic measurement techniques, into such relationships within the caves of La Garma, Las Chimeneas, La Pasiega, El Castillo, and Tito Bustillo in Northern Spain. It addresses methodological issues concerning acoustic measurement at enclosed archaeological sites and outlines a general framework for extraction of acoustic features that may be used to support archaeological hypotheses. The analysis explores possible associations between the position of visual motifs (which may be up to 40 000 yrs old) and localized acoustic responses. Results suggest that motifs, in general, and lines and dots, in particular, are statistically more likely to be found in places where reverberation is moderate and where the low frequency acoustic response has evidence of resonant behavior. The work presented suggests that an association of the location of Palaeolithic motifs with acoustic features is a statistically weak but tenable hypothesis, and that an appreciation of sound could have influenced behavior among Palaeolithic societies of this region.

  5. The experimental determination of atmospheric absorption from aircraft acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Oncley, P. B.

    1971-01-01

    A method for determining atmospheric absorption coefficients from acoustic flight test data is presented. Measurements from five series of acoustic flight tests were included in the study. The number of individual flights totaled 24: six Boeing 707 flights performed in May 1969 in connection with the turbofan nacelle modification program, eight flights from Boeing tests conducted during the same period, and 10 flights of the Boeing 747 airplane. The effects of errors in acoustic, meteorological, and aircraft performance and position measurements are discussed. Tabular data of the estimated sample variance of the data for each test are given for source directivity angles from 75 deg to 120 deg and each 1/3-octave frequency band. Graphic comparisons are made of absorption coefficients derived from ARP 866, using atmospheric profile data, with absorption coefficients determined by the experimental method described in the report.

  6. 26 CFR 1.585-7 - Elective cut-off method of changing from the reserve method of section 585.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 7 2011-04-01 2009-04-01 true Elective cut-off method of changing from the... § 1.585-7 Elective cut-off method of changing from the reserve method of section 585. (a) General rule...)) may elect to use the cut-off method set forth in this section. Any such election must be made at the...

  7. An Expendable Source for Measuring Shallow Water Acoustic Propagation and Geo-Acoustic Bottom Properties

    DTIC Science & Technology

    2015-09-30

    Propagation and Geo -Acoustic Bottom Properties Harry A DeFerrari RSMAS – University of Miami 4600 Rickenbacker Causeway Miami FL. 33149...limited information about the ocean acoustic environment and the geo -acoustic properties of the bottom. The objective here is to measure the pulse...models and estimate the geo -acoustic properties of the bottom by inversion. APPROACH M-sequences have long been the workhorse of basic research

  8. Estimating animal population density using passive acoustics.

    PubMed

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-05-01

    , amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  9. Estimating animal population density using passive acoustics

    PubMed Central

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-01-01

    , amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. PMID:23190144

  10. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  11. Acoustic/infrasonic rocket engine signatures

    NASA Astrophysics Data System (ADS)

    Tenney, Stephen M.; Noble, John M.; Whitaker, Rodney W.; ReVelle, Douglas O.

    2003-09-01

    Infrasonics offers the potential of long-range acoustic detection of explosions, missiles and even sounds created by manufacturing plants. The atmosphere attenuates acoustic energy above 20 Hz quite rapidly, but signals below 10 Hz can propagate to long ranges. Space shuttle launches have been detected infrasonically from over 1000 km away and the Concorde airliner from over 400 km. This technology is based on microphones designed to respond to frequencies from .1 to 300 Hz that can be operated outdoors for extended periods of time with out degrading their performance. The US Army Research Laboratory and Los Alamos National Laboratory have collected acoustic and infrasonic signatures of static engine testing of two missiles. Signatures were collected of a SCUD missile engine at Huntsville, AL and a Minuteman engine at Edwards AFB. The engines were fixed vertically in a test stand during the burn. We will show the typical time waveform signals of these static tests and spectrograms for each type. High resolution, 24-bit data were collected at 512 Hz and 16-bit acoustic data at 10 kHz. Edwards data were recorded at 250 Hz and 50 Hz using a Geotech Instruments 24 bit digitizer. Ranges from the test stand varied from 1 km to 5 km. Low level and upper level meteorological data was collected to provide full details of atmospheric propagation during the engine test. Infrasonic measurements were made with the Chaparral Physics Model 2 microphone with porous garden hose attached for wind noise suppression. A B&K microphone was used for high frequency acoustic measurements. Results show primarily a broadband signal with distinct initiation and completion points. There appear to be features present in the signals that would allow identification of missile type. At 5 km the acoustic/infrasonic signal was clearly present. Detection ranges for the types of missile signatures measured will be predicted based on atmospheric modeling. As part of an experiment conducted by ARL

  12. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  13. Broadband acoustic wave propagation across sloping topography covered by sea ice

    NASA Astrophysics Data System (ADS)

    Badiey, M.; Wan, L.; Eickmeier, J.; Muenchow, A.; Ryan, P. A.

    2017-12-01

    The Canada Basin Acoustic Propagation Experiment (CANAPE) quantifies how sound generated in the deep Basin is received on the continental shelf. The two regimes, deep basin and shallow shelves, are separated by a 30-km wide region where the bottom changes from 1000-m to 100-m. This narrow region focuses and traps kinetic energy that surface wind forcing inputs into the ocean over a wide region with periodicities of days to months. As a result, ocean temperature and speed of sound are more variable near sloping topography than they are over either deep basins or shallow shelves. In contrast to companion CANAPE presentations in this session, here we use sound speed as input to predict likely propagation paths and transmission losses across the continental slope with a two-dimensional parabolic model (2D PE). Intensity fluctuations due to the changing bathymetry, water column oceanography, and the scattering from ice cover for broadband signals are checked against measured broadband acoustic signals that were collected simultaneously with the oceanographic measurements for a long period. Differences between measured and calculated transmission loss can be the result of out of plane acoustic paths requiring 3D PE modeling for future studies. [Work supported by ONR code 322 OA].

  14. Acoustic Neuroma Association

    MedlinePlus

    ... Gold Sponsor NSPC Brain & Spine Surgery Learn More Gold Sponsor University of Colorado Acoustic Neuroma Program and Rocky Mountain Gamma Knife Center Learn More Gold Sponsor USC Acoustic Neuroma Center Learn More Gold ...

  15. Distribution in energies and acceleration times in DSA, and their effect on the cut-off

    NASA Astrophysics Data System (ADS)

    Brooks, A.; Protheroe, R. J.

    2001-08-01

    We have conducted Monte Carlo simulations of diffusive shock acceleration (DSA) to determine the distribution of times since injection taken to reach energy E > E0. This distribution of acceleration times for the case of momentum dependent diffusion is compared with that given by Drury and Forman (1983) based on extrapolation of the exact result (Toptygin 1980) for the case of the diffusion coefficient being independent of momentum. As a result of this distribution we find, as suggested by Drury et al. (1999), that Monte Carlo simulations result in smoother cut-offs and pile-ups in spectra of accelerated particles than expected from simple "box model" treatments of shock acceleration (e.g., Protheroe and Stanev 1999, Drury et al. 1999). This is particularly so for the case synchrotron pile-ups, which we find are replaced by a small bump at an energy about a factor of 2 below the expected cut-off, followed by a smooth cut-off with particles extending to energies well beyond the expected cut-off energy.

  16. Carbon Nanotube Underwater Acoustic Thermophone

    DTIC Science & Technology

    2016-09-23

    Attorney Docket No. 300009 1 of 8 A CARBON NANOTUBE UNDERWATER ACOUSTIC THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The...the Invention [0003] The present invention is an acoustically transparent carbon nanotube thermophone. (2) Description of the Prior Art [0004...Traditional acoustic transduction typically begins with the generation of electrical excitation pulsed through an amplifier into an electro- acoustic

  17. Acoustic building infiltration measurement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muehleisen, Ralph T.; Raman, Ganesh

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  18. The accidental (acoustical) tourist

    NASA Astrophysics Data System (ADS)

    Van Kirk, Wayne

    2002-11-01

    The acoustical phenomenon observed at an ancient temple in the Great Ball Court at Chichen Itza was described as ''little short of amazing--an ancient whispering gallery'' by Silvanus G. Morley, leader of the Carnegie Institute's archaeological team that excavated and restored these structures in the 1920s. Since then, many others have experienced the extraordinary acoustics at Chichen Itza and other Maya sites. Despite these reports, archaeologists and acousticians have until recently shown little interest in understanding these phenomena. After experiencing Chichen Itza's remarkable acoustics as a tourist in 1994, the author commenced collecting and disseminating information about acoustical phenomena there and at other Mayan sites, hoping to stimulate interest among archaeologists and acousticians. Were these designs accidental or intentional? If intentional, how was the knowledge obtained? How were acoustical features used? This paper highlights the author's collection of anecdotal reports of mysterious Mayan acoustics (http://http://www.ianlawton.com/pa1.htm<\\/A>), recommended reading for scientists and engineers who wish to pursue this fascinating study. Also recounted are some of the reactions of archaeologists-ranging from curious, helpful, and insightful to humorous and appalling--to outsiders' efforts to bring serious scientific attention to the new field of acoustical archaeology.

  19. Developments in Acoustic Metamaterials for Acoustic Ground Cloaks

    NASA Astrophysics Data System (ADS)

    Kerrian, Peter Adam

    The objective of acoustic cloaking is to eliminate both the back scattered and forward scattered acoustic fields by redirecting the incident wave around an object. Acoustic ground cloaks, which conceal an object on a rigid reflecting surface, utilize a linear coordinate transformation to map the flat surface to a void by compressing space into two cloaking regions consisting of a homogeneous anisotropic acoustic metafluid. Transformation acoustics allows for the realization of a coordinate transformation through a reinterpretation of the scale factors as a new material in the original coordinate system. Previous work has demonstrated at least three types of unit cells exhibit homogeneous anisotropic mass density and homogeneous isotropic bulk modulus: alternating layers of homogeneous isotropic fluids, perforated plates and solid inclusions. The primary focus of this dissertation is to demonstrate underwater anisotropic mass density with a solid inclusion unit cell and realize an underwater perforated plate acoustic ground cloak. An in depth analysis into the methods used to characterize the effective material parameters of solid inclusion unit cells with water as the background fluid was performed for both single inclusion unit cells as well as multi-inclusion unit cells. The degree of density anisotropy obtainable for a rigid single inclusion unit cell is limited by the size of the inclusion. However, a greater degree of anisotropy can be achieved by introducing additional inclusions into the unit cell design. For example, including a foam material that is less dense than the background fluid, results in an anisotropic density tensor with one component greater than and one component less than the value of the background fluid. The results of a parametric study determined that for a multi-inclusion unit cell, the effective material parameters can be controlled by the dimensions of the rigid inclusion as well as the material parameters and dimensions of the foam

  20. Current MUAC Cut-Offs to Screen for Acute Malnutrition Need to Be Adapted to Gender and Age: The Example of Cambodia

    PubMed Central

    Fiorentino, Marion; Sophonneary, Prak; Laillou, Arnaud; Whitney, Sophie; de Groot, Richard; Perignon, Marlène; Kuong, Khov; Berger, Jacques; Wieringa, Frank T.

    2016-01-01

    Background Early identification of children <5 yrs with acute malnutrition is a priority. Acute malnutrition is defined by the World Health Organization as a mid-upper-arm circumference (MUAC) <12.5 cm or a weight-for-height Z-score (WHZ) <-2. MUAC is a simple and low-cost indicator to screen for acute malnutrition in communities, but MUAC cut-offs currently recommended by WHO do not identify the majority of children with weight-for-height Z-score (<-2 (moderate malnourished) or r<-3 (severe malnourished). Also, no cut-offs for MUAC are established for children >5 yrs. Therefore, this study aimed at defining gender and age-specific cut-offs to improve sensitivity of MUAC as an indicator of acute malnutrition. Methods To establish new age and gender-specific MUAC cut-offs, pooled data was obtained for 14,173 children from 5 surveys in Cambodia (2011–2013). Sensitivity, false positive rates, and areas under receiver-operator characteristic curves (AUC) were calculated using wasting for children <5yrs and thinness for children ≥5yrs as gold standards. Among the highest values of AUC, the cut-off with the highest sensitivity and a false positive rate ≤33% was selected as the optimal cut-off. Results Optimal cut-off values increased with age. Boys had higher cut-offs than girls, except in the 8–10.9 yrs age range. In children <2yrs, the cut-off was lower for stunted children compared to non stunted children. Sensitivity of MUAC to identify WHZ<-2 and <-3 z-scores increased from 24.3% and 8.1% to >80% with the new cut-offs in comparison with the current WHO cut-offs. Conclusion Gender and age specific MUAC cut-offs drastically increased sensitivity to identify children with WHZ-score <-2 z-scores. International reference of MUAC cut-offs by age group and gender should be established to screen for acute malnutrition at the community level. PMID:26840899

  1. Diagnosing Acoustic Neuroma

    MedlinePlus

    ... Other symptoms of the acoustic neuroma include asymmetric tinnitus (ringing in the ear), dizziness and disequilibrium (difficulty ... than 80% of patients having acoustic neuromas have tinnitus. Tinnitus is usually described as hissing, ringing, buzzing ...

  2. Using multiple gears to assess acoustic detectability and biomass of fish species in lake superior

    USGS Publications Warehouse

    Yule, D.L.; Adams, J.V.; Stockwell, J.D.; Gorman, O.T.

    2007-01-01

    Recent predator demand and prey supply studies suggest that an annual daytime bottom trawl survey of Lake Superior underestimates prey fish biomass. A multiple-gear (acoustics, bottom trawl, and midwater trawl) nighttime survey has been recommended, but before abandoning a long-term daytime survey the effectiveness of night sampling of important prey species must be verified. We sampled three bottom depths (30, 60, and 120 m) at a Lake Superior site where the fish community included all commercially and ecologically important species. Day and night samples were collected within 48 h at all depths during eight different periods (one new and one full moon period during both early summer and late summer to early fall over 2 years). Biomass of demersal and benthic species was higher in night bottom trawl samples than in day bottom trawl samples. Night acoustic collections showed that pelagic fish typically occupied water cooler than 15°C and light levels less than 0.001 lx. Using biomass in night bottom trawls and acoustic biomass above the bottom trawl path, we calculated an index of acoustic detectability for each species. Ciscoes Coregonus artedi, kiyis C. kiyi, and rainbow smeltOsmerus mordax left the bottom at night, whereas bloaters C. hoyi stayed nearer the bottom. We compared the biomass of important prey species estimated with two survey types: day bottom trawls and night estimates of the entire water column (bottom trawl biomass plus acoustic biomass). The biomass of large ciscoes (>200 mm) was significantly greater when measured at night than when measured during daylight, but the differences for other sizes of important species did not vary significantly by survey type. Nighttime of late summer is a period when conditions for biomass estimation are largely invariant, and all important prey species can be sampled using a multiple-gear approach.

  3. Acoustic field modulation in regenerators

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  4. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  5. Scattered acoustic field above a grating of parallel rectangular cavities

    NASA Astrophysics Data System (ADS)

    Khanfir, A.; Faiz, A.; Ducourneau, J.; Chatillon, J.; Skali Lami, S.

    2013-02-01

    The aim of this research project was to predict the sound pressure above a wall facing composed of N parallel rectangular cavities. The diffracted acoustic field is processed by generalizing the Kobayashi Potential (KP) method used for determining the electromagnetic field diffracted by a rectangular cavity set in a thick screen. This model enables the diffracted field to be expressed in modal form. Modal amplitudes are subsequently calculated using matrix equations obtained by enforcing boundary conditions. Solving these equations allows the determination of the total reflected acoustic field above the wall facing. This model was compared with experimental results obtained in a semi-anechoic room for a single cavity, a periodic array of three rectangular cavities and an aperiodic grating of nine rectangular cavities of different size and spacing. These facings were insonified by an incident spherical acoustic field, which was decomposed into plane waves. The validity of this model is supported by the agreement between the numerical and experimental results observed.

  6. Acoustics of a planetarium

    NASA Astrophysics Data System (ADS)

    Shepherd, Micah; Leishman, Timothy W.; Utami, Sentagi

    2005-09-01

    Brigham Young University has recently constructed a planetarium with a 38-ft.-diameter dome. The facility also serves as a classroom. Since planetariums typically have poor acoustics due to their domed ceiling structures, acoustical recommendations were requested before its construction. The recommendations were made in an attempt to create an acceptable listening environment for lectures and other listening events. They were based in part on computer models and auralizations intended to predict the effectiveness of several acoustical treatments on the outer walls and on the dome itself. The recommendations were accepted and the planetarium was completed accordingly. A series of acoustical measurements was subsequently made in the room and the resulting acoustical parameters were mapped over the floor plan. This paper discusses these results and compares them with the predictions of the computer models.

  7. The effect of the configuration of a single electrode corona discharge on its acoustic characteristics

    NASA Astrophysics Data System (ADS)

    Zhu, Xinlei; Zhang, Liancheng; Huang, Yifan; Wang, Jin; Liu, Zhen; Yan, Keping

    2017-07-01

    A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that of arc discharge based systems. A simple electrode structure was investigated in order to improve the electro-acoustic energy efficiency of the spark discharge. Experiments were carried out on an experimental setup with discharge in water driven by a pulsed power source. The voltage-current waveform, acoustic signal and bubble oscillation were recorded when the relative position of the electrode varied. The electro-acoustic energy efficiency was also calculated. The load voltage had a saltation for the invaginated electrode tip, namely an obvious voltage remnant. The more the electrode tip was invaginated, the larger the pressure peaks and first period became. The results show that electrode recessing into the insulating layer is a simple and effective way to improve the electro-acoustic energy efficiency from 2% to about 4%.

  8. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  9. Wireless and acoustic hearing with bone-anchored hearing devices.

    PubMed

    Bosman, Arjan J; Mylanus, Emmanuel A M; Hol, Myrthe K S; Snik, Ad F M

    2015-07-01

    The efficacy of wireless connectivity in bone-anchored hearing was studied by comparing the wireless and acoustic performance of the Ponto Plus sound processor from Oticon Medical relative to the acoustic performance of its predecessor, the Ponto Pro. Nineteen subjects with more than two years' experience with a bone-anchored hearing device were included. Thirteen subjects were fitted unilaterally and six bilaterally. Subjects served as their own control. First, subjects were tested with the Ponto Pro processor. After a four-week acclimatization period performance the Ponto Plus processor was measured. In the laboratory wireless and acoustic input levels were made equal. In daily life equal settings of wireless and acoustic input were used when watching TV, however when using the telephone the acoustic input was reduced by 9 dB relative to the wireless input. Speech scores for microphone with Ponto Pro and for both input modes of the Ponto Plus processor were essentially equal when equal input levels of wireless and microphone inputs were used. Only the TV-condition showed a statistically significant (p <5%) lower speech reception threshold for wireless relative to microphone input. In real life, evaluation of speech quality, speech intelligibility in quiet and noise, and annoyance by ambient noise, when using landline phone, mobile telephone, and watching TV showed a clear preference (p <1%) for the Ponto Plus system with streamer over the microphone input. Due to the small number of respondents with landline phone (N = 7) the result for noise annoyance was only significant at the 5% level. Equal input levels for acoustic and wireless inputs results in equal speech scores, showing a (near) equivalence for acoustic and wireless sound transmission with Ponto Pro and Ponto Plus. The default 9-dB difference between microphone and wireless input when using the telephone results in a substantial wireless benefit when using the telephone. The preference of

  10. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  11. EFFECT OF FEES ON WATER SERVICE CUTOFFS AND PAYMENT DELINQUENCIES

    EPA Science Inventory

    A study was conducted to determine whether increased water and sewer user fees have generated increases in payment delinquencies and service cutoff rates and whether they have created other problems such as increased health hazards. Another objective was to examine the varied use...

  12. Optimal waist circumference cutoff value for defining the metabolic syndrome in postmenopausal Latin American women.

    PubMed

    Blümel, Juan E; Legorreta, Deborah; Chedraui, Peter; Ayala, Felix; Bencosme, Ascanio; Danckers, Luis; Lange, Diego; Espinoza, Maria T; Gomez, Gustavo; Grandia, Elena; Izaguirre, Humberto; Manriquez, Valentin; Martino, Mabel; Navarro, Daysi; Ojeda, Eliana; Onatra, William; Pozzo, Estela; Prada, Mariela; Royer, Monique; Saavedra, Javier M; Sayegh, Fabiana; Tserotas, Konstantinos; Vallejo, Maria S; Zuñiga, Cristina

    2012-04-01

    The aim of this study was to determine an optimal waist circumference (WC) cutoff value for defining the metabolic syndrome (METS) in postmenopausal Latin American women. A total of 3,965 postmenopausal women (age, 45-64 y), with self-reported good health, attending routine consultation at 12 gynecological centers in major Latin American cities were included in this cross-sectional study. Modified guidelines of the US National Cholesterol Education Program, Adult Treatment Panel III were used to assess METS risk factors. Receiver operator characteristic curve analysis was used to obtain an optimal WC cutoff value best predicting at least two other METS components. Optimal cutoff values were calculated by plotting the true-positive rate (sensitivity) against the false-positive rate (1 - specificity). In addition, total accuracy, distance to receiver operator characteristic curve, and the Youden Index were calculated. Of the participants, 51.6% (n = 2,047) were identified as having two or more nonadipose METS risk components (excluding a positive WC component). These women were older, had more years since menopause onset, used hormone therapy less frequently, and had higher body mass indices than women with fewer metabolic risk factors. The optimal WC cutoff value best predicting at least two other METS components was determined to be 88 cm, equal to that defined by the Adult Treatment Panel III. A WC cutoff value of 88 cm is optimal for defining METS in this postmenopausal Latin American series.

  13. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  14. Vowel Acoustic Space Development in Children: A Synthesis of Acoustic and Anatomic Data

    ERIC Educational Resources Information Center

    Vorperian, Houri K.; Kent, Ray D.

    2007-01-01

    Purpose: This article integrates published acoustic data on the development of vowel production. Age specific data on formant frequencies are considered in the light of information on the development of the vocal tract (VT) to create an anatomic-acoustic description of the maturation of the vowel acoustic space for English. Method: Literature…

  15. A test of two theories for the low-frequency cutoffs of nonthermal continuum radiation

    NASA Technical Reports Server (NTRS)

    Shaw, R. R.; Gurnett, D. A.

    1980-01-01

    A discussion and analysis of two theories that differently identify the low-frequency cutoffs of nonthermal continuum radiation are presented. The cold plasma theory and an alternate one proposed by Jones (1976) are compared experimentally with the use of continuum radiation data obtained in the outer magnetosphere by the Imp 6 and ISEE 1 spacecraft. It is found that the characteristics of this specific radiation are consistent with those expected of ordinary and extraordinary mode waves described by the cold plasma theory and it is shown that the cutoff frequencies occur at the local plasma frequency and R = 0 cutoff frequency as proposed by the same theory. The inconsistencies which were found between the Jones theory (1976) and observation are presented, and in addition no evidence is found for a component of continuum radiation propagating in the Z mode in the outer magnetosphere.

  16. Acoustic Levitation With Less Equipment

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  17. Laser acoustic emission thermal technique (LAETT): a technique for generating acoustic emission in dental composites.

    PubMed

    Duray, S J; Lee, S Y; Menis, D L; Gilbert, J L; Lautenschlager, E P; Greener, E H

    1996-01-01

    This study was designed to investigate a new method for generating interfacial debonding between the resin matrix and filler particles of dental composites. A pilot study was conducted to evaluate laser-induced acoustic emission in dental resins filled with varying quantities of particles. Model systems of 50/50 BisGMA/TEGDMA resin reinforced with 0, 25, and 75 wt% 5-10 micrometers silanated BaSiO(6) were analyzed. The sample size was 3.5 mm diameter x 0.25-0.28 mm thick. A continuous wave CO2 laser (Synrad Infrared Gas Laser Model 48-1) was used to heat the composite samples. Acoustic events were detected, recorded and processed by a model 4610 Smart Acoustic Monitor (SAM) with a 1220A preamp (Physical Acoustic Corp.) as a function of laser power. Initially, the acoustic signal from the model composites produced a burst pattern characteristic of fracturing, about 3.7 watts laser power. Acoustic emission increased with laser power up to about 6 watts. At laser powers above 6 watts, the acoustic emission remained constant. The amount of acoustic emission followed the trend: unfilled resin > composite with 25 wt% BaSiO(6) > composite with 75 wt% BaSiO(6). Acoustic emission generated by laser thermal heating is dependent on the weight percent of filler particles in the composite and the amount of laser power. For this reason, laser thermal acoustic emission might be useful as a nondestructive form of analysis of dental composites.

  18. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  19. Variable-Position Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  20. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    NASA Astrophysics Data System (ADS)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However