Science.gov

Sample records for acoustic doppler profiler

  1. Broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Cobb, E.D.

    1993-01-01

    The broad-band acoustic Doppler current profiler is an instrument that determines velocity based on the Doppler principle by reflecting acoustic signals off sediment particles in the water. The instrument is capable of measuring velocity magnitude and direction throughout a water column and of measuring water depth. It is also capable of bottom tracking and can, therefore, keep track of its own relative position as it is moved across a channel. Discharge measurements can be made quickly and, based on limited tests, accurately with this instrument. ?? 1993.

  2. Recent applications of acoustic Doppler current profilers

    USGS Publications Warehouse

    Oberg, K.A.; Mueller, David S.

    1994-01-01

    A Broadband acoustic Doppler current profiler (BB-ADCP) is a new instrument being used by the U.S. Geological Survey (USGS) to measure stream discharge and velocities, and bathymetry. During the 1993 Mississippi River flood, more than 160 high-flow BB-ADCP measurements were made by the USGS at eight locations between Quincy and Cairo, Ill., from July 19 to August 20, 1993. A maximum discharge of 31,400 m3/s was measured at St. Louis, Mo., on August 2, 1993. A BB-ADCP also has been used to measure leakage through three control structures near Chicago, Ill. These measurements are unusual in that the average velocity for the measured section was as low as 0.03 m/s. BB-ADCP's are also used in support of studies of scour at bridges. During the recent Mississippi River flood, BB-ADCP's were used to measure water velocities and bathymetry upstream from, next to, and downstream from bridge piers at several bridges over the Mississippi River. Bathymetry data were collected by merging location data from Global Positioning System (GPS) receivers, laser tracking systems, and depths measured by the BB-ADCP. These techniques for collecting bathymetry data were used for documenting the channel formation downstream from the Miller City levee break and scour near two bridges on the Mississippi River.

  3. Data Quality Control for Vessel Mounted Acoustic Doppler Current Profiler. Application for the Western Mediterranean Sea

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Front, J.; Candela, J.

    1997-01-01

    A systematic Data Quality Checking Protocol for vessel Mounted Acoustic Doppler Current Profiler observations is proposed. Previous-to-acquisition conditions are considered along with simultaneous ones.

  4. Validation of streamflow measurements made with acoustic doppler current profilers

    USGS Publications Warehouse

    Oberg, K.; Mueller, D.S.

    2007-01-01

    The U.S. Geological Survey and other international agencies have collaborated to conduct laboratory and field validations of acoustic Doppler current profiler (ADCP) measurements of streamflow. Laboratory validations made in a large towing basin show that the mean differences between tow cart velocity and ADCP bottom-track and water-track velocities were -0.51 and -1.10%, respectively. Field validations of commercially available ADCPs were conducted by comparing streamflow measurements made with ADCPs to reference streamflow measurements obtained from concurrent mechanical current-meter measurements, stable rating curves, salt-dilution measurements, or acoustic velocity meters. Data from 1,032 transects, comprising 100 discharge measurements, were analyzed from 22 sites in the United States, Canada, Sweden, and The Netherlands. Results of these analyses show that broadband ADCP streamflow measurements are unbiased when compared to the reference discharges regardless of the water mode used for making the measurement. Measurement duration is more important than the number of transects for reducing the uncertainty of the ADCP streamflow measurement. ?? 2007 ASCE.

  5. River Bed Sediment Classification Using Acoustic Doppler Profiler

    NASA Astrophysics Data System (ADS)

    Shields, F. D.

    2008-12-01

    Restoration or rehabilitation of degraded stream and river habitats requires definition of a target condition and preferably post-implementation monitoring to gage progress toward the target. Stream habitat has been characterized by computing statistics based on measurements of water depth and velocity at each point of a horizontal grid. In many cases stream bed type and cover, both qualitatively assessed, were included as additional grid variables. Resultant statistics describing the central tendency, variability and spatial distribution of these three or four variables and their combinations have been used to explain key differences between more- and less-degraded streams and to infer biotic responses. Usually the required data are collected by wading observers, but application to larger rivers is problematic. Collection of water depth and velocity information may be automated across a wide range of stream sizes using an acoustic Doppler profiler (aDp). Herein we suggest that aDp data may also be used to infer bed hardness and thus type by extracting the return signal strength from the bottom track signal and using this information to compute the echo intensity at the bed. A method for computing echo intensity, along with key assumptions is presented. Echo intensity is computed for a range of river environments and related to the size and related characteristics of bed material. Habitat maps for river reaches depicting water depth, velocity and bed type developed from aDp data sets are presented.

  6. Acoustic Doppler Current Profiler Data Processing System manual [ADCP

    USGS Publications Warehouse

    Cote, Jessica M.; Hotchkiss, Frances S.; Martini, Marinna; Denham, Charles R.; revisions by Ramsey, Andree L.; Ruane, Stephen

    2000-01-01

    This open-file report describes the data processing software currently in use by the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), to process time series of acoustic Doppler current data obtained by Teledyne RD Instruments Workhorse model ADCPs. The Sediment Transport Instrumentation Group (STG) at the WHCMSC has a long-standing commitment to providing scientists high quality oceanographic data published in a timely manner. To meet this commitment, STG has created this software to aid personnel in processing and reviewing data as well as evaluating hardware for signs of instrument malfunction. The output data format for the data is network Common Data Form (netCDF), which meets USGS publication standards. Typically, ADCP data are recorded in beam coordinates. This conforms to the USGS philosophy to post-process rather than internally process data. By preserving the original data quality indicators as well as the initial data set, data can be evaluated and reprocessed for different types of analyses. Beam coordinate data are desirable for internal and surface wave experiments, for example. All the code in this software package is intended to run using the MATLAB program available from The Mathworks, Inc. As such, it is platform independent and can be adapted by the USGS and others for specialized experiments with non-standard requirements. The software is continuously being updated and revised as improvements are required. The most recent revision may be downloaded from: http://woodshole.er.usgs.gov/operations/stg/Pubs/ADCPtools/adcp_index.htm The USGS makes this software available at the user?s discretion and responsibility.

  7. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    SciTech Connect

    Sellar, Brian; Harding, Samuel F.; Richmond, Marshall C.

    2015-07-16

    An array of convergent acoustic Doppler velocimeters has been developed and tested for the high resolution measurement of three-dimensional tidal flow velocities in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use diverging acoustic beams emanating from a single instrument. This is achieved using converging acoustic beams with a sample volume at the focal point of 0.03 m3. The array is also able to simultaneously measure three-dimensional velocity components in a profile throughout the water column, and as such is referred to herein as a converging-beam acoustic Doppler profiler (CADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational Alstom 1MW DeepGen-IV Tidal Turbine. This proof-of-concept paper outlines system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of CADP to standard ADP velocity measurements reveals a mean difference of 8 mm/s, standard deviation of 18 mm/s, and order-of-magnitude reduction in realizable length-scale. CADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the CADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved turbulence, resource and structural loading quantification and validation of numerical simulations. Alternative modes of operation have been implemented including noise-reducing bi-static sampling. Since waves are simultaneously measured it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.

  8. Near-Inertial and Tidal Currents Detected with a Vessel Mounted Acoustic Doppler Current Profiler in the Western Mediterranean Sea

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Candela, J.; Font, J.

    1998-01-01

    The Acoustic Doppler Current Profiler (ADCP) combined with accurate navigation provides absolute current velocities which include information from all the frequencies which have a dynamical presence in the ocean.

  9. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  10. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    NASA Astrophysics Data System (ADS)

    Sellar, Brian; Harding, Samuel; Richmond, Marshall

    2015-08-01

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in

  11. Measurement of Turbulence with Acoustic Doppler Current Profilers - Sources of Error and Laboratory Results

    USGS Publications Warehouse

    Nystrom, E.A.; Oberg, K.A.; Rehmann, C.R.; ,

    2002-01-01

    Acoustic Doppler current profilers (ADCPs) provide a promising method for measuring surface-water turbulence because they can provide data from a large spatial range in a relatively short time with relative ease. Some potential sources of errors in turbulence measurements made with ADCPs include inaccuracy of Doppler-shift measurements, poor temporal and spatial measurement resolution, and inaccuracy of multi-dimensional velocities resolved from one-dimensional velocities measured at separate locations. Results from laboratory measurements of mean velocity and turbulence statistics made with two pulse-coherent ADCPs in 0.87 meters of water are used to illustrate several of inherent sources of error in ADCP turbulence measurements. Results show that processing algorithms and beam configurations have important effects on turbulence measurements. ADCPs can provide reasonable estimates of many turbulence parameters; however, the accuracy of turbulence measurements made with commercially available ADCPs is often poor in comparison to standard measurement techniques.

  12. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  13. Measuring discharge with acoustic Doppler current profilers from a moving boat

    USGS Publications Warehouse

    Mueller, David S.; Wagner, Chad R.; Rehmel, Michael S.; Oberg, Kevin A.; Rainville, Francois

    2013-01-01

    The use of acoustic Doppler current profilers (ADCPs) from a moving boat is now a commonly used method for measuring streamflow. The technology and methods for making ADCP-based discharge measurements are different from the technology and methods used to make traditional discharge measurements with mechanical meters. Although the ADCP is a valuable tool for measuring streamflow, it is only accurate when used with appropriate techniques. This report presents guidance on the use of ADCPs for measuring streamflow; this guidance is based on the experience of U.S. Geological Survey employees and published reports, papers, and memorandums of the U.S. Geological Survey. The guidance is presented in a logical progression, from predeployment planning, to field data collection, and finally to post processing of the collected data. Acoustic Doppler technology and the instruments currently (2013) available also are discussed to highlight the advantages and limitations of the technology. More in-depth, technical explanations of how an ADCP measures streamflow and what to do when measuring in moving-bed conditions are presented in the appendixes. ADCP users need to know the proper procedures for measuring discharge from a moving boat and why those procedures are required, so that when the user encounters unusual field conditions, the procedures can be adapted without sacrificing the accuracy of the streamflow-measurement data.

  14. Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.

    2004-01-01

    The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s-1 and currents up to 40 cm s-1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is -0.4 cm s-1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s-1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s-1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s-1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ??? 50 cm s-1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ??? 5 cm s-1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.

  15. Turbulent Fluxes of Suspended Sediment from Coupled Acoustic Doppler Current Profilers

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Sassi, M.; Vermeulen, B.

    2014-12-01

    Turbulent diffusion is a cornerstone in geophysical fluid mechanics, controlling the exchange of momentum, heat and mass in surface flows occurring in the atmosphere, in rivers and in the ocean. In fluvial and coastal systems, modeling turbulent diffusion of momentum and suspended sediment requires knowledge about turbulent diffusivities, which is generally derived from parameterizations based on laboratory experiments. Field determinations of momentum and sediment diffusivities are cumbersome, requiring an instrumental array to simultaneously sample turbulence and mean flow quantities in time and in space. Recently, a new technique to analyze geophysical surface flow turbulence was introduced, appropriate for large scale systems, based on coupling of acoustic Doppler current profilers (ADCPs). Here, we extend this approach to obtain collocated profiles of both the Reynolds stress tensor and eddy covariance fluxes, to derive vertical profiles of turbulent momentum and sediment diffusivity in a tidal river. Shear and normal stresses are obtained by combining the variances in radial velocities measured by the ADCP beams. The covariances between radial velocities and calibrated acoustic backscatter allow to determine the three Cartesian components of the turbulent flux of suspended sediment. The main advantage of this new approach is that flow velocity and sediment concentration measurements are exactly collocated, and that it allows to profile over longer ranges, in comparison to existing techniques. Results show that vertical profiles of the inverse turbulent Prandtl-Schmidt number is coherent with corresponding profiles of the sediment diffusivity, rather than with profiles of the eddy viscosity. This implies modelling suspended sediment dynamics requires knowledge about the sediment diffusivity, as the Prandtl-Schmidt number cannot be estimated from the eddy viscosity alone.

  16. Field testing of a convergent array of acoustic Doppler profilers for high-resolution velocimetry in energetic tidal currents

    SciTech Connect

    Harding, Samuel F.; Sellar, Brian; Richmond, Marshall C.

    2016-04-25

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation.

  17. Comparison of shipboard acoustic Doppler current profiler and moored current measurements in the Equatorial Pacific

    NASA Technical Reports Server (NTRS)

    Chereskin, T. K.; Regier, L. A.; Halpern, D.

    1987-01-01

    Depth-averaged current shears computed from shipboard acoustic Doppler current profiler (ADCP) and moored Savonius rotor and vane vector-averaging current meter (VACM) measurements are compared at 35, 62.5, 100 and 140 m depths within 7 km of each other near 0 deg, 140 deg W during a 12-day interval in November 1984. The agreement between the VACM and ADCP shears was excellent. The average root-mean-square difference of hourly shear values was small, approximately 0.0021/s, and the average correlation coefficient was 0.90. Spectral estimates were equivalent to within a 95 percent significance level and the VACM and ADCP shears were 95 percent statistically coherent with zero phase difference for frequencies below 0.2 cycles per hour.

  18. Acoustic Doppler Current Profiler Surveys of Velocity Downstream of Albeni Falls Dam

    SciTech Connect

    Perkins, William A.; Titzler, P. Scott; Richmond, Marshall C.; Serkowski, John A.; Kallio, Sara E.; Bellgraph, Brian J.

    2010-09-30

    The U.S. Army Corps of Engineers (USACE), Seattle District, is studying the potential to locate fish bypass systems at Albeni Falls Dam. The USACE requested Pacific Northwest National Laboratory (PNNL) to survey velocity magnitude and direction in the dam tailrace. The empirical data collected will be used to support future numerical modeling, physical modeling, and evaluation of fish bypass system alternatives. In May 2010, PNNL conducted velocity surveys of the Albeni Falls Dam using a boat-mounted acoustic Doppler current profiler. The surveys were conducted over three days (May 25 through 27). During the survey period, total river discharge at the dam varied between 30.2 and 31.0 kcfs. A small amount of spill discharge, 2 kcfs, was present on two days (May 26 and 27). This report presents data plots showing measured velocity direction and magnitude averaged over the entire depth and over 5-ft depth increments from 5 to 30 ft.

  19. Variance of discharge estimates sampled using acoustic Doppler current profilers from moving boats

    USGS Publications Warehouse

    Garcia, Carlos M.; Tarrab, Leticia; Oberg, Kevin; Szupiany, Ricardo; Cantero, Mariano I.

    2012-01-01

    This paper presents a model for quantifying the random errors (i.e., variance) of acoustic Doppler current profiler (ADCP) discharge measurements from moving boats for different sampling times. The model focuses on the random processes in the sampled flow field and has been developed using statistical methods currently available for uncertainty analysis of velocity time series. Analysis of field data collected using ADCP from moving boats from three natural rivers of varying sizes and flow conditions shows that, even though the estimate of the integral time scale of the actual turbulent flow field is larger than the sampling interval, the integral time scale of the sampled flow field is on the order of the sampling interval. Thus, an equation for computing the variance error in discharge measurements associated with different sampling times, assuming uncorrelated flow fields is appropriate. The approach is used to help define optimal sampling strategies by choosing the exposure time required for ADCPs to accurately measure flow discharge.

  20. Use of an Acoustic Doppler Current Profiler (ADCP) to Measure Hypersaline Bidirectional Discharge

    USGS Publications Warehouse

    Johnson, K.K.; Loving, B.L.; ,

    2002-01-01

    The U.S. Geological Survey measures the exchange of flow between the north and south parts of Great Salt Lake, Utah, as part of a monitoring program. Turbidity and bidirectional flow through the breach in the causeway that divides the lake into two parts makes it difficult to measure discharge with conventional streamflow techniques. An acoustic Doppler current profiler (ADCP) can be used to more accurately define the angles of flow and the location of the interface between the layers of flow. Because of the high salinity levels measured in Great Salt Lake (60-280 parts per thousand), special methods had to be developed to adjust ADCP-computed discharges for the increased speed of sound in hypersaline waters and for water entrained at the interface between flow layers.

  1. Performance assessment and calibration of a profiling lab-scale acoustic Doppler velocimeter for application over mixed sand-gravel beds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic Doppler velocimetry has made high-resolution turbulence measurements in sediment-laden flows possible. Recent developments have resulted in a commercially available lab-scale acoustic Doppler profiling device, a Nortek Vectrino II, that allows for three-dimensional velocity data to be colle...

  2. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California

    USGS Publications Warehouse

    Gartner, J.W.

    2004-01-01

    The estimation of mass concentration of suspended solids is one of the properties needed to understand the characteristics of sediment transport in bays and estuaries. However, useful measurements or estimates of this property are often problematic when employing the usual methods of determination from collected water samples or optical sensors. Analysis of water samples tends to undersample the highly variable character of suspended solids, and optical sensors often become useless from biological fouling in highly productive regions. Acoustic sensors, such as acoustic Doppler current profilers that are now routinely used to measure water velocity, have been shown to hold promise as a means of quantitatively estimating suspended solids from acoustic backscatter intensity, a parameter used in velocity measurement. To further evaluate application of this technique using commercially available instruments, profiles of suspended solids concentrations are estimated from acoustic backscatter intensity recorded by 1200- and 2400-kHz broadband acoustic Doppler current profilers located at two sites in San Francisco Bay, California. ADCP backscatter intensity is calibrated using optical backscatterance data from an instrument located at a depth close to the ADCP transducers. In addition to losses from spherical spreading and water absorption, calculations of acoustic transmission losses account for attenuation from suspended sediment and correction for nonspherical spreading in the near field of the acoustic transducer. Acoustic estimates of suspended solids consisting of cohesive and noncohesive sediments are found to agree within about 8-10% (of the total range of concentration) to those values estimated by a second optical backscatterance sensor located at a depth further from the ADCP transducers. The success of this approach using commercially available Doppler profilers provides promise that this technique might be appropriate and useful under certain conditions in

  3. Averaged indicators of secondary flow in repeated acoustic Doppler current profiler crossings of bends

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    [1] Cross-stream velocity was measured in a large river bend at high spatial resolution over three separate survey episodes. A suite of methods for resolving cross-stream velocity distributions was tested on data collected using acoustic Doppler current profilers (ADCP) in the sand-bedded Sacramento River, California. The bend was surveyed with repeated ADCP crossings at eight cross sections during a rising limb of high discharge in February 2004 and twice on recession in March 2004. By translating and interpolating repeated ADCP crossings to planar grids, velocity ensembles at similar positions along irregular boat paths could be averaged. The averaging minimized turbulent fluctuations in streamwise velocities over 1 m/s, enabling the resolution of weaker cross-stream velocities (???15-30 cm/s). Secondary-flow influence on suspended sediment was inferred from a lateral region of acoustic backscatter intensity aligned with outward flow over the point bar. A near-bed decrease in backscatter intensity across the pool corresponded with inward cross-stream flow. These suspension indicators were used to orient averaged velocity grids for unambiguously defining the cross-stream velocity magnitudes. Additional field investigations could test whether the correlation between cross-stream velocity and backscatter intensity patterns results from helical recirculation of suspended sediment to the inside of the bend. These river measurements, consistent with classic and recent laboratory studies, show that ADCP surveys can provide refined views of secondary flow and sediment movement in large rivers.

  4. Discharge measurements using a broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Simpson, Michael R.

    2002-01-01

    The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.

  5. Deep-Water Ambient Noise Profiling; Marine Sediment Acoustics; and Doppler Geo-Acoustic Spectroscopy

    DTIC Science & Technology

    2012-09-30

    explosive volcanic eruptions ,” J. Comp. Acoust., 9 (3), 1215-1225 (2001) [keynote address, published, refereed]. 24. N. G. Lehtinen, S. Adam, G...B02209, doi:10, 1-12 (2009) [published, refereed] 9. M. J. Buckingham, “On the transient solutions of three acoustic wave equations: van Wijngaarden’s

  6. Deep-Water Ambient Noise Profiling; Marine Sediment Acoustics; and Doppler Geo-Acoustic Spectroscopy

    DTIC Science & Technology

    2013-09-30

    explosive volcanic eruptions ,” J. Comp. Acoust., 9 (3), 1215-1225 (2001) [keynote address, published, refereed]. 25. N. G. Lehtinen, S. Adam, G. Gratta...doi:10, 1-12 (2009) [published, refereed] 10. M. J. Buckingham, “On the transient solutions of three acoustic wave equations: van Wijngaarden’s

  7. Field evaluation of shallow-water acoustic doppler current profiler discharge measurements

    USGS Publications Warehouse

    Rehmel, M.S.

    2007-01-01

    In 2004, the U.S. Geological Survey (USGS) Office of Surface Water staff and USGS Water Science employees began testing the StreamPro, an acoustic Doppler current profiler (ADCP) for shallow-water discharge measurements. Teledyne RD Instruments introduced the StreamPro in December of 2003. The StreamPro is designed to make a "moving boat" discharge measurement in streams with depths between 0.15 and 2 m. If the StreamPro works reliably in these conditions, it will allow for use of ADCPs in a greater number of streams than previously possible. Evaluation sites were chosen to test the StreamPro over a range of conditions. Simultaneous discharge measurements with mechanical and other acoustic meters, along with stable rating curves at established USGS streamflow-gaging stations, were used for comparisons. The StreamPro measurements ranged in mean velocity from 0.076 to 1.04 m/s and in discharge from 0.083 m 3/s to 43.4 m 3/s. Tests indicate that discharges measured with the StreamPro compare favorably to the discharges measured with the other meters when the mean channel velocity is greater than 0.25 m/s. When the mean channel velocity is less than 0.25 m/s, the StreamPro discharge measurements for individual transects have greater variability than those StreamPro measurements where the mean channel velocity is greater than 0.25 m/s. Despite this greater variation in individual transects, there is no indication that the StreamPro measured discharges (the mean discharge for all transects) are biased, provided that enough transects are used to determine the mean discharge. ?? 2007 ASCE.

  8. Errors in acoustic doppler profiler velocity measurements caused by flow disturbance

    USGS Publications Warehouse

    Mueller, D.S.; Abad, J.D.; Garcia, C.M.; Gartner, J.W.; Garcia, M.H.; Oberg, K.A.

    2007-01-01

    Acoustic Doppler current profilers (ADCPs) are commonly used to measure streamflow and water velocities in rivers and streams. This paper presents laboratory, field, and numerical model evidence of errors in ADCP measurements caused by flow disturbance. A state-of-the-art three-dimensional computational fluid dynamic model is validated with and used to complement field and laboratory observations of flow disturbance and its effect on measured velocities. Results show that near the instrument, flow velocities measured by the ADCP are neither the undisturbed stream velocity nor the velocity of the flow field around the ADCP. The velocities measured by the ADCP are biased low due to the downward flow near the upstream face of the ADCP and upward recovering flow in the path of downstream transducer, which violate the flow homogeneity assumption used to transform beam velocities into Cartesian velocity components. The magnitude of the bias is dependent on the deployment configuration, the diameter of the instrument, and the approach velocity, and was observed to range from more than 25% at 5cm from the transducers to less than 1% at about 50cm from the transducers for the scenarios simulated. ?? 2007 ASCE.

  9. Aquatic habitat mapping with an acoustic doppler current profiler: Considerations for data quality

    USGS Publications Warehouse

    Gaeuman, David; Jacobson, Robert B.

    2005-01-01

    When mounted on a boat or other moving platform, acoustic Doppler current profilers (ADCPs) can be used to map a wide range of ecologically significant phenomena, including measures of fluid shear, turbulence, vorticity, and near-bed sediment transport. However, the instrument movement necessary for mapping applications can generate significant errors, many of which have not been inadequately described. This report focuses on the mechanisms by which moving-platform errors are generated, and quantifies their magnitudes under typical habitat-mapping conditions. The potential for velocity errors caused by mis-alignment of the instrument?s internal compass are widely recognized, but has not previously been quantified for moving instruments. Numerical analyses show that even relatively minor compass mis-alignments can produce significant velocity errors, depending on the ratio of absolute instrument velocity to the target velocity and on the relative directions of instrument and target motion. A maximum absolute instrument velocity of about 1 m/s is recommended for most mapping applications. Lower velocities are appropriate when making bed velocity measurements, an emerging application that makes use of ADCP bottom-tracking to measure the velocity of sediment particles at the bed. The mechanisms by which heterogeneities in the flow velocity field generate horizontal velocities errors are also quantified, and some basic limitations in the effectiveness of standard error-detection criteria for identifying these errors are described. Bed velocity measurements may be particularly vulnerable to errors caused by spatial variability in the sediment transport field.

  10. Coupling airborne laser scanning and acoustic Doppler current profiler data to model stream rating curves

    NASA Astrophysics Data System (ADS)

    Lam, N.; Lyon, S. W.; Kean, J. W.

    2015-12-01

    The rating curve enables the translation of water depth into discharge through a reference cross section. Errors in estimating stream channel geometry can therefore result in increased discharge uncertainty. This study investigates coupling national-scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. Specifically, stream channel geometries were generated from coupled ALS and ADCP scanning data collected for a well-monitored site located in northern Sweden. These data were used to define the hydraulic geometry required by a physically-based 1-D hydraulic model. The results of our study demonstrate that the effects of potential scanning data errors on the model generated rating curve were less than the uncertainties due to stream gauging measurements and empirical rating curve fitting. Further analysis of the ALS data showed that an overestimation of the streambank elevation (the main scanning data error) was primarily due to vegetation that could be adjusted for through a root-mean-square-error bias correction. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establish rating curves at gauging stations.

  11. Correcting acoustic Doppler current profiler discharge measurements biased by sediment transport

    USGS Publications Warehouse

    Mueller, D.S.; Wagner, C.R.

    2007-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment on or near the streambed, and is an issue widely acknowledged by the scientific community. The integration of a differentially corrected global positioning system (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias, based on the closure error resulting from a two-way crossing of the river, is presented. The uncertainty in the mean moving-bed velocity measured by the loop method is shown to be approximately 0.6cm/s. For the 13 field measurements presented, the loop method resulted in corrected discharges that were within 5% of discharges measured utilizing DGPS to compensate for moving-bed conditions. ?? 2007 ASCE.

  12. Acoustic Doppler current profiler measurements in coastal and estuarine environments: examples from the Tay Estuary, Scotland

    NASA Astrophysics Data System (ADS)

    Wewetzer, Silke F. K.; Duck, Robert W.; Anderson, James M.

    1999-08-01

    Acoustic Doppler current profilers (ADCPs) provide a means to measure the components of water current velocities in three dimensions. Such instruments have been used widely by the oil industry in deep offshore waters but their application to nearshore coastal and estuarine environments has been principally confined to the USA. Using examples of ADCP datasets acquired from the macrotidal Tay Estuary, eastern Scotland, the principles of field deployment, data acquisition and forms of output are critically summarised. It is shown, for the first time in the Tay Estuary, that vertical current velocities are significant and are particularly so in downwelling zones associated with the development and passage of axially convergent tidal fronts. The improved understanding of three-dimensional water and suspended sediment dynamics in coastal and estuarine waters is crucial to, inter alia, the sustainable management of effluent discharges and, in more general terms, it is predicted on the basis of the Tay case study, that ADCP measurements afford significant opportunities to refine understanding of geomorphological processes in a variety of aquatic environments worldwide.

  13. Repeated surveys by acoustic Doppler current profiler for flow and sediment dynamics in a tidal river

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    A strategy of repeated surveys by acoustic Doppler current profiler (ADCP) was applied in a tidal river to map velocity vectors and suspended-sediment indicators. The Sacramento River at the junction with the Delta Cross Channel at Walnut Grove, California, was surveyed over several tidal cycles in the Fall of 2000 and 2001 with a vessel-mounted ADCP. Velocity profiles were recorded along flow-defining survey paths, with surveys repeated every 27 min through a diurnal tidal cycle. Velocity vectors along each survey path were interpolated to a three-dimensional Cartesian grid that conformed to local bathymetry. A separate array of vectors was interpolated onto a grid from each survey. By displaying interpolated vector grids sequentially with computer animation, flow dynamics of the reach could be studied in three-dimensions as flow responded to the tidal cycle. Velocity streamtraces in the grid showed the upwelling of flow from the bottom of the Sacramento River channel into the Delta Cross Channel. The sequential display of vector grids showed that water in the canal briefly returned into the Sacramento River after peak flood tides, which had not been known previously. In addition to velocity vectors, ADCP data were processed to derive channel bathymetry and a spatial indicator for suspended-sediment concentration. Individual beam distances to bed, recorded by the ADCP, were transformed to yield bathymetry accurate enough to resolve small bedforms within the study reach. While recording velocity, ADCPs also record the intensity of acoustic backscatter from particles suspended in the flow. Sequential surveys of backscatter intensity were interpolated to grids and animated to indicate the spatial movement of suspended sediment through the study reach. Calculation of backscatter flux through cross-sectional grids provided a first step for computation of suspended-sediment discharge, the second step being a calibrated relation between backscatter intensity and sediment

  14. Validation of streamflow measurements made with M9 and RiverRay acoustic Doppler current profilers

    USGS Publications Warehouse

    Boldt, Justin A.; Oberg, Kevin A.

    2015-01-01

    The U.S. Geological Survey (USGS) Office of Surface Water (OSW) previously validated the use of Teledyne RD Instruments (TRDI) Rio Grande (in 2007), StreamPro (in 2006), and Broadband (in 1996) acoustic Doppler current profilers (ADCPs) for streamflow (discharge) measurements made by the USGS. Two new ADCPs, the SonTek M9 and the TRDI RiverRay, were first used in the USGS Water Mission Area programs in 2009. Since 2009, the OSW and USGS Water Science Centers (WSCs) have been conducting field measurements as part of their stream-gaging program using these ADCPs. The purpose of this paper is to document the results of USGS OSW analyses for validation of M9 and RiverRay ADCP streamflow measurements. The OSW required each participating WSC to make comparison measurements over the range of operating conditions in which the instruments were used until sufficient measurements were available. The performance of these ADCPs was evaluated for validation and to identify any present and potential problems. Statistical analyses of streamflow measurements indicate that measurements made with the SonTek M9 ADCP using firmware 2.00–3.00 or the TRDI RiverRay ADCP using firmware 44.12–44.15 are unbiased, and therefore, can continue to be used to make streamflow measurements in the USGS stream-gaging program. However, for the M9 ADCP, there are some important issues to be considered in making future measurements. Possible future work may include additional validation of streamflow measurements made with these instruments from other locations in the United States and measurement validation using updated firmware and software.

  15. River habitat quality from river velocities measured using acoustic Doppler current profiler.

    PubMed

    Shields, F Douglas; Rigby, J R

    2005-10-01

    Prior research has demonstrated the utility of metrics based on spatial velocity gradients to characterize and describe stream habitat, with higher gradients generally indicative of higher levels of physical heterogeneity and thus habitat quality. However, detailed velocity data needed to compute these metrics are difficult to obtain. Acoustic Doppler current profilers (ADCP) may be used to rapidly collect detailed representations of river velocity fields. Herein we demonstrate use of ADCP to obtain ecologically relevant data and compute associated metrics. Data were collected from four reaches of the Little Tallahatchie River in northern Mississippi. Sampled reaches were selected to observe velocity regimes associated with three distinctly different conditions: downstream from a major flow obstruction (a low weir), downstream from the apices of each of two bends, and within an extremely long, straight reach created by channelization. Three-dimensional velocity data sets from each site were used to compute metrics of habitat quality proposed by others. A habitat metric based on the presence of rotational flow in the vertical plane proved to be the best discriminator among conditions within the sampled reaches. Two of four habitat quality metrics computed from these measured velocities were greatest for the sharpest meander bend. ADCP hold great potential for study of riverine physical aquatic habitats, particularly at the reach scale. Additional work is needed to develop generally applicable field protocols and data reduction tools. Specifically, guidelines for ADCP settings and configuration appropriate for a range of riverine site conditions must be developed. Advances in instrumentation are needed to allow collection of information in closer proximity to the free surface and solid boundaries.

  16. Acoustic Doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. Thompson

    SciTech Connect

    Kim, H.S.; Flagg, C.N.; Shi, Y.

    1996-12-01

    Acoustic Doppler current profiler (ADCP) data is part of the core data for the US JGOFS Arabian Sea project, along with hydrographic and nutrient data. Seventeen cruises are scheduled to take place between September 1994 and January 1996 on the R/V T.G. Thompson. Seven of the cruises follow a standard cruise track, taking hydrographic, chemical and biological measurements. The rest of the cruises, which take place generally within the standard cruise region defined by a set track, are for the deployment and recovery of moored equipment and towing of a SeaSoar. Detailed description of ADCP hardware, the AutoADCP data acquisition system, and the collection of navigation and compass data on the Thompson is documented in Section 2. Followed by data collection for each cruise together with a cruise track, Section 3 presents the processing and analysis of velocity and acoustic backscatter intensity data. Section 5 shows results of profile quality diagnosis.

  17. A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.; ,

    2002-01-01

    Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.

  18. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    USGS Publications Warehouse

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    The State of Illinois' annual withdrawal from Lake Michigan is limited by a U.S. Supreme Court decree, and the U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago Sanitary and Ship Canal (CSSC) near Lemont, Illinois as a part of the Lake Michigan Diversion Accounting overseen by the U.S. Army Corps of Engineers, Chicago District. Every 5 years, a technical review committee consisting of practicing engineers and academics is convened to review the U.S. Geological Survey's streamgage practices in the CSSC near Lemont, Illinois. The sixth technical review committee raised a number of questions concerning the flows and streamgage practices in the CSSC near Lemont and this report provides answers to many of those questions. In addition, it is the purpose of this report to examine the index velocity meters in use at Lemont and determine whether the acoustic velocity meter (AVM), which is now the primary index velocity meter, can be replaced by the horizontal acoustic Doppler current profiler (H-ADCP), which is currently the backup meter. Application of the AVM and H-ADCP to index velocity measurements in the CSSC near Lemont, Illinois, has produced good ratings to date. The site is well suited to index velocity measurements in spite of the large range of velocities and highly unsteady flows at the site. Flow variability arises from a range of sources: operation of the waterway through control structures, lockage-generated disturbances, commercial and recreational traffic, industrial withdrawals and discharges, natural inflows, seiches, and storm events. The influences of these factors on the index velocity measurements at Lemont is examined in detail in this report. Results of detailed data comparisons and flow analyses show that use of bank-mounted instrumentation such as the AVM and H-ADCP appears to be the best option for index velocity measurement in the CSSC near Lemont. Comparison of the rating curves for the AVM and H-ADCP demonstrates

  19. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—User’s manual for version 2.8

    USGS Publications Warehouse

    Mueller, David S.

    2016-05-12

    The software program, QRev computes the discharge from moving-boat acoustic Doppler current profiler measurements using data collected with any of the Teledyne RD Instrument or SonTek bottom tracking acoustic Doppler current profilers. The computation of discharge is independent of the manufacturer of the acoustic Doppler current profiler because QRev applies consistent algorithms independent of the data source. In addition, QRev automates filtering and quality checking of the collected data and provides feedback to the user of potential quality issues with the measurement. Various statistics and characteristics of the measurement, in addition to a simple uncertainty assessment are provided to the user to assist them in properly rating the measurement. QRev saves an extensible markup language file that can be imported into databases or electronic field notes software. The user interacts with QRev through a tablet-friendly graphical user interface. This report is the manual for version 2.8 of QRev.

  20. Acoustic Doppler Current Profiler Measurements in the Tailrace at John Day Dam

    SciTech Connect

    Cook, Chris B.; Dibrani, Berhon; Serkowski, John A.; Richmond, Marshall C.; Titzler, P. Scott; Dennis, Gary W.

    2006-01-30

    Acoustic Doppler current profilers (ADCPs) were used to measure water velocities in the tailrace at John Day Dam over a two-week period in February 2005. Data were collected by the Pacific Northwest National Laboratory for the Hydraulic Design Section, Portland District, U.S. Army Corps of Engineers (USACE). The objective of this project was therefore to collect field measurements of water velocities in the near-field draft tube exit zone as well as the far-field tailrace to be used for improving these models. Field data were collected during the project using five separate ADCPs. Mobile ADCP data were collected using two ADCPs mounted on two separate boats. Data were collected by either holding the boat on-station at pre-defined locations for approximately 10 minutes or in moving transect mode when the boat would move over large distances during the data collection. Results from the mobile ADCP survey indicated a complex hydrodynamic flow field in the tailrace downstream of John Day Dam. A large gyre was noted between the skeleton section of the powerhouse and non-spilling portion of the spillway. Downstream of the spillway, the spillway flow is constrained against the navigation lock guide wall, and large velocities were noted in this region. Downstream of the guide wall, velocities decreased as the spillway jet dispersed. Near the tailrace island, the flow split was measured to be approximately equal on Day 2 (25.4 kcfs spillway/123 kcfs total). However, approximately 60% of the flow passed along the south shore of the island on Day 1 (15.0 kcfs spillway/150 kcfs total). At a distance of 9000 ft downstream of the dam, flows had equalized laterally and were generally uniform over the cross section. The collection of water velocities near the draft tube exit of an operating turbine unit is not routine, and equipment capable of measuring 3D water velocities in these zones are at the forefront of hydraulic measurement technology. Although the feasibility of

  1. Discharge-measurement system using an acoustic Doppler current profiler with applications to large rivers and estuaries

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.

    1993-01-01

    Discharge measurement of large rivers and estuaries is difficult, time consuming, and sometimes dangerous. Frequently, discharge measurements cannot be made in tide-affected rivers and estuaries using conventional discharge-measurement techniques because of dynamic discharge conditions. The acoustic Doppler discharge-measurement system (ADDMS) was developed by the U.S. Geological Survey using a vessel-mounted acoustic Doppler current profiler coupled with specialized computer software to measure horizontal water velocity at 1-meter vertical intervals in the water column. The system computes discharge from water-and vessel-velocity data supplied by the ADDMS using vector-algebra algorithms included in the discharge-measurement software. With this system, a discharge measurement can be obtained by engaging the computer software and traversing a river or estuary from bank to bank; discharge in parts of the river or estuarine cross sections that cannot be measured because of ADDMS depth limitations are estimated by the system. Comparisons of ADDMS-measured discharges with ultrasonic-velocity-meter-measured discharges, along with error-analysis data, have confirmed that discharges provided by the ADDMS are at least as accurate as those produced using conventional methods. In addition, the advantage of a much shorter measurement time (2 minutes using the ADDMS compared with 1 hour or longer using conventional methods) has enabled use of the ADDMS for several applications where conventional discharge methods could not have been used with the required accuracy because of dynamic discharge conditions.

  2. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.; ,

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  3. Velocity profiles, Reynolds stresses and bed roughness from an autonomous field deployed Acoustic Doppler Velocity Profiler in a mixed sediment tidal estuary

    NASA Astrophysics Data System (ADS)

    O'Boyle, Louise; Thorne, Peter; Cooke, Richard; Cohbed Team

    2014-05-01

    Estuaries are among some of the most important global landscapes in terms of population density, ecology and economy. Understanding the dynamics of these natural mixed sediment environments is of particular interest amid growing concerns over sea level rise, climate variations and estuarine response to these changes. Many predictors exist for bed form formation and sand transport in sandy coastal zones; however less work has been published on mixed sediments. This paper details a field study which forms part of the COHBED project aiming to increase understanding of bed forms in a biotic mixed sediment estuarine environment. The study was carried out in the Dee Estuary, in the eastern Irish Sea between England and Wales from the 21st May to 4th June 2013. A state of the art instrumentation frame, known as SEDbed, was deployed at three sites of differing sediment properties and biological makeup within the intertidal zone of the estuary. The SEDbed deployment consisted of a suite of optical and acoustic instrumentation, including an Acoustic Doppler Velocity Profiler (ADVP), Acoustic Doppler Velocimeter (ADV) and a three dimensional acoustic ripple profiler, 3D-ARP. Supplementary field samples and measurements were recorded alongside the frame during each deployment. This paper focuses on the use of new technological developments for the investigation of sediment dynamics. The hydrodynamics at each of the deployment sites are presented including centimetre resolution velocity profiles in the near bed region of the water column, obtained from the ADVP, which is presently the only autonomous field deployed coherent Doppler profiler . Based on these high resolution profiles variations in frictional velocity, bed shear stress and roughness length are calculated. Comparisons are made with theoretical models and with Reynolds stress values obtained from ADV data at a single point within the ADVP profile and from ADVP data itself. Predictions of bed roughness at each

  4. Application of the loop method for correcting acoustic doppler current profiler discharge measurements biased by sediment transport

    USGS Publications Warehouse

    Mueller, David S.; Wagner, Chad R.

    2006-01-01

    A systematic bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment near the streambed-an issue widely acknowledged by the scientific community. This systematic bias leads to an underestimation of measured velocity and discharge. The integration of a differentially corrected Global Positioning System (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS systems, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias was investigated by the U.S. Geological Survey.

  5. Cause and solution for false upstream boat velocities measured with a StreamPro acoustic doppler current profiler

    USGS Publications Warehouse

    Mueller, David S.; Rehmel, Mike S.; Wagner, Chad R.

    2007-01-01

    In 2003, Teledyne RD Instruments introduced the StreamPro acoustic Doppler current profiler which does not include an internal compass. During stationary moving-bed tests the StreamPro often tends to swim or kite from the end of the tether (the instrument rotates then moves laterally in the direction of the rotation). Because the StreamPro does not have an internal compass, it cannot account for the rotation. This rotation and lateral movement of the StreamPro on the end of the tether generates a false upstream velocity, which cannot be easily distinguished from a moving-bed bias velocity. A field test was completed to demonstrate that this rotation and lateral movement causes a false upstream boat velocity. The vector dot product of the boat velocity and the unit vector of the depth-averaged water velocity is shown to be an effective method to account for the effect of the rotation and lateral movement.

  6. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    SciTech Connect

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  7. An acoustic doppler current profiler survey of flow velocities in St. Clair River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to measure flow velocities in St. Clair River during a survey in May and June of 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. The survey provides 2.7 million point velocity measurements at 104 cross sections. Sections are spaced about 1,630 ft apart along the river from Port Huron to Algonac, Michigan, a distance of 28.6 miles. Two transects were obtained at each cross section, one in each direction across the river. Along each transect, velocity profiles were obtained 2-4 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved through the internet and extracted to column-oriented data files.

  8. An acoustic doppler current profiler survey of flow velocities in Detroit River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to survey flow velocities in Detroit River from July 8-19, 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. More than 3.5 million point velocities were measured at 130 cross sections. Cross sections were generally spaced about 1,800 ft apart along the river from the head of Detroit River at the outlet of Lake St. Clair to the mouth of Detroit River on Lake Erie. Two transects were surveyed at each cross section, one in each direction across the river. Along each transect, velocity profiles were generally obtained 0.8-2.2 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved though the internet and extracted to column-oriented data files.

  9. The investigation of sediment processes in rivers by means of the Acoustic Doppler Profiler

    NASA Astrophysics Data System (ADS)

    Guerrero, M.

    2014-09-01

    The measurement of sediment processes at the scale of a river cross-section is desirable for the evaluation of many issues related to river hydro-morphodynamics, such as the calibration and validation of numerical models for predicting the climate change impacts on water resources and efforts of maintenance of the navigation channel and other hydraulic works. Suspended- and bed-load have traditionally been measured by cumbersome techniques that are difficult to apply in large rivers. The acoustics for the investigation of small-scale sedimentological processes gained acceptance in the marine community because of its ability to simultaneously profile sediment concentration and size distribution, non-intrusively, and with high temporal and spatial resolution. The application of these methods in true riverine case studies presents additional difficulties, mainly related to water depths and stream currents that limit sound propagation into water and challenge the instruments deployment, especially during floods. This article introduces the motivations for using the ADCP for sediment processes investigation other than for flow discharge measurement, summarizes the developed methods and indicates future desirable improvements. In addition, an application on the Po River in Italy is presented, focusing on the calibration of the existing software by means of ADCP recordings. The calibrated model will assist in planning the dredging activities to maintain the navigation channel and the intake of a pump station for irrigation that is periodically obstructed with a sandbar.

  10. Doppler wind profile experiment

    NASA Technical Reports Server (NTRS)

    Arnold, J. E.

    1985-01-01

    The data collection phase of a Doppler wind measurement experiment supported by high-resolution Jimsphere/FPS-16 wind data and Windsonde data was carried out at the Kennedy Space Center in February, March and early April of 1985. The Doppler wind measurements were made using a hybrid doppler profiler put in place by the Johnson Space Center and a SOUSY profiler operated by Radian Corporation. Both systems operated at 50 Mhz. Although the doppler profiler systems were located 10 km apart to enable concurrent operation of the systems for data comparison, little concurrent data were obtained due to set-up delays with the SOUSY system, and system problems with the WPL system during the last month of the test. During the test period, special serial Jimsphere soundings were taken at two-hour intervals on six days in March and April in addition to balloon soundings taken in support of the Shuttle launch operations. In addition, there is temperature, moisture and wind information available from the daily morning Radiosonde sounding taken at the Kennedy site. The balloon release point was at the same location as the SOUSY profiler. Vertical resolution of the SOUSY profiler was 150 M to approximately 20 km. The vertical resolution of the WPL profiler was 290 M to 10 km and 870 M to 17 km. Winds determined form the Jimsphere balloon have a vertical resolution of 30 M.

  11. Comparison of buoy-mounted 74-kHz acoustic Doppler current profilers with vector-measuring current meters

    NASA Technical Reports Server (NTRS)

    Winant, Clinton; Mettlach, Theodore; Larson, Sigurd

    1994-01-01

    In December 1991, the National Data Buoy Center (NDBC) deployed two meteorological buoys in the Southern California Bight on a transect between San Diego and San Clemente Island. Each buoy consisted of a 10-m discus hull instrumented to measure a suite of meteorological parameters, and, for the first time in the NDBC buoy program, acoustic Doppler current profilers (ADCPs) were included to gather hourly current profiles beneath the two buoys. Moorings instrumented with seven vector-measuring current meters (VMCMs) were deployed adjacent to the NDBC buoys for several months and provided current observations for comparison with the ADCP measurements. When wave-induced buoy motion is not overly large, the observations of horizontal current made by the ADCP and the VMCM are highly correlated. Time series of differences between ADCP and VMCM measurements are characterized by a mean difference (bias error) of about 0.01 m/s and standard deviation of about 0.035 m/s for 1-h observations. Estimates of current spectra from ADCP and VMCM records suggest that the ADCP system can be characterized by a white noise level of 2 x 10(exp -3) sq m/sq s/cph. However, when the in situ environment is such that large surface waves are present (including breaking waves and whitecaps), erroneous current values are usually reported by the ADCP. Mean values of vertical velocities reported by the ADCP appear to be much larger than what could be physically expected and are therefore deemed unreliable.

  12. Acoustic Doppler current profiler applications used in rivers and estuaries by the U.S. Geological Survey

    USGS Publications Warehouse

    Gotvald, Anthony J.; Oberg, Kevin A.

    2009-01-01

    The U.S. Geological Survey (USGS) has collected streamflow information for the Nation's streams since 1889. Streamflow information is used to predict floods, manage and allocate water resources, design engineering structures, compute water-quality loads, and operate water-control structures. The current (2007) size of the USGS streamgaging network is over 7,400 streamgages nationwide. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection while increasing the quality of the streamflow data that are collected. The single greatest change in streamflow measurement technology during the last 100 years has been the development and application of high frequency acoustic instruments for measuring streamflow. One such instrument, the acoustic Doppler current profiler (ADCP), is rapidly replacing traditional mechanical current meters for streamflow measurement (Muste and others, 2007). For more information on how an ADCP works see Simpson (2001) or visit http://hydroacoustics.usgs.gov/. The USGS has used ADCPs attached to manned or tethered boats since the mid-1990s to measure streamflow in a wide variety of conditions (fig. 1). Recent analyses have shown that ADCP streamflow measurements can be made with similar or greater accuracy, efficiency, and resolution than measurements made using conventional current-meter methods (Oberg and Mueller, 2007). ADCPs also have the ability to measure streamflow in streams where traditional current-meter measurements previously were very difficult or costly to obtain, such as streams affected by backwater or tides. In addition to streamflow measurements, the USGS also uses ADCPs for other hydrologic measurements and applications, such as computing continuous records of streamflow for tidally or backwater affected streams, measuring velocity fields with high spatial and temporal resolution, and estimating suspended-sediment concentrations. An overview

  13. Estimating hydrodynamic roughness in a wave-dominated environment with a high-resolution acoustic Doppler profiler

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.; Wilson, D.J.; Chisholm, T.A.; Gelfenbaum, G.R.

    2005-01-01

    Hydrodynamic roughness is a critical parameter for characterizing bottom drag in boundary layers, and it varies both spatially and temporally due to variation in grain size, bedforms, and saltating sediment. In this paper we investigate temporal variability in hydrodynamic roughness using velocity profiles in the bottom boundary layer measured with a high-resolution acoustic Doppler profiler (PCADP). The data were collected on the ebb-tidal delta off Grays Harbor, Washington, in a mean water depth of 9 m. Significant wave height ranged from 0.5 to 3 m. Bottom roughness has rarely been determined from hydrodynamic measurements under conditions such as these, where energetic waves and medium-to-fine sand produce small bedforms. Friction velocity due to current u*c and apparent bottom roughness z0a were determined from the PCADP burst mean velocity profiles using the law of the wall. Bottom roughness kB was estimated by applying the Grant-Madsen model for wave-current interaction iteratively until the model u*c converged with values determined from the data. The resulting kB values ranged over 3 orders of magnitude (10-1 to 10-4 m) and varied inversely with wave orbital diameter. This range of kB influences predicted bottom shear stress considerably, suggesting that the use of time-varying bottom roughness could significantly improve the accuracy of sediment transport models. Bedform height was estimated from kB and is consistent with both ripple heights predicted by empirical models and bedforms in sonar images collected during the experiment. Copyright 2005 by the American Geophysical Union.

  14. A Study On The Validity Of Buoy Mounted Acoustic Doppler Profilers: A Comparison Of Upward And Downward Looking Systems In Onslow Bay, NC

    DTIC Science & Technology

    2010-06-01

    and therefore corrections applied for pitch and roll might be incorrect. The study showed the two systems did not agree well, but because the...Hence, mounting Acoustic Doppler Current Profilers ( ADCPs ) to these buoys has proven to be an avenue worth exploring. In a previous study done by...Seim and Edwards [1], a downward-looking ADCP from NDBC buoy 41008 was compared to an upward- looking ADCP from the University of North Carolina at

  15. Estimation of suspended sediment concentration from Acoustic Doppler Current Profiler (ADCP) instrument: A case study of Lembeh Strait, North Sulawesi

    NASA Astrophysics Data System (ADS)

    Dwinovantyo, Angga; Manik, Henry M.; Prartono, Tri; Susilohadi; Ilahude, Delyuzar

    2017-01-01

    Measurement of suspended sediment concentration (SSC) is one of the parameters needed to determine the characteristics of sediment transport. However, the measurement of SSC nowadays still uses conventional technique and it has limitations; especially in temporal resolution. With advanced technology, the measurement can use hydroacoustic technology such as Acoustic Doppler Current Profiler (ADCP). ADCP measures the intensity of backscatter as echo intensity unit from sediment particles. The frequency of ADCP used in this study was 400 kHz. The samples were measured and collected from Lembeh Strait, North Sulawesi. The highest concentration of suspended sediment was 98.89 mg L-1 and the lowest was 45.20 mg L-1. Time series data showed the tidal condition affected the SSC. From the research, we also made correction from sound signal losses effect such as spherical spreading and sound absorption to get more accurate results by eliminating these parameters in echo intensity data. Simple linear regression analysis at echo intensity measured from ADCP to direct measurement of SSC was performed to obtain the estimation of the SSC. The comparison result of estimation of SSC from ADCP measurements and SSC from laboratory analyses was insignificantly different based on t-test statistical analysis with 95% confidence interval percentage.

  16. Acoustic Doppler current profiling from the JGOFS Arabian sea cruises aboard the RV T.G. Thompson

    SciTech Connect

    Kim, Hyun-Sook; Flagg, C.N.; Shi, Yan

    1996-06-01

    Acoustic Doppler current profiler (ADCP) data is part of the core data for the U.S. JGOFS Arabian Sea project, along with hydrographic and nutrient data. Seventeen cruises are scheduled to take place between September 1994 and January 1996 on the R/V T.G. Thompson. They are numbered consecutively from the ship`s commissioning with the first JGOFS cruise designated TN039. Table 1 lists start and end dates of each cruise with its mission. All but the first cruise have been or will be staged from Muscat, Oman. Each cruise is scheduled for a duration of between two weeks and one month. Seven of the cruises, referred to as process cruises, follow a standard cruise track, taking hydrographic, chemical and biological measurements. The rest of the cruises, which take place generally within the standard cruise region defined by a set track, are for the deployment and recovery of moored equipments and towing of a SeaSoar. ADCP data are collected using an autonomous data acquisition system developed for ship-of-opportunity cruises, named the AutoADCP system. The system is an extension of RD instrument`s DAS version 2.48 using enhancements made possible with {open_quotes}user-exit{close_quotes} programs. It makes it possible to collect ADCP data without the constant monitoring usually necessary and insures constant data coverage and uniform data quality.

  17. Extraction of tidal streams from a ship-borne acoustic Doppler current profiler using a statistical-dynamical model

    NASA Astrophysics Data System (ADS)

    Dowd, Michael; Thompson, Keith R.

    1996-04-01

    We present a method for extracting the barotropic tide directly from the time-space series of horizontal velocity obtained by a ship-borne acoustic Doppler current profiler (ADCP). The method is conceptually straightforward, easy to implement, and suitable for operational use. It involves fitting a limited area tidal model, based on the linearized depth-averaged shallow water equations, to the ADCP record. The flows across the open boundaries of the model domain are assumed periodic in time with known frequencies corresponding to the tidal constituents of interest. The unknown tidal amplitudes and phases at the boundary are estimated from interior ADCP velocities using an inverse method; the solution of the shallow water equations is posed as a boundary value problem in the frequency domain, and the estimation procedure is based on generalized least squares regression. Results obtained include tidal maps, a tidal residual series, and associated error estimates. An application of the method to ship ADCP data collected on a cruise to the Western Bank region of the Scotian Shelf off the east coast of Canada is described. The tidal estimates and the residual field obtained are verified by comparison to other data collected during the cruise. The residual circulation shows an anticyclonic gyre centered on the crest of Western Bank and a northward current to the west of this region.

  18. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    USGS Publications Warehouse

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  19. Comparison of acoustic doppler current profiler and Price AA mechanical current meter measurements made during the 2011 Mississippi River Flood

    USGS Publications Warehouse

    O'Brien, Patrick; Mueller, David; Pratt, Thad

    2012-01-01

    The Mississippi River and Tributaries project performed as designed during the historic 2011 Mississippi River flood, with many of the operational decisions based on discharge targets as opposed to stage. Measurement of discharge at the Tarbert Landing, Mississippi range provides critical information used in operational decisions for the floodways located in Louisiana. Historically, discharge measurements have been made using a Price AA current meter and the mid-section method, and a long record exists based on these types of measurements, including historical peak discharges. Discharge measurements made using an acoustic Doppler current profiler from a moving boat have been incorporated into the record since the mid 1990's, and are used along with the Price AA mid-section measurements. During the 2011 flood event, both methods were used and appeared to provide different results at times. The apparent differences between the measurement techniques are due to complex hydrodynamics at this location that created large spatial and temporal fluctuations in the flow. The data and analysis presented herein show the difference between the two methods to be within the expected accuracy of the measurements when the measurements are made concurrently. The observed fluctuations prevent valid comparisons of data collected sequentially or even with different observation durations.

  20. Validation of exposure time for discharge measurements made with two bottom-tracking acoustic doppler current profilers

    USGS Publications Warehouse

    Czuba, J.A.; Oberg, K.

    2008-01-01

    Previous work by Oberg and Mueller of the U.S. Geological Survey in 2007 concluded that exposure time (total time spent sampling the flow) is a critical factor in reducing measurement uncertainty. In a subsequent paper, Oberg and Mueller validated these conclusions using one set of data to show that the effect of exposure time on the uncertainty of the measured discharge is independent of stream width, depth, and range of boat speeds. Analysis of eight StreamPro acoustic Doppler current profiler (ADCP) measurements indicate that they fall within and show a similar trend to the Rio Grande ADCP data previously reported. Four special validation measurements were made for the purpose of verifying the conclusions of Oberg and Mueller regarding exposure time for Rio Grande and StreamPro ADCPs. Analysis of these measurements confirms that exposure time is a critical factor in reducing measurement uncertainty and is independent of stream width, depth, and range of boat speeds. Furthermore, it appears that the relation between measured discharge uncertainty and exposure time is similar for both Rio Grande and StreamPro ADCPs. These results are applicable to ADCPs that make use of broadband technology using bottom-tracking to obtain the boat velocity. Based on this work, a minimum of two transects should be collected with an exposure time for all transects greater than or equal to 720 seconds in order to achieve an uncertainty of ??5 percent when using bottom-tracking ADCPs. ?? 2008 IEEE.

  1. Shipboard acoustic doppler current profiler data collected during the Western Tropical Atlantic Experiment (WESTRAX) 1991. Technical memo

    SciTech Connect

    Routt, J.A.; Wilson, W.D.

    1992-11-01

    The long-term goal of ongoing and future research in the western tropical Atlantic is to estimate the cross-equatorial transport of water and heat. The overall goals of those involved in the Western Tropical Atlantic Experiment (WESTRAX) are (a) to describe the annual cycle in the large-scale structure of the velocity and hydrographic properties over the full water column in the western tropical Atlantic Ocean between the equator and 15 degrees N, and (b) to compare data and models in order to better understand the physics of the regional circulation in the broader context of Atlantic basin thermohaline circulation. The results of this combined effort will greatly improve our understanding of this complex boundary current region and establish the basis for efficient long-term climatic monitoring of the critical meridional fluxes of mass and heat across the tropical Atlantic. This report presents the Acoustic Doppler Current Profiler (ADCP) data obtained during (ACCP) Atlantic Climate Change Program cruises in the western subtropical and tropical Atlantic in January, June and September 1991.

  2. Acoustic doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. Thompson

    SciTech Connect

    Flagg, C.N.; Shi, Y.

    1995-04-01

    Acoustic Doppler Current Profiler (ADCP) data from the R/V T.G. THOMPSON is part of the core data for the US JGOFS Arabian Sea project along with hydrographic and nutrient data. Seventeen cruises on the THOMPSON are scheduled to take place between September 1994 and January 1996. The first of these cruises, a transit of the R/V THOMPSON into the northern Arabian Sea area from Singapore, was a calibration and training cruise that took place between September 18 and October 7, 1994. (The cruises on the THOMPSON are numbered consecutively from the ship`s commissioning with the first JOGFS cruise designated TN039.) The remaining cruises have been and will be staged from Muscat, Oman. Seven of these cruises, referred to as process cruises, will follow a set cruise track, making hydrographic, chemical and biological measurements. The remainder of the cruises while not restricted to the set cruise track, will generally stay within the region defined by the track during the deployment and retrieval of moored equipment and the towing of a SeaSoar. Each cruise will last between two weeks and one month. ADCP data will be collected on all the JGOFS Arabian Sea cruises using an autonomous data acquisition system developed for ship-of-opportunity cruises. This system, referred to as the AutoADCP, makes it possible to collect the ADCP data without the constant monitoring usually necessary and assures constant data coverage and uniform data quality. The AutoADCP system is an extension of RD Instrument`s DAS version 2.48 using enhancements made possible with ``user exit`` programs. This data report presents ADCP results from the first four JGOFS cruises, TN039 through TN042, concentrating on the data collection and processing methods.

  3. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    USGS Publications Warehouse

    Wagner, C.R.; Mueller, D.S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks. ?? 2011 Published by Elsevier B.V.

  4. Acoustic Doppler current profiler raw measurements on the Missouri and Yellowstone rivers, 2000-2016, Columbia Environmental Research Center

    USGS Publications Warehouse

    Bulliner, Edward A.; Elliott, Caroline M.; Jacobson, Robert B.

    2017-01-01

    Between the years 2000 and 2016, scientists and technicians from the U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC) have collected over 400 field-days worth of acoustic Doppler current profiler (ADCP) measurements on the Missouri and Yellowstone Rivers, primarily for the purposes of assessing physical aquatic habitat for the pallid sturgeon. Scientists and technicians collected data using boat-mounted Teledyne Rio Grande ADCPs, which were processed using customized scripting tools and archived in standardized formats. To assess longitudinal variability in depth and velocity distributions along the Missouri River, as well as compare the Missouri River to its unaltered analog, the Yellowstone River, we compiled the collected datasets into a single comma-separated value (csv) file using a series of data-processing scripts written in Python. To allow for the comparison of measurements collected only within a specific window of flow exceedance, we conducted geospatial analyses to attribute each ADCP measurement by a discharge from the most relevant USGS gage location (with the most relevant gage location being the gage located between the same major tributaries as the measurement, even if it was not the closest spatially), and assigned each measurement a flow exceedance percentile based on the relevant gage's record between 2000 and 2016. We also conducted general quality control on the data, discarding any ADCP returns where the ADCP measured a depth-averaged velocity greater than 3 meters per second or a depth greater than 16 meters; these values were considered to be an approximate upper bounds for realistic values on the Missouri and Yellowstone Rivers. The presented csv file lists individual ADCP bins for all measurements that have been archived between 2000 and 2016 by CERC scientists along with their three-dimensional velocity components, depth-averaged velocity magnitude for a given ADCP return, average channel depth for a given ADCP

  5. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    NASA Astrophysics Data System (ADS)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  6. Bathymetric surveys of Morse and Geist Reservoirs in central Indiana made with acoustic Doppler current profiler and global positioning system technology, 1996

    USGS Publications Warehouse

    Wilson, J.T.; Morlock, S.E.; Baker, N.T.

    1997-01-01

    Acoustic Doppler current profiler, global positioning system, and geographic information system technology were used to map the bathymetry of Morse and Geist Reservoirs, two artificial lakes used for public water supply in central Indiana. The project was a pilot study to evaluate the use of the technologies for bathymetric surveys. Bathymetric surveys were last conducted in 1978 on Morse Reservoir and in 1980 on Geist Reservoir; those surveys were done with conventional methods using networks of fathometer transects. The 1996 bathymetric surveys produced updated estimates of reservoir volumes that will serve as base-line data for future estimates of storage capacity and sedimentation rates.An acoustic Doppler current profiler and global positioning system receiver were used to collect water-depth and position data from April 1996 through October 1996. All water-depth and position data were imported to a geographic information system to create a data base. The geographic information system then was used to generate water-depth contour maps and to compute the volumes for each reservoir.The computed volume of Morse Reservoir was 22,820 acre-feet (7.44 billion gallons), with a surface area of 1,484 acres. The computed volume of Geist Reservoir was 19,280 acre-feet (6.29 billion gallons), with a surface area of 1,848 acres. The computed 1996 reservoir volumes are less than the design volumes and indicate that sedimentation has occurred in both reservoirs. Cross sections were constructed from the computer-generated surfaces for 1996 and compared to the fathometer profiles from the 1978 and 1980 surveys; analysis of these cross sections also indicates that some sedimentation has occurred in both reservoirs.The acoustic Doppler current profiler, global positioning system, and geographic information system technologies described in this report produced bathymetric maps and volume estimates more efficiently and with comparable or greater resolution than conventional

  7. Evaluation of Backscatter in the northeastern Red Sea using a Lowered Acoustic Doppler Profiler, Simrad EK60 Echosounder and in situ Observations

    NASA Astrophysics Data System (ADS)

    Torres, D. J.; Klevjer, T. A.; Solberg, I.; Bower, A. S.; Kaartvedt, S.

    2010-12-01

    An oceanographic research cruise aboard the R/V Aegaeo was conducted in the Red Sea from 16-29 March 2010. The primary objective of the cruise was to undertake the first large-scale physical oceanographic survey of the northeastern quadrant of the Red Sea, including observations of top-to-bottom ocean currents and water properties such as temperature, salinity, dissolved oxygen, turbidity and fluorescence. Additional objectives were to take seawater samples throughout the water column for carbonate chemistry and microbial studies, and to survey the distribution of pelagic fishes using acoustic methods. A total of 111 casts were made during the cruise which covered nine transects ranging from 22°-28°N. A modified SeaBird 9/11+ rosette/CTD system equipped with a pair of upward and downward facing 300 kHz Lowered Acoustic Doppler Current Profilers (LADCP) from Teledyne RD Instruments was used for station sampling. The LADCP system is primarily used for measuring full water column absolute velocity profiles. However, this study focuses on using the LADCP echo intensity data to measure ocean backscatter. Complex methods are usually required for calibration of acoustic instruments to measure backscatter due to attenuation and absorption of sound in water. Here we present a method for data processing which eliminates the need for calibration by using a single bin at a fixed distance from the ADCP transducers. We also present data from a Simrad EK60 echosounder which collected underway acoustic data throughout the cruise. Diurnal migration patterns of mesopelagic fish (an abundant and important part of the Red Sea ecosystem) are clearly evident in both data sets. Although the LADCP (due to bin size settings optimized for water velocity measurements) cannot resolve the thinner layers of acoustic scatterers compared to the 38 kHz EK60 data, it can be a very useful tool for measuring fish and zooplankton distribution from ships not equipped with high end acoustic

  8. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  9. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  10. Klamath River Water Quality and Acoustic Doppler Current Profiler Data from Link River Dam to Keno Dam, 2007

    USGS Publications Warehouse

    Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna D.; Stewart, Marc A.; Wellman, Roy W.; Vaughn, Jennifer

    2008-01-01

    In 2007, the U.S. Geological Survey, Watercourse Engineering, and the Bureau of Reclamation began a project to construct and calibrate a water quality and hydrodynamic model of the 21-mile reach of the Klamath River from Link River Dam to Keno Dam. To provide a basis for this work, data collection and experimental work were planned for 2007 and 2008. This report documents sampling and analytical methods and presents data from the first year of work. To determine water velocities and discharge, a series of cross-sectional acoustic Doppler current profiler (ADCP) measurements were made on the mainstem and four canals on May 30 and September 19, 2007. Water quality was sampled weekly at five mainstem sites and five tributaries from early April through early November, 2007. Constituents reported here include field parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, iron, silica, and alkalinity; specific UV absorbance at 254 nm; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. The ADCP measurements conducted in good weather conditions in May showed that four major canals accounted for most changes in discharge along the mainstem on that day. Direction of velocity at measured locations was fairly homogeneous across the channel, while velocities were generally lowest near the bottom, and highest near surface, ranging from 0.0 to 0.8 ft/s. Measurements in September, made in windy conditions, raised questions about the effect of wind on flow. Most nutrient and carbon concentrations were lowest in spring, increased and remained elevated in summer, and decreased in fall. Dissolved nitrite plus nitrate and nitrite had a different seasonal cycle and were below detection or at low concentration in summer. Many nutrient and

  11. Integrating fluorescent dye flow-curve testing and acoustic Doppler velocimetry profiling for in situ hydraulic evaluation and improvement of clarifier performance.

    PubMed

    Tarud, F; Aybar, M; Pizarro, G; Cienfuegos, R; Pastén, P

    2010-08-01

    Enhancing the performance of clarifiers requires a thorough understanding of their hydraulics. Fluorescence spectroscopy and acoustic doppler velocimeter (ADV) profiling generally have been used separately to evaluate secondary settlers. We propose that simultaneous use of these techniques is needed to obtain a more reliable and useful evaluation. Experiments were performed on laboratory- and full-scale clarifiers. Factors affecting Fluorescein and Rhodamine 6G properties were identified. Underestimations up to 500% in fluorescence intensities may be derived from differential fluorescence quenching by oxygen. A careful control and interpretation of fluorescent dye experiments is needed to minimize artifacts in real settings. While flow-curve tests constructed under controlled conditions provided a more accurate overall quantitative estimation of the hydraulic performance, ADV velocity and turbulence profiling provided a detailed spatial understanding of flow patterns that was used to troubleshoot and fix the causes of hydraulic short-circuits.

  12. Application of acoustic doppler current profilers for measuring three-dimensional flow fields and as a surrogate measurement of bedload transport

    USGS Publications Warehouse

    Conaway, J.S.

    2005-01-01

    Acoustic Doppler current profilers (ADCPs) have been in use in the riverine environment for nearly 20 years. Their application primarily has been focused on the measurement of streamflow discharge. ADCPs emit high-frequency sound pulses and receive reflected sound echoes from sediment particles in the water column. The Doppler shift between transmitted and return signals is resolved into a velocity component that is measured in three dimensions by simultaneously transmitting four independent acoustical pulses. To measure the absolute velocity magnitude and direction in the water column, the velocity magnitude and direction of the instrument must also be computed. Typically this is accomplished by ensonifying the streambed with an acoustical pulse that also provides a depth measurement for each of the four acoustic beams. Sediment transport on or near the streambed will bias these measurements and requires external positioning such as a differentially corrected Global Positioning Systems (GPS). Although the influence of hydraulic structures such as spur dikes and bridge piers is typically only measured and described in one or two dimensions, the use of differentially corrected GPS with ADCPs provides a fully three-dimensional measurement of the magnitude and direction of the water column at such structures. The measurement of these flow disturbances in a field setting also captures the natural pulsations of river flow that cannot be easily quantified or modeled by numerical simulations or flumes. Several examples of measured three-dimensional flow conditions at bridge sites throughout Alaska are presented. The bias introduced to the bottom-track measurement is being investigated as a surrogate measurement of bedload transport. By fixing the position of the ADCP for a known period of time the apparent velocity of the streambed at that position can be determined. Initial results and comparison to traditionally measured bedload values are presented. These initial

  13. Correcting acoustic Doppler current profiler discharge measurement bias from moving-bed conditions without global positioning during the 2004 Glen Canyon Dam controlled flood on the Colorado River

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.

    2007-01-01

    Discharge measurements were made by acoustic Doppler current profiler at two locations on the Colorado River during the 2004 controlled flood from Glen Canyon Dam, Arizona. Measurement hardware and software have constantly improved from the 1980s such that discharge measurements by acoustic profiling instruments are now routinely made over a wide range of hydrologic conditions. However, measurements made with instruments deployed from moving boats require reliable boat velocity data for accurate measurements of discharge. This is normally accomplished by using special acoustic bottom track pings that sense instrument motion over bottom. While this method is suitable for most conditions, high current flows that produce downstream bed sediment movement create a condition known as moving bed that will bias velocities and discharge to lower than actual values. When this situation exists, one solution is to determine boat velocity with satellite positioning information. Another solution is to use a lower frequency instrument. Discharge measurements made during the 2004 Glen Canyon controlled flood were subject to moving-bed conditions and frequent loss of bottom track. Due to site conditions and equipment availability, the measurements were conducted without benefit of external positioning information or lower frequency instruments. This paper documents and evaluates several techniques used to correct the resulting underestimated discharge measurements. One technique produces discharge values in good agreement with estimates from numerical model and measured hydrographs during the flood. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  14. Measurement of velocities with an acoustic velocity meter, one side-looking and two upward-looking acoustic Doppler current profilers in the Chicago Sanitary and Ship Canal, Romeoville, Illinois

    USGS Publications Warehouse

    Oberg, Kevin A.; Duncker, James J.

    1999-01-01

    In 1998, a prototype 300 kHz, side-looking Acoustic Doppler Current Profiler (ADCP) was deployed in the Chicago Sanitary and Ship Canal (CSSC) at Romeoville, Illinois. Additionally, two upward-looking ADCP's were deployed in the same acoustic path as the side-looking ADCP and in the reach defined by the upstream and downstream acoustic velocity meter (AVM) paths. All three ADCP's were synchronized to the AVM clock at the gaging station so that data were sampled simultaneously. The three ADCP's were deployed for six weeks measuring flow velocities from 0.0 to 2.5 ft/s. Velocities measured by each ADCP were compared to AVM path velocities and to velocities measured by the other ADCP's.

  15. Long-term ferry-based observations of the suspended sediment fluxes through the Marsdiep inlet using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Nauw, J. J.; Merckelbach, L. M.; Ridderinkhof, H.; van Aken, H. M.

    2014-03-01

    Long-term measurements with a hull mounted acoustic Doppler current profiler (ADCP) under the ferry, crossing the Marsdiep inlet between the mainland and the island of Texel (the Netherlands), were used to determine the volume flux and the flux of suspended particulate matter (SPM) through this inlet for the period 2003-2005. Profiles of the SPM concentration were estimated from profiles of the acoustic backscatter intensity in which the shift between the low and the high turbulent regime is taken into account. Calibration constants and tuning parameters were estimated by using data collected during 7 different 13 hour anchor stations. The residual (water) volume flux through the inlet appears to vary strongly on a variety of time scales from daily to inter-annual. A regression analysis indicates that the daily residual volume transport correlates well with the daily mean wind component from the south; the latter likely drives the residual flow along the coast of Holland. The observed residual SPM transport of 7 to 11 Mton/yr is dominated by the correlation between tidal velocity and SPM concentration variations. This leads to an import as currents and SPM concentrations during flood were higher than those during ebb, a process generally known as tidal asymmetry. Our analysis has shown that regular observations with a ferry mounted ADCP is an effective method to monitor the volume and SPM transport processes in an estuary.

  16. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    PubMed Central

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  17. Temporal characteristics of coherent flow structures generated over alluvial sand dunes, Mississippi River, revealed by acoustic doppler current profiling and multibeam echo sounding

    USGS Publications Warehouse

    Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.

    2009-01-01

    This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.

  18. Tidal and residual currents measured by an acoustic doppler current profiler at the west end of Carquinez Strait, San Francisco Bay, California, March to November 1988

    USGS Publications Warehouse

    Burau, J.R.; Simpson, M.R.; Cheng, R.T.

    1993-01-01

    Water-velocity profiles were collected at the west end of Carquinez Strait, San Francisco Bay, California, from March to November 1988, using an acoustic Doppler current profiler (ADCP). These data are a series of 10-minute-averaged water velocities collected at 1-meter vertical intervals (bins) in the 16.8-meter water column, beginning 2.1 meters above the estuary bed. To examine the vertical structure of the horizontal water velocities, the data are separated into individual time-series by bin and then used for time-series plots, harmonic analysis, and for input to digital filters. Three-dimensional graphic renditions of the filtered data are also used in the analysis. Harmonic analysis of the time-series data from each bin indicates that the dominant (12.42 hour or M2) partial tidal currents reverse direction near the bottom, on average, 20 minutes sooner than M2 partial tidal currents near the surface. Residual (nontidal) currents derived from the filtered data indicate that currents near the bottom are pre- dominantly up-estuary during the neap tides and down-estuary during the more energetic spring tides.

  19. Application of acoustic-Doppler current profiler and expendable bathythermograph measurements to the study of the velocity structure and transport of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.

    1988-01-01

    The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.

  20. Sounding out erosion on the Mekong river banks: insights from combined terrestrial laser scanning, multibeam echo sounding and acoustic Doppler profiling

    NASA Astrophysics Data System (ADS)

    Best, J.; Hackney, C. R.; Leyland, J.; Darby, S. E.; Parsons, D. R.; Aalto, R. E.; Nicholas, A. P.

    2015-12-01

    Knowledge of bank erosion processes and rates along very large rivers remains incomplete, primarily due to the difficulties of obtaining morphological and flow data close to the bank across various flow stages. Moreover, obtaining such process information through the entire flow and bank depth has also proved challenging. Here, we present data from a series of high spatial resolution topographic (Terrestrial Laser Scanner and Multibeam Echo Sounder) and flow (Acoustic Doppler Current Profiler) surveys undertaken on the Mekong River, Cambodia, which reveal the temporal and spatial evolution of a series of embayments on the outer bank of a large meander. These techniques yield unique data that reveal how the flow field responds to the morphology of the outer bank and subaqueous slump blocks. Specifically, we show that in the early stage of embayment growth, deposited slump blocks induce flow upwelling and bank-directed flow that enhances bank erosion. Our data also suggest that as the initial erosion process continues, a threshold embayment size is reached. Below this threshold, flow separation acts to enhance embayment growth along with the fluid dynamic effects of slump blocks, but above the threshold size, the separation zone in the embayments acts as a protective layer, thus slowing erosion. This field data allows proposition of a new conceptual model of embayment evolution.

  1. Evaluation of Acoustic Doppler Current Profiler to Measure Discharge at New York Power Authority's Niagara Power Project, Niagara Falls, New York

    USGS Publications Warehouse

    Zajd, Henry J.

    2007-01-01

    The need for accurate real-time discharge in the International Niagara River hydro power system requires reliable, accurate and reproducible data. The U.S. Geological Survey has been widely using Acoustic Doppler Current Profilers (ADCP) to accurately measure discharge in riverine channels since the mid-1990s. The use of the ADCP to measure discharge has remained largely untested at hydroelectric-generation facilities such as the New York Power Authority's (NYPA) Niagara Power Project in Niagara Falls, N.Y. This facility has a large, engineered diversion channel with the capacity of high volume discharges in excess of 100,000 cubic feet per second (ft3/s). Facilities such as this could benefit from the use of an ADCP, if the ADCP discharge measurements prove to be more time effective and accurate than those obtained from the flow-calculation techniques that are currently used. Measurements of diversion flow by an ADCP in the 'Pant Leg' diversion channel at the Niagara Power Project were made on November 6, 7, and 8, 2006, and compared favorably (within 1 percent) with those obtained concurrently by a conventional Price-AA current-meter measurement during one of the ADCP measurement sessions. The mean discharge recorded during each 2-hour individual ADCP measurement session compared favorably with (3.5 to 6.8 percent greater than) the discharge values computed by the flow-calculation method presently in use by NYPA. The use of ADCP technology to measure discharge could ultimately permit increased power-generation efficiency at the NYPA Niagara Falls Power Project by providing improved predictions of the amount of water (and thus the power output) available.

  2. Using Principal Component and Tidal Analysis as a Quality Metric for Detecting Systematic Heading Uncertainty in Long-Term Acoustic Doppler Current Profiler Data

    NASA Astrophysics Data System (ADS)

    Morley, M. G.; Mihaly, S. F.; Dewey, R. K.; Jeffries, M. A.

    2015-12-01

    Ocean Networks Canada (ONC) operates the NEPTUNE and VENUS cabled ocean observatories to collect data on physical, chemical, biological, and geological ocean conditions over multi-year time periods. Researchers can download real-time and historical data from a large variety of instruments to study complex earth and ocean processes from their home laboratories. Ensuring that the users are receiving the most accurate data is a high priority at ONC, requiring quality assurance and quality control (QAQC) procedures to be developed for all data types. While some data types have relatively straightforward QAQC tests, such as scalar data range limits that are based on expected observed values or measurement limits of the instrument, for other data types the QAQC tests are more comprehensive. Long time series of ocean currents from Acoustic Doppler Current Profilers (ADCP), stitched together from multiple deployments over many years is one such data type where systematic data biases are more difficult to identify and correct. Data specialists at ONC are working to quantify systematic compass heading uncertainty in long-term ADCP records at each of the major study sites using the internal compass, remotely operated vehicle bearings, and more analytical tools such as principal component analysis (PCA) to estimate the optimal instrument alignments. In addition to using PCA, some work has been done to estimate the main components of the current at each site using tidal harmonic analysis. This paper describes the key challenges and presents preliminary PCA and tidal analysis approaches used by ONC to improve long-term observatory current measurements.

  3. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    SciTech Connect

    Kilcher, Levi; Thomson, Jim; Talbert, Joe; DeKlerk, Alex

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  4. Calculating "g" from Acoustic Doppler Data

    ERIC Educational Resources Information Center

    Torres, Sebastian; Gonzalez-Espada, Wilson J.

    2006-01-01

    Traditionally, the Doppler effect for sound is introduced in high school and college physics courses. Students calculate the perceived frequency for several scenarios relating a stationary or moving observer and a stationary or moving sound source. These calculations assume a constant velocity of the observer and/or source. Although seldom…

  5. Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids

    NASA Astrophysics Data System (ADS)

    Brunker, Joanna; Beard, Paul

    2016-02-01

    Photoacoustic Doppler velocimetry provides a major opportunity to overcome limitations of existing blood flow measuring methods. By enabling measurements with high spatial resolution several millimetres deep in tissue, it could probe microvascular blood flow abnormalities characteristic of many different diseases. Although previous work has demonstrated feasibility in solid phantoms, measurements in blood have proved significantly more challenging. This difficulty is commonly attributed to the requirement that the absorber spatial distribution is heterogeneous relative to the minimum detectable acoustic wavelength. By undertaking a rigorous study using blood-mimicking fluid suspensions of 3 μm absorbing microspheres, it was discovered that the perceived heterogeneity is not only limited by the intrinsic detector bandwidth; in addition, bandlimiting due to spatial averaging within the detector field-of-view also reduces perceived heterogeneity and compromises velocity measurement accuracy. These detrimental effects were found to be mitigated by high-pass filtering to select photoacoustic signal components associated with high heterogeneity. Measurement under-reading due to limited light penetration into the flow vessel was also observed. Accurate average velocity measurements were recovered using “range-gating”, which furthermore maps the cross-sectional velocity profile. These insights may help pave the way to deep-tissue non-invasive mapping of microvascular blood flow using photoacoustic methods.

  6. Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids.

    PubMed

    Brunker, Joanna; Beard, Paul

    2016-02-19

    Photoacoustic Doppler velocimetry provides a major opportunity to overcome limitations of existing blood flow measuring methods. By enabling measurements with high spatial resolution several millimetres deep in tissue, it could probe microvascular blood flow abnormalities characteristic of many different diseases. Although previous work has demonstrated feasibility in solid phantoms, measurements in blood have proved significantly more challenging. This difficulty is commonly attributed to the requirement that the absorber spatial distribution is heterogeneous relative to the minimum detectable acoustic wavelength. By undertaking a rigorous study using blood-mimicking fluid suspensions of 3 μm absorbing microspheres, it was discovered that the perceived heterogeneity is not only limited by the intrinsic detector bandwidth; in addition, bandlimiting due to spatial averaging within the detector field-of-view also reduces perceived heterogeneity and compromises velocity measurement accuracy. These detrimental effects were found to be mitigated by high-pass filtering to select photoacoustic signal components associated with high heterogeneity. Measurement under-reading due to limited light penetration into the flow vessel was also observed. Accurate average velocity measurements were recovered using "range-gating", which furthermore maps the cross-sectional velocity profile. These insights may help pave the way to deep-tissue non-invasive mapping of microvascular blood flow using photoacoustic methods.

  7. Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids

    PubMed Central

    Brunker, Joanna; Beard, Paul

    2016-01-01

    Photoacoustic Doppler velocimetry provides a major opportunity to overcome limitations of existing blood flow measuring methods. By enabling measurements with high spatial resolution several millimetres deep in tissue, it could probe microvascular blood flow abnormalities characteristic of many different diseases. Although previous work has demonstrated feasibility in solid phantoms, measurements in blood have proved significantly more challenging. This difficulty is commonly attributed to the requirement that the absorber spatial distribution is heterogeneous relative to the minimum detectable acoustic wavelength. By undertaking a rigorous study using blood-mimicking fluid suspensions of 3 μm absorbing microspheres, it was discovered that the perceived heterogeneity is not only limited by the intrinsic detector bandwidth; in addition, bandlimiting due to spatial averaging within the detector field-of-view also reduces perceived heterogeneity and compromises velocity measurement accuracy. These detrimental effects were found to be mitigated by high-pass filtering to select photoacoustic signal components associated with high heterogeneity. Measurement under-reading due to limited light penetration into the flow vessel was also observed. Accurate average velocity measurements were recovered using “range-gating”, which furthermore maps the cross-sectional velocity profile. These insights may help pave the way to deep-tissue non-invasive mapping of microvascular blood flow using photoacoustic methods. PMID:26892989

  8. Use of Acoustic Doppler Instruments for Measuring Discharge in Streams with Appreciable Sediment Transport

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2002-01-01

    The use of Acoustic Doppler current profilers (ADCP) for measuring discharge in streams with sediment transport was discussed. The studies show that the acoustic frequency of an ADCP in combination with the sediment transport characteristics in a river causes the ADCP bottom-tracking algorithms to detect a moving bottom. A moving bottom causes bottom-tracking-referenced water velocities and discharges to be biased low. The results also show that the use of differential global positioning system (DGPS) data allows accurate measurement of water velocities and discharges in such cases.

  9. HF Doppler observations of acoustic waves excited by the earthquake

    NASA Technical Reports Server (NTRS)

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  10. Doppler acoustic sounding: observational inputs to pollutant-dispersion models. Final report

    SciTech Connect

    MacCready, P.; Worden, J.

    1982-01-01

    To accurately model the dilution of pollutants, as in the form of plumes from large power plants, actual observations of atmospheric characteristics aloft are needed. The goal of this program was to find out whether a portable, multi-beam, monostatic Doppler acoustic system (DAS) can provide the measurements of conditions aloft that are required as inputs to dispersion models suitable for routine applications. Evaluation of what the Doppler system can measure and the related accuracy of that measurement was based on a comparison of its observations with those from a nearby instrumented 300-m tower in Colorado (supplemented by instrumented airplane ascents above tower height), and also based on considerations of continuity in vertical profiles of Doppler system outputs. Input data requirements for dispersion models were then assessed. It is apparent that the Doppler system can provide all the approximate mean flow and turbulence factors used by the models, usually to altitudes beyond 600 m. There is also a need in the models for an input which is related to temperature stability, both for plume rise calculations, and for predicting vertical diffusion versus observed vertical turbulence. It is expected that a stability factor can be derived objectively from the Doppler acoustic signals; various candidate methods are discussed, but complete development of the technique is in the future.

  11. Acoustic Doppler velocimeter-induced acoustic streaming and its implications for measurement

    NASA Astrophysics Data System (ADS)

    Poindexter, C. M.; Rusello, P. J.; Variano, E. A.

    2011-05-01

    The acoustic Doppler velocimeter (ADV) is widely used for the characterization of fluid flow. Secondary flows ("acoustic streaming") generated by the ADV's acoustic pulses may affect the accuracy of measurements in experiments with small velocities. We assessed the impact of acoustic streaming on flow measurement using particle image velocimetry. The probes of two different ADVs were successively mounted in a tank of quiescent water. The probes' ultrasound emitters were aligned with a laser light sheet. Observed flow was primarily in the axial direction, accelerating from the ultrasound emitter and peaking within centimeters of the velocimeter sampling volume before dropping off. We measured the dependence of acoustic streaming velocity on ADV configuration, finding that different settings induce streaming ranging from negligible to more than 2.0 cm s-1. From these results, we describe cases where acoustic streaming affects velocity measurements and also cases where ADVs accurately measure their own acoustic streaming.

  12. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    PubMed Central

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558

  13. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler

    PubMed Central

    Brunker, Joanna; Beard, Paul

    2016-01-01

    Acoustic resolution photoacoustic Doppler velocimetry promises to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Despite successful implementation using blood-mimicking fluids, measurements in blood have proved challenging, thus preventing in vivo application. A common explanation for this difficulty is that whole blood is insufficiently heterogeneous relative to detector frequencies of tens of MHz compatible with deep tissue photoacoustic measurements. Through rigorous experimental measurements we provide new insight that refutes this assertion. We show for the first time that, by careful choice of the detector frequency and field-of-view, and by employing novel signal processing methods, it is possible to make velocity measurements in whole blood using transducers with frequencies in the tens of MHz range. These findings have important implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions. PMID:27446707

  14. Field Assessment of Acoustic-Doppler Based Discharge Measurements

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2002-01-01

    The use of equipment based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun a field validation of the instruments currently (2002) available for making discharge measurements from a moving boat in streams of various sizes. Instruments manufactured by SonTek/YSI2 and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made by the use of a Price AA current meter and standard USGS procedures with the acoustic instruments at each site during data collection. The discharges measured with the acoustic instruments were compared with the discharges measured with Price AA meters and the current USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating. Additional analysis of the data collected indicates that the coefficient of variation of the discharge measurements consistently was less for the RD Instruments, Inc. Rio Grandes than it was for the SonTek/YSI RiverSurveyors. The bottom-tracking referenced measurement had a lower coefficient of variation than the differentially corrected global positioning system referenced measurements. It was observed that the higher frequency RiverSurveyors measured a moving bed more often than the lower frequency Rio Grandes. The detection of a moving bed caused RiverSurveyors to be consistently biased low when referenced to bottom tracking. Differentially corrected global positioning system data may be used to remove the bias observed in the bottom-tracking referenced measurements.

  15. Noise correction of turbulent spectra obtained from Acoustic Doppler Velocimeters

    SciTech Connect

    Durgesh, Vibhav; Thomson, Jim; Richmond, Marshall C.; Polagye, Brian

    2014-03-02

    Accurately estimated auto-spectral density functions are essential for characterization of turbulent flows, and they also have applications in computational fluid dynamics modeling, site and inflow characterization for hydrokinetic turbines, and inflow turbulence generation. The Acoustic Doppler Velocimeter (ADV) provides single-point temporally resolved data, that are used to characterize turbulent flows in rivers, seas, and oceans. However, ADV data are susceptible to contamination from various sources, including instrument noise, which is the intrinsic limit to the accuracy of acoustic velocity measurements. Due to the presence of instrument noise, the spectra obtained are altered at high frequencies. The focus of this study is to develop a robust and effective method for accurately estimating auto-spectral density functions from ADV data by reducing or removing the spectral contribution derived from instrument noise. For this purpose, the “Noise Auto-Correlation” (NAC) approach was developed, which exploits the correlation properties of instrument noise to identify and remove its contribution from spectra. The spectra estimated using the NAC approach exhibit increased fidelity and a slope of -5/3 in the inertial range, which is typically observed for turbulent flows. Finally, this study also compares the effectiveness of low-pass Gaussian filters in removing instrument noise with that of the NAC approach. For the data used in this study, both the NAC and Gaussian filter approaches are observed to be capable of removing instrument noise at higher frequencies from the spectra. However, the NAC results are closer to the expected frequency power of -5/3 in the inertial sub-range.

  16. Application of acoustic doppler velocimeters for streamflow measurements

    USGS Publications Warehouse

    Rehmel, M.

    2007-01-01

    The U.S. Geological Survey (USGS) principally has used Price AA and Price pygmy mechanical current meters for measurement of discharge. New technologies have resulted in the introduction of alternatives to the Price meters. One alternative, the FlowTracker acoustic Doppler velocimeter, was designed by SonTek/YSI to make streamflow measurements in wadeable conditions. The device measures a point velocity and can be used with standard midsection method algorithms to compute streamflow. The USGS collected 55 quality-assurance measurements with the FlowTracker at 43 different USGS streamflow-gaging stations across the United States, with mean depths from 0.05to0.67m, mean velocities from 13 to 60 cm/s, and discharges from 0.02 to 12.4m3/s. These measurements were compared with Price mechanical current meter measurements. Analysis of the comparisons shows that the FlowTracker discharges were not statistically different from the Price meter discharges at a 95% confidence level. ?? 2007 ASCE.

  17. Doppler Feature Based Classification of Wind Profiler Data

    NASA Astrophysics Data System (ADS)

    Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary

    2017-01-01

    Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.

  18. Acoustic resolution photoacoustic Doppler flowmetry: practical considerations for obtaining accurate measurements of blood flow

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2014-03-01

    An assessment has been made of various experimental factors affecting the accuracy of flow velocities measured using a pulsed time correlation photoacoustic Doppler technique. In this method, Doppler time shifts are quantified via crosscorrelation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves are detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. This enables penetration depths of several millimetres or centimetres, unlike methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1 mm. In the acoustic resolution mode, it is difficult to detect time shifts in highly concentrated suspensions of flowing absorbers, such as red blood cell suspensions and whole blood, and this challenge supposedly arises because of the lack of spatial heterogeneity. However, by assessing the effect of different absorption coefficients and tube diameters, we offer an alternative explanation relating to light attenuation and parabolic flow. We also demonstrate a new signal processing method that surmounts the previous problem of measurement under-reading. This method is a form of signal range gating and enables mapping of the flow velocity profile across the tube as well as measurement of the average flow velocity. We show that, using our signal processing scheme, it is possible to measure the flow of whole blood using a relatively low frequency detector. This important finding paves the way for application of the technique to measurements of blood flow several centimetres deep in living tissue.

  19. Laser and acoustic Doppler techniques for the measurement of fluid velocities

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.

    1975-01-01

    An overview of current laser and acoustic Doppler techniques is presented. Results obtained by Doppler anemometry and conventional sensors are compared. Comparisons include simultaneous velocity measurements by hot wire and a three-dimensional laser anemometer made in a gaseous pipe flow as well as direct comparisons of atmospheric velocities measured with propeller and cup anemometry. Scanning techniques are also discussed. Conclusions and recommendations for future work are presented.

  20. High-overtone Self-Focusing Acoustic Transducers for High Frequency Ultrasonic Doppler

    PubMed Central

    Zhu, Jie; Lee, Chuangyuan; Kim, Eun Sok; Wu, Dawei; Hu, Changhong; Zhou, Qifa; Shung, K. Kirk.; Wang, Gaofeng; Yu, Hongyu

    2010-01-01

    This work reports the potential use of high-overtone self-focusing acoustic transducers for high frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz. PMID:20206371

  1. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Zhang, Shangbin; He, Qingbo; Kong, Fanrang

    2016-01-01

    Wayside acoustic condition monitoring and fault diagnosis for train bearings depend on acquired acoustic signals, which consist of mixed signals from different train bearings with obvious Doppler distortion as well as background noises. This study proposes a novel scheme to overcome the difficulties, especially the multi-source problem in wayside acoustic diagnosis system. In the method, a time-frequency data fusion (TFDF) strategy is applied to weaken the Heisenberg's uncertainty limit for a signal's time-frequency distribution (TFD) of high resolution. Due to the Doppler Effect, the signals from different bearings have different time centers even with the same frequency. A Doppler feature matching search (DFMS) algorithm is then put forward to locate the time centers of different bearings in the TFD spectrogram. With the determined time centers, time-frequency filters (TFF) are designed with thresholds to separate the acoustic signals in the time-frequency domain. Then the inverse STFT (ISTFT) is taken and the signals are recovered and filtered aiming at each sound source. Subsequently, a dynamical resampling method is utilized to remove the Doppler Effect. Finally, accurate diagnosis for train bearing faults can be achieved by applying conventional spectrum analysis techniques to the resampled data. The performance of the proposed method is verified by both simulated and experimental cases. It shows that it is effective to detect and diagnose multiple defective bearings even though they produce multi-source acoustic signals.

  2. Characterizing and Classifying Acoustical Ambient Sound Profiles

    DTIC Science & Technology

    2015-03-26

    of sound . The value for the speed of sound varies depending on the medium which the sound wave travels through as well as the temperature and...Characterizing and Classifying Acoustical Ambient Sound Profiles THESIS MARCH 2015 Paul T. Gaski, Second Lieutenant, USAF AFIT-ENS-MS-15-M-122... SOUND PROFILES THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of

  3. Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.

    2012-04-01

    Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.

  4. The budget of turbulent kinetic energy in bubble plumes by acoustic Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Lai, Chris; Socolofsky, Scott

    2016-11-01

    We present an experimental investigation on the TKE budget of a two-phase air-water bubble plume in an otherwise quiescent ambient. The required three-dimensional turbulent velocity field was measured by a profiling acoustic Doppler velocimeter. Experiments were carried out in a square water tank of 1m3 and covered both adjustment phase (z/D < 5) and asymptotic regime (z/D >= 5) of the plume in which the latter is characterized by a constant local Frp . The dynamic length scale D has previously been derived from a two-fluid approach and delineates the two regimes. Data on the mean flow establish the existence of an asymptotic regime when z / D > 8 with an entrainment coefficient of 0.095 and a Frp of 1.63. The data also corroborate well with previous measurements of large-scale bubble plumes. A budget of TKE was performed using curve-fits derived from the radial profiles of second- and third-order moments of turbulent velocities. From the budget, TKE production by bubbles was found to be larger than that by fluid shear. Approximately 55-60% of the total work done by bubbles is used to create fluid turbulence. This research was made possible by a Grant from The Gulf of Mexico Research Initiative to the Gulf Integrated Spill Research (GISR) Consortium.

  5. Stretched-exponential Doppler spectra in underwater acoustic communication channels.

    PubMed

    van Walree, P A; Jenserud, T; Otnes, R

    2010-11-01

    The theory of underwater sound interacting with the sea surface predicts a Gaussian-spread frequency spectrum in the case of a large Rayleigh parameter. However, recent channel soundings reveal more sharply peaked spectra with heavier tails. The measured Doppler spread increases with the frequency and differs between multipath arrivals. The overall Doppler spectrum of a broadband waveform is the sum of the spectra of all constituent paths and frequencies, and is phenomenologically described by a stretched or compressed exponential. The stretched exponential also fits well to the broadband spectrum of a single propagation path, and narrowband spectra summed over all paths.

  6. A Comparison of the Electromagnetic and Acoustic Doppler Effects Using Geometrical Diagrams

    ERIC Educational Resources Information Center

    Bokor, Nandor

    2009-01-01

    Students often find the difference in the electromagnetic and the acoustic Doppler formulae somewhat puzzling. As is shown below, geometrical diagrams and the concept of "event"--a point in spacetime having coordinates (x,y,z,t)--can be a useful and simple way to explain the physical background behind the fundamental differences between the two…

  7. Observations on the use of acoustic Doppler velocimeters over rough beds with suspended sediment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic Doppler velocimeters provide a means for measuring velocities and turbulence in challenging circumstances, such as in flows with suspended particles, which are difficult or impossible with laser-based techniques. The relatively non-intrusive measurement resulting from the offset sampling v...

  8. Source motion detection, estimation, and compensation for underwater acoustics inversion by wideband ambiguity lag-Doppler filtering.

    PubMed

    Josso, Nicolas F; Ioana, Cornel; Mars, Jérôme I; Gervaise, Cédric

    2010-12-01

    Acoustic channel properties in a shallow water environment with moving source and receiver are difficult to investigate. In fact, when the source-receiver relative position changes, the underwater environment causes multipath and Doppler scale changes on the transmitted signal over low-to-medium frequencies (300 Hz-20 kHz). This is the result of a combination of multiple paths propagation, source and receiver motions, as well as sea surface motion or water column fast changes. This paper investigates underwater acoustic channel properties in a shallow water (up to 150 m depth) and moving source-receiver conditions using extracted time-scale features of the propagation channel model for low-to-medium frequencies. An average impulse response of one transmission is estimated using the physical characteristics of propagation and the wideband ambiguity plane. Since a different Doppler scale should be considered for each propagating signal, a time-warping filtering method is proposed to estimate the channel time delay and Doppler scale attributes for each propagating path. The proposed method enables the estimation of motion-compensated impulse responses, where different Doppler scaling factors are considered for the different time delays. It was validated for channel profiles using real data from the BASE'07 experiment conducted by the North Atlantic Treaty Organization Undersea Research Center in the shallow water environment of the Malta Plateau, South Sicily. This paper provides a contribution to many field applications including passive ocean tomography with unknown natural sources position and movement. Another example is active ocean tomography where sources motion enables to rapidly cover one operational area for rapid environmental assessment and hydrophones may be drifting in order to avoid additional flow noise.

  9. A micro-Doppler sonar for acoustic surveillance in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  10. Doppler effects in heterogeneous media with applications to ocean acoustic modeling

    NASA Astrophysics Data System (ADS)

    Weichman, Peter B.

    2005-12-01

    Doppler shift corrections to ocean acoustic signals are complicated by the multi-spatial-scale structure of the ocean medium, resulting in a multi-time-scale structure of the acoustic Green function. Repeated reflections and refractions lead in general to an infinite number of acoustic paths or modes, with different times of flight, connecting source and receiver. The rate of change of these flight times with source or receiver motion gives rise to Doppler shift corrections, and each acoustic path or mode has a different correction. A clean Doppler correction (in the sense of an observable coherent motion-induced frequency shift for each path or mode) is shown to emerge only when the medium is homogeneous along the direction of source or receiver motion, even when it is highly inhomogeneous in directions orthogonal to the motion. A very general quantitative theory for this correction is developed, encompassing earlier results in the literature, and presented in a form amenable to efficient numerical implementation in data processing.

  11. Acoustic Doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. THOMPSON: TN043, January 8, 1995--February 4, 1995; TN044, February 8, 1995--February 25, 1995; TN045, March 14, 1995--April 10, 1995; TN046, April 14, 1995--April 29, 1995

    SciTech Connect

    Flagg, C.N.; Kim, H.S.; Shi, Y.

    1995-09-01

    Acoustic Doppler current profiler (ADCP) data from the R/V T.G. THOMPSON is part of the core data for the US JGOFS Arabian Sea project along with hydrographic and nutrient data. Seventeen cruises on the THOMPSON are scheduled to take place between September 1994 and January 1996. This is the second in a series of data reports covering the ADCP data from the Arabian Sea JGOFS cruises TNO43 through TNO46. ADCP data are being collected on all the JGOFS Arabian Sea cruises using an autonomous data acquisition system developed for ship-of-opportunity cruises. This system, referred to as the AutoADCP, makes it possible to collect the ADCP data without the constant monitoring usually necessary and assures constant data coverage and uniform data quality. This data report presents ADCP results from the second group of four JGOFS cruises, TNO43 through TNO46, concentrating on the data collection and processing methods. The ADCP data itself reside in a CODAS data base at Brookhaven National Laboratory and is generally available to JGOFS investigators through contact with the authors. The CODAS data base and associated ADCP processing software were developed over a number of years by Eric Firing and his group at the University of Hawaii. The CODAS software is shareware available for PC`s or Unix computers and is the single most widely used ADCP processing program for ship mounted units.

  12. Blood viscosity measurement: an integral method using Doppler ultrasonic profiles

    NASA Astrophysics Data System (ADS)

    Flaud, P.; Bensalah, A.

    2005-12-01

    The aim of this work is to present a new indirect and noninvasive method for the measurement of the Newtonian blood viscosity. Based on an integral form of the axial Navier-Stokes equation, this method is particularly suited for in vivo investigations using ultrasonic arterial blood velocity profiles. Its main advantage is that it is applicable to periodic as well as non periodic flows. Moreover it does not require classical filtering methods enhancing signal to noise ratio of the physiological signals. This method only requires the knowledge of the velocimetric data measured inside a spatially and temporally optimized zone of the Doppler velocity profiles. The results obtained using numerical simulation as well as in vitro or in vivo experiments prove the effectiveness of the method. It is then well adapted to the clinical environment as a systematic quasi on-line method for the measurement of the blood viscosity.

  13. Development of a Radio Acoustic Sounding System (RASS) for continuous temperature profiling upto lower stratospheric altitudes

    NASA Astrophysics Data System (ADS)

    Chandrasekhar Sarma, T. V.; Tsuda, Toshitaka

    2012-07-01

    The Gadanki (13.46°N, 79.17°E) MST radar is a high power VHF pulsed coherent Doppler radar established for remote probing of atmospheric phenomena in the Mesosphere Stratosphere Troposphere regions. Radio Acoustic Sounding System (RASS) was developed using this radar to obtain height profiles of atmospheric temperature up to lower stratospheric altitudes. RASS uses the effect of temperature on the speed of sound in air as a means to sense the atmospheric temperature. It is the combination of a Doppler radar and acoustic exciters. The radar was augmented with acoustic exciters that were designed and constructed for this purpose. The Doppler radar profiles the speed of refractive index perturbations induced by the acoustic source. RASS has been demonstrated to be a reliable ground-based remote profiling technique to obtain altitude profiles of atmospheric virtual temperature, Tv over the past two decades. This work describes the design of the system and its application to the observation of height profiles of atmospheric virtual temperature up to and beyond tropical tropopause altitudes. Observations were made during 2007, 2008 and 2009 over periods extending up to 72 hours. These observations demonstrate temperature profiling capability up to about 18 km in altitude, though on an occasion height coverage upto 22.8km was obtained briefly; lowest height covered is from about 1.5km onwards. During the period of the RASS observations simultaneous data from radiosonde was used to validate the temperature measurements. Simultaneous satellite-based measurement of outgoing long wave radiation (OLR) and precipitation from ground-based instruments was used to study the atmospheric phenomena of gravity waves and atmospheric stability during a convection event.

  14. Shipboard Acoustic Current Profiling during the Coastal Ocean Dynamics Experiment,

    DTIC Science & Technology

    1985-05-01

    Fig. 2.2 Range Gated Shipboard Doppler System . Four beams (fore. aft. port ard starboard) equally inclined from the ship’s vertical axis acousticallN...sarne cannot be said, however, for other beam geometries, such as the three-bean Jlanus system . M\\oreover. the effects, of finite beam width. side... System . Four beams (fore, aft, port and Sstarboard) equally inclined from the ship’s vertical axis acoustically probe the ocean. The Doppler shift in

  15. Gulf stream velocity structure through combined inversion of hydrographic and acoustic Doppler data

    NASA Technical Reports Server (NTRS)

    Pierce, S. D.

    1986-01-01

    Near-surface velocities from an acoustic Doppler instrument are used in conjunction with CTD/O2 data to produce estimates of the absolute flow field off Cape Hatteras. The data set consists of two transects across the Gulf Stream made by the R/V Endeavor cruise EN88 in August 1982. An inverse procedure is applied which makes use of both the acoustic Doppler data and property conservation constraints. Velocity sections at approximately 73 deg. W and 71 deg. W are presented with formal errors of 1-2 cm/s. The net Gulf Stream transports are estimated to be 116 + or - 2 Sv across the south leg and 161 + or - 4 Sv across the north. A Deep Western Boundary Current transport of 4 + or - 1 Sv is also estimated. While these values do not necessarily represent the mean, they are accurate estimates of the synoptic flow field in the region.

  16. Radio acoustic measurement of temperature profile in the troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Matuura, N.; Masuda, Y.; Inuki, H.; Kato, S.; Fukao, S.; Sato, T.; Tsuda, T.

    1986-10-01

    The radio acoustic sounding system (RASS) uses radar to measure the temperature profile in the atmosphere. In the standard technique of atmospheric radar, the radar backscatter results from electrical permittivity variations due to natural phenomena such as turbulence and precipitation. In the RASS technique, the radar backscatter results from periodical permittivity variations due to density/temperature variations imposed on the atmosphere by an acoustic wave artificially generated in such a way that the acoustic wavelength is half the radar (electromagnetic) wavelength. This `Bragg condition' is necessary for efficient backscattering. The backscatter echo of the RASS is affected by the Doppler frequency shift arising both from the speed at which the longitudinal acoustic perturbations propagate (the sound speed), and from the radial bulk velocity in the common volume of the atmosphere-the latter can be measured by the standard technique of turbulence scatter. The observed sound speed is reduced to give the local atmospheric temperature. Here we report an experiment using the RASS, carried out on 1-3 August 1985, which consisted of a high-power, very-high-frequency (VHF) Doppler radar at Shigaraki, Shiga, Japan and a movable high-power acoustic transmitter, and which gave the first experimental proof of the possibility of temperature profiling in the troposphere and stratosphere up to an altitude of ~20 km.

  17. Tropospheric Wind Profile Measurements with a Direct Detection Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Chen, Huailin; Mathur, Savyasachee

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. In this paper we describe a recently developed prototype wind lidar system using a direct detection Doppler technique for measuring wind profiles from the surface through the troposphere. This system uses a pulsed ND:YAG laser operating at 1064 nm as the transmitter. The laser pulse is directed to the atmosphere using a 40 cm diameter scan mirror. The portion of the laser energy backscattered from aerosols and molecules is collected by a 40 cm diameter telescope and coupled via fiber optics into the Doppler receiver. Single photon counting APD's are used to detect the atmospheric backscattered signal. The principle element of the receiver is a dual bandpass tunable Fabry Perot etalon which analyzes the Doppler shift of the incoming laser signal using the double edge technique. The double edge technique uses two high resolution optical filters having bandpasses offset relative to one another such that the 'edge' of the first filter's transmission function crosses that of the second at the half power point. The outgoing laser frequency is located approximately at the crossover point. Due to the opposite going slopes of the edges, a Doppler shift in the atmospheric backscattered laser frequency produces a positive change in signal for one filter and a negative change in the second filter. Taking the ratio of the two edge channel signals yields a result which is directly proportional to the

  18. Shipboard acoustic profiling of upper ocean currents

    NASA Astrophysics Data System (ADS)

    Joyce, T. M.; Bitterman, D. S.; Prada, K. E.

    1982-07-01

    The ability to map the oceanic velocity field from ships would greatly enhance our ability to describe the energetics of the oceanic eddy field, to describe the structure of narrow and intense currents, and to provide some reference field for dynamic calculations of geostrophic currents. One technique that contributes toward this goal is presented. The shipboard system consists of a microprocessor-controlled data logger that collects and formats data from a four-beam Ametek-Straza 300-kHz Doppler current profiler, heading from the ship's gyrocompass, and navigation information from a LORAN-C receiver and a satellite navigation unit. Data are recorded on magnetic tape and some real-time calculations are made. The system was used in a May 1981 cruise on R.V. Oceanus in the western North Atlantic and some 10-min, vector-averaged current profiles have been presented on a section across the Gulf Stream. Horizontal currents have been profiled to depths of 100 m. Time averaging is required to remove effects of ship motion. Errors in our ability to profile ocean currents while underway are estimated to be 5 to 10 cm s -1 for absolute currents and 1 to 2 cm s -1 for relative changes in a 10-min vector average.

  19. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  20. Experimental investigation of geodesic acoustic modes on JET using Doppler backscattering

    NASA Astrophysics Data System (ADS)

    Silva, C.; Hillesheim, J. C.; Hidalgo, C.; Belonohy, E.; Delabie, E.; Gil, L.; Maggi, C. F.; Meneses, L.; Solano, E.; Tsalas, M.; Contributors, JET

    2016-10-01

    Geodesic acoustic modes (GAMs) have been investigated in JET ohmic discharges using mainly Doppler backscattering. Characteristics and scaling properties of the GAM are studied. Time and spatial resolved measurements of the perpendicular velocity indicate that GAMs are located in a narrow layer at the edge density gradient region with amplitude corresponding to about 50% of the mean local perpendicular velocity. GAMs on JET appear to be regulated by the turbulence drive rather than by their damping rate. It is also shown that the GAM amplitude is ~20% larger in deuterium than in hydrogen plasmas.

  1. Laboratory evaluation of an OTT acoustic digital current meter and a SonTek Laboratory acoustic Doppler velocimeter

    USGS Publications Warehouse

    Vermeyen, T.B.; Oberg, Kevin A.; Jackson, Patrick Ryan

    2009-01-01

    Recently, an acoustic current meter known as the OTT * acoustic digital current meter (ADC) was introduced as an alternative instrument for stream gaging measurements. The Bureau of Reclamation and the U.S. Geological Survey collaborated on a side- by-side evaluation of the ADC and a SonTek/YSI acoustic Doppler velocimeter (ADV). Measurements were carried out in a laboratory flume to evaluate the performance characteristics of the ADC under a range of flow and boundary conditions. The flume contained a physical model of a mountain river with a diversion dam and variety of bed materials ranging from smooth mortar to a cobble bed. The instruments were installed on a trolley system that allowed them to be easily moved within the flume while maintaining a consistent probe orientation. More than 50 comparison measurements were made in an effort to verify the manufacturer’s performance specifications and to evaluate potential boundary disturbance for near-bed and vertical boundary measurements. Data and results from this evaluation are presented and discussed. 

  2. Acoustical imaging and processing of blood vessel and the related materials using ultrasound Doppler effect.

    PubMed

    Yokobori, A T; Ohkuma, T; Yoshinari, H; Yokobori, T; Ohuchi, H; Mori, S

    1991-01-01

    In the present paper a method is proposed to measure the degree of the degradation of the elasticity in natural blood vessel and the related materials by using ultrasound Doppler effect. It was found that the deformation rate and its acceleration in the radial direction of the blood vessel can be detected by acoustical imaging and processing using this method. These results were proven to correspond to the degree of the degradation of the elasticity, that is, the degree of viscoelasticity in the blood vessel from the wave versus time pattern detected and its simple analysis. This method was applied to predicting the arteriosclerosis of blood vessels of humans by acoustical imaging and processing uninvadedly, as the characteristics of viscoelasticity in blood vessels.

  3. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert, Jr.

    2015-01-01

    Assessment of space vehicle loads and trajectories during design requires a large sample of wind profiles at the altitudes where winds affect the vehicle. Traditionally, this altitude region extends from near 8-14 km to address maximum dynamic pressure upon ascent into space, but some applications require knowledge of measured wind profiles at lower altitudes. Such applications include crew capsule pad abort and plume damage analyses. Two Doppler Radar Wind Profiler (DRWP) systems exist at the United States Air Force (USAF) Eastern Range and at the National Aeronautics and Space Administration's Kennedy Space Center. The 50-MHz DRWP provides wind profiles every 3-5 minutes from roughly 2.5-18.5 km, and five 915-MHz DRWPs provide wind profiles every 15 minutes from approximately 0.2-3.0 km. Archived wind profiles from all systems underwent rigorous quality control (QC) processes, and concurrent measurements from the QC'ed 50- and 915-MHz DRWP archives were spliced into individual profiles that extend from about 0.2-18.5 km. The archive contains combined profiles from April 2000 to December 2009, and thousands of profiles during each month are available for use by the launch vehicle community. This paper presents the details of the QC and splice methodology, as well as some attributes of the archive.

  4. Estimation of acoustical streaming: theoretical model, Doppler measurements and optical visualisation.

    PubMed

    Nowicki, A; Kowalewski, T; Secomski, W; Wójcik, J

    1998-02-01

    An approximate solution for the streaming velocity generated by flat and weakly focused transducers was derived by directly solving the Dirichlet boundary conditions for the Poisson equation, the solution of the Navier-Stokes equation for the axial components of the streaming velocity. The theoretical model was verified experimentally using a 32 MHz pulsed Doppler unit. The experimental acoustical fields were produced by three different 4 mm diameter flat and focused transducers driven by the transmitter generating the average acoustic power within the range from 1 microW to 6 mW. The streaming velocity was measured along the ultrasonic beam from 0 to 2 cm. Streaming was induced in a solution of water and corn starch. The experimental results showed that for a given acoustic power the streaming velocity was independent of the starch density in water, changed from 0.3 to 40 grams of starch in 1 l of distilled water. For applied acoustic powers, the streaming velocity changed linearly from 0.2 to 40 mm/s. Both, the theoretical solutions for plane and focused waves and the experimental results were in good agreement. The streaming velocity field was also visualised using the particle image velocimetry (PIV) and two different evaluation methods. The first based on the FFT-based cross-correlation analysis between small sections for each pair of images and the second employing the algorithm of searching for local displacements between several images.

  5. Three dimensional measurements of Geodesic Acoustic Mode with correlation Doppler reflectometers

    NASA Astrophysics Data System (ADS)

    Zhong, W. L.; Shi, Z. B.; Xu, Y.; Zou, X. L.; Duan, X. R.; Chen, W.; Jiang, M.; Yang, Z. C.; Zhang, B. Y.; Shi, P. W.; Liu, Z. T.; Xu, M.; Song, X. M.; Cheng, J.; Ke, R.; Nie, L.; Cui, Z. Y.; Fu, B. Z.; Ding, X. T.; Dong, J. Q.; Liu, Yi.; Yan, L. W.; Yang, Q. W.; Liu, Yong; the HL-2A Team

    2015-10-01

    Correlation Doppler reflectometers have been newly developed in the HL-2A Tokamak. Owing to the flexibility of the diagnostic arrangements, the multi-channel systems allow us to study, simultaneously, the radial properties of edge turbulence and its long-range correlation in both the poloidal and toroidal direction. With these reflectometers, three-dimensional spatial structure of Geodesic Acoustic Mode (GAM) is surveyed, including the symmetric feature of Er fluctuations in both poloidal and toroidal directions, and the radial propagation of GAMs. The bi-coherence analysis for the Er fluctuations suggests that the three-wave nonlinear interaction could be the mechanism for the generation of GAM. The temporal evolution of GAM during the plasma density modulation experiments has been studied. The results show that the collisional damping plays a role in suppressing the GAM magnitudes, and hence, weakening the regulating effects of GAM on ambient turbulence. Three dimensional correlation Doppler measurements of GAM activity demonstrate that the newly developed correlation Doppler reflectometers in HL-2A are powerful tools for edge turbulence studies with high reliability. A shorter version of this contribution is due to be published in PoS at: ``1st EPS conference on Plasma Diagnostics''.

  6. Tethered acoustic doppler current profiler platforms for measuring streamflow

    USGS Publications Warehouse

    Rehmel, Michael S.; Stewart, James A.; Morlock, Scott E.

    2003-01-01

    A tethered-platform design with a trimaran hull and 900-megahertz radio modems is now commercially available. Continued field use has resulted in U.S. Geological Survey procedures for making tethered-platform discharge measurements, including methods for tethered-boat deployment, moving-bed tests, and measurement of edge distances.

  7. Evaluation of Acoustic Doppler Current Profiler measurements of river discharge

    USGS Publications Warehouse

    Morlock, S.E.

    1996-01-01

    The standard deviations of the ADCP measurements ranged from approximately 1 to 6 percent and were generally higher than the measurement errors predicted by error-propagation analysis of ADCP instrument performance. These error-prediction methods assume that the largest component of ADCP discharge measurement error is instrument related. The larger standard deviations indicate that substantial portions of measurement error may be attributable to sources unrelated to ADCP electronics or signal processing and are functions of the field environment.

  8. Doppler effect reduction based on time-domain interpolation resampling for wayside acoustic defective bearing detector system

    NASA Astrophysics Data System (ADS)

    Liu, Fang; He, Qingbo; Kong, Fanrang; Liu, Yongbin

    2014-06-01

    In the wayside Acoustic Defective Bearing Detector (ADBD) system, the recorded acoustic signal will be severely distorted by the Doppler effect because of the high moving speed of the railway vehicle, which is a barrier that would badly reduce the effectiveness of online defect detection. This paper proposes a simple and effective method, called time-domain interpolation resampling (TIR), to remove the Doppler effect embedded in the acoustic signal. The TIR is conducted in three steps. First, the time vector for resampling is calculated according to the kinematic analysis. Second, the amplitude of the distorted signal is demodulated. Third, the distorted signal is re-sampled using spline interpolation. In this method, both the spectrum structure and the amplitudes of the distorted signal can be restored. The effectiveness of TIR is verified by means of simulation studies and train roller bearing experiments with various types of defects. It is also compared to an existing Doppler effect reduction method that is based on the instantaneous frequency estimation using Hilbert transform. Results indicate that the proposed TIR method has the superior performance in removing the Doppler effect, and can be well implemented to Doppler effect reduction for the ADBD system.

  9. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    USGS Publications Warehouse

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  10. Imaging doppler lidar for wind turbine wake profiling

    DOEpatents

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  11. Acoustic resolution photoacoustic Doppler velocity measurements in fluids using time-domain cross-correlation

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2013-03-01

    Blood flow measurements have been demonstrated using the acoustic resolution mode of photoacoustic sensing. This is unlike previous flowmetry methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1mm. Here we describe a pulsed time correlation photoacoustic Doppler technique that is inherently flexible, lending itself to both resolution modes. Doppler time shifts are quantified via cross-correlation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. The use of short laser pulses allows depth-resolved measurements to be obtained with high spatial resolution, offering the prospect of mapping flow within microcirculation. Whilst our previous work has been limited to a non-fluid phantom, we now demonstrate measurements in more realistic blood-mimicking phantoms incorporating fluid suspensions of microspheres flowing along an optically transparent tube. Velocities up to 110 mm/s were measured with accuracies approaching 1% of the known velocities, and resolutions of a few mm/s. The velocity range and resolution are scalable with excitation pulse separation, but the maximum measurable velocity was considerably smaller than the value expected from the detector focal beam width. Measurements were also made for blood flowing at velocities up to 13.5 mm/s. This was for a sample reduced to 5% of the normal haematocrit; increasing the red blood cell concentration limited the maximum measurable velocity so that no results were obtained for concentrations greater than 20% of a physiologically realistic haematocrit. There are several possible causes for this limitation; these include the detector bandwidth and irregularities in the flow pattern. Better

  12. Airborne Wind Profiling Algorithm for Doppler Wind LIDAR

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable airborne Doppler Wind LIDAR system measurements and INS/GPS measurements to be combined to estimate wind parameters and compensate for instrument misalignment. In a further embodiment, the wind speed and wind direction may be computed based on two orthogonal line-of-sight LIDAR returns.

  13. Observations of Wind Profile of Marine Atmosphere Boundary Layer by Shipborne Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Zhang, Hongwei; Song, Xiaoquan; Zhang, Kailin

    2016-06-01

    Pulsed Coherent Doppler Lidar (CDL) system is so good as to prove the feasibility of the marine atmosphere boundary layer detection. A ship-mounted Coherent Doppler lidar was used to measure the wind profile and vertical velocity in the boundary layer over the Yellow sea in 2014. Furthermore, for the purpose of reducing the impact of vibration during movement and correcting the LOS velocity, the paper introduces the attitude correction algorithm and comparison results.

  14. Measurements of underwater acoustic pressure fields using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Carroll, Gerard P.

    2004-05-01

    Laser Doppler vibrometers (LDV) are designed to measure structural vibration velocity by sensing the phase shift in the laser signal reflected from a vibrating source. It is known that index of refraction modulations resulting from acoustic pressure distributions along a laser light path will also cause a phase shift. Simpson et al. [J. Acoust. Soc. Am. 99(4), 2521(A) (1996)] have investigated this acousto-optic phase modulation as a possible contaminating effect for underwater LDV vibration measurements. This paper will investigate acousto-optic phase modulations measured by a scanning LDV as a method for measuring pressure radiating from underwater vibrating surfaces. This is done by passing the laser beam through the radiating pressure field and measuring the backscattered laser signal which is reflected off a rigid and retroreflective surface (outside the pressure field). It is shown experimentally, using the average pressure measured with an LDV over a plane in the vicinity of a vibrating structure, that the pressure at a far-field location normal to the plane can be determined.

  15. Angular dependence of Doppler profiles of atomic emission produced in electron-molecule collisions: Estimation of anisotropy parameters

    NASA Astrophysics Data System (ADS)

    Nakashima, Keiji; Ogawa, Teiichiro

    1985-11-01

    The angular dependence of Doppler profiles of atomic fluorescence produced in electron impact dissociation of molecules was simulated in consideration of the effect of the anisotropy of dissociation and the ``polarization'' in magnetic sublevel. The asymmetry parameter b and the polarization of the electric vector of emission Jp are key parameters of Doppler profiles for the excited atom of known translational energy distribution. The difference of two Doppler profiles taken at 90° and 45°, which is denoted as angular difference Doppler profile, is shown to be useful to estimate these two key parameters.

  16. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System.

    PubMed

    Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-27

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy.

  17. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System

    PubMed Central

    Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy. PMID:26343657

  18. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Walker, John R.; Barbre, Robert E., Jr.; Leach, Richard D.

    2015-01-01

    Atmospheric wind data are required by space launch vehicles in order to assess flight vehicle loads and performance on day-of-launch. Space launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use within vehicle trajectory analyses. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output. First, balloons require approximately one hour to reach required altitudes. Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. These issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data over altitude ranges necessary for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. This paper will present details of the splicing software algorithms and will provide sample output.

  19. Wind Profiles Obtained with a Molecular Direct Detection Doppler Lidar During IHOP-2002

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Li, Steven X.; Mathur, Savyasachee; Dobler, Jeremy; Hasselbrack, William; Comer, Joseph

    2004-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min. N, 100 deg. 36.371 min. W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  20. Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures

    SciTech Connect

    Bodet, L.; Dhemaied, A.; Mourgues, R.; Tournat, V.; Rejiba, F.

    2012-05-24

    Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

  1. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.

    PubMed

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping

    2015-05-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.

  2. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Brenton, James C.; Walker, James C.; Leach, Richard D.

    2015-01-01

    Space launch vehicles utilize atmospheric winds in design of the vehicle and during day-of-launch (DOL) operations to assess affects of wind loading on the vehicle and to optimize vehicle performance during ascent. The launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use for vehicle engineering assessments. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output on DOL. First, balloons need approximately one hour to reach required altitude. For vehicle assessments this occurs at 60 kft (18.3 km). Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. Figure 1 illustrates the spatial separation of balloon measurements from the surface up to approximately 55 kft (16.8 km) during the Space Shuttle launch on 10 December 2006. The balloon issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data up to 60 kft (18.3 km) for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. Details on how data from various wind measurement systems are combined and sample output will be presented in the following sections.

  3. Acoustic temperature profile measurement technique for large combustion chambers

    NASA Technical Reports Server (NTRS)

    Venkateshan, S. P.; Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1989-01-01

    Measurement of times of flight of sound waves can be used to determine temperatures in a gas. This paper describes a system, based on this principle, that is capable of giving the temperature profile in a nonisothermal gas volume, for example, prevalent in a large furnace. The apparatus is simple, rugged, accurate, and capable of being automated for process control applications. It is basically an acoustic waveguide where the outside temperature profile is transferred to a chosen gas contained inside the guide.

  4. An Acoustic Profile of Right-Dislocations in French.

    ERIC Educational Resources Information Center

    Ashby, William J.

    1994-01-01

    Provides an acoustic profile of the prosody of right-dislocations in French, using the CECIL computer hardware and software package to analyze 28 right-dislocations occurring in a corpus of natural French discourse. It was found that, although right-dislocations appear to fulfill various functional roles in discourse, no correlation appears…

  5. Implementation and evaluation of the new wind algorithm in NASA's 50 MHz doppler radar wind profiler

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory E.; Manobianco, John T.; Schumann, Robin S.; Wheeler, Mark M.; Yersavich, Ann M.

    1993-01-01

    The purpose of this report is to document the Applied Meteorology Unit's implementation and evaluation of the wind algorithm developed by Marshall Space Flight Center (MSFC) on the data analysis processor (DAP) of NASA's 50 MHz doppler radar wind profiler (DRWP). The report also includes a summary of the 50 MHz DRWP characteristics and performance and a proposed concept of operations for the DRWP.

  6. Retrieval of Hydrometeor Drop Size Distributions from TRMM Field Campaign Profiler Doppler Velocity Spectra Observations

    NASA Technical Reports Server (NTRS)

    Williams, Christopher R.; Gage, Kenneth S.

    2003-01-01

    Consistent with the original proposal and work plan, this project focused on estimating the raindrop size distributions (DSDs) retrieved from vertically pointing Doppler radar profilers and analyzing the relationship of the retrieved DSDs with the dynamics of the precipitation processes. The first phase of this project focused on developing the model to retrieve the DSD from the observed Doppler velocity spectra. The second phase used this model to perform DSD retrievals from the profiler observations made during the TRMM Ground Validation Field Campaigns of TEFLUN-B, TRMM-LBA, and KWAJEX. The third phase of this project established collaborations with scientists involved with each field campaign in order to validate the profiler DSD estimates and to enable the profiler retrievals to be used in their research. Through these collaborations, the retrieved DSDs were placed into context with the dynamical processes of the observed precipitating cloud systems.

  7. Prospects for in vivo blood velocimetry using acoustic resolution photoacoustic Doppler

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2016-03-01

    Acoustic resolution photoacoustic Doppler flowmetry (AR-PAF) is a technique that has the potential to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Previous work has shown the potential of the technique using blood-mimicking phantoms, but it has proved difficult to make accurate measurements in blood, and thus in vivo application has not yet been possible. One explanation for this difficulty is that whole blood is insufficiently heterogeneous. Through experimental measurements in red blood cell suspensions of different concentrations, as well as in whole blood, we provide new insight and evidence that refutes this assertion. We show that the velocity measurement accuracy is influenced by bandlimiting not only due to the detector frequency response, but also due to spatial averaging of absorbers within the detector field-of-view. In addition, there is a detrimental effect of limited light penetration, but this can be mitigated by selecting less attenuated wavelengths of light, and also by employing range-gating signal processing. By careful choice of these parameters as well as the detector centre frequency, bandwidth and field-of-view, it is possible to make AR-PAF measurements in whole blood using transducers with bandwidths in the tens of MHz range. These findings have profound implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions.

  8. Tracking beaked whales with a passive acoustic profiler float.

    PubMed

    Matsumoto, Haru; Jones, Christopher; Klinck, Holger; Mellinger, David K; Dziak, Robert P; Meinig, Christian

    2013-02-01

    Acoustic methods are frequently used to monitor endangered marine mammal species. Advantages of acoustic methods over visual ones include the ability to detect submerged animals, to work at night, and to work in any weather conditions. A relatively inexpensive and easy-to-use acoustic float, the QUEphone, was developed by converting a commercially available profiler float to a mobile platform, adding acoustic capability, and installing the ERMA cetacean click detection algorithm of Klinck and Mellinger [(2011). J. Acoust. Soc. Am. 129(4), 1807-1812] running on a high-power DSP. The QUEphone was tested at detecting Blainville's beaked whales at the Atlantic Undersea Test and Evaluation Center (AUTEC), a Navy acoustic test range in the Bahamas, in June 2010. Beaked whale were present at AUTEC, and the performance of the QUEphone was compared with the Navy's Marine Mammal Monitoring on Navy Ranges (M3R) system. The field tests provided data useful to evaluate the QUEphone's operational capability as a tool to detect beaked whales and report their presence in near-real time. The range tests demonstrated that the QUEphone's beaked whale detections were comparable to that of M3R's, and that the float is effective at detecting beaked whales.

  9. Three interfering beams in laser Doppler velocimetry for particle position and microflow velocity profile measurements.

    PubMed

    Onofri, Fabrice

    2006-05-10

    It is proposed to use three interfering and coplanar laser beams to form the probe volume of laser Doppler systems. This allows us to obtain, for each particle crossing this probe volume, a Doppler signal whose frequency amplitude spectrum exhibits two characteristic peaks. Electromagnetic calculations and experimental validations clearly demonstrate that we can estimate simultaneously, from the analysis of these two frequency peaks, the particle position along the optical axis and one velocity component. This technique is expected to have great potentialities for velocity profile measurements in microfluidic or boundary layer flows, as well as for the sizing of spherical particles.

  10. Effects of Flow Profile on Educed Acoustic Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie r.; Nark, Douglas M.

    2010-01-01

    This paper presents results of an investigation of the effects of shear flow profile on impedance eduction processes employed at NASA Langley. Uniform and 1-D shear-flow propagation models are used to educe the acoustic impedance of three test liners based on aeroacoustic data acquired in the Langley Grazing Flow Impedance Tube, at source levels of 130, 140 and 150 dB, and at centerline Mach numbers of 0.0, 0.3 and 0.5. A ceramic tubular, calibration liner is used to evaluate the propagation models, as this liner is expected to be insensitive to SPL, grazing flow Mach number, and flow profile effects. The propagation models are then used to investigate the effects of shear flow profile on acoustic impedances educed for two conventional perforate-over-honeycomb liners. Results achieved with the uniform-flow models follow expected trends, but those educed with the 1-D shear-flow model do not, even for the calibration liner. However, when the flow profile used with the shear-flow model is varied to increase the Mach number gradient near the wall, results computed with the shear-flow model are well matched to those achieved with the uniform-flow model. This indicates the effects of flow profile on educed acoustic liner impedance are small, but more detailed investigations of the flow field throughout the duct are needed to better understand these effects.

  11. Study of multi-acoustic channel supersonic Doppler flowmeter for measuring coal slurry-coal log pipeline

    NASA Astrophysics Data System (ADS)

    Lin, Yu; Yang, Jie; Tang, Jun

    2006-11-01

    Coal slurry-coal log pipeline is a new technology for long distance transportation of coal logs (cylindrical coal briquettes) by using coal slurry as carrier and pump as power set. Because of the difficulty of measuring flow rate of coal slurry-coal log pipeline, the study of measuring technology and the development of flowmeter are necessary. In consideration of the characteristics of transportation of coal logs in coal slurry pipeline, a non-contacting measuring method and the supersonic Doppler effect are selected and used. By detecting frequency drifts produced by reflecting supersonic wave from moving coal particles and coal logs in pipeline the flow rate of coal slurry-coal log pipeline (the total quantity of coal transported by the pipeline) can be measured. Based on the concept of liner concentration of coal logs in pipeline and characteristics of Doppler frequency drifts of coal particles and coal logs moved in pipeline, the measuring method of supersonic wave and the transportation principle of coal slurry-coal log pipeline are discussed and a multi-acoustic channel supersonic Doppler flowmeter is designed for measuring the total quantity of coal transported by pipeline. The flowmeter is composed of supersonic transducer, electron circuit, flow rate indication and integral calculation system. The multi-acoustic channel technique and a suitable acoustic wedge with a certain shape and special solid material are selected and used for increasing the measuring precision. In this paper the Doppler signal is measured and analyzed by using mixing-frequency technique and FPT (rapid Fourier transformation), and some designed circuits and signal measurement process are also offered.

  12. Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

    2000-01-01

    The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

  13. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin

    2016-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  14. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin D.

    2015-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  15. Acoustic reflectometry esophageal profiles minimally affected by massive gas ventilation.

    PubMed

    Raphael, David T; Crookes, Peter; Arnaudov, Dimiter; Benbassat, Maxim

    2005-10-01

    Acoustic reflectometry can be used to distinguish between breathing tube placement in an esophagus vs the trachea via characteristic area-distance profiles for both cavities. In the cardiopulmonary resuscitation setting, capnography may be useless because the patient has little or no pulmonary circulation. With the breathing tube in the esophagus, can massive ventilation with a manual resuscitation bag, as might occur in the cardiopulmonary resuscitation setting, markedly alter the form of the obtained esophageal reflectometry profile? Nine hounds were induced, endotracheally intubated, mechanically ventilated, and anesthetized. Area-distance profiles were obtained with a 2-microphone acoustic reflectometer customized to measure areas up to 50 cm. Acoustic reflectometer profiles were obtained in intubated esophagi as follows: (1) baseline nonventilated state, (2) after aggressive 2-handed manual ventilation with high inspiratory pressures, rapid respiratory rates, and large tidal volumes for periods of 0.5, 1, and 1.5 minutes, upon detachment of the resuscitation bag, and (3) after esophagogastric decompression. We hypothesized that massive gas ventilation has no effect on the esophageal peak areas (null hypothesis), and used a paired t test for statistical significance (P < .05). For times of 0.5, 1.0, and 1.5 minutes, the ventilation volumes (mean +/- SD) were 25 +/- 7, 49 +/- 8, and 70 +/- 18 L. Massive gas ventilation caused minimal broadening and slight distal spread of the basal "hump". The mean peak area change was 0.18 +/- 0.35 cm2. For a paired t test (n = 9, df = 8), the corresponding t value was 1.54, with a P value of .16, which was incompatible with the null hypothesis. The experimental observations indicate a minimal effect of massive gas ventilation on the acoustic reflectometry esophageal profile. Hence, operator recognition of the altered canine acoustic reflectometer profile as that of an esophageal cavity is maintained, indicating that acoustic

  16. Expected Characteristics of Global Wind Profile Measurements with a Scanning, Hybrid, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    2008-01-01

    Over 20 years of investigation by NASA and NOAA scientists and Doppler lidar technologists into a global wind profiling mission from earth orbit have led to the current favored concept of an instrument with both coherent- and direct-detection pulsed Doppler lidars (i.e., a hybrid Doppler lidar) and a stepstare beam scanning approach covering several azimuth angles with a fixed nadir angle. The nominal lidar wavelengths are 2 microns for coherent detection, and 0.355 microns for direct detection. The two agencies have also generated two sets of sophisticated wind measurement requirements for a space mission: science demonstration requirements and operational requirements. The requirements contain the necessary details to permit mission design and optimization by lidar technologists. Simulations have been developed that connect the science requirements to the wind measurement requirements, and that connect the wind measurement requirements to the Doppler lidar parameters. The simulations also permit trade studies within the multi-parameter space. These tools, combined with knowledge of the state of the Doppler lidar technology, have been used to conduct space instrument and mission design activities to validate the feasibility of the chosen mission and lidar parameters. Recently, the NRC Earth Science Decadal Survey recommended the wind mission to NASA as one of 15 recommended missions. A full description of the wind measurement product from these notional missions and the possible trades available are presented in this paper.

  17. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    PubMed

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  18. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  19. Tropospheric and stratospheric wind profiling with a direct detection Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Barnes, John E.; Fischer, Ken W.; Skinner, Wilbert R.; Mcgill, Matt J.

    1992-01-01

    The Space Physics Research Laboratory at the University of Michigan has been operating a direct detection, high resolution Doppler Lidar (HRDL) to measure winds in the boundary layer, free troposphere and lower stratosphere. A direct detection Doppler lidar measures the Doppler shift of the aerosol or Rayleigh backscattered signal, from which the wind velocity vector can be retrieved (Benedetti-Michelangeli et al, 1972, 1974; Chanin et al., 1989; Abreu et al., 1992). The system components are shown. The transmitting system is a Continuum NY-60 Nd:YAG laser frequency doubled to a wavelength of 532 nm. The laser is injection seeded for single line mode operation yielding a linewidth of 0.0045 cm(exp -1) (135 MHz) with excellent shot-to-shot frequency stability. The laser produces 60 mJ pulses and operates at a 50 Hz repetition rate for an effective output power of 3.0 W. A description of the University of Michigan's Doppler lidar is given with examples of wind profiles for the boundary layer, free troposphere, and for the lower stratosphere. The system provides a reliable method of remotely measuring the wind. The wind error is smallest in regions of high aerosols. The system also produces aerosol extinction profiles versus altitude which can be determined by the shape of the spectra. The system has been installed in a trailor so that measurements can be made for field campaigns. Winds and aerosol data are available immediately at the site for use in forecasting.

  20. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-11-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne Doppler measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic atmospheric boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This held true particularly within the atmospheric boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of vertical winds with a random error below 0.2 m s-1. The comparison of lidar-measured wind and radio soundings gives a mean bias of 0.3 m s-1 (2°) and a mean standard deviation of 1.1 m s-1 (12°) for wind speed (wind direction). The agreement for wind direction degrades with height. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  1. Scanning laser Doppler Technique for velocity profile sensing on a moving surface.

    PubMed

    Sriram, P; Hanagud, S; Craig, J; Komerath, N M

    1990-06-01

    A scanning laser Doppler technique based on Chebyshev demodulation has been developed for the rapid measurement of spatially distributed velocity profiles. Scan frequencies up to 100 Hz can be used over scan lengths up to 270 mm. The Doppler signals are processed in the conventional manner using a frequency counter. The analog velocity output from the counter is post-processed to obtain the velocity profile. The Chebyshev demodulation post-processing technique for processing the velocity signals from solid surfaces has been introduced. The data processing technique directly yields the spatial velocity distribution in approximate functional form through frequency domain analysis of the scanning LDV velocity output. Results from a rotating disk setup are presented to illustrate the concept.

  2. Remote temperature profiling in the troposphere and stratosphere by the radio-acoustic sounding technique

    NASA Technical Reports Server (NTRS)

    Matuura, N.; Masuda, Y.; Inuki, H.

    1986-01-01

    Radar application of the radio-acoustic sounding technique uses the Doppler frequency shift of radar echoes returning from the atmospheric wave structure, in association with a traveling acoustic pulse transmitted from the ground, to determine the speed of sound, and hence the atmospheric temperature, as a function of altitude. Temperature measurement in the troposphere and stratosphere were determined using the radio-acoustic sounding technique with the Radio-Acoustic Sounding System (RASS). Successful experiments were performed in March 1985, and in August 1985.

  3. Offshore wind profile measurements using a Doppler LIDAR at the Hazaki Oceanographical Research Station

    NASA Astrophysics Data System (ADS)

    Shimada, Susumu; Ohsawa, Teruo; Ohgishi, Tatsuya; Kikushima, Yoshihiro; Kogaki, Testuya; Kawaguchi, Koji; Nakamura, Satoshi

    2014-08-01

    Vertical wind speed profiles near the coast were observed using a Doppler Light Detection and Ranging (LIDAR) system at the Hazaki Oceanographical Research Station (HORS) from September 17 to 26, 2013. The accuracies of the theoretical wind profile models of the log profile model and the Monin-Obukov similarity (MOS) theory were examined by comparing them to those of the observed wind profiles. As a result, MOS, which takes into account the stability effects during wind profile calculations, successfully estimated the wind profile more accurately than the log profile model when the wind was from a sea sector (from sea to land). Conversely, both models did not estimate the profile adequately when the wind was from a land sector (from land to sea). Moreover, the wind profile for the land sector was found to include an obvious diurnal cycle, which is relevant to the stability change over land. Consequently, it is found that the atmospheric stability plays an important roll to determine the offshore wind speed profiles near the coast for not only the sea sector but also the land sector.

  4. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-09-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This holds particularly within the planetary boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of winds with a random error below 0.2 m s-1, comparable to the measurement error of standard radiosondes. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  5. Non-Data Aided Doppler Shift Estimation for Underwater Acoustic Communication

    DTIC Science & Technology

    2014-05-01

    are presented. Keywords: Blind Doppler Shift Estimation, Underwater Communication, Autocorrelation, Power Spectral Density (PSD), Periodogram . I...Estimation, Underwater Communication, Autocorrelation, Power Spectral Density (PSD), Periodogram . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  6. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.

    PubMed

    Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin

    2016-09-01

    Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.

  7. Acoustic waves generated from seismic surface waves: propagation properties determined from Doppler sounding observations and normal-mode modelling

    NASA Astrophysics Data System (ADS)

    Artru, Juliette; Farges, Thomas; Lognonné, Philippe

    2004-09-01

    Since 1960, experiments have shown that perturbations of the ionosphere can occur after earthquakes, by way of dynamic coupling between seismic surface waves and the atmosphere. The atmospheric wave is amplified exponentially while propagating upwards due to the decrease of density, and interaction with the ionospheric plasma leads to clearly identified signals on both ground-based or satellite ionospheric measurements. In 1999 and 2000, after an upgrade of the HF Doppler sounder, the Commisariat à l'Énergie Atomique systematically recorded these effects in the ionosphere with the Francourville (France) network, by measuring vertical oscillations of ionospheric layers with the Doppler technique. Normal-mode theory extended to a solid Earth with an atmosphere allows successful modelling of such signals, even if this 1-D approach is probably too crude, especially in the solid Earth, where 20 s surface waves see large lateral variations in the crust. The combination of observations and simulations provides a new tool to determine acoustic gravity wave propagation characteristics from the ground to ionospheric height. Observed velocity and amplification of the atmospheric waves show good agreement from the ground up to moderate sounding altitudes (140-150 km); however, at higher altitudes the propagation speed is found to be much smaller than predicted and attenuation is underestimated. This shows that the standard formalism of acoustic gravity waves in the atmosphere cannot efficiently describe propagation in the ionized atmosphere. Further work is needed to characterize the propagation of acoustic waves in this altitude range: we believe that seismic waves can provide a well-constrained source for such study.

  8. Velocity profiles inside volcanic clouds from three-dimensional scanning microwave dual-polarization Doppler radars

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario

    2016-07-01

    In this work, velocity profiles within a volcanic tephra cloud obtained by dual-polarization Doppler radar acquisitions with three-dimensional (3-D) mechanical scanning capability are analyzed. A method for segmenting the radar volumes into three velocity regimes: vertical updraft, vertical fallout, and horizontal wind advection within a volcanic tephra cloud using dual-polarization Doppler radar moments is proposed. The horizontal and vertical velocity components within the regimes are retrieved using a novel procedure that makes assumptions concerning the characteristics of the winds inside these regimes. The vertical velocities retrieved are combined with 1-D simulations to derive additional parameters including particle fallout, mass flux, and particle sizes. The explosive event occurred on 23 November 2013 at the Mount Etna volcano (Sicily, Italy), is considered a demonstrative case in which to analyze the radar Doppler signal inside the tephra column. The X-band radar (3 cm wavelength) in the Catania, Italy, airport observed the 3-D scenes of the Etna tephra cloud ~32 km from the volcano vent every 10 min. From the radar-derived vertical velocity profiles of updraft, particle fallout, and horizontal transportation, an exit velocity of 150 m/s, mass flux rate of 1.37 • 107 kg/s, particle fallout velocity of 18 m/s, and diameters of precipitating tephra particles equal to 0.8 cm are estimated on average. These numbers are shown to be consistent with theoretical 1-D simulations of plume dynamics and local reports at the ground, respectively. A thickness of 3 ± 0.36 km for the downwind ash cloud is also inferred by differentiating the radar-derived cloud top and the height of transition between the convective and buoyancy regions, the latter being inferred by the estimated vertical updraft velocity profile. The unique nature of the case study as well as the novelty of the segmentation and retrieval methods presented potentially give new insights into the

  9. On the Positive Bias of Peak Horizontal Velocity from an Idealized Doppler Profiler

    NASA Technical Reports Server (NTRS)

    Short, David A.; Merceret, Francis J.

    2004-01-01

    In the presence of 3-D turbulence, peak horizontal velocity estimates from an idealized Doppler profiler are found to be positively biased due to an incomplete specification of the vertical velocity field. The magnitude of the bias was estimated by assuming that the vertical and horizontal velocities can be separated into average and perturbation values and that the vertical and horizontal velocity perturbations are normally distributed. Under these assumptions, properties of the Type-I Extreme Value Distribution for maxima, known as the Gumbel distribution, can be used to obtain an analytical solution of the bias. The bias depends on geometric properties of the profiler configuration, the variance in the horizontal velocity, and the unresolved variance in the vertical velocity. When these variances are normalized by the average horizontal velocity, the bias can be mapped as a simple function of the normalized variances.

  10. Measurement of a zonal wind profile on Titan by Doppler tracking of the Cassini entry probe

    NASA Technical Reports Server (NTRS)

    Atkinson, D. H.; Pollack, J. B.; Seiff, A.

    1990-01-01

    A program, called the Cassini mission, intended to study the Saturn system by utilizing a Saturn orbiter and a probe descending to the surface of Titan, is discussed. Winds are expected to cause perturbations to the probe local horizontal velocity, resulting in an anomalous drift in the probe location and a shift in the frequency of the probe telemetry, due to the Doppler effect. By using an iterative algorithm, in which the time variation of the probe telemetry frequency is monitored throughout the descent, and the probe trajectory is updated to reflect the effect of wind on the probe location, a highly accurate relative wind profile can be recovered. By adding a single wind velocity, measured by independent means, an absolute wind profile can be obtained. However, the accuracy of the zonal winds recovery is limited by errors in trajectory, and frequency.

  11. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    NASA Astrophysics Data System (ADS)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  12. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range

  13. Assessment of measurement error due to sampling perspective in the space-based Doppler lidar wind profiler

    NASA Technical Reports Server (NTRS)

    Houston, S. H.; Emmitt, G. D.

    1986-01-01

    A Multipair Algorithm (MPA) has been developed to minimize the contribution of the sampling error in the simulated Doppler lidar wind profiler measurements (due to angular and spatial separation between shots in a shot pair) to the total measurement uncertainty. Idealized wind fields are used as input to the profiling model, and radial wind estimates are passed through the MPA to yield a wind measurement for 300 x 300 sq km areas. The derived divergence fields illustrate the gradient patterns that are particular to the Doppler lidar sampling strategy and perspective.

  14. Tropospheric Wind Profiles Obtained with the GLOW Molecular Doppler Lidar during the 2002 International H2O Project

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.; Mathur, Savy Asachee; Dobler, Jeremy; Hasselbrack, William

    2003-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system hich uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min N, 100 deg 36.371 min W) to participate in the International H2O Project (MOP). During the MOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  15. Tropospheric Wind Profiles Obtained with the GLOW Molecular Doppler Lidar during the 2002 International H2O Project

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Li, Steven X.; Mathur, S.; Dobler, Jeremy; Hasselbrack, William

    2003-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min N, 100 deg 36.371 min W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  16. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    SciTech Connect

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel J

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  17. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach.

    PubMed

    Wu, Yanwei; Guo, Pan; Chen, Siying; Chen, He; Zhang, Yinchao

    2017-04-01

    Auto-adaptive background subtraction (AABS) is proposed as a denoising method for data processing of the coherent Doppler lidar (CDL). The method is proposed specifically for a low-signal-to-noise-ratio regime, in which the drifting power spectral density of CDL data occurs. Unlike the periodogram maximum (PM) and adaptive iteratively reweighted penalized least squares (airPLS), the proposed method presents reliable peaks and is thus advantageous in identifying peak locations. According to the analysis results of simulated and actually measured data, the proposed method outperforms the airPLS method and the PM algorithm in the furthest detectable range. The proposed method improves the detection range approximately up to 16.7% and 40% when compared to the airPLS method and the PM method, respectively. It also has smaller mean wind velocity and standard error values than the airPLS and PM methods. The AABS approach improves the quality of Doppler shift estimates and can be applied to obtain the whole wind profiling by the CDL.

  18. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2015-01-01

    This paper describes in detail the QC and splicing methodology for KSC's 50- and 915-MHz DRWP measurements that generates an extensive archive of vertically complete profiles from 0.20-18.45 km. The concurrent POR from each archive extends from April 2000 to December 2009. MSFC NE applies separate but similar QC processes to each of the 50- and 915-MHz DRWP archives. DRWP literature and data examination provide the basis for developing and applying the automated and manual QC processes on both archives. Depending on the month, the QC'ed 50- and 915-MHz DRWP archives retain 52-65% and 16-30% of the possible data, respectively. The 50- and 915-MHz DRWP QC archives retain 84-91% and 85-95%, respectively, of all the available data provided that data exist in the non- QC'ed archives. Next, MSFC NE applies an algorithm to splice concurrent measurements from both DRWP sources. Last, MSFC NE generates a composite profile from the (up to) five available spliced profiles to effectively characterize boundary layer winds and to utilize all possible 915-MHz DRWP measurements at each timestamp. During a given month, roughly 23,000-32,000 complete profiles exist from 0.25-18.45 km from the composite profiles' archive, and approximately 5,000- 27,000 complete profiles exist from an archive utilizing an individual 915-MHz DRWP. One can extract a variety of profile combinations (pairs, triplets, etc.) from this sample for a given application. The sample of vertically complete DRWP wind measurements not only gives launch vehicle customers greater confidence in loads and trajectory assessments versus using balloon output, but also provides flexibility to simulate different DOL situations across applicable altitudes. In addition to increasing sample size and providing more flexibility for DOL simulations in the vehicle design phase, the spliced DRWP database provides any upcoming launch vehicle program with the capability to utilize DRWP profiles on DOL to compute vehicle steering

  19. Long-Term Mean Vertical Motion over the Tropical Pacific: Wind-Profiling Doppler Radar Measurements

    NASA Astrophysics Data System (ADS)

    Gage, K. S.; McAfee, J. R.; Carter, D. A.; Ecklund, W. L.; Riddle, A. C.; Reid, G. C.; Balsley, B. B.

    1991-12-01

    Measurement from Christmas Island (2^circN, 157^circW) of long-term mean vertical motions in the tropical atmosphere using very-high-frequency wind-profiling Doppler radar show that there is a transition from downward motion in the free troposphere to upward motion in the upper troposphere and lower stratosphere. The observations in the free troposphere are consistent with a balance between adiabatic and diabatic heating and cooling rates in a clear atmosphere. Comparison of the results at Christmas Island during El Nino and non-El Nino conditions with earlier results obtained for stratiform rain conditions over Pohnpei, Federated States of Micronesia, show that cirrus clouds in the vicinity of the tropopause likely play an important role in determining the sense and magnitude of vertical motions in this region. These results have implications for the exchange of mass between the troposphere and stratosphere over the tropics.

  20. Characteristics and Trade-Offs of Doppler Lidar Global Wind Profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G David

    2004-01-01

    Accurate, global profiling of wind velocity is highly desired by NASA, NOAA, the DOD/DOC/NASA Integrated Program Office (IPO)/NPOESS, DOD, and others for many applications such as validation and improvement of climate models, and improved weather prediction. The most promising technology to deliver this measurement from space is Doppler Wind Lidar (DWL). The NASA/NOAA Global Tropospheric Wind Sounder (GTWS) program is currently in the process of generating the science requirements for a space-based sensor. In order to optimize the process of defining science requirements, it is important for the scientific and user community to understand the nature of the wind measurements that DWL can make. These measurements are very different from those made by passive imaging sensors or by active radar sensors. The purpose of this paper is to convey the sampling characteristics and data product trade-offs of an orbiting DWL.

  1. Results of the NASA Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Operational Acceptance Test

    NASA Technical Reports Server (NTRS)

    Barbre', Robert E., Jr.; Decker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa

    2016-01-01

    This paper presents results of the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). The goal of the OAT was to verify the data quality of the new DRWP against the performance of the previous DRWP in order to use wind data derived by the new DRWP for space launch vehicle operations support at the Eastern Range. The previous DRWP was used as a situational awareness asset for mission operations to identify rapid changes in the wind environment that weather balloons cannot depict. The Marshall Space Flight Center's Natural Environments Branch assessed data from the new DRWP collected during Jan-Feb 2015 against a specified set of test criteria. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 49 concurrent DRWP and balloon profiles presented root mean square wind component differences around 2.0 m/s. Evaluation of the DRWP's coherence between five-minute wind pairs found the effective vertical resolution to be Nyquist-limited at 300 m for both wind components. In addition, the sensitivity to rejecting data that do not have adequate signal was quantified. This paper documents the data, quality control procedures, methodology, and results of each analysis.

  2. Quality Control Algorithms for the Kennedy Space Center 50-Megahertz Doppler Radar Wind Profiler Winds Database

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2012-01-01

    This paper presents the process used by the Marshall Space Flight Center Natural Environments Branch (EV44) to quality control (QC) data from the Kennedy Space Center's 50-MHz Doppler Radar Wind Profiler for use in vehicle wind loads and steering commands. The database has been built to mitigate limitations of using the currently archived databases from weather balloons. The DRWP database contains wind measurements from approximately 2.7-18.6 km altitude at roughly five minute intervals for the August 1997 to December 2009 period of record, and the extensive QC process was designed to remove spurious data from various forms of atmospheric and non-atmospheric artifacts. The QC process is largely based on DRWP literature, but two new algorithms have been developed to remove data contaminated by convection and excessive first guess propagations from the Median Filter First Guess Algorithm. In addition to describing the automated and manual QC process in detail, this paper describes the extent of the data retained. Roughly 58% of all possible wind observations exist in the database, with approximately 100 times as many complete profile sets existing relative to the EV44 balloon databases. This increased sample of near-continuous wind profile measurements may help increase launch availability by reducing the uncertainty of wind changes during launch countdown

  3. Data Acquisition and Processing System for Airborne Wind Profiling with a Pulsed, 2-Micron, Coherent-Detection, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.

    2010-01-01

    A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.

  4. The acoustic Doppler effect applied to the study of linear motions

    NASA Astrophysics Data System (ADS)

    Gómez-Tejedor, José A.; Castro-Palacio, Juan C.; Monsoriu, Juan A.

    2014-03-01

    In this work, the change of frequency of a sound wave due to the Doppler effect has been measured using a smartphone. For this purpose, a speaker at rest and a smartphone placed on a cart on an air track were used. The change in frequency was measured by using an application for Android™, ‘Frequency Analyzer’, which was developed by us specifically for this work. This made it possible to analyze four types of mechanical motions: uniform linear motion, uniform accelerated linear motion, harmonic oscillations and damped harmonic oscillations. These experiments are suitable for undergraduate students. The main novelty of this work was the possibility of measuring the instantaneous frequency as a function of time with high precision. The results were compared with alternative measurements yielding good agreement.

  5. Structural acoustics model of the violin radiativity profile.

    PubMed

    Bissinger, George

    2008-12-01

    Violin radiativity profiles are dominated by the Helmholtz-like A0 cavity mode ( approximately 280 Hz), first corpus bending modes B1(-) and B1(+) ( approximately 500 Hz), and BH and bridge-filter peaks ( approximately 2.4 kHz and approximately 3.5 kHz, respectively), with falloff above approximately 4 kHz. The B1 modes-dependent on two low-lying free-plate modes--are proposed to excite A0 via coupling to B1-driven in-phase f-hole volume flows. VIOCADEAS data show that A0 radiativity increases primarily as A0-B1(-) frequency difference decreases, consistent with Meinel's 1937 experiment for too-thick/too-thin plate thicknesses, plus sound post removal and violin octet baritone results. The vibration-->acoustic energy filter, F(RAD), computed from shape-material-independent radiation and total damping, peaks at the critical frequency f(crit), estimated from a free-plate mode by analogy to flat-plate bending. Experimentally, f(crit) decreased as this plate mode (and B1(+)) frequency increased. Simulations show that increasing plate thicknesses lowers f(crit), reduces F(RAD), and moves the spectral balance toward lower frequencies. Incorporating string-->corpus filters (including bridge versus bridge-island impedances) provides a model for overall violin radiativity. This model-with B1 and A0-B1 couplings, and f(crit) (computed from a free-plate mode important to B1) strongly affecting the lowest and highest parts of the radiativity profile-substantiates prior empirical B1--sound quality linkages.

  6. Normalized vertical ice mass flux profiles from vertically pointing 8-mm-wavelength Doppler radar

    NASA Technical Reports Server (NTRS)

    Orr, Brad W.; Kropfli, Robert A.

    1993-01-01

    During the FIRE 2 (First International Satellite Cloud Climatology Project Regional Experiment) project, NOAA's Wave Propagation Laboratory (WPL) operated its 8-mm wavelength Doppler radar extensively in the vertically pointing mode. This allowed for the calculation of a number of important cirrus cloud parameters, including cloud boundary statistics, cloud particle characteristic sizes and concentrations, and ice mass content (imc). The flux of imc, or, alternatively, ice mass flux (imf), is also an important parameter of a cirrus cloud system. Ice mass flux is important in the vertical redistribution of water substance and thus, in part, determines the cloud evolution. It is important for the development of cloud parameterizations to be able to define the essential physical characteristics of large populations of clouds in the simplest possible way. One method would be to normalize profiles of observed cloud properties, such as those mentioned above, in ways similar to those used in the convective boundary layer. The height then scales from 0.0 at cloud base to 1.0 at cloud top, and the measured cloud parameter scales by its maximum value so that all normalized profiles have 1.0 as their maximum value. The goal is that there will be a 'universal' shape to profiles of the normalized data. This idea was applied to estimates of imf calculated from data obtained by the WPL cloud radar during FIRE II. Other quantities such as median particle diameter, concentration, and ice mass content can also be estimated with this radar, and we expect to also examine normalized profiles of these quantities in time for the 1993 FIRE II meeting.

  7. Airborne Wind Profiling With the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.

  8. Seabed classification from acoustic profiling data using the similarity index.

    PubMed

    Kim, Han-Joon; Chang, Jae-Kyeong; Jou, Hyeong-Tae; Park, Gun-Tae; Suk, Bong-Chool; Kim, Ki Young

    2002-02-01

    We introduce the similarity index (SI) for the classification of the sea floor from acoustic profiling data. The essential part of our approach is the singular value decomposition of the data to extract a signal coherent trace-to-trace using the Karhunen-Loeve transform. SI is defined as the percentage of the energy of the coherent part contained in the bottom return signals. Important aspects of SI are that it is easily computed and that it represents the textural roughness of the sea floor as a function of grain size, hardness, and a degree of sediment sorting. In a real data example, we classified a section of the sea floor off Cheju Island south of the Korean Peninsula and compared the result with the sedimentology defined from direct sediment sampling and side scan sonar records. The comparison shows that SI can efficiently discriminate the bottom properties by delineating sediment-type boundaries and transition zones in more detail. Therefore, we propose that SI is an effective parameter for geoacoustic modeling.

  9. Evaluation of the Acoustic Doppler Velocity Meter for Computation of Discharge Records at Three Sites in Colorado, 2004-2005

    USGS Publications Warehouse

    Stevens, Michael R.; Diaz, Paul; Smits, Dennis E.

    2008-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board, conducted a study in 2004-2005 at three sites in Colorado: Bear Creek at Morrison, Clear Creek near Empire, and Redlands Canal near Grand Junction. The study was done to evaluate acoustic Doppler velocity meter (ADVM) technology in different hydrologic settings that are characteristic of many Colorado streamflow-gaging sites. ADVMs have been tested and used extensively in many parts of the United States by USGS but not in Colorado where relatively small, shallow, clear, coarse-bed streams that ice up in the winter may affect the ADVM suitability. In this study, ADVM instrumentation was successfully used and discharge computations compared favorably, generally within 5 to 10 percent, with conventional USGS stage/discharge methods at the three Colorado sites. However, two factors, encountered in this study, may adversely affect the use of ADVM technology in Colorado. First, for some streams, the depth required (about 1.5 feet for a side-looking instrument) cannot be met during low-flow periods of the year. Second, cold temperatures and freezing-thawing cycles can produce ice effects that could prevent collection of usable ADVM (and stage) data.

  10. Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

    2013-01-01

    Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

  11. Phononic crystal surface mode coupling and its use in acoustic Doppler velocimetry.

    PubMed

    Cicek, Ahmet; Salman, Aysevil; Kaya, Olgun Adem; Ulug, Bulent

    2016-02-01

    It is numerically shown that surface modes of two-dimensional phononic crystals, which are Bloch modes bound to the interface between the phononic crystal and the surrounding host, can couple back and forth between the surfaces in a length scale determined by the separation of two surfaces and frequency. Supercell band structure computations through the finite-element method reveal that the surface band of an isolated surface splits into two bands which support either symmetric or antisymmetric hybrid modes. When the surface separation is 3.5 times the lattice constant, a coupling length varying between 30 and 48 periods can be obtained which first increases linearly with frequency and, then, decreases rapidly. In the linear regime, variation of coupling length can be used as a means of measuring speeds of objects on the order of 0.1m/s by incorporating the Doppler shift. Speed sensitivity can be improved by increasing surface separation at the cost of larger device sizes.

  12. KSC 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT) Report

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E.

    2015-01-01

    This report documents analysis results of the Kennedy Space Center updated 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). This test was designed to demonstrate that the new DRWP operates in a similar manner to the previous DRWP for use as a situational awareness asset for mission operations at the Eastern Range to identify rapid changes in the wind environment that weather balloons cannot depict. Data examination and two analyses showed that the updated DRWP meets the specifications in the OAT test plan and performs at least as well as the previous DRWP. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 5,426 wind component reports from 49 concurrent DRWP and balloon profiles presented root mean square (RMS) wind component differences around 2.0 m/s. The DRWP's effective vertical resolution (EVR) was found to be 300 m for both the westerly and southerly wind component, which the best EVR possible given the DRWP's vertical sampling interval. A third analysis quantified the sensitivity to rejecting data that do not have adequate signal by assessing the number of first-guess propagations at each altitude. This report documents the data, quality control procedures, methodology, and results of each analysis. It also shows that analysis of the updated DRWP produced results that were at least as good as the previous DRWP with proper rationale. The report recommends acceptance of the updated DRWP for situational awareness usage as per the OAT's intent.

  13. Flow velocity profiling using acoustic time of flight flow metering based on wide band signals and adaptive beam-forming techniques

    NASA Astrophysics Data System (ADS)

    Murgan, I.; Candel, I.; Ioana, C.; Digulescu, A.; Bunea, F.; Ciocan, G. D.; Anghel, A.; Vasile, G.

    2016-11-01

    In this paper, we present a novel approach to non-intrusive flow velocity profiling technique using multi-element sensor array and wide-band signal's processing methods. Conventional techniques for the measurements of the flow velocity profiles are usually based on intrusive instruments (current meters, acoustic Doppler profilers, Pitot tubes, etc.) that take punctual velocity readings. Although very efficient, these choices are limited in terms of practical cases of applications especially when non-intrusive measurements techniques are required and/or a spatial accuracy of the velocity profiling is required This is due to factors related to hydraulic machinery down time, the often long time duration needed to explore the entire section area, the frequent cumbersome number of devices that needs to be handled simultaneously, or the impossibility to perform intrusive tests. In the case of non-intrusive flow profiling methods based on acoustic techniques, previous methods concentrated on using a large number of acoustic transducers placed around the measured section. Although feasible, this approach presents several major drawbacks such as a complicated signal timing, transmission, acquisition and recording system, resulting in a relative high cost of operation. In addition, because of the geometrical constraints, a desired number of sensors may not be installed. Recent results in acoustic flow metering based on wide band signals and adaptive beamforming proved that it is possible to achieve flow velocity profiles using less acoustic transducers. In a normal acoustic time of flight path the transducers are both emitters and receivers, sequentially changing their roles. In the new configuration, proposed in this paper, two new receivers are added on each side. Since the beam angles of each acoustic transducer are wide enough the newly added transducers can receive the transmitted signals and additional time of flight estimation can be done. Thus, several flow

  14. A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves.

    PubMed

    Longo, Roberto; Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick

    2010-01-01

    The goal of non-destructive testing (NDT) is to determine the position and size of structural defects, in order to measure the quality and evaluate the safety of building materials. Most NDT techniques are rather complex, however, requiring specialized knowledge. In this article, we introduce an experimental method for crack detection that uses Surface Acoustic Waves (SAWs) and optical measurements. The method is tested on a steel beam engraved with slots of known depth. A simple model to determine the cracks size is also proposed. At the end of the article, we describe a possible application: fatigue crack sizing on a damaged slat track. This technique represents a first step toward a better understanding of the crack growth, especially in its early stages (preferably when the cracks can still be repaired) and when it is possible to assume a linear propagation of the crack front. The ultimate goal of this research program is to develop a useful method of monitoring aircraft components during fatigue testing.

  15. Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 2: Laser Doppler dust devil velocity profile measurement program

    NASA Technical Reports Server (NTRS)

    Howle, R. E.; Krause, M. C.; Craven, C. E.; Gorzynski, E. J.; Edwards, B. B.

    1976-01-01

    The first detailed velocity profile data on thermally induced dust vortices are presented. These dust devils will be analyzed and studied to determine their flow fields and origin in an effort to correlate this phenomena with the generation and characteristics of tornadoes. A continuing effort to increase mankind's knowledge of vortex and other meteorological phenomena will hopefully allow the prediction of tornado occurrence, their path, and perhaps eventually even lead to some technique for their destruction.

  16. Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens.

    PubMed

    Büttner, Lars; Czarske, Jürgen; Knuppertz, Hans

    2005-04-20

    We report a novel laser-Doppler velocity profile sensor for microfluidic and nanofluidic applications and turbulence research. The sensors design is based on wavelength-division multiplexing. The high dispersion of a diffractive lens is used to generate a measurement volume with convergent and divergent interference fringes by means of two laser wavelengths. Evaluation of the scattered light from tracers allows velocity gradients to be measured in flows with submicrometer spatial resolution inside a measurement volume of 700-microm length. Using diffraction optics and fiber optics, we achieved a miniaturized and robust velocity profile sensor for highly resolved velocity measurements.

  17. Turbulence in planetary occultations. II - Effects on atmospheric profiles derived from Doppler measurements. III - Effects on atmospheric profiles derived from intensity measurements

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.

    1978-01-01

    The nature and magnitude of turbulence-induced errors in atmospheric profiles derived from Doppler measurements made during radio occultations are investigated. It is found that turbulence in planetary atmospheres induces both fluctuating and systematic errors in derived profiles, but the errors of both types are very small. Consideration of the occultation of Mariner 10 by Venus and of the Pioneer occultations by Jupiter shows that the rms fractional errors in the atmospheric profiles derived from these observations were less than 0.01 in both temperature and pressure, while the fractional systematic errors were typically of the order of 1 millionth. The extent to which atmospheric profiles derived from radio and optical intensity measurements are affected by turbulence is also examined. The results indicate that turbulence in planetary atmospheres has only a marginal effect on derived profiles in the weak-scattering limit and that the turbulence-induced errors in this case are always much larger than the corresponding errors in profiles derived from radio Doppler measurements.

  18. Discriminating silt-and-clay from suspended-sand in rivers using side-looking acoustic profilers

    USGS Publications Warehouse

    Wright, Scott A.; Topping, David J.; Williams, Cory A.

    2010-01-01

    techniques rely on measurements of ancillary properties that correlate with suspended-sediment concentration and particle size and thus require the collection of traditional samples for calibration. Through in situ deployments, these methods can provide the high temporal resolution that cannot be achieved through traditional sampling. Here we focus on the evaluation of acoustic profiling techniques (e.g. acoustic-Doppler sideways-looking profilers, or ADPs). One major advantage of acoustic profiling is the ability to concurrently measure water velocity (using Doppler-shift methods) and suspended-sediment concentration such that suspended-sediment flux can be directly computed using data from a single instrument. Acoustic-Doppler profilers have become popular for measuring water velocity and discharge in rivers, through both moving-boat operations and from fixed deployments such as bank-mounted sideways-looking instruments (Hirsch and Costa, 2004, Muste et al., 2007). The method presented herein is most suited to sideways-looking applications as a complement to the "index velocity" technique, whereby an index velocity from a sideways-looking instrument is related to the cross-section average velocity (determined from moving-boat discharge measurements) as a means for developing a continuous water-discharge record (Ruhl and Simpson, 2005). Topping et al. (2007) presented a method for discriminating silt-and-clay from suspended sand, using single frequency ADPs. This method takes advantage of the relations among acoustic backscatter, sediment-induced acoustic attenuation, suspended-sediment concentration (SSC), and particle size distribution (PSD). Backscatter is the amount of sound scattered back and received at the transducer while sediment-induced attenuation is the amount of sound scattered in other directions and absorbed by the sediment particles. Both of these parameters can be measured with an ADP, and their different dependencies on SSC and PSD allow for the

  19. Evaluation of acoustic doppler velocity meters to quantify flow from Comal Springs and San Marcos Springs, Texas

    USGS Publications Warehouse

    Gary, Marcus O.; Gary, Robin H.; Asquith, William H.

    2008-01-01

    Comal Springs and San Marcos Springs are the two largest springs in Texas, are major discharge points for the San Antonio segment of the Edwards aquifer, and provide habitat for several Federally listed endangered species that depend on adequate springflows for survival. It is therefore imperative that the Edwards Aquifer Authority have accurate and timely springflow data to guide resource management. Discharge points for Comal Springs and San Marcos Springs are submerged in Landa Lake and in Spring Lake, respectively. Flows from the springs currently (2008) are estimated by the U.S Geological Survey in real time as surface-water discharge from conventional stage-discharge ratings at sites downstream from each spring. Recent technological advances and availability of acoustic Doppler velocity meters (ADVMs) now provide tools to collect data (stream velocity) related to springflow that could increase accuracy of real-time estimates of the springflows. The U.S. Geological Survey, in cooperation with the Edwards Aquifer Authority, did a study during May 2006 through September 2007 to evaluate ADVMs to quantify flow from Comal and San Marcos Springs. The evaluation was based on two monitoring approaches: (1) placement of ADVMs in important spring orifices - spring run 3 and spring 7 at Comal Springs, and diversion spring at San Marcos Springs; and (2) placement of ADVMs at the nearest flowing streams - Comal River new and old channels for Comal Springs, Spring Lake west and east outflow channels and current (2008) San Marcos River streamflow-gaging site for San Marcos Springs. For Comal Springs, ADVM application at spring run 3 and spring 7 was intended to indicate whether the flows of spring run 3 and spring 7 can be related to total springflow. The findings indicate that velocity data from both discharge features, while reflecting changes in flow, do not reliably show a direct relation to measured streamflow and thus to total Comal Springs flow. ADVMs at the Comal

  20. Description and evaluation of the Acoustic Profiling of Ocean Currents (APOC) system used on R. V. Oceanus cruise 96 on 11-22 May 1981

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Rintoul, S. R., Jr.; Barbour, R. L.

    1982-01-01

    The underway current profiling system which consists of a microprocessor controlled data logger that collects and formats data from a four beam Ametek-Straza 300 kHz acoustic Doppler current profiler, heading from the ship's gyrocompass, and navigation information from a Loran-C receiver and a satellite navigation unit is discussed. Data are recorded on magnetic tape and real time is calculated. Time averaging is required to remove effects of ship motion. An intercomparison is made with a moored vector measuring current meter (VMCM). The mean difference in hourly averaged APOC and VMCM currents over the four hour intercomparison is a few mm s minus including: two Gulf Stream crossings, a warm core ring survey, and shallow water in a frontal zone to the east of Nantucket Shoals.

  1. Measurements of the Spatial Variability of Mean Wind Profiles Using Multiple Doppler Lidars over Distances less than 1 Km

    NASA Astrophysics Data System (ADS)

    Banta, R. M.; Choukulkar, A.; Brewer, A.; Lundquist, J. K.; Iungo, V.; Pichugina, Y. L.; Quelet, P. T.; Wolfe, D. E.; Oncley, S.; Sandberg, S.; Weickmann, A. M.; Delgado, R.; McCaffrey, K.

    2015-12-01

    Small differences in wind speed can translate to large differences in wind energy (WE) revenues, so WE decision making requires accurate measurements of wind profiles through the turbine rotor layer of the lower atmosphere. Advances in understanding and modeling of boundary-layer processes, also needed by WE, requires such measurements through an even deeper layer—at least the lowest few hundreds of meters. An important use for such accurate measured wind-profile data is in the initiation and verification of NWP models. This prospect raises several fundamental questions, such as, what does the modeled profile represent, how was the measured profile determined, and what if the profile had been measured from a different site within the grid cell? To address these questions, two experiments were conducted at the Boulder Atmospheric Observatory (BAO) in modestly complex terrain downwind of the mountains. The Lidar Uncertainty Measurement Experiment (LUMEX) in June-July 2014 featured 5 Doppler lidars (2 scanning), and XPIA in April-May 2015, 11 Doppler lidars, including 5 scanning systems. Two broad goals of these projects were to assess differences in scanning and other data acquisition procedures on the measurements, addressed in (Pichugina et al.) at this conference, and to evaluate the effects of varying spatial separations on differences in the measured winds, addressed in the present paper. Sonic anemometers every 50 m on the 300-m BAO tower were used as a reference for the wind calculations, as well as another profile location. Lidar scan data indicated terrain-related regions of stronger flow within the scan volume of more than 1 m/s that were at least semi-recurrent. This variability produced significant differences in mean rotor-level winds by 2 identical profiling lidars separated by 500 m. During XPIA, four of the scanning Doppler lidars performed intersecting elevation scans (vertical-slice or "RHI") to create 'virtual towers' at various separation

  2. On the Doppler Shift and Asymmetry of Stokes Profiles of Photospheric FeI and Chromospheric MgI Lines

    DTIC Science & Technology

    2010-06-15

    10/09 ON THE DOPPLER SHIFT AND ASYMMETRY OF STOKES PROFILES OF PHOTOSPHERIC Fe I AND CHROMOSPHERIC Mg I LINES NA DENG AND DEBI PRASAD CHOUDHARY...photospheric (Fe I 630.15 and 630.25 nm) and chromospheric (Mg I b2 517.27 nm) lines. The data were obtained with the HAO/NSO Advanced Stokes...among the three spectral lines, which helps us to better understand the chromospheric lines and the magnetic and flow fields in different magnetic

  3. Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

  4. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    DOEpatents

    Shekarriz, Alireza; Sheen, David M.

    2000-01-01

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  5. Constraints on Methane Distribution from Acoustic Profiles of Shallow Sediments Across the Alaska Shelf

    NASA Astrophysics Data System (ADS)

    Wood, W. T.; Hart, P. E.; Greinert, J.; de Batist, M. A.; Rose, K.; Coffin, R. B.

    2009-12-01

    In September of 2009 the U. S. Naval Research Laboratory, U. S. Dept of Energy, and Royal Netherlands Institute for Sea Research conducted piston coring, acoustic profiling, and water sampling on the Alaskan Arctic shelf from the U. S. Coast Guard icebreaker Polar Sea, as part of the MITAS (Methane In The Arctic Shelf) project. The overall project objective is to determine the role of methane in arctic shelf processes by determining the source, distribution, and concentration of shallow (0-30m methane accumulations as well as active and potential methane seeps along selected transects across and along the Alaskan Beaufort Sea shelf. The specific objective of the acoustic program is to delineate gas (methane) by mapping bubble release into the water column (flare detection), and free gas indications as acoustic blanking and gas fronts in the sediment. The data consist of 3.5 kHz, 12 kHz profiles acquired using hull-mounted transducers on the Polar Sea, in conjunction with 3.5 kHz sub-bottom profiler and 180 kHz multi-beam data acquired from the Polar Sea's ASB (Arctic Service Boat). Acoustic profiles and images, as well as preliminary interpretations are discussed in the presentation.

  6. Acoustic sounder system design for measurement of optical turbulence and wind profiles

    NASA Astrophysics Data System (ADS)

    Miller, Judith E.; Eaton, Frank D.; Stokes, Sheldon S.

    2000-07-01

    An Acoustic Sounder System has been installed on the side of the cliff at North Oscura Peak, WSMR to provide important refractive index structure parameter, Cn2 data for laser propagation tests. The acoustic sounder system records echo information that is used to provide 3D wind and optical turbulence profiles. The received signal is the product of the interaction of the transmitted acoustic pulse with the small scale atmospheric temperature variations. This information is displayed as a time-height display of the signal intensity. The frequency of the received signals are processed and converted into time histories of the horizontal wind field. The data from the Acoustic Sounder is calibrated with the hot-wire anemometer temperature structure parameter (Ct2) data, and meteorological data measured locally to produce the Cn2 profile. The design and location of the Acoustic Sounder System will be discussed along with the methodology of extracting the turbulence. Many days of data have been collected and representative data will be shown.

  7. Separation of Main and Tail Rotor Noise Sources from Ground-Based Acoustic Measurements Using Time-Domain De-Dopplerization

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric II; Schmitz, Fredric H.

    2009-01-01

    A new method of separating the contributions of helicopter main and tail rotor noise sources is presented, making use of ground-based acoustic measurements. The method employs time-domain de-Dopplerization to transform the acoustic pressure time-history data collected from an array of ground-based microphones to the equivalent time-history signals observed by an array of virtual inflight microphones traveling with the helicopter. The now-stationary signals observed by the virtual microphones are then periodically averaged with the main and tail rotor once per revolution triggers. The averaging process suppresses noise which is not periodic with the respective rotor, allowing for the separation of main and tail rotor pressure time-histories. The averaged measurements are then interpolated across the range of directivity angles captured by the microphone array in order to generate separate acoustic hemispheres for the main and tail rotor noise sources. The new method is successfully applied to ground-based microphone measurements of a Bell 206B3 helicopter and demonstrates the strong directivity characteristics of harmonic noise radiation from both the main and tail rotors of that helicopter.

  8. Effect of velocity profile skewing on blood velocity and volume flow waveforms derived from maximum Doppler spectral velocity.

    PubMed

    Mynard, Jonathan P; Steinman, David A

    2013-05-01

    Given evidence that fully developed axisymmetric flow may be the exception rather than the rule, even in nominally straight arteries, maximum velocity (V(max)) can lie outside the Doppler sample volume (SV). The link between V(max) and derived quantities, such as volume flow (Q), may therefore be more complex than commonly thought. We performed idealized virtual Doppler ultrasound on data from image-based computational fluid dynamics (CFD) models of the normal human carotid artery and investigated how velocity profile skewing and choice of sample volume affected V(max) waveforms and derived Q variables, considering common assumptions about velocity profile shape (i.e., Poiseuille or Womersley). Severe velocity profile skewing caused substantial errors in V(max) waveforms when using a small, centered SV, although peak V(max) was reliably detected; errors with a long SV covering the vessel diameter were orientation dependent but lower overall. Cycle-averaged Q calculated from V(max) was typically within ±15%, although substantial skewing and use of a small SV caused 10%-25% underestimation. Peak Q derived from Womersley's theory was generally accurate to within ±10%. V(max) pulsatility and resistance indexes differed from Q-based values, although the Q-based resistance index could be predicted reliably. Skewing introduced significant error into V(max)-derived Q waveforms, particularly during mid-to-late systole. Our findings suggest that errors in the V(max) and Q waveforms related to velocity profile skewing and use of a small SV, or orientation-dependent errors for a long SV, could limit their use in wave analysis or for constructing characteristic or patient-specific flow boundary conditions for model studies.

  9. Asymptotic permanent profile of the ion acoustic wave driven by the Langmuir wave

    NASA Astrophysics Data System (ADS)

    Kaup, D. J.; Latifi, A.; Leon, J.

    1992-08-01

    We study the evolution of Langmuir waves coupled to the ion acoustic wave by means of the ponderomotive force in the Karpman limit (caviton equation). Using the spectral transform with singular dispersion relation, it is shown that the background noise (fluctuations in the ion density) is amplified and its time asymptotic behavior will be a static solution which is totally reflective for the Langmuir wave. Moreover, if the initial ion density contains a local depression, the asymptotic profile will contain a number of permanent localized density depressions (cavitons), static in the rest frame of the acoustic wave and entrained in its wake.

  10. Quality-Controlled Wind Data from the Kennedy Space Center 915 Megahertz Doppler Radar Wind Profiler Network

    NASA Technical Reports Server (NTRS)

    Dryden, Rachel L.

    2011-01-01

    The National Aeronautics and Space Administration s (NASA) Kennedy Space Center (KSC) has installed a five-instrument 915-Megahertz (MHz) Doppler Radar Wind Profiler (DRWP) system that records atmospheric wind profile properties. The purpose of these profilers is to fill data gaps between the top of the KSC wind tower network and the lowest measurement altitude of the KSC 50-MHz DRWP. The 915-MHz DRWP system has the capability to generate three-dimensional wind data outputs from approximately 150 meters (m) to 6,000 m at roughly 15-minute (min) intervals. NASA s long-term objective is to combine the 915-MHz and 50-MHz DRWP systems to create complete vertical wind profiles up to 18,300 m to be used in trajectory and loads analyses of space vehicles and by forecasters on day-of-launch (DOL). This analysis utilizes automated and manual quality control (QC) processes to remove erroneous and unrealistic wind data returned by the 915-MHz DRWP system. The percentage of data affected by each individual QC check in the period of record (POR) (i.e., January to April 2006) was computed, demonstrating the variability in the amount of data affected by the QC processes. The number of complete wind profiles available at given altitude thresholds for each profiler in the POR was calculated and outputted graphically, followed by an assessment of the number of complete wind profiles available for any profiler in the POR. A case study is also provided to demonstrate the QC process on a day of a known weather event.

  11. Wind Profiling from a High Energy, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar during Field Campaign

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Koch, G. J.; Kavaya, M. J.; Yu, J.; Beyon, J. Y.; Demoz, B.

    2009-12-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. The LaRC mobile lidar was deployed at Howard University facility in Beltsville, Maryland as part of NASA HQ funded (ROSES-2007, Wind Lidar Science Proposal entitled “Intercomparison of Multiple Lidars for Wind Measurements). During the campaign, testing of the lidar was combined with a field campaign to operate a 2-μm coherent lidar alongside a 355-nm direct detection lidar to demonstrate the hybrid wind lidar concept. Besides lidar, many other meteorological sensors were located at the campaign site, including wind measuring balloon sondes, sonic and propeller anemometers mounted on a tower, and a 915-MHz radio acoustic sounding system. Comparisons among these wind measurement sensors are currently being analyzed and should be available for presentation at the Conference.

  12. Results of the Updated NASA Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Operational Acceptance Test

    NASA Technical Reports Server (NTRS)

    Barbre', Robert E., Jr.; Deker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa

    2016-01-01

    We present here the methodology and results of the Operational Acceptance Test (OAT) performed on the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP). On day-of-launch (DOL), space launch vehicle operators have used data from the DRWP to invalidate winds in prelaunch loads and trajectory assessments due to the DRWP's capability to quickly identify changes in the wind profile within a rapidly-changing wind environment. The previous DRWP has been replaced with a completely new system, which needs to undergo certification testing before being accepted for use in range operations. The new DRWP replaces the previous three-beam system made of coaxial cables and a copper wire ground plane with a four-beam system that uses Yagi antennae with enhanced beam steering capability. In addition, the new system contains updated user interface software while maintaining the same general capability as the previous system. The new DRWP continues to use the Median Filter First Guess (MFFG) algorithm to generate a wind profile from Doppler spectra at each range gate. DeTect (2015) contains further details on the upgrade. The OAT is a short-term test designed so that end users can utilize the new DRWP in a similar manner to the previous DRWP during mission operations at the Eastern Range in the midst of a long-term certification process. This paper describes the Marshall Space Flight Center Natural Environments Branch's (MSFC NE's) analyses to verify the quality and accuracy of the DRWP's meteorological data output as compared to the previous DRWP. Ultimately, each launch vehicle program has the responsibility to certify the system for their own use.

  13. Feasibility of Acoustic Doppler Velocity Meters for the Production of Discharge Records from U.S. Geological Survey Streamflow-Gaging Stations

    USGS Publications Warehouse

    Morlock, Scott E.; Nguyen, Hieu T.; Ross, Jerry H.

    2002-01-01

    It is feasible to use acoustic Doppler velocity meters (ADVM's) installed at U.S. Geological Survey (USGS) streamflow-gaging stations to compute records of river discharge. ADVM's are small acoustic current meters that use the Doppler principle to measure water velocities in a two-dimensional plane. Records of river discharge can be computed from stage and ADVM velocity data using the 'index velocity' method. The ADVM-measured velocities are used as an estimator or 'index' of the mean velocity in the channel. In evaluations of ADVM's for the computation of records of river discharge, the USGS installed ADVM's at three streamflow-gaging stations in Indiana: Kankakee River at Davis, Fall Creek at Millersville, and Iroquois River near Foresman. The ADVM evaluation study period was from June 1999 to February 2001. Discharge records were computed, using ADVM data from each station. Discharge records also were computed using conventional stage-discharge methods of the USGS. The records produced from ADVM and conventional methods were compared with discharge record hydrographs and statistics. Overall, the records compared closely from the Kankakee River and Fall Creek stations. For the Iroquois River station, variable backwater was present and affected the comparison; because the ADVM record compensates for backwater, the ADVM record may be superior to the conventional record. For the three stations, the ADVM records were judged to be of a quality acceptable to USGS standards for publications and near realtime ADVM-computed discharges are served on USGS real-time data World Wide Web pages.

  14. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  15. Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-μm wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  16. Detection of Reflux in Jugular and Vertebral Veins Through Directional Multigate Quality Doppler Profiles

    NASA Astrophysics Data System (ADS)

    Forzoni, Leonardo; Morovic, Sandra; Semplici, Paolo; Corsi, Massino; Ricci, Stefano; Tortoli, Piero

    Chronic Cerebro-Spinal Venous Insufficiency (CCSVI) is a medical condition where deoxygenated blood flows from the veins surrounding the brain and spine is slowed down or blocked in its return to the heart. The diagnosis and severity of CCSVI can be assessed by investigating the possible presence and the extent of such reflux and/or blockage in neck veins and intracranial veins, with the patient in both sitting and supine positions. During such examinations, B-Mode and Color Doppler ultrasound are not always capable of accurately detect the flow behavior in all subjects.

  17. Tracking sperm whale (Physeter macrocephalus) dive profiles using a towed passive acoustic array

    NASA Astrophysics Data System (ADS)

    Thode, Aaron

    2004-07-01

    A passive acoustic method is presented for tracking sperm whale dive profiles, using two or three hydrophones deployed as either a vertical or large-aperture towed array. The relative arrival times between the direct and surface-reflected acoustic paths are used to obtain the ranges and depths of animals with respect to the array, provided that the hydrophone depths are independently measured. Besides reducing the number of hydrophones required, exploiting surface reflections simplifies automation of the data processing. Experimental results are shown from 2002 and 2003 cruises in the Gulf of Mexico for two different towed array deployments. The 2002 deployment consisted of two short-aperture towed arrays separated by 170 m, while the 2003 deployment placed an autonomous acoustic recorder in tandem with a short-aperture towed array, and used ship noise to time-align the acoustic data. The resulting dive profiles were independently checked using single-hydrophone localizations, whenever multipath reflections from the ocean bottom could be exploited to effectively create a large-aperture vertical array. This technique may have applications for basic research and for real-time mitigation for seismic airgun surveys.

  18. Nonlinear acoustics with low-profile piezoceramic excitation for crack detection in metallic structures

    NASA Astrophysics Data System (ADS)

    Parsons, Z.; Staszewski, W. J.

    2006-08-01

    Structural damage detection is one of the major maintenance activities in a wide range of industries. A variety of different methods have been developed for detection of fatigue cracks in metallic structures over the last few decades. This includes techniques based on stress/acoustic waves propagating in monitored structures. Classical ultrasonic techniques used in nondestructive testing and evaluation are based on linear amplitude and/or phase variations of reflected, transmitted or scattered waves. In recent years a range of different techniques utilizing nonlinear phenomena in vibration and acoustic signals have been developed. It appears that these techniques are more sensitive to damage alterations than other techniques used for damage detection based on linear behaviour. The paper explores the use of low-profile piezoceramic actuators with low-frequency excitation in nonlinear acoustics. The method is used to detect a fatigue crack in an aluminium plate. The results are compared with modal/vibration excitation performed with an electromagnetic shaker. The study shows that piezoelectric excitation with surface-bonded low-profile piezoceramic transducers is suitable for crack detection based on nonlinear acoustics.

  19. Long-term Doppler Shift and Line Profile Studies of Planetary Search Target Stars

    NASA Technical Reports Server (NTRS)

    McMillan, Robert S.

    2002-01-01

    This grant supported attempts to develop a method for measuring the Doppler shifts of solar-type stars more accurately. The expense of future space borne telescopes to search for solar systems like our own makes it worth trying to improve the relatively inexpensive pre-flight reconnaissance by ground-based telescopes. The concepts developed under this grant contributed to the groundwork for such improvements. They were focused on how to distinguish between extrasolar planets and stellar activity (convection) cycles. To measure the Doppler shift (radial velocity; RV) of the center of mass of a star in the presence of changing convection in the star's photosphere, one can either measure the effect of convection separately from that of the star's motion and subtract its contribution to the apparent RV, or measure the RV in a way that is insensitive to convection. This grant supported investigations into both of these approaches. We explored the use of a Fabry-Perot Etalon HE interferometer and a multichannel Fourier Transform Spectrometer (mFTS), and finished making a 1.8-m telescope operational and potentially available for this work.

  20. Application of 50 MHz doppler radar wind profiler to launch operations at Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schumann, Robin S.; Taylor, Gregory E.; Smith, Steve A.; Wilfong, Timothy L.

    1994-01-01

    This paper presents a case study where a significant wind shift, not detected by jimspheres, was detected by the 50 MHz DRWP (Doppler Radar Wind Profiler) and evaluated to be acceptable prior to the launch of a Shuttle. This case study illustrates the importance of frequent upper air wind measurements for detecting significant rapidly changing features as well as for providing confidence that the features really exist and are not due to instrumentation error. Had the release of the jimsphere been timed such that it would have detected the entire wind shift, there would not have been sufficient time to release another jimsphere to confirm the existence of the feature prior to the scheduled launch. We found that using a temporal median filter on the one minute spectral estimates coupled with a constraining window about a first guess velocity effectively removes nearly all spurious signals from the velocity profile generated by NASA's 50 MHz DRWP while boosting the temporal resolution to as high as one profile every 3 minutes. The higher temporal resolution of the 50 MHz DRWP using the signal processing algorithm described in this paper ensures the detection of rapidly changing features as well as provides the confidence that the features are genuine. Further benefit is gained when the profiles generated by the DRWP are examined in relation to the profiles measured by jimspheres and/or rawinsondes. The redundancy offered by using two independent measurements can dispel or confirm any suspicion regarding instrumentation error or malfunction and wind profiles can be examined in light of their respective instruments' strengths and weaknesses.

  1. A Comparison of the Automated Meteorological Profiling System High Resolution Flight Element to the Kennedy Space Center 50 MHz Doppler Wind Profiler

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank

    2000-01-01

    Wind profile measurement and the simulation of aerodynamic loads on a launch vehicle play an important role in determining launch capability and post launch assessment of the vehicle's performance. To date, all United States range certified wind profile measurement systems have been based on balloon tracking. Since the 1960's, the standard used by the National Aeronautics and Space Administration and the Air Force at the Cape Canaveral Air Station (CCAS) for detailed wind profile measurements has been the radar tracked, aerodynamically stabilized Jimsphere balloon system. Currently, the Air Force is nearing certification and operational implementation of the Automated Meteorological Profiling System (AMPS) at CCAS and Vandenburg Air Force Base (VAFB). AMPS uses the Global Positioning System for tracking the Jimsphere balloon. It is anticipated that the AMPS/Jimsphere, named the High Resolution Flight Element (HRFE), will have equivalent, or better resolution than the radar tracked Jimsphere, especially when the balloon is far downrange, at a low elevation angle. By the 1980's, the development of Doppler Wind Profilers (DWP) had become sufficiently advanced to justify an experimental measurement program at Kennedy Space Center (KSC). In 1989 a 50 MHz DWP was installed at KSC. In principal, the 50 MHz DWP has the capability to track the evolution of wind profile dynamics within 5 minutes of a launch. Because of fundamental differences in the measurement technique, there is a significant time and space differential between 50 MHz DWP and HRFE wind profiles. This paper describes a study to quantify these differences from a sample of 50 MHz DWP/HRFE pairs obtained during the AMPS certification test program.

  2. Lifetimes in neutron-rich Nd isotopes measured by Doppler profile method

    SciTech Connect

    Ahmad, I.; Lister, C.J.; Morss, L.R.

    1995-08-01

    Lifetimes of the rotational levels in neutron-rich even-even Nd isotopes were deduced from the analysis of the Doppler broadened line shapes. The experiment was performed at Daresbury with the Eurogam array, which at that time consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. The source was in the form of a 7-mm pellet which was prepared by mixing 5-mg; {sup 248}Cm and 65-mg KCl and pressing it under high pressure. Events for which three or more detectors fired were used to construct a cubic data array whose axes represented the {gamma}-ray energies and the contents of each channel the number of events with that particular combination of {gamma}-ray energies. From this cubic array, one-dimensional spectra were generated by placing gates on peaks on the other two axes. Gamma-ray spectra of even-even Nd isotopes were obtained by gating on the transitions in the complimentary Kr fragments. The gamma peaks de-exciting states with I {>=} 12 h were found to be broader than the instrumental line width due to the Doppler effect. The line shapes of they-ray peaks were fitted separately with a simple model for the feeding of the states and assuming a rotational band with constant intrinsic quadruple moment and these are shown in Fig. I-27. The quadrupole moments thus determined were found to be in good agreement with the quadrupole moments measured previously for lower spin states. Because of the success of this technique for the Nd isotopes, we intend to apply this technique to the new larger data set collected with the Eurogam II array. The results of this study were published.

  3. Doppler effect in optical velocimetry

    NASA Astrophysics Data System (ADS)

    Rinkevichius, Bronius S.

    1996-02-01

    The current state of the optical metrology based on the Doppler effect has been reviewed. Some historical and scientific information is given, in addition the contemporary optical methods of the velocity measurement using the Doppler effect are analyzed. The Doppler effect applications in astrophysics, plasma physics, investigations of gas and liquid flows, acoustics, mechanics of the deforming solid body and of the rotational motion are considered. The description is presented for the following techniques of the velocity measurement: laser Doppler anemometry, laser Doppler vibrometry, laser gyroscopy.

  4. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts

    PubMed Central

    Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David

    2016-01-01

    Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts. PMID:26732545

  5. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts

    NASA Astrophysics Data System (ADS)

    Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David

    2016-01-01

    Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts.

  6. Multigate quality Doppler profiles and morphological/hemodynamic alterations in multiple sclerosis patients.

    PubMed

    Ciccone, Marco Matteo; Galeandro, Aldo Innocente; Scicchitano, Pietro; Zito, Annapaola; Gesualdo, Michele; Sassara, Marco; Cortese, Francesca; Dachille, Annamaria; Carbonara, Rosa; Federico, Francesco; Livrea, Paolo; Trojano, Maria

    2012-05-01

    Venous echo-color-Doppler (ECD) showed that chronic cerebrospinal venous insufficiency (CCSVI) syndrome is related to multiple sclerosis (MS). Study aims were to assess interobserver variability in ultrasound evaluation of MS patients and to relate echo-markers to MS clinical symptoms and the disability degree. 277 MS patients (117 men, mean age 43.05+10.04 years) admitted to the Neurology Department of Bari University General Hospital, underwent clinical, Expanded Disability Status Scale (EDSS) evaluation, and a cerebro-venous system ECD evaluation. Two operators reevaluated 32 patients to calculate interobserver variability. McNemar test confirmed the procedure reproducibility between two operators (p=ns). Septa/membranes correlated with deep cerebral veins reflux [right: 16% absence vs. 58% presence, p < 0.0001; left: 26% vs. 50%, p < 0.0001]; their absence in Primary Progressive (PP) MS form [right: 11% vs. 2%, p < 0.001; left: 12% vs. 2%, p < 0.001]. Internal jugular veins (IJVs) reflux absence was in Relapsing-remitting (RR) form [right: 60% vs. 74%, p=0.036; left: 56% vs. 85%, p < 0.0001] like hemodynamically significant stenosis [right: 57% vs. 69%, p=0.033; left: 49% vs. 73%, p < 0.001] not present in PP [right: 11% vs. 2%, p < 0.001; left: 10% vs. 3%, p=0.009]. A supine IJVs blocked flow was related to the EDSS class [right: 4.8±1.5 vs. 5.4±1.4, p=0.006; left: 4.7±1.6 vs. 5.5±1.2, p < 0.0001]; its absence was linked to RR [right: 60% vs. 76%, p=0.016; left: 58% vs. 79%, p < 0.001]. ECD has an important value in MS patients with IJV anomalies detection and a good interobserver procedure reproducibility. MS is associated with CCSVI, although further studies are needed.

  7. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  8. Aerodynamic and acoustic investigation of inverted velocity profile coannular exhaust nozzle models and development of aerodynamic and acoustic prediction procedures

    NASA Technical Reports Server (NTRS)

    Larson, R. S.; Nelson, D. P.; Stevens, B. S.

    1979-01-01

    Five co-annular nozzle models, covering a systematic variation of nozzle geometry, were tested statically over a range of exhaust conditions including inverted velocity profile (IVP) (fan to primary stream velocity ratio 1) and non IVP profiles. Fan nozzle pressure ratio (FNPR) was varied from 1.3 to 4.1 at primary nozzle pressure ratios (PNPR) of 1.53 and 2.0. Fan stream temperatures of 700 K (1260 deg R) and 1089 K(1960 deg R) were tested with primary stream temperatures of 700 K (1260 deg R), 811 K (1460 deg R), and 1089 K (1960 deg R). At fan and primary stream velocities of 610 and 427 m/sec (2000 and 1400 ft/sec), respectively, increasing fan radius ratio from 0.69 to 0.83 reduced peak perceived noise level (PNL) 3 dB, and an increase in primary radius ratio from 0 to 0.81 (fan radius ratio constant at 0.83) reduced peak PNL an additional 1.0 dB. There were no noise reductions at a fan stream velocity of 853 m/sec (2800 ft/sec). Increasing fan radius ratio from 0.69 to 0.83 reduced nozzle thrust coefficient 1.2 to 1.5% at a PNPR of 1.53, and 1.7 to 2.0% at a PNPR of 2.0. The developed acoustic prediction procedure collapsed the existing data with standard deviation varying from + or - 8 dB to + or - 7 dB. The aerodynamic performance prediction procedure collapsed thrust coefficient measurements to within + or - .004 at a FNPR of 4.0 and a PNPR of 2.0.

  9. Monitoring glucose in vivo by measuring laser-induced acoustic profiles

    NASA Astrophysics Data System (ADS)

    Bednov, Andrey A.; Karabutov, Alexander A.; Savateeva, Elena V.; March, Wayne F.; Oraevsky, Alexander A.

    2000-05-01

    The optoacoustic method of monitoring absorbed optical energy distribution in tissues was employed to measure changes in glucose concentration in vivo. Glucose osmotic and hydrophilic properties cause reduction of tissue scattering as a result of glucose concentration increase around scattering particles and fibers. The opto-acoustic (OA) method utilizes time-resolved measurements of laser- induced ultrasonic profile in tissue resembling the distribution of absorbed optical energy. This opto-acoustic profile yields effective optical attenuation coefficient, which decreases with decrease of scattering. Glucose effect has been investigated initially in phantoms resembling optical properties of sclera and polystyrene microspheres water solution colored with potassium chromate and then in sclera in vitro and in sclera of live rabbits. The forward mode of opto-acoustic detection was used in the experiments in vitro. Experiments were performed in UV spectral range at the wavelength of (lambda) equals 355-nm. Experimental results demonstrated that an increase in glucose concentration from 5 mM to 60 mM was expressed in the 3 percent reduction of (mu) eff in aqueous solution of polystyrene microspheres. The effect of glucose on sclera in vitro was more prominent and measured as 10 percent reduction of (mu) eff with increase of glucose concentration from 1 mM to 50 mM. It was found that both the amplitude and the profile of OA signal were influenced by mechanical pressure applied to sclera specimen toward the surface of OA transducer. In experiments in live tissue, the backward detection mode was employed, as the only one side access to the tissue surface was available. In experiments in vivo the opto-acoustic profiles were measured in rabbit's sclera before and after intravenous glucose administering. The glucose concentration in rabbit blood was simultaneously measured using commercial device employing chemical analysis of blood. Experimental results demonstrated that a 1

  10. Ice/berm interaction study using rotary sidescan sonar and acoustic profiling systems

    SciTech Connect

    Good, R.R.; Anderson, K.G.; Lanzier, H.H.

    1984-05-01

    Tarsiut Island, in the Canadian Beaufort Sea, was the first dredged caisson retained island built for exploration drilling operations in the Arctic offshore. Due to the island's configuration location, a large first-year ice rubble pile would result from the ice/structure interaction. This paper outlines how a rotary side-scan sonar and a mechanically scanning, narrow-beam acoustic profiling system were used to determine the geometry and the contact area of the underside of heavily rubbled first-year ice. The results of this study are to be used to further the understanding of the nature and mechanism of the ice/structure interaction in Arctic offshore structures.

  11. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  12. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.

    PubMed

    Long, Chloe V; Flint, James A; Lepper, Paul A

    2010-10-01

    Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision.

  13. Enhanced Acoustic Black Hole effect in beams with a modified thickness profile and extended platform

    NASA Astrophysics Data System (ADS)

    Tang, Liling; Cheng, Li

    2017-03-01

    The phenomenon of Acoustics Black Hole (ABH) benefits from the bending wave propagating properties inside a thin-walled structure with power-law thickness variation to achieve zero reflection when the structural thickness approaches zero in the ideal scenario. However, manufacturing an ideally tailored power-law profile of a structure with embedded ABH feature can hardly be achieved in practice. Past research showed that the inevitable truncation at the wedge tip of the structure can significantly weaken the expected ABH effect by creating wave reflections. On the premise of the minimum achievable truncation thickness by the current manufacturing technology, exploring ways to ensure and achieve better ABH effect becomes important. In this paper, we investigate this issue by using a previously developed wavelet-decomposed semi-analytical model on an Euler-Bernoulli beam with a modified power-law profile and an extended platform of constant thickness. Through comparisons with the conventional ABH profile in terms of system loss factor and energy distribution, numerical results show that the modified thickness profile brings about a systematic increase in the ABH effect at mid-to-high frequencies, especially when the truncation thickness is small and the profile parameter m is large. The use of an extended platform further increases the ABH effect to broader the frequency band whilst providing rooms for catering particular low frequency applications.

  14. Doppler sodar and radar wind-profiler observations of gravity-wave activity associated with a gravity current

    SciTech Connect

    Ralph, F.M.; Venkateswaran, S.V. ); Mazaudier, C. ); Crochet, M. )

    1993-02-01

    Observations from two Doppler sodars and a radar wind profiler have been used in conjunction with data from a rawinsonde station and a mesoscale surface observation network to conduct a case study of a gravity current entering into an environment containing a nocturnal inversion and an elevated neutral layer. On the basis of synoptic and mesoscale analyses, it is concluded that the gravity current might have originated either as a scale-contracted cold front or as a gust front resulting from thunderstorm outflows observed very near the leading edge of a cold front. Despite this ambiguity, the detailed vertical structure of the gravity current itself is well resolved from the data. Moreover, the vertical velocity measurements provided by the sodars and the radar wind profiler at high time resolution have given unique information about the height structure of gravity waves excited by the gravity current. Although only wave periods, and not phase speeds or wavelengths, are directly measured, it is possible to make reasonable inferences about wave excitation mechanisms and about the influence and control of ambient stratification on wave-field characteristics. Both Kelvin-Helmholtz waves generated in the regions of high wind shear found in association with the gravity current and lee-type waves forced by the gravity current acting as an obstacle to opposing prefrontal flow are identified. It is also found that the propagation speed of the gravity current and the relative depths of the prefrontal inversion and the postfrontal cold air were not favorable for the formation of either internal bores or solitary waves at the time of day at which the gravity current was being observed. 42 refs., 18 figs., 1 tab.

  15. A beam-scan type laser Doppler velocimeter for simultaneous and continuous measurement of velocity profiles

    NASA Astrophysics Data System (ADS)

    Hino, M.; Nadaoka, K.; Kobayashi, T.; Sato, Y.; Muramoto, T.

    A beam-scan-type LDV (SLV) with high spatial resolving power has been developed for the continuous measurement of nearly simultaneous velocity profiles in the cross sections of various flows. The SLV consists of a forward-scatter LDV and a beam-scan unit, using a reversed-scan method, capable of high-speed scanning of the measuring volume. An autofocusing device using an image sensor is employed to simplify the alignment of the receiving optics needed to match the transmitting optics. The SLV performance was validated by comparison of experimental results (for a wake flow of a circular cylinder, a reciprocally oscillatory flow, and a Karman vortex street flow) with flow visualization and computational results.

  16. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  17. Monte Carlo simulation of an optical coherence Doppler tomograph signal: the effect of the concentration of particles in a flow on the reconstructed velocity profile

    SciTech Connect

    Bykov, A V; Kirillin, M Yu; Priezzhev, A V

    2005-02-28

    Model signals of an optical coherence Doppler tomograph (OCDT) are obtained by the Monte Carlo method from a flow of a light-scattering suspension of lipid vesicles (intralipid) at concentrations from 0.7% to 1.5% with an a priori specified parabolic velocity profile. The velocity profile parameters reconstructed from the OCDT signal and scattering orders of the photons contributing to the signal are studied as functions of the suspension concentration. It is shown that the maximum of the reconstructed velocity profile at high concentrations shifts with respect to the symmetry axis of the flow and its value decreases due to a greater contribution from multiply scattered photons. (papers devoted to the 250th anniversary of the moscow state university)

  18. Wind Profiling from a New Compact, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar Transceiver during Wind Measurement Intercomparison

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.

    2009-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.

  19. Comment on "Reconstructing surface wave profiles from reflected acoustic pulses" [J. Acoust. Soc. Am. 133(5), 2597-2611 (2013)].

    PubMed

    Choo, Youngmin; Song, H C

    2016-05-01

    A computationally efficient, time-domain Helmholtz-Kirchhoff (H-K) integral was derived and applied to reconstructing surface wave profiles from reflected acoustic pulses [Walstead and Deane, J. Acoust. Soc. Am. 133, 2597-2611 (2013)]. However, the final form of the integral equation incorporating a stationary phase approximation contained a complex phase term exp(iπ/4), which cannot be treated as a simple time delay. In this work, a real time-domain H-K integral is presented that includes an additional Hilbert transform of the time-derivative of the transmitted pulse. Numerical simulation with a sinusoidal surface shows good agreement between the real time-domain formulation and exact H-K integral, while achieving a significant improvement in computational speed (e.g., 2 orders of magnitude).

  20. Disentangling preference ratings of concert hall acoustics using subjective sensory profiles.

    PubMed

    Lokki, Tapio; Pätynen, Jukka; Kuusinen, Antti; Tervo, Sakari

    2012-11-01

    Subjective evaluation of acoustics was studied by recording nine concert halls with a simulated symphony orchestra on a seat 12 m from the orchestra. The recorded music was spatially reproduced for subjective listening tests and individual vocabulary profiling. In addition, the preferences of the assessors and objective parameters were gathered. The results show that concert halls were discriminated using perceptual characteristics, such as Envelopment/Loudness, Reverberance, Bassiness, Proximity, Definition, and Clarity. With these perceptual dimensions the preference ratings can be explained. Seventeen assessors were divided into two groups based on their preferences. The first group preferred concert halls with relatively intimate sound, in which it is quite easy to hear individual instruments and melody lines. In contrast, the second group preferred a louder and more reverberant sound with good envelopment and strong bass. Even though all halls were recorded exactly at the same distance, the preference is best explained with subjective Proximity and with Bassiness, Envelopment, and Loudness to some extent. Neither the preferences nor the subjective ratings could be fully explained by objective parameters (ISO3382-1:2009), although some correlations were found.

  1. Intermediate and High-Frequency Acoustic Backscattering Cross Sections for Water-Ice Interfaces: I. Two-Component Profile Models.

    DTIC Science & Technology

    2014-09-26

    Ice Research in the Arctic Ocean via Submarine," Trans. N.Y. Acad. of Sciences 23, 662-674, 1961. [2]. R. H. Mellen, "Underwater Acoustic Scattering...Backscattenng Cross Sections for Water- Ice Interfaces: I. Two.Component Profile Models r2avid Middleton CV) (Consultant) Associate Technical Director LC...Distribution unlimited. --. Preface This work was accomplished under NUSC’s Arctic Program, Code 01Y and Code 10. The sponsoring activity is the Naval

  2. Hybrid system for magnetic and acoustic measurement.

    PubMed

    Bruno, A C; Baffa, O; Carneiro, A O

    2009-01-01

    In order to improve the spatial resolution of Biosusceptometry of Alternate Current (BAC), we are suggesting the coupling of a Doppler ultrasonic transducer with the BAC system. The Doppler transducer obtains information from the vibration of ferromagnetic particles immersed in a visco-elastic medium when it is excited by an alternating magnetic field. In this case, the same magnetic particles used as contrast for susceptometric measurement also will work as contrast for the Doppler measurement. In this work, we present the characterization of the hybrid system for susceptometric and acoustic measurements simultaneously. It was observed that the susceptometric and Doppler ultrasound signal have the same profile and maximum amplitude for frequency of magnetizing field about 200 Hz. When using ferrite particles as magnetic contrast mixed with yogurt as based material, the susceptometric and Doppler measurement have sensitivity for concentration of particles as low as 1%. The sensitivity of the Doppler is dependent of the gradient of magnetic field over the sample. In this work, the magnetic field 5 cm far from the face of the transducer was 70 microT/volts.

  3. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  4. Characterizing spatial variability in velocity and turbulence intensity using 3-D acoustic Doppler velocimeter data in a plane-bed reach of East St. Louis Creek, Colorado, USA

    NASA Astrophysics Data System (ADS)

    David, Gabrielle C. L.; Legleiter, Carl J.; Wohl, Ellen; Yochum, Steven E.

    2013-02-01

    We investigated the influence on flow resistance of flow structure and turbulence at the reach scale in a mountain channel using 3-D velocity measurements and geostatistical analysis to understand the complexity of the flow structure in a reach with limited bed irregularities. The increase in flow resistance at low flows in a plane-bed reach was not fully explained by grain resistance, therefore detailed 3-D velocity measurements were made to investigate spatial variability in velocity and turbulence components and potential controls on flow resistance. One plane-bed reach was surveyed over two stages in Fraser Experimental Forest, Colorado, using a combination of a total station, LiDAR (Light Detection and Ranging), and a SonTek Flowtracker handheld ADV (acoustic Doppler velocimeter). LiDAR was used to capture bank and channel geometry at low flows, whereas the water surface and bed data were collected with the total station at all flows. We used the standard deviation of bed elevation (σb) within a moving window as an index of roughness height (ks) and calculated the relative submergence of the bed at different stages as h/ks, where h is the local flow depth. ADV measurements were collected on a grid with a 0.3 m to 0.5 m spacing. Geostatistical analysis of the velocity data indicated that the flow was highly three-dimensional and varied based on stage, demonstrating that even small irregularities in the bed have a significant influence on the flow characteristics. The streamwise component was the largest at both low and high flow, but varied more throughout the reach at low flow. At high flow, the greatest streamwise velocities were located within the thalweg. Areas of upwelling and downwelling also varied based on stage, with this component being strongly influenced by small changes in the morphology at high flow, and by protuberant grains at low flows. The cross-stream velocity and turbulence components were controlled by the flow structure and less by the

  5. Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode.

    PubMed

    Jaeger, Michael; Niederhauser, Joël J; Hejazi, Marjaneh; Frenz, Martin

    2005-01-01

    An optoacoustic detection method suitable for depth profiling of optical absorption of layered or continuously varying tissue structures is presented. Detection of thermoelastically induced pressure transients allows reconstruction of optical properties of the sample to a depth of several millimeters with a spatial resolution of 24 mum. Acoustic detection is performed using a specially designed piezoelectric transducer, which is transparent for optical radiation. Thus, ultrasonic signals can be recorded at the same position the tissue is illuminated. Because the optoacoustical sound source is placed in the pulsed-acoustic near field of the pressure sensor, signal distortions commonly associated with acoustical diffraction are eliminated. Therefore, the acoustic signals mimic exactly the depth profile of the absorbed energy. This is illustrated by imaging the absorption profile of a two-layered sample with different absorption coefficients, and of a dye distribution while diffusing into a gelatin phantom.

  6. Teaching the Doppler effect in astrophysics

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.; Cowley, Michael

    2017-03-01

    The Doppler effect is a shift in the frequency of waves emitted from an object moving relative to the observer. By observing and analysing the Doppler shift in electromagnetic waves from astronomical objects, astronomers gain greater insight into the structure and operation of our Universe. In this paper, a simple technique is described for teaching the basics of the Doppler effect to undergraduate astrophysics students using acoustic waves. An advantage of the technique is that it produces a visual representation of the acoustic Doppler shift. The equipment comprises a 40 kHz acoustic transmitter and a microphone. The sound is bounced off a computer fan and the signal collected by a DrDAQ ADC and processed by a spectrum analyser. Widening of the spectrum is observed as the fan power supply potential is increased from 4 to 12 V.

  7. Doppler echocardiography

    SciTech Connect

    Labovitz, A.J.; Williams, G.A.

    1988-01-01

    The authors are successful in presenting a basic book on clinical quantitative Doppler echocardiography. It is not intended to be a comprehensive text, but it does cover clinical applications in a succinct fashion. Only the more common diseases in the adult are considered. The subjects are presented logically and are easy to comprehend. The illustrations are good, and the book is paperbound. The basic principles of Doppler echocardiography are presented briefly. The book ends with chapters on left ventricular function (stroke volume and cardiac output), congenital heart disease, and color Doppler echo-cardiography. There are numerous references and a good glossary and index.

  8. Analysis of Vertical Profiles of Reflectivity and Doppler Velocity from ER2-HIWRAP in Convective Clouds During MC3E

    NASA Astrophysics Data System (ADS)

    Tian, L.; Heymsfield, G. M.; Liao, L.; Meneghini, R.; Grecu, M.

    2013-12-01

    Retrieval of precipitation in mixed-phase region in convection over land is a challenging problem in GPM DPR algorithm. Dual-wavelength (Ku/Ka band) airborne radar observations from the NASA's ER2-HIWRAP radar system in deep convections during MC3E provide observations that can be used to test assumptions in the algorithm for retrievals in the mixed-phase region. In this study, we use the reflectivity and Doppler velocity from ER2-HIWRAP, and Zh and ZDR from ground-based polarimetric radar to show that the present of mixed-phased hydrometeor (e.g., water-coated hail/graupel) produces a scattering signature similar to the bright band in stratiform rain. Such signature may be used to identify the mixed phased region in deep convective storm. We will also discuss implications of using this information for the GPM radar and radiometer retrieval algorithms.

  9. Doppler Spectra of Bistatic Reverberation from the Sea Surface.

    DTIC Science & Technology

    1979-05-08

    Doppler spectrum of surface scattered acoustic waves was performed by Liebermann [1-2]. Acoustic waves in air were scattered from capillary waves generated...scattered angle. Liebermann concluded that out of a broad spectrum of surface wave frequen- cies the wavelength most effective in scattering the acoustic... Liebermann , the theoretical prediction of a 1030 Hz Doppler shift was not in good agreement with the measured. It was suggested that nonlinear sur- face

  10. Acoustic profiles and images of the Palos Verdes margin: Implications concerning deposition from the White's Point outfall

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Murray, C.J.

    2002-01-01

    Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes Shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km2, which encompasses a volume of about 3.2 million m3. The deposit's basal reflector is acoustically distinct over most of the mapped area. implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs. ?? 2002 Elsevier Science Ltd. All rights

  11. Acoustic profiles and images of the Palos Verdes Margin: Implications concerning deposition from the White's Point outfall

    SciTech Connect

    Hampton, M A.; Karl, H; Murray, Christopher J. )

    2001-12-01

    Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km{sup 2}, which encompasses a volume of about 3.2 million m{sup 3}. The deposit's basal reflector is acoustically distinct over most of the mapped area, implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30 m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs.

  12. Acoustic and Laser Doppler Anemometer Results for Confluent and 12-Lobed E(exp 3) Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Babbit, R. R.; Shin, H.; Wisler, S.; Janardan, B. A.; Majjigi, R. K.; Bridges, James (Technical Monitor)

    2002-01-01

    The research described in this report has been funded by NASA Glenn Research Center as part of the Advanced Subsonic Technologies (AST) initiative. The program operates under the Large Engine Technologies (LET) as Task Order #3 1. Task Order 31 is a three year research program divided into three subtasks. Subtask A develops the experimental acoustic and aerodynamic subsonic mixed flow exhaust system databases. Subtask B seeks to develop and assess CFD-based aero-acoustic methods for subsonic mixed flow exhaust systems. Subtask B relies on the data obtained from Subtask A to direct and calibrate the aero-acoustic methods development. Subtask C then seeks to utilize both the aero-acoustic data bases developed in Subtask A and the analytical methods developed in Subtask B to define improved subsonic mixed-flow exhaust systems. The mixed flow systems defined in Subtask C will be experimentally demonstrated for improved noise reduction in a scale model aero-acoustic test conducted similarly to the test performed in Subtask A. The overall object of this Task Order is to develop and demonstrate the technology to define a -3EPNdB exhaust system relative to 1992 exhaust system technology.

  13. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    NASA Astrophysics Data System (ADS)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-07-01

    We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved what makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the used techniques for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using MonteCarlo simulations. Finally, a first time series of 11 months of zonal wind measurements over Bern (46°57

  14. Acoustic and Laser Doppler Anemometer Results for Confluent, 22-Lobed, and Unique-Lobed Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)

    2002-01-01

    The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.

  15. Rapid profiling of enteric coated drug delivery spheres via broadband acoustic resonance dissolution spectroscopy (BARDS).

    PubMed

    Fitzpatrick, D; Evans-Hurson, R; Fu, Y; Burke, T; Krüse, J; Vos, B; McSweeney, S G; Casaubieilh, P; Keating, J J

    2014-03-07

    There is an increased trend towards the use of drug and enteric coated sugar spheres for controlled oral delivery of active pharmaceutical ingredients (API). This trend is driven by increased efficacy and ease of formulation of different dosage levels. However, difficulties exist in determining the thickness of drug and enteric coatings in a time efficient manner during manufacture, quality assurance and stability testing. The thickness of the coating determines the dosage of the API and the thickness of the enteric coating determines the release rate of the drug in the gastro-intestinal tract. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) offers a rapid new approach to characterising the enteric coating thickness and the raw materials used in their manufacture. BARDS applications are based on reproducible changes in the compressibility of a solvent during dissolution which is monitored acoustically due to associated changes in the speed of sound in solution. It is demonstrated how core delivery sugar spheres have unique acoustic spectra attributable to the mean size distribution of the spheres. A steady state acoustic lag time is associated with the disintegration of the enteric coating, in basic solution. This lag time can be manipulated by varying the concentration of the base which affects the rate at which the coating dissolves. It is anticipated that the thickness/loading of the spheres can be estimated from the lag time.

  16. Relation between symptoms and profiles of coronary artery blood flow velocities in patients with aortic valve stenosis: a study using transoesophageal Doppler echocardiography.

    PubMed Central

    Omran, H.; Fehske, W.; Rabahieh, R.; Hagendorff, A.; Lüderitz, B.

    1996-01-01

    OBJECTIVE: To analyse profiles of coronary artery flow velocity at rest in patients with aortic stenosis and to determine whether changes of the coronary artery flow velocities are related to symptoms in patients with aortic stenosis. DESIGN: A prospective study investigating the significance of aortic valve area, pressure gradient across the aortic valve, systolic left ventricular wall stress index, ejection fraction, and left ventricular mass index in the coronary flow velocity profile of aortic stenosis; and comparing flow velocity profiles between symptomatic and asymptomatic patients with aortic stenosis using transoesophageal Doppler echocardiography to obtain coronary artery flow velocities of the left anterior descending coronary artery. SETTING: Tertiary referral cardiac centre. PATIENTS: Fifty eight patients with aortic stenosis and 15 controls with normal coronary arteries. RESULTS: Adequate recordings of the profile of coronary artery flow velocities were obtained in 46 patients (79%). Left ventricular wall stress was the only significant haemodynamic variable for determining peak systolic velocity (r = -0.83, F = 88.5, P < 0.001). The pressure gradient across the aortic valve was the only contributor for explaining peak diastolic velocity (r = 0.56, F = 20.9, P < 0.001). Controls and asymptomatic patients with aortic stenosis (n = 12) did not differ for peak systolic velocity [32.8 (SEM 9.7) v 27.0 (8.7) cm/s, NS] and peak diastolic velocity [58.3 (18.7) v 61.9 (13.5) cm/s, NS]. In contrast, patients with angina (n = 12) or syncope (n = 8) had lower peak systolic velocities and higher peak diastolic velocities than asymptomatic patients (P < 0.01). Peak systolic and diastolic velocities were -7.7 (22.5) cm/s and 81.7 (17.6) cm/s for patients with angina, and -19.5 (22.3) cm/s and 94.0 (20.9) cm/s for patients with syncope. Asymptomatic patients and patients with dyspnoea (n = 14) did not differ. CONCLUSIONS: Increased pressure gradient across the

  17. 915-MHz Radar Wind Profiler (915RWP) Handbook

    SciTech Connect

    Coulter, R

    2005-01-01

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  18. Overview of hydro-acoustic current-measurement applications by the U.S. geological survey in Indiana

    USGS Publications Warehouse

    Morlock, Scott E.; Stewart, James A.

    1999-01-01

    The U.S. Geological Survey (USGS) maintains a network of 170 streamflow-gaging stations in Indiana to collect data from which continuous records of river discharges are produced. Traditionally, the discharge record from a station is produced by recording river stage and making periodic discharge measurements through a range of stage, then developing a relation between stage and discharge. Techniques that promise to increase data collection accuracy and efficiency include the use of hydro-acoustic instrumentation to measure river velocities. The velocity measurements are used to compute river discharge. In-situ applications of hydro-acoustic instruments by the USGS in Indiana include acoustic velocity meters (AVM's) at six streamflow-gaging stations and newly developed Doppler velocity meters (DVM's) at two stations. AVM's use reciprocal travel times of acoustic signals to measure average water velocities along acoustic paths, whereas DVM's use the Doppler shift of backscattered acoustic signals to compute water velocities. In addition to the in-situ applications, three acoustic Doppler current profilers (ADCP's) are used to make river-discharge measurements from moving boats at streamflow-gaging stations in Indiana. The USGS has designed and is testing an innovative unmanned platform from which to make ADCP discharge measurements.

  19. Ultrasonic condition monitoring of composite structures using a low-profile acoustic source and an embedded optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Pierce, S. Gareth; Staszewski, Wieslaw J.; Gachagan, Anthony; James, I. R.; Philip, Wayne R.; Worden, Keith; Culshaw, Brian; McNab, Alistair; Tomlinson, Geoffrey R.; Hayward, Gordon

    1997-06-01

    The purpose of this paper is to provide a concise introduction to the developments and recent findings of a BRITE-EURAM program of work (BRE2.CT94-0990 , structurally integrated system for the comprehensive evaluation of composites). The aim of the program has been to develop an acoustic/ultrasonic based structural monitoring system for composite structures using material compatible sensors. Since plate-like structures have been investigated, it has been a requirement to utilize the propagation of ultrasonic Lamb waves through the sample materials. Preliminary investigations utilized conventional piezo-electric sources coupled to the sample via perspex wedges. The Lamb waves generated by these sources were monitored using either a fully embedded or surface mounted optical fiber sensors. The system was tested with a variety of different carbon and glass fiber reinforced panels, and the interaction of the lamb waves with different defects in these materials was monitored. Conventional signal processing allowed the location of defects such as impact damage sites, delaminations and holes. Subsequent investigations have endeavored to refine the system. This paper reports the development of advanced wavelet based signal processing techniques to enhance defect visibility, the optical connectorization of composite panels, and the development of flexible low profile acoustic sources for efficient Lamb wave generation.

  20. Mesoscale current fields observed with a shipboard profiling acoustic current meter

    SciTech Connect

    Regier, L.

    1982-08-01

    Measurements of the near-surface currents obtained with a shipboard acoustic current meter during the POLYMODE Local Dynamics Experiment are discussed. The large-scale spatial structure of the directly measured currents is very similar to that obtained from simultaneous hydrographic observations assuming geostrophic dynamics. The vertical shear of geostrophic currents is half that observed directly, and the two are poorly correlated. Vertical shear is dominated by currents having spatial scales shorter than about 180 km and having no geostrophic signature. Although the shear of the ageostrophic component is clearly evident, estimation of the ageostrophic current is hampered by large experimental uncertainties.

  1. Flight effects on the aero/acoustic characteristics of inverted profile coannular nozzles

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    The effect of simulated flight speed on the acoustic and aerodynamic characteristics of coannular nozzles is examined. The noise and aerodynamic performance of the coannular nozzle exhaust systems over a large range of operating flight conditions is presented. The jet noise levels of the coannular nozzles are discussed. The impact of fan to primary nozzle area ratio and the presence of an ejector on flight effects are investigated. The impact of flight speed on the individual components of the coannular jet noise was ascertained.

  2. Bluefin autonomous underwater vehicles: Programs, systems, and acoustic issues

    NASA Astrophysics Data System (ADS)

    Bondaryk, Joseph E.

    2001-05-01

    Bluefin Robotics Corporation has been manufacturing autonomous underwater vehicles (AUVs) since spinning out of the MIT Sea Grant Laboratory in 1997. Bluefin currently makes three different diameter models of AUVs; the 9, 12, and 21, all based on the same free-flooded architecture and vectored-thrust propulsion design. Auxiliary acoustic systems include acoustic abort, ranging beacons, and acoustic modems. Vehicle navigation is aided by a downward-looking acoustic Doppler velocity logger (DVL). Sonar payloads can include: bottom profiler, side-scan sonar, SAS, forward-looking imagers (DIDSON), as well as horizontal and vertical discrete hydrophone arrays. Acoustic issues that arise include: (1) transmission of sound through the ABS plastic vehicle shell; (2) the impact of vehicle self-noise on data; (3) interoperability of sonars with other acoustic emitters present on and off the vehicle; and (4) the impact of navigation on some acoustic operations like SAS. This talk will illustrate these issues with real data collected on various Bluefin vehicles.

  3. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    The effect of forward flight on the jet noise of coannular exhaust nozzles, suitable for Variable Stream Control Engines (VSCE), was investigated in a series of wind tunnel tests. The primary stream properties were maintained constant at 300 mps and 394 K. A total of 230 acoustic data points was obtained. Force measurement tests using an unheated air supply covered the same range of tunnel speeds and nozzle pressure ratios on each of the nozzle configurations. A total of 80 points was taken. The coannular nozzle OASPL and PNL noise reductions observed statically relative to synthesized values were basically retained under simulated flight conditions. The effect of fan to primary stream area ratio on flight effects was minor. At take-off speed, the peak jet noise for a VSCE was estimated to be over 6 PNdB lower than the static noise level. High static thrust coefficients were obtained for the basic coannular nozzles, with a decay of 0.75 percent at take-off speeds.

  4. Ultrasound tomography for simultaneous reconstruction of acoustic density, attenuation, and compressibility profiles.

    PubMed

    Mojabi, Pedram; LoVetri, Joe

    2015-04-01

    A fast and efficient forward scattering solver is developed for use in ultrasound tomography. The solver is formulated so as to enable the calculation of scattering from large and relatively high-contrast objects with inhomogeneous physical properties that vary simultaneously in acoustic attenuation, compressibility, and density. It is based on the method of moments in conjunction with a novel implementation of the conjugate gradient algorithm which requires the use of the adjoints of the scattering operators. The solver takes advantage of the symmetric block Toeplitz matrix with symmetric Toeplitz blocks property of the Green's function matrix to increase efficiency and only stores the first row of this matrix to reduce memory requirements. This row is then used for the matrix-vector multiplication using the fast Fourier transform technique, thus, resulting in the computational complexity of O(n log n). The marching-on-source technique is also used to provide a good initial guess which allows the conjugate gradient technique to converge faster than initializing with an arbitrary guess. This feature is important in tomographic inversion algorithms which require that the object to be imaged be interrogated via several incident fields. Forward scattering and inversion examples, based on the Conjugate Gradient Least Squares regularized Born Iterative Method, are shown, in two-dimensions, for objects varying in all three physical properties.

  5. 2 kHz high power smart transducer for acoustic sub-bottom profiling applications

    NASA Astrophysics Data System (ADS)

    Sathishkumar, R.

    2013-09-01

    In this study, a 2 kHz Tonpilz projector was designed using a Terfenol-D and modeled in ATILA. For the purpose of modeling studies, it has been determined that a radiating head mass exhibits better transmitting current response (TCR) at 136 mm diameter, where the resonance occurs at 2.4 kHz and the peak value of 118 dB re 1 μPa/A at 1 m occurs at 12 kHz. Also bolt at a 46 mm distance from the center of the head mass offers resonance at 2.4 kHz, and the peak value of 115.3 dB re 1 μPa/A at 1m occurs at 11.5 kHz. This optimized design is fabricated and molded with polyurethane of 3 mm thickness. The prototype was tested at the Acoustic Test Facility (ATF) of National Institute of Ocean Technology (NIOT) for its underwater performances. Based on the result, the fundamental resonance was determined to be 2.18 kHz and the peak value of TCR of 182 dB re 1 μPa/A at 1m occurs at 14 kHz. The maximum value of the RS was found to be -190 dB re 1V/μPa at 1m at a frequency of 2.1 kHz.

  6. Doppler flowmeter

    DOEpatents

    Karplus, Henry H. B.; Raptis, Apostolos C.

    1983-01-01

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  7. Doppler flowmeter

    DOEpatents

    Karplus, H.H.B.; Raptis, A.C.

    1981-11-13

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  8. The leicester Doppler phantom--a digital electronic phantom for ultrasound pulsed Doppler system testing.

    PubMed

    Gittins, John; Martin, Kevin

    2010-04-01

    Doppler flow and string phantoms have been used to assess the performance of ultrasound Doppler systems in terms of parameters such as sensitivity, velocity accuracy and sample volume registration. However, because of the nature of their construction, they cannot challenge the accuracy and repeatability of modern digital ultrasound systems or give objective measures of system performance. Electronic Doppler phantoms are able to make use of electronically generated test signals, which may be controlled precisely in terms of frequency, amplitude and timing. The Leicester Electronic Doppler Phantom uses modern digital signal processing methods and field programmable gate array technology to overcome some of the limitations of previously described electronic phantoms. In its present form, it is able to give quantitative graphical assessments of frequency response and range gate characteristics, as well as measures of dynamic range and velocity measurement accuracy. The use of direct acoustic coupling eliminates uncertainties caused by Doppler beam effects, such as intrinsic spectral broadening, but prevents their evaluation.

  9. An acoustic system for providing the two-phase liquid profile in oil field storage tanks.

    PubMed

    Meribout, Mahmoud; Al Naamany, Ahmed; Al Busaidi, Khamis

    2009-10-01

    The continuing need for in situ measurements of the emulsion layer between crude oil and water within oil field tanks has initiated experimental and theoretical investigations of candidate measurement methods. This paper describes a new low-cost and nonradioactive industrial field prototype device that provides, continuously and in real time, the vertical profile of the 2-phase liquid within oil field tank separators (i.e., percentage of water in oil at different heights of the tank, as well as the emulsion layer interfaces) using ultrasonic waves. The device, which has been installed in a vessel through an 8-in. flange, consists of a 1-D array of tens of ultrasonic transducers (28 transducers in this paper) that are activated in a time-multiplexed manner by an embedded transmitter fixed on the top of the tank. This latest version implements a feedforward neural network with back-propagation learning to determine the vertical water-cut distribution along the vessel. It also implements an expert-system-based algorithm to determine the lower and higher positions of the emulsion layer. The results obtained from the extensive experiments, which have been conducted under various conditions of temperature, indicate that the device can determine the profile of the 2-phase liquid within a relative error of +/- 3%.

  10. Stratus cloud liquid water and turbulence profiles using a K{sub {alpha}}-band Doppler radar and a microwave radiometer

    SciTech Connect

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.; Lenschow, D.H.

    1994-12-31

    The goal of the Atlantic Stratocumulus Transition Experiment (ASTEX) held in the North Atlantic during June 1992 was to determine the physical reasons for the transition from stratocumulus to broken clouds. Some possible reasons for this transition were such things as cloud top entrainment instability, and the decoupling effects of drizzle. As part of this experiment, the ETL cloud sensing Doppler radar and three channel microwave radiometer were deployed on the island of Porto Santo in the Madeira Islands of Portugal along with a CO{sub 2} Doppler lider. Drizzle properties in stratus were examined using a log-normal droplet distribution model which related the three parameters of the model to the first 3 Doppler spectral moments of the cloud radar. With these moments, the authors are then able to compute the drizzle droplet concentration, modal radius, liquid water and liquid water flux as a function of height.

  11. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles, volume 1. [supersonic cruise aircraft research wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    Jet noise spectra obtained at static conditions from an acoustic wind tunnel and an outdoor facility are compared. Data curves are presented for (1) the effect of relative velocity on OASPL directivity (all configurations); (2) the effect of relative velocity on noise spectra (all configurations); (3) the effect of velocity on PNL directivity (coannular nozzle configurations); (4) nozzle exhaust plume velocity profiles; and (5) the effect of relative velocity on aerodynamic performance.

  12. Gravimetric and density profiling using the combination of surface acoustic waves and neutron reflectivity.

    PubMed

    Toolan, Daniel T W; Barker, Robert; Gough, Tim; Topham, Paul D; Howse, Jonathan R; Glidle, Andrew

    2017-02-01

    A new approach is described herein, where neutron reflectivity measurements that probe changes in the density profile of thin films as they absorb material from the gas phase have been combined with a Love wave based gravimetric assay that measures the mass of absorbed material. This combination of techniques not only determines the spatial distribution of absorbed molecules, but also reveals the amount of void space within the thin film (a quantity that can be difficult to assess using neutron reflectivity measurements alone). The uptake of organic solvent vapours into spun cast films of polystyrene has been used as a model system with a view to this method having the potential for extension to the study of other systems. These could include, for example, humidity sensors, hydrogel swelling, biomolecule adsorption or transformations of electroactive and chemically reactive thin films. This is the first ever demonstration of combined neutron reflectivity and Love wave-based gravimetry and the experimental caveats, limitations and scope of the method are explored and discussed in detail.

  13. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  14. Using a fibre-optic cable as Distributed Acoustic Sensor for Vertical Seismic Profiling - Overview of various field tests

    NASA Astrophysics Data System (ADS)

    Götz, Julia; Lüth, Stefan; Henninges, Jan; Reinsch, Thomas

    2015-04-01

    Fibre-optic Distributed Acoustic Sensing (DAS) or Distributed Vibration Sensing (DVS) is a technology, where an optical fibre cable is used as a sensor for acoustic signals. An ambient seismic wavefield, which is coupled by friction or pressure to the optical fibre, induces dynamic strain changes along the cable. The DAS/DVS technology offers the possibility to record an optoelectronic signal which is linearly related to the time dependent local strain. The DAS/DVS technology is based on the established technique of phase-sensitive optical time-domain reflectometry (phi-OTDR). Coherent laser pulses are launched into the fibre to monitor changes in the resulting elastic Rayleigh backscatter with time. Dynamic strain changes lead to small displacements of the scattering elements (non-uniformities within the glass structure of the optical fibre), and therefore to variations of the relative phases of the backscattered photons. The fibre behaves as a series of interferometers whose output is sensitive to small changes of the strain at any point along its length. To record the ground motion not only in space but also in time, snapshots of the wavefield are created by repeatedly firing laser pulses into the fibre at sampling frequencies much higher than seismic frequencies. DAS/DVS is used e.g. for continuous monitoring of pipelines, roads or borders and for production monitoring from within the wellbore. Within the last years, the DAS/DVS technology was further developed to record seismic data. We focus on the recording of Vertical Seismic Profiling (VSP) data with DAS/DVS and present an overview of various field tests published between 2011 and 2014. Here, especially CO2 storage pilot sites provided the opportunity to test this new technology for geophysical reservoir monitoring. DAS/DVS-VSP time-lapse measurements have been published for the Quest CO2 storage site in Canada. The DAS/DVS technology was also tested at the CO2 storage sites in Rousse (France), Citronelle

  15. LASER APPLICATIONS IN MEDICINE: Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomograph signal

    NASA Astrophysics Data System (ADS)

    Bykov, A. V.; Kirillin, M. Yu; Priezzhev, A. V.

    2005-11-01

    Model signals from one and two plane flows of a particle suspension are obtained for an optical coherence Doppler tomograph (OCDT) by the Monte-Carlo method. The optical properties of particles mimic the properties of non-aggregating erythrocytes. The flows are considered in a stationary scattering medium with optical properties close to those of the skin. It is shown that, as the flow position depth increases, the flow velocity determined from the OCDT signal becomes smaller than the specified velocity and the reconstructed profile extends in the direction of the distant boundary, which is accompanied by the shift of its maximum. In the case of two flows, an increase in the velocity of the near-surface flow leads to the overestimated values of velocity of the reconstructed profile of the second flow. Numerical simulations were performed by using a multiprocessor parallel-architecture computer.

  16. Development of a low profile acoustical door for use on racks and cabinets for the information technology industry

    NASA Astrophysics Data System (ADS)

    O'Connell, Michael D.; Anderl, William James

    2005-09-01

    This paper presents the design of 19 inch rack acoustical doors balancing acoustical attenuation, airflow impedance and distribution in a short depth by combining air foil technology with acoustic baffle design. Design optimization was done utilizing fluid flow analytical modeling and verified with a air flow bench and an acoustical rack door test fixture. Higher heat loads in rack mounted computer equipment drive higher cooling requirements. In order to provide air cooling solutions, higher volumetric air flow is required resulting in higher acoustical noise levels. These noise levels can result in noise levels that are unacceptable to the customer. Acoustical doors lower noise levels but are prone to high flow impedance, uneven flow distribution and large physical depth. High impedances require higher air moving device speeds to offset the lost volumetric air flow. This decreases the effective acoustical attenuation. Various rack modules have different inlet and outlet air flow locations making the distribution of the air from the door (front) or into the door(rear) important. Solutions to these problems usually require large depths in order to provide blockage of line of site and gradual air flow lines to keep impedance low and provide even distribution of the air.

  17. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  18. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-11-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell’s law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  19. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  20. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—Technical manual for version 2.8

    USGS Publications Warehouse

    Mueller, David S.

    2016-06-21

    The software program, QRev applies common and consistent computational algorithms combined with automated filtering and quality assessment of the data to improve the quality and efficiency of streamflow measurements and helps ensure that U.S. Geological Survey streamflow measurements are consistent, accurate, and independent of the manufacturer of the instrument used to make the measurement. Software from different manufacturers uses different algorithms for various aspects of the data processing and discharge computation. The algorithms used by QRev to filter data, interpolate data, and compute discharge are documented and compared to the algorithms used in the manufacturers’ software. QRev applies consistent algorithms and creates a data structure that is independent of the data source. QRev saves an extensible markup language (XML) file that can be imported into databases or electronic field notes software. This report is the technical manual for version 2.8 of QRev.

  1. Compare at Sea Position Using MINI-RANGER, LORAN C (INTERNAV) in the Context of Measuring Current Velocity with a Shipboard ADCP (Acoustic Doppler Current Profiler)

    DTIC Science & Technology

    1989-12-01

    Moschovos LT, Hellenic Navy B.S., Hellenic Naval Academy 1979 Submitted in partial fulfillment of the requirements for the degrees of MASTER OF SCIENCE...2.9(0.9) 7.9(1.8) 2 - 1 1.5(0.5) 4.5(1.2) 4.2(1.6) 10.2(2.1) After using the FISHER -BEHERENS test [Hamilton, 1964] to compare AU from MINI RANGER...1.8) 9.1(3.1) 6.3(0.7) 9.6(l.4) 2 - 3 2.6(0.4) 3.2(0.9) 6.3(1.6) 3.7(1.0) 5.9(0.4) 6.7(0.6) From Table 14, after using the FISHER -BEHERENS test to

  2. Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes

    NASA Astrophysics Data System (ADS)

    Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.

    2015-11-01

    We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.

  3. Initial daytime and nighttime SOFDI observations of thermospheric winds from Fabry-Perot Doppler shift measurements of the 630-nm OI line-shape profile

    NASA Astrophysics Data System (ADS)

    Gerrard, A. J.; Meriwether, J. W.

    2011-09-01

    In this paper we present both night and day thermospheric wind observations made with the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI), a novel triple-etalon Fabry-Perot interferometer (FPI) designed to make 24-h measurements of thermospheric winds from OI 630-nm emission. These results were obtained from the northeastern United States and from under the magnetic equator at Huancayo, Peru and demonstrate the current instrument capability for measurements of Doppler shifts for either night or day. We found the uncertainties in the measurements agree with expected values based upon forward modeling calculations; nighttime wind components having an uncertainty of ~20-m s-1 at 30-min resolution and daytime wind components having an uncertainty of ~70-m s-1 at 20-min resolution. The nighttime uncertainties are typically larger than those seen with traditional single-etalon FPIs, which occur at the cost of being able to achieve daytime measurements. The thermospheric wind measurements from Huancayo replicate recently reported CHAMP zonal winds and are in disagreement with current empirical wind climatologies. In addition, we discuss the incorporation of how multiple point heads in the SOFDI instrument will allow for unique studies of gravity wave activity in future measurements.

  4. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  5. Profile measurements and data from the 2011 Optics, Acoustics, and Stress In Situ (OASIS) project at the Martha's Vineyard Coastal Observatory

    USGS Publications Warehouse

    Sherwood, Christopher R.; Dickhudt, Patrick J.; Martini, Marinna A.; Montgomery, Ellyn T.; Boss, Emmanuel S.

    2012-01-01

    This report documents data collected by the U.S. Geological Survey (USGS) for the Coastal Model Applications and Field Measurements project under the auspices of the U.S. Navy Office of Naval Research Optics, Acoustics, and Stress In Situ (OASIS) Project. The objective of the measurements was to relate optical and acoustic properties of suspended particles to changes in particle size, concentration, and vertical distribution in the bottom boundary layer near the seafloor caused by wave- and current-induced stresses. This information on the physics of particle resuspension and aggregation and light penetration and water clarity will help improve models of sediment transport, benthic primary productivity, and underwater visibility. There is well-established technology for acoustic profiling, but optical profiles are more difficult to obtain because of the rapid attenuation of light in water. A specially modified tripod with a moving arm was designed to solve this problem by moving instruments vertically in the bottom boundary layer, between the bottom and about 2 meters above the seafloor. The profiling arm was designed, built, and tested during spring and summer 2011 by a team of USGS scientists, engineers, and technicians. To accommodate power requirements and the large data files recorded by some of the optical instruments, the tripod was connected via underwater cable to the Martha's Vineyard Coastal Observatory, operated by the Woods Hole Oceanographic Institution (WHOI). This afforded real-time Internet communication with the embedded computers aboard the tripod. Instruments were mounted on the profiling arm, and additional instruments were mounted elsewhere on the tripod and nearby on the seafloor. The tripod and a small mooring for a profiling current meter were deployed on September 17, 2011, at the Martha's Vineyard Coastal Observatory 12-meter-deep underwater node about 2 kilometers south of Martha's Vineyard, Massachusetts. Divers assisted in the

  6. Christian Doppler and the Doppler effect

    NASA Astrophysics Data System (ADS)

    Toman, Kurt

    1984-04-01

    A summary is given of Doppler's life and career. He was born 180 years ago on November 29, 1803, in Salzburg, Austria. He died on March 17, 1853 in Venice. The effect bearing his name was first announced in a presentation before the Royal Bohemian Society of the Sciences in Prague on May 25, 1842. Doppler considered his work a generalization of the aberration theorem as discovered by Bradley. With it came the inference that the perception of physical phenomena can change with the state of motion of the observer. Acceptance of the principle was not without controversy. In 1852, the mathematician Petzval claimed that no useful scientific deductions can be made from Doppler's elementary equations. In 1860, Ernst Mach resolved the misunderstanding that clouded this controversy. The Doppler effect is alive and well. Its role in radio science and related disciplines is enumerated.

  7. Measuring the Kuroshio Current with ocean acoustic tomography.

    PubMed

    Taniguchi, Naokazu; Huang, Chen-Fen; Kaneko, Arata; Liu, Cho-Teng; Howe, Bruce M; Wang, Yu-Huai; Yang, Yih; Lin, Ju; Zhu, Xiao-Hua; Gohda, Noriaki

    2013-10-01

    Ocean current profiling using ocean acoustic tomography (OAT) was conducted in the Kuroshio Current southeast of Taiwan from August 20 to September 15, 2009. Sound pulses were transmitted reciprocally between two acoustic stations placed near the underwater sound channel axis and separated by 48 km. Based on the result of ray simulation, the received signals are divided into multiple ray groups because it is difficult to resolve the ray arrivals for individual rays. The average differential travel times from these ray groups are used to reconstruct the vertical profiles of currents. The currents are estimated with respect to the deepest water layer via two methods: An explicit solution and an inversion with regularization. The strong currents were confined to the upper 200 m and rapidly weakened toward 500 m in depth. Both methods give similar results and are consistent with shipboard acoustic Doppler current profiler results in the upper 150 m. The observed temporal variation demonstrates a similar trend to the prediction from the Hybrid Coordinate Ocean Model.

  8. Outdoor Synthetic Aperture Acoustic Ground Target Measurements

    DTIC Science & Technology

    2010-04-19

    1341 (2003). [11] C. A. Dimarzio, T. Shi, F. J. Blonigen et al., “ Laser -Induced Acoustic Landmine Detection,” The Journal Of The Acoustical Society...High Frequency A/S Coupling For Ap Buried Landmine Detection Using Laser Doppler Vibrometers,” Proc. SPIE 5415(1), 35-41 (2004). [16] Bishop, S... Dolphin Echolocation Clicks For Target Discrimination,” The Journal Of The Acoustical Society Of America 124(1), 657-666 (2008). [20] Y. Nakamura

  9. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  10. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  11. A simple method for retrieving significant wave height from Dopplerized X-band radar

    NASA Astrophysics Data System (ADS)

    Carrasco, Ruben; Streßer, Michael; Horstmann, Jochen

    2017-02-01

    Retrieving spectral wave parameters such as the peak wave direction and wave period from marine radar backscatter intensity is very well developed. However, the retrieval of significant wave height is difficult because the radar image spectrum (a backscatter intensity variance spectrum) has to be transferred to a wave spectrum (a surface elevation variance spectrum) using a modulation transfer function (MTF) which requires extensive calibration for each individual radar setup. In contrast to the backscatter intensity, the Doppler velocity measured by a coherent radar is induced by the radial velocity (or line-of-sight velocity) of the surface scattering and its periodic component is mainly the contribution of surface waves. Therefore, the variance of the Doppler velocity can be utilized to retrieve the significant wave height. Analyzing approximately 100 days of Doppler velocity measurements of a coherent-on-receive radar operating at X-band with vertical polarization in transmit and receive, a simple relation was derived and validated to retrieve significant wave heights. Comparison to wave measurements of a wave rider buoy as well as an acoustic wave and current profiler resulted in a root mean square error of 0.24 m with a bias of 0.08 m. Furthermore, the different sources of error are discussed and investigated.

  12. Acoustic profiling in a complexly social species, the American crow: caws encode information on caller sex, identity, and behavioural context

    PubMed Central

    Mates, Exu Anton; Tarter, Robin R.; Ha, James C.; Clark, Anne B.; McGowan, Kevin J.

    2014-01-01

    Previous research on inter-individual variation in the calls of corvids has largely been restricted to single call types, such as alarm or contact calls, and has rarely considered the effects of age on call structure. This study explores structural variation in a contextually diverse set of “caw” calls of the American crow (Corvus brachyrhynchos), including alarm, foraging recruitment and territorial calls, and searches for structural features that may be associated with behavioural context and caller sex, age, and identity. Automated pitch detection algorithms are used to generate 23 pitch-related and spectral parameters for a collection of caws from 18 wild, marked crows. Using principal component analysis and mixed models, we identify independent axes of acoustic variation associated with behavioural context and with caller sex, respectively. We also have moderate success predicting caller sex and identity from call structure. However, we do not find significant acoustic variation with respect to caller age. PMID:25419053

  13. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  14. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  15. Inline Ultrasonic Rheometry by Pulsed Doppler

    SciTech Connect

    Pfund, David M.; Greenwood, Margaret S.; Bamberger, Judith A.; Pappas, Richard A.

    2006-12-22

    This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).

  16. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1. [jet engine noise radiation through coannular exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots.

  17. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize…

  18. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  19. ON THE DOPPLER VELOCITY OF EMISSION LINE PROFILES FORMED IN THE 'CORONAL CONTRAFLOW' THAT IS THE CHROMOSPHERE-CORONA MASS CYCLE

    SciTech Connect

    McIntosh, Scott W.; Tian Hui; Sechler, Marybeth; De Pontieu, Bart

    2012-04-10

    This analysis begins to explore the complex chromosphere-corona mass cycle using a blend of imaging and spectroscopic diagnostics. Single Gaussian fits (SGFs) to hot emission line profiles (formed above 1 MK) at the base of coronal loop structures indicate material blueshifts of 5-10 km s{sup -1}, while cool emission line profiles (formed below 1 MK) yield redshifts of a similar magnitude-indicating, to zeroth order, that a temperature-dependent bifurcating flow exists on coronal structures. Image sequences of the same region reveal weakly emitting upward propagating disturbances in both hot and cool emission with apparent speeds of 50-150 km s{sup -1}. Spectroscopic observations indicate that these propagating disturbances produce a weak emission component in the blue wing at commensurate speed, but that they contribute only a few percent to the (ensemble) emission line profile in a single spatio-temporal resolution element. Subsequent analysis of imaging data shows material 'draining' slowly ({approx}10 km s{sup -1}) out of the corona, but only in the cooler passbands. We interpret the draining as the return flow of coronal material at the end of the complex chromosphere-corona mass cycle. Further, we suggest that the efficient radiative cooling of the draining material produces a significant contribution to the red wing of cool emission lines that is ultimately responsible for their systematic redshift as derived from an SGF when compared to those formed in hotter (conductively dominated) domains. The presence of counterstreaming flows complicates the line profiles, their interpretation, and asymmetry diagnoses, but allows a different physical picture of the lower corona to develop.

  20. First continuous time series of tropical, mid-latitudinal and polar middle-atmospheric wind profile measurements with a ground-based microwave Doppler-spectro-radiometer

    NASA Astrophysics Data System (ADS)

    Rüfenacht, Rolf; Kämpfer, Niklaus; Murk, Axel; Eriksson, Patrick; Buehler, Stefan A.; Kivi, Rigel; Keckhut, Philippe; Hauchecorne, Alain; Duflot, Valentin

    2014-05-01

    Wind is one of the key parameters for the characterisation of the atmosphere and the understanding of its dynamics. Despite this, no continuously operating instrument for wind measurements in the upper stratosphere and lower mesosphere existed so far. Aiming to contribute to the closing of this data gap by exploiting the potential of microwave radiometry the Institute of Applied Physics of the University of Bern built a ground-based 142 GHz Doppler-spectro-radiometer with the acronym WIRA (WInd RAdiometer). WIRA is specifically designed for the measurement of middle-atmospheric horizontal wind and is sensitive to the altitude range between 35 and 70 km. The architecture of the radiometer is fairly compact what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. The operational use of WIRA started in September 2010. Since a technical upgrade in autumn 2012 which drastically increased the signal to noise ratio of the instrument, the meridional component is permanently measured along with the zonal wind to get a full picture of the horizontal wind field. During the last year the wind retrieval algorithm has been entirely rebuilt and tested. It is now based on the optimal estimation technique (OEM) and uses an upgraded version of the ARTS/QPACK radiative transfer and inversion model. Time series of middle-atmospheric wind from measurement campaigns of 7 to 11 months duration at mid and high latitude sites (Bern, 46°57' N, 7°26' E; Sodankylä, 67°22' N, 26°38' E; Observatoire de Haute-Provence, 43°56' N, 5°43' E) have been obtained. In September 2013 WIRA was moved to Observatoire du Maïdo (21°04' S, 55°23' E) to study the dynamics of the tropical middle atmosphere. The measurements have been compared to the data from the ECMWF model. Generally good agreement has been found in the stratosphere, however systematic discrepancies exist in the mesosphere. At the

  1. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind

  2. Sediment distribution and dynamics inferred by integrated electromagnetic, optical and acoustic benthic profiling in the western Bay of Plenty (New Zealand)

    NASA Astrophysics Data System (ADS)

    Kulgemeyer, T.; von Dobeneck, T. F.; Müller, H.; Bryan, K. R.; de Lange, W. P.; Battershill, C.

    2015-12-01

    In October 2011, New Zealand experienced a marine pollution disaster after the MV RENA ran aground in the western Bay of Plenty. To estimate the transport and burial potential of contaminants, local sediment distribution and dynamics had to be assessed quickly. Our study made use of the benthic profiler NERIDIS III of the University of Bremen. 33 cross-shore profiles, each ca. 8 km long, have been surveyed. The main instrument is a controlled-source electromagnetic (CSEM) sensor, which is measuring the electric conductivity and magnetic susceptibility of the seafloor. High-resolution, overlapping seafloor photos have been taken by a bow-mounted digital camera. An on-board CTD with turbidity sensor complete the sensor arrangement. From the EM data, porosity and magnetite concentrations have been calculated and interpolated. The resulting maps show specific zones of magnetite enrichment, higher concentrations are correlated to low porosity. Photos have been used along with acoustic backscatter measured by a sidescan sonar to sketch out a preliminary map of sediment facies. Based on this, sides for grab sampling were selected. By taking grain size and mineralogy into account, a detailed map of the regional lithofacies could be created. Local sediment dynamics have been inferred by the observation of bedforms, the turbidity of bottom water and lithofacies. The results show two anti-parallel longshore transport paths dependent on differing weather conditions and water depths. The longshore magnetite distribution indicates that the heavy mineral fraction is mainly affected by storm-induced sediment transport. Our study demonstrates how integrated benthic profiling adds to the interpretability of data obtained by established methods. By bridging the gap between area-covering, but indirect data from hydroacoustics and precise, but punctual data from samples, benthic profiling enables fast and detailed assessment of sediment distribution and dynamics on a large scale.

  3. Measurements of Reynolds stress profiles in unstratified tidal flow

    USGS Publications Warehouse

    Stacey, M.T.; Monismith, Stephen G.; Burau, J.R.

    1999-01-01

    In this paper we present a method for measuring profiles of turbulence quantities using a broadband acoustic doppler current profiler (ADCP). The method follows previous work on the continental shelf and extends the analysis to develop estimates of the errors associated with the estimation methods. ADCP data was collected in an unstratified channel and the results of the analysis are compared to theory. This comparison shows that the method provides an estimate of the Reynolds stresses, which is unbiased by Doppler noise, and an estimate of the turbulent kinetic energy (TKE) which is biased by an amount proportional to the Doppler noise. The noise in each of these quantities as well as the bias in the TKE match well with the theoretical values produced by the error analysis. The quantification of profiles of Reynolds stresses simultaneous with the measurement of mean velocity profiles allows for extensive analysis of the turbulence of the flow. In this paper, we examine the relation between the turbulence and the mean flow through the calculation of u*, the friction velocity, and Cd, the coefficient of drag. Finally, we calculate quantities of particular interest in turbulence modeling and analysis, the characteristic lengthscales, including a lengthscale which represents the stream-wise scale of the eddies which dominate the Reynolds stresses. Copyright 1999 by the American Geophysical Union.

  4. Velocity precision measurements using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Narjes, L.

    1985-07-01

    A Laser Doppler Anemometer (LDA) was calibrated to determine its applicability to high pressure measurements (up to 10 bars) for industrial purposes. The measurement procedure with LDA and the experimental computerized layouts are presented. The calibration procedure is based on absolute accuracy of Doppler frequency and calibration of interference strip intervals. A four-quadrant detector allows comparison of the interference strip distance measurements and computer profiles. Further development of LDA is recommended to increase accuracy (0.1% inaccuracy) and to apply the method industrially.

  5. Acoustic Neuroma

    MedlinePlus

    ... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...

  6. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  7. DOT Tomography of the Solar Atmosphere VII. Chromospheric Response to Acoustic Events

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.; van Veelen, B.; Sütterlin, P.

    2008-09-01

    We use synchronous movies from the Dutch Open Telescope sampling the G band, Ca ii H, and Hα with five-wavelength profile sampling to study the response of the chromosphere to acoustic events in the underlying photosphere. We first compare the visibility of the chromosphere in Ca ii H and Hα, demonstrate that studying the chromosphere requires Hα data, and summarize recent developments in understanding why this is so. We construct divergence and vorticity maps of the photospheric flow field from the G-band images and locate specific events through the appearance of bright Ca ii H grains. The reaction of the Hα chromosphere is diagnosed in terms of brightness and Doppler shift. We show and discuss three particular cases in detail: a regular acoustic grain marking shock excitation by granular dynamics, a persistent flasher, which probably marks magnetic-field concentration, and an exploding granule. All three appear to buffet overlying fibrils, most clearly in Dopplergrams. Although our diagnostic displays to dissect these phenomena are unprecedentedly comprehensive, adding even more information (photospheric Doppler tomography and magnetograms along with chromospheric imaging and Doppler mapping in the ultraviolet) is warranted.

  8. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  9. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  10. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  11. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  12. Pulse subtraction Doppler

    NASA Astrophysics Data System (ADS)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  13. Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego

    2015-01-01

    The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.

  14. Estimating sub-surface dispersed oil concentration using acoustic backscatter response.

    PubMed

    Fuller, Christopher B; Bonner, James S; Islam, Mohammad S; Page, Cheryl; Ojo, Temitope; Kirkey, William

    2013-05-15

    The recent Deepwater Horizon disaster resulted in a dispersed oil plume at an approximate depth of 1000 m. Several methods were used to characterize this plume with respect to concentration and spatial extent including surface supported sampling and autonomous underwater vehicles with in situ instrument payloads. Additionally, echo sounders were used to track the plume location, demonstrating the potential for remote detection using acoustic backscatter (ABS). This study evaluated use of an Acoustic Doppler Current Profiler (ADCP) to quantitatively detect oil-droplet suspensions from the ABS response in a controlled laboratory setting. Results from this study showed log-linear ABS responses to oil-droplet volume concentration. However, the inability to reproduce ABS response factors suggests the difficultly in developing meaningful calibration factors for quantitative field analysis. Evaluation of theoretical ABS intensity derived from the particle size distribution provided insight regarding method sensitivity in the presence of interfering ambient particles.

  15. Estimation of suspended sediment concentration in rivers using acoustic methods.

    PubMed

    Elçi, Sebnem; Aydin, Ramazan; Work, Paul A

    2009-12-01

    Acoustic Doppler current meters (ADV, ADCP, and ADP) are widely used in water systems to measure flow velocities and velocity profiles. Although these meters are designed for flow velocity measurements, they can also provide information defining the quantity of particulate matter in the water, after appropriate calibration. When an acoustic instrument is calibrated for a water system, no additional sensor is needed to measure suspended sediment concentration (SSC). This provides the simultaneous measurements of velocity and concentration required for most sediment transport studies. The performance of acoustic Doppler current meters for measuring SSC was investigated in different studies where signal-to-noise ratio (SNR) and suspended sediment concentration were related using different formulations. However, these studies were each limited to a single study site where neither the effect of particle size nor the effect of temperature was investigated. In this study, different parameters that affect the performance of an ADV for the prediction of SSC are investigated. In order to investigate the reliability of an ADV for SSC measurements in different environments, flow and SSC measurements were made in different streams located in the Aegean region of Turkey having different soil types. Soil samples were collected from all measuring stations and particle size analysis was conducted by mechanical means. Multivariate analysis was utilized to investigate the effect of soil type and water temperature on the measurements. Statistical analysis indicates that SNR readings ob tained from the ADV are affected by water temperature and particle size distribution of the soil, as expected, and a prediction model is presented relating SNR readings to SSC mea surements where both water temperature and sediment characteristics type are incorporated into the model. The coefficients of the suggested model were obtained using the multivariate anal ysis. Effect of high turbidity

  16. Field tests of acoustic telemetry for a portable coastal observatory

    USGS Publications Warehouse

    Martini, M.; Butman, B.; Ware, J.; Frye, D.

    2006-01-01

    Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.

  17. Fluvial suspended sediment characteristics by high-resolution, surrogate metrics of turbidity, laser-diffraction, acoustic backscatter, and acoustic attenuation

    NASA Astrophysics Data System (ADS)

    Landers, Mark Newton

    Sedimentation is a primary and growing environmental, engineering, and agricultural issue around the world. However, collection of the data needed to develop solutions to sedimentation issues has declined by about three-fourths since 1983. Suspended-sediment surrogates have the potential to obtain sediment data using methods that are more accurate, of higher spatial and temporal resolution, and with less manually intensive, costly, and hazardous methods. The improved quality of sediment data from high-resolution surrogates may inform improved understanding and solutions to sedimentation problems. The field experiments for this research include physical samples of suspended sediment collected concurrently with surrogate metrics from instruments including 1.2, 1.5, and 3.0 megahertz frequency acoustic doppler current profilers, a nephelometric turbidity sensor, and a laser-diffraction particle size analyzer. This comprehensive data set was collected over five storms in 2009 and 2010 at Yellow River near Atlanta, Georgia. Fluvial suspended sediment characteristics in this study can be determined by high-resolution surrogate parameters of turbidity, laser-diffraction and acoustics with model errors 33% to 49% lower than traditional methods using streamflow alone. Hysteresis in sediment-turbidity relations for single storm events was observed and quantitatively related to PSD changes of less than 10 microns in the fine silt to clay size range. Suspended sediment particle size detection (PSD) is significantly correlated with ratios of measured acoustic attenuation at different frequencies; however the data do not fit the theoretical relations. Using both relative acoustic backscatter (RB) and acoustic attenuation as explanatory variables results in a significantly improved model of suspended sediment compared with traditional sonar equations using only RB. High resolution PSD data from laser diffraction provide uniquely valuable information; however the size detection

  18. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  19. Doppler ultrasound compatible plastic material for use in rigid flow models.

    PubMed

    Wong, Emily Y; Thorne, Meghan L; Nikolov, Hristo N; Poepping, Tamie L; Holdsworth, David W

    2008-11-01

    A technique for the rapid but accurate fabrication of multiple flow phantoms with variations in vascular geometry would be desirable in the investigation of carotid atherosclerosis. This study demonstrates the feasibility and efficacy of implementing numerically controlled direct-machining of vascular geometries into Doppler ultrasound (DUS)-compatible plastic for the easy fabrication of DUS flow phantoms. Candidate plastics were tested for longitudinal speed of sound (SoS) and acoustic attenuation at the diagnostic frequency of 5 MHz. Teflon was found to have the most appropriate SoS (1376 +/- 40 m s(-1) compared with 1540 m s(-1) in soft tissue) and thus was selected to construct a carotid bifurcation flow model with moderate eccentric stenosis. The vessel geometry was machined directly into Teflon using a numerically controlled milling technique. Geometric accuracy of the phantom lumen was verified using nondestructive micro-computed tomography. Although Teflon displayed a higher attenuation coefficient than other tested materials, Doppler data acquired in the Teflon flow model indicated that sufficient signal power was delivered throughout the depth of the vessel and provided comparable velocity profiles to that obtained in the tissue-mimicking phantom. Our results indicate that Teflon provides the best combination of machinability and DUS compatibility, making it an appropriate choice for the fabrication of rigid DUS flow models using a direct-machining method.

  20. Doppler ion program description

    SciTech Connect

    Henline, P.

    1980-12-01

    The Doppler spectrometer is a conventional Czerny-Turner grating spectrometer with a 1024 channel multiple detector. Light is dispersed across the detector, and its output yields a spectrum covering approximately 200 A. The width of the spectral peak is directly proportional to the temperature of the emitting ions, and determination of the impurity ion temperature allows one to infer the plasma ion temperature. The Doppler ion software system developed at General Atomic uses a TRACOR Northern 1710-31 and an LSI-11/2. The exact configuration of Doublet III is different from TRACOR Northern systems at other facilities.

  1. Doppler Lidar in the Wind Forecast Improvement Projects

    NASA Astrophysics Data System (ADS)

    Pichugina, Yelena; Banta, Robert; Brewer, Alan; Choukulkar, Aditya; Marquis, Melinda; Olson, Joe; Hardesty, Mike

    2016-06-01

    This paper will provide an overview of some projects in support of Wind Energy development involving Doppler lidar measurement of wind flow profiles. The high temporal and vertical resolution of these profiles allows the uncertainty of Numerical Weather Prediction models to be evaluated in forecasting dynamic processes and wind flow phenomena in the layer of rotor-blade operation.

  2. The Doppler Pendulum Experiment

    ERIC Educational Resources Information Center

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  3. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles, volume 2. [supersonic cruise aircraft research wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    Data from the acoustic tests of the convergent reference nozzle and the 0.75 area ratio coannular nozzle are presented in tables. Data processing routines used to scale the acoustic data and to correct the data for atmospheric attenuation are included.

  4. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  5. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.

    PubMed

    Kathpalia, Aditi; Karabiyik, Yucel; Eik-Nes, Sturla; Tegnander, Eva; Ekroll, Ingvild; Kiss, Gabriel; Torp, Hans

    2016-07-07

    Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectrum estimate. The method proposed in this work for maximum velocity point detection has been developed by modifying an existing method - Signal Noise Slope Intersection (SNSI), incorporating in it steps from an altered version of another method called Geometric Method (GM). Adaptive noise estimation from the spectrogram ensures that a smooth spectral envelope is obtained post detection of these maximum velocity points. The method has been tested on simulated Doppler signal with scatterers possessing a parabolic flow velocity profile constant in time, steady and pulsatile string phantom recordings as well as in vivo recordings from uterine, umbilical, carotid and subclavian arteries. Results from simulation experiments indicate a bias of less than 2.5% in maximum velocities when estimated for a range of peak velocities, Doppler angles and SNR levels. Standard deviation in the envelope is low - less than 2% in case of experiments done by varying the peak velocity and Doppler angle for steady phantom and simulated flow; and also less than 2% in case of experiments done by varying SNR but keeping constant flow conditions for in vivo and simulated flow. Low variability in the envelope makes the prospect of using the envelope for automated blood flow measurements possible and is illustrated for the case of Pulsatility Index estimation in uterine and umbilical arteries.

  6. Acoustic Seaglider

    DTIC Science & Technology

    2008-03-07

    a national naval responsibility. Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial...problem and acoustic navigation and communications within the context of distributed autonomous persistent undersea surveillance sensor networks...Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial coherence and the description of ambient

  7. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  8. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  9. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue.

  10. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles

    USGS Publications Warehouse

    Lee, T.-G.; Hein, J.R.; Lee, Kenneth; Moon, J.-W.; Ko, Y.-T.

    2005-01-01

    A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts. ?? 2005 Elsevier Ltd. All rights reserved.

  11. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  12. Suspended particulate matter estimates using optical and acoustic sensors: application in Nestos River plume (Thracian Sea, North Aegean Sea).

    PubMed

    Anastasiou, Sotiria; Sylaios, Georgios K; Tsihrintzis, Vassilios A

    2015-06-01

    The present study investigates the use of combined methods of optical and acoustic sensors, in collaboration with direct in situ measurements, for the calibration and validation of a model transforming acoustic backscatter intensity series into suspended particulate matter (SPM) concentration datasets. The model follows previously elaborated techniques, placing particular attention to the parameterization of the acoustic absorption index as a function of water physical properties. Results were obtained from the annual deployment (during 2007-2008) of an upward-facing acoustic Doppler current profiler (ADCP) (307 kHz), equipped with a Wave Array, and an optical backscatter sensor (OBS), at the bottom of Thassos Passage near Nestos River plume (Thracian Sea, Northern Greece). The OBS was calibrated through linear regression, using 2007 and 2012 field sampling data, exhibiting an error of 13-14 % due to chlorophyll presence. The ADCP signal was calibrated through simultaneous measurements of backscatter intensity and turbidity profiles. Harmonic analysis on the model-produced SPM concentrations explained the tidal influence on their variability, especially during the summer. Empirical orthogonal functions analysis revealed the impact of waves and wave-induced currents on SPM variability. Finally, Nestos River sediment load was found uncorrelated to the SPM change in Thassos Passage, due to the dispersal and sediment deposition near the river mouth.

  13. Acoustic and optical methods to infer water transparency at Time Series Station Spiekeroog, Wadden Sea

    NASA Astrophysics Data System (ADS)

    Schulz, Anne-Christin; Badewien, Thomas H.; Garaba, Shungudzemwoyo P.; Zielinski, Oliver

    2016-11-01

    Water transparency is a primary indicator of optical water quality that is driven by suspended particulate and dissolved material. A data set from the operational Time Series Station Spiekeroog located at a tidal inlet of the Wadden Sea was used to perform (i) an inter-comparison of observations related to water transparency, (ii) correlation tests among these measured parameters, and (iii) to explore the utility of both acoustic and optical tools in monitoring water transparency. An Acoustic Doppler Current Profiler was used to derive the backscatter signal in the water column. Optical observations were collected using above-water hyperspectral radiometers and a submerged turbidity metre. Bio-fouling on the turbidity sensors optical windows resulted in measurement drift and abnormal values during quality control steps. We observed significant correlations between turbidity collected by the submerged metre and that derived from above-water radiometer observations. Turbidity from these sensors was also associated with the backscatter signal derived from the acoustic measurements. These findings suggest that both optical and acoustic measurements can be reasonable proxies of water transparency with the potential to mitigate gaps and increase data quality in long-time observation of marine environments.

  14. Multi-frequency acoustic derivation of particle size using 'off-the-shelf" ADCPs.

    NASA Astrophysics Data System (ADS)

    Haught, D. R.; Wright, S. A.; Venditti, J. G.; Church, M. A.

    2015-12-01

    Suspended sediment particle size in rivers is of great interest due to its influence on riverine and coastal morphology, socio-economic viability, and ecological health and restoration. Prediction of suspended sediment transport from hydraulics remains a stubbornly difficult problem, particularly for the washload component, which is controlled by sediment supply from the drainage basin. This has led to a number of methods for continuously monitoring suspended sediment concentration and mean particle size, the most popular currently being hydroacoustic methods. Here, we explore the possibility of using theoretical inversion of the sonar equation to derive an estimate of mean particle size and standard deviation of the grain size distribution (GSD) using three 'off-the-shelf' acoustic Doppler current profiles (ADCP) with frequencies of 300, 600 and 1200 kHz. The instruments were deployed in the sand-bedded reach of the Fraser River, British Columbia. We use bottle samples collected in the acoustic beams to test acoustics signal inversion methods. Concentrations range from 15-300 mg/L and the suspended load at the site is ~25% sand, ~75 % silt/clay. Measured mean particle radius from samples ranged from 10-40 microns with relative standard deviations ranging from 0.75 to 2.5. Initial results indicate the acoustically derived mean particle radius compares well with measured particle radius, using a theoretical inversion method adapted to the Fraser River sediment.

  15. Rubidium atomic line filtered (RALF) Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario E.; Molek, Christopher D.; Vesely, Annamaria L.

    2017-01-01

    We report recent improvements to our Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus [M.E. Fajardo, C.D. Molek, and A.L. Vesely, J. Appl. Phys. 118, 144901 (2015)]. RALF is a high-velocity and high-acceleration adaptation of the Doppler Global Velocimetry method for measuring multi-dimensional velocity vector flow fields, which was developed in the 1990s by aerodynamics researchers [H. Komine, U.S. Patent #4,919,536]. Laser velocimetry techniques in common use within the shock physics community (e.g. VISAR, Fabry-Pérot, PDV) decode the Doppler shift of light reflected from a moving surface via interference phenomena. In contrast, RALF employs a completely different physical principle: the frequency-dependent near-resonant optical transmission of a Rb/N2 gas cell, to encode the Doppler shift of reflected λ0 ≈ 780.24 nm light directly onto the transmitted light intensity. Thus, RALF is insensitive to minor changes to the optical pathlengths and transit times of the Doppler shifted light, which promises a number of practical advantages in imaging velocimetry applications. The single-point RALF proof-of-concept apparatus described here is fiber optic based, and our most recent modifications include the incorporation of a larger bandwidth detection system, and a second 780 nm laser for simultaneous upshifted-PDV (UPDV) measurements. We report results for the laser driven launch of a 10-μm-thick aluminum flyer which show good agreement between the RALF and UPDV velocity profiles, within the limitations of the admittedly poor signal:noise ratio (SNR) RALF data.

  16. Laser Doppler anemometry

    NASA Technical Reports Server (NTRS)

    Johnson, Dennis A.

    1988-01-01

    The material in this NASA TM is to appear as a chapter on Laser Doppler Anemometry (LDA) in the AGARDograph entitled, A Survey of Measurements and Measuring Techniques in Rapidly Distorted Compressible Turbulent Boundary Layers. The application of LDA (specifically, the dual-beam, burst-counter approach) to compressible flows is discussed. Subjects treated include signal processing, particle light scattering and tracking, data reduction and sampling bias, and three-dimensional measurements.

  17. Feasibility of Estimating Constituent Concentrations and Loads Based on Data Recorded by Acoustic Instrumentation

    USGS Publications Warehouse

    Lietz, A.C.

    2002-01-01

    The acoustic Doppler current profiler (ADCP) and acoustic Doppler velocity meter (ADVM) were used to estimate constituent concentrations and loads at a sampling site along the Hendry-Collier County boundary in southwestern Florida. The sampling site is strategically placed within a highly managed canal system that exhibits low and rapidly changing water conditions. With the ADCP and ADVM, flow can be gaged more accurately rather than by conventional field-data collection methods. An ADVM velocity rating relates measured velocity determined by the ADCP (dependent variable) with the ADVM velocity (independent variable) by means of regression analysis techniques. The coefficient of determination (R2) for this rating is 0.99 at the sampling site. Concentrations and loads of total phosphorus, total Kjeldahl nitrogen, and total nitrogen (dependent variables) were related to instantaneous discharge, acoustic backscatter, stage, or water temperature (independent variables) recorded at the time of sampling. Only positive discharges were used for this analysis. Discharges less than 100 cubic feet per second generally are considered inaccurate (probably as a result of acoustic ray bending and vertical temperature gradients in the water column). Of the concentration models, only total phosphorus was statistically significant at the 95-percent confidence level (p-value less than 0.05). Total phosphorus had an adjusted R2 of 0.93, indicating most of the variation in the concentration can be explained by the discharge. All of the load models for total phosphorus, total Kjeldahl nitrogen, and total nitrogen were statistically significant. Most of the variation in load can be explained by the discharge as reflected in the adjusted R2 for total phosphorus (0.98), total Kjeldahl nitrogen (0.99), and total nitrogen (0.99).

  18. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  19. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  20. Complete velocity distribution in river cross-sections measured by acoustic instruments

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.; ,

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  1. A combined use of acoustic and optical devices to investigate suspended sediment in rivers

    NASA Astrophysics Data System (ADS)

    Guerrero, Massimo; Rüther, Nils; Haun, Stefan; Baranya, Sandor

    2017-04-01

    The use of acoustic and optic devices has become more and more common for estimating suspended sediment loads in rivers. The echo intensity levels (EIL) recorded by means of an Acoustic Doppler Current Profiler (ADCP) have been applied in different methods, which provided relationships between scattering particles features derived from samples (i.e., concentration and grain size) and corresponding backscattering strength and sound attenuation. At the same time, the laser diffraction was applied by an in-stream sampler (LISST-SL) to measure suspended sediment concentration and the corresponding particle size distribution (PSD). These two techniques exhibited different limitations in terms of the measured range of concentration, sensitivity to a certain spectrum of particle sizes, and instruments deploy feasibility especially in large rivers, in a way that the use of sampled PSD by LISST-SL to validate ADCP methods may not be trivial. The aim of this study was to combine the vertical profiling of EIL by an ADCP with results from LISST-SL, eventually demonstrating the possibility of using moving ADCP measurements to detect different suspended matters along a Danube River section characterized by a small tributary junction. At the same time, this work elucidates optical to acoustic method deviations that hinders an actual validation of ADCP methods based on LISST-SL rather than with physical samplings.

  2. Analysis of Acoustic Wave and Current Data Offshore of Mytle Beach, South Carolina

    NASA Astrophysics Data System (ADS)

    Fall, K. A.; Wren, A.

    2008-12-01

    Two bottom boundary layer (BBL) instrument frames have been deployed on the shoreface and inner-shelf of Long Bay, South Carolina offshore of Myrtle Beach as part of a South Carolina Sea Grant funded project to measure sediment transport over two hardbottom habitats. The inshore instrument frame is located on an extensive hardbottom surface 850 meters offshore. The second instrumented frame is secured to a hardbottom surface on the inner-shelf at a distance of approximately 2.5 km offshore. The nearshore BBL observing system is composed of a downward-looking RDI/ Teledyne 1200 kHz Pulse-Coherent Acoustic Doppler Current Profiler, an upward-looking Nortek Acoustic Wave and Current Profiler (AWAC), and an Aquatec Acoustic Backscatter Sensor. As part of this larger study, the wave and current data from the AWAC have been analyzed. Long-term continuous time series data include wave height, wave period, directional wave spectra, and the magnitude and direction of currents in the water column. Within the data set are several wave events, including several frontal passages and Tropical Storm Hanna which hit the Myrtle Beach area in early September. Wave data have been correlated with meteorological data, and a comparison of shoreface wave characteristics during each type of event are presented.

  3. Clinical applications of doppler ultrasound

    SciTech Connect

    Taylor, K.J.W.; Burns, P.N.; Well, P.N.T.

    1987-01-01

    This book introduces a guide to the physical principles and instrumentation of duplex Doppler ultrasound and its applications in obstetrics, gynecology, neonatology, gastroentology, and evaluation of peripheral vascular disease. The book provides information needed to perform Doppler ultrasound examinations and interpret the results. An introduction to Doppler physics and instrumentation is followed by a thorough review of hemodynamics, which explains the principles underlying interpretation of Doppler signals. Of special note is the state-of-the-art coverage of new applications of Doppler in recognition of high-risk pregnancy, diagnosis of intrauterine growth retardation, investigation of neonatal blood flow, evaluation of first-trimester pregnancy, and diagnosis of gastrointestinal disease. The book also offers guidelines on the use of Doppler ultrasound in diagnosing carotid disease, deep venous thrombosis, and aorta/femoral disease.

  4. Holocene lake level changes at a lowland lake in northeastern Germany inferred from acoustic sub-bottom profiling and a transect of sediment cores

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Zawiska, Izabela; Słowiński, Michał; Brauer, Achim

    2015-04-01

    Holocene lake level changes were studied at Lake Fürstenseer See, a typical lake with complex basin morphology in northeastern German sandur area. An acoustic sub-bottom profile and a transect of four long sediment cores in the deepest lake sub-basin were analyzed. The cores were dated with AMS-14C and correlated with multiple proxies (sediment facies, μ-XRF, macrofossils, subfossil Cladocera, carbonate isotopes). At sites in 10 and 15 m water depth, shifts in the sand-mud boundary, i.e. sediment limit sensu Digerfeldt (1986), allowed quantitative estimates of the absolute amplitude of lake level changes. At sites in 20 and 23 m water depth, the negative correlation of Ca and Ti reflect lake level changes qualitatively. During high lake stands massive organic muds were deposited. Lower lake levels isolated the lake sub-basins which reduced the overall water circulation and lead to the deposition of Ti-poor carbonate muds. Furthermore, macrofossil and subfossil Cladocera analyses were used as proxies for the intense reworking at the slope and for the trophic state of the lake, respectively. Lake levels were up to 4 m higher, e.g. around 5000 cal. yrs BP and during the Medieval time period (see also Kaiser et al., 2014). During the early to mid-Holocene (between 9400 and 6400 cal. yrs BP), Lake Fürstenseer See fluctuated at an at least 3-m lower level. Further water level changes can be related to known climatic events and regional human impact. Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In Berglund, B. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology: 127-144. John Wiley & Sons, New York. Kaiser, K., Küster, M., Fülling, A., Theuerkauf, M., Dietze, E., Graventein, H., Koch, P.J., Bens, O., Brauer, A., 2014. Littoral landforms and pedosedimentary sequences indicating late Holocene lake-level changes in northern central Europe ' A case study from northeastern Germany. Geomorphology 216, 58-78.

  5. Laser Doppler diagnostics for orthodontia

    NASA Astrophysics Data System (ADS)

    Ryzhkova, Anastasia V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Kharish, Natalia A.

    2004-06-01

    The results of statistical analysis of Doppler spectra of intensity fluctuations of light, scattered from mucous membrane of oral cavity of healthy volunteers and patients, abused by the orthodontic diseases, are presented. Analysis of Doppler spectra, obtained from tooth pulp of patients, is carried out. New approach to monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of Doppler measuring system on formation of the output signal is studied.

  6. Evidence of Doppler-shifted Bragg scattering in the vertical plane by ocean surface waves.

    PubMed

    Lynch, Stephen D; D'Spain, Gerald L

    2012-03-01

    A set of narrowband tones (280, 370, 535, and 695 Hz) were transmitted by an acoustic source mounted on the ocean floor in 10 m deep water and received by a 64-element hydrophone line array lying on the ocean bottom 1.25 km away. Beamformer output in the vertical plane for the received acoustic tones shows evidence of Doppler-shifted Bragg scattering of the transmitted acoustic signals by the ocean surface waves. The received, scattered signals show dependence on the ocean surface wave frequencies and wavenumber vectors, as well as on acoustic frequencies and acoustic mode wavenumbers. Sidebands in the beamformer output are offset in frequency by amounts corresponding to ocean surface wave frequencies. Deviations in vertical arrival angle from specular reflection agree with those predicted by the Bragg condition through first-order perturbation theory using measured directional surface wave spectra and acoustic modes measured by the horizontal hydrophone array.

  7. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  8. Phase relation recovery for scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Alveringh, D.; Sanders, R. G. P.; Wiegerink, R. J.; Lötters, J. C.

    2017-02-01

    Laser Doppler vibrometers are able to measure the velocity of a single point compared to a reference point by analyzing the Doppler shift of the laser beams. In many commercially available laser Doppler vibrometers, the laser point can be scanned to obtain an out-of-plane velocity profile of a surface. It is essential that the phase information of the velocities between points is measured as well to be able to fully reproduce the velocity profile of the surface. If this cannot be done by triggering on the actuation signal, the proposed two stage method can be used. This method measures the surface in two stages: one scan with the reference beam at a fixed point and one scan with the reference beam on a moving point. The algorithm in this article calculates the phase and reconstructs the velocity of each point. This is experimentally verified on three different micro structures. The postprocessing algorithm is not intensive in computing power.

  9. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  10. Radar - ANL Wind Profiler with RASS, Goldendale - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  11. Radar - ESRL Wind Profiler with RASS, Wasco Airport - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  12. Radar - ANL Wind Profiler with RASS, Walla Walla - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  13. Radar - ESRL Wind Profiler with RASS, Troutdale - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  14. Radar - ANL Wind Profiler with RASS, Yakima - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  15. Radar - ESRL Wind Profiler with RASS, Condon - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  16. Radar - ESRL Wind Profiler with RASS, Prineville - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  17. Holograms for acoustics

    NASA Astrophysics Data System (ADS)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  18. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  19. Expendable Doppler Penetrometer: A Performance Evaluation

    DTIC Science & Technology

    1977-07-01

    most deep ocean soils are near normally consolidated cohesive deposits in Background which the short-term holding capacity will govern the design...accelerometer lowever, coring is time consuming, limited to fair for use with an ocean penetrometer. Delco Electronics weather, and, therefore, costly. Acoustic...profiling developed an expendable soil bearing meter for use tends to average the characteristics of large seafloor in the ocean that was similar to

  20. ANL Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  1. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  2. Applying Zeeman Doppler imaging to solar spectra

    NASA Astrophysics Data System (ADS)

    Hussain, G. A. J.; Saar, S. H.; Collier Cameron, A.

    2004-03-01

    A new generation of spectro-polarimeters with high throughput (e.g. CFHT/ESPADONS and LBT/PEPSI) is becoming available. This opportunity can be exploited using Zeeman Doppler imaging (ZDI), a technique that inverts time-series of Stokes V spectra to map stellar surface magnetic fields (Semel 1989). ZDI is assisted by ``Least squares deconvolution'' (LSD), which sums up the signal from 1000's of photospheric lines to produce a mean deconvolved profile with higher S:N (Donati & Collier Cameron 1997).

  3. Deep water current profile measurements for operational support and design statistics

    SciTech Connect

    Moore, A.N.; Stephens, R.V.

    1995-09-01

    This paper describes the use of Acoustic Doppler Current Profilers (ADCP) to provide real-time current profile information for drilling vessels operating in deep water and also discusses the quality control and post-processing of associated recorded data to provide design current statistics. Experience gained from many such deployments over the last seven years is drawn upon to make specific recommendations for instrument system configuration and data management procedures. Practicalities and limitations of the use of ADCPs from drilling vessels are also discussed. Consideration is given to mooring design details specific to this type of deployment. Practical measurement difficulties are examined such as data contamination due to direct acoustic signal reflection from sub-sea drilling components and also the case of operating in an environment of high background acoustic noise associated with vessel dynamic positioning. Quality control procedures are discussed, both for the current profile data displayed in real-time for operational support and for subsequent post-analysis of recorded data. The paper is concluded with examples of specific details of current profile structure which have been identified using rigmounted ADCPs but would not have been possible to observe using any other measurement technology.

  4. Validar: A Testbed for Advanced 2-Micron Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Jirong; Kavaya, Michael J.; Singh, Upendra N.

    2004-01-01

    High-energy 2-microns lasers have been incorporated in a breadboard coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Sample data is presented on wind profiling and CO2 concentration measurements.

  5. High-Energy 2-Micrometers Doppler Lidar for Wind Measurements

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Barnes, Bruce W.; Petros, Mulugeta; Yu, Jirong; Amzajerdian, Farzin; Kavaya, Michael J.; Singh, Upendra N.

    2006-01-01

    High-energy 2-micrometer wavelength lasers have been incorporated in a prototype coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Calibration tests and sample atmospheric data are presented on wind and aerosol profiling.

  6. Validar: a testbed for advanced 2-micron Doppler lidar

    NASA Astrophysics Data System (ADS)

    Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Jirong; Kavaya, Michael J.; Singh, Upendra N.

    2004-09-01

    High-energy 2-micron lasers have been incorporated in a breadboard coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Sample data is presented on wind profiling and CO2 concentration measurements.

  7. Low Cost Coherent Doppler Lidar Data Acquisition and Processing

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Koch, Grady J.

    2003-01-01

    The work described in this paper details the development of a low-cost, short-development time data acquisition and processing system for a coherent Doppler lidar. This was done using common laboratory equipment and a small software investment. This system provides near real-time wind profile measurements. Coding flexibility created a very useful test bed for new techniques.

  8. Doppler Beats or Interference Fringes?

    ERIC Educational Resources Information Center

    Kelly, Paul S.

    1979-01-01

    Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…

  9. The Cassini/Huygens Doppler Wind Experiment: Results from the Titan Descent

    NASA Astrophysics Data System (ADS)

    Bird, M. K.; Dutta-Roy, R.; Allison, M. D.; Asmar, S. W.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Tyler, G. L.

    2005-03-01

    The Huygens Doppler Wind Experiment (DWE) determined the height profile of the zonal winds during the Titan descent, commencing with parachute deployment at an altitude of ca. 150 km down to impact on the surface.

  10. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.

    PubMed

    Kathpalia, Aditi; Karabiyik, Yucel; Eik-Nes, Sturla H; Tegnander, Eva; Ekroll, Ingvild Kinn; Kiss, Gabriel; Torp, Hans

    2016-11-01

    Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectrum estimate. The method proposed in this paper for maximum velocity point detection has been developed by modifying an existing method-signal noise slope intersection, incorporating in it steps from an altered version of another method called geometric method. Adaptive noise estimation from the spectrogram ensures that a smooth spectral envelope is obtained postdetection of these maximum velocity points. The method has been tested on simulated Doppler signal with scatterers possessing a parabolic flow velocity profile constant in time, steady and pulsatile string phantom recordings, as well as in vivo recordings from uterine, umbilical, carotid, and subclavian arteries. The results from simulation experiments indicate a bias of less than 2.5% in maximum velocities when estimated for a range of peak velocities, Doppler angles, and SNR levels. Standard deviation in the envelope is low-less than 2% in the case of experiments done by varying the peak velocity and Doppler angle for steady phantom and simulated flow, and also less than 2% in the case of experiments done by varying SNR but keeping constant flow conditions for in vivo and simulated flow. Low variability in the envelope makes the prospect of using the envelope for automated blood flow measurements possible and is illustrated for the case of pulsatility index estimation in uterine and umbilical arteries.

  11. Acoustic and Perceptual Measurements of Prosody Production on the Profiling Elements of Prosodic Systems in Children by Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Diehl, Joshua John; Paul, Rhea

    2013-01-01

    Prosody production atypicalities are a feature of autism spectrum disorders (ASDs), but behavioral measures of performance have failed to provide detail on the properties of these deficits. We used acoustic measures of prosody to compare children with ASDs to age-matched groups with learning disabilities and typically developing peers. Overall,…

  12. Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord

    NASA Astrophysics Data System (ADS)

    Petrusevich, Vladislav; Dmitrenko, Igor A.; Kirillov, Sergey A.; Rysgaard, Søren; Falk-Petersen, Stig; Barber, David G.; Boone, Wieter; Ehn, Jens K.

    2016-07-01

    Six and a half month records from three ice-tethered Acoustic Doppler Current Profilers deployed in October 2013 in Young Sound fjord in Northeast Greenland are used to analyze the acoustic backscatter signal. The acoustic data suggest a systematic diel vertical migration (DVM) of scatters below the land-fast ice during polar night. The scatters were likely composed of zooplankton. The acoustic signal pattern typical to DVM persisted in Young Sound throughout the entire winter including the period of civil polar night. However, polynya-enhanced estuarine-like cell circulation that occurred during winter disrupted the DVM signal favoring zooplankton to occupy the near-surface water layer. This suggests that zooplankton avoided spending additional energy crossing the interface with a relatively strong velocity gradient comprised by fjord inflow in the intermediate layer and outflow in the subsurface layer. Instead, the zooplankton tended to remain in the upper 40 m layer where relatively warmer water temperatures associated with upward heat flux during enhanced estuarine-like circulation could be energetically favorable. Furthermore, our data show moonlight disruption of DVM in the subsurface layer and weaker intensity of vertical migration beneath snow covered land-fast ice during polar night. Finally, by using existing models for lunar illuminance and light transmission through sea ice and snow cover, we estimated under ice illuminance and compared it with known light sensitivity of Arctic zooplankton species.

  13. Changes in zooplankton habitat, behavior, and acoustic scattering characteristics across glider-resolved fronts in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Powell, Jesse R.; Ohman, Mark D.

    2015-05-01

    We report cross-frontal changes in the characteristics of plankton proxy variables measured by autonomous Spray ocean gliders operating within the Southern California Current System (SCCS). A comparison of conditions across the 154 positive frontal gradients (i.e., where density of the surface layer decreased in the offshore direction) identified from six years of continuous measurements showed that waters on the denser side of the fronts typically showed higher Chl-a fluorescence, shallower euphotic zones, and higher acoustic backscatter than waters on the less dense side. Transitions between these regions were relatively abrupt. For positive fronts the amplitude of Diel Vertical Migration (DVM), inferred from a 3-beam 750 kHz acoustic Doppler profiler, increased offshore of fronts and covaried with optical transparency of the water column. Average interbeam variability in acoustic backscatter also changed across many positive fronts within 3 depth strata (0-150 m, 150-400 m, and 400-500 m), revealing a front-related change in the acoustic scattering characteristics of the assemblages. The extent of vertical stratification of distinct scattering assemblages was also more pronounced offshore of positive fronts. Depth-stratified zooplankton samples collected by Mocness nets corroborated the autonomous measurements, showing copepod-dominated assemblages and decreased zooplankton body sizes offshore and euphausiid-dominated assemblages with larger median body sizes inshore of major frontal features.

  14. Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    van Haren, H.; Taupier-Letage, I.; Aguilar, J. A.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, G.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Schoeck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-08-01

    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.

  15. Characterization and Simulation of an Acoustic Source Moving through an Oceanic Waveguide

    DTIC Science & Technology

    1994-09-01

    algorithms, classical spectrum estimation methods are employed [1, 2] to estimate the auto- and cross-spectra of data received at the array of...Acoust. Soc. Am., 65(3):675-681 (March). [4] Rao, Kodali V., Thomas M. Michaud, and Henrik Schmidt. 1991. "Doppler shifts in underwater acoustics using

  16. Investigations into Ebb Tidal Fronts Using in Situ Acoustic Backscatter and Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sun, D.; Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Graber, H. C.; Hargrove, J.; Williams, N. J.

    2014-12-01

    The Office of Naval Research sponsored the Riverine and Estuarine Transport (RIVET) experiment during May 2012 at New River Inlet, North Carolina, in an effort to better understand the complex wave-current-wind interactions typical of tidal inlets. Over the course of a month, this highly sheared zone was intensely sampled with an array of Eulerian and Lagrangian instruments, in part, as a means of creating a synoptic, three-dimensional data set for validating various satellite remote sensing platforms. A component of this project was to deploy the Surface Physics Experimental Catamaran (SPEC), which is a mobile vessel designed specifically for collecting detailed meteorological and oceanographic data in coastal waters. Among its suite of instruments, SPEC was outfitted with a pair of acoustic doppler velocimeters (ADV), an acoustic doppler current profiler (ADCP), and an optical backscatter sensor (OBS). This instrument package allowed for high resolution mapping of the acoustic signature of the ebb tidal plume and the sub-surface, two-dimensional flow field. On May 8th, at 18:40 UTC, a panchromatic satellite image with a 0.6 m resolution, covering 122 km2, was taken of the New River Inlet Estuary and the inner shelf waters just off-shore. Numerous interesting features are visible in the image, such as the river outflow plume, surface streaks and slicks, a complex wave-field, and a remnant frontal edge from the past ebb tide. Interpretation of the surface features in these types of optical images remains a significant challenge and we have used data collected by SPEC immediately after the image acquisition to help illuminate the processes underlying these signatures.

  17. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  18. How to study the Doppler effect with Audacity software

    NASA Astrophysics Data System (ADS)

    Adriano Dias, Marco; Simeão Carvalho, Paulo; Rodrigues Ventura, Daniel

    2016-05-01

    The Doppler effect is one of the recurring themes in college and high school classes. In order to contextualize the topic and engage the students in their own learning process, we propose a simple and easily accessible activity, i.e. the analysis of the videos available on the internet by the students. The sound of the engine of the vehicle passing by the camera is recorded on the video; it is then analyzed with the free software Audacity by measuring the frequency of the sound during approach and recede of the vehicle from the observer. The speed of the vehicle is determined due to the application of Doppler effect equations for acoustic waves.

  19. An ideal blood mimicking fluid for doppler ultrasound phantoms.

    PubMed

    Samavat, H; Evans, J A

    2006-10-01

    In order to investigate the problems of detecting tumours by ultrasound it is very important to have a portable Doppler flow test object to use as a standardising tool. The flow Doppler test objects are intended to mimic the flow in human arteries. To make the test meaningful, the acoustic properties of the main test object components (tissue and blood mimic) should match closely the properties of the corresponding human tissues, while the tube should ideally have little influence. The blood mimic should also represent the haemodynamic properties of blood. An acceptable flow test object has been designed to closely mimic blood flow in arteries. We have evaluated the properties of three blood mimicking fluid: two have been described recently in the literature, the third is a local design. One of these has emerged as being particularly well matched to the necessary characteristics for in-vitro work.

  20. Direct visualization of surface acoustic waves along substrates using smoke particles

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Friend, James R.; Yeo, Leslie Y.

    2007-11-01

    Smoke particles (SPs) are used to directly visualize surface acoustic waves (SAWs) propagating on a 128°-rotated Y-cut X-propagating lithium niobate (LiNbO3) substrate. By electrically exciting a SAW device in a compartment filled with SP, the SP were found to collect along the regions where the SAW propagates on the substrate. The results of the experiments show that SPs are deposited adjacent to regions of large vibration amplitude and form a clear pattern corresponding to the surface wave profile on the substrate. Through an analysis of the SAW-induced acoustic streaming in the air adjacent to the substrate and the surface acceleration measured with a laser Doppler vibrometer, we postulate that the large transverse surface accelerations due to the SAW ejects SP from the surface and carries them aloft to relatively quiescent regions nearby via acoustic streaming. Offering finer detail than fine powders common in Chladni figures [E. Chladni, Entdeckungen über die Theorie des Klanges (Weidmanns, Erben und Reich, Leipzig, Germany, 1787)] the approach is an inexpensive and a quick counterpart to laser interferometric techniques, presenting a means to explore the controversial phenomena of particle agglomeration on surfaces.

  1. GEOS-3 Doppler difference tracking

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1977-01-01

    The Doppler difference method as applied to track the GEOS 3 spacecraft is discussed. In this method a pair of 2 GHz ground tracking stations simultaneously track a spacecraft beacon to generate an observable signal in which bias and instability of the carrier frequency cancel. The baselines are formed by the tracking sites at Bermuda, Rosman, and Merritt Island. Measurements were made to evaluate the effectiveness of the Doppler differencing procedure in tracking a beacon target with the high dynamic rate of the GEOS 3 orbit. Results indicate the precision of the differenced data to be at a level comparable to the conventional precise two way Doppler tracking.

  2. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  3. Accurate Determination of the Boltzmann Constant by Doppler Spectroscopy Towards a New Definition of the Kelvin

    NASA Astrophysics Data System (ADS)

    Sow, P. L. T.; Merji, S.; Tokunaga, S. K.; Lemarchand, C.; Triki, M.; Borde, C.; Chardonnet, C.; Darquie, B.; Daussy, C.

    2013-06-01

    Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 μm enables a determination of the Boltzmann constant k_{{B}}. We report on our latest measurements. The main systematic effects, including the temperature control, will be discussed and an error budget will be presented in which the global uncertainty on systematic effects is at the level of a few ppm. This is valid provided that data is recorded under the optimized experimental conditions determined by the studies of systematic effects and provided that spectra are fitted to the speed-dependent Voigt profile, identified as the most suitable lineshape for our measurements. A determination of k_{{B}} by Doppler spectroscopy with a combined uncertainty of a few ppm is within reach. This is comparable to the best current uncertainty obtained using acoustic methods and would make a significant contribution to any new value of k_{{B}} determined by the CODATA. Furthermore, having multiple independent measurements at these accuracies opens the possibility of defining the Kelvin by fixing k_{{B}}, an exciting prospect considering the upcoming redefinition of the International System of Units (SI). C. Lemarchand, M. Triki, B. Darquié, C. J. Bordé, C. Chardonnet and C. Daussy, New J. Phys. 13, 073028 (2011). M. Triki, C. Lemarchand, B. Darquié, P. L. T. Sow, V. Roncin, C. Chardonnet, and C. Daussy, Phys. Rev. A 85, 062510 (2012).

  4. ACOUSTIC FORMING FOR ENHANCED DEWATERING AND FORMATION

    SciTech Connect

    Cyrus K Aidun

    2007-11-30

    The next generation of forming elements based on acoustic excitation to increase drainage and enhances formation both with on-line control and profiling capabilities has been investigated in this project. The system can be designed and optimized based on the fundamental experimental and computational analysis and investigation of acoustic waves in a fiber suspension flow and interaction with the forming wire.

  5. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  6. Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations

    SciTech Connect

    Storelli, A. Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Singh, Rameswar; Morel, P.; Dif-Pradalier, G.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Ghendrih, P.; Görler, T.

    2015-06-15

    In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is detected and identified with the Doppler backscattering technique. Observations are compared to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM frequency in experiments is lower than predicted by simulation and theory. Moreover, the disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscillations have been characterized with filtering techniques, such as the Hilbert-Huang transform. When comparing this dynamical behaviour between experiments and simulation, the probability density function of GAM amplitude and the burst autocorrelation time are found to be remarkably similar. In the simulation, where the radial profile of GAM frequency is continuous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could influence the burst autocorrelation time.

  7. Monthly periodicity in acoustic reflections and vertical motions in the deep ocean

    NASA Astrophysics Data System (ADS)

    van Haren, Hans

    2007-06-01

    A recent, 1.5 years long record of acoustic Doppler current profiler (ADCP)-data from the Canary Basin (North-Atlantic ocean) likely reflects vertical zooplankton migration between 800 and 1400 m. This record clearly distinguishes 3 major periodicities of down- and upgoing motions to within a precision of ~1/400: a daily, a seasonal and a monthly cycle. Largest daily excursions occur during full moon. The directly observed hourly mean vertical velocity amplitudes of |w| = 0.025 +/- 0.01 m s-1 are too slow for particles from the observational depths to reach the zone of moon- (and only very weak sun-) light penetration in half a day. It is shown that no physical (internal wave), geochemical or sinking food mechanism can trigger the daily and monthly cycles, which are coupled. It is speculated that an entrained biorhythm running precise internal biochemical clocks controls the vertical migration.

  8. Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord

    NASA Astrophysics Data System (ADS)

    Petrusevich, Vladislav; Dmitrenko, Igor; Kirillov, Sergey; Rysgaard, Søren; Falk-Petersen, Stig; Barber, David; Ehn, Jens

    2016-04-01

    Six and a half month time series of acoustic backscatter and velocity from three ice-tethered Acoustic Doppler Current Profilers deployed in the Young Sound fjord in Northeast Greenland were used to analyse the acoustic signal. During period of civil polar night below the land-fast ice, the acoustic data suggest a systematic diel vertical migration (DVM) of backscatters likely comprised of zooplankton. The acoustic backscatter and vertical velocity data were also arranged in a form of actograms. Results show that the acoustic signal pattern typical to DVM in Young Sound persists throughout the entire winter including the period of civil polar night. However, polynya-enhanced estuarine-like cell circulation that occurred during winter disrupted the DVM signal favouring zooplankton to occupy the near-surface water layer. This suggests that zooplankton avoided spending additional energy crossing the interface with a relatively strong velocity gradient comprised by fjord inflow in the intermediate layer and outflow in the subsurface layer. Instead the zooplankton tended to favour remaining in the upper 40 m layer where also the relatively warmer water temperatures associated with upward heat flux during enhanced estuarine-like circulation could be energetically favourable. Furthermore, our data show moonlight disruption of DVM in the subsurface layer and weaker intensity of vertical migration beneath snow covered land-fast ice during polar night. Using existing models for lunar illuminance and light transmission through sea ice and snow cover we estimated under ice illuminance and compared it with known light sensitivity for Arctic zooplankton species.

  9. VPV--The velocity profile viewer user manual

    USGS Publications Warehouse

    Donovan, John M.

    2004-01-01

    The Velocity Profile Viewer (VPV) is a tool for visualizing time series of velocity profiles developed by the U.S. Geological Survey (USGS). The USGS uses VPV to preview and present measured velocity data from acoustic Doppler current profilers and simulated velocity data from three-dimensional estuarine, river, and lake hydrodynamic models. The data can be viewed as an animated three-dimensional profile or as a stack of time-series graphs that each represents a location in the water column. The graphically displayed data are shown at each time step like frames of animation. The animation can play at several different speeds or can be suspended on one frame. The viewing angle and time can be manipulated using mouse interaction. A number of options control the appearance of the profile and the graphs. VPV cannot edit or save data, but it can create a Post-Script file showing the velocity profile in three dimensions. This user manual describes how to use each of these features. VPV is available and can be downloaded for free from the World Wide Web at http://ca.water.usgs.gov/program/sfbay/vpv.

  10. Dual-Doppler Feasibility Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  11. Doppler characteristics of sea clutter.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  12. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  13. Applications of Fresnel-Kirchhoff diffraction theory in the analysis of human-motion Doppler sonar grams.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2010-11-01

    Observed human-gait features in Doppler sonar grams are explained by using the Boulic-Thalmann (BT) model to predict joint angle time histories and the temporal displacements of the body center of mass. Body segments are represented as ellipsoids. Temporally dependent velocities at the proximal and distal end of key body segments are determined from BT. Doppler sonar grams are computed by mapping velocity-time dependent spectral acoustic-cross sections for the body segments onto time-velocity space, mimicking the Short Time Fourier Transform used in the Doppler sonar processing. Comparisons to measured data indicate that dominant returns come from trunk, thigh and lower leg.

  14. Doppler effect in a solid medium: Spin wave emission by a precessing domain wall drifting in spin current

    NASA Astrophysics Data System (ADS)

    Xia, Hong; Chen, Jie; Zeng, Xiaoyan; Yan, Ming

    2016-04-01

    The Doppler effect is a fundamental physical phenomenon observed for waves propagating in vacuum or various media, commonly gaseous or liquid. Here, we report on the occurrence of a Doppler effect in a solid medium. Instead of a real object, a topological soliton, i.e., a magnetic domain wall (DW) traveling in a current-carrying ferromagnetic nanowire, plays the role of the moving wave source. The Larmor precession of the DW in an external field stimulates emission of monochromatic spin waves (SWs) during its motion, which show a significant Doppler effect, comparable to the acoustic one of a train whistle. This process involves two prominent spin-transfer-torque effects simultaneously, the current-driven DW motion and the current-induced SW Doppler shift. The latter gives rise to an interesting feature, i.e., the observed SW Doppler effect appears resulting from a stationary source and a moving observer, contrary to the laboratory frame.

  15. Multichannel analysis of surface-waves and integration of downhole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA

    NASA Astrophysics Data System (ADS)

    Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey

    2015-10-01

    Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.

  16. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  17. Novel instantaneous laser Doppler velocimeter.

    PubMed

    Avidor, J M

    1974-02-01

    A laser Doppler velocimeter capable of directly measuring instantaneous velocities is described. The new LDV uses a novel detection technique based on the utilization of a static slightly defocused spherical Fabry-Perot interferometer used in conjunction with a special mask for the detection of instantaneous Doppler frequency shifts. The essential characteristics of this LDV are discussed, and such a system recently developed is described. Results of turbulent flow measurements show good agreement with data obtained using hot wire anemometry.

  18. Adaptive spectral doppler estimation.

    PubMed

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-04-01

    In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window is very short. The 2 adaptive techniques are tested and compared with the averaged periodogram (Welch's method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set of matched filters (one for each velocity component of interest) and filtering the blood process over slow-time and averaging over depth to find the PSD. The methods are tested using various experiments and simulations. First, controlled flow-rig experiments with steady laminar flow are carried out. Simulations in Field II for pulsating flow resembling the femoral artery are also analyzed. The simulations are followed by in vivo measurement on the common carotid artery. In all simulations and experiments it was concluded that the adaptive methods display superior performance for short observation windows compared with the averaged periodogram. Computational costs and implementation details are also discussed.

  19. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  20. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  1. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    PubMed

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  2. Long duration meteor echoes characterized by Doppler spectrum bifurcation

    NASA Astrophysics Data System (ADS)

    Bourdillon, A.; Haldoupis, C.; Hanuise, C.; Le Roux, Y.; Menard, J.

    2005-03-01

    We report on a new category of long lasting meteor echoes observed occasionally with HF and VHF radars. These meteoric returns, which have lifetimes from many seconds to a few minutes, are characterized by a distinct Doppler spectral signature showing a pronounced Doppler bifurcation which includes narrow bands of discrete Doppler velocities, often of opposite polarity. The large signal to noise ratios and the narrowness of the spectra imply that coherent or Bragg scattering is not of relevance here, therefore these echoes do not associate with the long living meteor-induced backscatter (MIB) from the lower E region. A reasonable interpretation needs to explain both the Doppler spectrum bifurcation and the long echo duration. As such, we propose the idea of a structured vertical wind shear in the lower E region which traps different fragments of a meteor trail plasma in the same way that sporadic E layers form. These trail parts inside the shear-related wind profile may act as relatively long-lasting meteoric reflectors moving with different Doppler velocities, also of opposite polarity.

  3. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  4. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.

  5. Christian Doppler is 200 years young.

    PubMed

    Bollinger, Alfred; Partsch, Hugo

    2003-11-01

    Christian Doppler was born 200 years ago in Salzburg, Austria, on November 29, 1803, worked in Prague and Vienna and died 150 years ago in Venice. In an article of eight pages he described the principle, which made him famous. It appeared in 1842 with the exotic title: "On the Coloured Light of the Double Stars and Certain Other Stars of the Heaven". The validity of his principle for velocity measurement was confirmed by trumpet sounds produced on a train moving towards and away from the observer. Around 1960 Japanese scientists suggested that flow velocity in blood vessels could be determined by analysing the difference of frequency between emitted and backscattered ultrasound. Rushmer and coworkers built machines suitable for medicine in Seattle, where Eugene Strandness recognized their potential and applied them in first studies. In 1967 the technique jumped to Europe and started to be used worldwide. Already by using continuous wave ultrasound it was possible to diagnose occlusive disease of neck and limb arteries, venous thrombosis and valvular insufficiency with accuracy. Measurements of postestenotic ankle blood pressure were facilitated by Doppler sensing. Over the years more sophisticated instruments were developed. Pulsed emission of ultrasound waves opened a way to study flow velocity profiles across large vessels. By combining the method with A or B mode ultrasound blood flow could be quantified and finally perfused segments of blood vessels visualized. Duplex scanning in its simple and then in its colour coded version is nowadays the standard non-invasive technique that nobody would like to miss. Vascular territories like intracranial, renal and intestinal arteries can also be explored. For the assessment of microvascular flow in skin and mucosae laser Doppler instruments were introduced.

  6. Near-field acoustic streaming jet

    NASA Astrophysics Data System (ADS)

    Moudjed, B.; Botton, V.; Henry, D.; Millet, S.; Garandet, J. P.; Ben Hadid, H.

    2015-03-01

    A numerical and experimental investigation of the acoustic streaming flow in the near field of a circular plane ultrasonic transducer in water is performed. The experimental domain is a parallelepipedic cavity delimited by absorbing walls to avoid acoustic reflection, with a top free surface. The flow velocities are measured by particle image velocimetry, leading to well-resolved velocity profiles. The theoretical model is based on a linear acoustic propagation model, which correctly reproduces the acoustic field mapped experimentally using a hydrophone, and an acoustic force term introduced in the Navier-Stokes equations under the plane-wave assumption. Despite the complexity of the acoustic field in the near field, in particular in the vicinity of the acoustic source, a good agreement between the experimental measurements and the numerical results for the velocity field is obtained, validating our numerical approach and justifying the planar wave assumption in conditions where it is a priori far from obvious. The flow structure is found to be correlated with the acoustic field shape. Indeed, the longitudinal profiles of the velocity present a wavering linked to the variations in acoustic intensity along the beam axis and transverse profiles exhibit a complex shape strongly influenced by the transverse variations of the acoustic intensity in the beam. Finally, the velocity in the jet is found to increase as the square root of the acoustic force times the distance from the origin of the jet over a major part of the cavity, after a strong short initial increase, where the velocity scales with the square of the distance from the upstream wall.

  7. Quantitative imaging of acoustic reflection and interference

    NASA Astrophysics Data System (ADS)

    Malkin, Robert; Todd, Thomas; Robert, Daniel

    2015-01-01

    This paper presents a method for time resolved quantitative imaging of acoustic waves. We present the theoretical background, the experimental method and the comparison between experimental and numerical reconstructions of acoustic reflection and interference. Laser Doppler vibrometry is used to detect the modulation of the propagation velocity of light, c, due to pressure-dependant changes in the refractive index of air. Variation in c is known to be proportional to variation in acoustic pressure and thus can be used to quantify sound pressure fluctuations. The method requires the laser beam to travel through the sound field, in effect integrating pressure along a transect line. We investigate the applicability of the method, in particular the effect of the geometry of the sound radiator on line integration. Both experimental and finite element reconstructions of the sound field are in good agreement, corroborating punctual pressure measurements from a precision microphone. Spatial limitations and accuracy of the method are presented and discussed.

  8. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    USGS Publications Warehouse

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  9. Nonlinear Acoustics

    DTIC Science & Technology

    1974-02-14

    Wester- velt. [60] Streaming. In 1831, Michael Faraday [61] noted that currents of air were set up in the neighborhood of vibrating plates-the first... ducei in the case of a paramettc amy (from Berktay an Leahy 141). C’ "". k•, SEC 10.1 NONLINEAR ACOUSTICS 345 The principal results of their analysis

  10. Least-Squares Multi-Angle Doppler Estimators for Plane Wave Vector Flow Imaging.

    PubMed

    Yiu, Billy Y S; Yu, Alfred C H

    2016-06-20

    Designing robust Doppler vector estimation strategies for use in plane wave imaging schemes based on unfocused transmissions is a topic that has yet to be studied in depth. One potential solution is to use a multi-angle Doppler estimation approach that computes flow vectors via least-squares fitting, but its performance has not been established. Here, we investigated the efficacy of multi-angle Doppler vector estimators by: (i) comparing its performance with respect to the classical dual-angle (cross-beam) Doppler vector estimator; (ii) examining the working effects of multi-angle Doppler vector estimators on flow visualization quality in the context of dynamic flow path rendering. Implementing Doppler vector estimators that use different combinations of transmit (Tx) and receive (Rx) steering angles, our analysis has compared the classical dual-angle Doppler method, a 5-Tx version of dual-angle Doppler, and various multi-angle Doppler configurations based on 3 Tx and 5 Tx. Two angle spans (10°, 20°) were examined in forming the steering angles. In imaging scenarios with known flow profiles (rotating disc and straight-tube parabolic flow), the 3-Tx, 3-Rx and 5-Tx, 5-Rx multi-angle configurations produced vector estimates with smaller variability comparing to the dual-angle method, and the estimation results were more consistent with the use of a 20° angle span. Flow vectors derived from multi-angle Doppler estimators were also found to be effective in rendering the expected flow paths in both rotating disc and straight-tube imaging scenarios, while the ones derived from the dual-angle estimator yielded flow paths that deviated from the expected course. These results serve to attest that, using multi-angle least-squares Doppler vector estimators, flow visualization can be consistently achieved.

  11. Least-Squares Multi-Angle Doppler Estimators for Plane-Wave Vector Flow Imaging.

    PubMed

    Yiu, Billy Y S; Yu, Alfred C H

    2016-11-01

    Designing robust Doppler vector estimation strategies for use in plane-wave imaging schemes based on unfocused transmissions is a topic that has yet to be studied in depth. One potential solution is to use a multi-angle Doppler estimation approach that computes flow vectors via least-squares fitting, but its performance has not been established. Here, we investigated the efficacy of multi-angle Doppler vector estimators by: 1) comparing its performance with respect to the classical dual-angle (cross-beam) Doppler vector estimator and 2) examining the working effects of multi-angle Doppler vector estimators on flow visualization quality in the context of dynamic flow path rendering. Implementing Doppler vector estimators that use different combinations of transmit (Tx) and receive (Rx) steering angles, our analysis has compared the classical dual-angle Doppler method, a 5-Tx version of dual-angle Doppler, and various multi-angle Doppler configurations based on 3 Tx and 5 Tx. Two angle spans (10°, 20°) were examined in forming the steering angles. In imaging scenarios with known flow profiles (rotating disk and straight-tube parabolic flow), the 3-Tx, 3-Rx and 5-Tx, 5-Rx multi-angle configurations produced vector estimates with smaller variability compared with the dual-angle method, and the estimation results were more consistent with the use of a 20° angle span. Flow vectors derived from multi-angle Doppler estimators were also found to be effective in rendering the expected flow paths in both rotating disk and straight-tube imaging scenarios, while the ones derived from the dual-angle estimator yielded flow paths that deviated from the expected course. These results serve to attest that using multi-angle least-squares Doppler vector estimators, flow visualization can be consistently achieved.

  12. Acoustic and Perceptual Profiles of Swallowing Sounds in Children: Normative Data for 4-36 Months from a Cross-Sectional Study Cohort.

    PubMed

    Frakking, Thuy T; Chang, Anne B; O'Grady, Kerry-Ann F; Yang, Julie; David, Michael; Weir, Kelly A

    2017-04-01

    Limited data on cervical auscultation (CA) sounds during the transitional feeding period of 4-36 months in healthy children exist. This study examined the acoustic and perceptual parameters of swallowing sounds in children aged 4-36 months over a range of food and fluid consistencies. Using CA, swallowing sounds were recorded from a microphone as children ate or drank. Acoustic parameters of duration, peak frequency and peak intensity were determined. Perceptual parameters of swallowing/breath sounds heard pre-, during and post-swallow were rated ('present', 'absent', 'cannot be determined') for each texture. 74 children (35 males; mean age = 17.1 months [SD 10.0]) demonstrated mean swallow durations of <1 s. Increasing age correlated to reduced peak frequency on puree (r = -0.48, 95 % CI -0.66, -0.24). Age correlated to peak amplitude when swallowing puree (r = 0.27, 95 % CI 0.02, 0.49), chewable solids (r = 0.31, 95 % CI 0.02, 0.56) and thin fluids (r = 0.48, 95 % CI 0.27, 0.64). The bolus transit sound was present in all swallows. A majority of children had normal breathing sounds and coordinated swallows. A swallow duration of <1 s and the presence of a quick bolus transit sound with normal breathing sounds were found in healthy children. The normative data reported in this study provide a platform for future comparison to abnormal swallowing sounds in children.

  13. Doppler Optical Coherence Tomography Signals: Analysis in Low and High Scattering Media

    NASA Astrophysics Data System (ADS)

    Bykov, Alexander V.; Kalkman, Jeroen

    In this chapter, Doppler OCT signals (OCT magnitude and flow velocity profile) for low and high scattering media are analyzed. For low scattering media, we demonstrate the use of the single scattering model to determine the optical properties of the sample. For high scattering media, the effects of multiple scattering are stronger and the single scattering description breaks down. An alternative approach, based on Monte Carlo simulations, is proposed as it gives a more appropriate description of the Doppler OCT signal by taking into account multiple scattering effects. Using Monte Carlo simulations, we analyze the deviation of the OCT slope from the value predicted by the single scattering model and analyze the distortions in the measured Doppler OCT flow profile. Monte Carlo simulations are compared to Doppler OCT measurements for Intralipid and blood.

  14. The effect of dead elements on the accuracy of Doppler ultrasound measurements.

    PubMed

    Vachutka, Jaromir; Dolezal, Ladislav; Kollmann, Christian; Klein, Jakob

    2014-01-01

    The objective of this study is to investigate the effect of multiple dead elements in an ultrasound probe on the accuracy of Doppler ultrasound measurements. For this work, we used a specially designed ultrasound imaging system, the Ultrasonix Sonix RP, that provides the user with the ability to disable selected elements in the probe. Using fully functional convex, linear, and phased array probes, we established a performance baseline by measuring the parameters of a laminar parabolic flow profile. These same parameters were then measured using probes with 1 to 10 disabled elements. The acquired velocity spectra from the functional probes and the probes with disabled elements were then analyzed to determine the overall Doppler power, maximum flow velocity, and average flow velocity. Color Flow Doppler images were also evaluated in a similar manner. The analysis of the Doppler spectra indicates that the overall Doppler power as well as the detected maximum and average velocities decrease with the increasing number of disabled elements. With multiple disabled elements, decreases in the detected maximum and average velocities greater than 20% were recorded. Similar results were also observed with Color Flow Doppler measurements. Our results confirmed that the degradation of the ultrasound probe through the loss of viable elements will negatively affect the quality of the Doppler-derived diagnostic information. We conclude that the results of Doppler measurements cannot be considered accurate or reliable if there are four or more contiguous dead elements in any given probe.

  15. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  16. Applications of Doppler-Free Saturation Spectroscopy for Edge Physics Studies

    SciTech Connect

    Martin, Elijah H; Caughman, John B; Isler, Ralph C; Bell, Gary L

    2016-01-01

    Doppler-free saturation spectroscopy provides a very powerful method to obtained detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we will present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H spectra will be presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  17. Wind Measurements with High Energy 2 Micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Koch, Grady J.; Petros, Mulugeta; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Ji-Rong; Kavaya, Michael J.; Singh, Upendra N.

    2004-01-01

    A coherent Doppler lidar based on an injection seeded Ho:Tm:YLF pulsed laser was developed for wind measurements. A transmitted pulse energy over 75 mJ at 5 Hz repetition rate has been demonstrated. Designs are presented on the laser, injection seeding, receiver, and signal processing subsystems. Sample data of atmospheric measurements are presented including a wind profile extending from the atmospheric boundary layer (ABL) to the free troposphere.

  18. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  19. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  20. A model for the vertical sound speed and absorption profiles in Titan's atmosphere based on Cassini-Huygens data.

    PubMed

    Petculescu, Andi; Achi, Peter

    2012-05-01

    Measurements of thermodynamic quantities in Titan's atmosphere during the descent of Huygens in 2005 are used to predict the vertical profiles for the speed and intrinsic attenuation (or absorption) of sound. The calculations are done using one author's previous model modified to accommodate non-ideal equations of state. The vertical temperature profile places the tropopause about 40 km above the surface. In the model, a binary nitrogen-methane composition is assumed for Titan's atmosphere, quantified by the methane fraction measured by the gas chromatograph/mass spectrometer (GCMS) onboard Huygens. To more accurately constrain the acoustic wave number, the variation of thermophysical properties (specific heats, viscosity, and thermal conductivity) with altitude is included via data extracted from the NIST Chemistry WebBook [URL webbook.nist.gov, National Institute of Standards and Technology Chemistry WebBook (Last accessed 10/20/2011)]. The predicted speed of sound profile fits well inside the spread of the data recorded by Huygens' active acoustic sensor. In the N(2)-dominated atmosphere, the sound waves have negligible relaxational dispersion and mostly classical (thermo-viscous) absorption. The cold and dense environment of Titan can sustain acoustic waves over large distances with relatively small transmission losses, as evidenced by the small absorption. A ray-tracing program is used to assess the bounds imposed by the zonal wind-measured by the Doppler Wind Experiment on Huygens-on long-range propagation.

  1. Doppler Ultrasound: What Is It Used for?

    MedlinePlus

    ... in your neck (carotid artery stenosis) A Doppler ultrasound can estimate how fast blood flows by measuring the rate of change in its pitch (frequency). During a Doppler ultrasound, a technician trained in ultrasound imaging (sonographer) presses ...

  2. Right Ventricular Tissue Doppler in Space Flight

    NASA Technical Reports Server (NTRS)

    Garcia, Kathleen M.; Hamilton, Douglas R.; Sargsyan, Ashot E.; Ebert, Douglas; Martin, David S.; Barratt, Michael R.; Martin, David S.; Bogomolov, Valery V.; Dulchavsky, Scott A.; Duncan, J. Michael

    2010-01-01

    The presentation slides review normal physiology of the right ventricle in space, general physiology of the right ventricle; difficulties in imaging the heart in space, imaging methods, tissue Doppler spectrum, right ventricle tissue Doppler, and Rt Tei Index.

  3. Wayside bearing fault diagnosis based on a data-driven Doppler effect eliminator and transient model analysis.

    PubMed

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-05-05

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects.

  4. Wayside Bearing Fault Diagnosis Based on a Data-Driven Doppler Effect Eliminator and Transient Model Analysis

    PubMed Central

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-01-01

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197

  5. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  6. Determining radiated sound power of building structures by means of laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Roozen, N. B.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    This paper introduces a methodology that makes use of laser Doppler vibrometry to assess the acoustic insulation performance of a building element. The sound power radiated by the surface of the element is numerically determined from the vibrational pattern, offering an alternative for classical microphone measurements. Compared to the latter the proposed analysis is not sensitive to room acoustical effects. This allows the proposed methodology to be used at low frequencies, where the standardized microphone based approach suffers from a high uncertainty due to a low acoustic modal density. Standardized measurements as well as laser Doppler vibrometry measurements and computations have been performed on two test panels, a light-weight wall and a gypsum block wall and are compared and discussed in this paper. The proposed methodology offers an adequate solution for the assessment of the acoustic insulation of building elements at low frequencies. This is crucial in the framework of recent proposals of acoustic standards for measurement approaches and single number sound insulation performance ratings to take into account frequencies down to 50 Hz.

  7. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  8. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  9. Validation of a new blood-mimicking fluid for use in Doppler flow test objects.

    PubMed

    Ramnarine, K V; Nassiri, D K; Hoskins, P R; Lubbers, J

    1998-03-01

    A blood-mimicking fluid (BMF) suitable for use in Doppler flow test objects is described and characterised. The BMF consists of 5 microns diameter nylon scattering particles suspended in a fluid base of water, glycerol, dextran and surfactant. The acoustical properties of various BMF preparations were measured under uniform flow to study the effects of particle size, particle concentration, surfactant concentration, flow rate and stability. The physical properties, (density, viscosity and particle size), and acoustical properties (velocity, backscatter and attenuation) of the BMF are within draft International Electrotechnical Commission requirements.

  10. Spatial and temporal variability of zooplankton off New Caledonia (Southwestern Pacific) from acoustics and net measurements

    NASA Astrophysics Data System (ADS)

    Smeti, Houssem; Pagano, Marc; Menkes, Christophe; Lebourges-Dhaussy, Anne; Hunt, Brian P. V.; Allain, Valerie; Rodier, Martine; de Boissieu, Florian; Kestenare, Elodie; Sammari, Cherif

    2015-04-01

    Spatial and temporal distribution of zooplankton off New Caledonia in the eastern Coral Sea was studied during two multidisciplinary cruises in 2011, during the cool and the hot seasons. Acoustic measurements of zooplankton were made using a shipborne acoustic Doppler current profiler (S-ADCP), a scientific echosounder and a Tracor acoustic profiling system (TAPS). Relative backscatter from ADCP was converted to biomass estimates using zooplankton weights from net-samples collected during the cruises. Zooplankton biomass was estimated using four methods: weighing, digital imaging (ZooScan), ADCP and TAPS. Significant correlations were found between the different biomass estimators and between the backscatters of the ADCP and the echosounder. There was a consistent diel pattern in ADCP derived biomass and echosounder backscatter resulting from the diel vertical migration (DVM) of zooplankton. Higher DVM amplitudes were associated with higher abundance of small zooplankton and cold waters to the south of the study area, while lower DVM amplitudes in the north were associated with warmer waters and higher abundance of large organisms. Zooplankton was largely dominated by copepods (71-73%) among which calanoids prevailed (40-42%), with Paracalanus spp. as the dominant species (16-17%). Overall, zooplankton exhibited low abundance and biomass (mean night dry biomass of 4.7 ± 2.2 mg m3 during the cool season and 2.4 ± 0.4 mg m3 during the hot season) but high richness and diversity (Shannon index ˜4). Substantially enhanced biomass and abundance appeared to be episodically associated with mesoscale features contributing to shape a rather patchy zooplankton distribution.

  11. The Doppler Effect--A New Approach

    ERIC Educational Resources Information Center

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  12. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  13. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  14. Doppler Imaging of EI Eridani

    NASA Astrophysics Data System (ADS)

    Washuettl, Albert; Strassmeier, Klaus G.; Collier-Cameron, Andrew

    We present Doppler images of the rapidly rotating active close binary star EI Eridani. Several Doppler images have been produced since 1984 making use of different versions of the Doppler imaging technique. They all show high-latitude spots surrounding or covering the rotational pole as well as some smaller spots on lower latitudes. The high-latitude/polar spot seems to be long-lived (at least a decade) but changes its shape on comparatively short timescales (of the order of one month). From time to time spots along the stellar equator also occur, but their lifetimes tend to be relatively short (weeks). Furthermore, long-term photometric observations revealed the existence of a magnetic cycle which has been estimated to be around 11 years. We also present time-resolved Doppler images from EI Eri obtained at McMath/NSO in fall 1996 during 70 consecutive nights. The final aim of this program is to investigate the spot evolution over the whole activity cycle.

  15. Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: The role of vocalizer body size and voice-acoustic allometry

    NASA Astrophysics Data System (ADS)

    Rendall, Drew; Kollias, Sophie; Ney, Christina; Lloyd, Peter

    2005-02-01

    Key voice features-fundamental frequency (F0) and formant frequencies-can vary extensively between individuals. Much of the variation can be traced to differences in the size of the larynx and vocal-tract cavities, but whether these differences in turn simply reflect differences in speaker body size (i.e., neutral vocal allometry) remains unclear. Quantitative analyses were therefore undertaken to test the relationship between speaker body size and voice F0 and formant frequencies for human vowels. To test the taxonomic generality of the relationships, the same analyses were conducted on the vowel-like grunts of baboons, whose phylogenetic proximity to humans and similar vocal production biology and voice acoustic patterns recommend them for such comparative research. For adults of both species, males were larger than females and had lower mean voice F0 and formant frequencies. However, beyond this, F0 variation did not track body-size variation between the sexes in either species, nor within sexes in humans. In humans, formant variation correlated significantly with speaker height but only in males and not in females. Implications for general vocal allometry are discussed as are implications for speech origins theories, and challenges to them, related to laryngeal position and vocal tract length. .

  16. Exploiting continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation methods for noise source identification

    NASA Astrophysics Data System (ADS)

    Chiariotti, Paolo; Martarelli, Milena; Revel, Gian Marco

    2014-07-01

    This paper proposes the use of continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation techniques that aim at characterizing the structure-borne contributions of the noise emission of a mechanical system. The time domain correlation technique presented in this paper is based on the use of FIR (finite impulse response) filters obtained from the vibro-acoustic transfer matrix when vibration data are collected by laser Doppler vibrometry (LDV) exploited in continuous scan mode (CSLDV). The advantages, especially in terms of source decorrelation capabilities, related to the use of CSLDV for such purpose, with respect to standard discrete scan (SLDV), are discussed throughout the paper. To validate this approach, vibro-acoustic measurements were performed on a planetary gear motor for home appliances. The analysis of results is also supported by a simulation.

  17. [Echocardiographic and Doppler echocardiographic characterization of left ventricular diastolic function].

    PubMed

    Muscholl, M; Dennig, K; Kraus, F; Rudolph, W

    1990-12-01

    atrial filling phase which characterize the ventricular filling and the diameter changes of the left ventricle during these time intervals can be derived. The maximal velocity of the diastolic diameter change (PFR) is used to characterize the maximal early diastolic flow. The atrial emptying index characterizes the fraction of filling volume in the first third of diastole with respect to total filling volume of the left ventricle. As an indirect parameter for description of the early-diastolic filling, the steepness of the early-diastolic closure of the anterior mitral leaflet is used. From Doppler velocity profiles of the mitral inflow, early and late diastolic maximal velocities and their velocity time integrals as well as the relationships of these parameters to each other are determined.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. Acoustic dose and acoustic dose-rate.

    PubMed

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  19. Applications of Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang

    stenosis and bifurcation will be described in this thesis. We also proposed the method to successfully obtain the 2D velocity vector map in the phantom models by overlapping the Doppler OCT scalar velocity distributions of different incident angles. This quantitative knowledge of blood velocity profiles in the vessels can provide very important information in studying some cardiovascular diseases such as atherosclerosis. (Abstract shortened by UMI.)

  20. Time-Height Variations of Ion-Line Doppler Spectra at HAARP

    NASA Astrophysics Data System (ADS)

    Watkins, B. J.; Fallen, C. T.

    2012-12-01

    O-mode HF heating results in enhanced electron temperatures in the lower ionosphere that in turn result in enhanced electron densities due to temperature-dependent molecular ion chemistry. As a result, for a fixed HF heating frequency, the altitude of the HF interaction region decreases with time after the onset of HF heating. Corresponding altitudes of the HF-enhanced ion-line signals detected with the MUIR UHF-frequency diagnostic radar also decrease with time. For the data presented here, the radar range resolution was 600 meters, and time-height Doppler spectra were obtained for every pulse (10ms inter-pulse period) of the UHF-radar. We have therefore been able to examine the height-dependent spectral characteristics of ion-line signals every 10ms. The UHF radar signals show a brief initial period after HF turn-on (about 120ms) when signals are scattered around zero Doppler over about 2km height range. The UHF signals then rapidly convert to a stable configuration with two ion-line signatures (approximately +/- 5kHz Doppler values); above a fixed height there is only positive Doppler data (downward ion-acoustic waves), and below that height there is only negative Doppler data (upward ion-acoustic waves). The power associated with the downward ion-acoustic waves is typically stronger than the upward waves. For the example shown, this spectral type persists for the entire duration of the HF heating time, at progressively lower heights. We suggest that the spectral characteristics are associated with HF frequencies near the 3rd gyro harmonic.

  1. Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.

    PubMed

    Mansour, Omar; Poepping, Tamie L; Lacefield, James C

    2016-07-21

    Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.

  2. Analysis of multiple scattering effects in optical Doppler tomography

    NASA Astrophysics Data System (ADS)

    Yura, Harold T.; Thrane, Lars; Andersen, Peter E.

    2005-08-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed Doppler frequency spectrum. Thus, in the present analysis, the dependence of the mean and standard deviation of the Doppler shift on the scattering properties of the flowing medium are obtained. Taking the multiple scattering effects into account, we are able to explain previous measurements of depth-resolved retinal flow profiles where the influence of multiple scattering was observed [Yazdanfar et al., Opt. Lett. 25, 1448 (2000)]. To the best of our knowledge, no analytical model exists that are able to explain these observations.

  3. Analysis of multiple scattering effects in optical Doppler tomography

    NASA Astrophysics Data System (ADS)

    Yura, Harold T.; Thrane, Lars; Andersen, Peter E.

    2005-04-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed Doppler frequency spectrum. Thus, in the present analysis, the dependence of the mean and standard deviation of the Doppler shift on the scattering properties of the flowing medium are obtained. Taking the multiple scattering effects into account, we are able to explain previous measurements of depth-resolved retinal flow profiles where the influence of multiple scattering was observed [Yazdanfar et al., Opt. Lett. 25, 1448 (2000)]. To the best of our knowledge, no analytical model exists that are able to explain these observations.

  4. Multiplexed sub-Doppler spectroscopy with an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Long, D. A.; Fleisher, A. J.; Plusquellic, D. F.; Hodges, J. T.

    2016-12-01

    An optical frequency comb generated with an electro-optic phase modulator and a chirped radio-frequency waveform is used to perform pump-probe spectroscopy on the D1 and D2 transitions of atomic potassium at 770.1 and 766.7 nm, respectively. With a comb tooth spacing of 200 kHz and an optical bandwidth of 2 GHz the hyperfine transitions can be observed simultaneously. Interferograms are recorded in as little as 5 µs (a timescale corresponding to the inverse of the comb tooth spacing). Importantly, the sub-Doppler features can be measured as long as the laser carrier frequency lies within the Doppler profile, thus removing the need for slow scanning or a priori knowledge of the frequencies of the sub-Doppler features. Sub-Doppler optical frequency comb spectroscopy has the potential to dramatically reduce acquisition times and allow for rapid and accurate assignment of complex molecular and atomic spectra which are presently intractable.

  5. Doppler-shift estimation of flat underwater channel using data-aided least-square approach

    NASA Astrophysics Data System (ADS)

    Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing

    2015-06-01

    In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

  6. A Doppler Transient Model Based on the Laplace Wavelet and Spectrum Correlation Assessment for Locomotive Bearing Fault Diagnosis

    PubMed Central

    Shen, Changqing; Liu, Fang; Wang, Dong; Zhang, Ao; Kong, Fanrang; Tse, Peter W.

    2013-01-01

    The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully. PMID:24253191

  7. Radiative Amplification of Acoustic Waves in Hot Stars

    NASA Technical Reports Server (NTRS)

    Wolf, B. E.

    1985-01-01

    The discovery of broad P Cygni profiles in early type stars and the detection of X-rays emitted from the envelopes of these stars made it clear, that a considerable amount of mechanical energy has to be present in massive stars. An attack on the problem, which has proven successful when applied to late type stars is proposed. It is possible that acoustic waves form out of random fluctuations, amplify by absorbing momentum from stellar radiation field, steepen into shock waves and dissipate. A stellar atmosphere was constructed, and sinusoidal small amplitude perturbations of specified Mach number and period at the inner boundary was introduced. The partial differential equations of hydrodynamics and the equations of radiation transfer for grey matter were solved numerically. The equation of motion was augmented by a term which describes the absorption of momentum from the radiation field in the continuum and in lines, including the Doppler effect and allows for the treatment of a large number of lines in the radiative acceleration term.

  8. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    NASA Astrophysics Data System (ADS)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  9. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  10. Optimization of Concurrent Deployments of the Juvenile Salmon Acoustic Telemetry System and Other Hydroacoustic Equipment at John Day Dam

    SciTech Connect

    Ploskey, Gene R.; Hughes, James S.; Khan, Fenton; Kim, Jina; Lamarche, Brian L.; Johnson, Gary E.; Choi, Eric Y.; Faber, Derrek M.; Wilberding, Matthew C.; Deng, Zhiqun; Weiland, Mark A.; Zimmerman, Shon A.; Fischer, Eric S.; Cushing, Aaron W.

    2008-09-01

    The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimization study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage

  11. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

    DTIC Science & Technology

    2015-09-30

    range of wind -driven conditions. The model will focus on signal coherence, and second-order amplitude and Doppler statistics. A second long-term goal...surface scattering in the literature are rare. The physics of very high frequency (VHF) scattering is expected to be strongly dependent on wind speed...Doppler and coherence of VHF acoustic signals scattered from a rough ocean surface driven by a range of wind speeds. The second is to investigate the

  12. The role of acoustic sounding in a high-technology era.

    SciTech Connect

    Coulter, R. L.; Kallistratova, M. A.; Environmental Research; Russian Academy of Sciences

    1999-01-01

    This paper presents a brief synopsis of past, current and anticipated progress and problems in the use of acoustic remote sensing for basic and applied research of the lower atmosphere. The potential and reality of the sodar for determination of meteorological parameters and turbulence characteristics is discussed. Sodars' place alongside other ground-based remote sensors, including radar wind profilers, radioacoustic sounding systems (RASS) and lidars, is elucidated. Areas of atmospheric research where Doppler sodar has certain advantages are described such as cost, sensitivity, spatial and temporal resolution and surface layer measurements. The use of sodar in networks of integrated radar/RASS systems designed to supply uninterrupted monitoring of atmospheric parameters for improvements in forecasts of weather and air quality is demonstrated. The special potential role of sodar in education and training of specialists is suggested to aid in developing and using new methods of atmospheric measurements and meeting the requirements of modern environmental science. A number of problems are formulated whose solution would favor further advancement of acoustic remote sensing in integrated systems for remote monitoring of the atmospheric boundary layer.

  13. Acoustic measurement method of the volume flux of a seafloor hydrothermal plume

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2011-12-01

    Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a

  14. In Vitro Validation of Endovascular Doppler-derived Flow Rates in Models of the Cerebral Circulation

    PubMed Central

    McGah, P M; Nerva, J D; Morton, R P; Barbour, M C; Levitt, M R; Mourad, P D; Kim, L J; Aliseda, A

    2015-01-01

    This study presents validation of endovascular Doppler velocimetry-based volumetric flow rate measurements conducted in a pulsatile flow loop simulating conditions in both the internal carotid and basilar artery. In vitro models of cerebral vessels, each containing an aneurysm, were fabricated from patient anatomies extracted from 3D rotational angiography. Flow velocity measurements were collected with three different experimental techniques: an endovascular Doppler wire, Particle Image Velocimetry, and a time-resolved ultrasonic flow meter. Womersley’s theory of pulsatile flow in a cylindrical vessel was used to compute time-resolved volumetric flow rates from the endovascular Doppler velocity. The volumetric flow rates computed from the Doppler measurements were compared to those from the Particle Image Velocimetry profile measurements, and the direct measurements from the ultrasonic flow meter. The study establishes confidence intervals for any systematic or random errors associated with the wire-derived flow rates as benchmarked to the other two modalities. There is an approximately 10% random error in the Doppler-derived peak and time-averaged flow rates. There is a measurable uniform bias, about 15% too low, in the time-averaged Doppler-derived flow rates. There is also a small proportional bias in the peak systolic Doppler-derived flow rates. Potential sources of error are also discussed. PMID:26450643

  15. Acoustical bubble trapper applied to hemodialysis.

    PubMed

    Palanchon, P; Birmelé, B; Tranquart, F

    2008-04-01

    Gaseous microemboli can arise in extracorporeal lines and devices such as dialysis machines. They are associated with severe pulmonary side effects in patients undergoing chronic hemodialysis sessions. The goal of this study was to develop a gaseous emboli trapper using ultrasound waves to remove any air bubble from the tubing system before they reach the patient. A homemade bubble trapper, developed in the laboratory, consists of a Perspex block containing a main channel connected to the tubing of a hemodialysis machine and a second subchannel positioned perpendicularly to the main one, used to trap the air microemboli. The microemboli flowing in the main channel were insonified through an acoustic window with an ultrasound wave, at a frequency of 500 kHz and with a maximal acoustic pressure of 500 kPa, generated by a single-element transducer positioned 3 cm away from the main flow. The radiation force induced by the ultrasound beam acts directly on the flowing air emboli, by pushing them into the subchannel. Two Doppler probes operating both at 2 MHz, connected to a DWL Doppler machine were placed before and after the bubble trapper to count sequentially the number of embolic events. The flow of the machine was varied between 200 mL/min and 500 mL/min. Depending on the flow velocity, the number of microembolic signals (MES) detected by the Doppler probes before and after the trapping system was identical and ranged from 5 to 150 MES/min in absence of the ultrasound irradiation. When the air bubble trapper was activated, a reduction of the number of MES, up to 70%, was achieved. Doppler recordings suggest that the circulating bubbles were either fragmented into smaller bubble fragments or directly got pushed into the second subchannel where they were collected. This simple approach using an ultrasound-based trapping system was shown to operate adequately with the current settings and can be used to filter air microemboli.

  16. Acoustic iridescence.

    PubMed

    Cox, Trevor J

    2011-03-01

    An investigation has been undertaken into acoustic iridescence, exploring how a device can be constructed which alter sound waves, in a similar way to structures in nature that act on light to produce optical iridescence. The main construction had many thin perforated sheets spaced half a wavelength apart for a specified design frequency. The sheets create the necessary impedance discontinuities to create backscattered waves, which then interfere to create strongly reflected sound at certain frequencies. Predictions and measurements show a set of harmonics, evenly spaced in frequency, for which sound is reflected strongly. And the frequency of these harmonics increases as the angle of observation gets larger, mimicking the iridescence seen in natural optical systems. Similar to optical systems, the reflections become weaker for oblique angles of reflection. A second construction was briefly examined which exploited a metamaterial made from elements and inclusions which were much smaller than the wavelength. Boundary element method predictions confirmed the potential for creating acoustic iridescence from layers of such a material.

  17. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  18. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  19. The applicability of 3D Doppler tomography to studies of polars

    NASA Astrophysics Data System (ADS)

    Kononov, D. A.; Agafonov, M. I.; Sharova, O. I.; Bisikalo, D. V.; Zhilkin, A. G.; Sidorov, M. Yu.

    2014-12-01

    The applicability of 3D Doppler tomography to mapping gas flows in polars is considered. Synthetic profiles of emission lines are calculated using solutions (for the densities, temperatures, and velocity components) obtained from 3D MHD modeling, which are then used to construct 3D Doppler tomograms in the velocity space ( V x , V y , V z ). Subsequent analysis of these tomograms applying observational constraints (the signal-to-noise ratio, number of input profiles, etc.) enables evaluation of limits to the method's applicability.

  20. Effect of the optical system on the Doppler spectrum in laser-feedback interferometry.

    PubMed

    Mowla, Alireza; Nikolić, Milan; Taimre, Thomas; Tucker, John R; Lim, Yah Leng; Bertling, Karl; Rakić, Aleksandar D

    2015-01-01

    We present a comprehensive analysis of factors influencing the morphology of the Doppler spectrum obtained from a laser-feedback interferometer. We explore the effect of optical system parameters on three spectral characteristics: central Doppler frequency, broadening, and signal-to-noise ratio. We perform four sets of experiments and replicate the results using a Monte Carlo simulation calibrated to the backscattering profile of the target. We classify the optical system parameters as having a strong or weak influence on the Doppler spectrum. The calibrated Monte Carlo approach accurately reproduces experimental results, and allows one to investigate the detailed contribution of system parameters to the Doppler spectrum, which are difficult to isolate in experiment.

  1. Chronic mitral regurgitation and Doppler estimation of left ventricular filling pressures in patients with heart failure

    NASA Technical Reports Server (NTRS)

    Temporelli, P. L.; Scapellato, F.; Corra, U.; Eleuteri, E.; Firstenberg, M. S.; Thomas, J. D.; Giannuzzi, P.

    2001-01-01

    Previous studies relating Doppler parameters and pulmonary capillary wedge pressures (PCWP) typically exclude patients with severe mitral regurgitation (MR). We evaluated the effects of varying degrees of chronic MR on the Doppler estimation of PCWP. PCWP and mitral Doppler profiles were obtained in 88 patients (mean age 55 +/- 8 years) with severe left ventricular (LV) dysfunction (mean ejection fraction 23% +/- 5%). Patients were classified by severity of MR. Patients with severe MR had greater left atrial areas, LV end-diastolic volumes, and mean PCWPs and lower ejection fractions (each P <.01). In patients with mild MR, multiple echocardiographic parameters correlated with PCWP; however, with worsening MR, only deceleration time strongly related to PCWP. From stepwise multivariate analysis, deceleration time was the best independent predictor of PCWP overall, and it was the only predictor in patients with moderate or severe MR. Doppler-derived early mitral deceleration time reliably predicts PCWP in patients with severe LV dysfunction irrespective of degree of MR.

  2. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    SciTech Connect

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  3. Microwave Doppler reflectometer system in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhou, C; Liu, A D; Zhang, X H; Hu, J Q; Wang, M Y; Li, H; Lan, T; Xie, J L; Sun, X; Ding, W X; Liu, W D; Yu, C X

    2013-10-01

    A Doppler reflectometer system has recently been installed in the Experimental Advanced Superconducting (EAST) Tokamak. It includes two separated systems, one for Q-band (33-50 GHz) and the other for V-band (50-75 GHz). The optical system consists of a flat mirror and a parabolic mirror which are optimized to improve the spectral resolution. A synthesizer is used as the source and a 20 MHz single band frequency modulator is used to get a differential frequency for heterodyne detection. Ray tracing simulations are used to calculate the scattering location and the perpendicular wave number. In EAST last experimental campaign, the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated.

  4. Laser Doppler anemometer studies in unsteady ventricular flows.

    PubMed

    Phillips, W M; Furkay, S S; Pierce, W S

    1979-01-01

    The laser Doppler technique was employed to obtain intraventricular velocity distributions on the basis of in vivo confirmation of previous in vitro flow visualization predictions. The quasi-steady assumption required for quantification of flow visualization results is unsatisfactory in regions of high acceleration and fluctuating velocities are unavailable via such techniques. Mean and fluctuating velocity profiles were obtained in a pneumatically driven prosthetic ventricle with the laser Doppler anemometer and stress levels estimated. The preliminary data presented here illustrates that the technique can be applied to such flows. The measurement and data reduction schemes are applicable to a wide range of simulated cardiovascular flows. The particular application to prosthetic ventricle design should minimize the number of in vivo experiments required to develop a satisfactory blood pump and aid in tailoring pump actuation protocols for minimum thromboembolic complications.

  5. Ultrasound imaging for the rheumatologist. XVII. Role of colour Doppler and power Doppler.

    PubMed

    Iagnocco, A; Epis, O; Delle Sedie, A; Meenagh, G; Filippucci, E; Riente, L; Scirè, C A; Montecucco, C; Bombardieri, S; Grassi, W; Valesini, G

    2008-01-01

    The use of Doppler ultrasound in rheumatology has grown in recent years. This is partly due to the increasing number of rheumatologists who perform US in their daily clinical practise and also to the technological advances of US systems. Both colour Doppler and power Doppler are used to evaluate the degree of intra- and peri-articular soft tissue inflammation. Moreover, Doppler US has been found to be of help in the assessment of vascular pathologies such as the vasculitides. In this review we provide an update of the data regarding the use of colour Doppler and power Doppler in rheumatology.

  6. Nonlinear characterization of a single-axis acoustic levitator

    SciTech Connect

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  7. Concepts and trade-offs in velocity estimation with plane-wave contrast-enhanced Doppler.

    PubMed

    Tremblay-Darveau, Charles; Williams, Ross; Sheeran, Paul; Milot, Laurent; Bruce, Matthew; Burns, Peter

    2016-07-29

    While long Doppler ensembles are, in principle, beneficial for velocity estimates, short acoustic pulses must be used in microbubble contrast-enhanced Doppler to mitigate microbubble destruction. This introduces inherent trade-offs in velocity estimates with autocorrelators, which are studied here. A model of the autocorrelation function adapted to the microbubble Doppler signal, accounting for transit time, the echo frequency uncertainty and contrast-agent destruction is derived and validated in vitro. It is further demonstrated that a local measurement of the center frequency of the microbubble echo is essential in order to avoid significant bias in velocity estimates arising from the linear and nonlinear frequency-dependent scattering of microbubbles, and compensate the inherent speckle nature of the received echo frequency. For these reasons, broadband Doppler estimators (2D autocorrelator, Radon projection) are better suited than simpler narrowband estimators (1D autocorrelator, 1D Fourier transform) for contrast-enhanced flow assessment. A case study of perfusion in a VX-2 carcinoma using contrast-enhanced planewave Doppler is also shown. We demonstrate that even when considering all uncertainties associated with microbubble-related decorrelation (destruction, pulse bandwidth, transit time, flow gradient) and the need for real-time imaging, a coefficient of variation of 4% on the an axial velocity is achievable with planewave imaging.

  8. Concepts and Tradeoffs in Velocity Estimation With Plane-Wave Contrast-Enhanced Doppler.

    PubMed

    Tremblay-Darveau, Charles; Williams, Ross; Sheeran, Paul S; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2016-11-01

    While long Doppler ensembles are, in principle, beneficial for velocity estimates, short acoustic pulses must be used in microbubble contrast-enhanced (CE) Doppler to mitigate microbubble destruction. This introduces inherent tradeoffs in velocity estimates with autocorrelators, which are studied here. A model of the autocorrelation function adapted to the microbubble Doppler signal accounting for transit time, the echo frequency uncertainty, and contrast-agent destruction is derived and validated in vitro. It is further demonstrated that a local measurement of the center frequency of the microbubble echo is essential in order to avoid significant bias in velocity estimates arising from the linear and nonlinear frequency-dependent scattering of microbubbles and compensate for the inherent speckle nature of the received echo frequency. For these reasons, broadband Doppler estimators (2-D autocorrelator and Radon projection) are better suited than simpler narrow-band estimators (1-D autocorrelator and 1-D Fourier transform) for CE flow assessment. A case study of perfusion in a VX-2 carcinoma using CE plane-wave Doppler is also shown. We demonstrate that even when considering all uncertainties associated with microbubble-related decorrelation (destruction, pulse bandwidth, transit time, and flow gradient) and the need for real-time imaging, a coefficient of variation of 4% on the axial velocity is achievable with plane-wave imaging.

  9. Reduction of Doppler effect for the needs of wayside condition monitoring system of railway vehicles

    NASA Astrophysics Data System (ADS)

    Dybała, Jacek; Radkowski, Stanisław

    2013-07-01

    Technology of acoustic condition monitoring of vehicles in motion is based on the assumption that diagnostically relevant information is stored in the acoustic signal generated by a passing vehicle. Analyzing the possibilities of increasing the effectiveness of condition monitoring of a passing vehicle with stationary microphones, it should be noted that the acoustic signal recorded in these conditions is disturbed with the disturbance resulting from the Doppler effect. Reduction of signal's frequential structure disturbance resulting from the Doppler effect allows efficient analysis of changes in frequential structure of recorded signals and as a result extraction of relevant diagnostic information related with technical condition of running gear of vehicle. This article presents a method for removal of signal's frequential structure disturbances related with relative move of vehicles and stationary monitoring station. For elimination of the frequential non-stationary of signals disturbance-oriented dynamic signal resampling method was used. The paper provides a test of two methods for defining the time course of local disturbance of signal's frequential structure: the method based on the Hilbert transform and the method of analytical description of signal's disturbance based on the knowledge of a phenomenon that causes frequential non-stationarity of signals. As an example, the results of the processing and analysis of acoustic signals recorded by wayside measuring station, during the passage of WM-15A railway vehicle on an experimental track of Polish Railway Institute, are presented.

  10. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  11. Misinterpretation of lateral acoustic variations on high-resolution seismic reflection profiles as fault offsets of Holocene bay mud beneath the southern part of San Francisco Bay, California

    USGS Publications Warehouse

    Marlow, M. S.; Hart, P.E.; Carlson, P.R.; Childs, J. R.; Mann, D. M.; Anima, R.J.; Kayen, R.E.

    1996-01-01

    We collected high-resolution seismic reflection profiles in the southern part of San Francisco Bay in 1992 and 1993 to investigate possible Holocene faulting along postulated transbay bedrock fault zones. The initial analog records show apparent offsets of reflection packages along sharp vertical boundaries. These records were originally interpreted as showing a complex series of faults along closely spaced, sharp vertical boundaries in the upper 10 m (0.013 s two-way travel time) of Holocene bay mud. A subsequent survey in 1994 was run with a different seismic reflection system, which utilized a higher power source. This second system generated records with deeper penetration (max. 20 m, 0.026 s two-way travel time) and demonstrated that the reflections originally interpreted as fault offsets by faulting were actually laterally continuous reflection horizons. The pitfall in the original interpretations was caused by lateral variations in the amplitude brightness of reflection events, coupled with a long (greater than 15 ms) source signature of the low-power system. These effects combined to show apparent offsets of reflection packages along sharp vertical boundaries. These boundaries, as shown by the second system, in fact occur where the reflection amplitude diminishes abruptly on laterally continuous reflection events. This striking lateral variation in reflection amplitude is attributable to the localized presence of biogenic(?) gas.

  12. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  13. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  14. Doppler optical coherence tomography in cardiovascular applications

    NASA Astrophysics Data System (ADS)

    Bonesi, M.; Matcher, S.; Meglinski, I.

    2010-06-01

    The study of flow dynamics in complex geometry vessels is highly important in various biomedical applications where the knowledge of the mechanic interactions between the moving fluid and the housing media plays a key role for the determination of the parameters of interest, including the effect of blood flow on the possible rupture of atherosclerotic plaques. Doppler Optical Coherence Tomography (DOCT), as a functional extension of Optical Coherence Tomography (OCT), is an optic, non-contact, noninvasive technique able to achieve detailed analysis of the flow/vessel interactions. It allows simultaneous high resolution imaging (˜10 µm typical) of the morphology and composition of the vessel and determination of the flow velocity distribution along the measured cross-section. We applied DOCT system to image high-resolution one-dimensional and multi-dimensional velocity distribution profiles of Newtonian and non-Newtonian fluids flowing in vessels with complex geometry, including Y-shaped and T-shaped vessels, vessels with aneurism, bifurcated vessels with deployed stent and scaffolds. The phantoms were built to mimic typical shapes of human blood vessels, enabling preliminary analysis of the interaction between flow dynamics and the (complex) geometry of the vessels and also to map the related velocity profiles at several inlet volume flow rates. Feasibility studies for quantitative observation of the turbulence of flows arising within the complex geometry vessels are discussed. In addition, DOCT technique was also applied for monitoring cerebral mouse blood flow in vivo. Two-dimensional DOCT images of complex flow velocity profiles in blood vessel phantoms and in vivo sub-cranial mouse blood flow velocities distributions are presented.

  15. Doppler optical coherence tomography in cardiovascular physiology

    NASA Astrophysics Data System (ADS)

    Bonesi, M.; Meglinski, I.; Matcher, S.

    2008-09-01

    The study of flow dynamics in complex geometry vessels is highly important in many biomedical applications where the knowledge of the mechanic interactions between the moving fluid and the housing media plays a key role for the determination of the parameters of interest, including the effect of blood flow on the possible rupture of atherosclerotic plaques. Doppler Optical Coherence Tomography (DOCT), as a functional extension of Optical Coherence Tomography (OCT), is an optic, non-contact, non-invasive technique able to achieve detailed analysis of the flow/vessel interactions. It allows simultaneous high resolution imaging (10 μm typical) of the morphology and composition of the vessel and determination of the flow velocity distribution along the measured cross-section. We applied DOCT system to image high-resolution one-dimensional and multi-dimensional velocity distribution profiles of Newtonian and non-Newtonian fluids flowing in vessels with complex geometry, including Y-shaped and T-shaped vessels, vessels with aneurism, bifurcated vessels with deployed stent and scaffolds. The phantoms were built to mimic typical shapes of human blood vessels, enabling preliminary analysis of the interaction between flow dynamics and the (complex) geometry of the vessels and also to map the related velocity profiles at several inlet volume flow rates. Feasibility studies for quantitative observation of the turbulence of flows arising within the complex geometry vessels are discussed. In addition, DOCT technique was also applied for monitoring cerebral mouse blood flow in vivo. Two-dimensional DOCT images of complex flow velocity profiles in blood vessel phantoms and in vivo sub-cranial mouse blood flow velocities distributions are presented.

  16. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  17. Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Improvements to Passive Acoustic Tracking Methods for...www.soest.hawaii.edu/ore/faculty/nosal LONG-TERM GOALS The long-term goal of this project is to improve model-based passive acoustic methods for...and applicability of model-based passive acoustic tracking methods for marine mammals: 1) Invert for sound speed profiles, hydrophone position and

  18. Remote, Aerial, Trans-Layer, Linear and Non-Linear Downlink Underwater Acoustic Communication

    DTIC Science & Technology

    2006-09-01

    with the acousto-optic detection using the laser Doppler vibrometer has also been used to demonstrate the initial feasibility of a remote, aerial...rate, modulation parameters, and sound pressure level requirements. Figure 4 shows an acoustic shockwave , time waveform produced by a single...and picosecond regime exist that do not produce additional acoustic transients following the optical breakdown shockwave in water. It is possible

  19. Flow tracing fidelity of scattering aerosol in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Kirsch, K. J.

    1974-01-01

    An experimental method for determinating the flow tracing fidelity of a scattering aerosol used in laser Doppler velocimeters was developed with particular reference to the subsonic turbulence measurements. The method employs the measurement of the dynamic response of a flow seeding aerosol excited by acoustic waves. The amplitude and frequency of excitation were controlled to simulate the corresponding values of fluid turbulence components. Experimental results are presented on the dynamic response of aerosols over the size range from 0.1 to 2.0 microns in diameter and over the frequency range 100 Hz to 100 kHz. It was observed that unit density spherical scatterers with diameters of 0.2 microns followed subsonic air turbulence frequency components up to 100 kHz with 98 percent fidelity.

  20. Flow tracing fidelity of scattering aerosol in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Kirsch, K. J.

    1975-01-01

    An experimental method for the determination of the flow-tracing fidelity of a scattering aerosol used in laser Doppler velocimeters was developed with particular reference to the subsonic turbulence measurements. The method employs the measurement of the dynamic response of a flow-seeding aerosol excited by acoustic waves. The amplitude and frequency of excitation were controlled in order to simulate the corresponding values of fluid turbulence components. Experimental results are presented on the dynamic response of aerosols over the size range from 0.1 to 2.0 microns in diam and over the frequency range 100 Hz to 100 kHz. It was observed that unit-density spherical scatterers with diameters of 0.2 micron followed subsonic air turbulence frequency components up to 100 kHz with 98% fidelity.

  1. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1987-01-01

    Acoustic propagation in an atmosphere with a specific form of temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solution have been considered the primary emphasis has been on solutions of the acoustic wave equation with point force where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  2. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1988-01-01

    Acoustic propagation in an atmosphere with a specific form of a temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solutions have been considered, the primary emphasis has been on solutions of the acoustic wave equation with point source where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  3. Acoustic Techniques for Studying Soil-surface Seals and Crusts

    NASA Astrophysics Data System (ADS)

    Hickey, C. J.; Leary, D.; Dicarlo, D. A.

    2007-05-01

    The impact of raindrops on a soil surface during a rainstorm may cause soil-surface sealing and crusting. Soil- surface sealing is a result of the clogging in interaggregate pores by smaller suspended particles in the water, which reduces the infiltration capacity of soils. Soil-surface crusting refers to the increase in soil strength or mechanical stiffness associated with near surface compaction or densification. The formation of soil-surface seals and crusts have a profound influence on the erodability of soils, with the consensus being that the reduced hydraulic conductivity due to sealing is the more important factor. However, studies note that measured values of seal hydraulic conductivity are few. The reason so few measurements may be because the thickness of the altered surface layer is on the order of millimeters. For example Lee (2006) states that a soil-surface seal consist of two parts: a 0.1mm thick upper skin seal attributed to compaction by the rain drop impact and a deeper 1.5 mm "washed in" zone with decreased porosity due to the accumulation of particles. Bulk density profiles measured using X-radiography show maximum changes in the top 5 mm of the soil. The surface of the ground (soil) has an influence on the propagation of sound outdoors. The porosity, air flow- resistivity, and tortuosity of the ground are the properties, which characterize the influence of the ground on the airborne sound. The air flow-resistivity of a dry soil is equivalent to the hydraulic conductivity of a water-saturated soil. In this presentation we discuss two acoustic techniques, one with sensitivity to changes in hydraulic properties (sealing) and the other to changes in mechanical stiffness (crusting). These non-contact techniques excite the soil using a suspended loudspeaker to impinge acoustic energy from the air (sound) onto the sample. The response of the soil is quantified using a microphone to measure the total pressure above the soil surface and a laser Doppler

  4. Performance Of A Doppler-Corrected MDPSK Detector

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Jedrey, Thomas C.; Hinedi, Sami; Agan, Martin J.

    1994-01-01

    Report presents theoretical analysis of effect of rate of change of Doppler shift of received multiple-differential-phase-shift-keyed (MDPSK) radio signal on performance of Doppler-corrected differential detector. In particular detector, phase of received signal corrected for Doppler shift by use of Doppler estimator designed to operate in presence of negligibly small Doppler rate.

  5. SonTek SL3G Side-Looking Doppler Current Meter application in Complex Flow Conditions

    NASA Astrophysics Data System (ADS)

    Wagenaar, D.

    2014-12-01

    The SonTek Argonaut SL Side-Looking Doppler Current Meters are well established products in the measurement of real-time water velocity in open channels. With the development of acoustic doppler technology the decision was made to incorporate latest technology in the Argonaut SL and hence the SonTek SL3G was born.The SonTek SL3G Acoustic Doppler instrument incorporates a number of innovations that improves velocity measurements and quality assurance of data for Side-Looking Doppler Current Meters. SmartPulseHD was originally introduced with the launch of the SonTek M9/S5 RiverSurveyor Acoustic Doppler Instruments and the increased accuracy and resolution of velocity measurements made it obvious to include into the new SL3G instruments. SmartPulseHD continuously tracks the water conditions and selects the optimum processing configuration required using multiple ping types and processing techniques. The new SL3G design makes it the smallest Side Looking Acoustic Doppler Velocity Meter on the market reducing flow disturbance caused by the instrument and the distance of first measurement cell from boundary.The application of the SL3G Acoustic Doppler instrument is designed for complex flow conditions where the use of conventional stage-discharge relationships is economically not viable and therefore requires the use of velocity index methodology. The case-study presented in this paper is situated in the Colorado River downstream of Imperial Dam affected by controlled releases, drainage from adjacent irrigation areas and backwater from a weir situated downstream of the monitoring site. The paper analyses the relationship between measured mean velocity and index velocity and if additional variables such as stage and or Y-velocity need to be incorporated in the development of the index velocity rating. In addition, to determine the variables impacting on the index velocity rating, the index velocity applied will be evaluated by the best linear relationship between the

  6. Equations for Bistatic Doppler Shift and Rate of Change of Doppler Shift of Dark Satellite Observations

    DTIC Science & Technology

    Equations are given for the doppler shift and rate of change of doppler shift for the bistatic case where an orbiting, nontransmitting earth... of change of doppler shift, satellite height, earth-center angle between the receiver and the satellite, and zenith angle from receiver to satellite are shown for a typical satellite, 1958 Alpha, Explorer I....have been computed, using transmitting and receiving sites of the Space Surveillance System. Plots of various relationships between doppler shift, rate

  7. Families of Granules, Flows, and Acoustic Events in the Solar Atmosphere from Hinode Observations

    NASA Astrophysics Data System (ADS)

    Malherbe, J.-M.; Roudier, T.; Frank, Z.; Rieutord, M.

    2015-02-01

    We investigate the relationship between trees of fragmenting granules (TFG), horizontal and vertical flows, and acoustic events (AE) in the photospheric network. AE are spatially concentrated and short-duration locations of acoustic energy flux. We performed observations at disk center of a 2D field of view (FOV) with high spatial and temporal resolutions provided by the Solar Optical Telescope onboard Hinode. Line profiles of Fe i 557.6 nm were recorded by the Narrow-band Filter Imager on an 80″×36″ FOV during five hours with a cadence of 22 seconds and 0.08″ pixel size. Vertical velocities were derived at two atmospheric levels allowing the determination of the energy flux at the acoustic frequency of 3.3 mHz. Families of granules and horizontal velocities were obtained from local correlation tracking (LCT) after segmentation and labeling of either continuum intensities or granular Doppler shifts. AE exhibit durations in the range 0.25 to 1 hour compatible with the lifetime of families (80 % do not last more than two hours). High-energy AE have the shortest lifetimes. We found that most AE occur in intergranular lanes located in or close to the boundaries between different families (called inter families) in regions with predominantly downward vertical motions and horizontal converging flows. In contrast, diverging flows are observed inside families, with a few AE in the intergranules. At the beginning of the sequence, when families are not yet detected, the distribution of AE is not uniform and is already organized at spatial lengths related to the mesogranular scale, with maximum contribution in the range 5″ to 10″, fully compatible with the scale of the maximum contribution of families in the TFG space. Although all sizes and durations seem to exist for families, their number decreases with increasing size and lifetime.

  8. Advances in the development of a Mach-Zehnder interferometric Doppler imager for seismology of giant planets

    NASA Astrophysics Data System (ADS)

    Gonçalves, Ivan; Schmider, François-Xavier; Bresson, Yves; Dejonghe, Julien; Preis, Olivier; Robbe-Dubois, Sylvie; Appourchaux, Thierry; Boumier, Patrick; Leclec'h, Jean-Christophe; Morinaud, Gilles; Gaulme, Patrick; Jackiewicz, Jason

    2016-08-01

    The measurements of radial velocity fields on planets with a Doppler Spectro-Imager allow the study of atmospheric dynamics of giant planets and the detection of their acoustic oscillations. The frequencies of these oscillations lead to the determination of the internal structure by asteroseismology. A new imaging tachometer, based on a Mach-Zehnder interferometer, has been developed to monitor the Doppler shift of solar lines reflected at the surface of the planets. We present the principle of this instrument. A prototype was designed and built, following the specifications of a future space mission. The performance of the prototype, both at the laboratory and on the sky, is presented here.

  9. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  10. Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico: determination of dominant zooplankton and micronekton scatterers

    NASA Astrophysics Data System (ADS)

    Ressler, Patrick H.

    2002-11-01

    A 153 kHz narrowband acoustic Doppler current profiler (ADCP) was used to measure volume backscattering strength ( Sv) during a deepwater oceanographic survey of cetacean and seabird habitat in the northeastern Gulf of Mexico. Sv was positively related to zooplankton and micronekton biomass (wet displacement volume) in 'sea-truth' net hauls made with a 1 m 2 Multiple Opening-Closing Net Environmental Sensing System (MOCNESS). A subset of these MOCNESS tows was used to explore the relationship between the numerical densities of various taxonomic categories of zooplankton and the ADCP backscatter signal. Crustaceans, small fish, and fragments of non-gas-bearing siphonophores in the net samples all showed significant, positive correlations with the acoustic signal, while other types of gelatinous zooplankton, pteropod and atlantid molluscs, and gas-filled siphonophore floats showed no significant correlation with Sv. Previously published acoustic scattering models for zooplankton were used to calculate expected scattering for several general zooplankton types and sizes for comparison with the field data. Even though gelatinous material often made up a large fraction of the total biomass, crustaceans, small fish, and pteropods were most likely the important scatterers. Since only crustacean and small fish densities were significantly correlated with Sv, it is suggested that Sv at 153 kHz can be used as a relative proxy for the abundance of these organisms in the Gulf of Mexico.

  11. Transcranial Doppler ultrasonography: From methodology to major clinical applications

    PubMed Central

    D’Andrea, Antonello; Conte, Marianna; Cavallaro, Massimo; Scarafile, Raffaella; Riegler, Lucia; Cocchia, Rosangela; Pezzullo, Enrica; Carbone, Andreina; Natale, Francesco; Santoro, Giuseppe; Caso, Pio; Russo, Maria Giovanna; Bossone, Eduardo; Calabrò, Raffaele

    2016-01-01

    Non-invasive Doppler ultrasonographic study of cerebral arteries [transcranial Doppler (TCD)] has been extensively applied on both outpatient and inpatient settings. It is performed placing a low-frequency (≤ 2 MHz) transducer on the scalp of the patient over specific acoustic windows, in order to visualize the intracranial arterial vessels and to evaluate the cerebral blood flow velocity and its alteration in many different conditions. Nowadays the most widespread indication for TCD in outpatient setting is the research of right to left shunting, responsable of so called “paradoxical embolism”, most often due to patency of foramen ovale which is responsable of the majority of cryptogenic strokes occuring in patients younger than 55 years old. TCD also allows to classify the grade of severity of such shunts using the so called “microembolic signal grading score”. In addition TCD has found many useful applications in neurocritical care practice. It is useful on both adults and children for day-to-day bedside assessment of critical conditions including vasospasm in subarachnoidal haemorrhage (caused by aneurysm rupture or traumatic injury), traumatic brain injury, brain stem death. It is used also to evaluate cerebral hemodynamic changes after stroke. It also allows to investigate cerebral pressure autoregulation and for the clinical evaluation of cerebral autoregulatory reserve. PMID:27468332

  12. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  13. Compact and Rugged Transceiver for Coherent Doppler Wind Lidar Applications in Space

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Singh, Upendra N.; Trieu, Bo C.; Modlin, Ed A.; Petros, Mulugeta; Bai, Yingxin; Reithmaier, Karl; Petzar, Paul J.

    2007-01-01

    High-accuracy, vertical profiles of the horizontal vector wind in earth s atmosphere, with the global coverage of an orbiting sensor, are a highly desired measurement of NASA, NOAA, and many other agencies and countries. It is the consensus of NASA and NOAA that the most cost effective, lowest risk measurement method with the earliest achievable mission date is the hybrid Doppler lidar method which utilizes both coherent- and direct-detection Doppler lidars to obtain the desired profiles. NASA Langley Research Center (LaRC) has advanced the 2-micron pulsed solid-state laser greatly over the past 15 years and has recently demonstrated 1.2 J of pulse energy whereas the requirement for a 400-km hybrid Doppler lidar mission is only 0.25 J. The IIP project reported here is an effort to increase the ruggedness and to compactly package the LaRC state-of-the-art laser technology.

  14. An atlas of Doppler emission-line tomography of cataclysmic variable stars

    NASA Technical Reports Server (NTRS)

    Kaitchuck, Ronald H.; Schlegel, Eric M.; Honeycutt, R. Kent; Horne, Keith; Marsh, T. R.; White, J. C., II; Mansperger, Cathy S.

    1994-01-01

    Doppler emission-line tomography is a technique similar to medical tomography. In this atlas the emission-line profiles of cataclysmic variable stars, seen at different orbital phases, are transformed into velocity space images. This transformation makes many of the complex line profile changes easier to interpret. The emission contributions of the disk and the s-wave are clearly separated in these images, and any emission from the stream and the secondary star can often be identified. In this atlas, Doppler tomograms of Hbeta, He I lambda 4471, and He II lambda 4686 emission lines of 18 cataclysmic variable stars are presented. The Doppler images provide insights into the individual systems and a better technique for measuring and radial velocity amplitude of the white dwarf.

  15. Real-time Feedback of Histotripsy Thrombolysis Using Bubble-induced Color Doppler

    PubMed Central

    Zhang, Xi; Miller, Ryan M.; Lin, Kuang-Wei; Levin, Albert M.; Owens, Gabe E.; Gurm, Hitinder S.; Cain, Charles A.; Xu, Zhen

    2014-01-01

    Histotripsy thrombolysis is a noninvasive, drug-free and image-guided therapy that fractionates blood clots using well-controlled acoustic cavitation alone. Real-time quantitative feedback is highly desired during histotripsy thrombolysis treatment to monitor the progress of clot fractionation. Bubble-induced color Doppler (BCD) monitors the motion following cavitation generated by each histotripsy pulse, which has been shown in gel and ex vivo liver tissue to be correlated with histotripsy fractionation. In this paper we investigate the potential of BCD to quantitatively monitor histotripsy thrombolysis in real-time. To visualize clot fractionation, transparent three-layered fibrin clots were developed. Results show a coherent motion follows the cavitation generated by each histotripsy pulse with a push and rebound pattern. The temporal profile of this motion expanded and saturated as the treatment progressed. A strong correlation existed between the degree of histotripsy clot fractionation and two metrics extracted from BCD: time of peak rebound velocity (tPRV) and focal mean velocity at a fixed delay (Vf,delay). The saturation of clot fractionation (i.e., treatment completion) matched well with the saturations detected using tPRV and Vf,delay. The mean Pearson correlation coefficients between the progressions of clot fractionation and the two BCD metrics were 93.1% and 92.6% respectively. To validate the BCD feedback in in vitro clots, debris volume from histotripsy thrombolysis were obtained at different therapy doses and compared with Vf,delay. The increasing and saturation trends of debris volume and Vf,delay also had good agreement. Finally, a real-time BCD feedback algorithm to predict complete clot fractionation during histotripsy thrombolysis was developed and tested. This work demonstrated the potential of BCD to monitor histotripsy thrombolysis treatment in real-time. PMID:25623821

  16. Feigned Depression and Feigned Sleepiness: A Voice Acoustical Analysis

    ERIC Educational Resources Information Center

    Reilly, Nicole; Cannizzaro, Michael S.; Harel, Brian T.; Snyder, Peter J.

    2004-01-01

    We sought to profile the voice acoustical correlates of simulated, or feigned depression by neurologically and psychiatrically healthy control subjects. We also sought to identify the voice acoustical correlates of feigned sleepiness for these same subjects. Twenty-two participants were asked to speak freely about a cartoon, to count from 1 to 10,…

  17. Sparsity-driven Passive Tracking of Underwater Acoustic Sources

    DTIC Science & Technology

    2015-08-01

    bend ✴ Temperature , pressure and salinity D epth Range Source localization map (SLM) 2 Shallow water sound -speed profile Modeling...Difficult due to complexities of the propagation environment • Ocean behaves as an acoustic waveguide • Varying sound -speed causes acoustic signals to

  18. The first Doppler images of the eclipsing binary SZ Piscium

    NASA Astrophysics Data System (ADS)

    Xiang, Yue; Gu, Shenghong; Cameron, A. Collier; Barnes, J. R.; Zhang, Liyun

    2016-02-01

    We present the first Doppler images of the active eclipsing binary system SZ Psc, based on the high-resolution spectral data sets obtained in 2004 November and 2006 September-December. The least-squares deconvolution technique was applied to derive high signal-to-noise profiles from the observed spectra of SZ Psc. Absorption features contributed by a third component of the system were detected in the LSD profiles at all observed phases. We estimated the mass and period of the third component to be about 0.9 M⊙ and 1283 ± 10 d, respectively. After removing the contribution of the third body from the least-squares deconvolved profiles, we derived the surface maps of SZ Psc. The resulting Doppler images indicate significant star-spot activities on the surface of the K subgiant component. The distributions of star-spots are more complex than that revealed by previous photometric studies. The cooler K component exhibited pronounced high-latitude spots as well as numerous low- and intermediate-latitude spot groups during the entire observing seasons, but did not show any large, stable polar cap, different from many other active RS CVn-type binaries.

  19. In vivo feasibility of endovascular Doppler optical coherence tomography

    PubMed Central

    Sun, Cuiru; Nolte, Felix; Cheng, Kyle H. Y.; Vuong, Barry; Lee, Kenneth K. C.; Standish, Beau A.; Courtney, Brian; Marotta, Thomas R.; Mariampillai, Adrian; Yang, Victor X. D.

    2012-01-01

    Feasibility of detecting intravascular flow using a catheter based endovascular optical coherence tomography (OCT) system is demonstrated in a porcine carotid model in vivo. The effects of A-line density, radial distance, signal-to-noise ratio, non-uniform rotational distortion (NURD), phase stability of the swept wavelength laser and interferometer system on Doppler shift detection limit were investigated in stationary and flow phantoms. Techniques for NURD induced phase shift artifact removal were developed by tracking the catheter sheath. Detection of high flow velocity (~51 cm/s) present in the porcine carotid artery was obtained by phase unwrapping techniques and compared to numerical simulation, taking into consideration flow profile distortion by the eccentrically positioned imaging catheter. Using diluted blood in saline mixture as clearing agent, simultaneous Doppler OCT imaging of intravascular flow and structural OCT imaging of the carotid artery wall was feasible. To our knowledge, this is the first in vivo demonstration of Doppler imaging and absolute measurement of intravascular flow using a rotating fiber catheter in carotid artery. PMID:23082299

  20. Spaceborne Simulations of Two Direct-Detection Doppler Lidar Techniques

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Li, Steve X.

    1998-01-01

    spaceborne profiling systems. Particular emphasis will be placed on the molecular systems, as these are viewed as the strength of direct-detection Doppler lidar.