Science.gov

Sample records for acoustic doppler profiler

  1. Broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Cobb, E.D.

    1993-01-01

    The broad-band acoustic Doppler current profiler is an instrument that determines velocity based on the Doppler principle by reflecting acoustic signals off sediment particles in the water. The instrument is capable of measuring velocity magnitude and direction throughout a water column and of measuring water depth. It is also capable of bottom tracking and can, therefore, keep track of its own relative position as it is moved across a channel. Discharge measurements can be made quickly and, based on limited tests, accurately with this instrument. ?? 1993.

  2. Recent applications of acoustic Doppler current profilers

    USGS Publications Warehouse

    Oberg, K.A.; Mueller, David S.

    1994-01-01

    A Broadband acoustic Doppler current profiler (BB-ADCP) is a new instrument being used by the U.S. Geological Survey (USGS) to measure stream discharge and velocities, and bathymetry. During the 1993 Mississippi River flood, more than 160 high-flow BB-ADCP measurements were made by the USGS at eight locations between Quincy and Cairo, Ill., from July 19 to August 20, 1993. A maximum discharge of 31,400 m3/s was measured at St. Louis, Mo., on August 2, 1993. A BB-ADCP also has been used to measure leakage through three control structures near Chicago, Ill. These measurements are unusual in that the average velocity for the measured section was as low as 0.03 m/s. BB-ADCP's are also used in support of studies of scour at bridges. During the recent Mississippi River flood, BB-ADCP's were used to measure water velocities and bathymetry upstream from, next to, and downstream from bridge piers at several bridges over the Mississippi River. Bathymetry data were collected by merging location data from Global Positioning System (GPS) receivers, laser tracking systems, and depths measured by the BB-ADCP. These techniques for collecting bathymetry data were used for documenting the channel formation downstream from the Miller City levee break and scour near two bridges on the Mississippi River.

  3. Validation of streamflow measurements made with acoustic doppler current profilers

    USGS Publications Warehouse

    Oberg, K.; Mueller, D.S.

    2007-01-01

    The U.S. Geological Survey and other international agencies have collaborated to conduct laboratory and field validations of acoustic Doppler current profiler (ADCP) measurements of streamflow. Laboratory validations made in a large towing basin show that the mean differences between tow cart velocity and ADCP bottom-track and water-track velocities were -0.51 and -1.10%, respectively. Field validations of commercially available ADCPs were conducted by comparing streamflow measurements made with ADCPs to reference streamflow measurements obtained from concurrent mechanical current-meter measurements, stable rating curves, salt-dilution measurements, or acoustic velocity meters. Data from 1,032 transects, comprising 100 discharge measurements, were analyzed from 22 sites in the United States, Canada, Sweden, and The Netherlands. Results of these analyses show that broadband ADCP streamflow measurements are unbiased when compared to the reference discharges regardless of the water mode used for making the measurement. Measurement duration is more important than the number of transects for reducing the uncertainty of the ADCP streamflow measurement. ?? 2007 ASCE.

  4. River Bed Sediment Classification Using Acoustic Doppler Profiler

    NASA Astrophysics Data System (ADS)

    Shields, F. D.

    2008-12-01

    Restoration or rehabilitation of degraded stream and river habitats requires definition of a target condition and preferably post-implementation monitoring to gage progress toward the target. Stream habitat has been characterized by computing statistics based on measurements of water depth and velocity at each point of a horizontal grid. In many cases stream bed type and cover, both qualitatively assessed, were included as additional grid variables. Resultant statistics describing the central tendency, variability and spatial distribution of these three or four variables and their combinations have been used to explain key differences between more- and less-degraded streams and to infer biotic responses. Usually the required data are collected by wading observers, but application to larger rivers is problematic. Collection of water depth and velocity information may be automated across a wide range of stream sizes using an acoustic Doppler profiler (aDp). Herein we suggest that aDp data may also be used to infer bed hardness and thus type by extracting the return signal strength from the bottom track signal and using this information to compute the echo intensity at the bed. A method for computing echo intensity, along with key assumptions is presented. Echo intensity is computed for a range of river environments and related to the size and related characteristics of bed material. Habitat maps for river reaches depicting water depth, velocity and bed type developed from aDp data sets are presented.

  5. Acoustic Doppler Current Profiler Data Processing System manual [ADCP

    USGS Publications Warehouse

    Cote, Jessica M.; Hotchkiss, Frances S.; Martini, Marinna; Denham, Charles R.; revisions by Ramsey, Andree L.; Ruane, Stephen

    2000-01-01

    This open-file report describes the data processing software currently in use by the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), to process time series of acoustic Doppler current data obtained by Teledyne RD Instruments Workhorse model ADCPs. The Sediment Transport Instrumentation Group (STG) at the WHCMSC has a long-standing commitment to providing scientists high quality oceanographic data published in a timely manner. To meet this commitment, STG has created this software to aid personnel in processing and reviewing data as well as evaluating hardware for signs of instrument malfunction. The output data format for the data is network Common Data Form (netCDF), which meets USGS publication standards. Typically, ADCP data are recorded in beam coordinates. This conforms to the USGS philosophy to post-process rather than internally process data. By preserving the original data quality indicators as well as the initial data set, data can be evaluated and reprocessed for different types of analyses. Beam coordinate data are desirable for internal and surface wave experiments, for example. All the code in this software package is intended to run using the MATLAB program available from The Mathworks, Inc. As such, it is platform independent and can be adapted by the USGS and others for specialized experiments with non-standard requirements. The software is continuously being updated and revised as improvements are required. The most recent revision may be downloaded from: http://woodshole.er.usgs.gov/operations/stg/Pubs/ADCPtools/adcp_index.htm The USGS makes this software available at the user?s discretion and responsibility.

  6. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    SciTech Connect

    Sellar, Brian; Harding, Samuel F.; Richmond, Marshall C.

    2015-07-16

    An array of convergent acoustic Doppler velocimeters has been developed and tested for the high resolution measurement of three-dimensional tidal flow velocities in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use diverging acoustic beams emanating from a single instrument. This is achieved using converging acoustic beams with a sample volume at the focal point of 0.03 m3. The array is also able to simultaneously measure three-dimensional velocity components in a profile throughout the water column, and as such is referred to herein as a converging-beam acoustic Doppler profiler (CADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational Alstom 1MW DeepGen-IV Tidal Turbine. This proof-of-concept paper outlines system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of CADP to standard ADP velocity measurements reveals a mean difference of 8 mm/s, standard deviation of 18 mm/s, and order-of-magnitude reduction in realizable length-scale. CADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the CADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved turbulence, resource and structural loading quantification and validation of numerical simulations. Alternative modes of operation have been implemented including noise-reducing bi-static sampling. Since waves are simultaneously measured it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.

  7. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  8. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    NASA Astrophysics Data System (ADS)

    Sellar, Brian; Harding, Samuel; Richmond, Marshall

    2015-08-01

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in

  9. Measurement of Turbulence with Acoustic Doppler Current Profilers - Sources of Error and Laboratory Results

    USGS Publications Warehouse

    Nystrom, E.A.; Oberg, K.A.; Rehmann, C.R.; ,

    2002-01-01

    Acoustic Doppler current profilers (ADCPs) provide a promising method for measuring surface-water turbulence because they can provide data from a large spatial range in a relatively short time with relative ease. Some potential sources of errors in turbulence measurements made with ADCPs include inaccuracy of Doppler-shift measurements, poor temporal and spatial measurement resolution, and inaccuracy of multi-dimensional velocities resolved from one-dimensional velocities measured at separate locations. Results from laboratory measurements of mean velocity and turbulence statistics made with two pulse-coherent ADCPs in 0.87 meters of water are used to illustrate several of inherent sources of error in ADCP turbulence measurements. Results show that processing algorithms and beam configurations have important effects on turbulence measurements. ADCPs can provide reasonable estimates of many turbulence parameters; however, the accuracy of turbulence measurements made with commercially available ADCPs is often poor in comparison to standard measurement techniques.

  10. Measuring discharge with acoustic Doppler current profilers from a moving boat

    USGS Publications Warehouse

    Mueller, David S.; Wagner, Chad R.; Rehmel, Michael S.; Oberg, Kevin A.; Rainville, Francois

    2013-01-01

    The use of acoustic Doppler current profilers (ADCPs) from a moving boat is now a commonly used method for measuring streamflow. The technology and methods for making ADCP-based discharge measurements are different from the technology and methods used to make traditional discharge measurements with mechanical meters. Although the ADCP is a valuable tool for measuring streamflow, it is only accurate when used with appropriate techniques. This report presents guidance on the use of ADCPs for measuring streamflow; this guidance is based on the experience of U.S. Geological Survey employees and published reports, papers, and memorandums of the U.S. Geological Survey. The guidance is presented in a logical progression, from predeployment planning, to field data collection, and finally to post processing of the collected data. Acoustic Doppler technology and the instruments currently (2013) available also are discussed to highlight the advantages and limitations of the technology. More in-depth, technical explanations of how an ADCP measures streamflow and what to do when measuring in moving-bed conditions are presented in the appendixes. ADCP users need to know the proper procedures for measuring discharge from a moving boat and why those procedures are required, so that when the user encounters unusual field conditions, the procedures can be adapted without sacrificing the accuracy of the streamflow-measurement data.

  11. Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.

    2004-01-01

    The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s-1 and currents up to 40 cm s-1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is -0.4 cm s-1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s-1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s-1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s-1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ??? 50 cm s-1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ??? 5 cm s-1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.

  12. Use of an Acoustic Doppler Current Profiler (ADCP) to Measure Hypersaline Bidirectional Discharge

    USGS Publications Warehouse

    Johnson, K.K.; Loving, B.L.

    2002-01-01

    The U.S. Geological Survey measures the exchange of flow between the north and south parts of Great Salt Lake, Utah, as part of a monitoring program. Turbidity and bidirectional flow through the breach in the causeway that divides the lake into two parts makes it difficult to measure discharge with conventional streamflow techniques. An acoustic Doppler current profiler (ADCP) can be used to more accurately define the angles of flow and the location of the interface between the layers of flow. Because of the high salinity levels measured in Great Salt Lake (60-280 parts per thousand), special methods had to be developed to adjust ADCP-computed discharges for the increased speed of sound in hypersaline waters and for water entrained at the interface between flow layers.

  13. Variance of discharge estimates sampled using acoustic Doppler current profilers from moving boats

    USGS Publications Warehouse

    Garcia, Carlos M.; Tarrab, Leticia; Oberg, Kevin; Szupiany, Ricardo; Cantero, Mariano I.

    2012-01-01

    This paper presents a model for quantifying the random errors (i.e., variance) of acoustic Doppler current profiler (ADCP) discharge measurements from moving boats for different sampling times. The model focuses on the random processes in the sampled flow field and has been developed using statistical methods currently available for uncertainty analysis of velocity time series. Analysis of field data collected using ADCP from moving boats from three natural rivers of varying sizes and flow conditions shows that, even though the estimate of the integral time scale of the actual turbulent flow field is larger than the sampling interval, the integral time scale of the sampled flow field is on the order of the sampling interval. Thus, an equation for computing the variance error in discharge measurements associated with different sampling times, assuming uncorrelated flow fields is appropriate. The approach is used to help define optimal sampling strategies by choosing the exposure time required for ADCPs to accurately measure flow discharge.

  14. Acoustic Doppler Current Profiler Surveys of Velocity Downstream of Albeni Falls Dam

    SciTech Connect

    Perkins, William A.; Titzler, P. Scott; Richmond, Marshall C.; Serkowski, John A.; Kallio, Sara E.; Bellgraph, Brian J.

    2010-09-30

    The U.S. Army Corps of Engineers (USACE), Seattle District, is studying the potential to locate fish bypass systems at Albeni Falls Dam. The USACE requested Pacific Northwest National Laboratory (PNNL) to survey velocity magnitude and direction in the dam tailrace. The empirical data collected will be used to support future numerical modeling, physical modeling, and evaluation of fish bypass system alternatives. In May 2010, PNNL conducted velocity surveys of the Albeni Falls Dam using a boat-mounted acoustic Doppler current profiler. The surveys were conducted over three days (May 25 through 27). During the survey period, total river discharge at the dam varied between 30.2 and 31.0 kcfs. A small amount of spill discharge, 2 kcfs, was present on two days (May 26 and 27). This report presents data plots showing measured velocity direction and magnitude averaged over the entire depth and over 5-ft depth increments from 5 to 30 ft.

  15. A GIS-based Computational Tool for Multidimensional Flow Velocity by Acoustic Doppler Current Profilers

    NASA Astrophysics Data System (ADS)

    Kim, D.; Winkler, M.; Muste, M.

    2015-06-01

    Acoustic Doppler Current Profilers (ADCPs) provide efficient and reliable flow measurements compared to other tools for characteristics of the riverine environments. In addition to originally targeted discharge measurements, ADCPs are increasingly utilized to assess river flow characteristics. The newly developed VMS (Velocity Mapping Software) aims at providing an efficient process for quality assurance, mapping velocity vectors for visualization and facilitating comparison with physical and numerical model results. VMS was designed to provide efficient and smooth work flows for processing groups of transects. The software allows the user to select group of files and subsequently to conduct statistical and graphical quality assurance on the files as a group or individually as appropriate. VMS also enables spatial averaging in horizontal and vertical plane for ADCP data in a single or multiple transects over the same or consecutive cross sections. The analysis results are displayed in numerical and graphical formats.

  16. Performance assessment and calibration of a profiling lab-scale acoustic Doppler velocimeter for application over mixed sand-gravel beds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic Doppler velocimetry has made high-resolution turbulence measurements in sediment-laden flows possible. Recent developments have resulted in a commercially available lab-scale acoustic Doppler profiling device, a Nortek Vectrino II, that allows for three-dimensional velocity data to be colle...

  17. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California

    USGS Publications Warehouse

    Gartner, J.W.

    2004-01-01

    The estimation of mass concentration of suspended solids is one of the properties needed to understand the characteristics of sediment transport in bays and estuaries. However, useful measurements or estimates of this property are often problematic when employing the usual methods of determination from collected water samples or optical sensors. Analysis of water samples tends to undersample the highly variable character of suspended solids, and optical sensors often become useless from biological fouling in highly productive regions. Acoustic sensors, such as acoustic Doppler current profilers that are now routinely used to measure water velocity, have been shown to hold promise as a means of quantitatively estimating suspended solids from acoustic backscatter intensity, a parameter used in velocity measurement. To further evaluate application of this technique using commercially available instruments, profiles of suspended solids concentrations are estimated from acoustic backscatter intensity recorded by 1200- and 2400-kHz broadband acoustic Doppler current profilers located at two sites in San Francisco Bay, California. ADCP backscatter intensity is calibrated using optical backscatterance data from an instrument located at a depth close to the ADCP transducers. In addition to losses from spherical spreading and water absorption, calculations of acoustic transmission losses account for attenuation from suspended sediment and correction for nonspherical spreading in the near field of the acoustic transducer. Acoustic estimates of suspended solids consisting of cohesive and noncohesive sediments are found to agree within about 8-10% (of the total range of concentration) to those values estimated by a second optical backscatterance sensor located at a depth further from the ADCP transducers. The success of this approach using commercially available Doppler profilers provides promise that this technique might be appropriate and useful under certain conditions in

  18. Discharge measurements using a broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Simpson, Michael R.

    2002-01-01

    The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.

  19. Averaged indicators of secondary flow in repeated acoustic Doppler current profiler crossings of bends

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    [1] Cross-stream velocity was measured in a large river bend at high spatial resolution over three separate survey episodes. A suite of methods for resolving cross-stream velocity distributions was tested on data collected using acoustic Doppler current profilers (ADCP) in the sand-bedded Sacramento River, California. The bend was surveyed with repeated ADCP crossings at eight cross sections during a rising limb of high discharge in February 2004 and twice on recession in March 2004. By translating and interpolating repeated ADCP crossings to planar grids, velocity ensembles at similar positions along irregular boat paths could be averaged. The averaging minimized turbulent fluctuations in streamwise velocities over 1 m/s, enabling the resolution of weaker cross-stream velocities (???15-30 cm/s). Secondary-flow influence on suspended sediment was inferred from a lateral region of acoustic backscatter intensity aligned with outward flow over the point bar. A near-bed decrease in backscatter intensity across the pool corresponded with inward cross-stream flow. These suspension indicators were used to orient averaged velocity grids for unambiguously defining the cross-stream velocity magnitudes. Additional field investigations could test whether the correlation between cross-stream velocity and backscatter intensity patterns results from helical recirculation of suspended sediment to the inside of the bend. These river measurements, consistent with classic and recent laboratory studies, show that ADCP surveys can provide refined views of secondary flow and sediment movement in large rivers.

  20. Field evaluation of shallow-water acoustic doppler current profiler discharge measurements

    USGS Publications Warehouse

    Rehmel, M.S.

    2007-01-01

    In 2004, the U.S. Geological Survey (USGS) Office of Surface Water staff and USGS Water Science employees began testing the StreamPro, an acoustic Doppler current profiler (ADCP) for shallow-water discharge measurements. Teledyne RD Instruments introduced the StreamPro in December of 2003. The StreamPro is designed to make a "moving boat" discharge measurement in streams with depths between 0.15 and 2 m. If the StreamPro works reliably in these conditions, it will allow for use of ADCPs in a greater number of streams than previously possible. Evaluation sites were chosen to test the StreamPro over a range of conditions. Simultaneous discharge measurements with mechanical and other acoustic meters, along with stable rating curves at established USGS streamflow-gaging stations, were used for comparisons. The StreamPro measurements ranged in mean velocity from 0.076 to 1.04 m/s and in discharge from 0.083 m 3/s to 43.4 m 3/s. Tests indicate that discharges measured with the StreamPro compare favorably to the discharges measured with the other meters when the mean channel velocity is greater than 0.25 m/s. When the mean channel velocity is less than 0.25 m/s, the StreamPro discharge measurements for individual transects have greater variability than those StreamPro measurements where the mean channel velocity is greater than 0.25 m/s. Despite this greater variation in individual transects, there is no indication that the StreamPro measured discharges (the mean discharge for all transects) are biased, provided that enough transects are used to determine the mean discharge. ?? 2007 ASCE.

  1. Errors in acoustic doppler profiler velocity measurements caused by flow disturbance

    USGS Publications Warehouse

    Mueller, D.S.; Abad, J.D.; Garcia, C.M.; Gartner, J.W.; Garcia, M.H.; Oberg, K.A.

    2007-01-01

    Acoustic Doppler current profilers (ADCPs) are commonly used to measure streamflow and water velocities in rivers and streams. This paper presents laboratory, field, and numerical model evidence of errors in ADCP measurements caused by flow disturbance. A state-of-the-art three-dimensional computational fluid dynamic model is validated with and used to complement field and laboratory observations of flow disturbance and its effect on measured velocities. Results show that near the instrument, flow velocities measured by the ADCP are neither the undisturbed stream velocity nor the velocity of the flow field around the ADCP. The velocities measured by the ADCP are biased low due to the downward flow near the upstream face of the ADCP and upward recovering flow in the path of downstream transducer, which violate the flow homogeneity assumption used to transform beam velocities into Cartesian velocity components. The magnitude of the bias is dependent on the deployment configuration, the diameter of the instrument, and the approach velocity, and was observed to range from more than 25% at 5cm from the transducers to less than 1% at about 50cm from the transducers for the scenarios simulated. ?? 2007 ASCE.

  2. Aquatic habitat mapping with an acoustic doppler current profiler: Considerations for data quality

    USGS Publications Warehouse

    Gaeuman, David; Jacobson, Robert B.

    2005-01-01

    When mounted on a boat or other moving platform, acoustic Doppler current profilers (ADCPs) can be used to map a wide range of ecologically significant phenomena, including measures of fluid shear, turbulence, vorticity, and near-bed sediment transport. However, the instrument movement necessary for mapping applications can generate significant errors, many of which have not been inadequately described. This report focuses on the mechanisms by which moving-platform errors are generated, and quantifies their magnitudes under typical habitat-mapping conditions. The potential for velocity errors caused by mis-alignment of the instrument?s internal compass are widely recognized, but has not previously been quantified for moving instruments. Numerical analyses show that even relatively minor compass mis-alignments can produce significant velocity errors, depending on the ratio of absolute instrument velocity to the target velocity and on the relative directions of instrument and target motion. A maximum absolute instrument velocity of about 1 m/s is recommended for most mapping applications. Lower velocities are appropriate when making bed velocity measurements, an emerging application that makes use of ADCP bottom-tracking to measure the velocity of sediment particles at the bed. The mechanisms by which heterogeneities in the flow velocity field generate horizontal velocities errors are also quantified, and some basic limitations in the effectiveness of standard error-detection criteria for identifying these errors are described. Bed velocity measurements may be particularly vulnerable to errors caused by spatial variability in the sediment transport field.

  3. Correcting acoustic Doppler current profiler discharge measurements biased by sediment transport

    USGS Publications Warehouse

    Mueller, D.S.; Wagner, C.R.

    2007-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment on or near the streambed, and is an issue widely acknowledged by the scientific community. The integration of a differentially corrected global positioning system (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias, based on the closure error resulting from a two-way crossing of the river, is presented. The uncertainty in the mean moving-bed velocity measured by the loop method is shown to be approximately 0.6cm/s. For the 13 field measurements presented, the loop method resulted in corrected discharges that were within 5% of discharges measured utilizing DGPS to compensate for moving-bed conditions. ?? 2007 ASCE.

  4. Coupling airborne laser scanning and acoustic Doppler current profiler data to model stream rating curves

    NASA Astrophysics Data System (ADS)

    Lam, N.; Lyon, S. W.; Kean, J. W.

    2015-12-01

    The rating curve enables the translation of water depth into discharge through a reference cross section. Errors in estimating stream channel geometry can therefore result in increased discharge uncertainty. This study investigates coupling national-scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. Specifically, stream channel geometries were generated from coupled ALS and ADCP scanning data collected for a well-monitored site located in northern Sweden. These data were used to define the hydraulic geometry required by a physically-based 1-D hydraulic model. The results of our study demonstrate that the effects of potential scanning data errors on the model generated rating curve were less than the uncertainties due to stream gauging measurements and empirical rating curve fitting. Further analysis of the ALS data showed that an overestimation of the streambank elevation (the main scanning data error) was primarily due to vegetation that could be adjusted for through a root-mean-square-error bias correction. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establish rating curves at gauging stations.

  5. Repeated surveys by acoustic Doppler current profiler for flow and sediment dynamics in a tidal river

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    A strategy of repeated surveys by acoustic Doppler current profiler (ADCP) was applied in a tidal river to map velocity vectors and suspended-sediment indicators. The Sacramento River at the junction with the Delta Cross Channel at Walnut Grove, California, was surveyed over several tidal cycles in the Fall of 2000 and 2001 with a vessel-mounted ADCP. Velocity profiles were recorded along flow-defining survey paths, with surveys repeated every 27 min through a diurnal tidal cycle. Velocity vectors along each survey path were interpolated to a three-dimensional Cartesian grid that conformed to local bathymetry. A separate array of vectors was interpolated onto a grid from each survey. By displaying interpolated vector grids sequentially with computer animation, flow dynamics of the reach could be studied in three-dimensions as flow responded to the tidal cycle. Velocity streamtraces in the grid showed the upwelling of flow from the bottom of the Sacramento River channel into the Delta Cross Channel. The sequential display of vector grids showed that water in the canal briefly returned into the Sacramento River after peak flood tides, which had not been known previously. In addition to velocity vectors, ADCP data were processed to derive channel bathymetry and a spatial indicator for suspended-sediment concentration. Individual beam distances to bed, recorded by the ADCP, were transformed to yield bathymetry accurate enough to resolve small bedforms within the study reach. While recording velocity, ADCPs also record the intensity of acoustic backscatter from particles suspended in the flow. Sequential surveys of backscatter intensity were interpolated to grids and animated to indicate the spatial movement of suspended sediment through the study reach. Calculation of backscatter flux through cross-sectional grids provided a first step for computation of suspended-sediment discharge, the second step being a calibrated relation between backscatter intensity and sediment

  6. Validation of streamflow measurements made with M9 and RiverRay acoustic Doppler current profilers

    USGS Publications Warehouse

    Boldt, Justin A.; Oberg, Kevin A.

    2015-01-01

    The U.S. Geological Survey (USGS) Office of Surface Water (OSW) previously validated the use of Teledyne RD Instruments (TRDI) Rio Grande (in 2007), StreamPro (in 2006), and Broadband (in 1996) acoustic Doppler current profilers (ADCPs) for streamflow (discharge) measurements made by the USGS. Two new ADCPs, the SonTek M9 and the TRDI RiverRay, were first used in the USGS Water Mission Area programs in 2009. Since 2009, the OSW and USGS Water Science Centers (WSCs) have been conducting field measurements as part of their stream-gaging program using these ADCPs. The purpose of this paper is to document the results of USGS OSW analyses for validation of M9 and RiverRay ADCP streamflow measurements. The OSW required each participating WSC to make comparison measurements over the range of operating conditions in which the instruments were used until sufficient measurements were available. The performance of these ADCPs was evaluated for validation and to identify any present and potential problems. Statistical analyses of streamflow measurements indicate that measurements made with the SonTek M9 ADCP using firmware 2.00–3.00 or the TRDI RiverRay ADCP using firmware 44.12–44.15 are unbiased, and therefore, can continue to be used to make streamflow measurements in the USGS stream-gaging program. However, for the M9 ADCP, there are some important issues to be considered in making future measurements. Possible future work may include additional validation of streamflow measurements made with these instruments from other locations in the United States and measurement validation using updated firmware and software.

  7. Acoustic Doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. Thompson

    SciTech Connect

    Kim, H.S.; Flagg, C.N.; Shi, Y.

    1996-12-01

    Acoustic Doppler current profiler (ADCP) data is part of the core data for the US JGOFS Arabian Sea project, along with hydrographic and nutrient data. Seventeen cruises are scheduled to take place between September 1994 and January 1996 on the R/V T.G. Thompson. Seven of the cruises follow a standard cruise track, taking hydrographic, chemical and biological measurements. The rest of the cruises, which take place generally within the standard cruise region defined by a set track, are for the deployment and recovery of moored equipment and towing of a SeaSoar. Detailed description of ADCP hardware, the AutoADCP data acquisition system, and the collection of navigation and compass data on the Thompson is documented in Section 2. Followed by data collection for each cruise together with a cruise track, Section 3 presents the processing and analysis of velocity and acoustic backscatter intensity data. Section 5 shows results of profile quality diagnosis.

  8. A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.

    2002-01-01

    Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.

  9. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    USGS Publications Warehouse

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    The State of Illinois' annual withdrawal from Lake Michigan is limited by a U.S. Supreme Court decree, and the U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago Sanitary and Ship Canal (CSSC) near Lemont, Illinois as a part of the Lake Michigan Diversion Accounting overseen by the U.S. Army Corps of Engineers, Chicago District. Every 5 years, a technical review committee consisting of practicing engineers and academics is convened to review the U.S. Geological Survey's streamgage practices in the CSSC near Lemont, Illinois. The sixth technical review committee raised a number of questions concerning the flows and streamgage practices in the CSSC near Lemont and this report provides answers to many of those questions. In addition, it is the purpose of this report to examine the index velocity meters in use at Lemont and determine whether the acoustic velocity meter (AVM), which is now the primary index velocity meter, can be replaced by the horizontal acoustic Doppler current profiler (H-ADCP), which is currently the backup meter. Application of the AVM and H-ADCP to index velocity measurements in the CSSC near Lemont, Illinois, has produced good ratings to date. The site is well suited to index velocity measurements in spite of the large range of velocities and highly unsteady flows at the site. Flow variability arises from a range of sources: operation of the waterway through control structures, lockage-generated disturbances, commercial and recreational traffic, industrial withdrawals and discharges, natural inflows, seiches, and storm events. The influences of these factors on the index velocity measurements at Lemont is examined in detail in this report. Results of detailed data comparisons and flow analyses show that use of bank-mounted instrumentation such as the AVM and H-ADCP appears to be the best option for index velocity measurement in the CSSC near Lemont. Comparison of the rating curves for the AVM and H-ADCP demonstrates

  10. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—User’s manual for version 2.8

    USGS Publications Warehouse

    Mueller, David S.

    2016-01-01

    The software program, QRev computes the discharge from moving-boat acoustic Doppler current profiler measurements using data collected with any of the Teledyne RD Instrument or SonTek bottom tracking acoustic Doppler current profilers. The computation of discharge is independent of the manufacturer of the acoustic Doppler current profiler because QRev applies consistent algorithms independent of the data source. In addition, QRev automates filtering and quality checking of the collected data and provides feedback to the user of potential quality issues with the measurement. Various statistics and characteristics of the measurement, in addition to a simple uncertainty assessment are provided to the user to assist them in properly rating the measurement. QRev saves an extensible markup language file that can be imported into databases or electronic field notes software. The user interacts with QRev through a tablet-friendly graphical user interface. This report is the manual for version 2.8 of QRev.

  11. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—User’s manual for version 2.8

    USGS Publications Warehouse

    Mueller, David S.

    2016-05-12

    The software program, QRev computes the discharge from moving-boat acoustic Doppler current profiler measurements using data collected with any of the Teledyne RD Instrument or SonTek bottom tracking acoustic Doppler current profilers. The computation of discharge is independent of the manufacturer of the acoustic Doppler current profiler because QRev applies consistent algorithms independent of the data source. In addition, QRev automates filtering and quality checking of the collected data and provides feedback to the user of potential quality issues with the measurement. Various statistics and characteristics of the measurement, in addition to a simple uncertainty assessment are provided to the user to assist them in properly rating the measurement. QRev saves an extensible markup language file that can be imported into databases or electronic field notes software. The user interacts with QRev through a tablet-friendly graphical user interface. This report is the manual for version 2.8 of QRev.

  12. Acoustic Doppler Current Profiler Measurements in the Tailrace at John Day Dam

    SciTech Connect

    Cook, Chris B.; Dibrani, Berhon; Serkowski, John A.; Richmond, Marshall C.; Titzler, P. Scott; Dennis, Gary W.

    2006-01-30

    Acoustic Doppler current profilers (ADCPs) were used to measure water velocities in the tailrace at John Day Dam over a two-week period in February 2005. Data were collected by the Pacific Northwest National Laboratory for the Hydraulic Design Section, Portland District, U.S. Army Corps of Engineers (USACE). The objective of this project was therefore to collect field measurements of water velocities in the near-field draft tube exit zone as well as the far-field tailrace to be used for improving these models. Field data were collected during the project using five separate ADCPs. Mobile ADCP data were collected using two ADCPs mounted on two separate boats. Data were collected by either holding the boat on-station at pre-defined locations for approximately 10 minutes or in moving transect mode when the boat would move over large distances during the data collection. Results from the mobile ADCP survey indicated a complex hydrodynamic flow field in the tailrace downstream of John Day Dam. A large gyre was noted between the skeleton section of the powerhouse and non-spilling portion of the spillway. Downstream of the spillway, the spillway flow is constrained against the navigation lock guide wall, and large velocities were noted in this region. Downstream of the guide wall, velocities decreased as the spillway jet dispersed. Near the tailrace island, the flow split was measured to be approximately equal on Day 2 (25.4 kcfs spillway/123 kcfs total). However, approximately 60% of the flow passed along the south shore of the island on Day 1 (15.0 kcfs spillway/150 kcfs total). At a distance of 9000 ft downstream of the dam, flows had equalized laterally and were generally uniform over the cross section. The collection of water velocities near the draft tube exit of an operating turbine unit is not routine, and equipment capable of measuring 3D water velocities in these zones are at the forefront of hydraulic measurement technology. Although the feasibility of

  13. Synoptic Gulf Stream velocity profiles through simultaneous inversion of hydrographic and acoustic Doppler data

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Wunsch, C.; Pierce, S. D.

    1986-01-01

    Data from a shipborne acoustic profiling device have been combined with conductivity, temperature, depth/O2 sections across the Gulf Stream to form estimates of the absolute flow fields. The procedure for the combination was a form of inverse method. The results suggest that at the time of the observations (June 1982) the net Gulf Stream transport off Hatteras was 107 + or - 11 Sv and that across a section near 72.5 W it had increased to 125 + or - 6 Sv. The transport of the deep western boundary current was 9 + or - 3 Sv. For comparison purposes an inversion was done using the hydrographic/O2 data alone as in previously published results and obtained qualitative agreement with the combined inversion. Inversion of the acoustic measurements alone, when corrected for instrument biases, leaves unacceptably large mass transport residuals in the deep water.

  14. Discharge-measurement system using an acoustic Doppler current profiler with applications to large rivers and estuaries

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.

    1993-01-01

    Discharge measurement of large rivers and estuaries is difficult, time consuming, and sometimes dangerous. Frequently, discharge measurements cannot be made in tide-affected rivers and estuaries using conventional discharge-measurement techniques because of dynamic discharge conditions. The acoustic Doppler discharge-measurement system (ADDMS) was developed by the U.S. Geological Survey using a vessel-mounted acoustic Doppler current profiler coupled with specialized computer software to measure horizontal water velocity at 1-meter vertical intervals in the water column. The system computes discharge from water-and vessel-velocity data supplied by the ADDMS using vector-algebra algorithms included in the discharge-measurement software. With this system, a discharge measurement can be obtained by engaging the computer software and traversing a river or estuary from bank to bank; discharge in parts of the river or estuarine cross sections that cannot be measured because of ADDMS depth limitations are estimated by the system. Comparisons of ADDMS-measured discharges with ultrasonic-velocity-meter-measured discharges, along with error-analysis data, have confirmed that discharges provided by the ADDMS are at least as accurate as those produced using conventional methods. In addition, the advantage of a much shorter measurement time (2 minutes using the ADDMS compared with 1 hour or longer using conventional methods) has enabled use of the ADDMS for several applications where conventional discharge methods could not have been used with the required accuracy because of dynamic discharge conditions.

  15. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.; ,

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  16. Velocity profiles, Reynolds stresses and bed roughness from an autonomous field deployed Acoustic Doppler Velocity Profiler in a mixed sediment tidal estuary

    NASA Astrophysics Data System (ADS)

    O'Boyle, Louise; Thorne, Peter; Cooke, Richard; Cohbed Team

    2014-05-01

    Estuaries are among some of the most important global landscapes in terms of population density, ecology and economy. Understanding the dynamics of these natural mixed sediment environments is of particular interest amid growing concerns over sea level rise, climate variations and estuarine response to these changes. Many predictors exist for bed form formation and sand transport in sandy coastal zones; however less work has been published on mixed sediments. This paper details a field study which forms part of the COHBED project aiming to increase understanding of bed forms in a biotic mixed sediment estuarine environment. The study was carried out in the Dee Estuary, in the eastern Irish Sea between England and Wales from the 21st May to 4th June 2013. A state of the art instrumentation frame, known as SEDbed, was deployed at three sites of differing sediment properties and biological makeup within the intertidal zone of the estuary. The SEDbed deployment consisted of a suite of optical and acoustic instrumentation, including an Acoustic Doppler Velocity Profiler (ADVP), Acoustic Doppler Velocimeter (ADV) and a three dimensional acoustic ripple profiler, 3D-ARP. Supplementary field samples and measurements were recorded alongside the frame during each deployment. This paper focuses on the use of new technological developments for the investigation of sediment dynamics. The hydrodynamics at each of the deployment sites are presented including centimetre resolution velocity profiles in the near bed region of the water column, obtained from the ADVP, which is presently the only autonomous field deployed coherent Doppler profiler . Based on these high resolution profiles variations in frictional velocity, bed shear stress and roughness length are calculated. Comparisons are made with theoretical models and with Reynolds stress values obtained from ADV data at a single point within the ADVP profile and from ADVP data itself. Predictions of bed roughness at each

  17. Application of the loop method for correcting acoustic doppler current profiler discharge measurements biased by sediment transport

    USGS Publications Warehouse

    Mueller, David S.; Wagner, Chad R.

    2006-01-01

    A systematic bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment near the streambed-an issue widely acknowledged by the scientific community. This systematic bias leads to an underestimation of measured velocity and discharge. The integration of a differentially corrected Global Positioning System (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS systems, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias was investigated by the U.S. Geological Survey.

  18. Cause and solution for false upstream boat velocities measured with a StreamPro acoustic doppler current profiler

    USGS Publications Warehouse

    Mueller, David S.; Rehmel, Mike S.; Wagner, Chad R.

    2007-01-01

    In 2003, Teledyne RD Instruments introduced the StreamPro acoustic Doppler current profiler which does not include an internal compass. During stationary moving-bed tests the StreamPro often tends to swim or kite from the end of the tether (the instrument rotates then moves laterally in the direction of the rotation). Because the StreamPro does not have an internal compass, it cannot account for the rotation. This rotation and lateral movement of the StreamPro on the end of the tether generates a false upstream velocity, which cannot be easily distinguished from a moving-bed bias velocity. A field test was completed to demonstrate that this rotation and lateral movement causes a false upstream boat velocity. The vector dot product of the boat velocity and the unit vector of the depth-averaged water velocity is shown to be an effective method to account for the effect of the rotation and lateral movement.

  19. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    SciTech Connect

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  20. Half-year-long measurements with a buoy-mounted acoustic Doppler current profiler in the Somali Current

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich; Johns, William

    1987-05-01

    A self-contained, upward-looking acoustic Doppler current profiler (ADCP), mounted in the top float of a subsurface mooring was deployed in the Somali Current at 2°14'N, 45°55'E from September 17, 1985, to April 25, 1986. The instrument operated at a frequency of 150 kHz, with a vertical beam angle of 20°. Vector-averaged profiles of horizontal and vertical velocity were recorded every 4 hours, using 200 pings per ensemble at a vertical bin length of 8.7 m. The mooring was deployed in very rough topography, settling in a trough at 337 m depth with the ADCP located at 267 m depth. Data retrieval over the entire recording period was complete, with Doppler biasing from side lobe reception of vertically traveling rays affecting only the top 20 m below the surface. Over the 7-month deployment the instrument recorded current profiles encompassing the end of the 1985 summer monsoon and entire winter monsoon and also through the spring transition into the early onset phase of the 1986 summer monsoon. Significant echo amplitude variations of week-to-month-long duration were observed, which were only partially related to horizontal flow variations associated with the monsoons. Projection of the strong horizontal currents (exceeding 150 cm/s at times) into the vertical component was not observed, attesting to fairly exact orientation of the four beams and tilt meters. This indicates that the vertical current measurement from ADCPs can be potentially useful for phenomena with vertical velocities exceeding a few millimeters per second. However, an analysis of echo amplitude and vertical current variations at the diurnal period suggests that the measured vertical velocity is, at least at that period, probably dominated by active vertical migration of biological scatterers through the water column.

  1. An acoustic doppler current profiler survey of flow velocities in Detroit River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to survey flow velocities in Detroit River from July 8-19, 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. More than 3.5 million point velocities were measured at 130 cross sections. Cross sections were generally spaced about 1,800 ft apart along the river from the head of Detroit River at the outlet of Lake St. Clair to the mouth of Detroit River on Lake Erie. Two transects were surveyed at each cross section, one in each direction across the river. Along each transect, velocity profiles were generally obtained 0.8-2.2 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved though the internet and extracted to column-oriented data files.

  2. An acoustic doppler current profiler survey of flow velocities in St. Clair River, a connecting channel of the Great Lakes

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2003-01-01

    Acoustic Doppler current profilers (ADCP) were used to measure flow velocities in St. Clair River during a survey in May and June of 2002, as part of a study to assess the susceptibility of public water intakes to contaminants on the St. Clair-Detroit River Waterway. The survey provides 2.7 million point velocity measurements at 104 cross sections. Sections are spaced about 1,630 ft apart along the river from Port Huron to Algonac, Michigan, a distance of 28.6 miles. Two transects were obtained at each cross section, one in each direction across the river. Along each transect, velocity profiles were obtained 2-4 ft apart. At each velocity profile, average water velocity data were obtained at 1.64 ft intervals of depth. The raw position and velocity data from the ADCP field survey were adjusted for local magnetic anomalies using global positioning system (GPS) measurements at the end points of the transects. The adjusted velocity and ancillary data can be retrieved through the internet and extracted to column-oriented data files.

  3. The investigation of sediment processes in rivers by means of the Acoustic Doppler Profiler

    NASA Astrophysics Data System (ADS)

    Guerrero, M.

    2014-09-01

    The measurement of sediment processes at the scale of a river cross-section is desirable for the evaluation of many issues related to river hydro-morphodynamics, such as the calibration and validation of numerical models for predicting the climate change impacts on water resources and efforts of maintenance of the navigation channel and other hydraulic works. Suspended- and bed-load have traditionally been measured by cumbersome techniques that are difficult to apply in large rivers. The acoustics for the investigation of small-scale sedimentological processes gained acceptance in the marine community because of its ability to simultaneously profile sediment concentration and size distribution, non-intrusively, and with high temporal and spatial resolution. The application of these methods in true riverine case studies presents additional difficulties, mainly related to water depths and stream currents that limit sound propagation into water and challenge the instruments deployment, especially during floods. This article introduces the motivations for using the ADCP for sediment processes investigation other than for flow discharge measurement, summarizes the developed methods and indicates future desirable improvements. In addition, an application on the Po River in Italy is presented, focusing on the calibration of the existing software by means of ADCP recordings. The calibrated model will assist in planning the dredging activities to maintain the navigation channel and the intake of a pump station for irrigation that is periodically obstructed with a sandbar.

  4. Comparison of buoy-mounted 74-kHz acoustic Doppler current profilers with vector-measuring current meters

    NASA Technical Reports Server (NTRS)

    Winant, Clinton; Mettlach, Theodore; Larson, Sigurd

    1994-01-01

    In December 1991, the National Data Buoy Center (NDBC) deployed two meteorological buoys in the Southern California Bight on a transect between San Diego and San Clemente Island. Each buoy consisted of a 10-m discus hull instrumented to measure a suite of meteorological parameters, and, for the first time in the NDBC buoy program, acoustic Doppler current profilers (ADCPs) were included to gather hourly current profiles beneath the two buoys. Moorings instrumented with seven vector-measuring current meters (VMCMs) were deployed adjacent to the NDBC buoys for several months and provided current observations for comparison with the ADCP measurements. When wave-induced buoy motion is not overly large, the observations of horizontal current made by the ADCP and the VMCM are highly correlated. Time series of differences between ADCP and VMCM measurements are characterized by a mean difference (bias error) of about 0.01 m/s and standard deviation of about 0.035 m/s for 1-h observations. Estimates of current spectra from ADCP and VMCM records suggest that the ADCP system can be characterized by a white noise level of 2 x 10(exp -3) sq m/sq s/cph. However, when the in situ environment is such that large surface waves are present (including breaking waves and whitecaps), erroneous current values are usually reported by the ADCP. Mean values of vertical velocities reported by the ADCP appear to be much larger than what could be physically expected and are therefore deemed unreliable.

  5. Acoustic Doppler current profiler applications used in rivers and estuaries by the U.S. Geological Survey

    USGS Publications Warehouse

    Gotvald, Anthony J.; Oberg, Kevin A.

    2009-01-01

    The U.S. Geological Survey (USGS) has collected streamflow information for the Nation's streams since 1889. Streamflow information is used to predict floods, manage and allocate water resources, design engineering structures, compute water-quality loads, and operate water-control structures. The current (2007) size of the USGS streamgaging network is over 7,400 streamgages nationwide. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection while increasing the quality of the streamflow data that are collected. The single greatest change in streamflow measurement technology during the last 100 years has been the development and application of high frequency acoustic instruments for measuring streamflow. One such instrument, the acoustic Doppler current profiler (ADCP), is rapidly replacing traditional mechanical current meters for streamflow measurement (Muste and others, 2007). For more information on how an ADCP works see Simpson (2001) or visit http://hydroacoustics.usgs.gov/. The USGS has used ADCPs attached to manned or tethered boats since the mid-1990s to measure streamflow in a wide variety of conditions (fig. 1). Recent analyses have shown that ADCP streamflow measurements can be made with similar or greater accuracy, efficiency, and resolution than measurements made using conventional current-meter methods (Oberg and Mueller, 2007). ADCPs also have the ability to measure streamflow in streams where traditional current-meter measurements previously were very difficult or costly to obtain, such as streams affected by backwater or tides. In addition to streamflow measurements, the USGS also uses ADCPs for other hydrologic measurements and applications, such as computing continuous records of streamflow for tidally or backwater affected streams, measuring velocity fields with high spatial and temporal resolution, and estimating suspended-sediment concentrations. An overview

  6. Estimating hydrodynamic roughness in a wave-dominated environment with a high-resolution acoustic Doppler profiler

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.; Wilson, D.J.; Chisholm, T.A.; Gelfenbaum, G.R.

    2005-01-01

    Hydrodynamic roughness is a critical parameter for characterizing bottom drag in boundary layers, and it varies both spatially and temporally due to variation in grain size, bedforms, and saltating sediment. In this paper we investigate temporal variability in hydrodynamic roughness using velocity profiles in the bottom boundary layer measured with a high-resolution acoustic Doppler profiler (PCADP). The data were collected on the ebb-tidal delta off Grays Harbor, Washington, in a mean water depth of 9 m. Significant wave height ranged from 0.5 to 3 m. Bottom roughness has rarely been determined from hydrodynamic measurements under conditions such as these, where energetic waves and medium-to-fine sand produce small bedforms. Friction velocity due to current u*c and apparent bottom roughness z0a were determined from the PCADP burst mean velocity profiles using the law of the wall. Bottom roughness kB was estimated by applying the Grant-Madsen model for wave-current interaction iteratively until the model u*c converged with values determined from the data. The resulting kB values ranged over 3 orders of magnitude (10-1 to 10-4 m) and varied inversely with wave orbital diameter. This range of kB influences predicted bottom shear stress considerably, suggesting that the use of time-varying bottom roughness could significantly improve the accuracy of sediment transport models. Bedform height was estimated from kB and is consistent with both ripple heights predicted by empirical models and bedforms in sonar images collected during the experiment. Copyright 2005 by the American Geophysical Union.

  7. Shipboard acoustic doppler current profiler data collected during the Western Tropical Atlantic Experiment (WESTRAX) 1991. Technical memo

    SciTech Connect

    Routt, J.A.; Wilson, W.D.

    1992-11-01

    The long-term goal of ongoing and future research in the western tropical Atlantic is to estimate the cross-equatorial transport of water and heat. The overall goals of those involved in the Western Tropical Atlantic Experiment (WESTRAX) are (a) to describe the annual cycle in the large-scale structure of the velocity and hydrographic properties over the full water column in the western tropical Atlantic Ocean between the equator and 15 degrees N, and (b) to compare data and models in order to better understand the physics of the regional circulation in the broader context of Atlantic basin thermohaline circulation. The results of this combined effort will greatly improve our understanding of this complex boundary current region and establish the basis for efficient long-term climatic monitoring of the critical meridional fluxes of mass and heat across the tropical Atlantic. This report presents the Acoustic Doppler Current Profiler (ADCP) data obtained during (ACCP) Atlantic Climate Change Program cruises in the western subtropical and tropical Atlantic in January, June and September 1991.

  8. Comparison of acoustic doppler current profiler and Price AA mechanical current meter measurements made during the 2011 Mississippi River Flood

    USGS Publications Warehouse

    O'Brien, Patrick; Mueller, David; Pratt, Thad

    2012-01-01

    The Mississippi River and Tributaries project performed as designed during the historic 2011 Mississippi River flood, with many of the operational decisions based on discharge targets as opposed to stage. Measurement of discharge at the Tarbert Landing, Mississippi range provides critical information used in operational decisions for the floodways located in Louisiana. Historically, discharge measurements have been made using a Price AA current meter and the mid-section method, and a long record exists based on these types of measurements, including historical peak discharges. Discharge measurements made using an acoustic Doppler current profiler from a moving boat have been incorporated into the record since the mid 1990's, and are used along with the Price AA mid-section measurements. During the 2011 flood event, both methods were used and appeared to provide different results at times. The apparent differences between the measurement techniques are due to complex hydrodynamics at this location that created large spatial and temporal fluctuations in the flow. The data and analysis presented herein show the difference between the two methods to be within the expected accuracy of the measurements when the measurements are made concurrently. The observed fluctuations prevent valid comparisons of data collected sequentially or even with different observation durations.

  9. Validation of exposure time for discharge measurements made with two bottom-tracking acoustic doppler current profilers

    USGS Publications Warehouse

    Czuba, J.A.; Oberg, K.

    2008-01-01

    Previous work by Oberg and Mueller of the U.S. Geological Survey in 2007 concluded that exposure time (total time spent sampling the flow) is a critical factor in reducing measurement uncertainty. In a subsequent paper, Oberg and Mueller validated these conclusions using one set of data to show that the effect of exposure time on the uncertainty of the measured discharge is independent of stream width, depth, and range of boat speeds. Analysis of eight StreamPro acoustic Doppler current profiler (ADCP) measurements indicate that they fall within and show a similar trend to the Rio Grande ADCP data previously reported. Four special validation measurements were made for the purpose of verifying the conclusions of Oberg and Mueller regarding exposure time for Rio Grande and StreamPro ADCPs. Analysis of these measurements confirms that exposure time is a critical factor in reducing measurement uncertainty and is independent of stream width, depth, and range of boat speeds. Furthermore, it appears that the relation between measured discharge uncertainty and exposure time is similar for both Rio Grande and StreamPro ADCPs. These results are applicable to ADCPs that make use of broadband technology using bottom-tracking to obtain the boat velocity. Based on this work, a minimum of two transects should be collected with an exposure time for all transects greater than or equal to 720 seconds in order to achieve an uncertainty of ??5 percent when using bottom-tracking ADCPs. ?? 2008 IEEE.

  10. Acoustic Doppler current profiling from the JGOFS Arabian sea cruises aboard the RV T.G. Thompson

    SciTech Connect

    Kim, Hyun-Sook; Flagg, C.N.; Shi, Yan

    1996-06-01

    Acoustic Doppler current profiler (ADCP) data is part of the core data for the U.S. JGOFS Arabian Sea project, along with hydrographic and nutrient data. Seventeen cruises are scheduled to take place between September 1994 and January 1996 on the R/V T.G. Thompson. They are numbered consecutively from the ship`s commissioning with the first JGOFS cruise designated TN039. Table 1 lists start and end dates of each cruise with its mission. All but the first cruise have been or will be staged from Muscat, Oman. Each cruise is scheduled for a duration of between two weeks and one month. Seven of the cruises, referred to as process cruises, follow a standard cruise track, taking hydrographic, chemical and biological measurements. The rest of the cruises, which take place generally within the standard cruise region defined by a set track, are for the deployment and recovery of moored equipments and towing of a SeaSoar. ADCP data are collected using an autonomous data acquisition system developed for ship-of-opportunity cruises, named the AutoADCP system. The system is an extension of RD instrument`s DAS version 2.48 using enhancements made possible with {open_quotes}user-exit{close_quotes} programs. It makes it possible to collect ADCP data without the constant monitoring usually necessary and insures constant data coverage and uniform data quality.

  11. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    USGS Publications Warehouse

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  12. Use of a 600-kHz Acoustic Doppler Current Profiler to measure estuarine bottom type, relative abundance of submerged aquatic vegetation, and eelgrass canopy height

    NASA Astrophysics Data System (ADS)

    Warren, Joseph D.; Peterson, Bradley J.

    2007-03-01

    The acoustic backscatter intensity signal from a high-frequency (600 kHz) Acoustic Doppler Current Profiler (ADCP) was used to categorize four different types of bottom habitat (sand, mud, sparse and dense vegetation) in a shallow-water estuary (Shinnecock Bay, NY, USA). A diver survey of the bay measured sediment and bottom vegetation characteristics at 85 sites within the bay. These data were used to groundtruth the acoustic data. Acoustic data were collected at four sites with known bottom types and used to develop an algorithm that could categorize the bottom type. The slope of the echo intensity profile close to the bottom was used to determine the bottom type and the relative numerical density (sparse or dense) of Submerged Aquatic Vegetation (SAV). In areas where eelgrass ( Zostera marina) was the dominant SAV species, the intensity profile data were analyzed to measure the height of the vegetation canopy. An acoustic survey which categorized the bottom type of the bay was conducted from a small vessel. The percentage of sampled sites categorized as each bottom habitat type from the acoustic survey was similar to those obtained by the diver survey. These methods may provide a means to rapidly survey estuarine habitats and measure spatial and temporal variations in SAV populations, as well as changes in the height of the eelgrass canopy.

  13. Acoustic doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. Thompson

    SciTech Connect

    Flagg, C.N.; Shi, Y.

    1995-04-01

    Acoustic Doppler Current Profiler (ADCP) data from the R/V T.G. THOMPSON is part of the core data for the US JGOFS Arabian Sea project along with hydrographic and nutrient data. Seventeen cruises on the THOMPSON are scheduled to take place between September 1994 and January 1996. The first of these cruises, a transit of the R/V THOMPSON into the northern Arabian Sea area from Singapore, was a calibration and training cruise that took place between September 18 and October 7, 1994. (The cruises on the THOMPSON are numbered consecutively from the ship`s commissioning with the first JOGFS cruise designated TN039.) The remaining cruises have been and will be staged from Muscat, Oman. Seven of these cruises, referred to as process cruises, will follow a set cruise track, making hydrographic, chemical and biological measurements. The remainder of the cruises while not restricted to the set cruise track, will generally stay within the region defined by the track during the deployment and retrieval of moored equipment and the towing of a SeaSoar. Each cruise will last between two weeks and one month. ADCP data will be collected on all the JGOFS Arabian Sea cruises using an autonomous data acquisition system developed for ship-of-opportunity cruises. This system, referred to as the AutoADCP, makes it possible to collect the ADCP data without the constant monitoring usually necessary and assures constant data coverage and uniform data quality. The AutoADCP system is an extension of RD Instrument`s DAS version 2.48 using enhancements made possible with ``user exit`` programs. This data report presents ADCP results from the first four JGOFS cruises, TN039 through TN042, concentrating on the data collection and processing methods.

  14. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    USGS Publications Warehouse

    Wagner, C.R.; Mueller, D.S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks. ?? 2011 Published by Elsevier B.V.

  15. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    NASA Astrophysics Data System (ADS)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  16. Bathymetric surveys of Morse and Geist Reservoirs in central Indiana made with acoustic Doppler current profiler and global positioning system technology, 1996

    USGS Publications Warehouse

    Wilson, J.T.; Morlock, S.E.; Baker, N.T.

    1997-01-01

    Acoustic Doppler current profiler, global positioning system, and geographic information system technology were used to map the bathymetry of Morse and Geist Reservoirs, two artificial lakes used for public water supply in central Indiana. The project was a pilot study to evaluate the use of the technologies for bathymetric surveys. Bathymetric surveys were last conducted in 1978 on Morse Reservoir and in 1980 on Geist Reservoir; those surveys were done with conventional methods using networks of fathometer transects. The 1996 bathymetric surveys produced updated estimates of reservoir volumes that will serve as base-line data for future estimates of storage capacity and sedimentation rates.An acoustic Doppler current profiler and global positioning system receiver were used to collect water-depth and position data from April 1996 through October 1996. All water-depth and position data were imported to a geographic information system to create a data base. The geographic information system then was used to generate water-depth contour maps and to compute the volumes for each reservoir.The computed volume of Morse Reservoir was 22,820 acre-feet (7.44 billion gallons), with a surface area of 1,484 acres. The computed volume of Geist Reservoir was 19,280 acre-feet (6.29 billion gallons), with a surface area of 1,848 acres. The computed 1996 reservoir volumes are less than the design volumes and indicate that sedimentation has occurred in both reservoirs. Cross sections were constructed from the computer-generated surfaces for 1996 and compared to the fathometer profiles from the 1978 and 1980 surveys; analysis of these cross sections also indicates that some sedimentation has occurred in both reservoirs.The acoustic Doppler current profiler, global positioning system, and geographic information system technologies described in this report produced bathymetric maps and volume estimates more efficiently and with comparable or greater resolution than conventional

  17. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  18. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  19. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  20. Klamath River Water Quality and Acoustic Doppler Current Profiler Data from Link River Dam to Keno Dam, 2007

    USGS Publications Warehouse

    Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna; Stewart, Marc A.; Wellman, Roy W.; Vaughn, Jennifer

    2008-01-01

    In 2007, the U.S. Geological Survey, Watercourse Engineering, and the Bureau of Reclamation began a project to construct and calibrate a water quality and hydrodynamic model of the 21-mile reach of the Klamath River from Link River Dam to Keno Dam. To provide a basis for this work, data collection and experimental work were planned for 2007 and 2008. This report documents sampling and analytical methods and presents data from the first year of work. To determine water velocities and discharge, a series of cross-sectional acoustic Doppler current profiler (ADCP) measurements were made on the mainstem and four canals on May 30 and September 19, 2007. Water quality was sampled weekly at five mainstem sites and five tributaries from early April through early November, 2007. Constituents reported here include field parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, iron, silica, and alkalinity; specific UV absorbance at 254 nm; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. The ADCP measurements conducted in good weather conditions in May showed that four major canals accounted for most changes in discharge along the mainstem on that day. Direction of velocity at measured locations was fairly homogeneous across the channel, while velocities were generally lowest near the bottom, and highest near surface, ranging from 0.0 to 0.8 ft/s. Measurements in September, made in windy conditions, raised questions about the effect of wind on flow. Most nutrient and carbon concentrations were lowest in spring, increased and remained elevated in summer, and decreased in fall. Dissolved nitrite plus nitrate and nitrite had a different seasonal cycle and were below detection or at low concentration in summer. Many nutrient and

  1. Integrating fluorescent dye flow-curve testing and acoustic Doppler velocimetry profiling for in situ hydraulic evaluation and improvement of clarifier performance.

    PubMed

    Tarud, F; Aybar, M; Pizarro, G; Cienfuegos, R; Pastén, P

    2010-08-01

    Enhancing the performance of clarifiers requires a thorough understanding of their hydraulics. Fluorescence spectroscopy and acoustic doppler velocimeter (ADV) profiling generally have been used separately to evaluate secondary settlers. We propose that simultaneous use of these techniques is needed to obtain a more reliable and useful evaluation. Experiments were performed on laboratory- and full-scale clarifiers. Factors affecting Fluorescein and Rhodamine 6G properties were identified. Underestimations up to 500% in fluorescence intensities may be derived from differential fluorescence quenching by oxygen. A careful control and interpretation of fluorescent dye experiments is needed to minimize artifacts in real settings. While flow-curve tests constructed under controlled conditions provided a more accurate overall quantitative estimation of the hydraulic performance, ADV velocity and turbulence profiling provided a detailed spatial understanding of flow patterns that was used to troubleshoot and fix the causes of hydraulic short-circuits.

  2. Integrating fluorescent dye flow-curve testing and acoustic Doppler velocimetry profiling for in situ hydraulic evaluation and improvement of clarifier performance.

    PubMed

    Tarud, F; Aybar, M; Pizarro, G; Cienfuegos, R; Pastén, P

    2010-08-01

    Enhancing the performance of clarifiers requires a thorough understanding of their hydraulics. Fluorescence spectroscopy and acoustic doppler velocimeter (ADV) profiling generally have been used separately to evaluate secondary settlers. We propose that simultaneous use of these techniques is needed to obtain a more reliable and useful evaluation. Experiments were performed on laboratory- and full-scale clarifiers. Factors affecting Fluorescein and Rhodamine 6G properties were identified. Underestimations up to 500% in fluorescence intensities may be derived from differential fluorescence quenching by oxygen. A careful control and interpretation of fluorescent dye experiments is needed to minimize artifacts in real settings. While flow-curve tests constructed under controlled conditions provided a more accurate overall quantitative estimation of the hydraulic performance, ADV velocity and turbulence profiling provided a detailed spatial understanding of flow patterns that was used to troubleshoot and fix the causes of hydraulic short-circuits. PMID:20853746

  3. Application of acoustic doppler current profilers for measuring three-dimensional flow fields and as a surrogate measurement of bedload transport

    USGS Publications Warehouse

    Conaway, J.S.

    2005-01-01

    Acoustic Doppler current profilers (ADCPs) have been in use in the riverine environment for nearly 20 years. Their application primarily has been focused on the measurement of streamflow discharge. ADCPs emit high-frequency sound pulses and receive reflected sound echoes from sediment particles in the water column. The Doppler shift between transmitted and return signals is resolved into a velocity component that is measured in three dimensions by simultaneously transmitting four independent acoustical pulses. To measure the absolute velocity magnitude and direction in the water column, the velocity magnitude and direction of the instrument must also be computed. Typically this is accomplished by ensonifying the streambed with an acoustical pulse that also provides a depth measurement for each of the four acoustic beams. Sediment transport on or near the streambed will bias these measurements and requires external positioning such as a differentially corrected Global Positioning Systems (GPS). Although the influence of hydraulic structures such as spur dikes and bridge piers is typically only measured and described in one or two dimensions, the use of differentially corrected GPS with ADCPs provides a fully three-dimensional measurement of the magnitude and direction of the water column at such structures. The measurement of these flow disturbances in a field setting also captures the natural pulsations of river flow that cannot be easily quantified or modeled by numerical simulations or flumes. Several examples of measured three-dimensional flow conditions at bridge sites throughout Alaska are presented. The bias introduced to the bottom-track measurement is being investigated as a surrogate measurement of bedload transport. By fixing the position of the ADCP for a known period of time the apparent velocity of the streambed at that position can be determined. Initial results and comparison to traditionally measured bedload values are presented. These initial

  4. Correcting acoustic Doppler current profiler discharge measurement bias from moving-bed conditions without global positioning during the 2004 Glen Canyon Dam controlled flood on the Colorado River

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.

    2007-01-01

    Discharge measurements were made by acoustic Doppler current profiler at two locations on the Colorado River during the 2004 controlled flood from Glen Canyon Dam, Arizona. Measurement hardware and software have constantly improved from the 1980s such that discharge measurements by acoustic profiling instruments are now routinely made over a wide range of hydrologic conditions. However, measurements made with instruments deployed from moving boats require reliable boat velocity data for accurate measurements of discharge. This is normally accomplished by using special acoustic bottom track pings that sense instrument motion over bottom. While this method is suitable for most conditions, high current flows that produce downstream bed sediment movement create a condition known as moving bed that will bias velocities and discharge to lower than actual values. When this situation exists, one solution is to determine boat velocity with satellite positioning information. Another solution is to use a lower frequency instrument. Discharge measurements made during the 2004 Glen Canyon controlled flood were subject to moving-bed conditions and frequent loss of bottom track. Due to site conditions and equipment availability, the measurements were conducted without benefit of external positioning information or lower frequency instruments. This paper documents and evaluates several techniques used to correct the resulting underestimated discharge measurements. One technique produces discharge values in good agreement with estimates from numerical model and measured hydrographs during the flood. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  5. Measurement of velocities with an acoustic velocity meter, one side-looking and two upward-looking acoustic Doppler current profilers in the Chicago Sanitary and Ship Canal, Romeoville, Illinois

    USGS Publications Warehouse

    Oberg, Kevin A.; Duncker, James J.

    1999-01-01

    In 1998, a prototype 300 kHz, side-looking Acoustic Doppler Current Profiler (ADCP) was deployed in the Chicago Sanitary and Ship Canal (CSSC) at Romeoville, Illinois. Additionally, two upward-looking ADCP's were deployed in the same acoustic path as the side-looking ADCP and in the reach defined by the upstream and downstream acoustic velocity meter (AVM) paths. All three ADCP's were synchronized to the AVM clock at the gaging station so that data were sampled simultaneously. The three ADCP's were deployed for six weeks measuring flow velocities from 0.0 to 2.5 ft/s. Velocities measured by each ADCP were compared to AVM path velocities and to velocities measured by the other ADCP's.

  6. Patterns of distribution of sound-scattering zooplankton in warm- and cold-core eddies in the Gulf of Mexico, from a narrowband acoustic Doppler current profiler survey

    NASA Astrophysics Data System (ADS)

    Zimmerman, Robert A.; Biggs, Douglas C.

    1999-03-01

    The acoustic backscatter intensity (ABI) reflected from epipelagic zooplankton communities in the central Gulf of Mexico was measured during June 1995 with a vessel-mounted, narrowband-153-kHz acoustic Doppler current profiler (ADCP). Horizontal and vertical variations in ABI were documented in three kinds of mesoscale hydrographic features commonly found in the Gulf of Mexico: the warm-core Loop Current (LC), a warm-core Loop Current eddy (LCE), and a cold-core region that separated the two warm-core features. Since new nitrogen domes close to surface waters in cold-core features whereas surface waters of warm-core features are nutrient depleted, the cold-core region was expected to have higher biological stocks as a result of locally higher primary production. Both ABI and net tow data confirmed that the cold-core region was in fact a zone of local aggregation of zooplankton and micronekton. During both day and night, ABI when integrated for the upper 50 and 100 m in the cold-core region was significantly greater than in the LC or in the LCE, and ABI was positively correlated with standing stock biomass taken by the net tows. Further investigations into the biological differences between Gulf of Mexico divergence and convergence regimes are warranted, and the ADCP will be a useful tool for examination of the distribution of sound scatterers in such features.

  7. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    PubMed Central

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  8. First results from Acoustic Doppler Current Profiler measurements of meltwater flux in a large supraglacial river in western Greenland compared with downstream proglacial river outflow

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Smith, L. C.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Yang, K.

    2015-12-01

    A vast network of seasonally evolving, thermally eroding supraglacial rivers on the southwestern Greenland Ice Sheet (GrIS) is the preeminent transporter of meltwater across this area of the ablation zone. Supraglacial rivers are important for estimating surface water storage and transport into moulins and into the en-, sub-, and proglacial environments. Yet, little is known about their role in the GrIS cryo-hydrologic system. To that end, supraglacial river discharge in a large river, the "Rio Behar" (67.05°, -49.02°; ~75 km from the Kangerlussuaq International Airport), was measured in situ over 300 times: approximately four times per hour over three consecutive days from July 19 - 22, 2015. The Rio Behar drains a ~ 70 km2 ice catchment and enters a large moulin in the Watson River land-ice watershed in western Greenland. River discharge was measured using a Sontek M9 Acoustic Doppler Current Profiler. Each profile records water temperature, depth-integrated velocity, channel width and channel bathymetry. This novel dataset can be used to assess diurnal variations in river discharge, slope, velocity, stream power, and channel incision in order to enhance process-level understanding of GrIS meltwater routing, storage and transport. Future work will compare supraglacial river discharge in the Rio Behar with in situ estimates of proglacial river outflow upstream of the Watson River bridge in Kangerlussuaq, Greenland.

  9. Tidal and residual currents measured by an acoustic doppler current profiler at the west end of Carquinez Strait, San Francisco Bay, California, March to November 1988

    USGS Publications Warehouse

    Burau, J.R.; Simpson, M.R.; Cheng, R.T.

    1993-01-01

    Water-velocity profiles were collected at the west end of Carquinez Strait, San Francisco Bay, California, from March to November 1988, using an acoustic Doppler current profiler (ADCP). These data are a series of 10-minute-averaged water velocities collected at 1-meter vertical intervals (bins) in the 16.8-meter water column, beginning 2.1 meters above the estuary bed. To examine the vertical structure of the horizontal water velocities, the data are separated into individual time-series by bin and then used for time-series plots, harmonic analysis, and for input to digital filters. Three-dimensional graphic renditions of the filtered data are also used in the analysis. Harmonic analysis of the time-series data from each bin indicates that the dominant (12.42 hour or M2) partial tidal currents reverse direction near the bottom, on average, 20 minutes sooner than M2 partial tidal currents near the surface. Residual (nontidal) currents derived from the filtered data indicate that currents near the bottom are pre- dominantly up-estuary during the neap tides and down-estuary during the more energetic spring tides.

  10. Temporal characteristics of coherent flow structures generated over alluvial sand dunes, Mississippi River, revealed by acoustic doppler current profiling and multibeam echo sounding

    USGS Publications Warehouse

    Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.

    2009-01-01

    This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.

  11. Sounding out erosion on the Mekong river banks: insights from combined terrestrial laser scanning, multibeam echo sounding and acoustic Doppler profiling

    NASA Astrophysics Data System (ADS)

    Best, J.; Hackney, C. R.; Leyland, J.; Darby, S. E.; Parsons, D. R.; Aalto, R. E.; Nicholas, A. P.

    2015-12-01

    Knowledge of bank erosion processes and rates along very large rivers remains incomplete, primarily due to the difficulties of obtaining morphological and flow data close to the bank across various flow stages. Moreover, obtaining such process information through the entire flow and bank depth has also proved challenging. Here, we present data from a series of high spatial resolution topographic (Terrestrial Laser Scanner and Multibeam Echo Sounder) and flow (Acoustic Doppler Current Profiler) surveys undertaken on the Mekong River, Cambodia, which reveal the temporal and spatial evolution of a series of embayments on the outer bank of a large meander. These techniques yield unique data that reveal how the flow field responds to the morphology of the outer bank and subaqueous slump blocks. Specifically, we show that in the early stage of embayment growth, deposited slump blocks induce flow upwelling and bank-directed flow that enhances bank erosion. Our data also suggest that as the initial erosion process continues, a threshold embayment size is reached. Below this threshold, flow separation acts to enhance embayment growth along with the fluid dynamic effects of slump blocks, but above the threshold size, the separation zone in the embayments acts as a protective layer, thus slowing erosion. This field data allows proposition of a new conceptual model of embayment evolution.

  12. Application of acoustic-Doppler current profiler and expendable bathythermograph measurements to the study of the velocity structure and transport of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.

    1988-01-01

    The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.

  13. Acoustic micro-Doppler radar for human gait imaging.

    PubMed

    Zhang, Zhaonian; Pouliquen, Philippe O; Waxman, Allen; Andreou, Andreas G

    2007-03-01

    A portable acoustic micro-Doppler radar system for the acquisition of human gait signatures in indoor and outdoor environments is reported. Signals from an accelerometer attached to the leg support the identification of the components in the measured micro-Doppler signature. The acoustic micro-Doppler system described in this paper is simpler and offers advantages over the widely used electromagnetic wave micro-Doppler radars.

  14. Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Best, J. L.; Orfeo, O.; Hardy, R. J.; Kostaschuk, R.; Lane, S. N.

    2005-12-01

    Most past studies of river dune dynamics have concentrated on two-dimensional (2-D) bed forms, with constant heights and straight crest lines transverse to the flow, and their associated turbulent flow structure. This morphological simplification imposes inherent limitations on the interpretation and understanding of dune form and flow dynamics in natural channels, where dune form is predominantly three-dimensional. For example, studies over 2-D forms neglect the significant influence that lateral flows and secondary circulation may have on the flow structure and thus dune morphology. This paper details a field study of a swath of 3-D dunes in the Rio Paraná, Argentina. A large (0.35 km wide, 1.2 km long) area of dunes was surveyed using a multibeam echo sounder (MBES) that provided high-resolution 3-D detail of the river bed. Simultaneous with the MBES survey, 3-D flow information was obtained with an acoustic Doppler current profiler (ADCP), revealing a complicated pattern of dune morphology and associated flow structure within the swath. Dune three-dimensionality appears intimately connected to the morphology of the upstream dune, with changes in crest line curvature and crest line bifurcations/junctions significantly influencing the downstream dune form. Dunes with lobe or saddle-shaped crest lines were found to have larger, more structured regions of vertical velocity with smaller separation zones than more 2-D straight-crested dunes. These results represent the first integrated study of 3-D dune form and mean flow structure from the field and show several similarities to recent laboratory models of flow over 3-D dunes.

  15. Evaluation of Acoustic Doppler Current Profiler to Measure Discharge at New York Power Authority's Niagara Power Project, Niagara Falls, New York

    USGS Publications Warehouse

    Zajd, Henry J.

    2007-01-01

    The need for accurate real-time discharge in the International Niagara River hydro power system requires reliable, accurate and reproducible data. The U.S. Geological Survey has been widely using Acoustic Doppler Current Profilers (ADCP) to accurately measure discharge in riverine channels since the mid-1990s. The use of the ADCP to measure discharge has remained largely untested at hydroelectric-generation facilities such as the New York Power Authority's (NYPA) Niagara Power Project in Niagara Falls, N.Y. This facility has a large, engineered diversion channel with the capacity of high volume discharges in excess of 100,000 cubic feet per second (ft3/s). Facilities such as this could benefit from the use of an ADCP, if the ADCP discharge measurements prove to be more time effective and accurate than those obtained from the flow-calculation techniques that are currently used. Measurements of diversion flow by an ADCP in the 'Pant Leg' diversion channel at the Niagara Power Project were made on November 6, 7, and 8, 2006, and compared favorably (within 1 percent) with those obtained concurrently by a conventional Price-AA current-meter measurement during one of the ADCP measurement sessions. The mean discharge recorded during each 2-hour individual ADCP measurement session compared favorably with (3.5 to 6.8 percent greater than) the discharge values computed by the flow-calculation method presently in use by NYPA. The use of ADCP technology to measure discharge could ultimately permit increased power-generation efficiency at the NYPA Niagara Falls Power Project by providing improved predictions of the amount of water (and thus the power output) available.

  16. Using Principal Component and Tidal Analysis as a Quality Metric for Detecting Systematic Heading Uncertainty in Long-Term Acoustic Doppler Current Profiler Data

    NASA Astrophysics Data System (ADS)

    Morley, M. G.; Mihaly, S. F.; Dewey, R. K.; Jeffries, M. A.

    2015-12-01

    Ocean Networks Canada (ONC) operates the NEPTUNE and VENUS cabled ocean observatories to collect data on physical, chemical, biological, and geological ocean conditions over multi-year time periods. Researchers can download real-time and historical data from a large variety of instruments to study complex earth and ocean processes from their home laboratories. Ensuring that the users are receiving the most accurate data is a high priority at ONC, requiring quality assurance and quality control (QAQC) procedures to be developed for all data types. While some data types have relatively straightforward QAQC tests, such as scalar data range limits that are based on expected observed values or measurement limits of the instrument, for other data types the QAQC tests are more comprehensive. Long time series of ocean currents from Acoustic Doppler Current Profilers (ADCP), stitched together from multiple deployments over many years is one such data type where systematic data biases are more difficult to identify and correct. Data specialists at ONC are working to quantify systematic compass heading uncertainty in long-term ADCP records at each of the major study sites using the internal compass, remotely operated vehicle bearings, and more analytical tools such as principal component analysis (PCA) to estimate the optimal instrument alignments. In addition to using PCA, some work has been done to estimate the main components of the current at each site using tidal harmonic analysis. This paper describes the key challenges and presents preliminary PCA and tidal analysis approaches used by ONC to improve long-term observatory current measurements.

  17. Organised Coherent Motion in Atmospheric Boundary Layer Flow in the Proximity to Tall Plant Canopies as Detected in Acoustic Doppler Profiler and Tower-based Observations

    NASA Astrophysics Data System (ADS)

    Foken, T.; Thomas, C. K.

    2007-12-01

    We investigated coherent structures above and in a tall plant canopy during a field campaign at a mountainous site in Germany (WALDATEM-2003). Data from a remote sensing acoustic Doppler system in concert with in-situ point measurements of turbulence in flow velocity and scalars deployed on towers yielded continuous observations from the forest ground to 200 m above the ground with a vertical resolution of 10 m at a sampling frequency of 0.4 and 20 Hz respectively. Coherent structures were extracted from time series utilizing wavelet transform techniques allowing for single structure analysis and averaged statistics of detected events. In addition to their spatiotemporal scales, we focused on the identification of generating mechanisms and surface parameters affecting coherent structures. Time scales were on the order of 20 to 36 s depending on the upstream topography and canopy morphology. Lateral transport dominated scalar coherent exchange. Vertical profiles of time scales in longitudinal and vertical velocities were mirror images showing an increase/ decrease, respectively, with height. Time scales in scalars were nearly height-constant. The ratio of the contribution of coherent structures to total vertical exchange was 0.2 for momentum and 0.25 to 0.4 for sensible heat. Analysis of power spectra confirmed an interaction between inactive eddies of atmospheric boundary layer scale and the horizontal flow in 4 % of all studied cases only, mainly under near-neutral stratification. Evaluation of the Mixing-Layer Analogy suggested that vertical shear caused by the immense canopy drag was the dominant generating mechanism. However, daytime coherent structures were found to be a superposition of shear generated events and convectional eddies. The latter led to an increase of vertical coherency in the flow around noon. At night, terrain induced linear gravity waves showed similar time scales as coherent structures emphasizing the need to differentiate between these two

  18. Characterizing Ocean Turbulence from Argo, Acoustic Doppler, and Simulation Data

    NASA Astrophysics Data System (ADS)

    McCaffrey, Katherine

    Turbulence is inherently chaotic and unsteady, so observing it and modeling it are no easy tasks. The ocean's sheer size makes it even more difficult to observe, and its unpredictable and ever-changing forcings introduce additional complexities. Turbulence in the oceans ranges from basin scale to the scale of the molecular viscosity. The method of energy transfer between scales is, however, an area of active research, so observations of the ocean at all scales are crucial to understanding the basic dynamics of its motions. In this collection of work, I use a variety of datasets to characterize a wide range of scales of turbulence, including observations from multiple instruments and from models with different governing equations. I analyzed the largest scales of the turbulent range using the global salinity data of the Argo profiling float network. Taking advantage of the scattered and discontinuous nature of this dataset, the second-order structure function was calculated down to 2000m depth, and shown to be useful for predicting spectral slopes. Results showed structure function slopes of 2/3 at small scales, and 0 at large scales, which corresponds with spectral slopes of -5/3 at small scales, and -1 at large scales. Using acoustic Doppler velocity measurements, I characterized the meter- to kilometer-scale turbulence at a potential tidal energy site in the Puget Sound, WA. Acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter (ADV) observations provided the data for an analysis that includes coherence, anisotropy, and intermittency. In order to more simply describe these features, a parameterization was done with four turbulence metrics, and the anisotropy magnitude, introduced here, was shown to most closely capture the coherent events. Then, using both the NREL TurbSim stochastic turbulence generator and the NCAR large-eddy simulation (LES) model, I calculated turbulence statistics to validate the accuracy of these methods in reproducing

  19. Measurement and Analysis of Coherent Flow Structures over Sand Dunes in the Missouri River near St. Louis, MO, by means of an Acoustic Doppler Current Profiler and a Multibeam Echo Sounder

    NASA Astrophysics Data System (ADS)

    Boldt, J.; Oberg, K. A.; Best, J. L.; Parsons, D. R.

    2011-12-01

    The topology, magnitude, and sediment transport capabilities of large-scale turbulence generated over alluvial sand dunes is influential in creating and maintaining dune morphology and in dominating both the flow field and the transport of suspended sediment above dune-covered beds. Combined measurements by means of an acoustic Doppler current profiler (ADCP) and a multibeam echo sounder (MBES) were made in order to examine flow over a series of sand dunes in the Missouri River, near St. Louis, MO, USA in October 2007. The bed topography of the Missouri River was mapped using a RESON 7125 MBES immediately before the ADCP data collection. Time series of velocity and acoustic backscatter were measured using a down-looking 1200 kHz ADCP while anchored at two locations in the dune field. The ADCP used in this study has a sampling rate of 2-3 Hz with 20-25 cm bin sizes. Two time series were collected having durations of 712 and 589 seconds at one location, while the third time series, collected about 4 meters upstream, was 2,270 seconds in duration. Measured streamwise velocities ranged from 0.1 to 2.7 ms-1 for all three stationary time series. Sediment concentration profiles were obtained at the same two locations as the stationary ADCP data using a P-61 sediment sampler and were compared to ADCP acoustic backscatter. Characteristics of turbulent flow structures in a sand bed river are presented. This paper presents data that can be used to investigate the issue of obtaining reliable estimates of turbulence parameters with an ADCP. The analyses will include mean velocity profiles, turbulence intensities, Reynolds shear stresses, quadrant analysis, power spectra, cross-correlation, and frequency analysis. Semi-periodic patterns were observed in each time series, characterized by periods of elevated acoustic backscatter with positive vertical velocities, followed by reduced acoustic backscatter with negative vertical velocities. The utility and limitations of combined

  20. Delay and Doppler spreads in underwater acoustic particle velocity channels.

    PubMed

    Guo, Huaihai; Abdi, Ali; Song, Aijun; Badiey, Mohsen

    2011-04-01

    Signal processing and communication in acoustic particle velocity channels using vector sensors are of interest in the underwater medium. Due to the presence of multiple propagation paths, a mobile receiver collects the signal with different delays and Doppler shifts. This introduces certain delay and Doppler spreads in particle velocity channels. In this paper, these channel spreads are characterized using the zero-crossing rates of channel responses in frequency and time domain. Useful expressions for delay and Doppler spreads are derived in terms of the key channel parameters mean angle of arrival and angle spread. These results are needed for design and performance prediction of systems that utilize underwater acoustic particle velocity and pressure channels.

  1. Calculating "g" from Acoustic Doppler Data

    ERIC Educational Resources Information Center

    Torres, Sebastian; Gonzalez-Espada, Wilson J.

    2006-01-01

    Traditionally, the Doppler effect for sound is introduced in high school and college physics courses. Students calculate the perceived frequency for several scenarios relating a stationary or moving observer and a stationary or moving sound source. These calculations assume a constant velocity of the observer and/or source. Although seldom…

  2. Doppler compensated underwater acoustic communication system

    NASA Astrophysics Data System (ADS)

    Raj, Anand; George, Binu; Supiya, M. H.; Kurian, James; Pillai, P. R. Saseendran

    2001-05-01

    Spread spectrum methods are used in communication systems to provide a low probability of intercept in hostile environments and multiple access capability in systems shared by many users as well as to provide high processing gain in channels where the transmitted signal is distorted by multipath effects. Such systems serve to be an effective tool for underwater telemetry environments, where multipath propagation effect and Doppler spreading is seen to be more predominant. This paper describes the implementation of a Doppler compensated underwater telemetry system based on CDMA technique. The system consists of multiple CDMA transmitters and a phase locked loop based carrier recoverable CDMA receiver. The effects of the Doppler shift can be compensated by the carrier recovery subsystem in the demodulator, based on PLL technique, which extracts the carrier frequency/phase and simultaneously demodulates the signal. The decision device in the receiver consists of a PN sequence generator as well as a bank of correlators, which are used to determine the data transmitted. The system simulation has been implemented in MATLAB. The advantage of this system is that multiple transmitting stations can transmit simultaneously to a central receiver, thereby increasing the system throughput.

  3. Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids

    PubMed Central

    Brunker, Joanna; Beard, Paul

    2016-01-01

    Photoacoustic Doppler velocimetry provides a major opportunity to overcome limitations of existing blood flow measuring methods. By enabling measurements with high spatial resolution several millimetres deep in tissue, it could probe microvascular blood flow abnormalities characteristic of many different diseases. Although previous work has demonstrated feasibility in solid phantoms, measurements in blood have proved significantly more challenging. This difficulty is commonly attributed to the requirement that the absorber spatial distribution is heterogeneous relative to the minimum detectable acoustic wavelength. By undertaking a rigorous study using blood-mimicking fluid suspensions of 3 μm absorbing microspheres, it was discovered that the perceived heterogeneity is not only limited by the intrinsic detector bandwidth; in addition, bandlimiting due to spatial averaging within the detector field-of-view also reduces perceived heterogeneity and compromises velocity measurement accuracy. These detrimental effects were found to be mitigated by high-pass filtering to select photoacoustic signal components associated with high heterogeneity. Measurement under-reading due to limited light penetration into the flow vessel was also observed. Accurate average velocity measurements were recovered using “range-gating”, which furthermore maps the cross-sectional velocity profile. These insights may help pave the way to deep-tissue non-invasive mapping of microvascular blood flow using photoacoustic methods. PMID:26892989

  4. Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids

    NASA Astrophysics Data System (ADS)

    Brunker, Joanna; Beard, Paul

    2016-02-01

    Photoacoustic Doppler velocimetry provides a major opportunity to overcome limitations of existing blood flow measuring methods. By enabling measurements with high spatial resolution several millimetres deep in tissue, it could probe microvascular blood flow abnormalities characteristic of many different diseases. Although previous work has demonstrated feasibility in solid phantoms, measurements in blood have proved significantly more challenging. This difficulty is commonly attributed to the requirement that the absorber spatial distribution is heterogeneous relative to the minimum detectable acoustic wavelength. By undertaking a rigorous study using blood-mimicking fluid suspensions of 3 μm absorbing microspheres, it was discovered that the perceived heterogeneity is not only limited by the intrinsic detector bandwidth; in addition, bandlimiting due to spatial averaging within the detector field-of-view also reduces perceived heterogeneity and compromises velocity measurement accuracy. These detrimental effects were found to be mitigated by high-pass filtering to select photoacoustic signal components associated with high heterogeneity. Measurement under-reading due to limited light penetration into the flow vessel was also observed. Accurate average velocity measurements were recovered using “range-gating”, which furthermore maps the cross-sectional velocity profile. These insights may help pave the way to deep-tissue non-invasive mapping of microvascular blood flow using photoacoustic methods.

  5. HF Doppler observations of acoustic waves excited by the earthquake

    NASA Technical Reports Server (NTRS)

    Ichinose, T.; Takagi, K.; Tanaka, T.; Okuzawa, T.; Shibata, T.; Sato, Y.; Nagasawa, C.; Ogawa, T.

    1985-01-01

    Ionospheric disturbances caused by the earthquake of a relatively small and large epicentral distance have been detected by a network of HF-Doppler sounders in central Japan and Kyoto station, respectively. The HF-Doppler data of a small epicentral distance, together with the seismic data, have been used to formulate a mechanism whereby ionospheric disturbances are produced by the Urakawa-Oki earthquake in Japan. Comparison of the dynamic spectra of these data has revealed experimentally that the atmosphere acts as a low-pass filter for upward-propagating acoustic waves. By surveying the earthquakes for which the magnitude M is larger than 6.0, researchers found the ionospheric effect in 16 cases of 82 seismic events. As almost all these effects have occurred in the daytime, it is considered that it may result from the filtering effect of the upward-propagating acoustic waves.

  6. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    PubMed Central

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558

  7. Relativistic formulation for the Doppler-broadened line profile

    SciTech Connect

    Huang, Young-Sea; Chiue, Juang-Han; Huang, Yi-Chi; Hsiung, Te-Chih

    2010-07-15

    Profiles of spectral lines due to the thermal motion of light-emitting particles are formulated based on the classical and the relativistic Doppler effects, respectively. For the classical case, the well-known Doppler-broadened line profile is reproduced. For the relativistic case, the line profile obtained is asymmetrically broadened with increasing temperature. However, the peak frequency remains unshifted, in contrast to blueshifted, as has been predicted in the current literature. Reasoning is given as to why the relativistic Doppler-broadened line profile currently accepted is probably invalid.

  8. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler.

    PubMed

    Brunker, Joanna; Beard, Paul

    2016-07-01

    Acoustic resolution photoacoustic Doppler velocimetry promises to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Despite successful implementation using blood-mimicking fluids, measurements in blood have proved challenging, thus preventing in vivo application. A common explanation for this difficulty is that whole blood is insufficiently heterogeneous relative to detector frequencies of tens of MHz compatible with deep tissue photoacoustic measurements. Through rigorous experimental measurements we provide new insight that refutes this assertion. We show for the first time that, by careful choice of the detector frequency and field-of-view, and by employing novel signal processing methods, it is possible to make velocity measurements in whole blood using transducers with frequencies in the tens of MHz range. These findings have important implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions. PMID:27446707

  9. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler

    PubMed Central

    Brunker, Joanna; Beard, Paul

    2016-01-01

    Acoustic resolution photoacoustic Doppler velocimetry promises to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Despite successful implementation using blood-mimicking fluids, measurements in blood have proved challenging, thus preventing in vivo application. A common explanation for this difficulty is that whole blood is insufficiently heterogeneous relative to detector frequencies of tens of MHz compatible with deep tissue photoacoustic measurements. Through rigorous experimental measurements we provide new insight that refutes this assertion. We show for the first time that, by careful choice of the detector frequency and field-of-view, and by employing novel signal processing methods, it is possible to make velocity measurements in whole blood using transducers with frequencies in the tens of MHz range. These findings have important implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions. PMID:27446707

  10. Study of Doppler Shift Correction for Underwater Acoustic Communication Using Orthogonal Signal Division Multiplexing

    NASA Astrophysics Data System (ADS)

    Ebihara, Tadashi; Mizutani, Keiichi

    2011-07-01

    In this study, we apply Doppler shift correction schemes for underwater acoustic (UWA) communication with orthogonal signal division multiplexing (OSDM) to achieve stable communication in underwater acoustic channels. Three Doppler correction schemes, which exploit the guard interval, are applied to UWA communication with OSDM and evaluated in simulations. Through a simulation in which only the Doppler effect is considered, we confirmed that by adapting schemes to UWA communication with OSDM, we can correct large Doppler shifts, which addresses the usual speed of vehicles and ships. Moreover, by considering both the Doppler effect and channel reverberation, we propose the best possible combination of Doppler correction schemes for UWA communication with OSDM. The results suggest that UWA communication with OSDM may lead to high-quality communication by considering channel reverberation and large Doppler shifts.

  11. Field Assessment of Acoustic-Doppler Based Discharge Measurements

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2002-01-01

    The use of equipment based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun a field validation of the instruments currently (2002) available for making discharge measurements from a moving boat in streams of various sizes. Instruments manufactured by SonTek/YSI2 and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made by the use of a Price AA current meter and standard USGS procedures with the acoustic instruments at each site during data collection. The discharges measured with the acoustic instruments were compared with the discharges measured with Price AA meters and the current USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating. Additional analysis of the data collected indicates that the coefficient of variation of the discharge measurements consistently was less for the RD Instruments, Inc. Rio Grandes than it was for the SonTek/YSI RiverSurveyors. The bottom-tracking referenced measurement had a lower coefficient of variation than the differentially corrected global positioning system referenced measurements. It was observed that the higher frequency RiverSurveyors measured a moving bed more often than the lower frequency Rio Grandes. The detection of a moving bed caused RiverSurveyors to be consistently biased low when referenced to bottom tracking. Differentially corrected global positioning system data may be used to remove the bias observed in the bottom-tracking referenced measurements.

  12. Noise correction of turbulent spectra obtained from Acoustic Doppler Velocimeters

    SciTech Connect

    Durgesh, Vibhav; Thomson, Jim; Richmond, Marshall C.; Polagye, Brian

    2014-03-02

    Accurately estimated auto-spectral density functions are essential for characterization of turbulent flows, and they also have applications in computational fluid dynamics modeling, site and inflow characterization for hydrokinetic turbines, and inflow turbulence generation. The Acoustic Doppler Velocimeter (ADV) provides single-point temporally resolved data, that are used to characterize turbulent flows in rivers, seas, and oceans. However, ADV data are susceptible to contamination from various sources, including instrument noise, which is the intrinsic limit to the accuracy of acoustic velocity measurements. Due to the presence of instrument noise, the spectra obtained are altered at high frequencies. The focus of this study is to develop a robust and effective method for accurately estimating auto-spectral density functions from ADV data by reducing or removing the spectral contribution derived from instrument noise. For this purpose, the “Noise Auto-Correlation” (NAC) approach was developed, which exploits the correlation properties of instrument noise to identify and remove its contribution from spectra. The spectra estimated using the NAC approach exhibit increased fidelity and a slope of -5/3 in the inertial range, which is typically observed for turbulent flows. Finally, this study also compares the effectiveness of low-pass Gaussian filters in removing instrument noise with that of the NAC approach. For the data used in this study, both the NAC and Gaussian filter approaches are observed to be capable of removing instrument noise at higher frequencies from the spectra. However, the NAC results are closer to the expected frequency power of -5/3 in the inertial sub-range.

  13. Application of acoustic doppler velocimeters for streamflow measurements

    USGS Publications Warehouse

    Rehmel, M.

    2007-01-01

    The U.S. Geological Survey (USGS) principally has used Price AA and Price pygmy mechanical current meters for measurement of discharge. New technologies have resulted in the introduction of alternatives to the Price meters. One alternative, the FlowTracker acoustic Doppler velocimeter, was designed by SonTek/YSI to make streamflow measurements in wadeable conditions. The device measures a point velocity and can be used with standard midsection method algorithms to compute streamflow. The USGS collected 55 quality-assurance measurements with the FlowTracker at 43 different USGS streamflow-gaging stations across the United States, with mean depths from 0.05to0.67m, mean velocities from 13 to 60 cm/s, and discharges from 0.02 to 12.4m3/s. These measurements were compared with Price mechanical current meter measurements. Analysis of the comparisons shows that the FlowTracker discharges were not statistically different from the Price meter discharges at a 95% confidence level. ?? 2007 ASCE.

  14. Doppler effect in resonant photoemission from SF6: correlation between Doppler profile and Auger emission anisotropy.

    PubMed

    Kitajima, M; Ueda, K; De Fanis, A; Furuta, T; Shindo, H; Tanaka, H; Okada, K; Feifel, R; Sorensen, S L; Gel'mukhanov, F; Baev, A; Agren, H

    2003-11-21

    Fragmentation of the SF6 molecule upon F 1s excitation has been studied by resonant photoemission. The F atomiclike Auger line exhibits the characteristic Doppler profile that depends on the direction of the photoelectron momentum relative to the polarization vector of the radiation as well as on the photon energy. The measured Doppler profiles are analyzed by the model simulation that takes account of the anisotropy of the Auger emission in the molecular frame. The Auger anisotropy extracted from the data decreases with an increase in the F-SF5 internuclear distance.

  15. Estimating Discharge using Multi-level Velocity Data from Acoustic Doppler Instruments

    NASA Astrophysics Data System (ADS)

    Bang Poulsen, J.; Rømer Rasmussen, K.; Bering Ovesen, N.

    2010-12-01

    In the majority of Danish streams, weed growth affects the effective stream width and bed roughness and therefore imposes temporal variations on the stage-discharge relationship. Small stream-gradients and firm ecology based restrictions prevent that hydraulic structures are made at the discharge stations and thus remove or limit such influences. Hence, estimation of the hydrograph is based on continuous stream gauging combined with monthly control measurements of discharge and assuming linear variation of bed roughness between the monthly measurements. As a result, any non-linear drift in weed density or structure which affect the frictional characteristics of the stream during both normal and peak flows are ignored. The present investigation studies if such temporal variation in the conveyance may be detected and eventually compensated for when estimating the hydrograph. Therefore acoustic Dopplers have been placed at the main discharge station in one of the largest Danish catchments (the Skjern). The instruments were set out in early February 2010 during the winter season and have been running since then. The long term average discharge at the station is near 14 m3/s and the cross sectional profile is roughly trapezoidal having width about 15 m., but slightly skew so that the stream is about 0.5 m. deeper off the right than off the left bank. During winter, the depths are typically near 2 m. while during summer they are about 1.5 m. During peak flows, when the discharge exceeds 35 m3/s, the depth increases to more than 3 m. The Doppler instruments (Nortek) are placed on a vertical pole about 2 m. off the right bank at three fixed elevations above the streambed (0.3, 0.6, and 1.3 m); the beams point horizontally towards the left bank perpendicularly to the average flow direction. At each depth, the Doppler sensor records 10 minute average stream velocities in the central 10 m. section of the stream. During summer periods with low flow, stream velocity has only

  16. Experimental Study of Doppler Effect for Underwater Acoustic Communication Using Orthogonal Signal Division Multiplexing

    NASA Astrophysics Data System (ADS)

    Ebihara, Tadashi; Mizutani, Keiichi

    2012-07-01

    This paper is about the underwater acoustic (UWA) communication using orthogonal signal division multiplexing (OSDM) in shallow water, whose environment is time spread and frequency spread. In this paper, the Doppler effect - Doppler shift and spread - for UWA communication using OSDM is mainly considered. The effects of Doppler shift and Doppler spread are evaluated in a test tank with a moving platform on a stable water surface and with a stable platform with a moving water surface, respectively. Doppler shift correction, which has been considered in simulation-based studies, is found to work effectively. In relation to the effect of Doppler spread, the experimental result well agrees with the simulation result. Through this study, it is confirmed that a smaller frame length is preferable because it enables the measurement of the UWA channel frequently so that it can keep up with channel changes.

  17. Estimating stream discharge using stage and multi-level acoustic Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Poulsen, J. B.; Rasmussen, K.; Ledet Jensen, J.; Bering Ovesen, N.

    2011-12-01

    and stage data to discharge will be presented. The estimated discharges are compared with control measurements of discharge obtained from an Acoustic Doppler Current Profiler (ADCP) and with discharge values derived by the Danish Water Authority by traditional stage-discharge analysis. The novelty of this approach is that the velocity gradient is implemented as a marker for hydraulic changes in the hydrograph estimation, without explicit use of cross sectional area and cross sectional average velocity. The initial results show good agreement between the ADCP discharge measurements and the discharge values predicted from the stage-velocity method and suggest superiority of the stage-velocity method during abrupt changes in stage.

  18. Acoustic resolution photoacoustic Doppler flowmetry: practical considerations for obtaining accurate measurements of blood flow

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2014-03-01

    An assessment has been made of various experimental factors affecting the accuracy of flow velocities measured using a pulsed time correlation photoacoustic Doppler technique. In this method, Doppler time shifts are quantified via crosscorrelation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves are detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. This enables penetration depths of several millimetres or centimetres, unlike methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1 mm. In the acoustic resolution mode, it is difficult to detect time shifts in highly concentrated suspensions of flowing absorbers, such as red blood cell suspensions and whole blood, and this challenge supposedly arises because of the lack of spatial heterogeneity. However, by assessing the effect of different absorption coefficients and tube diameters, we offer an alternative explanation relating to light attenuation and parabolic flow. We also demonstrate a new signal processing method that surmounts the previous problem of measurement under-reading. This method is a form of signal range gating and enables mapping of the flow velocity profile across the tube as well as measurement of the average flow velocity. We show that, using our signal processing scheme, it is possible to measure the flow of whole blood using a relatively low frequency detector. This important finding paves the way for application of the technique to measurements of blood flow several centimetres deep in living tissue.

  19. High-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler.

    PubMed

    Zhu, Jie; Lee, Chuangyuan; Kim, Eun Sok; Wu, Dawei; Hu, Changhong; Zhou, Qifa; Shung, K Kirk; Wang, Gaofeng; Yu, Hongyu

    2010-05-01

    This work reports the potential use of high-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz.

  20. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Zhang, Shangbin; He, Qingbo; Kong, Fanrang

    2016-01-01

    Wayside acoustic condition monitoring and fault diagnosis for train bearings depend on acquired acoustic signals, which consist of mixed signals from different train bearings with obvious Doppler distortion as well as background noises. This study proposes a novel scheme to overcome the difficulties, especially the multi-source problem in wayside acoustic diagnosis system. In the method, a time-frequency data fusion (TFDF) strategy is applied to weaken the Heisenberg's uncertainty limit for a signal's time-frequency distribution (TFD) of high resolution. Due to the Doppler Effect, the signals from different bearings have different time centers even with the same frequency. A Doppler feature matching search (DFMS) algorithm is then put forward to locate the time centers of different bearings in the TFD spectrogram. With the determined time centers, time-frequency filters (TFF) are designed with thresholds to separate the acoustic signals in the time-frequency domain. Then the inverse STFT (ISTFT) is taken and the signals are recovered and filtered aiming at each sound source. Subsequently, a dynamical resampling method is utilized to remove the Doppler Effect. Finally, accurate diagnosis for train bearing faults can be achieved by applying conventional spectrum analysis techniques to the resampled data. The performance of the proposed method is verified by both simulated and experimental cases. It shows that it is effective to detect and diagnose multiple defective bearings even though they produce multi-source acoustic signals.

  1. Stimulated acoustic emission: pseudo-Doppler shifts seen during the destruction of nonmoving microbubbles.

    PubMed

    Tiemann, K; Pohl, C; Schlosser, T; Goenechea, J; Bruce, M; Veltmann, C; Kuntz, S; Bangard, M; Becher, H

    2000-09-01

    The purpose of this study was to evaluate the appearance and the characteristics of stimulated acoustic emission (SAE) as an echo contrast-specific color Doppler phenomenon with impact on myocardial contrast echocardiography (MCE). Stationary microbubbles of the new contrast agent SH-U 563A (Schering AG) were embedded within a tissue-mimicking gel material. Harmonic power Doppler imaging (H-PDI), color Doppler and pulse-wave Doppler data were acquired using an HDI-5000 equipped with a phased-array transducer (1.67/3.3 MHz). In color Doppler mode, bubble destruction resulted in random noise like Doppler signals. PW-Doppler revealed short "pseudo-Doppler" shifts with a broadband frequency spectrum. Quantification of SAE events by H-PDI demonstrated an exponential decay of signal intensities over successive frames. A strong linear relationship was found between bubble concentration and the square root of the linearized H-PDI signal for a range of concentrations of more than two orders of magnitude (R = 0.993, p < 0.0001). Intensity of the H-PDI signals correlated well with emission power (R = 0.96, p = 0.0014). SAE results from disintegration of microbubbles and can be demonstrated by all Doppler imaging modalities, including H-PDI. Intensity of SAE signals is influenced by the applied acoustic power and correlates highly with the concentration of microbubbles. Because intensity of SAE signals correlates highly with echo contrast concentrations, analysis of SAE signals might be used for quantitative MCE. PMID:11053751

  2. Stretched-exponential Doppler spectra in underwater acoustic communication channels.

    PubMed

    van Walree, P A; Jenserud, T; Otnes, R

    2010-11-01

    The theory of underwater sound interacting with the sea surface predicts a Gaussian-spread frequency spectrum in the case of a large Rayleigh parameter. However, recent channel soundings reveal more sharply peaked spectra with heavier tails. The measured Doppler spread increases with the frequency and differs between multipath arrivals. The overall Doppler spectrum of a broadband waveform is the sum of the spectra of all constituent paths and frequencies, and is phenomenologically described by a stretched or compressed exponential. The stretched exponential also fits well to the broadband spectrum of a single propagation path, and narrowband spectra summed over all paths.

  3. Observations on the use of acoustic Doppler velocimeters over rough beds with suspended sediment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic Doppler velocimeters provide a means for measuring velocities and turbulence in challenging circumstances, such as in flows with suspended particles, which are difficult or impossible with laser-based techniques. The relatively non-intrusive measurement resulting from the offset sampling v...

  4. A Comparison of the Electromagnetic and Acoustic Doppler Effects Using Geometrical Diagrams

    ERIC Educational Resources Information Center

    Bokor, Nandor

    2009-01-01

    Students often find the difference in the electromagnetic and the acoustic Doppler formulae somewhat puzzling. As is shown below, geometrical diagrams and the concept of "event"--a point in spacetime having coordinates (x,y,z,t)--can be a useful and simple way to explain the physical background behind the fundamental differences between the two…

  5. Equivalent width evaluation methods for Doppler, Lorentz, and Voigt profiles.

    PubMed

    Habib, Abdel Aziz M; Rammah, Yasser S

    2014-01-01

    An accurate technique has been developed to calculate the equivalent width of absorption lines. The calculations have been carried out for the pure Doppler and pure Lorentz limiting forms of the equivalent width. A novel expression for the equivalent width for Lorentz profile is given from direct integration of the line profile. The more general case of a Voigt profile leads to an analytical formula that permits a rapid estimate of the equivalent width for a wide range of maximum optical depths. The reliability of the approach is verified using a numerical application calculating the equivalent width for nickel resonance lines at 232.0 and 352.3 nm from atomic absorption (AA) measurements. The dependence of equivalent width on the number density of absorbing atoms is also provided. The results obtained for the equivalent width for the Voigt profile were compared with the data in the available literature obtained by different approaches. PMID:24480275

  6. Source motion detection, estimation, and compensation for underwater acoustics inversion by wideband ambiguity lag-Doppler filtering.

    PubMed

    Josso, Nicolas F; Ioana, Cornel; Mars, Jérôme I; Gervaise, Cédric

    2010-12-01

    Acoustic channel properties in a shallow water environment with moving source and receiver are difficult to investigate. In fact, when the source-receiver relative position changes, the underwater environment causes multipath and Doppler scale changes on the transmitted signal over low-to-medium frequencies (300 Hz-20 kHz). This is the result of a combination of multiple paths propagation, source and receiver motions, as well as sea surface motion or water column fast changes. This paper investigates underwater acoustic channel properties in a shallow water (up to 150 m depth) and moving source-receiver conditions using extracted time-scale features of the propagation channel model for low-to-medium frequencies. An average impulse response of one transmission is estimated using the physical characteristics of propagation and the wideband ambiguity plane. Since a different Doppler scale should be considered for each propagating signal, a time-warping filtering method is proposed to estimate the channel time delay and Doppler scale attributes for each propagating path. The proposed method enables the estimation of motion-compensated impulse responses, where different Doppler scaling factors are considered for the different time delays. It was validated for channel profiles using real data from the BASE'07 experiment conducted by the North Atlantic Treaty Organization Undersea Research Center in the shallow water environment of the Malta Plateau, South Sicily. This paper provides a contribution to many field applications including passive ocean tomography with unknown natural sources position and movement. Another example is active ocean tomography where sources motion enables to rapidly cover one operational area for rapid environmental assessment and hydrophones may be drifting in order to avoid additional flow noise.

  7. Acoustic Doppler velocity measurement system using capacitive micromachined ultrasound transducer array technology.

    PubMed

    Shin, Minchul; Krause, Joshua S; DeBitetto, Paul; White, Robert D

    2013-08-01

    This paper describes the design, fabrication, modeling, and characterization of a small (1 cm(2) transducer chip) acoustic Doppler velocity measurement system using microelectromechanical systems capacitive micromachined ultrasound transducer (cMUT) array technology. The cMUT sensor has a 185 kHz resonant frequency to achieve a 13° beam width for a 1 cm aperture. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, this paper shows characterization of the cMUT sensor with a variety of testing procedures including Laser Doppler Vibrometry (LDV), beampattern measurement, reflection testing, and velocity testing. LDV measurements demonstrate that the membrane displacement at the center point is 0.4 nm/V(2) at 185 kHz. The maximum range of the sensor is 60 cm (30 cm out and 30 cm back). A velocity sled was constructed and used to demonstrate measureable Doppler shifts at velocities from 0.2 to 1.0 m/s. The Doppler shifts agree well with the expected frequency shifts over this range.

  8. Acoustic Doppler velocity measurement system using capacitive micromachined ultrasound transducer array technology.

    PubMed

    Shin, Minchul; Krause, Joshua S; DeBitetto, Paul; White, Robert D

    2013-08-01

    This paper describes the design, fabrication, modeling, and characterization of a small (1 cm(2) transducer chip) acoustic Doppler velocity measurement system using microelectromechanical systems capacitive micromachined ultrasound transducer (cMUT) array technology. The cMUT sensor has a 185 kHz resonant frequency to achieve a 13° beam width for a 1 cm aperture. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, this paper shows characterization of the cMUT sensor with a variety of testing procedures including Laser Doppler Vibrometry (LDV), beampattern measurement, reflection testing, and velocity testing. LDV measurements demonstrate that the membrane displacement at the center point is 0.4 nm/V(2) at 185 kHz. The maximum range of the sensor is 60 cm (30 cm out and 30 cm back). A velocity sled was constructed and used to demonstrate measureable Doppler shifts at velocities from 0.2 to 1.0 m/s. The Doppler shifts agree well with the expected frequency shifts over this range. PMID:23927100

  9. A micro-Doppler sonar for acoustic surveillance in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  10. Upgrades to the profile and Doppler reflectometer systems on EAST

    NASA Astrophysics Data System (ADS)

    Hu, Jian Qiang; Liu, A. Di; Doyle, Edward J.; Wang, Guiding; Li, Hong; Zhou, Chu; Zhang, Xiao Hui; Wang, Ming Yuan; Zhang, Jin; Yu, Chang Xuan

    2015-11-01

    The USTC reflectometer systems on the EAST Tokamak have been upgraded, including new Q- and V-band monostatic FMCW profile reflectometer systems with dynamic calibration, efficient transition lines with quasi-optical lenses and corrugated waveguides, dual polarization operation. The profile system is integrated with an 8-channel Doppler backscattering (DBS) system in a new flexible microwave front-end, and a second DBS system is at a separate toroidal location. The new systems cater for variable scenarios and allow for poloidal and toroidal turbulence correlations. We present the designs for these upgraded systems, system calibrations and measurements of the beam profile in laboratory, as well as the primary experimental results from EAST operation. Work supported by the Natural Science Foundation of China 11475173, National Magnetic Confinement Fusion Energy Development Program of China 2013GB106002 and 2014GB109002, US DOE Grants DE-SC0010424 and DE-SC0010469, and China Scholarship Council 3026.

  11. A new parametric approach for wind profiling with Doppler Radar

    NASA Astrophysics Data System (ADS)

    Le Foll, GwenaëLle; Larzabal, Pascal; Clergeot, Henri; Petitdidier, Monique

    1997-07-01

    In this paper, we propose a new approach for wind profile extraction with Doppler radar. To perform this, we first focus on the analysis and modeling of VHF or UHF waves backscattered by clear-air turbulence. A physical description of the backscattered wave is given. This description involves a spectral model that includes a parametric profile of the Doppler spectrum. A parametric approach of the wind profile can be easily generated. The sounding volume is divided into slabs whose thickness is consistent with that of the expected homogeneous turbulent layer. The echo spectrum of each slab is supposed Gaussian. Thus, for the range gate, the backscattered spectrum is a priori non-Gaussian, since it is weighted by a nonconstant reflectivity. This represents a more realistic assumption than the classical ones. The realistic temporal model thereby obtained can be used in simulation, which provides a valable tool for testing the extraction algorithm. An original recursive fitting, in terms of maximum likelihood, between the experimentally recorded spectrum and the parametric candidate spectrum is described and implemented as a second-order, steepest-descent algorithm. This optimization problem is solved in a weighted fashion on the entire gate simultaneously. The regularized parametric method, described in this paper, is a way to minimize some of the drawbacks encountered with traditional methods. Simulations reveal good statistical performance compared with traditional methods. The algorithm is then tested on real data. To achieve this, original methods are proposed for noise suppression and clutter removal.

  12. Development of a Radio Acoustic Sounding System (RASS) for continuous temperature profiling upto lower stratospheric altitudes

    NASA Astrophysics Data System (ADS)

    Chandrasekhar Sarma, T. V.; Tsuda, Toshitaka

    2012-07-01

    The Gadanki (13.46°N, 79.17°E) MST radar is a high power VHF pulsed coherent Doppler radar established for remote probing of atmospheric phenomena in the Mesosphere Stratosphere Troposphere regions. Radio Acoustic Sounding System (RASS) was developed using this radar to obtain height profiles of atmospheric temperature up to lower stratospheric altitudes. RASS uses the effect of temperature on the speed of sound in air as a means to sense the atmospheric temperature. It is the combination of a Doppler radar and acoustic exciters. The radar was augmented with acoustic exciters that were designed and constructed for this purpose. The Doppler radar profiles the speed of refractive index perturbations induced by the acoustic source. RASS has been demonstrated to be a reliable ground-based remote profiling technique to obtain altitude profiles of atmospheric virtual temperature, Tv over the past two decades. This work describes the design of the system and its application to the observation of height profiles of atmospheric virtual temperature up to and beyond tropical tropopause altitudes. Observations were made during 2007, 2008 and 2009 over periods extending up to 72 hours. These observations demonstrate temperature profiling capability up to about 18 km in altitude, though on an occasion height coverage upto 22.8km was obtained briefly; lowest height covered is from about 1.5km onwards. During the period of the RASS observations simultaneous data from radiosonde was used to validate the temperature measurements. Simultaneous satellite-based measurement of outgoing long wave radiation (OLR) and precipitation from ground-based instruments was used to study the atmospheric phenomena of gravity waves and atmospheric stability during a convection event.

  13. Acoustic Doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. THOMPSON: TN043, January 8, 1995--February 4, 1995; TN044, February 8, 1995--February 25, 1995; TN045, March 14, 1995--April 10, 1995; TN046, April 14, 1995--April 29, 1995

    SciTech Connect

    Flagg, C.N.; Kim, H.S.; Shi, Y.

    1995-09-01

    Acoustic Doppler current profiler (ADCP) data from the R/V T.G. THOMPSON is part of the core data for the US JGOFS Arabian Sea project along with hydrographic and nutrient data. Seventeen cruises on the THOMPSON are scheduled to take place between September 1994 and January 1996. This is the second in a series of data reports covering the ADCP data from the Arabian Sea JGOFS cruises TNO43 through TNO46. ADCP data are being collected on all the JGOFS Arabian Sea cruises using an autonomous data acquisition system developed for ship-of-opportunity cruises. This system, referred to as the AutoADCP, makes it possible to collect the ADCP data without the constant monitoring usually necessary and assures constant data coverage and uniform data quality. This data report presents ADCP results from the second group of four JGOFS cruises, TNO43 through TNO46, concentrating on the data collection and processing methods. The ADCP data itself reside in a CODAS data base at Brookhaven National Laboratory and is generally available to JGOFS investigators through contact with the authors. The CODAS data base and associated ADCP processing software were developed over a number of years by Eric Firing and his group at the University of Hawaii. The CODAS software is shareware available for PC`s or Unix computers and is the single most widely used ADCP processing program for ship mounted units.

  14. Radar Wind Profiler Radial Velocity: A Comparison with Doppler Lidar.

    NASA Astrophysics Data System (ADS)

    Cohn, Stephen A.; Goodrich, R. Kent

    2002-12-01

    The accuracy of the radial wind velocity measured with a radar wind profiler will depend on turbulent variability and instrumental noise. Radial velocity estimates of a boundary layer wind profiler are compared with those estimated by a Doppler lidar over 2.3 h. The lidar resolution volume was much narrower than the profiler volume, but the samples were well matched in range and time. The wind profiler radial velocity was computed using two common algorithms [profiler online program (POP) and National Center for Atmospheric Research improved moments algorithm (NIMA)]. The squared correlation between radial velocities measured with the two instruments was R2 = 0.99, and the standard deviation of the difference was about r = 0.20-0.23 m s1 for radial velocities of greater than 1 m s1 and r = 0.16-0.35 m s1 for radial velocities of less than 1 m s1. Small radial velocities may be treated differently in radar wind profiler processing because of ground-clutter mitigation strategies. A standard deviation of r = 0.23 m s1 implies an error in horizontal winds from turbulence and noise of less than 1 m s1 for a single cycle through the profiler beam directions and of less than 0.11-0.27 m s1 for a 30-min average measurement, depending on the beam pointing sequence. The accuracy of a wind profiler horizontal wind measurement will also depend on assumptions of spatial and temporal inhomogeneity of the atmosphere, which are not considered in this comparison. The wind profiler radial velocities from the POP and NIMA are in good agreement. However, the analysis does show the need for improvements in wind profiler processing when radial velocity is close to zero.

  15. Gulf stream velocity structure through combined inversion of hydrographic and acoustic Doppler data

    NASA Technical Reports Server (NTRS)

    Pierce, S. D.

    1986-01-01

    Near-surface velocities from an acoustic Doppler instrument are used in conjunction with CTD/O2 data to produce estimates of the absolute flow field off Cape Hatteras. The data set consists of two transects across the Gulf Stream made by the R/V Endeavor cruise EN88 in August 1982. An inverse procedure is applied which makes use of both the acoustic Doppler data and property conservation constraints. Velocity sections at approximately 73 deg. W and 71 deg. W are presented with formal errors of 1-2 cm/s. The net Gulf Stream transports are estimated to be 116 + or - 2 Sv across the south leg and 161 + or - 4 Sv across the north. A Deep Western Boundary Current transport of 4 + or - 1 Sv is also estimated. While these values do not necessarily represent the mean, they are accurate estimates of the synoptic flow field in the region.

  16. Time delay and Doppler estimation for wideband acoustic signals in multipath environments.

    PubMed

    Jiang, Xue; Zeng, Wen-Jun; Li, Xi-Lin

    2011-08-01

    Estimation of the parameters of a multipath underwater acoustic channel is of great interest for a variety of applications. This paper proposes a high-resolution method for jointly estimating the multipath time delays, Doppler scales, and attenuation amplitudes of a time-varying acoustical channel. The proposed method formulates the estimation of channel parameters into a sparse representation problem. With the [script-l](1)-norm as the measure of sparsity, the proposed method makes use of the basis pursuit (BP) criterion to find the sparse solution. The ill-conditioning can be effectively reduced by the [script-l](1)-norm regularization. Unlike many existing methods that are only applicable to narrowband signals, the proposed method can handle both narrowband and wideband signals. Simulation results are provided to verify the performance and effectiveness of the proposed algorithm, indicating that it has a super-resolution in both delay and Doppler domain, and it is robust to noise.

  17. Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer.

    PubMed

    Harland, Andy R; Petzing, Jon N; Tyrer, John R

    2004-01-01

    Localized changes in the density of water induced by the presence of an acoustic field cause perturbations in the localized refractive index. This relationship has given rise to a number of nonperturbing optical metrology techniques for recording measurement parameters from underwater acoustic fields. A method that has been recently developed involves the use of a Laser Doppler Vibrometer (LDV) targeted at a fixed, nonvibrating, plate through an underwater acoustic field. Measurements of the rate of change of optical pathlength along a line section enable the identification of the temporal and frequency characteristics of the acoustic wave front. This approach has been extended through the use of a scanning LDV, which facilitates the measurement of a range of spatially distributed parameters. A mathematical model is presented that relates the distribution of pressure amplitude and phase in a planar wave front with the rate of change of optical pathlength measured by the LDV along a specifically orientated laser line section. Measurements of a 1 MHz acoustic tone burst generated by a focused transducer are described and the results presented. Graphical depictions of the acoustic power and phase distribution recorded by the LDV are shown, together with images representing time history during the acoustic wave propagation.

  18. Tropospheric Wind Profile Measurements with a Direct Detection Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Chen, Huailin; Mathur, Savyasachee

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. In this paper we describe a recently developed prototype wind lidar system using a direct detection Doppler technique for measuring wind profiles from the surface through the troposphere. This system uses a pulsed ND:YAG laser operating at 1064 nm as the transmitter. The laser pulse is directed to the atmosphere using a 40 cm diameter scan mirror. The portion of the laser energy backscattered from aerosols and molecules is collected by a 40 cm diameter telescope and coupled via fiber optics into the Doppler receiver. Single photon counting APD's are used to detect the atmospheric backscattered signal. The principle element of the receiver is a dual bandpass tunable Fabry Perot etalon which analyzes the Doppler shift of the incoming laser signal using the double edge technique. The double edge technique uses two high resolution optical filters having bandpasses offset relative to one another such that the 'edge' of the first filter's transmission function crosses that of the second at the half power point. The outgoing laser frequency is located approximately at the crossover point. Due to the opposite going slopes of the edges, a Doppler shift in the atmospheric backscattered laser frequency produces a positive change in signal for one filter and a negative change in the second filter. Taking the ratio of the two edge channel signals yields a result which is directly proportional to the

  19. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  20. Scanning Laser Doppler Vibrometry Application to Artworks: New Acoustic and Mechanical Exciters for Structural Diagnostics

    NASA Astrophysics Data System (ADS)

    Agnani, A.; Esposito, E.

    After first attempts some years ago, the scanning laser Doppler vibrometer has become an effective way of diagnosing different types of artworks; successful applications regard frescoes, icons, mosaics, ceramic artefacts and wood inlays. Also application to historical bridges has been successfully developed and a recently approved European Commission project will see the employment of scanning laser Doppler Vibrometry (SLDV) for the dynamical characterization of ancient buildings. However, a critical issue consists in the adequate excitation of the structure under test. Moreover different types of defects and different kinds of artworks require different types of excitation, so this topic needs a deep consideration. In this work we will present two new types of exciters developed at our Department, namely an acoustic exciter and a mechanical one. Acoustic exciters allow remote non-invasive loading but are limited in the lower frequency range and in the amount of vibrational energy input into the structure. The proposed automatic tapping device based on a commercial impact hammer overcomes these problems. Also another acoustic exciter, a HyperSonic Sound (HSS) source has been evaluated, showing interesting features as regards sound radiation.

  1. Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry.

    PubMed

    Fischer, Andreas; König, Jörg; Haufe, Daniel; Schlüssler, Raimund; Büttner, Lars; Czarske, Jürgen

    2013-08-01

    To reduce the noise of machines such as aircraft engines, the development and propagation of sound has to be investigated. Since the applicability of microphones is limited due to their intrusiveness, contactless measurement techniques are required. For this reason, the present study describes an optical method based on the Doppler effect and its application for acoustic particle velocity (APV) measurements. While former APV measurements with Doppler techniques are point measurements, the applied system is capable of simultaneous measurements at multiple points. In its current state, the system provides linear array measurements of one component of the APV demonstrated by multi-tone experiments with tones up to 17 kHz for the first time.

  2. Optical multi-point measurements of the acoustic particle velocity with frequency modulated Doppler global velocimetry.

    PubMed

    Fischer, Andreas; König, Jörg; Haufe, Daniel; Schlüssler, Raimund; Büttner, Lars; Czarske, Jürgen

    2013-08-01

    To reduce the noise of machines such as aircraft engines, the development and propagation of sound has to be investigated. Since the applicability of microphones is limited due to their intrusiveness, contactless measurement techniques are required. For this reason, the present study describes an optical method based on the Doppler effect and its application for acoustic particle velocity (APV) measurements. While former APV measurements with Doppler techniques are point measurements, the applied system is capable of simultaneous measurements at multiple points. In its current state, the system provides linear array measurements of one component of the APV demonstrated by multi-tone experiments with tones up to 17 kHz for the first time. PMID:23927110

  3. Laboratory evaluation of an OTT acoustic digital current meter and a SonTek Laboratory acoustic Doppler velocimeter

    USGS Publications Warehouse

    Vermeyen, T.B.; Oberg, Kevin A.; Jackson, Patrick Ryan

    2009-01-01

    Recently, an acoustic current meter known as the OTT * acoustic digital current meter (ADC) was introduced as an alternative instrument for stream gaging measurements. The Bureau of Reclamation and the U.S. Geological Survey collaborated on a side- by-side evaluation of the ADC and a SonTek/YSI acoustic Doppler velocimeter (ADV). Measurements were carried out in a laboratory flume to evaluate the performance characteristics of the ADC under a range of flow and boundary conditions. The flume contained a physical model of a mountain river with a diversion dam and variety of bed materials ranging from smooth mortar to a cobble bed. The instruments were installed on a trolley system that allowed them to be easily moved within the flume while maintaining a consistent probe orientation. More than 50 comparison measurements were made in an effort to verify the manufacturer’s performance specifications and to evaluate potential boundary disturbance for near-bed and vertical boundary measurements. Data and results from this evaluation are presented and discussed. 

  4. Experimental investigation of geodesic acoustic modes on JET using Doppler backscattering

    NASA Astrophysics Data System (ADS)

    Silva, C.; Hillesheim, J. C.; Hidalgo, C.; Belonohy, E.; Delabie, E.; Gil, L.; Maggi, C. F.; Meneses, L.; Solano, E.; Tsalas, M.; Contributors, JET

    2016-10-01

    Geodesic acoustic modes (GAMs) have been investigated in JET ohmic discharges using mainly Doppler backscattering. Characteristics and scaling properties of the GAM are studied. Time and spatial resolved measurements of the perpendicular velocity indicate that GAMs are located in a narrow layer at the edge density gradient region with amplitude corresponding to about 50% of the mean local perpendicular velocity. GAMs on JET appear to be regulated by the turbulence drive rather than by their damping rate. It is also shown that the GAM amplitude is ~20% larger in deuterium than in hydrogen plasmas.

  5. Underwater Acoustic Wavefront Visualization by Scanning Laser Doppler Vibrometer for the Characterization of Focused Ultrasonic Transducers

    PubMed Central

    Longo, Roberto; Vanlanduit, Steve; Arroud, Galid; Guillaume, Patrick

    2015-01-01

    The analysis of acoustic wave fields is important for a large number of engineering designs, communication and health-related reasons. The visualization of wavefronts gives valuable information about the type of transducers and excitation signals more suitable for the test itself. This article is dedicated to the development of a fast procedure for acoustic fields visualization in underwater conditions, by means of laser Doppler vibrometer measurements. The ultrasonic probe is a focused transducer excited by a chirp signal. The scope of this work is to evaluate experimentally the properties of the sound beam in order to get reliable information about the transducer itself to be used in many kinds of engineering tests and transducer design. PMID:26287197

  6. Underwater Acoustic Wavefront Visualization by Scanning Laser Doppler Vibrometer for the Characterization of Focused Ultrasonic Transducers.

    PubMed

    Longo, Roberto; Vanlanduit, Steve; Arroud, Galid; Guillaume, Patrick

    2015-08-13

    The analysis of acoustic wave fields is important for a large number of engineering designs, communication and health-related reasons. The visualization of wavefronts gives valuable information about the type of transducers and excitation signals more suitable for the test itself. This article is dedicated to the development of a fast procedure for acoustic fields visualization in underwater conditions, by means of laser Doppler vibrometer measurements. The ultrasonic probe is a focused transducer excited by a chirp signal. The scope of this work is to evaluate experimentally the properties of the sound beam in order to get reliable information about the transducer itself to be used in many kinds of engineering tests and transducer design.

  7. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert, Jr.

    2015-01-01

    Assessment of space vehicle loads and trajectories during design requires a large sample of wind profiles at the altitudes where winds affect the vehicle. Traditionally, this altitude region extends from near 8-14 km to address maximum dynamic pressure upon ascent into space, but some applications require knowledge of measured wind profiles at lower altitudes. Such applications include crew capsule pad abort and plume damage analyses. Two Doppler Radar Wind Profiler (DRWP) systems exist at the United States Air Force (USAF) Eastern Range and at the National Aeronautics and Space Administration's Kennedy Space Center. The 50-MHz DRWP provides wind profiles every 3-5 minutes from roughly 2.5-18.5 km, and five 915-MHz DRWPs provide wind profiles every 15 minutes from approximately 0.2-3.0 km. Archived wind profiles from all systems underwent rigorous quality control (QC) processes, and concurrent measurements from the QC'ed 50- and 915-MHz DRWP archives were spliced into individual profiles that extend from about 0.2-18.5 km. The archive contains combined profiles from April 2000 to December 2009, and thousands of profiles during each month are available for use by the launch vehicle community. This paper presents the details of the QC and splice methodology, as well as some attributes of the archive.

  8. Three dimensional measurements of Geodesic Acoustic Mode with correlation Doppler reflectometers

    NASA Astrophysics Data System (ADS)

    Zhong, W. L.; Shi, Z. B.; Xu, Y.; Zou, X. L.; Duan, X. R.; Chen, W.; Jiang, M.; Yang, Z. C.; Zhang, B. Y.; Shi, P. W.; Liu, Z. T.; Xu, M.; Song, X. M.; Cheng, J.; Ke, R.; Nie, L.; Cui, Z. Y.; Fu, B. Z.; Ding, X. T.; Dong, J. Q.; Liu, Yi.; Yan, L. W.; Yang, Q. W.; Liu, Yong; the HL-2A Team

    2015-10-01

    Correlation Doppler reflectometers have been newly developed in the HL-2A Tokamak. Owing to the flexibility of the diagnostic arrangements, the multi-channel systems allow us to study, simultaneously, the radial properties of edge turbulence and its long-range correlation in both the poloidal and toroidal direction. With these reflectometers, three-dimensional spatial structure of Geodesic Acoustic Mode (GAM) is surveyed, including the symmetric feature of Er fluctuations in both poloidal and toroidal directions, and the radial propagation of GAMs. The bi-coherence analysis for the Er fluctuations suggests that the three-wave nonlinear interaction could be the mechanism for the generation of GAM. The temporal evolution of GAM during the plasma density modulation experiments has been studied. The results show that the collisional damping plays a role in suppressing the GAM magnitudes, and hence, weakening the regulating effects of GAM on ambient turbulence. Three dimensional correlation Doppler measurements of GAM activity demonstrate that the newly developed correlation Doppler reflectometers in HL-2A are powerful tools for edge turbulence studies with high reliability. A shorter version of this contribution is due to be published in PoS at: ``1st EPS conference on Plasma Diagnostics''.

  9. Evaluation of Acoustic Doppler Current Profiler measurements of river discharge

    USGS Publications Warehouse

    Morlock, S.E.

    1996-01-01

    The standard deviations of the ADCP measurements ranged from approximately 1 to 6 percent and were generally higher than the measurement errors predicted by error-propagation analysis of ADCP instrument performance. These error-prediction methods assume that the largest component of ADCP discharge measurement error is instrument related. The larger standard deviations indicate that substantial portions of measurement error may be attributable to sources unrelated to ADCP electronics or signal processing and are functions of the field environment.

  10. Tethered acoustic doppler current profiler platforms for measuring streamflow

    USGS Publications Warehouse

    Rehmel, Michael S.; Stewart, James A.; Morlock, Scott E.

    2003-01-01

    A tethered-platform design with a trimaran hull and 900-megahertz radio modems is now commercially available. Continued field use has resulted in U.S. Geological Survey procedures for making tethered-platform discharge measurements, including methods for tethered-boat deployment, moving-bed tests, and measurement of edge distances.

  11. Flow profiling of a surface-acoustic-wave nanopump

    NASA Astrophysics Data System (ADS)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  12. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    USGS Publications Warehouse

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  13. Acoustic resolution photoacoustic Doppler velocity measurements in fluids using time-domain cross-correlation

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2013-03-01

    Blood flow measurements have been demonstrated using the acoustic resolution mode of photoacoustic sensing. This is unlike previous flowmetry methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1mm. Here we describe a pulsed time correlation photoacoustic Doppler technique that is inherently flexible, lending itself to both resolution modes. Doppler time shifts are quantified via cross-correlation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. The use of short laser pulses allows depth-resolved measurements to be obtained with high spatial resolution, offering the prospect of mapping flow within microcirculation. Whilst our previous work has been limited to a non-fluid phantom, we now demonstrate measurements in more realistic blood-mimicking phantoms incorporating fluid suspensions of microspheres flowing along an optically transparent tube. Velocities up to 110 mm/s were measured with accuracies approaching 1% of the known velocities, and resolutions of a few mm/s. The velocity range and resolution are scalable with excitation pulse separation, but the maximum measurable velocity was considerably smaller than the value expected from the detector focal beam width. Measurements were also made for blood flowing at velocities up to 13.5 mm/s. This was for a sample reduced to 5% of the normal haematocrit; increasing the red blood cell concentration limited the maximum measurable velocity so that no results were obtained for concentrations greater than 20% of a physiologically realistic haematocrit. There are several possible causes for this limitation; these include the detector bandwidth and irregularities in the flow pattern. Better

  14. Imaging doppler lidar for wind turbine wake profiling

    SciTech Connect

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  15. Airborne Wind Profiling Algorithm for Doppler Wind LIDAR

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable airborne Doppler Wind LIDAR system measurements and INS/GPS measurements to be combined to estimate wind parameters and compensate for instrument misalignment. In a further embodiment, the wind speed and wind direction may be computed based on two orthogonal line-of-sight LIDAR returns.

  16. Observations of Wind Profile of Marine Atmosphere Boundary Layer by Shipborne Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Zhang, Hongwei; Song, Xiaoquan; Zhang, Kailin

    2016-06-01

    Pulsed Coherent Doppler Lidar (CDL) system is so good as to prove the feasibility of the marine atmosphere boundary layer detection. A ship-mounted Coherent Doppler lidar was used to measure the wind profile and vertical velocity in the boundary layer over the Yellow sea in 2014. Furthermore, for the purpose of reducing the impact of vibration during movement and correcting the LOS velocity, the paper introduces the attitude correction algorithm and comparison results.

  17. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System.

    PubMed

    Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-27

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy.

  18. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System

    PubMed Central

    Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy. PMID:26343657

  19. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System.

    PubMed

    Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy. PMID:26343657

  20. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Walker, John R.; Barbre, Robert E., Jr.; Leach, Richard D.

    2015-01-01

    Atmospheric wind data are required by space launch vehicles in order to assess flight vehicle loads and performance on day-of-launch. Space launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use within vehicle trajectory analyses. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output. First, balloons require approximately one hour to reach required altitudes. Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. These issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data over altitude ranges necessary for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. This paper will present details of the splicing software algorithms and will provide sample output.

  1. Wind Profiles Obtained with a Molecular Direct Detection Doppler Lidar During IHOP-2002

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Li, Steven X.; Mathur, Savyasachee; Dobler, Jeremy; Hasselbrack, William; Comer, Joseph

    2004-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min. N, 100 deg. 36.371 min. W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  2. Dispersion corrections to the Gaussian profile describing the Doppler broadening of spectral lines

    NASA Astrophysics Data System (ADS)

    Wójtewicz, S.; Wcisło, P.; Lisak, D.; Ciuryło, R.

    2016-04-01

    A dispersionally corrected Gaussian profile describing Doppler-broadened spectral line shapes is presented. Proposed corrections include the frequency dependence of the Doppler shifting caused by dispersion as well as by light frequency variation over the whole spectral line shape. It is shown that the frequency dependence of the Doppler shifting can have a non-negligible influence on the line-shape model and can affect the line shape even at the relative level of 10-5. Moreover, this effect also influences the determination of the line position at the level of kilohertz. Finally, the impact of the presented results on the Doppler width thermometry and precise molecular spectroscopy for fundamental studies is emphasized.

  3. Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures

    SciTech Connect

    Bodet, L.; Dhemaied, A.; Mourgues, R.; Tournat, V.; Rejiba, F.

    2012-05-24

    Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

  4. Tracking beaked whales with a passive acoustic profiler float.

    PubMed

    Matsumoto, Haru; Jones, Christopher; Klinck, Holger; Mellinger, David K; Dziak, Robert P; Meinig, Christian

    2013-02-01

    Acoustic methods are frequently used to monitor endangered marine mammal species. Advantages of acoustic methods over visual ones include the ability to detect submerged animals, to work at night, and to work in any weather conditions. A relatively inexpensive and easy-to-use acoustic float, the QUEphone, was developed by converting a commercially available profiler float to a mobile platform, adding acoustic capability, and installing the ERMA cetacean click detection algorithm of Klinck and Mellinger [(2011). J. Acoust. Soc. Am. 129(4), 1807-1812] running on a high-power DSP. The QUEphone was tested at detecting Blainville's beaked whales at the Atlantic Undersea Test and Evaluation Center (AUTEC), a Navy acoustic test range in the Bahamas, in June 2010. Beaked whale were present at AUTEC, and the performance of the QUEphone was compared with the Navy's Marine Mammal Monitoring on Navy Ranges (M3R) system. The field tests provided data useful to evaluate the QUEphone's operational capability as a tool to detect beaked whales and report their presence in near-real time. The range tests demonstrated that the QUEphone's beaked whale detections were comparable to that of M3R's, and that the float is effective at detecting beaked whales.

  5. Prospects for in vivo blood velocimetry using acoustic resolution photoacoustic Doppler

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2016-03-01

    Acoustic resolution photoacoustic Doppler flowmetry (AR-PAF) is a technique that has the potential to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Previous work has shown the potential of the technique using blood-mimicking phantoms, but it has proved difficult to make accurate measurements in blood, and thus in vivo application has not yet been possible. One explanation for this difficulty is that whole blood is insufficiently heterogeneous. Through experimental measurements in red blood cell suspensions of different concentrations, as well as in whole blood, we provide new insight and evidence that refutes this assertion. We show that the velocity measurement accuracy is influenced by bandlimiting not only due to the detector frequency response, but also due to spatial averaging of absorbers within the detector field-of-view. In addition, there is a detrimental effect of limited light penetration, but this can be mitigated by selecting less attenuated wavelengths of light, and also by employing range-gating signal processing. By careful choice of these parameters as well as the detector centre frequency, bandwidth and field-of-view, it is possible to make AR-PAF measurements in whole blood using transducers with bandwidths in the tens of MHz range. These findings have profound implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions.

  6. Effects of Flow Profile on Educed Acoustic Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie r.; Nark, Douglas M.

    2010-01-01

    This paper presents results of an investigation of the effects of shear flow profile on impedance eduction processes employed at NASA Langley. Uniform and 1-D shear-flow propagation models are used to educe the acoustic impedance of three test liners based on aeroacoustic data acquired in the Langley Grazing Flow Impedance Tube, at source levels of 130, 140 and 150 dB, and at centerline Mach numbers of 0.0, 0.3 and 0.5. A ceramic tubular, calibration liner is used to evaluate the propagation models, as this liner is expected to be insensitive to SPL, grazing flow Mach number, and flow profile effects. The propagation models are then used to investigate the effects of shear flow profile on acoustic impedances educed for two conventional perforate-over-honeycomb liners. Results achieved with the uniform-flow models follow expected trends, but those educed with the 1-D shear-flow model do not, even for the calibration liner. However, when the flow profile used with the shear-flow model is varied to increase the Mach number gradient near the wall, results computed with the shear-flow model are well matched to those achieved with the uniform-flow model. This indicates the effects of flow profile on educed acoustic liner impedance are small, but more detailed investigations of the flow field throughout the duct are needed to better understand these effects.

  7. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Brenton, James C.; Walker, James C.; Leach, Richard D.

    2015-01-01

    Space launch vehicles utilize atmospheric winds in design of the vehicle and during day-of-launch (DOL) operations to assess affects of wind loading on the vehicle and to optimize vehicle performance during ascent. The launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use for vehicle engineering assessments. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output on DOL. First, balloons need approximately one hour to reach required altitude. For vehicle assessments this occurs at 60 kft (18.3 km). Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. Figure 1 illustrates the spatial separation of balloon measurements from the surface up to approximately 55 kft (16.8 km) during the Space Shuttle launch on 10 December 2006. The balloon issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data up to 60 kft (18.3 km) for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. Details on how data from various wind measurement systems are combined and sample output will be presented in the following sections.

  8. Implementation and evaluation of the new wind algorithm in NASA's 50 MHz doppler radar wind profiler

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory E.; Manobianco, John T.; Schumann, Robin S.; Wheeler, Mark M.; Yersavich, Ann M.

    1993-01-01

    The purpose of this report is to document the Applied Meteorology Unit's implementation and evaluation of the wind algorithm developed by Marshall Space Flight Center (MSFC) on the data analysis processor (DAP) of NASA's 50 MHz doppler radar wind profiler (DRWP). The report also includes a summary of the 50 MHz DRWP characteristics and performance and a proposed concept of operations for the DRWP.

  9. Retrieval of Hydrometeor Drop Size Distributions from TRMM Field Campaign Profiler Doppler Velocity Spectra Observations

    NASA Technical Reports Server (NTRS)

    Williams, Christopher R.; Gage, Kenneth S.

    2003-01-01

    Consistent with the original proposal and work plan, this project focused on estimating the raindrop size distributions (DSDs) retrieved from vertically pointing Doppler radar profilers and analyzing the relationship of the retrieved DSDs with the dynamics of the precipitation processes. The first phase of this project focused on developing the model to retrieve the DSD from the observed Doppler velocity spectra. The second phase used this model to perform DSD retrievals from the profiler observations made during the TRMM Ground Validation Field Campaigns of TEFLUN-B, TRMM-LBA, and KWAJEX. The third phase of this project established collaborations with scientists involved with each field campaign in order to validate the profiler DSD estimates and to enable the profiler retrievals to be used in their research. Through these collaborations, the retrieved DSDs were placed into context with the dynamical processes of the observed precipitating cloud systems.

  10. Doppler Radar Profiler for Launch Winds at the Kennedy Space Center (Phase 1a)

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) received a request from the, NASA Technical Fellow for Flight Mechanics at Langley Research Center (LaRC), to develop a database from multiple Doppler radar wind profiler (DRWP) sources and develop data processing algorithms to construct high temporal resolution DRWP wind profiles for day-of-launch (DOL) vehicle assessment. This document contains the outcome of Phase 1a of the assessment including Findings, Observations, NESC Recommendations, and Lessons Learned.

  11. Surface acoustic wave depth profiling of a functionally graded material

    SciTech Connect

    Goossens, Jozefien; Leclaire, Philippe; Xu Xiaodong; Glorieux, Christ; Martinez, Loic; Sola, Antonella; Siligardi, Cristina; Cannillo, Valeria; Van der Donck, Tom; Celis, Jean-Pierre

    2007-09-01

    The potential and limitations of Rayleigh wave spectroscopy to characterize the elastic depth profile of heterogeneous functional gradient materials are investigated by comparing simulations of the surface acoustic wave dispersion curves of different profile-spectrum pairs. This inverse problem is shown to be quite ill posed. The method is then applied to extract information on the depth structure of a glass-ceramic (alumina) functionally graded material from experimental data. The surface acoustic wave analysis suggests the presence of a uniform coating region consisting of a mixture of Al{sub 2}O{sub 3} and glass, with a sharp transition between the coating and the substrate. This is confirmed by scanning electron microscope with energy dispersive x-ray analysis.

  12. Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

    2000-01-01

    The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

  13. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    PubMed

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  14. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    PubMed

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure. PMID:17225392

  15. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin

    2015-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  16. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin

    2016-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  17. Expected Characteristics of Global Wind Profile Measurements with a Scanning, Hybrid, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    2008-01-01

    Over 20 years of investigation by NASA and NOAA scientists and Doppler lidar technologists into a global wind profiling mission from earth orbit have led to the current favored concept of an instrument with both coherent- and direct-detection pulsed Doppler lidars (i.e., a hybrid Doppler lidar) and a stepstare beam scanning approach covering several azimuth angles with a fixed nadir angle. The nominal lidar wavelengths are 2 microns for coherent detection, and 0.355 microns for direct detection. The two agencies have also generated two sets of sophisticated wind measurement requirements for a space mission: science demonstration requirements and operational requirements. The requirements contain the necessary details to permit mission design and optimization by lidar technologists. Simulations have been developed that connect the science requirements to the wind measurement requirements, and that connect the wind measurement requirements to the Doppler lidar parameters. The simulations also permit trade studies within the multi-parameter space. These tools, combined with knowledge of the state of the Doppler lidar technology, have been used to conduct space instrument and mission design activities to validate the feasibility of the chosen mission and lidar parameters. Recently, the NRC Earth Science Decadal Survey recommended the wind mission to NASA as one of 15 recommended missions. A full description of the wind measurement product from these notional missions and the possible trades available are presented in this paper.

  18. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-11-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne Doppler measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic atmospheric boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This held true particularly within the atmospheric boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of vertical winds with a random error below 0.2 m s-1. The comparison of lidar-measured wind and radio soundings gives a mean bias of 0.3 m s-1 (2°) and a mean standard deviation of 1.1 m s-1 (12°) for wind speed (wind direction). The agreement for wind direction degrades with height. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  19. Wind Profile Retrieval Method for Incoherent Doppler LIDAR in Partly Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Feng, Changzhong; Liu, Bingyi; Liu, Zhishen

    2014-11-01

    After the launch of ESA’s spaceborne Doppler lidar ALADIN, Ocean University of China is going to perform the ground validation using a ground based Doppler wind lidar which utilizes an iodine absorption filter as frequency discriminator to derive Doppler frequency shift of atmospheric wind from combined molecular and aerosol backscatter. Under circumstance of non-uniform aerosol horizontal distribution, such as partly cloudy conditions, the accuracy of wind measurements is seriously influenced. Therefore, an improved VAD (Velocity-Azimuth Display) method for retrieving wind profiles is developed, which significantly increases the accuracy. With the atmospheric return signal obtained from the line-of-sight velocity PPI (Plan Position Indicator) measurements, the spatial distribution of aerosol optical parameters can be derived and considered as a reference for the quality control of line-of-sight velocity. Consequently, the wind profile in partly cloudy conditions can be retrieved by using the quality controlled line-of-sight velocity. As a result, the applicability of the ground based Doppler lidar is improved.

  20. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  1. Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices

    NASA Astrophysics Data System (ADS)

    Martin, Chad A.; Gates, Timothy K.

    2014-09-01

    Seepage losses from unlined irrigation canals amount to a large fraction of the total volume of water diverted for agricultural use, posing problems to both water conservation and water quality. Quantifying these losses and identifying areas where they are most prominent are crucial for determining the severity of seepage-related complications and for assessing the potential benefits of seepage reduction technologies and materials. A relatively easy and inexpensive way to estimate losses over an extensive segment of a canal is the flowing water balance, or inflow-outflow, method. Such estimates, however, have long been considered fraught with ambiguity due both to measurement error and to spatial and temporal variability. This paper presents a water balance analysis that evaluates uncertainty in 60 tests on two typical earthen irrigation canals. Monte Carlo simulation is used to account for a number of different sources of uncertainty. Issues of errors in acoustic Doppler flow measurement, in water level readings, and in evaporation estimates are considered. Storage change and canal wetted perimeter area, affected by variability in the canal prism, as well as lagged vs. simultaneous measurements of discharge at the inflow and outflow ends also are addressed. Mean estimated seepage loss rates for the tested canal reaches ranged from about -0.005 (gain) to 0.110 m3 s-1 per hectare of canal wetted perimeter (or -0.043 to 0.95 m d-1) with estimated probability distributions revealing substantial uncertainty. Across the tests, the average coefficient of variation was about 240% and the average 90th inter-percentile range was 0.143 m3 s-1 per hectare (1.24 m d-1). Sensitivity analysis indicates that while the predominant influence on seepage uncertainty is error in measured discharge at the upstream and downstream ends of the canal test reach, the magnitude and uncertainty of storage change due to unsteady flow also is a significant influence. Recommendations are

  2. Offshore wind profile measurements using a Doppler LIDAR at the Hazaki Oceanographical Research Station

    NASA Astrophysics Data System (ADS)

    Shimada, Susumu; Ohsawa, Teruo; Ohgishi, Tatsuya; Kikushima, Yoshihiro; Kogaki, Testuya; Kawaguchi, Koji; Nakamura, Satoshi

    2014-08-01

    Vertical wind speed profiles near the coast were observed using a Doppler Light Detection and Ranging (LIDAR) system at the Hazaki Oceanographical Research Station (HORS) from September 17 to 26, 2013. The accuracies of the theoretical wind profile models of the log profile model and the Monin-Obukov similarity (MOS) theory were examined by comparing them to those of the observed wind profiles. As a result, MOS, which takes into account the stability effects during wind profile calculations, successfully estimated the wind profile more accurately than the log profile model when the wind was from a sea sector (from sea to land). Conversely, both models did not estimate the profile adequately when the wind was from a land sector (from land to sea). Moreover, the wind profile for the land sector was found to include an obvious diurnal cycle, which is relevant to the stability change over land. Consequently, it is found that the atmospheric stability plays an important roll to determine the offshore wind speed profiles near the coast for not only the sea sector but also the land sector.

  3. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-09-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This holds particularly within the planetary boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of winds with a random error below 0.2 m s-1, comparable to the measurement error of standard radiosondes. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  4. [Characterization and comparison of the doppler compensation acoustic wave in Hipposideros armiger].

    PubMed

    Wang, Xu-Zhong; Hu, Kai-Liang; Wei, Li; Xu, Dong; Zhang, Li-Biao

    2010-12-01

    We used the pendulum device to study Doppler-shifted compensation of great leaf-nosed bat (Hipposideros armiger). The bats' echolocation calls were recorded by the Ultrasound Detector both under the rest condition and Doppler shift condition. Then we analyzed the calls with Avisoft software. Our results suggested that when H. armiger was approaching the target, it showed positive Doppler shift compensation: call frequency and the velocity (v) were positive correlated. Call frequency fell to minimum when the bats' relative velocity reached to maximum; likewise call frequency raised to the resting condition frequency when the relative velocity became zero. Negative Doppler shift compensation occurred when bats were far away from the target. Under negative Doppler shift compensation condition, we found call frequency and velocity were positive correlated as well, and moreover, call frequency raised to maximum again while the bats had their minus direction's maximal relative velocity. However, under this status, the elevated value was much lower than the depressed value under positive compensation at the same velocity. The frequency of occurrence of negative compensation was obviously less frequent than that under positive compensation condition. Therefore, we inferred that the two characteristics of the negative Doppler shift compensation mentioned above may be the coactions consequence of the bio-structural restriction and natural selection.

  5. Doppler effect for sound emitted by a moving airborne source and received by acoustic sensors located above and below the sea surface.

    PubMed

    Ferguson, B G

    1993-12-01

    The acoustic emissions from a propeller-driven aircraft are received by a microphone mounted just above ground level and then by a hydrophone located below the sea surface. The dominant feature in the output spectrum of each acoustic sensor is the spectral line corresponding to the propeller blade rate. A frequency estimation technique is applied to the acoustic data from each sensor so that the Doppler shift in the blade rate can be observed at short time intervals during the aircraft's transit overhead. For each acoustic sensor, the observed variation with time of the Doppler-shifted blade rate is compared with the variation predicted by a simple ray-theory model that assumes the atmosphere and the sea are distinct isospeed sound propagation media separated by a plane boundary. The results of the comparison are shown for an aircraft flying with a speed of about 250 kn at altitudes of 500, 700, and 1000 ft.

  6. Acoustic thermometric reconstruction of a time-varying temperature profile

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Kazanskii, A. S.; Mansfel'd, A. D.; Sharakshane, A. S.

    2016-03-01

    The time-varying temperature profiles were reconstructed in an experiment using a thermal acoustic radiation receiving array containing 14 sensors. The temperature was recovered by performing similar experiments using plasticine, as well as in vivo with a human hand. Plasticine preliminarily heated up to 36.5°C and a human hand were placed into water for 50 s at a temperature of 20°C. The core temperature of the plasticine was independently measured using thermocouples. The spatial resolution of the reconstruction in the lateral direction was determined by the distance between neighboring sensors and was equal to10 mm; the averaging time was 10 s. The error in reconstructing the core temperature determined in the experiment with plasticine was 0.5 K. The core temperature of the hand changed with time (in 50 s it decreased from 35 to 34°C) and space (the mean square deviation was 1.5 K). The experiment with the hand revealed that multichannel detection of thermal acoustic radiation using a compact 45 × 36 mm array to reconstruct the temperature profile could be performed during medical procedures.

  7. Velocity profiles inside volcanic clouds from three-dimensional scanning microwave dual-polarization Doppler radars

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario

    2016-07-01

    In this work, velocity profiles within a volcanic tephra cloud obtained by dual-polarization Doppler radar acquisitions with three-dimensional (3-D) mechanical scanning capability are analyzed. A method for segmenting the radar volumes into three velocity regimes: vertical updraft, vertical fallout, and horizontal wind advection within a volcanic tephra cloud using dual-polarization Doppler radar moments is proposed. The horizontal and vertical velocity components within the regimes are retrieved using a novel procedure that makes assumptions concerning the characteristics of the winds inside these regimes. The vertical velocities retrieved are combined with 1-D simulations to derive additional parameters including particle fallout, mass flux, and particle sizes. The explosive event occurred on 23 November 2013 at the Mount Etna volcano (Sicily, Italy), is considered a demonstrative case in which to analyze the radar Doppler signal inside the tephra column. The X-band radar (3 cm wavelength) in the Catania, Italy, airport observed the 3-D scenes of the Etna tephra cloud ~32 km from the volcano vent every 10 min. From the radar-derived vertical velocity profiles of updraft, particle fallout, and horizontal transportation, an exit velocity of 150 m/s, mass flux rate of 1.37 • 107 kg/s, particle fallout velocity of 18 m/s, and diameters of precipitating tephra particles equal to 0.8 cm are estimated on average. These numbers are shown to be consistent with theoretical 1-D simulations of plume dynamics and local reports at the ground, respectively. A thickness of 3 ± 0.36 km for the downwind ash cloud is also inferred by differentiating the radar-derived cloud top and the height of transition between the convective and buoyancy regions, the latter being inferred by the estimated vertical updraft velocity profile. The unique nature of the case study as well as the novelty of the segmentation and retrieval methods presented potentially give new insights into the

  8. Validation Campaigns for Sea Surface Wind and Wind Profile by Ground-Based Doppler Wind Lidar

    NASA Astrophysics Data System (ADS)

    Liu, Zhishen; Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Li, Zhigang

    2010-12-01

    According to the research frame of ESA-MOST DRAGON Cooperation Program (ID5291), Chinese partners from Ocean Remote Sensing Institute of Ocean University of China have carried out a serial of campaigns for ground-based lidar validations and atmospheric observations. ORSI/OUC Doppler wind lidar has been developed and deployed to accurately measure wind speed and direction over large areas in real time -- an application useful for ADM-Aeolus VAL/CAL, aviation safety, weather forecasting and sports. The sea surface wind campaigns were successfully accomplished at the Qingdao sailing competitions during the 29th Olympic Games. The lidar located at the seashore near the sailing field, and made a horizontal scan over the sea surface, making the wind measurement in real time and then uploading the data to the local meteorological station every 10 minutes. In addition to the sea surface wind campaigns, ORSI/OUC Doppler wind lidar was deployed on the wind profile observations for the China's Shenzhou 7 spacecraft landing zone weather campaigns in September 2008 in Inner Mongolia steppe. Wind profile was tracked by the mobile Doppler lidar system to help to predict the module's landing site. During above ground tests, validation lidar is tested to be able to provide an independent and credible measurement of radial wind speed, wind profile, 3D wind vector, aerosol- backscattering ratio, aerosol extinction coefficient, extinction-to-backscatter ratio in the atmospheric boundary layer and troposphere, sea surface wind vectors, which will be an independent and very effective validation tool for upcoming ADM-Aeolus project.

  9. Investigation of contact acoustic nonlinearity in delaminations by shearographic imaging, laser doppler vibrometric scanning and finite difference modeling.

    PubMed

    Sarens, Bart; Verstraeten, Bert; Glorieux, Christ; Kalogiannakis, Georgios; Van Hemelrijck, Danny

    2010-06-01

    Full-field dynamic shearography and laser Doppler vibrometric scanning are used to investigate the local contact acoustic nonlinear generation of delamination-induced effects on the vibration of a harmonically excited composite plate containing an artificial defect. Nonlinear elastic behavior caused by the stress-dependent boundary conditions at the delamination interfaces of a circular defect is also simulated by a 3-D second-order, finite-difference, staggered-grid model (displacement-stress formulation). Both the experimental and simulated data reveal an asymmetric motion of the layer above the delamination, which acts as a membrane vibrating with enhanced displacement amplitude around a finite offset displacement. The spectrum of the membrane motion is enriched with clapping-induced harmonics of the excitation frequency. In case of a sufficiently thin and soft membrane, the simulations reveal clear modal behavior at sub-harmonic frequencies caused by inelastic clapping. PMID:20529713

  10. Acoustical sensory profiles: The bridge between measurements and preference

    NASA Astrophysics Data System (ADS)

    Lyon, Richard H.

    2002-11-01

    Our judgments about all kinds of sounds depend on the sound itself and also on our experience, situational context, and expectation. The response is multimodal in that vibration, colors, temperature, and other environmental factors have an influence on our reactions. In the limited area of product sounds there has been an effort to relate consumer judgments to measurements through the use of descriptive words to create an ''Acoustical Sensory Profile'' or ASP, particularly for products that have sound as a primary feature. Examples include musical instruments, audio products, and concert halls. More recently, other products for which sound is an ancillary feature have been evaluated using ASPs. This presentation discusses this background and projects the use of ASPs, and their relationship to physical measurements and consumer judgments in particular.

  11. On the Positive Bias of Peak Horizontal Velocity from an Idealized Doppler Profiler

    NASA Technical Reports Server (NTRS)

    Short, David A.; Merceret, Francis J.

    2004-01-01

    In the presence of 3-D turbulence, peak horizontal velocity estimates from an idealized Doppler profiler are found to be positively biased due to an incomplete specification of the vertical velocity field. The magnitude of the bias was estimated by assuming that the vertical and horizontal velocities can be separated into average and perturbation values and that the vertical and horizontal velocity perturbations are normally distributed. Under these assumptions, properties of the Type-I Extreme Value Distribution for maxima, known as the Gumbel distribution, can be used to obtain an analytical solution of the bias. The bias depends on geometric properties of the profiler configuration, the variance in the horizontal velocity, and the unresolved variance in the vertical velocity. When these variances are normalized by the average horizontal velocity, the bias can be mapped as a simple function of the normalized variances.

  12. Measurement of a zonal wind profile on Titan by Doppler tracking of the Cassini entry probe

    NASA Technical Reports Server (NTRS)

    Atkinson, D. H.; Pollack, J. B.; Seiff, A.

    1990-01-01

    A program, called the Cassini mission, intended to study the Saturn system by utilizing a Saturn orbiter and a probe descending to the surface of Titan, is discussed. Winds are expected to cause perturbations to the probe local horizontal velocity, resulting in an anomalous drift in the probe location and a shift in the frequency of the probe telemetry, due to the Doppler effect. By using an iterative algorithm, in which the time variation of the probe telemetry frequency is monitored throughout the descent, and the probe trajectory is updated to reflect the effect of wind on the probe location, a highly accurate relative wind profile can be recovered. By adding a single wind velocity, measured by independent means, an absolute wind profile can be obtained. However, the accuracy of the zonal winds recovery is limited by errors in trajectory, and frequency.

  13. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    NASA Astrophysics Data System (ADS)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  14. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range

  15. Tropospheric Wind Profiles Obtained with the GLOW Molecular Doppler Lidar during the 2002 International H2O Project

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Li, Steven X.; Mathur, S.; Dobler, Jeremy; Hasselbrack, William

    2003-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min N, 100 deg 36.371 min W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  16. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    SciTech Connect

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel J

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  17. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2015-01-01

    This paper describes in detail the QC and splicing methodology for KSC's 50- and 915-MHz DRWP measurements that generates an extensive archive of vertically complete profiles from 0.20-18.45 km. The concurrent POR from each archive extends from April 2000 to December 2009. MSFC NE applies separate but similar QC processes to each of the 50- and 915-MHz DRWP archives. DRWP literature and data examination provide the basis for developing and applying the automated and manual QC processes on both archives. Depending on the month, the QC'ed 50- and 915-MHz DRWP archives retain 52-65% and 16-30% of the possible data, respectively. The 50- and 915-MHz DRWP QC archives retain 84-91% and 85-95%, respectively, of all the available data provided that data exist in the non- QC'ed archives. Next, MSFC NE applies an algorithm to splice concurrent measurements from both DRWP sources. Last, MSFC NE generates a composite profile from the (up to) five available spliced profiles to effectively characterize boundary layer winds and to utilize all possible 915-MHz DRWP measurements at each timestamp. During a given month, roughly 23,000-32,000 complete profiles exist from 0.25-18.45 km from the composite profiles' archive, and approximately 5,000- 27,000 complete profiles exist from an archive utilizing an individual 915-MHz DRWP. One can extract a variety of profile combinations (pairs, triplets, etc.) from this sample for a given application. The sample of vertically complete DRWP wind measurements not only gives launch vehicle customers greater confidence in loads and trajectory assessments versus using balloon output, but also provides flexibility to simulate different DOL situations across applicable altitudes. In addition to increasing sample size and providing more flexibility for DOL simulations in the vehicle design phase, the spliced DRWP database provides any upcoming launch vehicle program with the capability to utilize DRWP profiles on DOL to compute vehicle steering

  18. Long-Term Mean Vertical Motion over the Tropical Pacific: Wind-Profiling Doppler Radar Measurements

    NASA Astrophysics Data System (ADS)

    Gage, K. S.; McAfee, J. R.; Carter, D. A.; Ecklund, W. L.; Riddle, A. C.; Reid, G. C.; Balsley, B. B.

    1991-12-01

    Measurement from Christmas Island (2^circN, 157^circW) of long-term mean vertical motions in the tropical atmosphere using very-high-frequency wind-profiling Doppler radar show that there is a transition from downward motion in the free troposphere to upward motion in the upper troposphere and lower stratosphere. The observations in the free troposphere are consistent with a balance between adiabatic and diabatic heating and cooling rates in a clear atmosphere. Comparison of the results at Christmas Island during El Nino and non-El Nino conditions with earlier results obtained for stratiform rain conditions over Pohnpei, Federated States of Micronesia, show that cirrus clouds in the vicinity of the tropopause likely play an important role in determining the sense and magnitude of vertical motions in this region. These results have implications for the exchange of mass between the troposphere and stratosphere over the tropics.

  19. Characteristics and Trade-Offs of Doppler Lidar Global Wind Profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G David

    2004-01-01

    Accurate, global profiling of wind velocity is highly desired by NASA, NOAA, the DOD/DOC/NASA Integrated Program Office (IPO)/NPOESS, DOD, and others for many applications such as validation and improvement of climate models, and improved weather prediction. The most promising technology to deliver this measurement from space is Doppler Wind Lidar (DWL). The NASA/NOAA Global Tropospheric Wind Sounder (GTWS) program is currently in the process of generating the science requirements for a space-based sensor. In order to optimize the process of defining science requirements, it is important for the scientific and user community to understand the nature of the wind measurements that DWL can make. These measurements are very different from those made by passive imaging sensors or by active radar sensors. The purpose of this paper is to convey the sampling characteristics and data product trade-offs of an orbiting DWL.

  20. Long-Term Mean Vertical Motion over the Tropical Pacific: Wind-Profiling Doppler Radar Measurements.

    PubMed

    Gage, K S; McAfee, J R; Carter, D A; Ecklund, W L; Riddle, A C; Reid, G C; Balsley, B B

    1991-12-20

    Measurement from Christmas Island (2 degrees N, 157 degrees W) of long-term mean vertical motions in the tropical atmosphere using very-high-frequency wind-profiling Doppler radar show that there is a transition from downward motion in the free troposphere to upward motion in the upper troposphere and lower stratosphere. The observations in the free troposphere are consistent with a balance between adiabatic and diabatic heating and cooling rates in a clear atmosphere. Comparison of the results at Christmas Island during El Niño and non-El Niño conditions with earlier results obtained for stratiform rain conditions over Pohnpei, Federated States of Micronesia, show that cirrus clouds in the vicinity of the tropopause likely play an important role in determining the sense and magnitude of vertical motions in this region. These results have implications for the exchange of mass between the troposphere and stratosphere over the tropics.

  1. Structural acoustics model of the violin radiativity profile.

    PubMed

    Bissinger, George

    2008-12-01

    Violin radiativity profiles are dominated by the Helmholtz-like A0 cavity mode ( approximately 280 Hz), first corpus bending modes B1(-) and B1(+) ( approximately 500 Hz), and BH and bridge-filter peaks ( approximately 2.4 kHz and approximately 3.5 kHz, respectively), with falloff above approximately 4 kHz. The B1 modes-dependent on two low-lying free-plate modes--are proposed to excite A0 via coupling to B1-driven in-phase f-hole volume flows. VIOCADEAS data show that A0 radiativity increases primarily as A0-B1(-) frequency difference decreases, consistent with Meinel's 1937 experiment for too-thick/too-thin plate thicknesses, plus sound post removal and violin octet baritone results. The vibration-->acoustic energy filter, F(RAD), computed from shape-material-independent radiation and total damping, peaks at the critical frequency f(crit), estimated from a free-plate mode by analogy to flat-plate bending. Experimentally, f(crit) decreased as this plate mode (and B1(+)) frequency increased. Simulations show that increasing plate thicknesses lowers f(crit), reduces F(RAD), and moves the spectral balance toward lower frequencies. Incorporating string-->corpus filters (including bridge versus bridge-island impedances) provides a model for overall violin radiativity. This model-with B1 and A0-B1 couplings, and f(crit) (computed from a free-plate mode important to B1) strongly affecting the lowest and highest parts of the radiativity profile-substantiates prior empirical B1--sound quality linkages. PMID:19206824

  2. Structural acoustics model of the violin radiativity profile.

    PubMed

    Bissinger, George

    2008-12-01

    Violin radiativity profiles are dominated by the Helmholtz-like A0 cavity mode ( approximately 280 Hz), first corpus bending modes B1(-) and B1(+) ( approximately 500 Hz), and BH and bridge-filter peaks ( approximately 2.4 kHz and approximately 3.5 kHz, respectively), with falloff above approximately 4 kHz. The B1 modes-dependent on two low-lying free-plate modes--are proposed to excite A0 via coupling to B1-driven in-phase f-hole volume flows. VIOCADEAS data show that A0 radiativity increases primarily as A0-B1(-) frequency difference decreases, consistent with Meinel's 1937 experiment for too-thick/too-thin plate thicknesses, plus sound post removal and violin octet baritone results. The vibration-->acoustic energy filter, F(RAD), computed from shape-material-independent radiation and total damping, peaks at the critical frequency f(crit), estimated from a free-plate mode by analogy to flat-plate bending. Experimentally, f(crit) decreased as this plate mode (and B1(+)) frequency increased. Simulations show that increasing plate thicknesses lowers f(crit), reduces F(RAD), and moves the spectral balance toward lower frequencies. Incorporating string-->corpus filters (including bridge versus bridge-island impedances) provides a model for overall violin radiativity. This model-with B1 and A0-B1 couplings, and f(crit) (computed from a free-plate mode important to B1) strongly affecting the lowest and highest parts of the radiativity profile-substantiates prior empirical B1--sound quality linkages.

  3. Acoustic interpretation of the voice range profile (phonetogram).

    PubMed

    Titze, I R

    1992-02-01

    The voice range profile (VRP) is a display of vocal intensity range versus fundamental frequency (F0). Past measurements have shown that the intensity range is reduced at the extremes of the F0 range, that there is a gradual upward tilt of the high- and low-intensity boundaries with increasing F0, and that a ripple exists at the boundaries. The intensity ripple, which results from tuning of source harmonics to the formants, is more noticeable at the upper boundary than the lower boundary because higher harmonics are not energized as effectively near phonation threshold as at maximum lung pressure. The gradual tilt of the intensity boundaries results from more effective transmission and radiation of acoustic energy at higher fundamental frequencies. This depends on the spectral distribution of the source power, however, At low F0, a smaller spectral slope (more harmonic energy) produces greater intensity. At high F0, on the other hand, a shift of energy toward the fundamental results in greater intensity. This dependence of intensity on spectral distribution of source power seems to explain the reduced intensity range at higher F0. An unrelated problem of reduced intensity range at low F0 stems from the inherent difficulty of keeping F0 from rising when subglottal pressure is increased.

  4. Seabed classification from acoustic profiling data using the similarity index.

    PubMed

    Kim, Han-Joon; Chang, Jae-Kyeong; Jou, Hyeong-Tae; Park, Gun-Tae; Suk, Bong-Chool; Kim, Ki Young

    2002-02-01

    We introduce the similarity index (SI) for the classification of the sea floor from acoustic profiling data. The essential part of our approach is the singular value decomposition of the data to extract a signal coherent trace-to-trace using the Karhunen-Loeve transform. SI is defined as the percentage of the energy of the coherent part contained in the bottom return signals. Important aspects of SI are that it is easily computed and that it represents the textural roughness of the sea floor as a function of grain size, hardness, and a degree of sediment sorting. In a real data example, we classified a section of the sea floor off Cheju Island south of the Korean Peninsula and compared the result with the sedimentology defined from direct sediment sampling and side scan sonar records. The comparison shows that SI can efficiently discriminate the bottom properties by delineating sediment-type boundaries and transition zones in more detail. Therefore, we propose that SI is an effective parameter for geoacoustic modeling. PMID:11863181

  5. Seabed classification from acoustic profiling data using the similarity index.

    PubMed

    Kim, Han-Joon; Chang, Jae-Kyeong; Jou, Hyeong-Tae; Park, Gun-Tae; Suk, Bong-Chool; Kim, Ki Young

    2002-02-01

    We introduce the similarity index (SI) for the classification of the sea floor from acoustic profiling data. The essential part of our approach is the singular value decomposition of the data to extract a signal coherent trace-to-trace using the Karhunen-Loeve transform. SI is defined as the percentage of the energy of the coherent part contained in the bottom return signals. Important aspects of SI are that it is easily computed and that it represents the textural roughness of the sea floor as a function of grain size, hardness, and a degree of sediment sorting. In a real data example, we classified a section of the sea floor off Cheju Island south of the Korean Peninsula and compared the result with the sedimentology defined from direct sediment sampling and side scan sonar records. The comparison shows that SI can efficiently discriminate the bottom properties by delineating sediment-type boundaries and transition zones in more detail. Therefore, we propose that SI is an effective parameter for geoacoustic modeling.

  6. Results of the NASA Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Operational Acceptance Test

    NASA Technical Reports Server (NTRS)

    Barbre', Robert E., Jr.; Decker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa

    2016-01-01

    This paper presents results of the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). The goal of the OAT was to verify the data quality of the new DRWP against the performance of the previous DRWP in order to use wind data derived by the new DRWP for space launch vehicle operations support at the Eastern Range. The previous DRWP was used as a situational awareness asset for mission operations to identify rapid changes in the wind environment that weather balloons cannot depict. The Marshall Space Flight Center's Natural Environments Branch assessed data from the new DRWP collected during Jan-Feb 2015 against a specified set of test criteria. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 49 concurrent DRWP and balloon profiles presented root mean square wind component differences around 2.0 m/s. Evaluation of the DRWP's coherence between five-minute wind pairs found the effective vertical resolution to be Nyquist-limited at 300 m for both wind components. In addition, the sensitivity to rejecting data that do not have adequate signal was quantified. This paper documents the data, quality control procedures, methodology, and results of each analysis.

  7. Quality Control Algorithms for the Kennedy Space Center 50-Megahertz Doppler Radar Wind Profiler Winds Database

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2012-01-01

    This paper presents the process used by the Marshall Space Flight Center Natural Environments Branch (EV44) to quality control (QC) data from the Kennedy Space Center's 50-MHz Doppler Radar Wind Profiler for use in vehicle wind loads and steering commands. The database has been built to mitigate limitations of using the currently archived databases from weather balloons. The DRWP database contains wind measurements from approximately 2.7-18.6 km altitude at roughly five minute intervals for the August 1997 to December 2009 period of record, and the extensive QC process was designed to remove spurious data from various forms of atmospheric and non-atmospheric artifacts. The QC process is largely based on DRWP literature, but two new algorithms have been developed to remove data contaminated by convection and excessive first guess propagations from the Median Filter First Guess Algorithm. In addition to describing the automated and manual QC process in detail, this paper describes the extent of the data retained. Roughly 58% of all possible wind observations exist in the database, with approximately 100 times as many complete profile sets existing relative to the EV44 balloon databases. This increased sample of near-continuous wind profile measurements may help increase launch availability by reducing the uncertainty of wind changes during launch countdown

  8. Fourier-Doppler Imaging of Line Profile Variations in ζ Ophiuchi

    NASA Astrophysics Data System (ADS)

    Jankov, S.; Janot-Pacheco, E.; Leister, N. V.

    2000-09-01

    We present, for the first time, the Fourier-Doppler Imaging (FDI) analysis of periodic line profile variations in a ζ Oph-type star. For this purpose we obtained, in the period from 1996 May 3 to May 5, a total of 242 high-resolution, high signal-to-noise ratio spectra of the Be star ζ Oph itself. Using the FDI technique, we examine the variations in both time and wavelength and complement it with time series analysis. This kind of analysis is valid for both the nonradial pulsator model and the rotation modulation model, but we discuss the results in terms of the former model, considering it the more likely explanation for the observed line profile variability. Two distinct groups of modes are detected: medium (4<=l~|m|<=8) and high-degree modes (which could be associated with 13<=l~|m|<=17). It is shown that the high-frequency oscillations were strongly confined to an equatorial belt narrower than 20° and that the line profile variability was caused predominantly by sectoral modes, although tesseral modes |m|=l-1 are not excluded in taking into account the effect of fast rotation. We discuss the modal nature of the waves with respect to the characteristic oscillation periods in the corotating frame and the high amplitude of the projected rotational velocity variations (~20 km s-1).

  9. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    NASA Astrophysics Data System (ADS)

    Liu, Jiqiao; Zhu, Xiaopeng; Diao, Weifeng; Zhang, Xin; Liu, Yuan; Bi, Decang; Jiang, Liyuan; Shi, Wei; Zhu, Xiaolei; Chen, Weibiao

    2016-06-01

    An all-fiber airborne pulsed coherent Doppler lidar (CDL) prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD) scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  10. Acoustic velocity measurement by means of Laser Doppler Velocimetry: Development of an Extended Kalman Filter and validation in free-field measurement

    NASA Astrophysics Data System (ADS)

    Le Duff, Alain; Plantier, Guy; Valière, Jean C.; Gazengel, Bruno

    2016-03-01

    A signal processing technique, based on the use of an Extended Kalman Filter, has been developed to measure sound fields by means of Laser Doppler Velocimetry in weak flow. This method allows for the parametric estimation of both the acoustic particle and flow velocity for a forced sine-wave excitation where the acoustic frequency is known. The measurements are performed from the in-phase and the quadrature components of the Doppler downshifted signal thanks to an analog quadrature demodulation technique. Then, the estimated performance is illustrated by means of Monte-Carlo simulations obtained from synthesized signals and compared with asymptotic and analytical forms for the Cramer-Rao Bounds. Results allow the validity domain of the method to be defined and show the availability for free-field measurements in a large range. Finally, an application based on real data obtained in free field is presented.

  11. Data Acquisition and Processing System for Airborne Wind Profiling with a Pulsed, 2-Micron, Coherent-Detection, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.

    2010-01-01

    A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.

  12. Evaluation of the Temporal Acoustic Window for Transcranial Doppler in a Multi-Ethnic Population in Brazil.

    PubMed

    Bazan, Rodrigo; Braga, Gabriel Pereira; Luvizutto, Gustavo José; Hueb, João Carlos; Hokama, Newton Key; Zanati Bazan, Silméia Garcia; de Carvalho Nunes, Hélio Rubens; Leite, João Pereira; Pontes-Neto, Octávio Marques

    2015-08-01

    The aim of this study was to relate the presence of a temporal acoustic window (TAW) to the variables sex, age and race. This observational study was conducted in patients under etiologic investigation after stroke, sickle-cell anemia and hospitalization in an intensive therapy neurologic unit. TAW presence was confirmed by bilateral assessment by two neurologists via transcranial Doppler (TCD). Multiple logistic regression was performed to explain the presence of the window as a function of sex, age and race. In 20% of the 262 patients evaluated, a TAW was not present. The incidence of TAW presence was greater in men (odds ratio [OR] = 5.4, 95% confidence interval [CI] = 2.5-11.7, p < 0.01); lower with increased age (OR = 0.9, 95% CI = 0.92-0.97, p < 0.01); and lower among those of African and Asian descent (OR = 0.32, 95% CI = 0.14-0.70, p = 0.005). On the basis of the results, more men than women had TAWs, and the decrease in TAWs was associated with increased age and African or Asian descent.

  13. Evaluation of the Acoustic Doppler Velocity Meter for Computation of Discharge Records at Three Sites in Colorado, 2004-2005

    USGS Publications Warehouse

    Stevens, Michael R.; Diaz, Paul; Smits, Dennis E.

    2008-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board, conducted a study in 2004-2005 at three sites in Colorado: Bear Creek at Morrison, Clear Creek near Empire, and Redlands Canal near Grand Junction. The study was done to evaluate acoustic Doppler velocity meter (ADVM) technology in different hydrologic settings that are characteristic of many Colorado streamflow-gaging sites. ADVMs have been tested and used extensively in many parts of the United States by USGS but not in Colorado where relatively small, shallow, clear, coarse-bed streams that ice up in the winter may affect the ADVM suitability. In this study, ADVM instrumentation was successfully used and discharge computations compared favorably, generally within 5 to 10 percent, with conventional USGS stage/discharge methods at the three Colorado sites. However, two factors, encountered in this study, may adversely affect the use of ADVM technology in Colorado. First, for some streams, the depth required (about 1.5 feet for a side-looking instrument) cannot be met during low-flow periods of the year. Second, cold temperatures and freezing-thawing cycles can produce ice effects that could prevent collection of usable ADVM (and stage) data.

  14. Airborne Wind Profiling With the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.

  15. Normalized vertical ice mass flux profiles from vertically pointing 8-mm-wavelength Doppler radar

    NASA Technical Reports Server (NTRS)

    Orr, Brad W.; Kropfli, Robert A.

    1993-01-01

    During the FIRE 2 (First International Satellite Cloud Climatology Project Regional Experiment) project, NOAA's Wave Propagation Laboratory (WPL) operated its 8-mm wavelength Doppler radar extensively in the vertically pointing mode. This allowed for the calculation of a number of important cirrus cloud parameters, including cloud boundary statistics, cloud particle characteristic sizes and concentrations, and ice mass content (imc). The flux of imc, or, alternatively, ice mass flux (imf), is also an important parameter of a cirrus cloud system. Ice mass flux is important in the vertical redistribution of water substance and thus, in part, determines the cloud evolution. It is important for the development of cloud parameterizations to be able to define the essential physical characteristics of large populations of clouds in the simplest possible way. One method would be to normalize profiles of observed cloud properties, such as those mentioned above, in ways similar to those used in the convective boundary layer. The height then scales from 0.0 at cloud base to 1.0 at cloud top, and the measured cloud parameter scales by its maximum value so that all normalized profiles have 1.0 as their maximum value. The goal is that there will be a 'universal' shape to profiles of the normalized data. This idea was applied to estimates of imf calculated from data obtained by the WPL cloud radar during FIRE II. Other quantities such as median particle diameter, concentration, and ice mass content can also be estimated with this radar, and we expect to also examine normalized profiles of these quantities in time for the 1993 FIRE II meeting.

  16. Automated acoustic intensity measurements and the effect of gear tooth profile on noise

    NASA Technical Reports Server (NTRS)

    Atherton, W. J.; Pintz, A.; Lewicki, D. G.

    1987-01-01

    Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.

  17. Acoustic and Doppler radar detection of buried land mines using high-pressure water jets

    NASA Astrophysics Data System (ADS)

    Denier, Robert; Herrick, Thomas J.; Mitchell, O. Robert; Summers, David A.; Saylor, Daniel R.

    1999-08-01

    The goal of the waterjet-based mine location and identification project is to find a way to use waterjets to locate and differentiate buried objects. When a buried object is struck with a high-pressure waterjets, the impact will cause characteristic vibrations in the object depending on the object's shape and composition. These vibrations will be transferred to the ground and then to the water stream that is hitting the object. Some of these vibrations will also be transferred to the air via the narrow channel the waterjet cuts in the ground. Currently the ground vibrations are detected with Doppler radar and video camera sensing, while the air vibrations are detected with a directional microphone. Data is collected via a Labview based data acquisition system. This data is then manipulated in Labview to produce the associated power spectrums. These power spectra are fed through various signal processing and recognition routines to determine the probability of there being an object present under the current test location and what that object is likely to be. Our current test area consists of a large X-Y positioning system placed over approximately a five-foot circular test area. The positioning system moves both the waterjet and the sensor package to the test location specified by the Labview control software. Currently we are able to locate buried land mine models at a distance of approximately three inches with a high degree of accuracy.

  18. Phononic crystal surface mode coupling and its use in acoustic Doppler velocimetry.

    PubMed

    Cicek, Ahmet; Salman, Aysevil; Kaya, Olgun Adem; Ulug, Bulent

    2016-02-01

    It is numerically shown that surface modes of two-dimensional phononic crystals, which are Bloch modes bound to the interface between the phononic crystal and the surrounding host, can couple back and forth between the surfaces in a length scale determined by the separation of two surfaces and frequency. Supercell band structure computations through the finite-element method reveal that the surface band of an isolated surface splits into two bands which support either symmetric or antisymmetric hybrid modes. When the surface separation is 3.5 times the lattice constant, a coupling length varying between 30 and 48 periods can be obtained which first increases linearly with frequency and, then, decreases rapidly. In the linear regime, variation of coupling length can be used as a means of measuring speeds of objects on the order of 0.1m/s by incorporating the Doppler shift. Speed sensitivity can be improved by increasing surface separation at the cost of larger device sizes.

  19. Interatrial shunt flow profiles in newborn infants: a colour flow and pulsed Doppler echocardiographic study.

    PubMed Central

    Hiraishi, S; Agata, Y; Saito, K; Oguchi, K; Misawa, H; Fujino, N; Horiguchi, Y; Yashiro, K

    1991-01-01

    Interatrial shunt flow profiles in 36 normal term infants were examined serially by colour flow and pulsed Doppler echocardiographic techniques from within an hour of birth to four or five days after birth. Shunt flow across the foramen ovale was detected in 33 normal infants (92%) within an hour of birth (mean 40 minutes). The occurrence of interatrial shunting decreased with age, but a shunt signal was still detected in 17 infants (47%) on the fourth or fifth day of life, by then the ductus arteriosus had already closed in all the normal infants. The direction of interatrial shunt flow was predominantly left-to-right, but in 64% there was a coexistent small right-to-left shunt in diastole within an hour of birth; by four to five days it was found in 19%. In the six patients with persistent fetal circulation the direction of the interatrial shunt flow was predominantly right-to-left with biphasic peaks in diastole and systole at the early stage of the disease, and the period of right-to-left shunt flow during each cardiac cycle was significantly longer than that in normal infants examined within 1 hour of birth. In all patients the ductus closed before the foramen ovale. At the time of ductal closure in all patients with persistent fetal circulation right-to-left shunt flow was seen during diastole and its period was still prolonged. These findings suggest that interatrial shunting, predominantly left-to-right, is common in normal newborn infants. Evaluation of the characteristics of the interatrial shunt by Doppler echocardiography may be useful for predicting the progress of or improvement in neonates with persistent fetal circulation. Images PMID:1993129

  20. Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

    2013-01-01

    Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

  1. KSC 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT) Report

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E.

    2015-01-01

    This report documents analysis results of the Kennedy Space Center updated 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). This test was designed to demonstrate that the new DRWP operates in a similar manner to the previous DRWP for use as a situational awareness asset for mission operations at the Eastern Range to identify rapid changes in the wind environment that weather balloons cannot depict. Data examination and two analyses showed that the updated DRWP meets the specifications in the OAT test plan and performs at least as well as the previous DRWP. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 5,426 wind component reports from 49 concurrent DRWP and balloon profiles presented root mean square (RMS) wind component differences around 2.0 m/s. The DRWP's effective vertical resolution (EVR) was found to be 300 m for both the westerly and southerly wind component, which the best EVR possible given the DRWP's vertical sampling interval. A third analysis quantified the sensitivity to rejecting data that do not have adequate signal by assessing the number of first-guess propagations at each altitude. This report documents the data, quality control procedures, methodology, and results of each analysis. It also shows that analysis of the updated DRWP produced results that were at least as good as the previous DRWP with proper rationale. The report recommends acceptance of the updated DRWP for situational awareness usage as per the OAT's intent.

  2. A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves.

    PubMed

    Longo, Roberto; Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick

    2010-01-01

    The goal of non-destructive testing (NDT) is to determine the position and size of structural defects, in order to measure the quality and evaluate the safety of building materials. Most NDT techniques are rather complex, however, requiring specialized knowledge. In this article, we introduce an experimental method for crack detection that uses Surface Acoustic Waves (SAWs) and optical measurements. The method is tested on a steel beam engraved with slots of known depth. A simple model to determine the cracks size is also proposed. At the end of the article, we describe a possible application: fatigue crack sizing on a damaged slat track. This technique represents a first step toward a better understanding of the crack growth, especially in its early stages (preferably when the cracks can still be repaired) and when it is possible to assume a linear propagation of the crack front. The ultimate goal of this research program is to develop a useful method of monitoring aircraft components during fatigue testing. PMID:19732928

  3. A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves.

    PubMed

    Longo, Roberto; Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick

    2010-01-01

    The goal of non-destructive testing (NDT) is to determine the position and size of structural defects, in order to measure the quality and evaluate the safety of building materials. Most NDT techniques are rather complex, however, requiring specialized knowledge. In this article, we introduce an experimental method for crack detection that uses Surface Acoustic Waves (SAWs) and optical measurements. The method is tested on a steel beam engraved with slots of known depth. A simple model to determine the cracks size is also proposed. At the end of the article, we describe a possible application: fatigue crack sizing on a damaged slat track. This technique represents a first step toward a better understanding of the crack growth, especially in its early stages (preferably when the cracks can still be repaired) and when it is possible to assume a linear propagation of the crack front. The ultimate goal of this research program is to develop a useful method of monitoring aircraft components during fatigue testing.

  4. Profiling snow-precipitating clouds with Doppler multi-wavelength radars

    NASA Astrophysics Data System (ADS)

    Kollias, Pavlos; Battaglia, Alessandro; Kneifel, Stefan; Loenhert, Ulrich; Tanelli, Simone; Szyrmer, Wanda

    2010-05-01

    Precipitation is an essential climate variable. Knowledge of precipitation and its underlying processes are required in a number of research and application disciplines directly related to the global energy and water cycle. At high latitudes precipitation typically occurs in the form of snow. All current active and passive remote sensing techniques are known to perform poorly when estimating snow-rate and even worse when trying to predict microphysical properties (e.g. snow size distribution, snow habit, coexistence of super cooled liquid water). In this paper we investigate the potential of multi-wavelength Doppler radars in overcoming this problem. Subsets of frequencies are selected from the following set: 13.8, 35.0, 94.0, 150, 220 GHz. The first three values are associated with already deployed radar systems, the last two refer to new research avenues. The notional study is based on thermodynamic and bulk-microphysical profiles extracted from cloud resolving model simulations and on a database of scattering properties for non-spherical ice crystals. This framework allows the evaluation of the combined effect of spectral differential attenuation and differential reflectivity to be investigated. Dual-wavelength systems generally improve the capabilities in sizing the snowflakes while the use of very high frequency is particularly effective for the detection of mixed phased clouds. This work has relevance for the evaluation of ground-based and space-borne millimetre wave radar performances currently under study.

  5. Channel Analysis and Estimation and Compensation of Doppler Shift in Underwater Acoustic Communication and Mitigation of IFI, ISI in Ultra-wideband Radio

    NASA Astrophysics Data System (ADS)

    Ahmed, Sadia

    Water occupies three fourth of earth's surface. The remaining one fourth is land. Although human habitats reside on land, there is no denying of the vital connection between land and water. The future sustainability of human species on this planet depends on wise utilization of all available resources, including that provided by the vast water world. Therefore, it is imperative to explore, understand, and define this massive, varying, and in many areas, unexplored water domain. The water domain exploration and data collection can be conducted using manned or unmanned vehicles, as allowed by the water environment. This dissertation addresses three of the key difficulties that occur during underwater acoustic communication among manned and/or unmanned vehicles and proposes feasible solutions to resolve those difficulties. The focus and the contributions of this research involve the following perspectives: 1) Representation of Underwater Acoustic Communication (UAC) Channels: Providing a comprehensive classification and representation of the underwater acoustic communication channel based on the channel environment. 2) Estimation and Compensation of Doppler Shift: Providing compensation algorithm to mitigate varying Doppler shift effect over subcarriers in UAC Orthogonal Frequency Division Multiplexing (OFDM) systems. 3) Mitigation of Inter-symbol Interference (ISI): Providing feasible solution to long delay spread causing ISI in Ultra-wideband channels.

  6. Energetic ion, atom, and molecule reactions and excitation in low-current H2 discharges: H(alpha) Doppler profiles.

    PubMed

    Petrović, Z Lj; Phelps, A V

    2009-12-01

    Absolute spectral emissivities for Doppler broadened H(alpha) profiles are measured and compared with predictions of energetic hydrogen ion, atom, and molecule behavior in low-current electrical discharges in H2 at very high electric field E to gas density N ratios E/N and low values of Nd , where d is the parallel-plate electrode separation. These observations reflect the energy and angular distributions for the excited atoms and quantitatively test features of multiple-scattering kinetic models in weakly ionized hydrogen in the presence of an electric field that are not tested by the spatial distributions of H(alpha) emission. Absolute spectral intensities agree well with predictions. Asymmetries in Doppler profiles observed parallel to the electric field at 4Doppler profiles are consistent with models of reactions among H+, H2+, H3 , H, and H2 leading to fast H atoms and then fast excited H(n=3) atoms. PMID:20365280

  7. Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 2: Laser Doppler dust devil velocity profile measurement program

    NASA Technical Reports Server (NTRS)

    Howle, R. E.; Krause, M. C.; Craven, C. E.; Gorzynski, E. J.; Edwards, B. B.

    1976-01-01

    The first detailed velocity profile data on thermally induced dust vortices are presented. These dust devils will be analyzed and studied to determine their flow fields and origin in an effort to correlate this phenomena with the generation and characteristics of tornadoes. A continuing effort to increase mankind's knowledge of vortex and other meteorological phenomena will hopefully allow the prediction of tornado occurrence, their path, and perhaps eventually even lead to some technique for their destruction.

  8. The acoustic cough monitoring and manometric profile of cough and throat clearing.

    PubMed

    Xiao, Y; Carson, D; Boris, L; Mabary, J; Lin, Z; Nicodème, F; Cuttica, M; Kahrilas, P J; Pandolfino, J E

    2014-01-01

    Cough and throat clearing might be difficult to differentiate when trying to detect them acoustically or manometrically. The aim of this study was to assess the accuracy of acoustic monitoring for detecting cough and throat clearing, and to also determine whether these two symptoms present with different manometric profiles on esophageal pressure topography. Ten asymptomatic volunteers (seven females, mean age 31.1) were trained to simulate cough and throat clearing in a randomized order every 6 minutes during simultaneous acoustic monitoring and high-resolution manometry. The accuracy of automated acoustic analysis and two blinded reviewers were compared. The pattern of the events and the duration of the pressure changes were assessed using the 30 mmHg isobaric contour. There were 50 cough and 50 throat-clearing events according to the protocol. The sensitivity and specificity of automated acoustic analysis was 84% and 50% for cough, while the blinded analysis using sound revealed a sensitivity and specificity of 94% and 92%. The manometric profile of both cough and throat clearing was similar in terms of qualitative findings; however, cough was associated with a greater number of repetitive pressurizations and a more vigorous upper esophageal sphincter contraction compared with throat clearing. The acoustic analysis software has a moderate sensitivity and poor specificity to detect cough. The profile of cough and throat clearing in pressure topography revealed a similar qualitative pattern of pressurization with more vigorous pressure changes and a greater rate of repetitive pressurizations in cough.

  9. Discriminating silt-and-clay from suspended-sand in rivers using side-looking acoustic profilers

    USGS Publications Warehouse

    Wright, Scott A.; Topping, David J.; Williams, Cory A.

    2010-01-01

    techniques rely on measurements of ancillary properties that correlate with suspended-sediment concentration and particle size and thus require the collection of traditional samples for calibration. Through in situ deployments, these methods can provide the high temporal resolution that cannot be achieved through traditional sampling. Here we focus on the evaluation of acoustic profiling techniques (e.g. acoustic-Doppler sideways-looking profilers, or ADPs). One major advantage of acoustic profiling is the ability to concurrently measure water velocity (using Doppler-shift methods) and suspended-sediment concentration such that suspended-sediment flux can be directly computed using data from a single instrument. Acoustic-Doppler profilers have become popular for measuring water velocity and discharge in rivers, through both moving-boat operations and from fixed deployments such as bank-mounted sideways-looking instruments (Hirsch and Costa, 2004, Muste et al., 2007). The method presented herein is most suited to sideways-looking applications as a complement to the "index velocity" technique, whereby an index velocity from a sideways-looking instrument is related to the cross-section average velocity (determined from moving-boat discharge measurements) as a means for developing a continuous water-discharge record (Ruhl and Simpson, 2005). Topping et al. (2007) presented a method for discriminating silt-and-clay from suspended sand, using single frequency ADPs. This method takes advantage of the relations among acoustic backscatter, sediment-induced acoustic attenuation, suspended-sediment concentration (SSC), and particle size distribution (PSD). Backscatter is the amount of sound scattered back and received at the transducer while sediment-induced attenuation is the amount of sound scattered in other directions and absorbed by the sediment particles. Both of these parameters can be measured with an ADP, and their different dependencies on SSC and PSD allow for the

  10. Turbulence in planetary occultations. II - Effects on atmospheric profiles derived from Doppler measurements. III - Effects on atmospheric profiles derived from intensity measurements

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.

    1978-01-01

    The nature and magnitude of turbulence-induced errors in atmospheric profiles derived from Doppler measurements made during radio occultations are investigated. It is found that turbulence in planetary atmospheres induces both fluctuating and systematic errors in derived profiles, but the errors of both types are very small. Consideration of the occultation of Mariner 10 by Venus and of the Pioneer occultations by Jupiter shows that the rms fractional errors in the atmospheric profiles derived from these observations were less than 0.01 in both temperature and pressure, while the fractional systematic errors were typically of the order of 1 millionth. The extent to which atmospheric profiles derived from radio and optical intensity measurements are affected by turbulence is also examined. The results indicate that turbulence in planetary atmospheres has only a marginal effect on derived profiles in the weak-scattering limit and that the turbulence-induced errors in this case are always much larger than the corresponding errors in profiles derived from radio Doppler measurements.

  11. Description and evaluation of the Acoustic Profiling of Ocean Currents (APOC) system used on R. V. Oceanus cruise 96 on 11-22 May 1981

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Rintoul, S. R., Jr.; Barbour, R. L.

    1982-01-01

    The underway current profiling system which consists of a microprocessor controlled data logger that collects and formats data from a four beam Ametek-Straza 300 kHz acoustic Doppler current profiler, heading from the ship's gyrocompass, and navigation information from a Loran-C receiver and a satellite navigation unit is discussed. Data are recorded on magnetic tape and real time is calculated. Time averaging is required to remove effects of ship motion. An intercomparison is made with a moored vector measuring current meter (VMCM). The mean difference in hourly averaged APOC and VMCM currents over the four hour intercomparison is a few mm s minus including: two Gulf Stream crossings, a warm core ring survey, and shallow water in a frontal zone to the east of Nantucket Shoals.

  12. Postnatal Anthropometric and Body Composition Profiles in Infants with Intrauterine Growth Restriction Identified by Prenatal Doppler

    PubMed Central

    Mazarico, E.; Martinez-Cumplido, R.; Díaz, M.; Sebastiani, G.; Ibáñez, L.; Gómez-Roig, M. D.

    2016-01-01

    Introduction Infant anthropometry and body composition have been previously assessed to gauge the impact of intrauterine growth restriction (IUGR) at birth, but the interplay between prenatal Doppler measurements and postnatal development has not been studied in this setting. The present investigation was performed to assess the significance of prenatal Doppler findings relative to postnatal anthropometrics and body composition in IUGR newborns over the first 12 months of life. Patients and Methods Consecutive cases of singleton pregnancies with suspected IUGR were prospectively enrolled over 12 months. Fetal biometry and prenatal Doppler ultrasound examinations were performed. Body composition was assessed by absorptiometry at ages 10 days, and at 4 and12 months. Results A total of 48 pregnancies qualifying as IUGR were studied. Doppler parameters were normal in 26 pregnancies. The remaining 22 deviated from normal, marked by an Umbilical Artery Pulsatility Index (UA-PI) >95th centil or Cerebro-placental ratio (CPR) <5th centile. No significant differences emerged when comparing anthropometry and body composition at each time point, in relation to Doppler findings. Specifically, those IUGR newborns with and without abnormal Doppler findings had similar weight, length, body mass index, lean and fat mass, and bone mineral content throughout the first 12 months of life. In a separate analysis, when comparing IUGR newborns by Doppler (abnormal UA-PI vs. abnormal CPR), anthropometry and body composition did not differ significantly. Conclusions Infants with IUGR maintain a pattern of body composition during the first year of life that is independent of prenatal Doppler findings. Future studies with larger sample sizes and correlating with hormonal status are warranted to further extend the phenotypic characterization of the various conditions now classified under the common label of IUGR. PMID:26938993

  13. Evaluation of acoustic doppler velocity meters to quantify flow from Comal Springs and San Marcos Springs, Texas

    USGS Publications Warehouse

    Gary, Marcus O.; Gary, Robin H.; Asquith, William H.

    2008-01-01

    Comal Springs and San Marcos Springs are the two largest springs in Texas, are major discharge points for the San Antonio segment of the Edwards aquifer, and provide habitat for several Federally listed endangered species that depend on adequate springflows for survival. It is therefore imperative that the Edwards Aquifer Authority have accurate and timely springflow data to guide resource management. Discharge points for Comal Springs and San Marcos Springs are submerged in Landa Lake and in Spring Lake, respectively. Flows from the springs currently (2008) are estimated by the U.S Geological Survey in real time as surface-water discharge from conventional stage-discharge ratings at sites downstream from each spring. Recent technological advances and availability of acoustic Doppler velocity meters (ADVMs) now provide tools to collect data (stream velocity) related to springflow that could increase accuracy of real-time estimates of the springflows. The U.S. Geological Survey, in cooperation with the Edwards Aquifer Authority, did a study during May 2006 through September 2007 to evaluate ADVMs to quantify flow from Comal and San Marcos Springs. The evaluation was based on two monitoring approaches: (1) placement of ADVMs in important spring orifices - spring run 3 and spring 7 at Comal Springs, and diversion spring at San Marcos Springs; and (2) placement of ADVMs at the nearest flowing streams - Comal River new and old channels for Comal Springs, Spring Lake west and east outflow channels and current (2008) San Marcos River streamflow-gaging site for San Marcos Springs. For Comal Springs, ADVM application at spring run 3 and spring 7 was intended to indicate whether the flows of spring run 3 and spring 7 can be related to total springflow. The findings indicate that velocity data from both discharge features, while reflecting changes in flow, do not reliably show a direct relation to measured streamflow and thus to total Comal Springs flow. ADVMs at the Comal

  14. Integration of a laser doppler vibrometer and adaptive optics system for acoustic-optical detection in the presence of random water wave distortions

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Robinson, Dennis; Roeder, James; Cook, Dean; Majumdar, Arun K.

    2016-05-01

    A new technique has been developed for improving the Signal-to-Noise Ratio (SNR) of underwater acoustic signals measured above the water's surface. This technique uses a Laser Doppler Vibrometer (LDV) and an Adaptive Optics (AO) system (consisting of a fast steering mirror, deformable mirror, and Shack-Hartmann Wavefront Sensor) for mitigating the effect of surface water distortions encountered while remotely recording underwater acoustic signals. The LDV is used to perform non-contact vibration measurements of a surface via a two beam laser interferometer. We have demonstrated the feasibility of this technique to overcome water distortions artificially generated on the surface of the water in a laboratory tank. In this setup, the LDV beam penetrates the surface of the water and travels down to be reflected off a submerged acoustic transducer. The reflected or returned beam is then recorded by the LDV as a vibration wave measurement. The LDV extracts the acoustic wave information while the AO mitigates the water surface distortions, increasing the overall SNR. The AO system records the Strehl ratio, which is a measure of the quality of optical image formation. In a perfect optical system the Strehl ratio is unity, however realistic systems with imperfections have Strehl ratios below one. The operation of the AO control system in open-loop and closed-loop configurations demonstrates the utility of the AO-based LDV for many applications.

  15. Profiles of Material Properties in Induction-Hardened Steel Determined through Inversion of Resonant Acoustic Measurements

    SciTech Connect

    Johnson, W.L.; Kim, S.A.; Norton, S.J.

    2005-04-09

    Electromagnetic-acoustic measurements of resonant frequencies of induction-hardened steel shafts were used in an inverse calculation to determine parameters of the radial variations in the shear constant and density, including the effects of material variations and residual stress. Parameters determined for the profile of the shear constant were consistent with independent measurements on cut specimens and estimates of the acoustoelastic contribution. The profiles determined for material variations were close to those of the measured hardness.

  16. Measurements of the Spatial Variability of Mean Wind Profiles Using Multiple Doppler Lidars over Distances less than 1 Km

    NASA Astrophysics Data System (ADS)

    Banta, R. M.; Choukulkar, A.; Brewer, A.; Lundquist, J. K.; Iungo, V.; Pichugina, Y. L.; Quelet, P. T.; Wolfe, D. E.; Oncley, S.; Sandberg, S.; Weickmann, A. M.; Delgado, R.; McCaffrey, K.

    2015-12-01

    Small differences in wind speed can translate to large differences in wind energy (WE) revenues, so WE decision making requires accurate measurements of wind profiles through the turbine rotor layer of the lower atmosphere. Advances in understanding and modeling of boundary-layer processes, also needed by WE, requires such measurements through an even deeper layer—at least the lowest few hundreds of meters. An important use for such accurate measured wind-profile data is in the initiation and verification of NWP models. This prospect raises several fundamental questions, such as, what does the modeled profile represent, how was the measured profile determined, and what if the profile had been measured from a different site within the grid cell? To address these questions, two experiments were conducted at the Boulder Atmospheric Observatory (BAO) in modestly complex terrain downwind of the mountains. The Lidar Uncertainty Measurement Experiment (LUMEX) in June-July 2014 featured 5 Doppler lidars (2 scanning), and XPIA in April-May 2015, 11 Doppler lidars, including 5 scanning systems. Two broad goals of these projects were to assess differences in scanning and other data acquisition procedures on the measurements, addressed in (Pichugina et al.) at this conference, and to evaluate the effects of varying spatial separations on differences in the measured winds, addressed in the present paper. Sonic anemometers every 50 m on the 300-m BAO tower were used as a reference for the wind calculations, as well as another profile location. Lidar scan data indicated terrain-related regions of stronger flow within the scan volume of more than 1 m/s that were at least semi-recurrent. This variability produced significant differences in mean rotor-level winds by 2 identical profiling lidars separated by 500 m. During XPIA, four of the scanning Doppler lidars performed intersecting elevation scans (vertical-slice or "RHI") to create 'virtual towers' at various separation

  17. Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

  18. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    DOEpatents

    Shekarriz, Alireza; Sheen, David M.

    2000-01-01

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  19. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there. PMID:25096095

  20. Separation of Main and Tail Rotor Noise Sources from Ground-Based Acoustic Measurements Using Time-Domain De-Dopplerization

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric II; Schmitz, Fredric H.

    2009-01-01

    A new method of separating the contributions of helicopter main and tail rotor noise sources is presented, making use of ground-based acoustic measurements. The method employs time-domain de-Dopplerization to transform the acoustic pressure time-history data collected from an array of ground-based microphones to the equivalent time-history signals observed by an array of virtual inflight microphones traveling with the helicopter. The now-stationary signals observed by the virtual microphones are then periodically averaged with the main and tail rotor once per revolution triggers. The averaging process suppresses noise which is not periodic with the respective rotor, allowing for the separation of main and tail rotor pressure time-histories. The averaged measurements are then interpolated across the range of directivity angles captured by the microphone array in order to generate separate acoustic hemispheres for the main and tail rotor noise sources. The new method is successfully applied to ground-based microphone measurements of a Bell 206B3 helicopter and demonstrates the strong directivity characteristics of harmonic noise radiation from both the main and tail rotors of that helicopter.

  1. Direct Detection 1.6?m DIAL / Doppler Lidar for Measurements of CO2 Concentration and Wind Profiles (Invited)

    NASA Astrophysics Data System (ADS)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2013-12-01

    Knowledge of present carbon sources and sinks including their spatial distribution and their variation in time is one of the essential information for predicting future CO2 atmospheric concentration levels. Moreover, wind information is an important parameter for transport simulations and inverse estimation of surface CO2 flux. The differential absorption lidar (DIAL) and the Doppler wind lidar with the range resolution is expected to measure atmospheric CO2 profiles and wind profiles in the atmospheric boundary layer and lower troposphere from a ground platform. We have succeeded to develop a scanning 1.6 μm DIAL and incoherent Doppler lidar system for simultaneously measuring CO2 concentration and wind speed profiles. Our 1.6 μm DIAL system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd: YAG laser with high repetition rate (500 Hz) and the receiving optics that included the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detect a Doppler shift, and a 25 cm telescope [1] [2]. We had developed an optical parametric oscillator (OPO) system for 1.6 μm CO2 DIAL[3]. To achieve continuous tuning of the resonant OPO output without mode hopping, it is necessary to vary the OPO cavity length synchronously with the seed-frequency. On the other hand, the OPG does not require a cavity and instead rely on sufficient conversion efficiency to be obtained with a single pass through the crystal. The single-frequency oscillation of the OPG was achieved by injection seeding. The CO2-DIAL was operated with the range-height indicator (RHI) mode, and the 2-D measurement provided inhomogeneity in the boundary layer. Vertical CO2 concentration profiles and wind profiles were also measured simultaneously. The elevation angle was fixed at 52 deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m height resolution. Vertical

  2. Effect of velocity profile skewing on blood velocity and volume flow waveforms derived from maximum Doppler spectral velocity.

    PubMed

    Mynard, Jonathan P; Steinman, David A

    2013-05-01

    Given evidence that fully developed axisymmetric flow may be the exception rather than the rule, even in nominally straight arteries, maximum velocity (V(max)) can lie outside the Doppler sample volume (SV). The link between V(max) and derived quantities, such as volume flow (Q), may therefore be more complex than commonly thought. We performed idealized virtual Doppler ultrasound on data from image-based computational fluid dynamics (CFD) models of the normal human carotid artery and investigated how velocity profile skewing and choice of sample volume affected V(max) waveforms and derived Q variables, considering common assumptions about velocity profile shape (i.e., Poiseuille or Womersley). Severe velocity profile skewing caused substantial errors in V(max) waveforms when using a small, centered SV, although peak V(max) was reliably detected; errors with a long SV covering the vessel diameter were orientation dependent but lower overall. Cycle-averaged Q calculated from V(max) was typically within ±15%, although substantial skewing and use of a small SV caused 10%-25% underestimation. Peak Q derived from Womersley's theory was generally accurate to within ±10%. V(max) pulsatility and resistance indexes differed from Q-based values, although the Q-based resistance index could be predicted reliably. Skewing introduced significant error into V(max)-derived Q waveforms, particularly during mid-to-late systole. Our findings suggest that errors in the V(max) and Q waveforms related to velocity profile skewing and use of a small SV, or orientation-dependent errors for a long SV, could limit their use in wave analysis or for constructing characteristic or patient-specific flow boundary conditions for model studies.

  3. Automatic tuning of Bragg condition in a Radio-Acoustic System for PBL temperature profile measurement

    NASA Astrophysics Data System (ADS)

    Bonino, G.; Trivero, P.

    A Radio-Acoustic Sounding System (RASS) with acoustic wavelength λa ~ 1 m was designed and successfully tested. The system proved to be capable of measuring the vertical temperature profile in the Planetary Boundary Layer (PBL) with an accuracy and vertical resolution comparable to that of traditional apparatus (radiothermosondes borne by tethered or disposable balloons, thermosondes borne by aircraft and so on), yet combined with the advantages typical of remote sensing techniques. Up to the summer of 1983 the system needed attendance by an operator who had to identify the acoustic sounding frequency affording the fundamental condition of Bragg resonance between acoustic and radio wavelengths. Features and performance of the new completely automatic RASS arrangement are presented. These include the possibility of obtaining average thermal vertical profiles at preset time intervals. Maximum range of measurements obtained in about 1000 1/2-h averages was: in 90% of cases ⩾ 600m; in 50% of cases ⩾ 1100m. Such results indicate the usefulness of automatic RASS as a tool for meteorological purposes and for the application of air pollution control strategies.

  4. Tracking sperm whale (Physeter macrocephalus) dive profiles using a towed passive acoustic array

    NASA Astrophysics Data System (ADS)

    Thode, Aaron

    2004-07-01

    A passive acoustic method is presented for tracking sperm whale dive profiles, using two or three hydrophones deployed as either a vertical or large-aperture towed array. The relative arrival times between the direct and surface-reflected acoustic paths are used to obtain the ranges and depths of animals with respect to the array, provided that the hydrophone depths are independently measured. Besides reducing the number of hydrophones required, exploiting surface reflections simplifies automation of the data processing. Experimental results are shown from 2002 and 2003 cruises in the Gulf of Mexico for two different towed array deployments. The 2002 deployment consisted of two short-aperture towed arrays separated by 170 m, while the 2003 deployment placed an autonomous acoustic recorder in tandem with a short-aperture towed array, and used ship noise to time-align the acoustic data. The resulting dive profiles were independently checked using single-hydrophone localizations, whenever multipath reflections from the ocean bottom could be exploited to effectively create a large-aperture vertical array. This technique may have applications for basic research and for real-time mitigation for seismic airgun surveys.

  5. Quality-Controlled Wind Data from the Kennedy Space Center 915 Megahertz Doppler Radar Wind Profiler Network

    NASA Technical Reports Server (NTRS)

    Dryden, Rachel L.

    2011-01-01

    The National Aeronautics and Space Administration s (NASA) Kennedy Space Center (KSC) has installed a five-instrument 915-Megahertz (MHz) Doppler Radar Wind Profiler (DRWP) system that records atmospheric wind profile properties. The purpose of these profilers is to fill data gaps between the top of the KSC wind tower network and the lowest measurement altitude of the KSC 50-MHz DRWP. The 915-MHz DRWP system has the capability to generate three-dimensional wind data outputs from approximately 150 meters (m) to 6,000 m at roughly 15-minute (min) intervals. NASA s long-term objective is to combine the 915-MHz and 50-MHz DRWP systems to create complete vertical wind profiles up to 18,300 m to be used in trajectory and loads analyses of space vehicles and by forecasters on day-of-launch (DOL). This analysis utilizes automated and manual quality control (QC) processes to remove erroneous and unrealistic wind data returned by the 915-MHz DRWP system. The percentage of data affected by each individual QC check in the period of record (POR) (i.e., January to April 2006) was computed, demonstrating the variability in the amount of data affected by the QC processes. The number of complete wind profiles available at given altitude thresholds for each profiler in the POR was calculated and outputted graphically, followed by an assessment of the number of complete wind profiles available for any profiler in the POR. A case study is also provided to demonstrate the QC process on a day of a known weather event.

  6. Feasibility of Acoustic Doppler Velocity Meters for the Production of Discharge Records from U.S. Geological Survey Streamflow-Gaging Stations

    USGS Publications Warehouse

    Morlock, Scott E.; Nguyen, Hieu T.; Ross, Jerry H.

    2002-01-01

    It is feasible to use acoustic Doppler velocity meters (ADVM's) installed at U.S. Geological Survey (USGS) streamflow-gaging stations to compute records of river discharge. ADVM's are small acoustic current meters that use the Doppler principle to measure water velocities in a two-dimensional plane. Records of river discharge can be computed from stage and ADVM velocity data using the 'index velocity' method. The ADVM-measured velocities are used as an estimator or 'index' of the mean velocity in the channel. In evaluations of ADVM's for the computation of records of river discharge, the USGS installed ADVM's at three streamflow-gaging stations in Indiana: Kankakee River at Davis, Fall Creek at Millersville, and Iroquois River near Foresman. The ADVM evaluation study period was from June 1999 to February 2001. Discharge records were computed, using ADVM data from each station. Discharge records also were computed using conventional stage-discharge methods of the USGS. The records produced from ADVM and conventional methods were compared with discharge record hydrographs and statistics. Overall, the records compared closely from the Kankakee River and Fall Creek stations. For the Iroquois River station, variable backwater was present and affected the comparison; because the ADVM record compensates for backwater, the ADVM record may be superior to the conventional record. For the three stations, the ADVM records were judged to be of a quality acceptable to USGS standards for publications and near realtime ADVM-computed discharges are served on USGS real-time data World Wide Web pages.

  7. Results of the Updated NASA Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Operational Acceptance Test

    NASA Technical Reports Server (NTRS)

    Barbre', Robert E., Jr.; Deker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa

    2016-01-01

    We present here the methodology and results of the Operational Acceptance Test (OAT) performed on the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP). On day-of-launch (DOL), space launch vehicle operators have used data from the DRWP to invalidate winds in prelaunch loads and trajectory assessments due to the DRWP's capability to quickly identify changes in the wind profile within a rapidly-changing wind environment. The previous DRWP has been replaced with a completely new system, which needs to undergo certification testing before being accepted for use in range operations. The new DRWP replaces the previous three-beam system made of coaxial cables and a copper wire ground plane with a four-beam system that uses Yagi antennae with enhanced beam steering capability. In addition, the new system contains updated user interface software while maintaining the same general capability as the previous system. The new DRWP continues to use the Median Filter First Guess (MFFG) algorithm to generate a wind profile from Doppler spectra at each range gate. DeTect (2015) contains further details on the upgrade. The OAT is a short-term test designed so that end users can utilize the new DRWP in a similar manner to the previous DRWP during mission operations at the Eastern Range in the midst of a long-term certification process. This paper describes the Marshall Space Flight Center Natural Environments Branch's (MSFC NE's) analyses to verify the quality and accuracy of the DRWP's meteorological data output as compared to the previous DRWP. Ultimately, each launch vehicle program has the responsibility to certify the system for their own use.

  8. Detection of Reflux in Jugular and Vertebral Veins Through Directional Multigate Quality Doppler Profiles

    NASA Astrophysics Data System (ADS)

    Forzoni, Leonardo; Morovic, Sandra; Semplici, Paolo; Corsi, Massino; Ricci, Stefano; Tortoli, Piero

    Chronic Cerebro-Spinal Venous Insufficiency (CCSVI) is a medical condition where deoxygenated blood flows from the veins surrounding the brain and spine is slowed down or blocked in its return to the heart. The diagnosis and severity of CCSVI can be assessed by investigating the possible presence and the extent of such reflux and/or blockage in neck veins and intracranial veins, with the patient in both sitting and supine positions. During such examinations, B-Mode and Color Doppler ultrasound are not always capable of accurately detect the flow behavior in all subjects.

  9. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  10. Performance comparison of an all-fiber-based laser Doppler vibrometer for remote acoustical signal detection using short and long coherence length lasers.

    PubMed

    Li, Rui; Madampoulos, Nicholas; Zhu, Zhigang; Xie, Liangping

    2012-07-20

    All-fiber laser Doppler vibrometer systems have great potential in the application of remote acoustic detection. However, due to the requirement for a long operating distance, a long coherence length laser is required, which can drive the system cost high. In this paper, a system using a short coherence length laser is proposed and demonstrated. Experimental analysis indicates that the multi-longitudinal modes of the laser cause detection noise and that the unequal length between two paths (local oscillator path and transmission path) increases the intensity and the frequency components of the noise. In order to reduce the noise, the optical length of the two paths needs to be balanced, within the coherence length of the source. We demonstrate that adopting a tunable optical delay to compensate the unequal length significantly reduces the noise. In a comparison of the detection results by using a short coherence laser and a long coherence laser, our developed system gives a good performance on the acoustic signal detection from three meters away.

  11. Long-term Doppler Shift and Line Profile Studies of Planetary Search Target Stars

    NASA Technical Reports Server (NTRS)

    McMillan, Robert S.

    2002-01-01

    This grant supported attempts to develop a method for measuring the Doppler shifts of solar-type stars more accurately. The expense of future space borne telescopes to search for solar systems like our own makes it worth trying to improve the relatively inexpensive pre-flight reconnaissance by ground-based telescopes. The concepts developed under this grant contributed to the groundwork for such improvements. They were focused on how to distinguish between extrasolar planets and stellar activity (convection) cycles. To measure the Doppler shift (radial velocity; RV) of the center of mass of a star in the presence of changing convection in the star's photosphere, one can either measure the effect of convection separately from that of the star's motion and subtract its contribution to the apparent RV, or measure the RV in a way that is insensitive to convection. This grant supported investigations into both of these approaches. We explored the use of a Fabry-Perot Etalon HE interferometer and a multichannel Fourier Transform Spectrometer (mFTS), and finished making a 1.8-m telescope operational and potentially available for this work.

  12. Application of 50 MHz doppler radar wind profiler to launch operations at Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schumann, Robin S.; Taylor, Gregory E.; Smith, Steve A.; Wilfong, Timothy L.

    1994-01-01

    This paper presents a case study where a significant wind shift, not detected by jimspheres, was detected by the 50 MHz DRWP (Doppler Radar Wind Profiler) and evaluated to be acceptable prior to the launch of a Shuttle. This case study illustrates the importance of frequent upper air wind measurements for detecting significant rapidly changing features as well as for providing confidence that the features really exist and are not due to instrumentation error. Had the release of the jimsphere been timed such that it would have detected the entire wind shift, there would not have been sufficient time to release another jimsphere to confirm the existence of the feature prior to the scheduled launch. We found that using a temporal median filter on the one minute spectral estimates coupled with a constraining window about a first guess velocity effectively removes nearly all spurious signals from the velocity profile generated by NASA's 50 MHz DRWP while boosting the temporal resolution to as high as one profile every 3 minutes. The higher temporal resolution of the 50 MHz DRWP using the signal processing algorithm described in this paper ensures the detection of rapidly changing features as well as provides the confidence that the features are genuine. Further benefit is gained when the profiles generated by the DRWP are examined in relation to the profiles measured by jimspheres and/or rawinsondes. The redundancy offered by using two independent measurements can dispel or confirm any suspicion regarding instrumentation error or malfunction and wind profiles can be examined in light of their respective instruments' strengths and weaknesses.

  13. A dealiasing method for use with ultrasonic pulsed Doppler in measuring velocity profiles and flow rates in pipes

    NASA Astrophysics Data System (ADS)

    Murakawa, Hideki; Muramatsu, Ei; Sugimoto, Katsumi; Takenaka, Nobuyuki; Furuichi, Noriyuki

    2015-08-01

    The ultrasonic pulsed Doppler method (UDM) is a powerful tool for measuring velocity profiles in a pipe. However, the maximum detectable velocity is limited by the Nyquist sampling theorem. Furthermore, the maximum detectable velocity (also called Nyquist velocity), vmax, and the maximum measurable length are related and cannot be increased at the same time. If the velocity is greater than vmax, velocity aliasing occurs. Hence, the higher velocity that occurs with a larger pipe diameter, i.e. under higher flow rate conditions, cannot be measured with the conventional UDM. To overcome these limitations, dual-pulse repetition frequency (dual PRF) and feedback methods were employed in this study to measure velocity profiles in a pipe. The velocity distributions obtained with the feedback method were found to be more accurate than those obtained with the dual PRF method. However, misdetection of the Nyquist folding number using the feedback method was found to increase with the flow velocity. A feedback method with a moving average is proposed to improve the measurement accuracy. The method can accurately measure the velocity distributions at a velocity five times greater than the maximum velocity that can be measured with the conventional UDM. The measurement volume was found to be among the important parameters that must be considered in assessing the traceability of the reflector during the pulse emission interval. Hence, a larger measurement volume is required to measure higher velocities using the dual PRF method. Integrating velocity distributions measured using the feedback method with a moving average makes it possible to accurately determine flow rates six times greater than those that can be determined using the conventional pulsed Doppler method.

  14. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations.

    PubMed

    Ansmann, Albert; Wandinger, Ulla; Le Rille, Olivier; Lajas, Dulce; Straume, Anne Grete

    2007-09-10

    The European Space Agency will launch the Atmospheric Laser Doppler Instrument (ALADIN) for global wind profile observations in the near future. The potential of ALADIN to measure the optical properties of aerosol and cirrus, as well, is investigated based on simulations. A comprehensive data analysis scheme is developed that includes (a) the correction of Doppler-shifted particle backscatter interference in the molecular backscatter channels (cross-talk effect), (b) a procedure that allows us to check the quality of the cross-talk correction, and (c) the procedures for the independent retrieval of profiles of the volume extinction and backscatter coefficients of particles considering the height-dependent ALADIN signal resolution. The error analysis shows that the particle backscatter and extinction coefficients, and the corresponding extinction-to-backscatter ratio (lidar ratio), can be obtained with an overall (systematic+statistical) error of 10%-15%, 15%-30%, and 20%-35%, respectively, in tropospheric aerosol and dust layers with extinction values from 50 to 200 Mm(-1); 700-shot averaging (50 km horizontal resolution) is required. Vertical signal resolution is 500 m in the lower troposphere and 1000 m in the free troposphere. In cirrus characterized by extinction coefficients of 200 Mm(-1) and an optical depth of >0.2, backscatter coefficients, optical depth, and column lidar ratios can be obtained with 25%-35% relative uncertainty and a horizontal resolution of 10 km (140 shots). In the stratosphere, only the backscatter coefficient of aerosol layers and polar stratospheric clouds can be retrieved with an acceptable uncertainty of 15%-30%. Vertical resolution is 2000 m.

  15. A Comparison of the Automated Meteorological Profiling System High Resolution Flight Element to the Kennedy Space Center 50 MHz Doppler Wind Profiler

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank

    2000-01-01

    Wind profile measurement and the simulation of aerodynamic loads on a launch vehicle play an important role in determining launch capability and post launch assessment of the vehicle's performance. To date, all United States range certified wind profile measurement systems have been based on balloon tracking. Since the 1960's, the standard used by the National Aeronautics and Space Administration and the Air Force at the Cape Canaveral Air Station (CCAS) for detailed wind profile measurements has been the radar tracked, aerodynamically stabilized Jimsphere balloon system. Currently, the Air Force is nearing certification and operational implementation of the Automated Meteorological Profiling System (AMPS) at CCAS and Vandenburg Air Force Base (VAFB). AMPS uses the Global Positioning System for tracking the Jimsphere balloon. It is anticipated that the AMPS/Jimsphere, named the High Resolution Flight Element (HRFE), will have equivalent, or better resolution than the radar tracked Jimsphere, especially when the balloon is far downrange, at a low elevation angle. By the 1980's, the development of Doppler Wind Profilers (DWP) had become sufficiently advanced to justify an experimental measurement program at Kennedy Space Center (KSC). In 1989 a 50 MHz DWP was installed at KSC. In principal, the 50 MHz DWP has the capability to track the evolution of wind profile dynamics within 5 minutes of a launch. Because of fundamental differences in the measurement technique, there is a significant time and space differential between 50 MHz DWP and HRFE wind profiles. This paper describes a study to quantify these differences from a sample of 50 MHz DWP/HRFE pairs obtained during the AMPS certification test program.

  16. Lifetimes in neutron-rich Nd isotopes measured by Doppler profile method

    SciTech Connect

    Ahmad, I.; Lister, C.J.; Morss, L.R.

    1995-08-01

    Lifetimes of the rotational levels in neutron-rich even-even Nd isotopes were deduced from the analysis of the Doppler broadened line shapes. The experiment was performed at Daresbury with the Eurogam array, which at that time consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. The source was in the form of a 7-mm pellet which was prepared by mixing 5-mg; {sup 248}Cm and 65-mg KCl and pressing it under high pressure. Events for which three or more detectors fired were used to construct a cubic data array whose axes represented the {gamma}-ray energies and the contents of each channel the number of events with that particular combination of {gamma}-ray energies. From this cubic array, one-dimensional spectra were generated by placing gates on peaks on the other two axes. Gamma-ray spectra of even-even Nd isotopes were obtained by gating on the transitions in the complimentary Kr fragments. The gamma peaks de-exciting states with I {>=} 12 h were found to be broader than the instrumental line width due to the Doppler effect. The line shapes of they-ray peaks were fitted separately with a simple model for the feeding of the states and assuming a rotational band with constant intrinsic quadruple moment and these are shown in Fig. I-27. The quadrupole moments thus determined were found to be in good agreement with the quadrupole moments measured previously for lower spin states. Because of the success of this technique for the Nd isotopes, we intend to apply this technique to the new larger data set collected with the Eurogam II array. The results of this study were published.

  17. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  18. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts

    NASA Astrophysics Data System (ADS)

    Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David

    2016-01-01

    Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts.

  19. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts

    PubMed Central

    Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David

    2016-01-01

    Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts. PMID:26732545

  20. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts.

    PubMed

    Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David

    2016-01-06

    Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts.

  1. Aerodynamic and acoustic investigation of inverted velocity profile coannular exhaust nozzle models and development of aerodynamic and acoustic prediction procedures

    NASA Technical Reports Server (NTRS)

    Larson, R. S.; Nelson, D. P.; Stevens, B. S.

    1979-01-01

    Five co-annular nozzle models, covering a systematic variation of nozzle geometry, were tested statically over a range of exhaust conditions including inverted velocity profile (IVP) (fan to primary stream velocity ratio 1) and non IVP profiles. Fan nozzle pressure ratio (FNPR) was varied from 1.3 to 4.1 at primary nozzle pressure ratios (PNPR) of 1.53 and 2.0. Fan stream temperatures of 700 K (1260 deg R) and 1089 K(1960 deg R) were tested with primary stream temperatures of 700 K (1260 deg R), 811 K (1460 deg R), and 1089 K (1960 deg R). At fan and primary stream velocities of 610 and 427 m/sec (2000 and 1400 ft/sec), respectively, increasing fan radius ratio from 0.69 to 0.83 reduced peak perceived noise level (PNL) 3 dB, and an increase in primary radius ratio from 0 to 0.81 (fan radius ratio constant at 0.83) reduced peak PNL an additional 1.0 dB. There were no noise reductions at a fan stream velocity of 853 m/sec (2800 ft/sec). Increasing fan radius ratio from 0.69 to 0.83 reduced nozzle thrust coefficient 1.2 to 1.5% at a PNPR of 1.53, and 1.7 to 2.0% at a PNPR of 2.0. The developed acoustic prediction procedure collapsed the existing data with standard deviation varying from + or - 8 dB to + or - 7 dB. The aerodynamic performance prediction procedure collapsed thrust coefficient measurements to within + or - .004 at a FNPR of 4.0 and a PNPR of 2.0.

  2. Ice/berm interaction study using rotary sidescan sonar and acoustic profiling systems

    SciTech Connect

    Good, R.R.; Anderson, K.G.; Lanzier, H.H.

    1984-05-01

    Tarsiut Island, in the Canadian Beaufort Sea, was the first dredged caisson retained island built for exploration drilling operations in the Arctic offshore. Due to the island's configuration location, a large first-year ice rubble pile would result from the ice/structure interaction. This paper outlines how a rotary side-scan sonar and a mechanically scanning, narrow-beam acoustic profiling system were used to determine the geometry and the contact area of the underside of heavily rubbled first-year ice. The results of this study are to be used to further the understanding of the nature and mechanism of the ice/structure interaction in Arctic offshore structures.

  3. Relationships between preference ratings, sensory profiles, and acoustical measurements in concert halls.

    PubMed

    Kuusinen, Antti; Pätynen, Jukka; Tervo, Sakari; Lokki, Tapio

    2014-01-01

    Preferences of concert hall acoustics are explored with preference mapping. The investigation is performed on previously gathered data from individual vocabulary profiling of nine concert halls and three pieces of symphonic music, namely, excerpts of compositions by Beethoven, Bruckner, and Mozart. Individual preferences are regressed onto a latent three-dimensional sensory space obtained by multiple factor analysis of descriptive sensory data. Overlaying individually estimated preference surfaces onto one another produces preference maps which illustrates both the overall preference of the stimuli as well as differences between individual listeners. A comparison of the maps between music motifs illustrates how each music signal affects the weighting of different acoustical qualities in preference judgments. Differences in preferences between individuals are pronounced in the excerpts of Beethoven and Bruckner, while the responses are more homogeneous for Mozart music motif. Overall, proximity is identified as the main aspect associated with preference, but also loudness, envelopment, and bass are important. A correlation analysis of objective parameters and subjective perceptions substantiates the importance of lateral sound energy for good concert hall acoustics. Particularly, the lateral early energy fraction at high frequencies is found to be associated with the perception of proximity, and hence, also with preference.

  4. Relationships between preference ratings, sensory profiles, and acoustical measurements in concert halls.

    PubMed

    Kuusinen, Antti; Pätynen, Jukka; Tervo, Sakari; Lokki, Tapio

    2014-01-01

    Preferences of concert hall acoustics are explored with preference mapping. The investigation is performed on previously gathered data from individual vocabulary profiling of nine concert halls and three pieces of symphonic music, namely, excerpts of compositions by Beethoven, Bruckner, and Mozart. Individual preferences are regressed onto a latent three-dimensional sensory space obtained by multiple factor analysis of descriptive sensory data. Overlaying individually estimated preference surfaces onto one another produces preference maps which illustrates both the overall preference of the stimuli as well as differences between individual listeners. A comparison of the maps between music motifs illustrates how each music signal affects the weighting of different acoustical qualities in preference judgments. Differences in preferences between individuals are pronounced in the excerpts of Beethoven and Bruckner, while the responses are more homogeneous for Mozart music motif. Overall, proximity is identified as the main aspect associated with preference, but also loudness, envelopment, and bass are important. A correlation analysis of objective parameters and subjective perceptions substantiates the importance of lateral sound energy for good concert hall acoustics. Particularly, the lateral early energy fraction at high frequencies is found to be associated with the perception of proximity, and hence, also with preference. PMID:24437764

  5. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  6. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.

    PubMed

    Long, Chloe V; Flint, James A; Lepper, Paul A

    2010-10-01

    Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision.

  7. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.

    PubMed

    Long, Chloe V; Flint, James A; Lepper, Paul A

    2010-10-01

    Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision. PMID:20968394

  8. Doppler sodar and radar wind-profiler observations of gravity-wave activity associated with a gravity current

    SciTech Connect

    Ralph, F.M.; Venkateswaran, S.V. ); Mazaudier, C. ); Crochet, M. )

    1993-02-01

    Observations from two Doppler sodars and a radar wind profiler have been used in conjunction with data from a rawinsonde station and a mesoscale surface observation network to conduct a case study of a gravity current entering into an environment containing a nocturnal inversion and an elevated neutral layer. On the basis of synoptic and mesoscale analyses, it is concluded that the gravity current might have originated either as a scale-contracted cold front or as a gust front resulting from thunderstorm outflows observed very near the leading edge of a cold front. Despite this ambiguity, the detailed vertical structure of the gravity current itself is well resolved from the data. Moreover, the vertical velocity measurements provided by the sodars and the radar wind profiler at high time resolution have given unique information about the height structure of gravity waves excited by the gravity current. Although only wave periods, and not phase speeds or wavelengths, are directly measured, it is possible to make reasonable inferences about wave excitation mechanisms and about the influence and control of ambient stratification on wave-field characteristics. Both Kelvin-Helmholtz waves generated in the regions of high wind shear found in association with the gravity current and lee-type waves forced by the gravity current acting as an obstacle to opposing prefrontal flow are identified. It is also found that the propagation speed of the gravity current and the relative depths of the prefrontal inversion and the postfrontal cold air were not favorable for the formation of either internal bores or solitary waves at the time of day at which the gravity current was being observed. 42 refs., 18 figs., 1 tab.

  9. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  10. An assessment of the performance of a 1.5 μm Doppler lidar for operational vertical wind profiling based on a 1-year trial

    NASA Astrophysics Data System (ADS)

    Päschke, E.; Leinweber, R.; Lehmann, V.

    2015-06-01

    We present the results of a 1-year quasi-operational testing of the 1.5 μm StreamLine Doppler lidar developed by Halo Photonics from 2 October 2012 to 2 October 2013. The system was configured to continuously perform a velocity-azimuth display scan pattern using 24 azimuthal directions with a constant beam elevation angle of 75°. Radial wind estimates were selected using a rather conservative signal-to-noise ratio based threshold of -18.2 dB (0.015). A 30 min average profile of the wind vector was calculated based on the assumption of a horizontally homogeneous wind field through a Moore-Penrose pseudoinverse of the overdetermined linear system. A strategy for the quality control of the retrieved wind vector components is outlined for ensuring consistency between the Doppler lidar wind products and the inherent assumptions employed in the wind vector retrieval. Quality-controlled lidar measurements were compared with independent reference data from a collocated operational 482 MHz radar wind profiler running in a four-beam Doppler beam swinging mode and winds from operational radiosonde measurements. The intercomparison results reveal a particularly good agreement between the Doppler lidar and the radar wind profiler, with root mean square errors ranging between 0.5 and 0.7 m s-1 for wind speed and between 5 and 10° for wind direction. The median of the half-hourly averaged wind speed for the intercomparison data set is 8.2 m s-1, with a lower quartile of 5.4 m s-1 and an upper quartile of 11.6 m s-1.

  11. Comment on "Reconstructing surface wave profiles from reflected acoustic pulses" [J. Acoust. Soc. Am. 133(5), 2597-2611 (2013)].

    PubMed

    Choo, Youngmin; Song, H C

    2016-05-01

    A computationally efficient, time-domain Helmholtz-Kirchhoff (H-K) integral was derived and applied to reconstructing surface wave profiles from reflected acoustic pulses [Walstead and Deane, J. Acoust. Soc. Am. 133, 2597-2611 (2013)]. However, the final form of the integral equation incorporating a stationary phase approximation contained a complex phase term exp(iπ/4), which cannot be treated as a simple time delay. In this work, a real time-domain H-K integral is presented that includes an additional Hilbert transform of the time-derivative of the transmitted pulse. Numerical simulation with a sinusoidal surface shows good agreement between the real time-domain formulation and exact H-K integral, while achieving a significant improvement in computational speed (e.g., 2 orders of magnitude). PMID:27250135

  12. On observing acoustic backscattering from salinity turbulence.

    PubMed

    Goodman, Louis; Sastre-Cordova, Marcos M

    2011-08-01

    It has been hypothesized that at sufficiently high levels of oceanic salinity turbulence it should be possible to observe acoustic backscattering. However, there have been limited in situ measurements to confirm this hypothesis. Using an autonomous underwater vehicle equipped with upward and downward looking 1.2 MHz acoustic Doppler current profilers and with turbulence and fine scale sensors, measurements were performed in a region of intense turbulence and a strong salinity gradient. The approach taken was to correlate variations in the backscattered acoustic intensity, I, with a theoretical acoustic backscattering cross section per volume for salinity turbulence, σ(s), to obtain an estimated scattering cross section per volume, σ(e). Results indicated that of order 50% of the observed region was characterized by salinity turbulence induced backscattering. PMID:21877785

  13. On observing acoustic backscattering from salinity turbulence.

    PubMed

    Goodman, Louis; Sastre-Cordova, Marcos M

    2011-08-01

    It has been hypothesized that at sufficiently high levels of oceanic salinity turbulence it should be possible to observe acoustic backscattering. However, there have been limited in situ measurements to confirm this hypothesis. Using an autonomous underwater vehicle equipped with upward and downward looking 1.2 MHz acoustic Doppler current profilers and with turbulence and fine scale sensors, measurements were performed in a region of intense turbulence and a strong salinity gradient. The approach taken was to correlate variations in the backscattered acoustic intensity, I, with a theoretical acoustic backscattering cross section per volume for salinity turbulence, σ(s), to obtain an estimated scattering cross section per volume, σ(e). Results indicated that of order 50% of the observed region was characterized by salinity turbulence induced backscattering.

  14. Wind Profiling from a New Compact, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar Transceiver during Wind Measurement Intercomparison

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.

    2009-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.

  15. Field trial of a Doppler sonar system for fisheries applications

    NASA Astrophysics Data System (ADS)

    Tollefsen, Cristina D. S.; Zedel, Len

    2003-10-01

    Various deployments of commercial Doppler current profiling systems have demonstrated that these instruments can detect fish and measure their swimming speeds. However, research into the possible application of Doppler sonar to fisheries problems is limited and has not taken advantage of coherent signal processing schemes. A field trial was undertaken in August 2002 to explore the capabilities of a coherent Doppler sonar when applied to detecting discrete targets. The passage of migrating salmon on the Fraser River in British Columbia provided an ideal test opportunity with fish of well-defined swimming behavior and allowed for comparisons with conventional fisheries acoustics techniques. The instrument tested was a 250-kHz sonar which provided for phase coding of transmit pulses and coherent sampling of successive acoustic returns. The field trial resulted in 11 consecutive days of Doppler sonar data acquired during the peak of the sockeye salmon (Oncorhynchus nerka) migration. A total of 7425 individual fish were identified and their swimming speed was measured with an accuracy of between 10 cms-1 and 20 cms-1, which depended on pulse length, pulse spacing, and target range. By comparison, water velocity measurements made with the same instrument can only achieve a theoretical accuracy of 60 cms-1.

  16. A one year comparison of 482 MHz radar wind profiler, RS92-SGP Radiosonde and 1.5 μm Doppler Lidar wind measurements

    NASA Astrophysics Data System (ADS)

    Päschke, E.; Leinweber, R.; Lehmann, V.

    2014-11-01

    We present the results of a one-year quasi-operational testing of the 1.5 μm StreamLine Doppler lidar developed by Halo Photonics from 2 October 2012 to 2 October 2013. The system was configured to continuously perform a velocity-azimuth display (VAD) scan pattern using 24 azimuthal directions with a constant beam elevation angle of 75°. Radial wind estimates were selected using a rather conservative signal-to-noise ratio (SNR) based threshold of -18.2 dB (0.015). A 30 min average wind vector was calculated based on the assumption of a horizontally homogeneous wind field through a singular-value decomposed Moore-Penrose pseudoinverse of the overdetermined linear system. A strategy for a quality control of the retrieved wind vector components is outlined which is used to ensure consistency between the retrieved winds and the assumptions inherent to the employed wind vector retrieval. Finally, the lidar measurements are compared with operational data from a collocated 482 MHz radar wind profiler running in a four-beam Doppler beam swinging (DBS) mode and winds from operational radiosonde measurements. The intercomparisons show that the Doppler lidar is a reliable system for operational wind measurements in the atmospheric boundary layer (ABL).

  17. Disentangling preference ratings of concert hall acoustics using subjective sensory profiles.

    PubMed

    Lokki, Tapio; Pätynen, Jukka; Kuusinen, Antti; Tervo, Sakari

    2012-11-01

    Subjective evaluation of acoustics was studied by recording nine concert halls with a simulated symphony orchestra on a seat 12 m from the orchestra. The recorded music was spatially reproduced for subjective listening tests and individual vocabulary profiling. In addition, the preferences of the assessors and objective parameters were gathered. The results show that concert halls were discriminated using perceptual characteristics, such as Envelopment/Loudness, Reverberance, Bassiness, Proximity, Definition, and Clarity. With these perceptual dimensions the preference ratings can be explained. Seventeen assessors were divided into two groups based on their preferences. The first group preferred concert halls with relatively intimate sound, in which it is quite easy to hear individual instruments and melody lines. In contrast, the second group preferred a louder and more reverberant sound with good envelopment and strong bass. Even though all halls were recorded exactly at the same distance, the preference is best explained with subjective Proximity and with Bassiness, Envelopment, and Loudness to some extent. Neither the preferences nor the subjective ratings could be fully explained by objective parameters (ISO3382-1:2009), although some correlations were found.

  18. Doppler and Zeeman Doppler Imaging of Stars

    NASA Astrophysics Data System (ADS)

    Kochukhov, Oleg

    In this chapter we discuss the problem of reconstructing two-dimensional stellar surface maps from the variability of intensity and/or polarisation profiles of spectral lines. We start by outlining the main principles of the scalar Doppler imaging problem concerned with recovering maps of chemical spots, temperature or brightness from the intensity spectra. After presenting the physical and mathematical foundations of this remote sensing method, we review its applications to mapping different types of spots in early-type chemically peculiar and late-type active stars, and non-radial pulsations in early-type stars. We also discuss an extension of Doppler imaging to the problem of recovering vector distributions of stellar magnetic fields from spectropolarimetric observations and review applications of this Zeeman Doppler imaging technique in the context of stellar magnetism studies.

  19. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  20. Joint inversion for transponder localization and sound-speed profile temporal variation in high-precision acoustic surveys.

    PubMed

    Li, Zhao; Dosso, Stan E; Sun, Dajun

    2016-07-01

    This letter develops a Bayesian inversion for localizing underwater acoustic transponders using a surface ship which compensates for sound-speed profile (SSP) temporal variation during the survey. The method is based on dividing observed acoustic travel-time data into time segments and including depth-independent SSP variations for each segment as additional unknown parameters to approximate the SSP temporal variation. SSP variations are estimated jointly with transponder locations, rather than calculated separately as in existing two-step inversions. Simulation and sea-trial results show this localization/SSP joint inversion performs better than two-step inversion in terms of localization accuracy, agreement with measured SSP variations, and computational efficiency. PMID:27475210

  1. Joint inversion for transponder localization and sound-speed profile temporal variation in high-precision acoustic surveys.

    PubMed

    Li, Zhao; Dosso, Stan E; Sun, Dajun

    2016-07-01

    This letter develops a Bayesian inversion for localizing underwater acoustic transponders using a surface ship which compensates for sound-speed profile (SSP) temporal variation during the survey. The method is based on dividing observed acoustic travel-time data into time segments and including depth-independent SSP variations for each segment as additional unknown parameters to approximate the SSP temporal variation. SSP variations are estimated jointly with transponder locations, rather than calculated separately as in existing two-step inversions. Simulation and sea-trial results show this localization/SSP joint inversion performs better than two-step inversion in terms of localization accuracy, agreement with measured SSP variations, and computational efficiency.

  2. Doppler photoacoustic and Doppler ultrasound in blood with optical contrast agent

    NASA Astrophysics Data System (ADS)

    Sheinfeld, Adi; Eyal, Avishay

    2013-03-01

    Photoacoustic Doppler flowmetry as well as Doppler ultrasound were performed in acoustic resolution regime on tubes filled with flowing blood with indocyanine green (ICG) at different concentrations. The photoacoustic excitation utilized a pair of directly-modulated fiber-coupled 830nm laser-diodes, modulated with either CW or tone-bursts for depthresolved measurements. The amplitude of the Doppler peak in photoacoustic Doppler measurements was found to be proportional to the ICG concentration. Photoacoustic Doppler was measured in ICG at human safe concentrations, but not in whole blood. Comparing the results between the two modalities implied that using a wavelength with higher optical absorption may improve the photoacoustic signal in blood.

  3. Acoustic profiles and images of the Palos Verdes Margin: Implications concerning deposition from the White's Point outfall

    SciTech Connect

    Hampton, M A.; Karl, H; Murray, Christopher J. )

    2001-12-01

    Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km{sup 2}, which encompasses a volume of about 3.2 million m{sup 3}. The deposit's basal reflector is acoustically distinct over most of the mapped area, implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30 m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs.

  4. Acoustic profiles and images of the Palos Verdes margin: Implications concerning deposition from the White's Point outfall

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Murray, C.J.

    2002-01-01

    Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes Shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km2, which encompasses a volume of about 3.2 million m3. The deposit's basal reflector is acoustically distinct over most of the mapped area. implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs. ?? 2002 Elsevier Science Ltd. All rights

  5. Coherent underwater acoustic communication: Channel modeling and receiver design

    NASA Astrophysics Data System (ADS)

    Song, Aijun; Badiey, Mohsen

    2012-11-01

    High frequency acoustic communication (8-50 kHz) has attracted much attention recently due to increasing scientific and commercial activities in the marine environment. Based on multiple at-sea experiments, we have developed a number of communication techniques to address the receiver design challenges, resulting in significant data rate increases in the dynamic ocean. Our studies also show that it is possible to simulate the acoustic communication channel for its intensity profile, temporal coherence, and Doppler spread, leading to realistic representations of the at-sea measurements. We present our recent results in these two aspects, receiver design and channel modeling, for the mentioned frequency band.

  6. Acoustic and Laser Doppler Anemometer Results for Confluent and 12-Lobed E(exp 3) Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Babbit, R. R.; Shin, H.; Wisler, S.; Janardan, B. A.; Majjigi, R. K.; Bridges, James (Technical Monitor)

    2002-01-01

    The research described in this report has been funded by NASA Glenn Research Center as part of the Advanced Subsonic Technologies (AST) initiative. The program operates under the Large Engine Technologies (LET) as Task Order #3 1. Task Order 31 is a three year research program divided into three subtasks. Subtask A develops the experimental acoustic and aerodynamic subsonic mixed flow exhaust system databases. Subtask B seeks to develop and assess CFD-based aero-acoustic methods for subsonic mixed flow exhaust systems. Subtask B relies on the data obtained from Subtask A to direct and calibrate the aero-acoustic methods development. Subtask C then seeks to utilize both the aero-acoustic data bases developed in Subtask A and the analytical methods developed in Subtask B to define improved subsonic mixed-flow exhaust systems. The mixed flow systems defined in Subtask C will be experimentally demonstrated for improved noise reduction in a scale model aero-acoustic test conducted similarly to the test performed in Subtask A. The overall object of this Task Order is to develop and demonstrate the technology to define a -3EPNdB exhaust system relative to 1992 exhaust system technology.

  7. Doppler echocardiography

    SciTech Connect

    Labovitz, A.J.; Williams, G.A.

    1988-01-01

    The authors are successful in presenting a basic book on clinical quantitative Doppler echocardiography. It is not intended to be a comprehensive text, but it does cover clinical applications in a succinct fashion. Only the more common diseases in the adult are considered. The subjects are presented logically and are easy to comprehend. The illustrations are good, and the book is paperbound. The basic principles of Doppler echocardiography are presented briefly. The book ends with chapters on left ventricular function (stroke volume and cardiac output), congenital heart disease, and color Doppler echo-cardiography. There are numerous references and a good glossary and index.

  8. Heat and Momentum Flux Measurements in the Planetary Boundary Layer with a Wind Profiling Radar/radio Acoustic Sounding System.

    NASA Astrophysics Data System (ADS)

    Angevine, Wayne Merrill

    The planetary or atmospheric boundary layer is the lowest 100-2000 m of the atmosphere, and contains the sources of most energy and pollutants that affect the entire atmosphere. Boundary-layer structure and dynamics are key to understanding, modeling, and predicting climate, weather, and pollution. New and improved techniques for measuring the dynamics of the boundary layer are needed. One of the most important needs is for improved methods of measuring the turbulent fluxes of heat and momentum. Existing methods involving towers, surface measurements, or aircraft have limited flexibility or are expensive. This dissertation describes methods for measuring heat flux (virtual temperature flux) and momentum flux in convective boundary layers. The instrument used is the 915 MHz boundary-layer radar wind profiler radio acoustic sounding system (profiler/RASS). As the name suggests, the profiler was developed to make wind measurements, and this work is an expansion of its capabilities. The radio acoustic sounding system uses the profiler and attachments to measure virtual temperature. Before the profiler/RASS could be used to make flux measurements, the ability to make simultaneous measurements of wind velocity and temperature had to be developed. A feasibility study was conducted at Platteville, Colorado, in June 1991 to determine if flux measurements were a practical application of the profiler, with encouraging results. The Rural Oxidants in the Southern Environment II (ROSE II) experiment in Alabama in June 1992 provided the opportunity to compare flux measurements from the profiler/RASS to those made by a surface sonic anemometer and an aircraft, the National Center for Atmospheric Research (NCAR) King Air. The results indicate that the profiler/RASS is capable of making heat flux measurements that compare well with aircraft and surface measurements. The primary limitation on the precision of the measurements is the sampling uncertainty of the turbulence, a

  9. Heat and momentum flux measurements in the planetary boundary layer with a wind profiling radar/radio acoustic sounding system

    NASA Astrophysics Data System (ADS)

    Angevine, Wayne Merrill

    1993-01-01

    The planetary or atmospheric boundary layer is the lowest 100-2000 m of the atmosphere, and contains the sources of most energy and pollutants that affect the entire atmosphere. Boundary-layer structure and dynamics are key to understanding, modeling, and predicting climate, weather, and pollution. New and improved techniques for measuring the dynamics of the boundary layer are needed. One of the most important needs is for improved methods of measuring the turbulent fluxes of heat and momentum. Existing methods involving towers, surface measurements, or aircraft have limited flexibility or are expensive. This dissertation describes methods for measuring heat flux (virtual temperature flux) and momentum flux in convective boundary layers. The instrument used is the 916 MHz boundary-layer radar wind profiler radio acoustic sounding system (profiler/RASS). As the name suggests, the profiler was developed to make wind measurements, and this work is an expansion of its capabilities. The radio acoustic sounding system uses the profiler and attachments to measure virtual temperature. Before the profiler/RASS could be used to make flux measurements, the ability to make simultaneous measurements of wind velocity and temperature had to be developed. A feasibility study was conducted at Platteville, Colorado, in June 1991 to determine if flux measurements were a practical application of the profiler, with encouraging results. The Rural Oxidants in the Southern Environment II (ROSE II) experiment in Alabama in June 1992 provided the opportunity to compare flux measurements from the profiler/RASS to those made by a surface sonic anemometer and an aircraft, the National Center for Atmospheric Research (NCAR) King Air. The results indicate that the profiler/RASS is capable of making heat flux measurements that compare well with aircraft and surface measurements. The primary limitation on the precision of the measurements is the sampling uncertainty of the turbulence, a

  10. Acoustic and Laser Doppler Anemometer Results for Confluent, 22-Lobed, and Unique-Lobed Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)

    2002-01-01

    The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.

  11. Differential Doppler as a diagnostic

    SciTech Connect

    Dzieciuch, M.; Munk, W. )

    1994-10-01

    Differential Doppler compression and travel time of individual peaks in the arrival sequence (relative to an overall average) are measured for the 5500-km acoustic transmissions from a moving source at Heard Island to Christmas (Crab) Island. The differentials cannot be explained by simple adiabatic propagation models. A hybrid theory, coupling polar and temperate models at the Antarctic Front can account for some of the qualitative features. Differential Doppler could be a useful tool for identifying ray arrivals. 10 refs., 11 figs., 3 tabs.

  12. Overview of hydro-acoustic current-measurement applications by the U.S. geological survey in Indiana

    USGS Publications Warehouse

    Morlock, Scott E.; Stewart, James A.

    1999-01-01

    The U.S. Geological Survey (USGS) maintains a network of 170 streamflow-gaging stations in Indiana to collect data from which continuous records of river discharges are produced. Traditionally, the discharge record from a station is produced by recording river stage and making periodic discharge measurements through a range of stage, then developing a relation between stage and discharge. Techniques that promise to increase data collection accuracy and efficiency include the use of hydro-acoustic instrumentation to measure river velocities. The velocity measurements are used to compute river discharge. In-situ applications of hydro-acoustic instruments by the USGS in Indiana include acoustic velocity meters (AVM's) at six streamflow-gaging stations and newly developed Doppler velocity meters (DVM's) at two stations. AVM's use reciprocal travel times of acoustic signals to measure average water velocities along acoustic paths, whereas DVM's use the Doppler shift of backscattered acoustic signals to compute water velocities. In addition to the in-situ applications, three acoustic Doppler current profilers (ADCP's) are used to make river-discharge measurements from moving boats at streamflow-gaging stations in Indiana. The USGS has designed and is testing an innovative unmanned platform from which to make ADCP discharge measurements.

  13. 915-MHz Radar Wind Profiler (915RWP) Handbook

    SciTech Connect

    Coulter, R

    2005-01-01

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  14. PAPERS DEVOTED TO THE 250TH ANNIVERSARY OF THE MOSCOW STATE UNIVERSITY: Monte Carlo simulation of an optical coherence Doppler tomograph signal: the effect of the concentration of particles in a flow on the reconstructed velocity profile

    NASA Astrophysics Data System (ADS)

    Bykov, A. V.; Kirillin, M. Yu; Priezzhev, A. V.

    2005-02-01

    Model signals of an optical coherence Doppler tomograph (OCDT) are obtained by the Monte Carlo method from a flow of a light-scattering suspension of lipid vesicles (intralipid) at concentrations from 0.7% to 1.5% with an a priori specified parabolic velocity profile. The velocity profile parameters reconstructed from the OCDT signal and scattering orders of the photons contributing to the signal are studied as functions of the suspension concentration. It is shown that the maximum of the reconstructed velocity profile at high concentrations shifts with respect to the symmetry axis of the flow and its value decreases due to a greater contribution from multiply scattered photons.

  15. Mesoscale current fields observed with a shipboard profiling acoustic current meter

    SciTech Connect

    Regier, L.

    1982-08-01

    Measurements of the near-surface currents obtained with a shipboard acoustic current meter during the POLYMODE Local Dynamics Experiment are discussed. The large-scale spatial structure of the directly measured currents is very similar to that obtained from simultaneous hydrographic observations assuming geostrophic dynamics. The vertical shear of geostrophic currents is half that observed directly, and the two are poorly correlated. Vertical shear is dominated by currents having spatial scales shorter than about 180 km and having no geostrophic signature. Although the shear of the ageostrophic component is clearly evident, estimation of the ageostrophic current is hampered by large experimental uncertainties.

  16. Flight effects on the aero/acoustic characteristics of inverted profile coannular nozzles

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    The effect of simulated flight speed on the acoustic and aerodynamic characteristics of coannular nozzles is examined. The noise and aerodynamic performance of the coannular nozzle exhaust systems over a large range of operating flight conditions is presented. The jet noise levels of the coannular nozzles are discussed. The impact of fan to primary nozzle area ratio and the presence of an ejector on flight effects are investigated. The impact of flight speed on the individual components of the coannular jet noise was ascertained.

  17. Acoustic measurements of the sound-speed profile in the bubbly wake formed by a small motor boat

    NASA Astrophysics Data System (ADS)

    Vagle, Svein; Burch, Holly

    2005-01-01

    In situ measurements of the bubble field within wakes generated by a small motorboat show that the bubble field, shortly after the initial turbulent generation period, consists mainly of bubbles with radii between 20 and 200 μm. The subsequent dispersion of the wake field can be described using a model that includes bubble buoyancy and dissolution only, and the air volume fraction within the wakes decay exponentially with an e-folding time of between 40 and 60 s. Simultaneous measurements of sound propagating through the bubbly wake exhibit spectral banding due to waveguide propagation. Inversions using the inverse-square theory developed by Buckingham [Philos. Trans. R. Soc. London, Ser. A 335, 513-555 (1991)] show that this acoustic inversion technique provide a viable means of estimating the low-frequency sound-speed profile in an upward refractive bubble layer when dispersion can be neglected. .

  18. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles: Comprehensive data report. [nozzle transfer functions

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through a coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken (1) to define the test parameters which influence the internal noise radiation; (2) to develop a test methodology which could realistically be used to examine the effects of the test parameters; and (3) to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the jet nozzles. Noise transmission characteristics of a coannular nozzle system were then investigated. In particular, the effects of fan convergence angle, core extension length to annulus height ratio and flow Mach numbers and temperatures were studied. Relevant spectral data only is presented in the form of normalized nozzle transfer function versus nondimensional frequency.

  19. Flight and echolocation behaviour of whiskered bats commuting along a hedgerow: range-dependent sonar signal design, Doppler tolerance and evidence for 'acoustic focussing'.

    PubMed

    Holderied, Marc W; Jones, Gareth; von Helversen, Otto

    2006-05-01

    Echolocating bats obtain three-dimensional images of their surroundings in complete darkness by emitting sonar signals and evaluating returning echoes. When flying close to objects, bats risk collision and therefore depend on the accuracy of images--particularly in the perceived distance of obstacles, which is coded by the time delay between call and echo. Yet, during flight, such accuracy is perturbed first because bats call and receive echoes at different positions and second because echoes are modified by Doppler shifts. Certain call designs avoid both sources of ranging error, but only for a limited range of distances [the 'distance of focus' (DOF)]. Here, we show that whiskered bats (Myotis mystacinus) using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localised accurately. Such behaviour is adaptive because it reduces collision risk. The bats also reduced call duration to some extent as they approached obstacles so that most returning echoes arrived after they finished calling. This reduction in call duration during the approach to obstacles was neither the only nor the main factor that influenced DOF. Indeed, both duration and bandwidth of calls influenced DOF independently, with lower bandwidths and longer durations giving greater DOF. Our findings give a new perspective on the adaptive significance of echolocation call design in nature and have implications for sonar engineering.

  20. A unified approach to modeling the backscattered Doppler ultrasound from blood.

    PubMed

    Mo, L Y; Cobbold, R S

    1992-05-01

    A unified approach to modeling the backscattered Doppler ultrasound signal from blood is presented. The approach consists of summing the contributions from elemental acoustic voxels each containing many red blood cells (RBC's). For an insonified region that is large compared to a wavelength, it is shown that the Doppler signal is a Gaussian random process that arises from fluctuation scattering, which implies that the backscattered power is proportional to the variance of local RBC concentrations. As a result, some common misconceptions about the relationship between the backscattering coefficient and hematocrit can be readily resolved. The unified approach was also used to derive a Doppler signal simulation model which shows that, regardless of flow condition, the power in the Doppler frequency spectrum is governed by the exponential distribution. For finite beamwidth and paraxial flow, it is further shown that the digitized Doppler signal can be modeled by a moving average random process whose order is determined by the signal sampling rate as well as the flow velocity profile.

  1. Laser Doppler flowmetry imaging

    NASA Astrophysics Data System (ADS)

    Nilsson, Gert E.; Wardell, Karin

    1994-02-01

    A laser Doppler perfusion imager has been developed that makes possible mapping of tissue blood flow over surfaces with extensions up to about 12 cm X 12 cm. The He-Ne laser beam scans the tissue under study throughout 4096 measurement sites. A fraction of the backscattered and Doppler broadened light is detected by a photo diode positioned about 20 cm above the tissue surface. After processing, a signal that scales linearly with perfusion is stored in a computer and a color coded image of the spatial tissue perfusion is shown on a monitor. A full format scan is completed in about 4.5 minutes. Algorithms for calculating perfusion profiles and averages as well as substraction of one image from another, form an integral part of the system data analysis software. The perfusion images can also be exported to other software packages for further processing and analysis.

  2. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    The effect of forward flight on the jet noise of coannular exhaust nozzles, suitable for Variable Stream Control Engines (VSCE), was investigated in a series of wind tunnel tests. The primary stream properties were maintained constant at 300 mps and 394 K. A total of 230 acoustic data points was obtained. Force measurement tests using an unheated air supply covered the same range of tunnel speeds and nozzle pressure ratios on each of the nozzle configurations. A total of 80 points was taken. The coannular nozzle OASPL and PNL noise reductions observed statically relative to synthesized values were basically retained under simulated flight conditions. The effect of fan to primary stream area ratio on flight effects was minor. At take-off speed, the peak jet noise for a VSCE was estimated to be over 6 PNdB lower than the static noise level. High static thrust coefficients were obtained for the basic coannular nozzles, with a decay of 0.75 percent at take-off speeds.

  3. Ultrasound tomography for simultaneous reconstruction of acoustic density, attenuation, and compressibility profiles.

    PubMed

    Mojabi, Pedram; LoVetri, Joe

    2015-04-01

    A fast and efficient forward scattering solver is developed for use in ultrasound tomography. The solver is formulated so as to enable the calculation of scattering from large and relatively high-contrast objects with inhomogeneous physical properties that vary simultaneously in acoustic attenuation, compressibility, and density. It is based on the method of moments in conjunction with a novel implementation of the conjugate gradient algorithm which requires the use of the adjoints of the scattering operators. The solver takes advantage of the symmetric block Toeplitz matrix with symmetric Toeplitz blocks property of the Green's function matrix to increase efficiency and only stores the first row of this matrix to reduce memory requirements. This row is then used for the matrix-vector multiplication using the fast Fourier transform technique, thus, resulting in the computational complexity of O(n log n). The marching-on-source technique is also used to provide a good initial guess which allows the conjugate gradient technique to converge faster than initializing with an arbitrary guess. This feature is important in tomographic inversion algorithms which require that the object to be imaged be interrogated via several incident fields. Forward scattering and inversion examples, based on the Conjugate Gradient Least Squares regularized Born Iterative Method, are shown, in two-dimensions, for objects varying in all three physical properties. PMID:25920834

  4. Extraction of the velocity of walking human's body segments using ultrasonic Doppler.

    PubMed

    Mehmood, Asif; Sabatier, James M; Bradley, Marshall; Ekimov, Alexander

    2010-11-01

    The focus of this paper is to experimentally extract the Doppler signatures of a walking human's individual body segments using an ultrasonic Doppler system (UDS) operating at 40 kHz. In a human's walk, the major contribution to Doppler velocities and acoustic scattering is from the foot, lower leg, thigh (upper leg) and torso. The Doppler signature of these human body segments are extracted experimentally. The measurements were made by illuminating one of these body segments at a time and blocking the remaining body segments using acoustic screens. The results obtained in our experiment were verified with the results published by Bradley using a physics-based model for Doppler sonar spectrograms.

  5. Doppler flowmeter

    DOEpatents

    Karplus, H.H.B.; Raptis, A.C.

    1981-11-13

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  6. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles, volume 1. [supersonic cruise aircraft research wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    Jet noise spectra obtained at static conditions from an acoustic wind tunnel and an outdoor facility are compared. Data curves are presented for (1) the effect of relative velocity on OASPL directivity (all configurations); (2) the effect of relative velocity on noise spectra (all configurations); (3) the effect of velocity on PNL directivity (coannular nozzle configurations); (4) nozzle exhaust plume velocity profiles; and (5) the effect of relative velocity on aerodynamic performance.

  7. Specific Features of Destabilization of the Wave Profile During Reflection of an Intense Acoustic Beam from a Soft Boundary

    NASA Astrophysics Data System (ADS)

    Deryabin, M. S.; Kasyanov, D. A.; Kurin, V. V.; Garasyov, M. A.

    2016-05-01

    We show that a significant energy redistribution occurs in the spectrum of reflected nonlinear waves, when an intense acoustic beam is reflected from an acoustically soft boundary, which manifests itself at short wave distances from a reflecting boundary. This effect leads to the appearance of extrema in the distributions of the amplitude and intensity of the field of the reflected acoustic beam near the reflecting boundary. The results of physical experiments are confirmed by numerical modeling of the process of transformation of nonlinear waves reflected from an acoustically soft boundary. Numerical modeling was performed by means of the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation.

  8. The leicester Doppler phantom--a digital electronic phantom for ultrasound pulsed Doppler system testing.

    PubMed

    Gittins, John; Martin, Kevin

    2010-04-01

    Doppler flow and string phantoms have been used to assess the performance of ultrasound Doppler systems in terms of parameters such as sensitivity, velocity accuracy and sample volume registration. However, because of the nature of their construction, they cannot challenge the accuracy and repeatability of modern digital ultrasound systems or give objective measures of system performance. Electronic Doppler phantoms are able to make use of electronically generated test signals, which may be controlled precisely in terms of frequency, amplitude and timing. The Leicester Electronic Doppler Phantom uses modern digital signal processing methods and field programmable gate array technology to overcome some of the limitations of previously described electronic phantoms. In its present form, it is able to give quantitative graphical assessments of frequency response and range gate characteristics, as well as measures of dynamic range and velocity measurement accuracy. The use of direct acoustic coupling eliminates uncertainties caused by Doppler beam effects, such as intrinsic spectral broadening, but prevents their evaluation.

  9. Stratus cloud liquid water and turbulence profiles using a K{sub {alpha}}-band Doppler radar and a microwave radiometer

    SciTech Connect

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.; Lenschow, D.H.

    1994-12-31

    The goal of the Atlantic Stratocumulus Transition Experiment (ASTEX) held in the North Atlantic during June 1992 was to determine the physical reasons for the transition from stratocumulus to broken clouds. Some possible reasons for this transition were such things as cloud top entrainment instability, and the decoupling effects of drizzle. As part of this experiment, the ETL cloud sensing Doppler radar and three channel microwave radiometer were deployed on the island of Porto Santo in the Madeira Islands of Portugal along with a CO{sub 2} Doppler lider. Drizzle properties in stratus were examined using a log-normal droplet distribution model which related the three parameters of the model to the first 3 Doppler spectral moments of the cloud radar. With these moments, the authors are then able to compute the drizzle droplet concentration, modal radius, liquid water and liquid water flux as a function of height.

  10. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  11. Ultrasonic bistatic Doppler sonar in air for personnel motion detection

    NASA Astrophysics Data System (ADS)

    Ekimov, Alexander; Hickey, Craig J.

    2012-06-01

    The National Center for Physical Acoustics (NCPA) at the University of Mississippi is working on the application of ultrasonic Doppler sonars in air for personnel motion detection. Two traditional Doppler sonar configurations, a monostatic and a bistatic, are being studied. In the monostatic configuration, the distance between the transmitter and the receiver is small. The proximity of the source to the receiver places a limitation on the system associated with the overloading of the receivers' input due to acoustic energy leakage from the transmitters' output. The maximum range of detection is therefore limited by the dynamic range of the acquisition system. In a bistatic Doppler ultrasonic sonar, the source and receiver are spaced apart and the acoustic energy along the direct path does not constrain the maximum acoustic power level output of the transmitter. In a monostatic configuration the acoustic signal suffers from beam spreading and natural absorption during propagation from the transmitter to the target and from the target back to the receiver. In a bistatic configuration the acoustic propagation is in one direction only and theoretically the detection distance can be twice the monostatic distance. For comparison the experiments of a human walking in a building hallway using the bistatic and monostaic Doppler sonars in air were conducted. The experimental results for human signatures from these Doppler sonars are presented and discussed.

  12. Using a fibre-optic cable as Distributed Acoustic Sensor for Vertical Seismic Profiling - Overview of various field tests

    NASA Astrophysics Data System (ADS)

    Götz, Julia; Lüth, Stefan; Henninges, Jan; Reinsch, Thomas

    2015-04-01

    Fibre-optic Distributed Acoustic Sensing (DAS) or Distributed Vibration Sensing (DVS) is a technology, where an optical fibre cable is used as a sensor for acoustic signals. An ambient seismic wavefield, which is coupled by friction or pressure to the optical fibre, induces dynamic strain changes along the cable. The DAS/DVS technology offers the possibility to record an optoelectronic signal which is linearly related to the time dependent local strain. The DAS/DVS technology is based on the established technique of phase-sensitive optical time-domain reflectometry (phi-OTDR). Coherent laser pulses are launched into the fibre to monitor changes in the resulting elastic Rayleigh backscatter with time. Dynamic strain changes lead to small displacements of the scattering elements (non-uniformities within the glass structure of the optical fibre), and therefore to variations of the relative phases of the backscattered photons. The fibre behaves as a series of interferometers whose output is sensitive to small changes of the strain at any point along its length. To record the ground motion not only in space but also in time, snapshots of the wavefield are created by repeatedly firing laser pulses into the fibre at sampling frequencies much higher than seismic frequencies. DAS/DVS is used e.g. for continuous monitoring of pipelines, roads or borders and for production monitoring from within the wellbore. Within the last years, the DAS/DVS technology was further developed to record seismic data. We focus on the recording of Vertical Seismic Profiling (VSP) data with DAS/DVS and present an overview of various field tests published between 2011 and 2014. Here, especially CO2 storage pilot sites provided the opportunity to test this new technology for geophysical reservoir monitoring. DAS/DVS-VSP time-lapse measurements have been published for the Quest CO2 storage site in Canada. The DAS/DVS technology was also tested at the CO2 storage sites in Rousse (France), Citronelle

  13. Development of a low profile acoustical door for use on racks and cabinets for the information technology industry

    NASA Astrophysics Data System (ADS)

    O'Connell, Michael D.; Anderl, William James

    2005-09-01

    This paper presents the design of 19 inch rack acoustical doors balancing acoustical attenuation, airflow impedance and distribution in a short depth by combining air foil technology with acoustic baffle design. Design optimization was done utilizing fluid flow analytical modeling and verified with a air flow bench and an acoustical rack door test fixture. Higher heat loads in rack mounted computer equipment drive higher cooling requirements. In order to provide air cooling solutions, higher volumetric air flow is required resulting in higher acoustical noise levels. These noise levels can result in noise levels that are unacceptable to the customer. Acoustical doors lower noise levels but are prone to high flow impedance, uneven flow distribution and large physical depth. High impedances require higher air moving device speeds to offset the lost volumetric air flow. This decreases the effective acoustical attenuation. Various rack modules have different inlet and outlet air flow locations making the distribution of the air from the door (front) or into the door(rear) important. Solutions to these problems usually require large depths in order to provide blockage of line of site and gradual air flow lines to keep impedance low and provide even distribution of the air.

  14. LASER APPLICATIONS IN MEDICINE: Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomograph signal

    NASA Astrophysics Data System (ADS)

    Bykov, A. V.; Kirillin, M. Yu; Priezzhev, A. V.

    2005-11-01

    Model signals from one and two plane flows of a particle suspension are obtained for an optical coherence Doppler tomograph (OCDT) by the Monte-Carlo method. The optical properties of particles mimic the properties of non-aggregating erythrocytes. The flows are considered in a stationary scattering medium with optical properties close to those of the skin. It is shown that, as the flow position depth increases, the flow velocity determined from the OCDT signal becomes smaller than the specified velocity and the reconstructed profile extends in the direction of the distant boundary, which is accompanied by the shift of its maximum. In the case of two flows, an increase in the velocity of the near-surface flow leads to the overestimated values of velocity of the reconstructed profile of the second flow. Numerical simulations were performed by using a multiprocessor parallel-architecture computer.

  15. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-11-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell’s law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  16. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  17. The Doppler signal: where does it come from and what does it mean?

    PubMed

    Nelson, T R; Pretorius, D H

    1988-09-01

    Doppler sonographic measurement of blood velocity and associated physiologic parameters is a powerful diagnostic technique. State-of-the-art instrumentation incorporates velocity measurement with two-dimensional imaging capability; it uses intensity and color coding to display complex physiologic and anatomic data to the observer in an easily understood format. Although the concepts underlying Doppler sonography are not complex, mastery of the technique requires extra training and commitment. The principal features and clinical practicalities associated with Doppler sonography are summarized in the following paragraphs. Continuous-wave Doppler is very sensitive to small vessels and has no upper velocity limit. In addition, the instrumentation is not complex and produces relatively low acoustic power. A significant drawback to continuous-wave Doppler is that there is no depth sensitivity, and thus complex structures or multiple vessels can give conflicting information. Pulsed Doppler (including duplex and color-flow) instrumentation has the capability of depth resolution and a variable sample volume. Pulsed Doppler equipment is prone to aliasing (false velocity indications) under some circumstances and also produces higher peak power levels than does continuous-wave equipment. Duplex equipment is more complex and expensive than continuous-wave equipment because the two-dimensional and Doppler modes must be synchronized in operation and display. Color-flow equipment is extremely complex and expensive. Color flow provides information of a qualitative and limited quantitative value. Absolute measurement still requires range-gate measurements. Technical and anatomic factors will affect the measured velocity profiles. Thus, it is important to fully appreciate the anatomy of the vessel and the angle between the vessel and the ultrasound beam when making quantitative measurements. Measurements that evaluate the velocity waveform and make use of ratios, such as the

  18. High range resolution micro-Doppler analysis

    NASA Astrophysics Data System (ADS)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.

    2015-05-01

    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  19. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—Technical manual for version 2.8

    USGS Publications Warehouse

    Mueller, David S.

    2016-01-01

    The software program, QRev applies common and consistent computational algorithms combined with automated filtering and quality assessment of the data to improve the quality and efficiency of streamflow measurements and helps ensure that U.S. Geological Survey streamflow measurements are consistent, accurate, and independent of the manufacturer of the instrument used to make the measurement. Software from different manufacturers uses different algorithms for various aspects of the data processing and discharge computation. The algorithms used by QRev to filter data, interpolate data, and compute discharge are documented and compared to the algorithms used in the manufacturers’ software. QRev applies consistent algorithms and creates a data structure that is independent of the data source. QRev saves an extensible markup language (XML) file that can be imported into databases or electronic field notes software. This report is the technical manual for version 2.8 of QRev.

  20. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—Technical manual for version 2.8

    USGS Publications Warehouse

    Mueller, David S.

    2016-06-21

    The software program, QRev applies common and consistent computational algorithms combined with automated filtering and quality assessment of the data to improve the quality and efficiency of streamflow measurements and helps ensure that U.S. Geological Survey streamflow measurements are consistent, accurate, and independent of the manufacturer of the instrument used to make the measurement. Software from different manufacturers uses different algorithms for various aspects of the data processing and discharge computation. The algorithms used by QRev to filter data, interpolate data, and compute discharge are documented and compared to the algorithms used in the manufacturers’ software. QRev applies consistent algorithms and creates a data structure that is independent of the data source. QRev saves an extensible markup language (XML) file that can be imported into databases or electronic field notes software. This report is the technical manual for version 2.8 of QRev.

  1. Profile measurements and data from the 2011 Optics, Acoustics, and Stress In Situ (OASIS) project at the Martha's Vineyard Coastal Observatory

    USGS Publications Warehouse

    Sherwood, Christopher R.; Dickhudt, Patrick J.; Martini, Marinna A.; Montgomery, Ellyn T.; Boss, Emmanuel S.

    2012-01-01

    This report documents data collected by the U.S. Geological Survey (USGS) for the Coastal Model Applications and Field Measurements project under the auspices of the U.S. Navy Office of Naval Research Optics, Acoustics, and Stress In Situ (OASIS) Project. The objective of the measurements was to relate optical and acoustic properties of suspended particles to changes in particle size, concentration, and vertical distribution in the bottom boundary layer near the seafloor caused by wave- and current-induced stresses. This information on the physics of particle resuspension and aggregation and light penetration and water clarity will help improve models of sediment transport, benthic primary productivity, and underwater visibility. There is well-established technology for acoustic profiling, but optical profiles are more difficult to obtain because of the rapid attenuation of light in water. A specially modified tripod with a moving arm was designed to solve this problem by moving instruments vertically in the bottom boundary layer, between the bottom and about 2 meters above the seafloor. The profiling arm was designed, built, and tested during spring and summer 2011 by a team of USGS scientists, engineers, and technicians. To accommodate power requirements and the large data files recorded by some of the optical instruments, the tripod was connected via underwater cable to the Martha's Vineyard Coastal Observatory, operated by the Woods Hole Oceanographic Institution (WHOI). This afforded real-time Internet communication with the embedded computers aboard the tripod. Instruments were mounted on the profiling arm, and additional instruments were mounted elsewhere on the tripod and nearby on the seafloor. The tripod and a small mooring for a profiling current meter were deployed on September 17, 2011, at the Martha's Vineyard Coastal Observatory 12-meter-deep underwater node about 2 kilometers south of Martha's Vineyard, Massachusetts. Divers assisted in the

  2. DOPPLER WEATHER SYSTEM

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever fivemore » minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.« less

  3. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  4. Measuring the Kuroshio Current with ocean acoustic tomography.

    PubMed

    Taniguchi, Naokazu; Huang, Chen-Fen; Kaneko, Arata; Liu, Cho-Teng; Howe, Bruce M; Wang, Yu-Huai; Yang, Yih; Lin, Ju; Zhu, Xiao-Hua; Gohda, Noriaki

    2013-10-01

    Ocean current profiling using ocean acoustic tomography (OAT) was conducted in the Kuroshio Current southeast of Taiwan from August 20 to September 15, 2009. Sound pulses were transmitted reciprocally between two acoustic stations placed near the underwater sound channel axis and separated by 48 km. Based on the result of ray simulation, the received signals are divided into multiple ray groups because it is difficult to resolve the ray arrivals for individual rays. The average differential travel times from these ray groups are used to reconstruct the vertical profiles of currents. The currents are estimated with respect to the deepest water layer via two methods: An explicit solution and an inversion with regularization. The strong currents were confined to the upper 200 m and rapidly weakened toward 500 m in depth. Both methods give similar results and are consistent with shipboard acoustic Doppler current profiler results in the upper 150 m. The observed temporal variation demonstrates a similar trend to the prediction from the Hybrid Coordinate Ocean Model. PMID:24116522

  5. Acoustic profiling in a complexly social species, the American crow: caws encode information on caller sex, identity, and behavioural context

    PubMed Central

    Mates, Exu Anton; Tarter, Robin R.; Ha, James C.; Clark, Anne B.; McGowan, Kevin J.

    2014-01-01

    Previous research on inter-individual variation in the calls of corvids has largely been restricted to single call types, such as alarm or contact calls, and has rarely considered the effects of age on call structure. This study explores structural variation in a contextually diverse set of “caw” calls of the American crow (Corvus brachyrhynchos), including alarm, foraging recruitment and territorial calls, and searches for structural features that may be associated with behavioural context and caller sex, age, and identity. Automated pitch detection algorithms are used to generate 23 pitch-related and spectral parameters for a collection of caws from 18 wild, marked crows. Using principal component analysis and mixed models, we identify independent axes of acoustic variation associated with behavioural context and with caller sex, respectively. We also have moderate success predicting caller sex and identity from call structure. However, we do not find significant acoustic variation with respect to caller age. PMID:25419053

  6. Analysis of Doppler lidar data

    NASA Technical Reports Server (NTRS)

    Rothermel, J.

    1985-01-01

    Dual Doppler lidar analyses of data taken by pulsed lidars demonstrated feasibility of deriving wind fields from coordinated lidar scans. Limited case histories of thunderstorm outflows were obtained. Co-located comparison between Marshall Space Flight Center lidar and NCAR 5.5 cm radar demonstrated desirability of lidar in cases of marginal radar reflectivity in clear air and low-elevation scans. Analysis continued on backscattered intensity and velocity measurements made from April 1983 to February 1984. A slant path method was used to calculate vertical profiles of volumetric backscatter and adsorption in the lower troposphere. High-quality VAD scans were identified as candidates for investigating feasibility of calculating horizontal motion fields using single Doppler lidar. Activities during FY-85 also included participation in Fall 1984 airborne Doppler lidar flight experiments. Preliminary data review was begun using McIdas system. Analysis of backscatter and absorpiton profiles continues. Focus is on understanding spatial and temporal variations, as well as frequency distribution, of backscatter at several tropospheric levels. Results from this study provide input to evaluation of clean/dirty airmass hypothesis of aerosol distribution. Assistance is being given to preparation of a comprehensive, global backscatter measurement plan. Analysis of data from Fall 1984 flight experiments is just beginning. Work has begun on preprocessing data to minimize errors due to electro-optic modulator malfunction during flights.

  7. Christian Doppler and the Doppler effect

    NASA Astrophysics Data System (ADS)

    Toman, Kurt

    1984-04-01

    A summary is given of Doppler's life and career. He was born 180 years ago on November 29, 1803, in Salzburg, Austria. He died on March 17, 1853 in Venice. The effect bearing his name was first announced in a presentation before the Royal Bohemian Society of the Sciences in Prague on May 25, 1842. Doppler considered his work a generalization of the aberration theorem as discovered by Bradley. With it came the inference that the perception of physical phenomena can change with the state of motion of the observer. Acceptance of the principle was not without controversy. In 1852, the mathematician Petzval claimed that no useful scientific deductions can be made from Doppler's elementary equations. In 1860, Ernst Mach resolved the misunderstanding that clouded this controversy. The Doppler effect is alive and well. Its role in radio science and related disciplines is enumerated.

  8. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  9. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml‑1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s‑1, prior to the onset

  10. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  11. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  12. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1. [jet engine noise radiation through coannular exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots.

  13. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  14. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  15. Acoustic backscatter observations with implications for seasonal and vertical migrations of zooplankton and nekton in the Amundsen shelf (Antarctica)

    NASA Astrophysics Data System (ADS)

    La, H. S.; Ha, H. K.; Kang, C. Y.; Wåhlin, A. K.; Shin, H. C.

    2015-01-01

    High-temporal resolution profiles of acoustic backscatter were collected in the Dotson Trough on the Amundsen shelf in the Antarctica, using a bottom-moored, upward-looking acoustic Doppler current profiler (ADCP). This data set was used to examine the impact of seasonal variations in surface solar radiation (SSR), sea ice concentration (SIC), and Circumpolar Deep Water (CDW) thickness on acoustic backscatter in the lower water column (250-540-m depth). A recorded high acoustic backscatter (-75 to -70 dB) at depth >400 m from April to November compared to the rest of the year (-90 to -80 dB) suggests that zooplankton and nekton migrated towards the bottom during winter. The depth of maximum mean volume backscattering strength showed a significant correlation with SSR, SIC and CDW thickness. A daily cycle of vertical migration was also recorded. This varied with changing surface ice conditions. When sea ice cover was low, the acoustic backscatter descended at sunrise, and ascended at sunset. When sea ice cover was high, the daily migration was not pronounced, and the layer of high acoustic backscatter remained near the bottom. This is the first study of seasonal and vertical migration of zooplankton and nekton that has been conducted on the Amundsen Sea shelf, one of the world's most productive areas. The findings provide implications to understand the behavior of zooplankton and nekton below the euphotic zone in the Southern Ocean.

  16. Inline Ultrasonic Rheometry by Pulsed Doppler

    SciTech Connect

    Pfund, David M.; Greenwood, Margaret S.; Bamberger, Judith A.; Pappas, Richard A.

    2006-12-22

    This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).

  17. A Space-Based Point Design for Global Coherent Doppler Wind Lidar Profiling Matched to the Recent NASA/NOAA Draft Science Requirements

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G. David; Frehlich, Rod G.; Amzajerdian, Farzin; Singh, Upendra N.

    2002-01-01

    An end-to-end point design, including lidar, orbit, scanning, atmospheric, and data processing parameters, for space-based global profiling of atmospheric wind will be presented. The point design attempts to match the recent NASA/NOAA draft science requirements for wind measurement.

  18. Sediment distribution and dynamics inferred by integrated electromagnetic, optical and acoustic benthic profiling in the western Bay of Plenty (New Zealand)

    NASA Astrophysics Data System (ADS)

    Kulgemeyer, T.; von Dobeneck, T. F.; Müller, H.; Bryan, K. R.; de Lange, W. P.; Battershill, C.

    2015-12-01

    In October 2011, New Zealand experienced a marine pollution disaster after the MV RENA ran aground in the western Bay of Plenty. To estimate the transport and burial potential of contaminants, local sediment distribution and dynamics had to be assessed quickly. Our study made use of the benthic profiler NERIDIS III of the University of Bremen. 33 cross-shore profiles, each ca. 8 km long, have been surveyed. The main instrument is a controlled-source electromagnetic (CSEM) sensor, which is measuring the electric conductivity and magnetic susceptibility of the seafloor. High-resolution, overlapping seafloor photos have been taken by a bow-mounted digital camera. An on-board CTD with turbidity sensor complete the sensor arrangement. From the EM data, porosity and magnetite concentrations have been calculated and interpolated. The resulting maps show specific zones of magnetite enrichment, higher concentrations are correlated to low porosity. Photos have been used along with acoustic backscatter measured by a sidescan sonar to sketch out a preliminary map of sediment facies. Based on this, sides for grab sampling were selected. By taking grain size and mineralogy into account, a detailed map of the regional lithofacies could be created. Local sediment dynamics have been inferred by the observation of bedforms, the turbidity of bottom water and lithofacies. The results show two anti-parallel longshore transport paths dependent on differing weather conditions and water depths. The longshore magnetite distribution indicates that the heavy mineral fraction is mainly affected by storm-induced sediment transport. Our study demonstrates how integrated benthic profiling adds to the interpretability of data obtained by established methods. By bridging the gap between area-covering, but indirect data from hydroacoustics and precise, but punctual data from samples, benthic profiling enables fast and detailed assessment of sediment distribution and dynamics on a large scale.

  19. Analysis of Doppler radar windshear data

    NASA Technical Reports Server (NTRS)

    Williams, F.; Mckinney, P.; Ozmen, F.

    1989-01-01

    The objective of this analysis is to process Lincoln Laboratory Doppler radar data obtained during FLOWS testing at Huntsville, Alabama, in the summer of 1986, to characterize windshear events. The processing includes plotting velocity and F-factor profiles, histogram analysis to summarize statistics, and correlation analysis to demonstrate any correlation between different data fields.

  20. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  1. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize effective…

  2. Doppler ultrasound evaluation in preeclampsia

    PubMed Central

    2013-01-01

    Background Worldwide preeclampsia (PE) is the leading cause of maternal death and affects 5 to 8% of pregnant women. PE is characterized by elevated blood pressure and proteinuria. Doppler Ultrasound (US) evaluation has been considered a useful method for prediction of PE; however, there is no complete data about the most frequently altered US parameters in the pathology. The aim of this study was to evaluate the uterine, umbilical, and the middle cerebral arteries using Doppler US parameters [resistance index (RI), pulsatility index (PI), notch (N), systolic peak (SP) and their combinations] in pregnant women, in order to make a global evaluation of hemodynamic repercussion caused by the established PE. Results A total of 102 pregnant Mexican women (65 PE women and 37 normotensive women) were recruited in a cases and controls study. Blood velocity waveforms from uterine, umbilical, and middle cerebral arteries, in pregnancies from 24 to 37 weeks of gestation were recorded by trans-abdominal examination with a Toshiba Ultrasound Power Vision 6000 SSA-370A, with a 3.5 MHz convex transducer. Abnormal general Doppler US profile showed a positive association with PE [odds ratio (OR) = 2.93, 95% confidence interval (CI) = 1.2 - 7.3, P = 0.021)], and a specificity and predictive positive value of 89.2% and 88.6%, respectively. Other parameters like N presence, RI and PI of umbilical artery, as well as the PI of middle cerebral artery, showed differences between groups (P values < 0.05). Conclusion General Doppler US result, as well as N from uterine vessel, RI from umbilical artery, and PI from umbilical and middle cerebral arteries in their individual form, may be considered as tools to determine hemodynamic repercussion caused by PE. PMID:24252303

  3. ON THE DOPPLER VELOCITY OF EMISSION LINE PROFILES FORMED IN THE 'CORONAL CONTRAFLOW' THAT IS THE CHROMOSPHERE-CORONA MASS CYCLE

    SciTech Connect

    McIntosh, Scott W.; Tian Hui; Sechler, Marybeth; De Pontieu, Bart

    2012-04-10

    This analysis begins to explore the complex chromosphere-corona mass cycle using a blend of imaging and spectroscopic diagnostics. Single Gaussian fits (SGFs) to hot emission line profiles (formed above 1 MK) at the base of coronal loop structures indicate material blueshifts of 5-10 km s{sup -1}, while cool emission line profiles (formed below 1 MK) yield redshifts of a similar magnitude-indicating, to zeroth order, that a temperature-dependent bifurcating flow exists on coronal structures. Image sequences of the same region reveal weakly emitting upward propagating disturbances in both hot and cool emission with apparent speeds of 50-150 km s{sup -1}. Spectroscopic observations indicate that these propagating disturbances produce a weak emission component in the blue wing at commensurate speed, but that they contribute only a few percent to the (ensemble) emission line profile in a single spatio-temporal resolution element. Subsequent analysis of imaging data shows material 'draining' slowly ({approx}10 km s{sup -1}) out of the corona, but only in the cooler passbands. We interpret the draining as the return flow of coronal material at the end of the complex chromosphere-corona mass cycle. Further, we suggest that the efficient radiative cooling of the draining material produces a significant contribution to the red wing of cool emission lines that is ultimately responsible for their systematic redshift as derived from an SGF when compared to those formed in hotter (conductively dominated) domains. The presence of counterstreaming flows complicates the line profiles, their interpretation, and asymmetry diagnoses, but allows a different physical picture of the lower corona to develop.

  4. Measurements of Reynolds stress profiles in unstratified tidal flow

    USGS Publications Warehouse

    Stacey, M.T.; Monismith, Stephen G.; Burau, J.R.

    1999-01-01

    In this paper we present a method for measuring profiles of turbulence quantities using a broadband acoustic doppler current profiler (ADCP). The method follows previous work on the continental shelf and extends the analysis to develop estimates of the errors associated with the estimation methods. ADCP data was collected in an unstratified channel and the results of the analysis are compared to theory. This comparison shows that the method provides an estimate of the Reynolds stresses, which is unbiased by Doppler noise, and an estimate of the turbulent kinetic energy (TKE) which is biased by an amount proportional to the Doppler noise. The noise in each of these quantities as well as the bias in the TKE match well with the theoretical values produced by the error analysis. The quantification of profiles of Reynolds stresses simultaneous with the measurement of mean velocity profiles allows for extensive analysis of the turbulence of the flow. In this paper, we examine the relation between the turbulence and the mean flow through the calculation of u*, the friction velocity, and Cd, the coefficient of drag. Finally, we calculate quantities of particular interest in turbulence modeling and analysis, the characteristic lengthscales, including a lengthscale which represents the stream-wise scale of the eddies which dominate the Reynolds stresses. Copyright 1999 by the American Geophysical Union.

  5. First continuous time series of tropical, mid-latitudinal and polar middle-atmospheric wind profile measurements with a ground-based microwave Doppler-spectro-radiometer

    NASA Astrophysics Data System (ADS)

    Rüfenacht, Rolf; Kämpfer, Niklaus; Murk, Axel; Eriksson, Patrick; Buehler, Stefan A.; Kivi, Rigel; Keckhut, Philippe; Hauchecorne, Alain; Duflot, Valentin

    2014-05-01

    Wind is one of the key parameters for the characterisation of the atmosphere and the understanding of its dynamics. Despite this, no continuously operating instrument for wind measurements in the upper stratosphere and lower mesosphere existed so far. Aiming to contribute to the closing of this data gap by exploiting the potential of microwave radiometry the Institute of Applied Physics of the University of Bern built a ground-based 142 GHz Doppler-spectro-radiometer with the acronym WIRA (WInd RAdiometer). WIRA is specifically designed for the measurement of middle-atmospheric horizontal wind and is sensitive to the altitude range between 35 and 70 km. The architecture of the radiometer is fairly compact what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. The operational use of WIRA started in September 2010. Since a technical upgrade in autumn 2012 which drastically increased the signal to noise ratio of the instrument, the meridional component is permanently measured along with the zonal wind to get a full picture of the horizontal wind field. During the last year the wind retrieval algorithm has been entirely rebuilt and tested. It is now based on the optimal estimation technique (OEM) and uses an upgraded version of the ARTS/QPACK radiative transfer and inversion model. Time series of middle-atmospheric wind from measurement campaigns of 7 to 11 months duration at mid and high latitude sites (Bern, 46°57' N, 7°26' E; Sodankylä, 67°22' N, 26°38' E; Observatoire de Haute-Provence, 43°56' N, 5°43' E) have been obtained. In September 2013 WIRA was moved to Observatoire du Maïdo (21°04' S, 55°23' E) to study the dynamics of the tropical middle atmosphere. The measurements have been compared to the data from the ECMWF model. Generally good agreement has been found in the stratosphere, however systematic discrepancies exist in the mesosphere. At the

  6. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  7. Velocity precision measurements using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Narjes, L.

    1985-07-01

    A Laser Doppler Anemometer (LDA) was calibrated to determine its applicability to high pressure measurements (up to 10 bars) for industrial purposes. The measurement procedure with LDA and the experimental computerized layouts are presented. The calibration procedure is based on absolute accuracy of Doppler frequency and calibration of interference strip intervals. A four-quadrant detector allows comparison of the interference strip distance measurements and computer profiles. Further development of LDA is recommended to increase accuracy (0.1% inaccuracy) and to apply the method industrially.

  8. Ultrasonic Doppler methods to extract signatures of a walking human.

    PubMed

    Mehmood, Asif; Sabatier, James M; Damarla, Thyagaraju

    2012-09-01

    Extraction of Doppler signatures that characterize human motion has attracted a growing interest in recent years. These Doppler signatures are generated by various components of the human body while walking, and contain unique features that can be used for human detection and recognition. Although, a significant amount of research has been done in radio frequency regime for human Doppler signature extraction, considerably less has been done in acoustics. In this work, 40 kHz ultrasonic sonar is employed to measure the Doppler signature generated by the motion of body segments using different electronic and signal processing schemes. These schemes are based on both analog and digital demodulation with homodyne and heterodyne receiver circuitry. The results and analyses from these different schemes are presented.

  9. Ultrasonic Doppler methods to extract signatures of a walking human.

    PubMed

    Mehmood, Asif; Sabatier, James M; Damarla, Thyagaraju

    2012-09-01

    Extraction of Doppler signatures that characterize human motion has attracted a growing interest in recent years. These Doppler signatures are generated by various components of the human body while walking, and contain unique features that can be used for human detection and recognition. Although, a significant amount of research has been done in radio frequency regime for human Doppler signature extraction, considerably less has been done in acoustics. In this work, 40 kHz ultrasonic sonar is employed to measure the Doppler signature generated by the motion of body segments using different electronic and signal processing schemes. These schemes are based on both analog and digital demodulation with homodyne and heterodyne receiver circuitry. The results and analyses from these different schemes are presented. PMID:22979839

  10. Laser-diode based 10MHz photoacoustic Doppler flowmetry at 830 nm

    NASA Astrophysics Data System (ADS)

    Sheinfeld, Adi; Eyal, Avishay

    2012-02-01

    Photoacoustic Doppler Flowmetry has several potential advantages over its purely acoustical counterpart. The key ones are better inherent contrast and potential molecular information. It is therefore highly desired to continue to develop this modality into a viable complementary tool alongside with Doppler Ultrasound flowmetry. Working towards this goal we have constructed a Photoacoustic Doppler setup based on a combined pair of laser diodes at 830nm and a 10MHz focused acoustical transducer. Using tone-burst intensity modulation, depth-resolved Doppler spectrograms of a phantom vessel containing flowing suspension of carbon particles, were obtained. In order to investigate the conditions required for successful photoacoustic Doppler measurement in blood a k-space photoacoustic simulation was performed. It tested the photoacoustic response which is obtained for moving random spatial distributions of red blood cells and the effect of several parameters, such as particles density, ultrasonic frequency and optical spot size.

  11. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  12. Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego

    2015-01-01

    The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.

  13. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  14. Cosmology with Doppler lensing

    NASA Astrophysics Data System (ADS)

    Bacon, David J.; Andrianomena, Sambatra; Clarkson, Chris; Bolejko, Krzysztof; Maartens, Roy

    2014-09-01

    Doppler lensing is the apparent change in object size and magnitude due to peculiar velocities. Objects falling into an overdensity appear larger on its near side, and smaller on its far side, than typical objects at the same redshifts. This effect dominates over the usual gravitational lensing magnification at low redshift. Doppler lensing is a promising new probe of cosmology, and we explore in detail how to utilize the effect with forthcoming surveys. We present cosmological simulations of the Doppler and gravitational lensing effects based on the Millennium simulation. We show that Doppler lensing can be detected around stacked voids or unvirialized overdensities. New power spectra and correlation functions are proposed which are designed to be sensitive to Doppler lensing. We consider the impact of gravitational lensing and intrinsic size correlations on these quantities. We compute the correlation functions and forecast the errors for realistic forthcoming surveys, providing predictions for constraints on cosmological parameters. Finally, we demonstrate how we can make 3D potential maps of large volumes of the Universe using Doppler lensing.

  15. The influence of source acceleration on acoustic signals

    NASA Technical Reports Server (NTRS)

    Kelly, Jeffrey J.; Wilson, Mark R.

    1993-01-01

    The effect of aircraft acceleration on acoustic signals is often ignored in both analytical studies and data reduction of flight test measurements. In this study, the influence of source acceleration on acoustic signals is analyzed using computer simulated signals for an accelerating point source. Both rotating and translating sources are considered. Using a known signal allows an assessment of the influence of source acceleration on the received signal. Aircraft acceleration must also be considered in the measurement and reduction of flyover noise. Tracking of the aircraft over an array of microphones enables ensemble averaging of the acoustic signal, thus increasing the confidence in the measured data. This is only valid when both the altitude and velocity remain constant. For an accelerating aircraft, each microphone is exposed to differing flight velocities, Doppler shifts, and smear angles. Thus, averaging across the array in the normal manner is constrained by aircraft acceleration and microphone spacing. In this study computer simulated spectra, containing acceleration, are averaged across a 12 microphone array mimicking a flight test with accelerated profile in which noise data was obtained. Overlapped processing is performed is performed in the flight test measurements in order to alleviate spectral smearing.

  16. Field tests of acoustic telemetry for a portable coastal observatory

    USGS Publications Warehouse

    Martini, M.; Butman, B.; Ware, J.; Frye, D.

    2006-01-01

    Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.

  17. Fluvial suspended sediment characteristics by high-resolution, surrogate metrics of turbidity, laser-diffraction, acoustic backscatter, and acoustic attenuation

    NASA Astrophysics Data System (ADS)

    Landers, Mark Newton

    Sedimentation is a primary and growing environmental, engineering, and agricultural issue around the world. However, collection of the data needed to develop solutions to sedimentation issues has declined by about three-fourths since 1983. Suspended-sediment surrogates have the potential to obtain sediment data using methods that are more accurate, of higher spatial and temporal resolution, and with less manually intensive, costly, and hazardous methods. The improved quality of sediment data from high-resolution surrogates may inform improved understanding and solutions to sedimentation problems. The field experiments for this research include physical samples of suspended sediment collected concurrently with surrogate metrics from instruments including 1.2, 1.5, and 3.0 megahertz frequency acoustic doppler current profilers, a nephelometric turbidity sensor, and a laser-diffraction particle size analyzer. This comprehensive data set was collected over five storms in 2009 and 2010 at Yellow River near Atlanta, Georgia. Fluvial suspended sediment characteristics in this study can be determined by high-resolution surrogate parameters of turbidity, laser-diffraction and acoustics with model errors 33% to 49% lower than traditional methods using streamflow alone. Hysteresis in sediment-turbidity relations for single storm events was observed and quantitatively related to PSD changes of less than 10 microns in the fine silt to clay size range. Suspended sediment particle size detection (PSD) is significantly correlated with ratios of measured acoustic attenuation at different frequencies; however the data do not fit the theoretical relations. Using both relative acoustic backscatter (RB) and acoustic attenuation as explanatory variables results in a significantly improved model of suspended sediment compared with traditional sonar equations using only RB. High resolution PSD data from laser diffraction provide uniquely valuable information; however the size detection

  18. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  19. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  20. Ultrasonic Doppler Modes

    NASA Astrophysics Data System (ADS)

    Tortoli, Piero; Fidanzati, Paolo; Luca, Bassi

    Any US equipment includes Doppler facilities capable of providing information about moving structures inside the human body. In most cases, the primary interest is in the investigation of blood flow dynamics, since this may be helpful for early diagnosis of cardiovascular diseases. However, there is also an increasing interest in tracking the movements of human tissues, since such movements can give an indirect evaluation of their elastic properties, which are valuable indicators of the possible presence of pathologies. This paper aims at presenting an overview of the different ways in which the Doppler technique has been developed and used in medical ultrasound (US), from early continuous wave (CW) systems to advanced pulsed wave (PW) colour-Doppler equipment. In particular, the most important technical features and clinical applications of CW, single-gate PW, multi-gate PW and flow-imaging systems are reviewed. The main signal processing approaches used for detection of Doppler frequencies are described, including time-domain and frequency-domain (spectral) methods, as well as novel strategies like, e.g., harmonic Doppler mode, which have been recently introduced to exploit the benefits of US contrast agents.

  1. Acoustic radar sounding of the lower atmosphere

    NASA Technical Reports Server (NTRS)

    Mcallister, L. G.

    1972-01-01

    Acoustic radar sounding techniques were used to measure the wind velocity and direction in the first 300 m of the atmosphere. Angle-of-arrival and Doppler techniques were developed to obtain two independent measurements of the wind field. These techniques and preliminary experimental results are described briefly.

  2. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles, volume 2. [supersonic cruise aircraft research wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    Data from the acoustic tests of the convergent reference nozzle and the 0.75 area ratio coannular nozzle are presented in tables. Data processing routines used to scale the acoustic data and to correct the data for atmospheric attenuation are included.

  3. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  4. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  5. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  6. Advances in Direct Detection Doppler Lidar Technology and Techniques

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In this paper we will describe the ground based Doppler lidar system which is mounted in a modified delivery van to allow field deployment and operations. The system includes an aerosol double edge receiver optimized for aerosol backscatter Doppler measurements at 1064 nm and a molecular double edge receiver which operates at 355 nm. The lidar system will be described including details of the injection seeded diode pumped laser transmitter and the piezoelectrically tunable high spectral resolution Fabry Perot etalon which is used to measure the Doppler shift. Examples of tropospheric wind profiles obtained with the system will also be presented to demonstrate its capabilities.

  7. Doppler Lidar in the Wind Forecast Improvement Projects

    NASA Astrophysics Data System (ADS)

    Pichugina, Yelena; Banta, Robert; Brewer, Alan; Choukulkar, Aditya; Marquis, Melinda; Olson, Joe; Hardesty, Mike

    2016-06-01

    This paper will provide an overview of some projects in support of Wind Energy development involving Doppler lidar measurement of wind flow profiles. The high temporal and vertical resolution of these profiles allows the uncertainty of Numerical Weather Prediction models to be evaluated in forecasting dynamic processes and wind flow phenomena in the layer of rotor-blade operation.

  8. Laser Doppler projection tomography.

    PubMed

    Zeng, Yaguang; Xiong, Ke; Lu, Xuanlong; Feng, Guanping; Han, Dingan; Wu, Jing

    2014-02-15

    We propose a laser Doppler projection tomography (LDPT) method to obtain visualization of three-dimensional (3D) flowing structures. With LDPT, the flowing signal is extracted by a modified laser Doppler method, and the 3D flowing image is reconstructed by the filtered backprojection algorithm. Phantom experiments are performed to demonstrate that LDPT is able to obtain 3D flowing structure with higher signal-to-noise ratio and spatial resolution. Our experiment results display its potentially useful application to develop 3D label-free optical angiography for the circulation system of live small animal models or microfluidic experiments.

  9. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles

    USGS Publications Warehouse

    Lee, T.-G.; Hein, J.R.; Lee, Kenneth; Moon, J.-W.; Ko, Y.-T.

    2005-01-01

    A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts. ?? 2005 Elsevier Ltd. All rights reserved.

  10. Atmospheric probing by Doppler radar

    NASA Technical Reports Server (NTRS)

    Lhermitte, R. M.

    1969-01-01

    A survey is presented of the application of Doppler techniques to the study of atmospheric phenomena. Particular emphasis is placed on the requirement of adequate digital processing means for the Doppler signal and the Doppler data which are acquired at a very high rate. The need is discussed of a two or three Doppler method as an ultimate approach to the problem of observing the three-dimensional field of particle motion inside convective storms.

  11. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  12. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  13. The Doppler Pendulum Experiment

    ERIC Educational Resources Information Center

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  14. Photonic doppler velocimetry

    SciTech Connect

    Lowry, M E; Molau, N E; Sargis, P D; Strand, O T; Sweider, D

    1999-01-01

    We are developing a novel fiber-optic approach to laser Doppler velocimetry as a diagnostic for high explosives tests. Using hardware that was originally developed for the telecommunications industry, we are able to measure surface velocities ranging from centimeters per second to kilometers per second. Laboratory measurements and field trials have shown excellent agreement with other diagnostics.

  15. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue.

  16. Harmonic Motion Microwave Doppler Imaging method for breast tumor detection.

    PubMed

    Top, Can Barıs; Tafreshi, Azadeh Kamali; Gençer, Nevzat G

    2014-01-01

    Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue. PMID:25571382

  17. Ultrasonic colour Doppler imaging

    PubMed Central

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been found to be of great value in assessing blood flow in many clinical conditions. Although the method for obtaining the velocity information is in many ways similar to the method for obtaining the anatomical information, it is technically more demanding for a number of reasons. It also has a number of weaknesses, perhaps the greatest being that in conventional systems, the velocities measured and thus displayed are the components of the flow velocity directly towards or away from the transducer, while ideally the method would give information about the magnitude and direction of the three-dimensional flow vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new techniques that seek to overcome the vector problem mentioned above are described. Finally, some examples of vector velocity images are presented. PMID:22866227

  18. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers.

    PubMed

    Moore, S A; Le Coz, J; Hurther, D; Paquier, A

    2013-04-01

    Multi-frequency acoustic backscatter profiles recorded with side-looking acoustic Doppler current profilers are used to monitor the concentration and size of sedimentary particles suspended in fluvial environments. Data at 300, 600, and 1200 kHz are presented from the Isère River in France where the dominant particles in suspension are silt and clay sizes. The contribution of suspended sediment to the through-water attenuation was determined for three high concentration (> 100 mg/L) events and compared to theoretical values for spherical particles having size distributions that were measured by laser diffraction in water samples. Agreement was good for the 300 kHz data, but it worsened with increasing frequency. A method for the determination of grain size using multi-frequency attenuation data is presented considering models for spherical and oblate spheroidal particles. When the resulting size estimates are used to convert sediment attenuation to concentration, the spheroidal model provides the best agreement with optical estimates of concentration, but the aspect ratio and grain size that provide the best fit differ between events. The acoustic estimates of size were one-third the values from laser grain sizing. This agreement is encouraging considering optical and acoustical instruments measure different parameters. PMID:23556566

  19. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles, volume 3. [supersonic cruise aircraft research wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    Acoustic data from tests of the 0.75 area ratio coannular nozzle with ejector and the 1.2 area ratio coannular are presented in tables. Aerodynamic data acquired for the four test configurations are included.

  20. Feasibility of Estimating Constituent Concentrations and Loads Based on Data Recorded by Acoustic Instrumentation

    USGS Publications Warehouse

    Lietz, A.C.

    2002-01-01

    The acoustic Doppler current profiler (ADCP) and acoustic Doppler velocity meter (ADVM) were used to estimate constituent concentrations and loads at a sampling site along the Hendry-Collier County boundary in southwestern Florida. The sampling site is strategically placed within a highly managed canal system that exhibits low and rapidly changing water conditions. With the ADCP and ADVM, flow can be gaged more accurately rather than by conventional field-data collection methods. An ADVM velocity rating relates measured velocity determined by the ADCP (dependent variable) with the ADVM velocity (independent variable) by means of regression analysis techniques. The coefficient of determination (R2) for this rating is 0.99 at the sampling site. Concentrations and loads of total phosphorus, total Kjeldahl nitrogen, and total nitrogen (dependent variables) were related to instantaneous discharge, acoustic backscatter, stage, or water temperature (independent variables) recorded at the time of sampling. Only positive discharges were used for this analysis. Discharges less than 100 cubic feet per second generally are considered inaccurate (probably as a result of acoustic ray bending and vertical temperature gradients in the water column). Of the concentration models, only total phosphorus was statistically significant at the 95-percent confidence level (p-value less than 0.05). Total phosphorus had an adjusted R2 of 0.93, indicating most of the variation in the concentration can be explained by the discharge. All of the load models for total phosphorus, total Kjeldahl nitrogen, and total nitrogen were statistically significant. Most of the variation in load can be explained by the discharge as reflected in the adjusted R2 for total phosphorus (0.98), total Kjeldahl nitrogen (0.99), and total nitrogen (0.99).

  1. Modeling and Doppler measurement of X-ray pulsar

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Xu, LuPing; Xie, Qiang

    2011-06-01

    Generally, the Doppler caused by the velocity of the detector leads to distortion of the integrated profile of the X-ray pulsar, on the contrary, if the distortion can be used to measure the Doppler, then the velocity of the detector is easy to be solved. In view of this, the correlation of the periodic error arise from the Doppler and the integrated profile was analyzed, then, based on the Poisson distribution model of the X-ray Pulsar, a new signal model and the concept of the profile entropy was defined. Furthermore, the directly cumulated profile of the signal was modeled with the Doppler as a parameter, and then the Doppler was solved via optimal method. Simultaneously, the performance of phase measurement based on this method was studded. The analysis shows that this method can get rid of the periodic error due to the discrete sampling, and can obtain continuous phase estimation. The experiment verification shows the consistency of the theory and the experiment.

  2. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  3. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  4. Complete velocity distribution in river cross-sections measured by acoustic instruments

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  5. Analysis of Acoustic Wave and Current Data Offshore of Mytle Beach, South Carolina

    NASA Astrophysics Data System (ADS)

    Fall, K. A.; Wren, A.

    2008-12-01

    Two bottom boundary layer (BBL) instrument frames have been deployed on the shoreface and inner-shelf of Long Bay, South Carolina offshore of Myrtle Beach as part of a South Carolina Sea Grant funded project to measure sediment transport over two hardbottom habitats. The inshore instrument frame is located on an extensive hardbottom surface 850 meters offshore. The second instrumented frame is secured to a hardbottom surface on the inner-shelf at a distance of approximately 2.5 km offshore. The nearshore BBL observing system is composed of a downward-looking RDI/ Teledyne 1200 kHz Pulse-Coherent Acoustic Doppler Current Profiler, an upward-looking Nortek Acoustic Wave and Current Profiler (AWAC), and an Aquatec Acoustic Backscatter Sensor. As part of this larger study, the wave and current data from the AWAC have been analyzed. Long-term continuous time series data include wave height, wave period, directional wave spectra, and the magnitude and direction of currents in the water column. Within the data set are several wave events, including several frontal passages and Tropical Storm Hanna which hit the Myrtle Beach area in early September. Wave data have been correlated with meteorological data, and a comparison of shoreface wave characteristics during each type of event are presented.

  6. Holocene lake level changes at a lowland lake in northeastern Germany inferred from acoustic sub-bottom profiling and a transect of sediment cores

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Zawiska, Izabela; Słowiński, Michał; Brauer, Achim

    2015-04-01

    Holocene lake level changes were studied at Lake Fürstenseer See, a typical lake with complex basin morphology in northeastern German sandur area. An acoustic sub-bottom profile and a transect of four long sediment cores in the deepest lake sub-basin were analyzed. The cores were dated with AMS-14C and correlated with multiple proxies (sediment facies, μ-XRF, macrofossils, subfossil Cladocera, carbonate isotopes). At sites in 10 and 15 m water depth, shifts in the sand-mud boundary, i.e. sediment limit sensu Digerfeldt (1986), allowed quantitative estimates of the absolute amplitude of lake level changes. At sites in 20 and 23 m water depth, the negative correlation of Ca and Ti reflect lake level changes qualitatively. During high lake stands massive organic muds were deposited. Lower lake levels isolated the lake sub-basins which reduced the overall water circulation and lead to the deposition of Ti-poor carbonate muds. Furthermore, macrofossil and subfossil Cladocera analyses were used as proxies for the intense reworking at the slope and for the trophic state of the lake, respectively. Lake levels were up to 4 m higher, e.g. around 5000 cal. yrs BP and during the Medieval time period (see also Kaiser et al., 2014). During the early to mid-Holocene (between 9400 and 6400 cal. yrs BP), Lake Fürstenseer See fluctuated at an at least 3-m lower level. Further water level changes can be related to known climatic events and regional human impact. Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In Berglund, B. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology: 127-144. John Wiley & Sons, New York. Kaiser, K., Küster, M., Fülling, A., Theuerkauf, M., Dietze, E., Graventein, H., Koch, P.J., Bens, O., Brauer, A., 2014. Littoral landforms and pedosedimentary sequences indicating late Holocene lake-level changes in northern central Europe ' A case study from northeastern Germany. Geomorphology 216, 58-78.

  7. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  8. A digital multigate Doppler method for high frequency ultrasound.

    PubMed

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method.

  9. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  10. Holographic laser Doppler ophthalmoscopy.

    PubMed

    Simonutti, M; Paques, M; Sahel, J A; Gross, M; Samson, B; Magnain, C; Atlan, M

    2010-06-15

    We report laser Doppler ophthalmoscopic fundus imaging in the rat eye with near-IR heterodyne holography. Sequential sampling of the beat of the reflected radiation against a frequency-shifted optical local oscillator is made onto an array detector. Wide-field maps of fluctuation spectra in the 10 Hz to 25 kHz band exhibit angiographic contrasts in the retinal vascular tree without requirement of an exogenous marker.

  11. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  12. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  13. Doppler optical coherence tomography.

    PubMed

    Leitgeb, Rainer A; Werkmeister, René M; Blatter, Cedric; Schmetterer, Leopold

    2014-07-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  14. Holograms for acoustics.

    PubMed

    Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer

    2016-01-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound. PMID:27652563

  15. Holograms for acoustics

    NASA Astrophysics Data System (ADS)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  16. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  17. Acoustically-observable properties of adult gait.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    An approach has been developed for extracting human gait parameters from micro Doppler sonar grams. Key parameters include average speed of walking, torso velocity, walk cycle time, and peak leg velocity. The approach is a modification of a technique previously used in radar data analysis. It has been adapted because of differences between sonar and radar micro Doppler grams. The approach has been applied to an acoustic data set of 16 female and 60 male walkers. Statistics have been tabulated that illustrate the similarities and dissimilarities between female and male gait. Males tend to walk with larger walk cycle times and peak leg velocities than females.

  18. Acoustically-observable properties of adult gait.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    An approach has been developed for extracting human gait parameters from micro Doppler sonar grams. Key parameters include average speed of walking, torso velocity, walk cycle time, and peak leg velocity. The approach is a modification of a technique previously used in radar data analysis. It has been adapted because of differences between sonar and radar micro Doppler grams. The approach has been applied to an acoustic data set of 16 female and 60 male walkers. Statistics have been tabulated that illustrate the similarities and dissimilarities between female and male gait. Males tend to walk with larger walk cycle times and peak leg velocities than females. PMID:22423810

  19. Acoustic metafluids.

    PubMed

    Norris, Andrew N

    2009-02-01

    Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic metafluids are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials. The derivation uses the notion of finite deformation to define the transformation of one region to another. The main result is found by considering energy density in the original and transformed regions. Properties of acoustic metafluids are discussed, and general conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially opens up the possibility of achieving broadband cloaking. PMID:19206861

  20. Acoustic Rectification in Dispersive Media

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  1. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  2. Evidence of Doppler-shifted Bragg scattering in the vertical plane by ocean surface waves.

    PubMed

    Lynch, Stephen D; D'Spain, Gerald L

    2012-03-01

    A set of narrowband tones (280, 370, 535, and 695 Hz) were transmitted by an acoustic source mounted on the ocean floor in 10 m deep water and received by a 64-element hydrophone line array lying on the ocean bottom 1.25 km away. Beamformer output in the vertical plane for the received acoustic tones shows evidence of Doppler-shifted Bragg scattering of the transmitted acoustic signals by the ocean surface waves. The received, scattered signals show dependence on the ocean surface wave frequencies and wavenumber vectors, as well as on acoustic frequencies and acoustic mode wavenumbers. Sidebands in the beamformer output are offset in frequency by amounts corresponding to ocean surface wave frequencies. Deviations in vertical arrival angle from specular reflection agree with those predicted by the Bragg condition through first-order perturbation theory using measured directional surface wave spectra and acoustic modes measured by the horizontal hydrophone array.

  3. Radar - ANL Wind Profiler with RASS, Yakima - Raw Data

    DOE Data Explorer

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  4. Radar - ANL Wind Profiler with RASS, Goldendale - Raw Data

    DOE Data Explorer

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  5. Radar - ESRL Wind Profiler with RASS, Troutdale - Raw Data

    DOE Data Explorer

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  6. Radar - ESRL Wind Profiler with RASS, Wasco Airport - Raw Data

    DOE Data Explorer

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  7. Radar - ESRL Wind Profiler with RASS, Prineville - Raw Data

    DOE Data Explorer

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  8. Radar - ANL Wind Profiler with RASS, Walla Walla - Raw Data

    DOE Data Explorer

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  9. Radar - ESRL Wind Profiler with RASS, Condon - Raw Data

    DOE Data Explorer

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  10. Laser Doppler diagnostics for orthodontia

    NASA Astrophysics Data System (ADS)

    Ryzhkova, Anastasia V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Kharish, Natalia A.

    2004-06-01

    The results of statistical analysis of Doppler spectra of intensity fluctuations of light, scattered from mucous membrane of oral cavity of healthy volunteers and patients, abused by the orthodontic diseases, are presented. Analysis of Doppler spectra, obtained from tooth pulp of patients, is carried out. New approach to monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of Doppler measuring system on formation of the output signal is studied.

  11. Acoustic and Perceptual Measurements of Prosody Production on the Profiling Elements of Prosodic Systems in Children by Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Diehl, Joshua John; Paul, Rhea

    2013-01-01

    Prosody production atypicalities are a feature of autism spectrum disorders (ASDs), but behavioral measures of performance have failed to provide detail on the properties of these deficits. We used acoustic measures of prosody to compare children with ASDs to age-matched groups with learning disabilities and typically developing peers. Overall,…

  12. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  13. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  14. Applying Zeeman Doppler imaging to solar spectra

    NASA Astrophysics Data System (ADS)

    Hussain, G. A. J.; Saar, S. H.; Collier Cameron, A.

    2004-03-01

    A new generation of spectro-polarimeters with high throughput (e.g. CFHT/ESPADONS and LBT/PEPSI) is becoming available. This opportunity can be exploited using Zeeman Doppler imaging (ZDI), a technique that inverts time-series of Stokes V spectra to map stellar surface magnetic fields (Semel 1989). ZDI is assisted by ``Least squares deconvolution'' (LSD), which sums up the signal from 1000's of photospheric lines to produce a mean deconvolved profile with higher S:N (Donati & Collier Cameron 1997).

  15. Laser Doppler anemometry measurements in an engine.

    PubMed

    Cole, J B; Swords, M D

    1979-05-15

    A simple and effective technique is reported which allows measurement of the flow field in the cylinder of a motored internal combustion engine with good temporal and spatial resolution. The experiment, a realfringe laser Doppler anemometer, uses photon counting digital autocorrelation for data capture. The experimental autocorrelation functions have been processed using curve-fitting to a Gaussian velocity profile and by direct Fourier transformation without prior assumption of the form. The ability of such a technique to tolerate poor SNRs makes it a likely choice for measurement in firing engines.

  16. High-Energy 2-Micrometers Doppler Lidar for Wind Measurements

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Barnes, Bruce W.; Petros, Mulugeta; Yu, Jirong; Amzajerdian, Farzin; Kavaya, Michael J.; Singh, Upendra N.

    2006-01-01

    High-energy 2-micrometer wavelength lasers have been incorporated in a prototype coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Calibration tests and sample atmospheric data are presented on wind and aerosol profiling.

  17. Validar: A Testbed for Advanced 2-Micron Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Jirong; Kavaya, Michael J.; Singh, Upendra N.

    2004-01-01

    High-energy 2-microns lasers have been incorporated in a breadboard coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Sample data is presented on wind profiling and CO2 concentration measurements.

  18. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  19. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  20. Underwater Acoustics.

    ERIC Educational Resources Information Center

    Creasey, D. J.

    1981-01-01

    Summarizes the history of underwater acoustics and describes related research studies and teaching activities at the University of Birmingham (England). Also includes research studies on transducer design and mathematical techniques. (SK)

  1. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  2. ANL Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  3. Changes in zooplankton habitat, behavior, and acoustic scattering characteristics across glider-resolved fronts in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Powell, Jesse R.; Ohman, Mark D.

    2015-05-01

    We report cross-frontal changes in the characteristics of plankton proxy variables measured by autonomous Spray ocean gliders operating within the Southern California Current System (SCCS). A comparison of conditions across the 154 positive frontal gradients (i.e., where density of the surface layer decreased in the offshore direction) identified from six years of continuous measurements showed that waters on the denser side of the fronts typically showed higher Chl-a fluorescence, shallower euphotic zones, and higher acoustic backscatter than waters on the less dense side. Transitions between these regions were relatively abrupt. For positive fronts the amplitude of Diel Vertical Migration (DVM), inferred from a 3-beam 750 kHz acoustic Doppler profiler, increased offshore of fronts and covaried with optical transparency of the water column. Average interbeam variability in acoustic backscatter also changed across many positive fronts within 3 depth strata (0-150 m, 150-400 m, and 400-500 m), revealing a front-related change in the acoustic scattering characteristics of the assemblages. The extent of vertical stratification of distinct scattering assemblages was also more pronounced offshore of positive fronts. Depth-stratified zooplankton samples collected by Mocness nets corroborated the autonomous measurements, showing copepod-dominated assemblages and decreased zooplankton body sizes offshore and euphausiid-dominated assemblages with larger median body sizes inshore of major frontal features.

  4. Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord

    NASA Astrophysics Data System (ADS)

    Petrusevich, Vladislav; Dmitrenko, Igor A.; Kirillov, Sergey A.; Rysgaard, Søren; Falk-Petersen, Stig; Barber, David G.; Boone, Wieter; Ehn, Jens K.

    2016-07-01

    Six and a half month records from three ice-tethered Acoustic Doppler Current Profilers deployed in October 2013 in Young Sound fjord in Northeast Greenland are used to analyze the acoustic backscatter signal. The acoustic data suggest a systematic diel vertical migration (DVM) of scatters below the land-fast ice during polar night. The scatters were likely composed of zooplankton. The acoustic signal pattern typical to DVM persisted in Young Sound throughout the entire winter including the period of civil polar night. However, polynya-enhanced estuarine-like cell circulation that occurred during winter disrupted the DVM signal favoring zooplankton to occupy the near-surface water layer. This suggests that zooplankton avoided spending additional energy crossing the interface with a relatively strong velocity gradient comprised by fjord inflow in the intermediate layer and outflow in the subsurface layer. Instead, the zooplankton tended to remain in the upper 40 m layer where relatively warmer water temperatures associated with upward heat flux during enhanced estuarine-like circulation could be energetically favorable. Furthermore, our data show moonlight disruption of DVM in the subsurface layer and weaker intensity of vertical migration beneath snow covered land-fast ice during polar night. Finally, by using existing models for lunar illuminance and light transmission through sea ice and snow cover, we estimated under ice illuminance and compared it with known light sensitivity of Arctic zooplankton species.

  5. Frequency steerable acoustic transducers

    NASA Astrophysics Data System (ADS)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  6. Doppler Beats or Interference Fringes?

    ERIC Educational Resources Information Center

    Kelly, Paul S.

    1979-01-01

    Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…

  7. Brief history of vector Doppler

    NASA Astrophysics Data System (ADS)

    Dunmire, Barbrina; Beach, Kirk W.

    2001-05-01

    Since the development of the directional Doppler by McLeod in 1967, methods of acquiring, analyzing, and displaying blood velocity information have been under constant exploration. These efforts are motivated by a variety of interest and objectives including, to: a) simplify clinical examination, examiner training, and study interpretation, b) provide more hemodynamic information, and c) reduce examination variability and improve accuracy. The vector Doppler technique has been proposed as one potential avenue to achieve these objects. Vector Doppler systems are those that determine the true 2D or 3D blood flow velocity by combining multiple independent velocity component measurements. Most instruments can be divided into two broad categories: 1) cross-beam and 2) time-domain. This paper provides a brief synopsis of the progression of vector Doppler techniques, from its onset in 1970 to present, as well as possible avenues for future work. This is not intended to be a comprehensive review of all vector Doppler systems.

  8. ACOUSTIC FORMING FOR ENHANCED DEWATERING AND FORMATION

    SciTech Connect

    Cyrus K Aidun

    2007-11-30

    The next generation of forming elements based on acoustic excitation to increase drainage and enhances formation both with on-line control and profiling capabilities has been investigated in this project. The system can be designed and optimized based on the fundamental experimental and computational analysis and investigation of acoustic waves in a fiber suspension flow and interaction with the forming wire.

  9. Direct visualization of surface acoustic waves along substrates using smoke particles

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Friend, James R.; Yeo, Leslie Y.

    2007-11-01

    Smoke particles (SPs) are used to directly visualize surface acoustic waves (SAWs) propagating on a 128°-rotated Y-cut X-propagating lithium niobate (LiNbO3) substrate. By electrically exciting a SAW device in a compartment filled with SP, the SP were found to collect along the regions where the SAW propagates on the substrate. The results of the experiments show that SPs are deposited adjacent to regions of large vibration amplitude and form a clear pattern corresponding to the surface wave profile on the substrate. Through an analysis of the SAW-induced acoustic streaming in the air adjacent to the substrate and the surface acceleration measured with a laser Doppler vibrometer, we postulate that the large transverse surface accelerations due to the SAW ejects SP from the surface and carries them aloft to relatively quiescent regions nearby via acoustic streaming. Offering finer detail than fine powders common in Chladni figures [E. Chladni, Entdeckungen über die Theorie des Klanges (Weidmanns, Erben und Reich, Leipzig, Germany, 1787)] the approach is an inexpensive and a quick counterpart to laser interferometric techniques, presenting a means to explore the controversial phenomena of particle agglomeration on surfaces.

  10. Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Storelli, A.; Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Dif-Pradalier, G.; Sarazin, Y.; Garbet, X.; Görler, T.; Singh, Rameswar; Morel, P.; Grandgirard, V.; Ghendrih, P.

    2015-06-01

    In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is detected and identified with the Doppler backscattering technique. Observations are compared to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM frequency in experiments is lower than predicted by simulation and theory. Moreover, the disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscillations have been characterized with filtering techniques, such as the Hilbert-Huang transform. When comparing this dynamical behaviour between experiments and simulation, the probability density function of GAM amplitude and the burst autocorrelation time are found to be remarkably similar. In the simulation, where the radial profile of GAM frequency is continuous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could influence the burst autocorrelation time.

  11. Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations

    SciTech Connect

    Storelli, A. Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Singh, Rameswar; Morel, P.; Dif-Pradalier, G.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Ghendrih, P.; Görler, T.

    2015-06-15

    In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is detected and identified with the Doppler backscattering technique. Observations are compared to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM frequency in experiments is lower than predicted by simulation and theory. Moreover, the disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscillations have been characterized with filtering techniques, such as the Hilbert-Huang transform. When comparing this dynamical behaviour between experiments and simulation, the probability density function of GAM amplitude and the burst autocorrelation time are found to be remarkably similar. In the simulation, where the radial profile of GAM frequency is continuous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could influence the burst autocorrelation time.

  12. Multichannel analysis of surface-waves and integration of downhole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA

    NASA Astrophysics Data System (ADS)

    Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey

    2015-10-01

    Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.

  13. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  14. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  15. Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord

    NASA Astrophysics Data System (ADS)

    Petrusevich, Vladislav; Dmitrenko, Igor; Kirillov, Sergey; Rysgaard, Søren; Falk-Petersen, Stig; Barber, David; Ehn, Jens

    2016-04-01

    Six and a half month time series of acoustic backscatter and velocity from three ice-tethered Acoustic Doppler Current Profilers deployed in the Young Sound fjord in Northeast Greenland were used to analyse the acoustic signal. During period of civil polar night below the land-fast ice, the acoustic data suggest a systematic diel vertical migration (DVM) of backscatters likely comprised of zooplankton. The acoustic backscatter and vertical velocity data were also arranged in a form of actograms. Results show that the acoustic signal pattern typical to DVM in Young Sound persists throughout the entire winter including the period of civil polar night. However, polynya-enhanced estuarine-like cell circulation that occurred during winter disrupted the DVM signal favouring zooplankton to occupy the near-surface water layer. This suggests that zooplankton avoided spending additional energy crossing the interface with a relatively strong velocity gradient comprised by fjord inflow in the intermediate layer and outflow in the subsurface layer. Instead the zooplankton tended to favour remaining in the upper 40 m layer where also the relatively warmer water temperatures associated with upward heat flux during enhanced estuarine-like circulation could be energetically favourable. Furthermore, our data show moonlight disruption of DVM in the subsurface layer and weaker intensity of vertical migration beneath snow covered land-fast ice during polar night. Using existing models for lunar illuminance and light transmission through sea ice and snow cover we estimated under ice illuminance and compared it with known light sensitivity for Arctic zooplankton species.

  16. How to study the Doppler effect with Audacity software

    NASA Astrophysics Data System (ADS)

    Adriano Dias, Marco; Simeão Carvalho, Paulo; Rodrigues Ventura, Daniel

    2016-05-01

    The Doppler effect is one of the recurring themes in college and high school classes. In order to contextualize the topic and engage the students in their own learning process, we propose a simple and easily accessible activity, i.e. the analysis of the videos available on the internet by the students. The sound of the engine of the vehicle passing by the camera is recorded on the video; it is then analyzed with the free software Audacity by measuring the frequency of the sound during approach and recede of the vehicle from the observer. The speed of the vehicle is determined due to the application of Doppler effect equations for acoustic waves.

  17. Mathematical Evaluation of Steady, Laminar Flow by the Use of Continuous-Wave (cw) Doppler and Pitot Tube System.

    NASA Astrophysics Data System (ADS)

    Sharif, Malek Mansoor

    Investigation, as to the usefulness of spectral analysis of the acoustical signal from the Doppler ultrasonic flowmeter, is being conducted. The hypothesis was that both hematocrit ((')H) and pressure head (H) influence the amplitude of the spectrum (A). Experiments were designed to: (a) evaluate their roles on amplitude; (b) derive the associated functional relationship. Preliminary experiments revealed that: (a) the accuracy of our Doppler flowmeter was satisfactory; (b) the relative weight of (')H on flow velocity was twice that of H. A pitot tube system whose bent tube component was capable of radial movement was developed to measure the instantaneous blood velocity. The bent tube was moved across the lumen of the vessel in steps of 0.1 mm, and particle velocity was measured at each sampling point. The distribution of velocity was parabolic and the agreement between experimental data and the second degree polynomial fit was good ((xi) = .94). An array of small bent tubes, each placed successively deeper within the lumen of the rubber tubing and connected to a small syringe, was constructed to measure the particle profile. The profile was parabolic and (')H, as a function of radius, was expressible in terms of a second degree polynomial. To determine the dependency of ultrasonic energy backscattering on hematocrit, Doppler signals were recorded, digitized, and frequency resolved via the fast Fourier transform for hematocrits ranging from 4.5% to 46.5%. The amplitude corresponding to each given hematocrit was calculated by evaluating the area under the curve fitted to the transformed data. A((')H) was found to be a linear function of hematocrit. A generalized Doppler amplitude function A(H,(')H) was also derived. It was hypothesized that blood viscosity ((mu)) is an exponential function of hematocrit, that is, (mu) = A exp (B(.)(')H). Experimental results using a Falling ball type viscosimeter supported the theory with a high correlation between the data and the

  18. VPV--The velocity profile viewer user manual

    USGS Publications Warehouse

    Donovan, John M.

    2004-01-01

    The Velocity Profile Viewer (VPV) is a tool for visualizing time series of velocity profiles developed by the U.S. Geological Survey (USGS). The USGS uses VPV to preview and present measured velocity data from acoustic Doppler current profilers and simulated velocity data from three-dimensional estuarine, river, and lake hydrodynamic models. The data can be viewed as an animated three-dimensional profile or as a stack of time-series graphs that each represents a location in the water column. The graphically displayed data are shown at each time step like frames of animation. The animation can play at several different speeds or can be suspended on one frame. The viewing angle and time can be manipulated using mouse interaction. A number of options control the appearance of the profile and the graphs. VPV cannot edit or save data, but it can create a Post-Script file showing the velocity profile in three dimensions. This user manual describes how to use each of these features. VPV is available and can be downloaded for free from the World Wide Web at http://ca.water.usgs.gov/program/sfbay/vpv.

  19. GEOS-3 Doppler difference tracking

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1977-01-01

    The Doppler difference method as applied to track the GEOS 3 spacecraft is discussed. In this method a pair of 2 GHz ground tracking stations simultaneously track a spacecraft beacon to generate an observable signal in which bias and instability of the carrier frequency cancel. The baselines are formed by the tracking sites at Bermuda, Rosman, and Merritt Island. Measurements were made to evaluate the effectiveness of the Doppler differencing procedure in tracking a beacon target with the high dynamic rate of the GEOS 3 orbit. Results indicate the precision of the differenced data to be at a level comparable to the conventional precise two way Doppler tracking.

  20. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  1. Combined perfusion and doppler imaging using plane-wave nonlinear detection and microbubble contrast agents.

    PubMed

    Tremblay-Darveau, Charles; Williams, Ross; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2014-12-01

    Plane-wave imaging offers image acquisition rates at the pulse repetition frequency, effectively increasing the imaging frame rates by up to two orders of magnitude over conventional line-by-line imaging. This form of acquisition can be used to achieve very long ensemble lengths in nonlinear modes such as pulse inversion Doppler, which enables new imaging trade-offs that were previously unattainable. We first demonstrate in this paper that the coherence of microbubble signals under repeated exposure to acoustic pulses of low mechanical index can be as high as 204 ± 5 pulses, which is long enough to allow an accurate power Doppler measurement. We then show that external factors, such as tissue acceleration, restrict the detection of perfusion at the capillary level with linear Doppler, even if long Doppler ensembles are considered. Hence, perfusion at the capillary level can only be detected with ultrasound through combined microbubbles and Doppler imaging. Finally, plane-wave contrast-enhanced power and color Doppler are performed on a rabbit kidney in vivo as a proof of principle. We establish that long pulse-inversion Doppler sequences and conventional wall-filters can create an image that simultaneously resolves both the vascular morphology of veins and arteries, and perfusion at the capillary level with frame rates above 100 Hz.

  2. Applications of Fresnel-Kirchhoff diffraction theory in the analysis of human-motion Doppler sonar grams.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2010-11-01

    Observed human-gait features in Doppler sonar grams are explained by using the Boulic-Thalmann (BT) model to predict joint angle time histories and the temporal displacements of the body center of mass. Body segments are represented as ellipsoids. Temporally dependent velocities at the proximal and distal end of key body segments are determined from BT. Doppler sonar grams are computed by mapping velocity-time dependent spectral acoustic-cross sections for the body segments onto time-velocity space, mimicking the Short Time Fourier Transform used in the Doppler sonar processing. Comparisons to measured data indicate that dominant returns come from trunk, thigh and lower leg.

  3. Acoustic wave characterization of silicon phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Feng, Duan; Jiang, Wanli; Xu, Dehui; Xiong, Bin; Wang, Yuelin

    2015-08-01

    In this paper, characterization of megahertz Lamb waves in a silicon phononic crystal based asymmetry filter by laser Doppler vibrometer is demonstrated. The acoustic power from a piezoelectric substrate was transmitted into the silicon superstrate by fluid coupling method, and measured results show that the displacement amplitude of the acoustic wave in the superstrate was approximately one fifth of that in the piezoelectric substrate. Effect of the phononic bandgap on the propagation of Lamb wave in the silicon superstrate is also measured, and the result shows that the phononic crystal structure could reflect part of the acoustic waves back.

  4. Doppler effect in a solid medium: Spin wave emission by a precessing domain wall drifting in spin current

    NASA Astrophysics Data System (ADS)

    Xia, Hong; Chen, Jie; Zeng, Xiaoyan; Yan, Ming

    2016-04-01

    The Doppler effect is a fundamental physical phenomenon observed for waves propagating in vacuum or various media, commonly gaseous or liquid. Here, we report on the occurrence of a Doppler effect in a solid medium. Instead of a real object, a topological soliton, i.e., a magnetic domain wall (DW) traveling in a current-carrying ferromagnetic nanowire, plays the role of the moving wave source. The Larmor precession of the DW in an external field stimulates emission of monochromatic spin waves (SWs) during its motion, which show a significant Doppler effect, comparable to the acoustic one of a train whistle. This process involves two prominent spin-transfer-torque effects simultaneously, the current-driven DW motion and the current-induced SW Doppler shift. The latter gives rise to an interesting feature, i.e., the observed SW Doppler effect appears resulting from a stationary source and a moving observer, contrary to the laboratory frame.

  5. Dual-Doppler Feasibility Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  6. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  7. Doppler characteristics of sea clutter.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  8. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  9. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  10. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  11. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  12. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    USGS Publications Warehouse

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  13. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  14. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  15. Christian Doppler is 200 years young.

    PubMed

    Bollinger, Alfred; Partsch, Hugo

    2003-11-01

    Christian Doppler was born 200 years ago in Salzburg, Austria, on November 29, 1803, worked in Prague and Vienna and died 150 years ago in Venice. In an article of eight pages he described the principle, which made him famous. It appeared in 1842 with the exotic title: "On the Coloured Light of the Double Stars and Certain Other Stars of the Heaven". The validity of his principle for velocity measurement was confirmed by trumpet sounds produced on a train moving towards and away from the observer. Around 1960 Japanese scientists suggested that flow velocity in blood vessels could be determined by analysing the difference of frequency between emitted and backscattered ultrasound. Rushmer and coworkers built machines suitable for medicine in Seattle, where Eugene Strandness recognized their potential and applied them in first studies. In 1967 the technique jumped to Europe and started to be used worldwide. Already by using continuous wave ultrasound it was possible to diagnose occlusive disease of neck and limb arteries, venous thrombosis and valvular insufficiency with accuracy. Measurements of postestenotic ankle blood pressure were facilitated by Doppler sensing. Over the years more sophisticated instruments were developed. Pulsed emission of ultrasound waves opened a way to study flow velocity profiles across large vessels. By combining the method with A or B mode ultrasound blood flow could be quantified and finally perfused segments of blood vessels visualized. Duplex scanning in its simple and then in its colour coded version is nowadays the standard non-invasive technique that nobody would like to miss. Vascular territories like intracranial, renal and intestinal arteries can also be explored. For the assessment of microvascular flow in skin and mucosae laser Doppler instruments were introduced.

  16. Christian Doppler is 200 years young.

    PubMed

    Bollinger, Alfred; Partsch, Hugo

    2003-11-01

    Christian Doppler was born 200 years ago in Salzburg, Austria, on November 29, 1803, worked in Prague and Vienna and died 150 years ago in Venice. In an article of eight pages he described the principle, which made him famous. It appeared in 1842 with the exotic title: "On the Coloured Light of the Double Stars and Certain Other Stars of the Heaven". The validity of his principle for velocity measurement was confirmed by trumpet sounds produced on a train moving towards and away from the observer. Around 1960 Japanese scientists suggested that flow velocity in blood vessels could be determined by analysing the difference of frequency between emitted and backscattered ultrasound. Rushmer and coworkers built machines suitable for medicine in Seattle, where Eugene Strandness recognized their potential and applied them in first studies. In 1967 the technique jumped to Europe and started to be used worldwide. Already by using continuous wave ultrasound it was possible to diagnose occlusive disease of neck and limb arteries, venous thrombosis and valvular insufficiency with accuracy. Measurements of postestenotic ankle blood pressure were facilitated by Doppler sensing. Over the years more sophisticated instruments were developed. Pulsed emission of ultrasound waves opened a way to study flow velocity profiles across large vessels. By combining the method with A or B mode ultrasound blood flow could be quantified and finally perfused segments of blood vessels visualized. Duplex scanning in its simple and then in its colour coded version is nowadays the standard non-invasive technique that nobody would like to miss. Vascular territories like intracranial, renal and intestinal arteries can also be explored. For the assessment of microvascular flow in skin and mucosae laser Doppler instruments were introduced. PMID:14694774

  17. [Doppler ultrasound of penis arteries].

    PubMed

    Jünemann, K P; Siegsmund, M; Löbelenz, M; Alken, P

    1990-05-01

    In addition to pharmaco testing, pharmaco-Doppler sonography of the penile arteries is part of the basic work-up for erectile dysfunction. Insufficient training with the Doppler method, lack of standardized criteria for evaluation of the penis, and analysis of the Doppler curves all make it difficult to use Doppler sonography for the evaluation of impotent men. The aim of this study was to explain the principal criteria of the method and demonstrate the most important details for analyzing the form of the Doppler waves. Pharmaco-Doppler sonography includes the evaluation of blood-flow velocities within the dorsal and deep cavernous arteries of the penis before and after intracavernous application of a vasoactive drug. The following main criteria have proven to be most important for analysis of the Doppler curves: evaluation of the amplitude height, the actual wave form, differences between the left and right arteries and along the individual vessel, amplitude increase, and elevation of the curve baseline after pharmaco stimulation. The most frequent mistakes made during evaluation of the penile arteries are changes in the probe angle, pressure put on the artery by the probe during evaluation and a false estimation of the evaluation time after pharmaco stimulation. Recently, duplex sonography of the penile arteries has been introduced, and this method allows an accurate measurement of the blood-flow velocity and arterial diameter changes before and after application of the drug. Furthermore, additional calculation of the resistancy index permits determination of the vascular resistance and optimizes the evaluation of the penile arterial status. The technical details, the method, and the analyzation criteria are all explained in detail.

  18. Use of a tethersonde measurement system to conduct a Doppler SODAR performance audit

    SciTech Connect

    Wilkerson, G.W.; Catizone, P.A.; Coble, T.D.

    1994-12-31

    With the increased usage of dispersion models that require stack top wind information, such as the Complex Terrain Dispersion Model (CTDM), the need for a reliable method to collect elevated wind data has also increased. Doppler Sound Detection and Ranging (SODAR) instruments have gained recognition as a viable means of collecting such data. SODAR technology has improved greatly over the last decade and is now a cost effective alternative to tall meteorological towers. SODARs are remote sensing devices that sample the atmosphere and calculate wind speed and wind direction data at different altitudes. This is accomplished by measuring the doppler shift of an acoustic pulse emitted by a ground level antenna.

  19. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  20. Doppler echocardiography in stress testing.

    PubMed

    Teague, S M

    1991-06-01

    Doppler ultrasound may have a role in the stress testing laboratory for the identification of patients with coronary disease through the assessment of dynamic ventricular systolic function. Quantitative systolic ejection phase indexes of maximal acceleration, peak velocity, and volume of blood ejected from the left ventricle can be obtained in the exercising patient. Trials comparing stress Doppler ultrasound with ST-segment changes, gated blood pool radionuclide or echocardiographic studies of ejection fraction or wall motion abnormality, and thallium scintigraphic perfusion defects have returned comparable or better sensitivity and specificity referencing coronary angiography. Graded treadmill exercise, stationary bicycle exercise, and pharmacological stress (dipyridamole) have been used. The normal Doppler stress response is a near linear increase in peak ejection velocity with increasing cardiac work, as reflected in heart rate. Patients with coronary artery disease show blunted augmentation of Doppler ejection dynamics between rest and peak stress, and the degree of blunting appears to be proportional to the anatomic extent of coronary disease and the magnitude of ventricular perfusion and performance impairment. Stress Doppler ultrasound achieves diagnostic power for coronary disease with ultrasonic technology, inexpensive equipment, without ionizing radiation, and few personnel.

  1. The effect of dead elements on the accuracy of Doppler ultrasound measurements.

    PubMed

    Vachutka, Jaromir; Dolezal, Ladislav; Kollmann, Christian; Klein, Jakob

    2014-01-01

    The objective of this study is to investigate the effect of multiple dead elements in an ultrasound probe on the accuracy of Doppler ultrasound measurements. For this work, we used a specially designed ultrasound imaging system, the Ultrasonix Sonix RP, that provides the user with the ability to disable selected elements in the probe. Using fully functional convex, linear, and phased array probes, we established a performance baseline by measuring the parameters of a laminar parabolic flow profile. These same parameters were then measured using probes with 1 to 10 disabled elements. The acquired velocity spectra from the functional probes and the probes with disabled elements were then analyzed to determine the overall Doppler power, maximum flow velocity, and average flow velocity. Color Flow Doppler images were also evaluated in a similar manner. The analysis of the Doppler spectra indicates that the overall Doppler power as well as the detected maximum and average velocities decrease with the increasing number of disabled elements. With multiple disabled elements, decreases in the detected maximum and average velocities greater than 20% were recorded. Similar results were also observed with Color Flow Doppler measurements. Our results confirmed that the degradation of the ultrasound probe through the loss of viable elements will negatively affect the quality of the Doppler-derived diagnostic information. We conclude that the results of Doppler measurements cannot be considered accurate or reliable if there are four or more contiguous dead elements in any given probe.

  2. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  3. Planetary Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Murphy, N.; Jefferies, S.; Hart, M.; Hubbard, W. B.; Showman, A. P.; Hernandez, G.; Rudd, L.

    2014-12-01

    Determining the internal structure of the solar system's gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries. A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn's C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system's giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made

  4. A model for the vertical sound speed and absorption profiles in Titan's atmosphere based on Cassini-Huygens data.

    PubMed

    Petculescu, Andi; Achi, Peter

    2012-05-01

    Measurements of thermodynamic quantities in Titan's atmosphere during the descent of Huygens in 2005 are used to predict the vertical profiles for the speed and intrinsic attenuation (or absorption) of sound. The calculations are done using one author's previous model modified to accommodate non-ideal equations of state. The vertical temperature profile places the tropopause about 40 km above the surface. In the model, a binary nitrogen-methane composition is assumed for Titan's atmosphere, quantified by the methane fraction measured by the gas chromatograph/mass spectrometer (GCMS) onboard Huygens. To more accurately constrain the acoustic wave number, the variation of thermophysical properties (specific heats, viscosity, and thermal conductivity) with altitude is included via data extracted from the NIST Chemistry WebBook [URL webbook.nist.gov, National Institute of Standards and Technology Chemistry WebBook (Last accessed 10/20/2011)]. The predicted speed of sound profile fits well inside the spread of the data recorded by Huygens' active acoustic sensor. In the N(2)-dominated atmosphere, the sound waves have negligible relaxational dispersion and mostly classical (thermo-viscous) absorption. The cold and dense environment of Titan can sustain acoustic waves over large distances with relatively small transmission losses, as evidenced by the small absorption. A ray-tracing program is used to assess the bounds imposed by the zonal wind-measured by the Doppler Wind Experiment on Huygens-on long-range propagation.

  5. Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: The role of vocalizer body size and voice-acoustic allometry

    NASA Astrophysics Data System (ADS)

    Rendall, Drew; Kollias, Sophie; Ney, Christina; Lloyd, Peter

    2005-02-01

    Key voice features-fundamental frequency (F0) and formant frequencies-can vary extensively between individuals. Much of the variation can be traced to differences in the size of the larynx and vocal-tract cavities, but whether these differences in turn simply reflect differences in speaker body size (i.e., neutral vocal allometry) remains unclear. Quantitative analyses were therefore undertaken to test the relationship between speaker body size and voice F0 and formant frequencies for human vowels. To test the taxonomic generality of the relationships, the same analyses were conducted on the vowel-like grunts of baboons, whose phylogenetic proximity to humans and similar vocal production biology and voice acoustic patterns recommend them for such comparative research. For adults of both species, males were larger than females and had lower mean voice F0 and formant frequencies. However, beyond this, F0 variation did not track body-size variation between the sexes in either species, nor within sexes in humans. In humans, formant variation correlated significantly with speaker height but only in males and not in females. Implications for general vocal allometry are discussed as are implications for speech origins theories, and challenges to them, related to laryngeal position and vocal tract length. .

  6. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)

    NASA Astrophysics Data System (ADS)

    Martin, E. H.; Zafar, A.; Caughman, J. B. O.; Isler, R. C.; Bell, G. L.

    2016-11-01

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of Hδ spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  7. Applications of Doppler-Free Saturation Spectroscopy for Edge Physics Studies

    SciTech Connect

    Martin, Elijah H; Caughman, John B; Isler, Ralph C; Bell, Gary L

    2016-01-01

    Doppler-free saturation spectroscopy provides a very powerful method to obtained detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we will present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H spectra will be presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  8. Spatial and temporal variability of zooplankton off New Caledonia (Southwestern Pacific) from acoustics and net measurements

    NASA Astrophysics Data System (ADS)

    Smeti, Houssem; Pagano, Marc; Menkes, Christophe; Lebourges-Dhaussy, Anne; Hunt, Brian P. V.; Allain, Valerie; Rodier, Martine; de Boissieu, Florian; Kestenare, Elodie; Sammari, Cherif

    2015-04-01

    Spatial and temporal distribution of zooplankton off New Caledonia in the eastern Coral Sea was studied during two multidisciplinary cruises in 2011, during the cool and the hot seasons. Acoustic measurements of zooplankton were made using a shipborne acoustic Doppler current profiler (S-ADCP), a scientific echosounder and a Tracor acoustic profiling system (TAPS). Relative backscatter from ADCP was converted to biomass estimates using zooplankton weights from net-samples collected during the cruises. Zooplankton biomass was estimated using four methods: weighing, digital imaging (ZooScan), ADCP and TAPS. Significant correlations were found between the different biomass estimators and between the backscatters of the ADCP and the echosounder. There was a consistent diel pattern in ADCP derived biomass and echosounder backscatter resulting from the diel vertical migration (DVM) of zooplankton. Higher DVM amplitudes were associated with higher abundance of small zooplankton and cold waters to the south of the study area, while lower DVM amplitudes in the north were associated with warmer waters and higher abundance of large organisms. Zooplankton was largely dominated by copepods (71-73%) among which calanoids prevailed (40-42%), with Paracalanus spp. as the dominant species (16-17%). Overall, zooplankton exhibited low abundance and biomass (mean night dry biomass of 4.7 ± 2.2 mg m3 during the cool season and 2.4 ± 0.4 mg m3 during the hot season) but high richness and diversity (Shannon index ˜4). Substantially enhanced biomass and abundance appeared to be episodically associated with mesoscale features contributing to shape a rather patchy zooplankton distribution.

  9. Influences of Doppler effect on spontaneously generated coherence in a Rb atom

    NASA Astrophysics Data System (ADS)

    Song, Zhuo; Zheng, Y.

    2015-11-01

    We study the influences of Doppler effect on spontaneously generated coherence in a Rb atom driven by a probe field and two control fields. We show that the propagating directions of the lasers and the wave-vector mismatch have influence on the absorption properties of the atom. By employing the Doppler effect and spontaneous generated coherence, the ultra-narrow lines in probe absorption profile near two-photon resonant position can be obtained.

  10. Wind Measurements with High Energy 2 Micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Koch, Grady J.; Petros, Mulugeta; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Ji-Rong; Kavaya, Michael J.; Singh, Upendra N.

    2004-01-01

    A coherent Doppler lidar based on an injection seeded Ho:Tm:YLF pulsed laser was developed for wind measurements. A transmitted pulse energy over 75 mJ at 5 Hz repetition rate has been demonstrated. Designs are presented on the laser, injection seeding, receiver, and signal processing subsystems. Sample data of atmospheric measurements are presented including a wind profile extending from the atmospheric boundary layer (ABL) to the free troposphere.

  11. Evaluation of skin vasomotor reflexes by using laser Doppler velocimetry.

    PubMed

    Low, P A; Neumann, C; Dyck, P J; Fealey, R D; Tuck, R R

    1983-09-01

    We used a laser Doppler velocimeter for measurement of skin blood flow in 63 healthy control subjects and in patients with dysautonomias. We measured vasoconstrictor responses to inspiratory gasp, standing, Valsalva maneuver, and cold stimulus. An abnormal profile was defined in terms of the percentage of abnormal test results, the results of individual tests, and the alterations in the shape of the recorded response. These measurements of vasomotor function may permit the diagnosis of focal abnormalities of peripheral nerve sympathetic failure. PMID:6310277

  12. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  13. Wayside bearing fault diagnosis based on a data-driven Doppler effect eliminator and transient model analysis.

    PubMed

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-05-05

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects.

  14. Wayside Bearing Fault Diagnosis Based on a Data-Driven Doppler Effect Eliminator and Transient Model Analysis

    PubMed Central

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-01-01

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197

  15. Wayside bearing fault diagnosis based on a data-driven Doppler effect eliminator and transient model analysis.

    PubMed

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-01-01

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197

  16. Radiative Amplification of Acoustic Waves in Hot Stars

    NASA Technical Reports Server (NTRS)

    Wolf, B. E.

    1985-01-01

    The discovery of broad P Cygni profiles in early type stars and the detection of X-rays emitted from the envelopes of these stars made it clear, that a considerable amount of mechanical energy has to be present in massive stars. An attack on the problem, which has proven successful when applied to late type stars is proposed. It is possible that acoustic waves form out of random fluctuations, amplify by absorbing momentum from stellar radiation field, steepen into shock waves and dissipate. A stellar atmosphere was constructed, and sinusoidal small amplitude perturbations of specified Mach number and period at the inner boundary was introduced. The partial differential equations of hydrodynamics and the equations of radiation transfer for grey matter were solved numerically. The equation of motion was augmented by a term which describes the absorption of momentum from the radiation field in the continuum and in lines, including the Doppler effect and allows for the treatment of a large number of lines in the radiative acceleration term.

  17. Method for measuring Doppler shifts in arc-heated flows.

    PubMed

    Aeschliman, D P; Hill, R A

    1972-01-01

    A novel method of determining both the Doppler and Stark shifts in a single measurement of spectral lines emitted by the arc-heated flow from a plasma jet has been successfully demonstrated. The method uses a spherical mirror arranged with its optical axis coincident with the optical axis of a Fabry-Perot interferometer and with its center of curvature at the center line of the flow. The common optical axis lies at an angle to the flow. With this system, both red-and blue-shifted line profiles are recorded in the same spectral scan. If conditions are such that the red-and blue-shifted profiles are not resolvable, the blue-shifted component is chopped so that the recorded signal consists of the envelopes of both the red-shifted profile and the superimposed red-and blue-shifted profiles. The wavelength difference between the blue-and red-shifted line profiles is exactly twice the Doppler shift integrated along a line of sight through the flow and is independent of a Stark shift. The Stark shift is given by the wavelength difference between the absolute line center and the midpoint of the red-and blue-shifted lines. Abel inversion of integrated line shift data has yielded radial velocity profiles to an accuracy of +/-3% in a supersonic, arc-heated argon flow.

  18. Right Ventricular Tissue Doppler in Space Flight

    NASA Technical Reports Server (NTRS)

    Garcia, Kathleen M.; Hamilton, Douglas R.; Sargsyan, Ashot E.; Ebert, Douglas; Martin, David S.; Barratt, Michael R.; Martin, David S.; Bogomolov, Valery V.; Dulchavsky, Scott A.; Duncan, J. Michael

    2010-01-01

    The presentation slides review normal physiology of the right ventricle in space, general physiology of the right ventricle; difficulties in imaging the heart in space, imaging methods, tissue Doppler spectrum, right ventricle tissue Doppler, and Rt Tei Index.

  19. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    NASA Astrophysics Data System (ADS)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  20. Determining radiated sound power of building structures by means of laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Roozen, N. B.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    This paper introduces a methodology that makes use of laser Doppler vibrometry to assess the acoustic insulation performance of a building element. The sound power radiated by the surface of the element is numerically determined from the vibrational pattern, offering an alternative for classical microphone measurements. Compared to the latter the proposed analysis is not sensitive to room acoustical effects. This allows the proposed methodology to be used at low frequencies, where the standardized microphone based approach suffers from a high uncertainty due to a low acoustic modal density. Standardized measurements as well as laser Doppler vibrometry measurements and computations have been performed on two test panels, a light-weight wall and a gypsum block wall and are compared and discussed in this paper. The proposed methodology offers an adequate solution for the assessment of the acoustic insulation of building elements at low frequencies. This is crucial in the framework of recent proposals of acoustic standards for measurement approaches and single number sound insulation performance ratings to take into account frequencies down to 50 Hz.

  1. Optimization of Concurrent Deployments of the Juvenile Salmon Acoustic Telemetry System and Other Hydroacoustic Equipment at John Day Dam

    SciTech Connect

    Ploskey, Gene R.; Hughes, James S.; Khan, Fenton; Kim, Jina; Lamarche, Brian L.; Johnson, Gary E.; Choi, Eric Y.; Faber, Derrek M.; Wilberding, Matthew C.; Deng, Zhiqun; Weiland, Mark A.; Zimmerman, Shon A.; Fischer, Eric S.; Cushing, Aaron W.

    2008-09-01

    The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimization study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage

  2. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  3. Flowfield characteristics of an aerodynamic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Yarin, A. L.; Brenn, G.; Keller, J.; Pfaffenlehner, M.; Ryssel, E.; Tropea, C.

    1997-11-01

    A droplet held in a single-axis ultrasonic levitator will principally sustain a certain external blowing along the levitation axis, which introduces the possibility of investigating heat and/or mass transfer from the droplet under conditions which are not too remote from those in spray systems. The focus of the present work is on the influence of the acoustic field on the external flow. More specifically, an axisymmetric submerged gas jet in an axial standing acoustic wave is examined, both in the absence and presence of a liquid droplet. Flow visualization is first presented to illustrate the global flow effects and the operating windows of jet velocities and acoustic powers which are suitable for further study. An analytic and numeric solution, based on the parabolic boundary layer equations are then given for the case of no levitated droplet, providing quantitative estimates of the acoustic field/flow interaction. Detailed velocity measurements using a laser Doppler anemometer verify the analytic results and extend these to the case of a levitated droplet. Some unresolved discrepancy remains in predicting the maximum velocity attainable before the droplet is blown out of the levitator. Two methods are developed to estimate the sound pressure level in the levitator by comparing flowfield patterns with analytic results. These results and observations are used to estimate to what extent acoustic aerodynamic levitators can be used in the future for investigating transport properties of individual droplets.

  4. The Doppler Effect--A New Approach

    ERIC Educational Resources Information Center

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  5. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  6. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  7. Time-Height Variations of Ion-Line Doppler Spectra at HAARP

    NASA Astrophysics Data System (ADS)

    Watkins, B. J.; Fallen, C. T.

    2012-12-01

    O-mode HF heating results in enhanced electron temperatures in the lower ionosphere that in turn result in enhanced electron densities due to temperature-dependent molecular ion chemistry. As a result, for a fixed HF heating frequency, the altitude of the HF interaction region decreases with time after the onset of HF heating. Corresponding altitudes of the HF-enhanced ion-line signals detected with the MUIR UHF-frequency diagnostic radar also decrease with time. For the data presented here, the radar range resolution was 600 meters, and time-height Doppler spectra were obtained for every pulse (10ms inter-pulse period) of the UHF-radar. We have therefore been able to examine the height-dependent spectral characteristics of ion-line signals every 10ms. The UHF radar signals show a brief initial period after HF turn-on (about 120ms) when signals are scattered around zero Doppler over about 2km height range. The UHF signals then rapidly convert to a stable configuration with two ion-line signatures (approximately +/- 5kHz Doppler values); above a fixed height there is only positive Doppler data (downward ion-acoustic waves), and below that height there is only negative Doppler data (upward ion-acoustic waves). The power associated with the downward ion-acoustic waves is typically stronger than the upward waves. For the example shown, this spectral type persists for the entire duration of the HF heating time, at progressively lower heights. We suggest that the spectral characteristics are associated with HF frequencies near the 3rd gyro harmonic.

  8. Airborne cw Doppler lidar (ADOLAR)

    NASA Astrophysics Data System (ADS)

    Rahm, Stefan; Werner, Christian; Nagel, E.; Herrmann, H.; Klier, M.; Knott, H. P.; Haering, R.; Wildgruber, J.

    1994-12-01

    During the last 10 years the DLR container LDA (Laser Doppler Anemometer) was used for many wind related measurements in the atmospheric boundary layer. The experience out of this were used to construct an airborne Doppler lidar ADOLAR. Based on the available Doppler lidars it is now proposed to perform a campaign to demonstrate the concept of the spaceborne sensor ALADIN, and to answer some questions concerning the signal quality from clouds, water and land. For the continuous wave CO2 laser, the energy is focused by the telescope into the region of investigation. Some of the radiation is back scattered by small aerosol particles drifting with the wind speed through the sensing volume. The back scattered radiation is collected by the telescope and detected by coherent technique. With the laser Doppler method one gets the radial wind component. To determine the magnitude and direction of the horizontal wind, some form of scanning in azimuth and elevation is required. To keep the airborne system compact, the transceiver optics is directly coupled to a wedge scanner which provides the conical scan with the axis in Nadir direction from the aircraft. The system ADOLAR was tested in 1994. Results of the flight over the lake Ammersee are presented and are compared with the data of the inertial reference system of the aircraft.

  9. Simulating photospheric Doppler velocity fields

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1988-01-01

    A method is described for constructing artificial data that realistically simulate photospheric velocity fields. The velocity fields include rotation, differential rotation, meridional circulation, giant cell convection, supergranulation, convective limb shift, p-mode oscillations, and observer motion. Data constructed by this method can be used for testing algorithms designed to extract and analyze these velocity fields in real Doppler velocity data.

  10. JAWS multiple Doppler derived winds

    NASA Technical Reports Server (NTRS)

    Elmore, Kimberly L.

    1987-01-01

    An elementary working knowledge is given of the advantages and limitations of the multiple Doppler radar analyses that have recently become available from the Joint Airport Weather Studies (JAWS) project. What Doppler radar is and what it does is addressed and the way Doppler radars were used in the JAWS project to gather wind shear data is described. The working definition of wind shear used is winds that affect aircraft flight over a span of 15 to 45 seconds and turbulence is defined as air motion that cause abrupt aircraft motions. The JAWS data current available contain no turbulence data. The concept of multiple Doppler analysis and the geometry of how it works are described, followed by an explanation of how data gathered in radar space are interpolated to a common Cartesian coordinate system and the limitations involved. A discussion is also presented of the analysis grid and how it was constructed. What the user actually gets is discussed, followed by a discussion of the expected errors in the three orthogonal wind components. Finally, a discussion is presented of why JAWS data are significant.

  11. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  12. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  13. Doppler-shift estimation of flat underwater channel using data-aided least-square approach

    NASA Astrophysics Data System (ADS)

    Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing

    2015-06-01

    In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

  14. Human polarimetric micro-doppler

    NASA Astrophysics Data System (ADS)

    Tahmoush, David; Silvious, Jerry

    2011-06-01

    Modern radars can pick up target motions other than just the principle target Doppler; they pick out the small micro-Doppler variations as well. These can be used to visually identify both the target type as well as the target activity. We model and measure some of the micro-Doppler motions that are amenable to polarimetric measurement. Understanding the capabilities and limitations of radar systems that utilize micro-Doppler to measure human characteristics is important for improving the effectiveness of these systems at securing areas. In security applications one would like to observe humans unobtrusively and without privacy issues, which make radar an effective approach. In this paper we focus on the characteristics of radar systems designed for the estimation of human motion for the determination of whether someone is loaded. Radar can be used to measure the direction, distance, and radial velocity of a walking person as a function of time. Detailed radar processing can reveal more characteristics of the walking human. The parts of the human body do not move with constant radial velocity; the small micro-Doppler signatures are timevarying and therefore analysis techniques can be used to obtain more characteristics. Looking for modulations of the radar return from arms, legs, and even body sway are being assessed by researchers. We analyze these techniques and focus on the improved performance that fully polarimetric radar techniques can add. We perform simulations and fully polarimetric measurements of the varying micro-Doppler signatures of humans as a function of elevation angle and azimuthal angle in order to try to optimize this type of system for the detection of arm motion, especially for the determination of whether someone is carrying something in their arms. The arm is often bent at the elbow, providing a surface similar to a dihedral. This is distinct from the more planar surfaces of the body and allows us to separate the signals from the arm (and

  15. A Doppler transient model based on the laplace wavelet and spectrum correlation assessment for locomotive bearing fault diagnosis.

    PubMed

    Shen, Changqing; Liu, Fang; Wang, Dong; Zhang, Ao; Kong, Fanrang; Tse, Peter W

    2013-11-18

    The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully.

  16. A Doppler transient model based on the laplace wavelet and spectrum correlation assessment for locomotive bearing fault diagnosis.

    PubMed

    Shen, Changqing; Liu, Fang; Wang, Dong; Zhang, Ao; Kong, Fanrang; Tse, Peter W

    2013-01-01

    The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully. PMID:24253191

  17. Acoustic measurement method of the volume flux of a seafloor hydrothermal plume

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2011-12-01

    Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a

  18. Convert Acoustic Resonances to Orbital Angular Momentum.

    PubMed

    Jiang, Xue; Li, Yong; Liang, Bin; Cheng, Jian-Chun; Zhang, Likun

    2016-07-15

    We use acoustic resonances in a planar layer of half-wavelength thickness to twist wave vectors of an in-coming plane wave into a spiral phase dislocation of an outgoing vortex beam with orbital angular momentum (OAM). The mechanism is numerically and experimentally demonstrated by producing an airborne Bessel-like vortex beam. Our acoustic resonance-based OAM production differs from existing means for OAM production by enormous phased spiral sources or by elaborate spiral profiles. Our study can advance the capability of generating phase dislocated wave fields for further applications of acoustic OAM.

  19. Convert Acoustic Resonances to Orbital Angular Momentum.

    PubMed

    Jiang, Xue; Li, Yong; Liang, Bin; Cheng, Jian-Chun; Zhang, Likun

    2016-07-15

    We use acoustic resonances in a planar layer of half-wavelength thickness to twist wave vectors of an in-coming plane wave into a spiral phase dislocation of an outgoing vortex beam with orbital angular momentum (OAM). The mechanism is numerically and experimentally demonstrated by producing an airborne Bessel-like vortex beam. Our acoustic resonance-based OAM production differs from existing means for OAM production by enormous phased spiral sources or by elaborate spiral profiles. Our study can advance the capability of generating phase dislocated wave fields for further applications of acoustic OAM. PMID:27472113

  20. Acoustic emission descriptors

    NASA Astrophysics Data System (ADS)

    Witos, Franciszek; Malecki, Ignacy

    The authors present selected problems associated with acoustic emission interpreted as a physical phenomenon and as a measurement technique. The authors examine point sources of acoustic emission in isotropic, homogeneous linearly elastic media of different shapes. In the case of an unbounded medium the authors give the analytical form of the stress field and the wave shift field of the acoustic emission. In the case of a medium which is unbounded plate the authors give a form for the equations which is suitable for numerical calculation of the changes over time of selected acoustic emission values. For acoustic emission as a measurement technique, the authors represent the output signal as the resultant of a mechanical input value which describes the source, the transient function of the medium, and the transient function of specific components of the measurement loop. As an effect of this notation, the authors introduce the distinction between an acoustic measurement signal and an acoustic measurement impulse. The authors define the basic parameters of an arbitrary impulse. The authors extensively discuss the signal functions of acoustic emission impulses and acoustic emission signals defined in this article as acoustic emission descriptors (or signal functions of acoustic emission impulses) and advanced acoustic emission descriptors (which are either descriptors associated with acoustic emission applications or the signal functions of acoustic emission signals). The article also contains the results of experimental research on three different problems in which acoustic emission descriptors associated with acoustic emission pulses, acoustic emission applications, and acoustic emission signals are used. These problems are respectively: a problem of the amplitude-load characteristics of acoustic emission pulses in carbon samples subjected to compound uniaxial compression, the use of acoustic emission to predict the durability characteristics of conveyor belts, and

  1. Nonlinear characterization of a single-axis acoustic levitator.

    PubMed

    Andrade, Marco A B; Ramos, Tiago S; Okina, Fábio T A; Adamowski, Julio C

    2014-04-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed. PMID:24784677

  2. Nonlinear characterization of a single-axis acoustic levitator

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-04-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  3. Nonlinear characterization of a single-axis acoustic levitator

    SciTech Connect

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  4. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  5. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  6. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  7. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  8. Misinterpretation of lateral acoustic variations on high-resolution seismic reflection profiles as fault offsets of Holocene bay mud beneath the southern part of San Francisco Bay, California

    USGS Publications Warehouse

    Marlow, M. S.; Hart, P.E.; Carlson, P.R.; Childs, J. R.; Mann, D. M.; Anima, R.J.; Kayen, R.E.

    1996-01-01

    We collected high-resolution seismic reflection profiles in the southern part of San Francisco Bay in 1992 and 1993 to investigate possible Holocene faulting along postulated transbay bedrock fault zones. The initial analog records show apparent offsets of reflection packages along sharp vertical boundaries. These records were originally interpreted as showing a complex series of faults along closely spaced, sharp vertical boundaries in the upper 10 m (0.013 s two-way travel time) of Holocene bay mud. A subsequent survey in 1994 was run with a different seismic reflection system, which utilized a higher power source. This second system generated records with deeper penetration (max. 20 m, 0.026 s two-way travel time) and demonstrated that the reflections originally interpreted as fault offsets by faulting were actually laterally continuous reflection horizons. The pitfall in the original interpretations was caused by lateral variations in the amplitude brightness of reflection events, coupled with a long (greater than 15 ms) source signature of the low-power system. These effects combined to show apparent offsets of reflection packages along sharp vertical boundaries. These boundaries, as shown by the second system, in fact occur where the reflection amplitude diminishes abruptly on laterally continuous reflection events. This striking lateral variation in reflection amplitude is attributable to the localized presence of biogenic(?) gas.

  9. TIMED Doppler Interferometer: Overview and recent results

    NASA Astrophysics Data System (ADS)

    Killeen, T. L.; Wu, Q.; Solomon, S. C.; Ortland, D. A.; Skinner, W. R.; Niciejewski, R. J.; Gell, D. A.

    2006-10-01

    The Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite carries a limb-scanning Fabry-Perot interferometer designed to perform remote-sensing measurements of upper atmosphere winds and temperatures globally. This instrument is called the TIMED Doppler Interferometer, or TIDI. This paper provides an overview of the TIDI instrument design, on-orbit performance, operational modes, data processing and inversion procedures, and a summary of wind results to date. Daytime and nighttime neutral winds in the mesosphere and lower thermosphere/ionosphere (MLTI) are measured on TIDI using four individual scanning telescopes that collect light from various upper atmosphere airglow layers on both the cold and warm sides of the high-inclination TIMED spacecraft. The light is spectrally analyzed using an ultrastable plane etalon Fabry-Perot system with sufficient spectral resolution to determine the Doppler line characteristics of atomic and molecular emissions emanating from the MLTI. The light from all four telescopes and from an internal calibration field passes through the etalon and is combined on a single image plane detector using a Circle-to-Line Interferometer Optic (CLIO). The four geophysical fields provide orthogonal line-of-sight measurements to either side of the satellite's path and these are analyzed to produce altitude profiles of vector winds in the MLTI. The TIDI wind measurements presented here are from the molecular oxygen (0-0) band, covering the altitude region 85-105 km. The unique TIDI design allows for more extended local time coverage of wind structures than previous wind-measuring instruments from high-inclination satellites. The TIDI operational performance has been nominal except for two anomalies: (1) higher than expected background white light caused by a low-level light leak and (2) ice deposition on cold optical surfaces. Both anomalies are well understood and the instrumental modes and data analysis techniques have been

  10. Using microwave Doppler radar in automated manufacturing applications

    NASA Astrophysics Data System (ADS)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help

  11. A Fabry-Perot interferometer for accurate measurement of temporal changes in stellar Doppler shift

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. S.; Smith, P. H.; Frecker, J. E.; Merline, W. J.; Perry, M. L.

    1986-01-01

    The scrambling of incident light by an optical filter, and the stability obtainable through wavelength calibration by means of a tilt-tunable Fabry-Perot etalon, allow the accurate observation of Doppler shift changes in stellar absorption lines. Distinct, widely spaced monochromatic images of the entrance aperture are formed in the focal plane of the camera through a sampling of about 350 points on the profile of the stellar spectrum by successive orders of interferometric transmission through the etalon. Changes in Doppler shift modify the relative intensities of these images, in proportion to the slope of the spectral profile at each point sampled.

  12. First images of thunder: Acoustic imaging of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  13. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1987-01-01

    Acoustic propagation in an atmosphere with a specific form of temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solution have been considered the primary emphasis has been on solutions of the acoustic wave equation with point force where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  14. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1988-01-01

    Acoustic propagation in an atmosphere with a specific form of a temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solutions have been considered, the primary emphasis has been on solutions of the acoustic wave equation with point source where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  15. Chronic mitral regurgitation and Doppler estimation of left ventricular filling pressures in patients with heart failure

    NASA Technical Reports Server (NTRS)

    Temporelli, P. L.; Scapellato, F.; Corra, U.; Eleuteri, E.; Firstenberg, M. S.; Thomas, J. D.; Giannuzzi, P.

    2001-01-01

    Previous studies relating Doppler parameters and pulmonary capillary wedge pressures (PCWP) typically exclude patients with severe mitral regurgitation (MR). We evaluated the effects of varying degrees of chronic MR on the Doppler estimation of PCWP. PCWP and mitral Doppler profiles were obtained in 88 patients (mean age 55 +/- 8 years) with severe left ventricular (LV) dysfunction (mean ejection fraction 23% +/- 5%). Patients were classified by severity of MR. Patients with severe MR had greater left atrial areas, LV end-diastolic volumes, and mean PCWPs and lower ejection fractions (each P <.01). In patients with mild MR, multiple echocardiographic parameters correlated with PCWP; however, with worsening MR, only deceleration time strongly related to PCWP. From stepwise multivariate analysis, deceleration time was the best independent predictor of PCWP overall, and it was the only predictor in patients with moderate or severe MR. Doppler-derived early mitral deceleration time reliably predicts PCWP in patients with severe LV dysfunction irrespective of degree of MR.

  16. Effect of the optical system on the Doppler spectrum in laser-feedback interferometry.

    PubMed

    Mowla, Alireza; Nikolić, Milan; Taimre, Thomas; Tucker, John R; Lim, Yah Leng; Bertling, Karl; Rakić, Aleksandar D

    2015-01-01

    We present a comprehensive analysis of factors influencing the morphology of the Doppler spectrum obtained from a laser-feedback interferometer. We explore the effect of optical system parameters on three spectral characteristics: central Doppler frequency, broadening, and signal-to-noise ratio. We perform four sets of experiments and replicate the results using a Monte Carlo simulation calibrated to the backscattering profile of the target. We classify the optical system parameters as having a strong or weak influence on the Doppler spectrum. The calibrated Monte Carlo approach accurately reproduces experimental results, and allows one to investigate the detailed contribution of system parameters to the Doppler spectrum, which are difficult to isolate in experiment.

  17. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    SciTech Connect

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  18. Frequency diversity for OFDM mobile communication via underwater acoustic channels

    NASA Astrophysics Data System (ADS)

    Qiao, Gang; Wang, Wei; Guo, Ran; Khan, Rehan; Wang, Yue

    2012-03-01

    The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s·Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.

  19. Flow velocity measurement with the nonlinear acoustic wave scattering

    NASA Astrophysics Data System (ADS)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  20. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.