Science.gov

Sample records for acoustic double layers

  1. Quantum dust-acoustic double layers

    NASA Astrophysics Data System (ADS)

    Moslem, W. M.; Shukla, P. K.; Ali, S.; Schlickeiser, R.

    2007-04-01

    The quantum dust-acoustic double layers (QDADLs) are studied in an unmagnetized, collisionless quantum dusty plasma whose constituents are the electrons, ions, and negatively/positively charged dust particles. By employing the quantum hydrodynamical equations and the reductive perturbation technique, a quantum extended Korteweg-de Vries equation is derived. A steady-state double-layer solution of the latter is presented by taking into account the quantum-mechanical effects. It is numerically found that both compressive and rarefactive QDADLs can exist only for positive charged dust particles under the condition ni0/ne0<1, where ni0(ne0) is the unperturbed number density of the ions (electrons). It is further noted that the formation of the compressive and the rarefactive double layers depends on the quantum plasma parameters. The relevance of the present investigation to the dust charge impurities in laser-solid interactions is discussed. In general, this study should be useful for the diagnostics of charged dust impurities in ultrasmall microelectronic and nanoelectronic components, as well as in astrophysical objects where charged dust particles are inherently present.

  2. Quantum electron-acoustic double layers in a magnetoplasma

    SciTech Connect

    Misra, A. P.; Samanta, S.

    2008-12-15

    Using a quantum magnetohydrodynamic (QMHD) model, the existence of small but finite amplitude quantum electron-acoustic double layers (QEADLs) is reported in a magnetized collisionless dense quantum plasma whose constituents are two distinct groups of cold and hot electrons, and the stationary ions forming only the neutralizing background. It is shown that the existence of steady state solutions of these double layers obtained from an extended Korteweg-de Vries (KdV) equation depends parametrically on the ratio of the cold to hot electron unperturbed number density ({delta}), the quantum diffraction parameter (H), the obliqueness parameter (l{sub z}), and the external magnetic field via the normalized electron-cyclotron frequency ({omega}). It is found that the system supports both compressive and rarefactive double layers depending on the parameters {delta} and l{sub z}. The effects of all these parameters on the profiles of the double layers are also examined numerically.

  3. Electrostatic supersolitons and double layers at the acoustic speed

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.

    2015-01-15

    Supersolitons are characterized by subsidiary extrema on the sides of a typical bipolar electric field signature or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It has been proven that supersolitons may exist in several plasmas having at least three constituent species, but they cannot be found in weakly nonlinear theory. Another recent aspect of pseudopotential theory is that in certain plasma models and parameter regimes solitons and/or double layers can exist at the acoustic speed, having no reductive perturbation counterparts. Importantly, they signal coexistence between solitons having positive and negative polarity, in that one solution can be realized at a time, depending on infinitesimal perturbations from the equilibrium state. Weaving the two strands together, we demonstrate here that one can even find supersolitons and double layers at the acoustic speed, as illustrated using the model of cold positive and negative ions, in the presence of nonthermal electrons following a Cairns distribution. This model has been discussed before, but the existence and properties of supersolitons at the acoustic speed were not established at the time of publication.

  4. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  5. Quantum ion-acoustic double layers in unmagnetized dense electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Mahmood, S.; Ali, S.

    2009-04-01

    The existence of small amplitude quantum ion-acoustic double layers is studied in an unmagnetized dense electron-positron-ion plasma. For this purpose, the quantum hydrodynamic model is employed to derive a deformed Korteweg-de Vries (dKdV) equation. The steady state double layer solution of dKdV equation is obtained and its dependence on various parameters is discussed. It is found that only compressive double layers can exist in such plasmas. The analytical and numerical studies reveal that the quantum ion-acoustic double layer structures strongly depend on quantum diffraction effects and positron number density.

  6. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Akhtar, N.; Mahmood, S.

    2011-11-01

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  7. Acoustic double layer structures in dense magnetized electron-positron-ion plasmas

    SciTech Connect

    Akhtar, N.; Mahmood, S.

    2011-11-15

    The acoustic double layer structures are studied using quantum hydrodynamic model in dense magnetized electron-positron-ion plasmas. The extended Korteweg-de Vries is derived using reductive perturbation method. It is found that increase in the ion concentration in dense magnetized electron-positron plasmas increases the amplitude as well as the steepness of the double layer structure. However, increase in the magnetic field strength and decrease in the obliqueness of the nonlinear acoustic wave enhances only the steepness of the double layer structures. The numerical results have also been shown by using the data of the outer layer regions of white dwarfs given in the literature.

  8. Time evolution of ion-acoustic double layers in an unmagnetized plasma

    SciTech Connect

    Bharuthram, R.; Momoniat, E.; Mahomed, F.; Singh, S. V.; Islam, M. K.

    2008-08-15

    Ion-acoustic double layers are examined in an unmagnetized, three-component plasma consisting of cold ions and two temperature electrons. Both of the electrons are considered to be Boltzmann distributed and the ions follow the usual fluid dynamical equations. Using the method of characteristics, a time-dependent solution for ion-acoustic double layers is obtained. Results of the findings may have important consequences for the real time satellite observations in the space environment.

  9. Ion Acoustic Solitons and Double Layers in the Solar Wind Having Kappa Distributed Electrons

    NASA Astrophysics Data System (ADS)

    Lakhina, G. S.; Singh, S. V.

    2015-12-01

    It is shown that two types of, slow and fast, ion-acoustic solitary waves can occur in a solar wind plasma consisting of fluid hot protons, hot alpha particles streaming with respect to protons, and suprathermal electrons having k- distribution. The fast ion-acoustic mode is similar to the ion-acoustic mode of proton-electron plasma, and can support only positive potential solitons. The slow ion-acoustic mode is a new mode that occurs due to the presence of alpha particles. This mode can support both positive and negative solitons and double layers. The slow ion-acoustic mode can exist even when the relative streaming, U0, between alphas and protons is zero, provided alpha temperature, Ti, is not exactly equal to 4 times the proton temperature, Tp. An increase of the k- index leads to an increase in the critical Mach number, maximum Mach number and the maximum amplitude of both slow and fast ion-acoustic solitons. The model can explain the amplitudes and widths, but not shapes, of the weak double layers (WDLs) observed in the solar wind at 1 AU by Wind spacecraft in terms of slow ion-acoustic double layers. It is proposed that both slow and fast ion-acoustic solitons may be responsible for the ion- acoustic like wave activity in the solar wind.

  10. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    NASA Astrophysics Data System (ADS)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Xiaozhou; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen

    2014-10-01

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  11. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    SciTech Connect

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen; Liu, Xiaozhou

    2014-10-14

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  12. Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons

    SciTech Connect

    Rios, L. A.; Galvão, R. M. O.

    2013-11-15

    In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.

  13. Ion acoustic solitons/double layers in two-ion plasma revisited

    SciTech Connect

    Lakhina, G. S. Singh, S. V. Kakad, A. P.

    2014-06-15

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  14. Dynamics of ion acoustic double layers in a magnetized two-population electrons plasma

    SciTech Connect

    Shahmansouri, M.

    2013-10-15

    The obliquely propagating ion acoustic (IA) double-layers are investigated in a magnetized two population electron plasmas. The extended Korteweg–de Vries equation is derived by using the reductive perturbation technique. The effect of obliqueness (l{sub z}) and magnitude of the external magnetic field (ω{sub ci}), as well as the electron number density (β) on the double-layer profile, is studied, and then the ranges of parameters for which the double-layers exist are investigated in detail. We found that the combined effects of l{sub z}, ω{sub ci}, and β significantly modify the basic properties (viz. amplitude and width) of the IA double-layers.

  15. On the generation of double layers from ion- and electron-acoustic instabilities

    NASA Astrophysics Data System (ADS)

    Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan

    2016-03-01

    A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.

  16. Dust acoustic double layers in a magnetized dusty self-gravitating plasma with superthermal particles

    NASA Astrophysics Data System (ADS)

    Sabetkar, Akbar; Dorranian, Davoud

    2016-08-01

    Our prime objective of this paper is to examine the parametric regimes for the existence and polarity of dust acoustic double layers (DADLs) and its solitary structures arising from a magnetized self-gravitating opposite polarity dust-plasma (OPDP) model. The constituents of the OPDP model are two species of positively and negatively charged dust grains, Maxwellian electrons and kappa distributed ions. Contributions of gravitational force only on dust grains are taken into account. For weakly nonlinear analysis, the multiple time scale technique has been used to construct the extended Korteweg-de Vries (E-KdV) and modified Korteweg-de Vries (M-KdV) equations. They pinpoint the evolution of DADLs and solitary structures associated with dust acoustic (DA) mode, respectively. The relevant configurational parameters in our study include the superthermality of ions (κ), obliqueness of propagation (θ), ion concentration (δi), static magnetic field B0 (via ω c p , ω c n ), and self-gravitational field (via γ), as well as the density (μ0), charge (α), and mass (β) ratio of positive to negative dust species. The proposed OPDP model permits positive and negative double layer polarities, while higher order nonlinear equation dictates us only positive polarity solitary structures. The main modification due to an increase in self-gravitational field (via γ) is an enhancement in the spatial width of double layers, yet leaving their amplitude, phase speed, and polarity practically unaffected. With enhanced superthermality and other intrinsic parameters in OPDP model, there is an opposite trend in both amplitude and width of double layers, while the amplitude and the width of solitary waves (via M-KdV equation) undergo the identical behaviors. In particular, the amplitude of solitary waves manifests monotonic behavior for permissible range of obliqueness θ, whereas this scenario is acceptable to only width of double layers. The results are discussed in the context of

  17. Effects of hot electron inertia on electron-acoustic solitons and double layers

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.

    2015-07-15

    The propagation of arbitrary amplitude electron-acoustic solitons and double layers is investigated in a plasma containing cold positive ions, cool adiabatic and hot isothermal electrons, with the retention of full inertial effects for all species. For analytical tractability, the resulting Sagdeev pseudopotential is expressed in terms of the hot electron density, rather than the electrostatic potential. The existence domains for Mach numbers and hot electron densities clearly show that both rarefactive and compressive solitons can exist. Soliton limitations come from the cool electron sonic point, followed by the hot electron sonic point, until a range of rarefactive double layers occurs. Increasing the relative cool electron density further yields a switch to compressive double layers, which ends when the model assumptions break down. These qualitative results are but little influenced by variations in compositional parameters. A comparison with a Boltzmann distribution for the hot electrons shows that only the cool electron sonic point limit remains, giving higher maximum Mach numbers but similar densities, and a restricted range in relative hot electron density before the model assumptions are exceeded. The Boltzmann distribution can reproduce neither the double layer solutions nor the switch in rarefactive/compressive character or negative/positive polarity.

  18. Nonlinear ion-acoustic double-layers in electronegative plasmas with electrons featuring Tsallis distribution

    NASA Astrophysics Data System (ADS)

    Ghebache, Siham; Tribeche, Mouloud

    2016-04-01

    Weakly nonlinear ion-acoustic (IA) double-layers (DLs), which accompany electronegative plasmas composed of positive ions, negative ions, and nonextensive electrons are investigated. A generalized Korteweg-de Vries equation with a cubic nonlinearity is derived using a reductive perturbation method. Different types of electronegative plasmas inspired from the experimental studies of Ichiki et al. (2001) are discussed. It is shown that the IA wave phase velocity, in different mixtures of negative and positive ions, decreases as the nonextensive parameter q increases, before levelling-off at a constant value for larger q. Moreover, a relative increase of Q involves an enhancement of the IA phase velocity. Existence domains of either solitary waves or double-layers are then presented and their parametric dependence is determined. Owing to the electron nonextensivity, our present plasma model can admit compressive as well as rarefactive IA-DLs.

  19. Ion acoustic solitary waves and double layers in a plasma with two temperature electrons featuring Tsallis distribution

    SciTech Connect

    Shalini, Saini, N. S.

    2014-10-15

    The propagation properties of large amplitude ion acoustic solitary waves (IASWs) are studied in a plasma containing cold fluid ions and multi-temperature electrons (cool and hot electrons) with nonextensive distribution. Employing Sagdeev pseudopotential method, an energy balance equation has been derived and from the expression for Sagdeev potential function, ion acoustic solitary waves and double layers are investigated numerically. The Mach number (lower and upper limits) for the existence of solitary structures is determined. Positive as well as negative polarity solitary structures are observed. Further, conditions for the existence of ion acoustic double layers (IADLs) are also determined numerically in the form of the critical values of q{sub c}, f and the Mach number (M). It is observed that the nonextensivity of electrons (via q{sub c,h}), concentration of electrons (via f) and temperature ratio of cold to hot electrons (via β) significantly influence the characteristics of ion acoustic solitary waves as well as double layers.

  20. Confined acoustic and optical plasmons in double-layered quantum-wire arrays with strong tunneling

    NASA Astrophysics Data System (ADS)

    Dethlefsen, A. F.; Heyn, Ch.; Heitmann, D.; Schüller, C.

    2006-05-01

    We investigate electronic excitations in GaAs-AlxGa1-xAs double-layered quantum wire arrays with strong tunneling coupling by resonant inelastic light scattering. By applying an external electric field, we can change the one-dimensional (1D) electron density and the symmetry of the double quantum-well (DQW) structure at the same time. We identify confined optical 1D intersubband plasmons (COP) and confined acoustic 1D intersubband plasmons (CAP). Due to the tunneling coupling, the energies of the CAP exhibit a minimum for a symmetric DQW potential, whereas the energies of the COP are dominated by the total carrier density, and are nearly insensitive to the symmetry of the potential.

  1. Nonlinear propagation of small-amplitude modified electron acoustic solitary waves and double layer in semirelativistic plasmas

    SciTech Connect

    Sah, O.P.; Goswami, K.S. )

    1994-10-01

    Considering an unmagnetized plasma consisting of relativistic drifting electrons and nondrifting thermal ions and by using reductive perturbation method, a usual Korteweg--de Vries (KdV) equation and a generalized form of KdV equation are derived. It is found that while the former governs the dynamics of a small-amplitude rarefactive modified electron acoustic (MEA) soliton, the latter governs the dynamics of a weak compressive modified electron acoustic double layer. The influences of relativistic effect on the propagation of such a soliton and double layer are examined. The relevance of this investigation to space plasma is pointed out.

  2. Ion-acoustic solitons, double layers and supersolitons in a plasma with two ion- and two electron species

    SciTech Connect

    Olivier, C. P. Maharaj, S. K.; Bharuthram, R.

    2015-08-15

    The polarity of ion-acoustic solitons that arise in a plasma with two (same mass, different temperature) ion species and two (different temperature) electron species is investigated. Two different fluid models are compared. The first model treats all species as adiabatic fluids, while the second model treats the ion species as adiabatic, and the electron species as isothermal. Nonlinear structures are analysed via the reductive perturbation analysis and pseudo-potential analysis. Each model supports both slow and fast ion-acoustic solitons, associated with the two (slow and fast) ion-acoustic speeds. The models support both positive and negative polarity solitons associated with the slow ion-acoustic speed. Moreover, results are in good agreement, and both models support positive and negative polarity double layers. For the fast ion-acoustic speed, the first model supports only positive polarity solitons, while the second model supports solitons of both polarity, coexistence of positive and negative polarity solitons, double layers and supersolitons. A novel feature of our analysis is the evaluation of nonlinear structures at critical number densities where polarity changes occur. This analysis shows that solitons that occur at the acoustic speed are neither a necessary nor a sufficient condition for the phenomenon of coexistence. The relationship between the existence regions of supersolitons and soliton polarity is also discussed.

  3. Ion-acoustic double layers in a five component cometary plasma with kappa described electrons and ions

    NASA Astrophysics Data System (ADS)

    Michael, Manesh; Venugopal, C.; Sreekala, G.; Willington, Neethu Theresa; Sebastian, Sijo

    2016-07-01

    We investigate the propagation characteristics of Ion-acoustic solitons and double layers in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdV and modified KdV equations are derived for the system and its solution is plotted for different kappa values and negatively charged oxygen ion densities. It is found that the strength of double layer increases with increasing spectral indices. It, however, decreases with increasing negatively charged oxygen ion densities. The parameter for the transition from compressive to rarefactive soliton is also specified. The presence of negatively charged oxygen ions can significantly affect the nonlinearity coefficients (both quadratic and cubic) of a double layer.

  4. Ion-acoustic solitons, double layers and rogue waves in plasma having superthermal electrons

    NASA Astrophysics Data System (ADS)

    Singh Saini, Nareshpal

    2016-07-01

    Most of the space and astrophysical plasmas contain different type of charged particles with non-Maxwellian velocity distributions (e.g., nonthermal, superthermal, Tsallis ). These distributions are commonly found in the auroral region of the Earth's magnetosphere, planetary magnetosphere, solar and stellar coronas, solar wind, etc. The observations from various satellite missions have confirmed the presence of superthermal particles in space and astrophysical environments. Over the last many years, there have been a much interest in studying the different kind of properties of the electrostatic nonlinear excitations (solitons, double layers, rogue waves etc.) in a multi-component plasmas in the presence of superthermal particles. It has been analyzed that superthermal distributions are more appropriate than Maxwellian distribution for the modeling of space data. It is interesting to study the dynamics of various kinds of solitary waves, Double layers, Shocks etc. in varieties of plasma systems containing different kind of species obeying Lorentzian (kappa-type)/Tsallis distribution. In this talk, I have focused on the study of large amplitude IA solitary structures (bipolar solitary structures, double layers etc.), modulational instability and rogue waves in multicomponent plasmas. The Sagdeev potential method has been employed to setup an energy balance equation, from which we have studied the characteristics of large amplitude solitary waves under the influence of superthermality of charged particles and other plasma parameters. The critical Mach number has been determined, above which solitary structures are observed and its variation with superthermality of electrons and other parameters has also been discussed. Double layers have also been discussed. Multiple scale reductive perturbation method has been employed to derive NLS equation. From the different kind of solutions of this equation, amplitude modulation of envelope solitons and rogue waves have been

  5. Small amplitude electron-acoustic double layers and solitons in fully relativistic plasmas of two-temperature electrons

    SciTech Connect

    Lee, Nam C.

    2009-04-15

    A Korteweg-de Vries (KdV) equation for fully relativistic one dimensional plasmas of arbitrarily large streaming speed and temperature is derived by using the reductive perturbation method. For plasmas with more than two species of particles, the coefficient representing quadratic nonlinearity in KdV can vanish at critical values of certain parameters. To describe the nonlinear evolution at this critical parameter, a modified KdV (mKdV) equation that contains a cubic nonlinear term is obtained. Furthermore, a mixed mKdV equation pertaining to parameters in the vicinity of the critical values is also derived, in which the quadratic and cubic nonlinearities are both present. As an illustration of the results, the mixed mKdV equation is applied to a plasma comprised of cold ions and electrons having cold (T=0) and finite temperature components. For warm temperature T<acoustic nonlinear waves in the shape of double layer (kink) and solitary waves can exist, which have phase speed {radical}(3T/(4+{alpha})m{sub e}) in the rest frame of plasma, where {alpha} is the polytropic index of the equation of state of the warm electrons. The thickness of the transitional layer of the kink structure is of the order of Debye length {lambda}{sub D}. For extremely high temperature T>>m{sub e}c{sup 2}, it is also found that double layer and soliton-type solutions can exist with phase speed {radical}({alpha}-1)c, which is equal to the well known relativistic sound speed c/{radical}(3) for {alpha}=4/3. The thickness of the transition layer scales as {delta}{approx}T{sup -1/4}, which is different from the T<

  6. Dust-ion-acoustic double layers in multi-ion dusty plasma

    SciTech Connect

    Mamun, A. A.; Deeba, F.

    2015-08-15

    A theoretical investigation has been made on nonplanar (cylindrical and spherical) dust-ionacoustic (DIA) double layers (DLs) in a multi-ion dusty plasma system containing inertial positive and negative ions and arbitrarily charged stationary dust. The dust particles have been considered as arbitrarily (either positively or negatively) charged in order to observe the effects of the dust polarity on the DIA DLs. The ion species were considered to be at different temperatures to observe the effects of the temperatures on that waves. The modified Gardner equation, which has been derived by employing the reductive perturbation method, has been used to analyze time-dependent nonplanar and planar DIA DLs. It has been found that the time evolution of DIA DLs is significantly modified not only by the nonplanar geometry, but also by the polarity, temperature, and mass ratio of the constituent particles. It has been also found that the amplitude of cylindrical DIA DL structures is larger than that of 1D planar ones, but smaller than that of the spherical ones.

  7. Large amplitude dust-acoustic double layers in non-thermal plasmas with positive and negative dust

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.; Pillay, S. R.

    2011-11-29

    The existence of large amplitude double layers in a plasma composed of cold negative dust, adiabatic positive dust, non-thermal ions and Boltzmann electrons is investigated using the Sagdeev pseudopotential technique. Both positive potential and negative potential double layers are found to be supported by the model. The variation of the maximum amplitudes of the double layers and corresponding Mach numbers are examined as a function of various plasma parameters. In particular, we investigate to what extent ion non-thermal effects are required for positive potential double layers to occur.

  8. Dust-acoustic solitary waves and double layers in a magnetized dusty plasma with nonthermal ions and dust charge variation

    SciTech Connect

    El-Taibany, W.F.; Sabry, R.

    2005-08-15

    The effect of nonthermal ions and variable dust charge on small-amplitude nonlinear dust-acoustic (DA) waves is investigated. It is found that both compressive and rarefactive solitons exist and depend on the nonthermal parameter a. Using a reductive perturbation theory, a Zakharov-Kuznetsov (ZK) equation is derived. At critical value of a, a{sub c}, a modified ZK equation with third- and fourth-order nonlinearities, is obtained. Depending on a, the solution of the evolution equation reveals whether there is coexistence of both compressive and rarefactive solitary waves or double layers (DLs) with the possibility of their two kinds. In addition, for certain plasma parameters, the solitary wave disappears and a DL is expected. The variation of dust charge number, wave velocity, and soliton amplitude and its width against system parameters is investigated for the DA solitary waves. It is shown that the incorporation of both the adiabatic dust-charge variation and the nonthermal distributed ions modifies significantly the nature of DA solitary waves and DA DLs. The findings of this investigation may be useful in understanding the ion acceleration mechanisms close to the Moon and also enhances our knowledge on pickup ions around unmagnetized bodies, such as comets, Mars, and Venus.

  9. Dust-acoustic Gardner solitons and double layers in dusty plasmas with nonthermally distributed ions of two distinct temperatures

    SciTech Connect

    Tasnim, I.; Mamun, A. A.; Masud, M. M.; Asaduzzaman, M.

    2013-03-15

    A rigorous theoretical investigation has been performed on dust-acoustic (DA) solitary structures in an unmagnetized dusty plasma, consisting of negatively charged mobile dust grains, Boltzmann distributed electrons, and nonthermally distributed ions of two distinct temperatures. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV) and Gardner equations, and their solitary waves (SWs) and double layer (DL) (in case of Gardner equation) solutions are derived by using the reductive perturbation technique. The basic features of the DA Gardner solitons (GSs) and DLs are studied analytically as well as numerically. It has been observed that the GSs significantly differ from K-dV and mK-dV solitons, and only positive potential DLs exist in the system. It is also studied that two-temperature nonthermal ions significantly modify the nature and basic properties of the DA SWs. The present investigation can be very effective for understanding and studying the nonlinear characteristics of the DA waves in laboratory and space dusty plasmas.

  10. Effects of flat-topped ion distribution and dust temperature on small amplitude dust-acoustic solitary waves and double layers in dusty plasma

    SciTech Connect

    Alinejad, H.; Mamun, A. A.

    2010-12-15

    The combined effects of the flat-topped ion distribution and dust temperature are incorporated in the study of small but finite amplitude dust-acoustic (DA) solitary waves (SWs) as well double layers (DLs) in an unmagnetized dusty plasma. Due to the flat-trapped ions, our plasma model admits only rarefactive localized structures. It is found that the effects of dust temperature and resonant particles significantly modify the criteria for the existence of DA SWs and DLs, as well as significantly modify their basic properties.

  11. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  12. Teaching the Double Layer.

    ERIC Educational Resources Information Center

    Bockris, J. O'M.

    1983-01-01

    Suggests various methods for teaching the double layer in electrochemistry courses. Topics addressed include measuring change in absolute potential difference (PD) at interphase, conventional electrode potential scale, analyzing absolute PD, metal-metal and overlap electron PDs, accumulation of material at interphase, thermodynamics of electrified…

  13. Small amplitude dust ion-acoustic solitary waves and double layers in a dusty plasma with flat-topped electron distribution

    SciTech Connect

    Alinejad, H.; Mamun, A. A.

    2010-12-15

    The properties of small but finite amplitude dust ion-acoustic (DIA) solitary waves (SWs) as well double layers (DLs) in a dusty plasma containing warm adiabatic ions, electrons following flat-topped velocity distribution, and arbitrarily (positively or negatively) charged immobile dust are studied. The effects of ion-temperature, resonant electrons, and dust number density are found to significantly modify the criteria for the existence of the DIA SWs and DLs, as well as significantly modify their basic features. It is also shown that the ion-temperature reduces the possibility for the formation of these localized structures, and that their amplitude decreases (increases) with the increase in the negative (positive) dust number density.

  14. Particle simulation of auroral double layers

    NASA Technical Reports Server (NTRS)

    Smith, Bruce L.; Okuda, Hideo

    1987-01-01

    Work on the simulation of auroral double layers (DLs) with realistic particle-in-cell models is presented. An early model simulated weak DLs formed in a self-consistent circuit but under conditions subject to the ion-acoustic instability. Recent work has focused on strong DLs formed when currentless jets are injected into a dipole magnetic field.

  15. Double layer secure sketch

    NASA Astrophysics Data System (ADS)

    Li, Cai

    2012-09-01

    Secure sketch has been applied successfully in a wide variety of applications like cryptography, biometric authentication systems and so on. All of these secure sketches have properties in common namely error-tolerance and small entropy loss. The former ensures an input set w' can unlock the system if w' is substantially overlapped with a template set w while the latter means it is hard for an adversary to get the information of w even with the knowledge of s, which is produced by w and stored in the system publicly. In their constructions, they all consider w as a set of atomic elements. However, in the real word, it is very likely the elements in the template set are sets as well. In this paper, we propose a double layer secure sketch to address this issue.

  16. Roles of superthermal electrons and positrons on positron-acoustic solitary waves and double layers in electron–positron–ion plasmas

    SciTech Connect

    Alam, M. S.; Uddin, M. J.; Mamun, A. A.; Masud, M. M.

    2014-09-01

    Positron-acoustic (PA) solitary waves (SWs) and double layers (DLs) in four-component plasmas consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated both numerically and analytically by deriving Korteweg–de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations along with their DLs solutions using the reductive perturbation method. It is examined that depending on the plasma parameters, the K-dV SWs, Gardner SWs, and DLs support either compressive or rarefactive structures, whereas mK-dV SWs support only compressive structure. It is also found that the presence of superthermal (kappa distributed) hot positrons and hot electrons significantly modify the basic features of PA SWs as well as PA DLs. Besides, the critical number density ratio of hot positrons and cold positrons play an important role in the polarity of PA SWs and DLs. The implications of our results in different space as well as laboratory plasma environments are briefly discussed.

  17. Acoustic radiation from single and double ribbed circular cylindrical shells

    NASA Astrophysics Data System (ADS)

    Burroughs, C. B.; Hayek, S. I.; Hallander, J. E.; Bostian, D. A.

    1984-03-01

    Measurements of the acoustic radiation from single and double ribbed circular cylindrical shells were made on the NUSC Transducer Calibration Platform (TCP) in Lake Seneca, NY. Six different types of mechanical drives were used at each of three locations inside the inner shell. Measurements of the shell vibration and acoustic radiation were made with and without outer shells installed around the inner shell structure. For two types of drives, measurements were made with a pressure release layer installed between the inner and outer shell surfaces. Acoustic radiation measurements were made as a function of frequency from 20 to 5,000 Hz and as a function of observation direction at several frequencies for each shell and drive measurement configuration. Measured acoustic radiation data as a function of frequency have been processed. Analysis of the processed data is presented and discussed. It is shown that the location of the drive had a significant effect on the acoustic radiation. The outer shell reduced the acoustic radiation at shell resonant frequencies, but had little effect on other frequencies. The pressure release layer in the double shell had little effect on the acoustic radiation.

  18. Advanced double layer capacitors

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Forchione, J.; Laconti, A. B.

    1989-01-01

    There is a need for large amounts of power to be delivered rapidly in a number of airborne and space systems. Conventional, portable power sources, such as batteries, are not suited to delivering high peak power pulses. The charge stored at the electrode-electrolyte double layer is, however, much more assessible on a short time scale. Devices exploiting this concept were fabricated using carbon and metal oxides (Pinnacle Research) as the electrodes and sulfuric acid as the electrolyte. The approach reported, replaces the liquid sulfuric acid electrolyte with a solid ionomer electrolyte. The challenge is to form a solid electrode-solid ionomer electrolyte composite which has a high capacitance per geometric area. The approach to maximize contact between the electrode particles and the ionomer was to impregnate the electrode particles using a liquid ionomer solution and to bond the solvent-free structure to a solid ionomer membrane. Ruthenium dioxide is the electrode material used. Three strategies are being pursued to provide for a high area electrode-ionomer contact: mixing of the RuOx with a small volume of ionomer solution followed by filtration to remove the solvent, and impregnation of the ionomer into an already formed RuOx electrode. RuOx powder and electrodes were examined by non-electrochemical techniques. X-ray diffraction has shown that the material is almost pure RuO2. The electrode structure depends on the processing technique used to introduce the Nafion. Impregnated electrodes have Nafion concentrated near the surface. Electrodes prepared by the evaporation method show large aggregates of crystals surrounded by Nafion.

  19. Simulation of auroral double layers

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Joyce, G.

    1979-01-01

    Some basic properties of plasma double layers are deduced from a particle-in-cell computer simulation and related to parallel electric-field structures above the auroral regions. The simulation results on the processes leading to double-layer formation are examined, particularly in relation to the transient stage and double-layer structure and stability. It is concluded that: (1) a large potential difference applied to a finite-length plasma will be concentrated in a shocklike localized region instead of occurring over the entire length of the system; (2) the initial stage in double-layer formation is dominated by a large-potential pulse propagating in the direction of the induced electrostatic drift; (3) the entire potential is dropped over a specific scale length once the double layer has formed; and (4) this scale length is expected to be of the order of 1 km for a double layer above a discrete auroral arc with a potential of 10 kV and the electric-field vector parallel to the magnetic-field vector.

  20. Double layers above the aurora

    NASA Technical Reports Server (NTRS)

    Temerin, M.; Mozer, F. S.

    1987-01-01

    Two different kinds of double layers were found in association with auroral precipitation. One of these is the so-called electrostatic shock, which is oriented at an oblique angle to the magnetic field in such a way that the perpendicular electric field is much larger than the parallel electric field. This type of double layer is often found at the edges of regions of upflowing ion beams and the direction of the electric fields in the shock points toward the ion beam. The potential drop through the shock can be several kV and is comparable to the total potential needed to produce auroral acceleration. Instabilities associated with the shock may generate obliquely propagating Alfven waves, which may accelerate electrons to produce flickering auroras. The flickering aurora provides evidence that the electrostatic shock may have large temporal fluctuations. The other kind of double layer is the small-amplitude double layer found in regions of upward flowing in beams, often in association with electrostatic ion cyclotron waves. The parallel and perpendicular electric fields in these structures are comparable in magnitude. The associated potentials are a few eV. Since many such double layers are found in regions of upward flowing ion beams, the combined potential drop through a set of these double layers can be substantial.

  1. Simulations of double layers in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Fu, X.; Cowee, M.; Gary, S. P.; Winske, D.

    2015-12-01

    A double layer (DL) is a nonlinear electrostatic structure consisting of two layers of opposite charge in the plasma, with a characteristic potential jump and unipolar electric field. Previous observations and simulations of DLs in the auroral region showed that those DLs are closely related to ion acoustic waves and typically propagate at ion sound speed. However, recent observation of DLs in the magnetosphere near the equator shows that some DLs propagate at a speed much greater than ion sound speed, inferring a different type of DL that may be associated with electron acoustic waves. In this study, we investigate the formation of DLs in two scenarios in the magnetosphere using particle-in-cell simulations. First, in a current-carrying uniform plasma, we artificially change the ion to electron mass ratio to study the transition from ion-acoustic DLs to electron-acoustic structures. Second, we study the formation of DLs at the boundary of two electron populations with different temperatures. These results may explain recent observations of different types of nonlinear electrostatic structures by Van Allen Probes.

  2. Tunable acoustic double negativity metamaterial.

    PubMed

    Liang, Z; Willatzen, M; Li, J; Christensen, J

    2012-01-01

    Man-made composite materials called "metamaterials" allow for the creation of unusual wave propagation behavior. Acoustic and elastic metamaterials in particular, can pave the way for the full control of sound in realizing cloaks of invisibility, perfect lenses and much more. In this work we design acousto-elastic surface modes that are similar to surface plasmons in metals and on highly conducting surfaces perforated by holes. We combine a structure hosting these modes together with a gap material supporting negative modulus and collectively producing negative dispersion. By analytical techniques and full-wave simulations we attribute the observed behavior to the mass density and bulk modulus being simultaneously negative. PMID:23152948

  3. Effect of cooler electrons on a compressive ion acoustic solitary wave in a warm ion plasma — Forbidden regions, double layers, and supersolitons

    SciTech Connect

    Ghosh, S. S.; Sekar Iyengar, A. N.

    2014-08-15

    It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%–20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leads to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.

  4. A laboratory investigation of potential double layers

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1987-01-01

    In a triple plasma device, the injection of electron current from the source chamber to the target chamber causes the formation of a potential double layer. At a low current density, the space charge of the injected current produces a virtual cathode-type potential double layer. This double layer is stable, and various wave instabilities are observed to associate with this double layer. As the current density is increased, the double layer becomes unstable, and a moving double layer results. As the current density is increased further, the enhanced ionization causes the neutralization of the space charge of the electron beam, and the beam plasma discharge is ignited.

  5. A laboratory investigation of potential double layers

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1987-01-01

    In a triple plasma device, the injection of electron current from the source chamber to the target chamber causes the formation of a potential double layer. At a low current density, the space charge of the injected current produces a virtual cathode-type potential double layer. This double layer is stable and various wave instabilities are observed to associate with this double layer. As the current density is increased, the double layer becomes unstable and a moving double layer results. As the current density is increased further, the enhanced ionization causes the neutralization of the space charge of the electron beam and the 'beam plasma discharge' is ignited.

  6. Acoustic radar investigations of boundary layer phenomena

    NASA Technical Reports Server (NTRS)

    Marks, J. R.

    1974-01-01

    A comparison is made between acoustic radar echoes and conventional meteorological data obtained from the WKY tower, for the purpose of better understanding the relationships between acoustic radar echoes and boundary layer processes. Two thunderstorm outflow cases are presented and compared to both acoustic radar data and Charba's gust front model. The acoustic radar echoes reveal the boundary between warm and cold air and other areas of mixing and strong thermal gradient quite well. The thunderstorm outflow of 27 June 1972 is found to compare with in most respects to Charba's gust front model. The major difference is the complete separation of the head from the main body of cold air, probably caused by erosion of the area behind the head by mixing with the ambient air. Two cases of nocturnal inversions caused by advection of warmer air aloft are presented. It is found that areas of turbulent mixing or strong thermal gradient can be identified quite easily in the acoustic radar record.

  7. Dynamical aspects of electrostatic double layers

    NASA Astrophysics Data System (ADS)

    Raadu, Michael A.; Rasmussen, J. Juul

    1988-05-01

    Electrostatic double layers have been proposed as an acceleration mechanism in solar flares and other astrophysical objects. They have been extensively studied in the laboratory and by means of computer simulations. The theory of steady-state double layers implies several existence criteria, in particular the Bohm criteria, restricting the conditions under which double layers may form. In the present paper several already published theoretical models of different types of double layers are discussed. It is shown that the existence conditions often imply current-driven instabilities in the ambient plasma, at least for strong double layers, and it is argued that such conditions must be used with care when applied to real plasmas. Laboratory double layers, and by implication those arising in astrophysical plasmas, often produce instabilities in the surrounding plasma and are generally time-dependent structures. Naturally occurring double layers should therefore, be far more common than the restrictions deduced from idealized time-independent models would imply. In particular it is necessary to understand more fully the time-dependent behavior of double layers. In the present paper the dynamics of weak double layers is discussed. Also a model for moving a strong double layer, where an associated potential minimum plays a significant role, is presented.

  8. Double layer -- a particle accelerator in the magnetosphere

    SciTech Connect

    Fu, Xiangrong

    2015-07-16

    Slides present the material under the following topics: Introduction (What is a double layer (DL)? Why is it important? Key unsolved problems); Theory -- time-independent solutions of 1D Vlasov--Poisson system; Particle-in-cell simulations (Current-driven DLs); and Electron acceleration by DL (Betatron acceleration). Key problems include the generation mechanism, stability, and electron acceleration. In summary, recent observations by Van Allen Probes show large number of DLs in the outer radiation belt, associated with enhanced flux of relativistic electrons. Simulations show that ion acoustic double layers can be generated by field-aligned currents. Thermal electrons can gain energy via betatron acceleration in a dipole magnetic field.

  9. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, Hannes

    1986-01-01

    As the rate of energy release in a double layer with voltage delta V is P approx I delta V, a double layer must be treated as a part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by means of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and Gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made.

  10. Double layers and circuits in astrophysics

    SciTech Connect

    Alfven, H.

    1986-12-01

    As the rate of energy release in a double layer with voltage ..delta..V is P approx. = I..delta..V, a double layer must be treated as a part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by means of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested that X-ray and ..gamma..-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts such as double layers, critical velocity, pinch effects, and circuits is made.

  11. Acoustic sounding in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Kelly, E. H.

    1974-01-01

    Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere.

  12. Electron temperature differences and double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.; Lonngren, K. E.

    1983-01-01

    Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.

  13. Instability limits for spontaneous double layer formation

    SciTech Connect

    Carr, J. Jr.; Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W.; Magee, R. M.; Reynolds, E.

    2013-11-15

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability.

  14. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  15. Double layers and circuits in astrophysics

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1986-01-01

    A simple circuit is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object. It is suggested that X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). The way the most used textbooks in astrophysics treat concepts like double layers, critical velocity, pinch effects and circuits was studied. It is found that students using these textbooks remain essentially ignorant of even the existence of these, although some of the phenomena were discovered 50 yr ago.

  16. Double layers and circuits in astrophysics

    SciTech Connect

    Alfven, H.

    1986-05-01

    A simple circuit is applied to the energizing of auroral particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the Sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object. It is suggested that x-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). The way the most used textbooks in astrophysics treat concepts like double layers, critical velocity, pinch effects and circuits was studied. It is found that students using these textbooks remain essentially ignorant of even the existence of these, although some of the phenomena were discovered 50 yr ago.

  17. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  18. Part I. Layered Double Hydroxides

    NASA Astrophysics Data System (ADS)

    Dimotakis, Emmanuel Dimitrios

    A new general method for the preparation of well -ordered layered double hydroxides (LDHs), (Mg_ {rm 1-x}Al_{ rm x} (OH)_2) (X^{rm n-}) _{rm n/x}{cdot}yH _2O, interlayered by organic anions has been developed. It is based on the reaction of meixnerite, (Mg_3Al(OH)_8) (OH) cdot2H_2O, with the free acid form of the desired anion--using glycerol as a swelling agent--to yield single crystalline products that are not readily available by conventional synthetic methods. The (Mg_3Al(OH) _8) -adipate and -p-toluenesulfonate derivatives undergo facile ion exchange reactions with Keggin-type (XM_{12}O_ {40}) ^{rm n -} or lacunary (XM_{11 }O_{39}) ^{rm m-} polyoxometalates (POMs) to form well-ordered, microporous pillared derivatives with the highest N_2 BET surface areas reported to date, namely 107 and 155 m^2 /g, respectively. Meixnerite, (Mg_3Al(OH) _8) (OH) cdot2H _2O, has unexpectedly been found to undergo similar ion exchange reactions, in a topotactic way, with retention of the structure of the intercalated POMs. The meixnerite was conveniently prepared for the first time from calcination of (Mg_3Al(OH) _8) (CO_3) _{0.5}{cdot}2H _2O and aqueous hydrolysis of the resulting NaCl-type solid solution. Metal carbonyl clusters have also been examined for ion-exchange (i.e., { (Pt _3(CO)_6) _{rm n}}^ {2-}) in these LDH-precursors. This chemistry is compared with the surface chemistry of (Mg_3 Al(OH)_8) (X^ {rm n-}) _{ rm 1/n}{cdot}2H _2O (X = CO_3^{2 -} or OH^{-}). It has been shown that the surface hydrolysis reaction: CO _3^{2-} + H _2O longrightarrow HCO_3^{-} + OH ^-, causes reductive condensation reactions of neutral carbonyl clusters with the LDH. The reactions were as efficient as with Na metal in solution. In part II of this work, Li-fluorohectorite, has been pillared with titanium polyoxocations derived from the acidic hydrolysis of TiCl_4 or Ti(i-OC_3H_7) _4. Raman spectroscopy of the product indicates that the pillars have a structure analogous to TiO_2(B) phase

  19. Double layers on auroral field lines

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Lotko, W.; Witt, E.

    1982-01-01

    Time-stationary solutions to the Vlasov-Poisson equation for ion holes and double layers were examined along with particle simulations which pertain to recent observations of small amplitude (e phi)/t sub e approx. 1 electric field structures on auroral field lines. Both the time-stationary analysis and the simulations suggest that double layers evolve from holes in ion phase space when their amplitude reaches (e phi)/t sub e approx. 1. Multiple small amplitude double layers which are seen in long simulation systems and are seen to propagate past spacecraft may account for the acceleration of plasma sheet electrons to produce the discrete aurora.

  20. Plasmon modes of circular cylindrical double-layer graphene.

    PubMed

    Zhao, Tao; Hu, Min; Zhong, Renbin; Chen, Xiaoxing; Zhang, Ping; Gong, Sen; Zhang, Chao; Liu, Shenggang

    2016-09-01

    In this paper, a theoretical investigation on plasmon modes in a circular cylindrical double-layer graphene structure is presented. Due to the interlayer electromagnetic interaction, there exist two branches of plasmon modes, the optical plasmon mode and the acoustic plasmon mode. The characteristics of these two modes, such as mode pattern, effective mode index and propagation loss, are analyzed. The modal behaviors can be effectively tuned by changing the distance between two graphene layers, the chemical potential of graphene and the permittivity of interlayer dielectric. Importantly, the breakup of tradeoff between mode confinement and propagation loss is discovered in the distance-dependent modal behavior, which originates from the unique dispersion properties of a double-layer graphene system. As a consequence, both strong mode confinement and longer propagation length can be achieved. Our results may provide good opportunities for developing applications based on graphene plasmonics in circular cylindrical structure. PMID:27607651

  1. Plasmon modes of circular cylindrical double-layer graphene.

    PubMed

    Zhao, Tao; Hu, Min; Zhong, Renbin; Chen, Xiaoxing; Zhang, Ping; Gong, Sen; Zhang, Chao; Liu, Shenggang

    2016-09-01

    In this paper, a theoretical investigation on plasmon modes in a circular cylindrical double-layer graphene structure is presented. Due to the interlayer electromagnetic interaction, there exist two branches of plasmon modes, the optical plasmon mode and the acoustic plasmon mode. The characteristics of these two modes, such as mode pattern, effective mode index and propagation loss, are analyzed. The modal behaviors can be effectively tuned by changing the distance between two graphene layers, the chemical potential of graphene and the permittivity of interlayer dielectric. Importantly, the breakup of tradeoff between mode confinement and propagation loss is discovered in the distance-dependent modal behavior, which originates from the unique dispersion properties of a double-layer graphene system. As a consequence, both strong mode confinement and longer propagation length can be achieved. Our results may provide good opportunities for developing applications based on graphene plasmonics in circular cylindrical structure.

  2. A new hydrodynamic analysis of double layers

    NASA Technical Reports Server (NTRS)

    Hora, Heinrich

    1987-01-01

    A genuine two-fluid model of plasmas with collisions permits the calculation of dynamic (not necessarily static) electric fields and double layers inside of plasmas including oscillations and damping. For the first time a macroscopic model for coupling of electromagnetic and Langmuir waves was achieved with realistic damping. Starting points were laser-produced plasmas showing very high dynamic electric fields in nonlinear force-produced cavitous and inverted double layers in agreement with experiments. Applications for any inhomogeneous plasma as in laboratory or in astrophysical plasmas can then be followed up by a transparent hydrodynamic description. Results are the rotation of plasmas in magnetic fields and a new second harmonic resonance, explanation of the measured inverted double layers, explanation of the observed density-independent, second harmonics emission from laser-produced plasmas, and a laser acceleration scheme by the very high fields of the double layers.

  3. Acoustics of laminar boundary layers breakdown

    NASA Astrophysics Data System (ADS)

    Wang, Meng

    1994-12-01

    Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.

  4. Acoustics of laminar boundary layers breakdown

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1994-01-01

    Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.

  5. Three step double layers in the laboratory. [plasma physics

    NASA Technical Reports Server (NTRS)

    Bailey, Andrew, III; Hershkowitz, Noah

    1988-01-01

    A new class of stationary double layer structure, with three or more distinct steps, is demonstrated in the laboratory. A large monotonic potential increase results from a series of smaller double layers. In many respects, these double layer structures resemble those inferred from satellite measurements of auroral double layers. This new class of double layer appears to depend on turbulence for its existence and to be a hybrid structure, intermediate between anomalous resistivity and BGK double layers.

  6. Multi-ion Double Layers in a Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, M.; Alinejad, H.; Tribeche, M.

    2015-11-01

    A theoretical investigation is carried out to study the existence, formation and basic properties of ion acoustic (IA) double layers (DLs) in a magnetized bi-ion plasma consisting of warm/cold ions and Boltzmann distributed electrons. Based on the reductive perturbation technique, an extended Korteweg de-Vries (KdV) equation is derived. The propagation of two possible modes (fast and slow), and their evolution are investigated. The effects of obliqueness, magnitude of the magnetic field, ion concentration, polarity of ions, and ion temperature on the IA DL profile are analyzed, and then the ranges of parameters for which the IA DLs exist are investigated in details.

  7. Shock waves and double layers in electron degenerate dense plasma with viscous ion fluids

    SciTech Connect

    Mamun, A. A.; Zobaer, M. S.

    2014-02-15

    The properties of ion-acoustic shock waves and double layers propagating in a viscous degenerate dense plasma (containing inertial viscous ion fluid, non-relativistic and ultra-relativistic degenerate electron fluid, and negatively charged stationary heavy element) is investigated. A new nonlinear equation (viz. Gardner equation with additional dissipative term) is derived by the reductive perturbation method. The properties of the ion-acoustic shock waves and double layers are examined by the analysis of the shock and double layer solutions of this new equation (we would like to call it “M-Z equation”). It is found that the properties of these shock and double layer structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers’ equation. The implications of our results to dense plasmas in astrophysical objects (e.g., non-rotating white dwarf stars) are briefly discussed.

  8. Propagating double layers in electronegative plasmas

    SciTech Connect

    Meige, A.; Plihon, N.; Hagelaar, G. J. M.; Boeuf, J.-P.; Chabert, P.; Boswell, R. W.

    2007-05-15

    Double layers have been observed to propagate from the source region to the diffusion chamber of a helicon-type reactor filled up with a low-pressure mixture of Ar/SF{sub 6} [N. Plihon et al., J. Appl. Phys. 98, 023306 (2005)]. In the present paper the most significant and new experimental results are reported. A fully self-consistent hybrid model in which the electron energy distribution function, the electron temperature, and the various source terms are calculated is developed to investigate these propagating double layers. The spontaneous formation of propagating double layers is only observed in the simulation for system in which the localized inductive heating is combined with small diameter chambers. The conditions of formation and the properties of the propagating double layers observed in the simulation are in good agreement with that of the experiment. By correlating the results of the experiment and the simulation, a formation mechanism compatible with ion two-stream instability is proposed.

  9. Double sodium layers observation over Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Jihong; Yang, Yong; Cheng, Xuewu; Yang, Guotao; Song, Shalei; Gong, Shunsheng

    2012-08-01

    The altitude of the sodium layer in the mesosphere and lower thermosphere is usually from 80 km to 105 km. In this paper, we report a set of double sodium layer (DSL) events observed by sodium lidar over Beijing, China. In these DSL events, the normal sodium layer and secondary sodium layer (SeSL) present separately. There were about 17 DSL events occurred in 319 observation nights during 2009˜2011. All DSL events were observed in spring and summer. The SeSL appeared independently within the altitude range from 105 km to 130 km. The density of the SeSL is very high. The maximum ratio of peak density and the ratio of column density for the SeSL to the normal sodium layer are up to ˜60% and ˜47%, respectively. The SeSL lasted several hours, and then merged into the normal sodium layer. After the SeSL, a sporadic sodium layer occurred in the normal sodium layer.

  10. Double layers and double wells in arbitrary degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2016-06-01

    Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η0, ranging from dilute classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η0 < 0 and quantum with η0 > 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.

  11. Double layers acting as particles accelerators

    SciTech Connect

    Sanduloviciu, M.; Lozneanu, E.

    1995-12-31

    It is shown that self-consistent stable and unstable double layers generated in plasma after a self-organisation process are able to accelerate charged particles. The implication of cosmic double layers (Dls) in the acceleration of electrical charged particles long been advocated by Alfven and his Stockholm school is today disputed by argument that static electric fields associated with Dls are conservative and consequently the line integral of the electric field outside the DL balances the line integral inside it. Related with this dispute we will evidence some, so far not considered, facts which are in our opinion arguments that aurora Dls are able to energize particles. For justifying this assertion we start from recent experimental results concerning the phenomenology of self-consistent Dls whose generation involve beside ionisations the neutrals excitations which are at tile origin of the light phenomena as those observed in auroras.

  12. Double layer capacitance of carbon foam electrodes

    SciTech Connect

    Delnick, F.M.; Ingersoll, D.; Firsich, D.

    1993-11-01

    We have evaluated a wide variety of microcellular carbon foams prepared by the controlled pyrolysis and carbonization of several polymers including: polyacrylonitrile (PAN), polymethacrylonitrile (PMAN), resorcinol/formaldehyde (RF), divinylbenzene/methacrylonitrile (DVB), phenolics (furfuryl/alcohol), and cellulose polymers such as Rayon. The porosity may be established by several processes including: Gelation (1-5), phase separation (1-3,5-8), emulsion (1,9,10), aerogel/xerogel formation (1,11,12,13), replication (14) and activation. In this report we present the complex impedance analysis and double layer charging characteristics of electrodes prepared from one of these materials for double layer capacitor applications, namely activated cellulose derived microcellular carbon foam.

  13. Photoactive oriented films of layered double hydroxides.

    PubMed

    Lang, Kamil; Kubát, Pavel; Mosinger, Jirí; Bujdák, Juraj; Hof, Martin; Janda, Pavel; Sýkora, Jan; Iyi, Nobuo

    2008-08-14

    The treatment of nano-ordered oriented films of layered double hydroxide (LDH) with dodecyl sulfate increased the interlayer distance from 0.4 to 1.96 nm, which allowed the intercalation of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS). The re-stacking of separated layers and the rebuilding of crystals oriented parallel to the surface of quartz slides was confirmed by X-ray diffraction and atomic force microscopy. The hybrid films contained homogeneously distributed porphyrin molecules with preserved photophysical properties such as fluorescence, triplet state formation, and energy transfer, thus forming singlet oxygen.

  14. Double layered tailorable advanced blanket insulation

    NASA Technical Reports Server (NTRS)

    Falstrup, D.

    1983-01-01

    An advanced flexible reusable surface insulation material for future space shuttle flights was investigated. A conventional fly shuttle loom with special modifications to weave an integral double layer triangular core fabric from quartz yarn was used. Two types of insulating material were inserted into the cells of the fabric, and a procedure to accomplish this was developed. The program is follow up of a program in which single layer rectangular cell core fabrics are woven and a single type of insulating material was inserted into the cells.

  15. Plasmons in spatially separated double-layer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bagheri, Mehran; Bahrami, Mousa

    2014-05-01

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  16. Plasmons in spatially separated double-layer graphene nanoribbons

    SciTech Connect

    Bagheri, Mehran; Bahrami, Mousa

    2014-05-07

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons.

  17. Two-dimensional acoustic cloaks of arbitrary shape with layered structure based on transformation acoustics

    NASA Astrophysics Data System (ADS)

    Li, Qi; Vipperman, Jeffrey S.

    2014-09-01

    Acoustic metamaterials have attracted much attention in recent years. Acoustic cloaks, which make objects invisible to acoustic waves, are the most common use for acoustic metamaterials. In this paper, acoustic cloaks with arbitrary shapes are presented based on transformation acoustics. This method interprets the compression and dilation of space as appropriate properties of materials. The derived properties of the cloak with irregular shapes are highly inhomogeneous and anisotropic, much more complex than the annulus cloaks. The materials for this kind of cloak are impossible to find in nature, and difficult to fabricate with artificial materials. In order to overcome this difficulty, layered structure with isotropic materials is adopted to approximate the required properties of the cloak. Numerical simulations of cloaks of arbitrary shape are performed to validate the design.

  18. A mechanism for weak double layers and coherent low-frequency electrostatic wave activity in the solar wind

    NASA Astrophysics Data System (ADS)

    Singh Lakhina, Gurbax; Singh, Satyavir

    2016-07-01

    A mechanism for the weak double layers and coherent low-frequency electrostatic wave activity observed by Wind spacecraft in the solar wind at 1 AU is proposed in terms of ion-acoustic solitons and double layers. The solar wind plasma is modelled by a three component plasma consisting of fluid hot protons, hot alpha particles streaming with respect to protons, and suprathermal electrons having κ- distribution. This system supports two types of, slow and fast, ion-acoustic solitary waves. The fast ion-acoustic mode is similar to the ion-acoustic mode of proton-electron plasma, and can support only positive potential solitons. The slow ion-acoustic mode is a new mode that occurs due to the presence of alpha particles. This mode can support both positive and negative solitons and double layers. An increase of the κ- index leads to an increase in the critical Mach number, maximum Mach number and the maximum amplitude of both slow and fast ion-acoustic solitons. The slow ion-acoustic double layer can explain the amplitudes and widths, but not shapes, of the weak double layers (WDLs) observed in the solar wind at 1 AU by Wind spacecraft. The Fourier transform of the slow ion-acoustic solitons/double layers would produce broadband low-frequency electrostatic waves having main peaks between 0.35 kHz to 1.6 kHz, with electric field in the range of E = (0.01 - 0.7 ) mV/m, in excellent agreement with the observed low-frequency electrostatic wave activity in the solar wind at 1 AU.

  19. Double-layer shocks in a magnetized quantum plasma.

    PubMed

    Misra, A P; Samanta, S

    2010-09-01

    The formation of small but finite amplitude electrostatic shocks in the propagation of quantum ion-acoustic waves obliquely to an external magnetic field is reported in a quantum electron-positron-ion plasma. Such shocks are seen to have double-layer (DL) structures composed of the compressive and accompanying rarefactive slow-wave fronts. Existence of such DL shocks depends critically on the quantum coupling parameter H associated with the Bohm potential and the positron to electron density ratio δ . The profiles may, however, steepen initially and reach a steady state with a number of solitary waves in front of the shocks. Such novel DL shocks could be a good candidate for particle acceleration in intense laser-solid density plasma interaction experiments as well as in compact astrophysical objects, e.g., magnetized white dwarfs.

  20. Double-layer shocks in a magnetized quantum plasma

    NASA Astrophysics Data System (ADS)

    Misra, A. P.; Samanta, S.

    2010-09-01

    The formation of small but finite amplitude electrostatic shocks in the propagation of quantum ion-acoustic waves obliquely to an external magnetic field is reported in a quantum electron-positron-ion plasma. Such shocks are seen to have double-layer (DL) structures composed of the compressive and accompanying rarefactive slow-wave fronts. Existence of such DL shocks depends critically on the quantum coupling parameter H associated with the Bohm potential and the positron to electron density ratio δ . The profiles may, however, steepen initially and reach a steady state with a number of solitary waves in front of the shocks. Such novel DL shocks could be a good candidate for particle acceleration in intense laser-solid density plasma interaction experiments as well as in compact astrophysical objects, e.g., magnetized white dwarfs.

  1. Double-layer shocks in a magnetized quantum plasma

    SciTech Connect

    Misra, A. P.; Samanta, S.

    2010-09-15

    The formation of small but finite amplitude electrostatic shocks in the propagation of quantum ion-acoustic waves obliquely to an external magnetic field is reported in a quantum electron-positron-ion plasma. Such shocks are seen to have double-layer (DL) structures composed of the compressive and accompanying rarefactive slow-wave fronts. Existence of such DL shocks depends critically on the quantum coupling parameter H associated with the Bohm potential and the positron to electron density ratio {delta}. The profiles may, however, steepen initially and reach a steady state with a number of solitary waves in front of the shocks. Such novel DL shocks could be a good candidate for particle acceleration in intense laser-solid density plasma interaction experiments as well as in compact astrophysical objects, e.g., magnetized white dwarfs.

  2. Current-free double layers: A review

    SciTech Connect

    Singh, Nagendra

    2011-12-15

    During the last decade, there has been an upsurge in the research on current-free DLs (CFDLs). Research includes theory, laboratory measurements, and various applications of CFDLs ranging from plasma thrusters to acceleration of charged particles in space and astrophysical plasmas. The purpose of this review is to present a unified understanding of the basic plasma processes, which lead to the formation of CFDLs. The review starts with the discussion on early research on electric fields and double layers (DLs) and ion acceleration in planar plasma expansion. The review continues with the formation of DLs and rarefaction shocks (RFS) in expanding plasma with two electron populations with different temperatures. The basic theory mitigating the formation of a CFDL by two-electron temperature population is reviewed; we refer to such CFDLs as double layers structures formation by two-temperature electron populations (TET-CFDLs). Application of TET-CFDLS to ion acceleration in laboratory and space plasmas was discussed including the formation of stationary steady-state DLs. A quite different type of CFDLs forms in a helicon plasma device (HPD), in which plasma abruptly expands from a narrow plasma source tube into a wide diffusion tube with abruptly diverging magnetic fields. The formation mechanism of the CFDL in HPD, referred here as current free double layer structure in helicon plasma device (HPD-CFDL), and its applications are reviewed. The formation of a TET-CFDL is due to the self-consistent separation of the two electron populations parallel to the ambient magnetic field. In contrast, a HPD-CFDL forms due to self-consistent separation of electrons and ion perpendicular to the abruptly diverging magnetic field in conjunction with the conducting wall of the expansion chamber in the HPD. One-dimensional theoretical models of CFDLs based on steady-state solution of Vlasov-Poisson system of equations are briefly discussed. Applications of CFDLs ranging from helicon

  3. Are there double layers in unmagnetized electronegative plasmas?

    NASA Astrophysics Data System (ADS)

    Yip, Chi-Shung; Hershkowitz, Noah

    2009-10-01

    Bounded electronegative plasmas are predicted to have electropositive halos. A recent experiment [1] showed that for a negative ion to electron concentration ratio of α=0.43 for an Argon-Oxygen plasma a positive halo was a consequence of negative ion satisfying a Boltzmann relation. When Te/T- is greater than 5+24 [2] and that α is greater than Te/T- [3], the negative ions are predicted to be confined by a double layer. Experiments are reported in Ar-SF6 and Ar-Cl2 plasmas aimed at finding the double layer by varying the gas concentrations. Experiments are carried out in a filament discharge in a multi-dipole chamber, with no magnetic field on the end walls. An unmagnetized boundary of the plasma is set by a bias plate along the axial direction of the chamber. Negative ion concentrations are determined from the phrase velocity of C.W. Ion Acoustic Waves. Electron temperature and density are determined using Langmuir probes. Plasma potentials are determined by emissive probes. Argon drift velocities are determined by Laser Induced Florescence. [1] Ghim, YC and Hershkowitz, N, Applied Physics Letters. 94, 15, 151503 (2009) [2] N. Braithwaite and J. E. Allen, J. Phys. D: Appl. Phys. 21, 1733 (1988) [3] R. N. Franklin, Plasma Sources Sci. Technol. 11, A31, (2002)

  4. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: absorption versus transmission.

    PubMed

    Doutres, Olivier; Atalla, Noureddine

    2010-08-01

    The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound absorption behavior can affect the performance of the double panel structure.

  5. Megavolt parallel potentials arising from double-layer streams in the Earth's outer radiation belt.

    PubMed

    Mozer, F S; Bale, S D; Bonnell, J W; Chaston, C C; Roth, I; Wygant, J

    2013-12-01

    Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100  km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects. PMID:24476280

  6. Megavolt parallel potentials arising from double-layer streams in the Earth's outer radiation belt.

    PubMed

    Mozer, F S; Bale, S D; Bonnell, J W; Chaston, C C; Roth, I; Wygant, J

    2013-12-01

    Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100  km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.

  7. Role of metallic substrate on the plasmon modes in double-layer graphene structures

    NASA Astrophysics Data System (ADS)

    Cruz, G. Gonzalez de la

    2015-07-01

    Novel heterostructures combining different layered materials offer new opportunities for applications and fundamental studies of collective excitations driven by interlayer Coulomb interactions. In this work, we have investigated the influence of the metallic-like substrate on the plasmon spectrum of a double layer graphene system and a structure consisting of conventional two-dimensional electron gas (2DEG) immersed in a semiconductor quantum well and a graphene sheet with an interlayer separation of d. Long-range Coulomb interactions between substrate and graphene layered systems lead a new set of spectrum plasmons. At long wavelengths (q→0) the acoustic modes (ω~q) depend, besides on the carrier density in each layer, on the distance between the first carrier layer and the substrate in both structures. Furthermore, in the relativistic/nonrelativistic layered structure an undamped acoustic mode emerges for a certain interlayer critical distance dc. On the other hand, the optical plasmon modes emerging from the coupling of the double-layer systems and the substrate, both start at finite frequency at q=0 in contrast to the collective excitation spectrum ω~q1/2 reported in the literature for double-layer graphene structures.

  8. Coupled resonator filter with single-layer acoustic coupler.

    PubMed

    Jamneala, Tiberiu; Small, Martha; Ruby, Rich; Larson, John D

    2008-10-01

    We discuss the operation of novel coupled-resonator filters with single-layer acoustic couplers. Our analysis employs the physical Mason model for acoustic resonators. Their simpler fabrication process is counterbalanced by the high acoustic attenuation of suitable coupler materials. At high levels of attenuation, both the phase and the acoustic impedance must be treated as complex quantities to accurately predict the filter insertion loss. We demonstrate that the typically poor near-band rejection of coupled resonator filters can be improved at the die level by connecting a small capacitance between the input and output of the filter to produce a pair of tunable transmission minima. We make use of these theoretical findings to fabricate coupled resonators filters operating at 2.45 GHz. PMID:18986880

  9. Large amplitude double layers in a positively charged dusty plasma with nonthermal electrons

    SciTech Connect

    Djebli, M.; Marif, H.

    2009-06-15

    A pseudopotential approach is used to investigate large amplitude dust-acoustic solitary structures for a plasma composed of positively charged dust, cold electrons, and nonthermal hot electrons. Numerical investigation for an adiabatic situation is conducted to examine the existence region of the wave. The negative potential of the double layers is found to be dependent on nonthermal parameters, Mach number, and electrons temperature. A range of the nonthermal parameters values exists for which two possible double layers for the same plasma mix at different Mach numbers and with significant different amplitudes. The present model is used to investigate localized structures in the lower-altitude Earth's ionosphere.

  10. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers (DLs) in plasmas are described, including applied potential drops, currents, contact potentials, and plasma expansions. Somne dynamic features of the DLs are discussed; and it is demonstrated that DLs and the currents through them undergo slow oscillations, determined by the ion transit time across an effective length of the system in which the DLs form. It is shown that a localized potential dip forms at the low potential end of a DL, which interrupts the electron current through it according to the Langmuir criterion whenever the ion flux into the DL is disrupted. Also considered is the generation of electric fields perpendicular to the ambient magnetic field by contact potentials.

  11. Low temperature double-layer capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); Smart, Marshall C. (Inventor); West, William C. (Inventor)

    2011-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -75.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. An optimized concentration (e.g., 0.10 M to 0.75 M) of salt, such as tetraethylammonium tetrafluoroborate, is dissolved into the electrolyte solution. In some cases (e.g., 1,3-dioxolane cosolvent) additives, such as 2% by volume triethylamine, may be included in the solvent mixture to prevent polymerization of the solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  12. Optical and Electrical Characteristics of Graphene Double Layer Formed by a Double Transfer of Graphene Single Layers.

    PubMed

    Kim, Young Jun; Bae, Gi Yoon; Chun, Sungwoo; Park, Wanjun

    2016-03-01

    We demonstrate formation of double layer graphene by means of a double transfer using two single graphene layers grown by a chemical vapor deposition method. It is observed that shiftiness and broadness in the double-resonance of Raman scattering are much weaker than those of bilayer graphene formed naturally. Transport characteristics examined from transmission line measurements and field effect transistors show the similar behavior with those of single layer graphene. It indicates that interlayer separation, in electrical view, is large enough to avoid correlation between layers for the double layer structure. It is also observed from a transistor with the double layer graphene that molecules adsorpted on two inner graphene surfaces in the double layered structure are isolated and conserved from ambient environment. PMID:27455706

  13. Optical and Electrical Characteristics of Graphene Double Layer Formed by a Double Transfer of Graphene Single Layers.

    PubMed

    Kim, Young Jun; Bae, Gi Yoon; Chun, Sungwoo; Park, Wanjun

    2016-03-01

    We demonstrate formation of double layer graphene by means of a double transfer using two single graphene layers grown by a chemical vapor deposition method. It is observed that shiftiness and broadness in the double-resonance of Raman scattering are much weaker than those of bilayer graphene formed naturally. Transport characteristics examined from transmission line measurements and field effect transistors show the similar behavior with those of single layer graphene. It indicates that interlayer separation, in electrical view, is large enough to avoid correlation between layers for the double layer structure. It is also observed from a transistor with the double layer graphene that molecules adsorpted on two inner graphene surfaces in the double layered structure are isolated and conserved from ambient environment.

  14. Generation and characterization of surface layers on acoustically levitated drops.

    PubMed

    Tuckermann, Rudolf; Bauerecker, Sigurd; Cammenga, Heiko K

    2007-06-15

    Surface layers of natural and technical amphiphiles, e.g., octadecanol, stearic acid and related compounds as well as perfluorinated fatty alcohols (PFA), have been investigated on the surface of acoustically levitated drops. In contrast to Langmuir troughs, traditionally used in the research of surface layers at the air-water interface, acoustic levitation offers the advantages of a minimized and contact-less technique. Although the film pressure cannot be directly adjusted on acoustically levitated drops, it runs through a wide pressure range due to the shrinking surface of an evaporating drop. During this process, different states of the generated surface layer have been identified, in particular the phase transition from the gaseous or liquid-expanded to the liquid-condensed state of surface layers of octadecanol and other related amphiphiles. Characteristic parameters, such as the relative permeation resistance and the area per molecule in a condensed surface layer, have been quantified and were found comparable to results obtained from surface layers generated on Langmuir troughs. PMID:17376468

  15. Transition from moving to stationary double layers in a single-ended Q machine

    NASA Technical Reports Server (NTRS)

    Song, Bin; Merlino, R. L.; D'Angelo, N.

    1990-01-01

    Large-amplitude (less than about 100 percent) relaxation oscillations in the plasma potential are known to be generated when the cold endplate of a single-ended Q machine is biased positively. These oscillations are associated with double layers that form near the hot plate (plasma source) and travel toward the endplate at about the ion-acoustic velocity. At the endplate they dissolve and then form again near the hot plate, the entire process repeating itself in a regular manner. By admitting a sufficient amount of neutral gas into the system, the moving double layers were slowed down and eventually stopped. The production of stationary double layers requires an ion source on the high-potential side of the double layers. These ions are provided by ionization of the neutral gas by electrons that are accelerated through the double layer. The dependence of the critical neutral gas pressure required for stationary double-layer formation on endplate voltage, magnetic field strength, and neutral atom mass has been examined. These results are discussed in terms of a simple model of ion production and loss, including ion losses across the magnetic field.

  16. Electrostatic soliton and double layer structures in unmagnetized degenerate pair plasmas

    NASA Astrophysics Data System (ADS)

    Mahmood, S.; Khan, S. A.; Ur-Rehman, H.

    2010-11-01

    The acoustic solitons and double layers are studied in unmagnetized quantum electron-positron plasmas in the presence of stationary ions. The quantum hydrodynamic model is employed and reductive perturbation method is used to derive the Korteweg-de Vries (KdV) and extended KdV equations for solitons and double layers, respectively. It is found that in the linear limit both slow acoustic and fast Langmuir waves can propagate in such type of quantum plasmas like in classical pair-ion or pair plasmas. The amplitude and width of the electrostatic solitons are found to be decreasing with the increase in concentration of positrons (or decrease in the concentration of ions) in degenerate electron-positron-ion plasmas. It is found that only rarefactive double layer can exist in such plasmas which depend on various parameters. The dependence of double layer structure on ion concentration and quantum diffraction effects of electrons and positrons are also discussed. The results are also elaborated graphically by considering dense plasma parameters in the outer layers of astrophysical objects such as white dwarfs and neutron stars.

  17. Electrostatic soliton and double layer structures in unmagnetized degenerate pair plasmas

    SciTech Connect

    Mahmood, S.; Khan, S. A.; Ur-Rehman, H.

    2010-11-15

    The acoustic solitons and double layers are studied in unmagnetized quantum electron-positron plasmas in the presence of stationary ions. The quantum hydrodynamic model is employed and reductive perturbation method is used to derive the Korteweg-de Vries (KdV) and extended KdV equations for solitons and double layers, respectively. It is found that in the linear limit both slow acoustic and fast Langmuir waves can propagate in such type of quantum plasmas like in classical pair-ion or pair plasmas. The amplitude and width of the electrostatic solitons are found to be decreasing with the increase in concentration of positrons (or decrease in the concentration of ions) in degenerate electron-positron-ion plasmas. It is found that only rarefactive double layer can exist in such plasmas which depend on various parameters. The dependence of double layer structure on ion concentration and quantum diffraction effects of electrons and positrons are also discussed. The results are also elaborated graphically by considering dense plasma parameters in the outer layers of astrophysical objects such as white dwarfs and neutron stars.

  18. Acoustic excitation: A promising new means of controlling shear layers

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Mckinzie, D. J., Jr.

    1984-01-01

    Techniques have long been sought for the controlled modification of turbulent shear layers, such as in jets, wakes, boundary layers, and separated flows. Relatively recently published results of laboratory experiments have established that coherent structures exist within turbulent flows. These results indicate that even apparently chaotic flow fields can contain deterministic, nonrandom elements. Even more recently published results show that deliberate acoustic excitation of these coherent structures has a significant effect on the mixing characteristics of shear layers. Therefore, we have initiated a research effort to develop both an understanding of the interaction mechanisms and the ability to use it to favorably modify various shear layers. Acoustic excitation circumvents the need for pumping significant flow rates, as required by suction or blowing. Control of flows by intentional excitation of natural flow instabilities involves new and largely unexplored phenomena and offers considerable potential for improving component performance. Nonintrusive techniques for flow field control may permit much more efficient, flexible propulsion systems and aircraft designs, including means of stall avoidance and recovery. The techniques developed may also find application in many other areas where mixing is important, such as reactors, continuous lasers, rocket engines, and fluidic devices. It is the objective of this paper to examine some potential applications of the acoustic excitation technique to various shear layer flows of practical aerospace systems.

  19. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    NASA Astrophysics Data System (ADS)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  20. Low frequency solitons and double layers in a magnetized plasma with two temperature electrons

    SciTech Connect

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2012-12-15

    Finite amplitude non-linear ion-acoustic solitary waves and double layers are studied in a magnetized plasma with cold ions fluid and two distinct groups of Boltzmann electrons, using the Sagdeev pseudo-potential technique. The conditions under which the solitary waves and double layers can exist are found both analytically and numerically. We have shown the existence of negative potential solitary waves and double layers for subsonic Mach numbers, whereas in the unmagnetized plasma they can only in the supersonic Mach number regime. For the plasma parameters in the auroral region, the electric field amplitude of the solitary structures comes out to be 49 mV/m which is in agreement of the Viking observations in this region.

  1. Design of the Coordinate Transformation Function for Cylindrical Acoustic Cloaks with a Quantity of Discrete Layers

    NASA Astrophysics Data System (ADS)

    Cai, Li; Wen, Ji-Hong; Yu, Dian-Long; Lu, Zhi-Miao; Wen, Xi-Sen

    2014-09-01

    Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential applications such as sound transparency and insulation. The frequency response of acoustic cloaks with a quantity of discrete homogeneous layers is analyzed by the acoustic scattering theory. The effect of coordinate transformation function on the acoustic total scattering cross section is discussed to achieve low scattering with only a few layers of anisotropic metamaterials. Also, the physics of acoustic wave interaction with the interfaces between the discrete layers inside the cloak shell is discussed. These results provide a better way of designing a multilayered acoustic cloak with fewer layers.

  2. Hybrid acoustically layered foam (HALF) foam for improved low-frequency acoustic mitigation for launch fairings

    NASA Astrophysics Data System (ADS)

    Williams, Andrew D.; Domme, Daniel J.; Ardelean, Emil V.; Henderson, B. Kyle

    2007-04-01

    Launch vehicles produce high levels of acoustic energy and vibration loads that can severely damage satellites during launch. Because of these high loads, the satellite structure is much more robust than it needs to be for on-orbit operations. Traditionally, acoustic foam is used for acoustic mitigation; however, it is ineffective at frequencies below 500 Hz. For this reason we investigated three different modified acoustic foam concepts consisting of a thin metal foil, a semi-rigid spacer, and a melamine foam substrate to improve the low frequency acoustic performance of the melamine foam. The goal of the Hybrid Acoustically Layered Foil (HALF) Foam concept was to excite bending waves within the plane of the foil to cause inter-particle interactions thus increasing the transmission loss of the foam. To determine the performance of the system, a transmission loss tube was constructed, and the normal incidence transmission loss for each sample was measured. The tests confirm the excitation of bending waves at the target frequency of 500 Hz and a significant increase, on the order of 8 dB, in the transmission loss.

  3. Pd/Ni-WO3 anodic double layer gasochromic device

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping

    2004-04-20

    An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.

  4. Coronal electron confinement by double layers

    SciTech Connect

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2013-12-01

    In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons. The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and also find a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source.

  5. Coronal Electron Confinement by Double Layers

    NASA Astrophysics Data System (ADS)

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2013-12-01

    In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons. The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and also find a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source.

  6. Auroral weak double layers: A critical assessment

    NASA Astrophysics Data System (ADS)

    Koskinen, Hannu E. J.; Mälkki, Anssi M.

    Weak double layers (WDLs) were first observed in the mid-altitude auroral magnetosphere in 1976 by the S3-3 satellite. The observations were confirmed by Viking in 1986, when more detailed information of these small-scale plasma structures became available. WDLs are upward moving rarefactive solitary structures with negative electric potential. The potential drop over a WDL is typically 0-1 V with electric field pointing predominantly upward. The structures are usually found in relatively weak (≤2 kV) auroral acceleration regions where the field-aligned current is upward, but sometimes very small. The observations suggest that WDLs exist in regions of cool electron and ion background. Most likely the potential structures are embedded in the background ion population that may drift slowly upward. There have been several attempts for plasma physical explanation of WDLs but so far the success has not been very good. Computer simulations have been able to produce similar structures, but usually for somewhat unrealistic plasma parameters. A satisfactory understanding of the phenomenon requires consideration of the role of WDLs in the magnetosphere-ionosphere (MI) coupling, including the large-scale electric fields, both parallel and perpendicular to the magnetic field, and the Alfvén waves mediating the coupling. In this report we give a critical review of our present understanding of WDLs. We try to find out what can be safely deduced from the observations, what are just educated guesses, and where we may go wrong.

  7. Physical mechanism of current-free double layers

    SciTech Connect

    Chen, Francis F.

    2006-03-15

    Undriven double layers observed in plasmas expanding along magnetic fields are the result of a sheath instability connected with the Bohm criterion. Diverging magnetic field lines cause the presheath acceleration of ions, causing a potential jump resembling that of a double layer. The process stops when it runs out of energy.

  8. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  9. Challenges facing lithium batteries and electrical double-layer capacitors.

    PubMed

    Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A; Ji, Xiulei; Sun, Yang-Kook; Amine, Khalil; Yushin, Gleb; Nazar, Linda F; Cho, Jaephil; Bruce, Peter G

    2012-10-01

    Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and "load leveling" of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

  10. Double-peaked sodium layers at high latitudes

    NASA Technical Reports Server (NTRS)

    Von Zahn, U.; Goldberg, R. A.; Stegman, J.; Witt, G.

    1989-01-01

    Na lidar observations indicate that at high latitudes in summer the neutral Na layer frequently attains a double-peaked structure. The main layer with a maximum near 90 km altitude is supplemented by a secondary, narrow layer near 95 km altitude. Results are presented concerning secondary sodium layers. It appears likely that the formation of secondary Na layers observed frequently above the lidar site is not solely a 'sodium phenomenon', but part of a more comprehensive layering process for metal atoms and ions. Na(+)/Na density ratios close to 0.5 near the peaks of both the main and secondary layers are derived.

  11. Double sodium layer observation over Beijing, China by lidar

    NASA Astrophysics Data System (ADS)

    Wang, Jihong; Yang, Guotao; Yong, Yang; Song, Shalei; Gong, Shunsheng; Cheng, Xuewu

    2012-07-01

    The sodium layer is usually located between 80-105 km. The double sodium layer (DSL) event observed by sodium lidar (light detection and radar) over Wuhan extend the altitude to about 125km. A secondary sodium layer appeared above the normal sodium layer. However, the exact mechanism responsible for the DSL formation is still unclear, due to lack of DSL events observed. In this paper, we reports a series of double sodium layer events observed by sodium lidar over Beijing, China. About ten DSL events occurred during 2010 and 2011. All DSL events were observed in summer. The SeSL last about several hours and joined the normal sodium layer, which seems its loss mechanism. When the SeSL disappeared, the sporadic sodium layer occurred in the normal sodium layer.

  12. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy.

    PubMed

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-01-01

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction. PMID:27346494

  13. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-06-01

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction.

  14. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy

    PubMed Central

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-01-01

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction. PMID:27346494

  15. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.

    1999-01-01

    Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.

  16. Acoustic structure and propagation in highly porous, layered, fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.; Tesar, J. S.

    1984-01-01

    The acoustic structure and propagation of sound in highly porous, layered, fine fiber materials is examined. Of particular interest is the utilization of the Kozeny number for determining the static flow resistance and the static structure factor based on flow permeability measurements. In this formulation the Kozeny number is a numerical constant independent of volume porosity at high porosities. The other essential parameters are then evaluated employing techniques developed earlier for open cell foams. The attenuation and progressive phase characteristics in bulk samples are measured and compared with predicted values. The agreements on the whole are very satisfactory.

  17. Charged layer with undulated surface: configuration of electrical double layer.

    PubMed

    Lin, Sung-Hwa

    2010-06-15

    A charged layer with undulated surface exists commonly in natural entities (for example the biological membrane layer and the surface of charged colloid) and in artificial fabrications (for example the peripheral surface of ion-exchange membrane pores). When the micro- or nano-scale charged layer systems are concerned, the effect of undulation of charged layer surface on the electrical phenomenon may become great significant. In this work, using the perturbation method, the significance of undulated surface on a charged layer in the electrical phenomenon is investigated. Under assumptions that the undulation amplitude is small and that the Debye-Huckel approximation is applicable, the electrical potential field in three regions is solved simultaneously. Based on the analytical results it is found that, if compared with that in condition of flat surface, the undulation of charged layer surface decreases/increases the magnitude of electrical potential field near the wave crest/trough, due to the curvature of undulated surface. In addition, the surface potential on the undulated surface shows a wavelike distribution. The analytical results also show that, the significance of undulated surface is determined by the physical parameters, including the geometry of undulated surface, the amplitude and the period of undulation, and the fixed charge density in charged layer.

  18. Thin bacteria/Layered Double Hydroxide films using a layer-by-layer approach.

    PubMed

    Halma, Matilte; Khenifi, Aicha; Sancelme, Martine; Besse-Hoggan, Pascale; Bussière, Pierre-Olivier; Prévot, Vanessa; Mousty, Christine

    2016-07-15

    This paper reports the design of thin bacteria/Layered Double Hydroxides (LDH) films in which bacterial cells of Pseudomonas sp. strain ADP were assembled alternatively with Mg2Al-NO3 LDH nanosheets by a layer-by-layer deposition method. The UV-Vis spectroscopy was used to monitor the assembly process, showing a progressive increase in immobilized bacteria amount upon deposited cycles. The {ADP/LDH}n film was characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy and atomic force microscopy. The metabolic activity of immobilized bacteria was determined using chronoamperometry by measuring the biochemical oxygen demand in presence of glucose using an artificial electron acceptor (Fe(CN)6(3-)) at 0.5V/Ag-AgCl. A steady current of 0.250μAcm(-2) was reached in about 30s after the addition of 5mM glucose. PMID:27124809

  19. Multilabel Image Annotation Based on Double-Layer PLSA Model

    PubMed Central

    Zhang, Jing; Li, Da; Hu, Weiwei; Chen, Zhihua; Yuan, Yubo

    2014-01-01

    Due to the semantic gap between visual features and semantic concepts, automatic image annotation has become a difficult issue in computer vision recently. We propose a new image multilabel annotation method based on double-layer probabilistic latent semantic analysis (PLSA) in this paper. The new double-layer PLSA model is constructed to bridge the low-level visual features and high-level semantic concepts of images for effective image understanding. The low-level features of images are represented as visual words by Bag-of-Words model; latent semantic topics are obtained by the first layer PLSA from two aspects of visual and texture, respectively. Furthermore, we adopt the second layer PLSA to fuse the visual and texture latent semantic topics and achieve a top-layer latent semantic topic. By the double-layer PLSA, the relationships between visual features and semantic concepts of images are established, and we can predict the labels of new images by their low-level features. Experimental results demonstrate that our automatic image annotation model based on double-layer PLSA can achieve promising performance for labeling and outperform previous methods on standard Corel dataset. PMID:24999490

  20. Capacitance of carbon-based electrical double-layer capacitors.

    PubMed

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  1. Layer contributions to the nonlinear acoustic radiation from stratified media.

    PubMed

    Vander Meulen, François; Haumesser, Lionel

    2016-12-01

    This study presents the thorough investigation of the second harmonic generation scenario in a three fluid layer system. An emphasis is on the evaluation of the nonlinear parameter B/A in each layer from remote measurements. A theoretical approach of the propagation of a finite amplitude acoustic wave in a multilayered medium is developed. In the frame of the KZK equation, the weak nonlinearity of the media, attenuation and diffraction effects are computed for the fundamental and second harmonic waves propagating back and forth in each of the layers of the system. The model uses a gaussian expansion to describe the beam propagation in order to quantitatively evaluate the contribution of each part of the system (layers and interfaces) to its nonlinearity. The model is validated through measurements on a water/aluminum/water system. Transmission as well as reflection configurations are studied. Good agreement is found between the theoretical results and the experimental data. The analysis of the second harmonic field sources measured by the transducers from outside the stratified medium highlights the factors that favor the cumulative effects.

  2. Electrical double layers at the oil/water interface

    NASA Technical Reports Server (NTRS)

    Volkov, A. G.; Deamer, D. W.; Tanelian, D. L.; Markin, V. S.

    1996-01-01

    This review presents the historical development and current status of the theory of the electrical double layer at a liquid/liquid interface. It gives rigorous thermodynamic definitions of all basic concepts related to liquid interfaces and to the electrical double layer. The difference between the surface of a solid electrode and the interface of two immiscible electrolyte solutions (ITIES) is analyzed in connection to their electrical properties. The most important classical relationships for the electrical double layer are presented and critically discussed. The generalized adsorption isotherm is derived. After a short review of the classical Gouy-Chapman and Verwey-Niessen models, more recent developments of the double layer theory are presented. These include effects of variable dielectric permittivity, nonlocal electrostatics, hydration forces, the modified Poisson-Boltzmann equation and the ion-dipole plasma. The relative merits of different theories are estimated by comparing them with computer simulation of the ITIES and electrical double layer. Special attention is given to the structure of ITIES and its variation due to adsorption of ions and amphiphilic molecules.

  3. Acoustic focusing through two layer annuluses in air

    NASA Astrophysics Data System (ADS)

    Guan, Yi-Jun; Sun, Hong-Xiang; Liu, Shu-Sen; Yuan, Shou-Qi; Xia, Jian-Ping; Ge, Yong

    2016-10-01

    We report an acoustic focusing lens composed of two-layer annuluses made of metal cylinders in air. We find that the cylindrical waves can be focused into a perfect point without diffraction in the centre of the annuluses, which arises from the Mie-resonance modes in the annuluses. The focusing frequencies are related to the size of the inner annulus, and the focusing effect can be applied to the annuluses with different shapes and incident positions. Interesting applications of the focusing lens in the acoustic beam splitter and directional transmitter with energy enhancement are further discussed. Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 51239005), the National Natural Science Foundation of China (Grant No. 11404147), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140519), the China Postdoctoral Science Foundation (Grant No. 2015M571672), the Research Fund for Advanced Talents of Jiangsu University, China (Grant No. 11JDG118), and the Training Project of Young Backbone Teachers of Jiangsu University, China.

  4. A Potential Role of Double Layers on Solar Wind Acceleration

    NASA Astrophysics Data System (ADS)

    Parks, G. K.; McCarthy, M.; Lee, E.; Hong, J.

    2012-12-01

    The distribution function of solar wind (SW) is non-Maxwellian and often includes field-aligned beams. Recently, electrostatic solitary waves (ESW) have been observed in the SW and they have been interpreted as double layers. Taking a cue from Earth's auroral observations that large-scale electric field parallel to magnetic field may be due to many double layers distributed along the geomagnetic field, we have looked at the potential role double layers could play in SW acceleration. This picture would suggest that the halo component of the SW represents a beam that has been accelerated by parallel electric field. The core electrons come from secondaries produced by the beam going through the solar coronal atmosphere. The source of the super-halo component is not known and we speculate that it could represent the field-aligned non-thermal high-energy halo electrons that have been accelerated to ``runaway" energies.

  5. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  6. A review of molecular modelling of electric double layer capacitors.

    PubMed

    Burt, Ryan; Birkett, Greg; Zhao, X S

    2014-04-14

    Electric double-layer capacitors are a family of electrochemical energy storage devices that offer a number of advantages, such as high power density and long cyclability. In recent years, research and development of electric double-layer capacitor technology has been growing rapidly, in response to the increasing demand for energy storage devices from emerging industries, such as hybrid and electric vehicles, renewable energy, and smart grid management. The past few years have witnessed a number of significant research breakthroughs in terms of novel electrodes, new electrolytes, and fabrication of devices, thanks to the discovery of innovative materials (e.g. graphene, carbide-derived carbon, and templated carbon) and the availability of advanced experimental and computational tools. However, some experimental observations could not be clearly understood and interpreted due to limitations of traditional theories, some of which were developed more than one hundred years ago. This has led to significant research efforts in computational simulation and modelling, aimed at developing new theories, or improving the existing ones to help interpret experimental results. This review article provides a summary of research progress in molecular modelling of the physical phenomena taking place in electric double-layer capacitors. An introduction to electric double-layer capacitors and their applications, alongside a brief description of electric double layer theories, is presented first. Second, molecular modelling of ion behaviours of various electrolytes interacting with electrodes under different conditions is reviewed. Finally, key conclusions and outlooks are given. Simulations on comparing electric double-layer structure at planar and porous electrode surfaces under equilibrium conditions have revealed significant structural differences between the two electrode types, and porous electrodes have been shown to store charge more efficiently. Accurate electrolyte and

  7. Electromagnetic properties of a double-layer graphene system with electron-hole pairing

    NASA Astrophysics Data System (ADS)

    Germash, K. V.; Fil, D. V.

    2016-05-01

    We study electromagnetic properties of a double-layer graphene system in which electrons from one layer are coupled with holes from the other layer. The gauge invariant linear response functions are obtained. The frequency dependences of the transmission, reflection, and absorption coefficients are computed. We predict a peak in the reflection and absorption at the frequency equal to the gap in the quasiparticle spectrum. It is shown that the electron-hole pairing results in an essential modification of the spectrum of surface TM plasmons. We find that the optical TM mode splits into a low frequency undamped branch and a high frequency damped branch. At zero temperature the lower branch disappears. It is established that the pairing does not influence the acoustic TM mode. It is also shown that the pairing opens the frequency window in the subgap range for the surface TE wave.

  8. Electric double layer of anisotropic dielectric colloids under electric fields

    NASA Astrophysics Data System (ADS)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  9. Double-layered cell transfer technology for bone regeneration.

    PubMed

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called "cell transfer technology", enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  10. Double-layered cell transfer technology for bone regeneration.

    PubMed

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-09-14

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called "cell transfer technology", enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration.

  11. Double-layered cell transfer technology for bone regeneration

    PubMed Central

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  12. Double-Capon and double-MUSICAL for arrival separation and observable estimation in an acoustic waveguide

    NASA Astrophysics Data System (ADS)

    Touzé, Grégoire Le; Nicolas, Barbara; Mars, Jérôme I.; Roux, Philippe; Oudompheng, Benoit

    2012-12-01

    Recent developments in shallow water ocean acoustic tomography propose the use of an original configuration composed of two source-receiver vertical arrays and wideband sources. The recording space thus has three dimensions, with two spatial dimensions and the frequency dimension. Using this recording space, it is possible to build a three-dimensional (3D) estimation space that gives access to the three observables associated with the acoustic arrivals: the direction of departure, the direction of arrivals, and the time of arrival. The main interest of this 3D estimation space is its capability for the separation of acoustic arrivals that usually interfere in the recording space, due to multipath propagation. A 3D estimator called double beamforming has already been developed, although it has limited resolution. In this study, the new 3D high-resolution estimators of double Capon and double MUSICAL are proposed to achieve this task. The ocean acoustic tomography configuration allows a single recording realization to estimate the cross-spectral data matrix, which is necessary to build high-resolution estimators. 3D smoothing techniques are thus proposed to increase the rank of the matrix. The estimators developed are validated on real data recorded in an ultrasonic tank, and their detection performances are compared to existing 2D and 3D methods.

  13. A tunable acoustic metamaterial with double-negativity driven by electromagnets

    PubMed Central

    Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Li, Xiao-juan; Zhang, Hui; Ding, Jin

    2016-01-01

    With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings. PMID:27443196

  14. A tunable acoustic metamaterial with double-negativity driven by electromagnets.

    PubMed

    Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-Yi; Li, Xiao-Juan; Zhang, Hui; Ding, Jin

    2016-01-01

    With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings. PMID:27443196

  15. A tunable acoustic metamaterial with double-negativity driven by electromagnets

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Xue, Cheng; Fan, Li; Zhang, Shu-Yi; Li, Xiao-Juan; Zhang, Hui; Ding, Jin

    2016-07-01

    With the advance of the research on acoustic metamaterials, the limits of passive metamaterials have been observed, which prompts the studies concerning actively tunable metamaterials with adjustable characteristic frequency bands. In this work, we present a tunable acoustic metamaterial with double-negativity composed of periodical membranes and side holes, in which the double-negativity pass band can be controlled by an external direct-current voltage. The tension and stiffness of the periodically arranged membranes are actively controlled by electromagnets producing additional stresses, and thus, the transmission and phase velocity of the metamaterial can be adjusted by the driving voltage of the electromagnets. It is demonstrated that a tiny direct-current voltage of 6V can arise a shift of double-negativity pass band by 40% bandwidth, which exhibits that it is an easily controlled and highly tunable acoustic metamaterial, and furthermore, the metamaterial marginally causes electromagnetic interference to the surroundings.

  16. Double-diffusive layering and mixing in Patagonian fjords

    NASA Astrophysics Data System (ADS)

    Pérez-Santos, Iván; Garcés-Vargas, José; Schneider, Wolfgang; Ross, Lauren; Parra, Sabrina; Valle-Levinson, Arnoldo

    2014-12-01

    Double-diffusive layering was quantified for the first time in the Chilean Patagonian fjords region (41.5-56°S). Approximately 600 temperature and salinity profiles collected during 1995-2012 were used to study water masses, quantify diffusive layering and compute the vertical diffusivity of heat. Development of 'diffusive-layering' or simply 'layering' was favored by relatively fresh-cold waters overlying salty-warm waters. Fresh waters are frequently derived from glacial melting that influences the fjord either directly or through rivers. Salty waters are associated with Modified Subantarctic (MSAAW) and Subantarctic Water (SAAW). Double-diffusive convection occurred as layering in 40% of the year-round data and as salt fingering in <1% of the time. The most vigorous layering, was found at depths between 20 and 70 m, as quantified by (a) Turner angles, (b) density ratios, and (c) heat diffusivity (with maximum values of 5 × 10-5 m2 s-1). Diffusive-layering events presented a meridional gradient with less layering within the 41-47°S northern region, relative to the southern region between 47° and 56°S. Layering occupied, on average, 27% and 56% of the water column in the northern and southern regions, respectively. Thermohaline staircases were detected with microprofile measurements in Martinez and Baker channels (48°S), showing homogeneous layers (2-4 m thick) below the pycnocline (10-40 m). Also in this area, increased vertical mixing coincided with the increased layering events. High values of Thorpe scale (LT ∼ 7 m), dissipation rate of TKE (ε = 10-5-10-3 W kg-1) and diapycnal eddy diffusivity (Kρ = 10-6-10-3 m-2 s-1) were associated with diffusive layering. Implications of these results are that diffusive layering should be taken into account, together with other mixing processes such as shear instabilities and wind-driven flows, in biological and geochemical studies.

  17. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies.

    PubMed

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-09-16

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.

  18. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies

    PubMed Central

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-01-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. PMID:27633351

  19. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies.

    PubMed

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-01-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. PMID:27633351

  20. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies

    NASA Astrophysics Data System (ADS)

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-09-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.

  1. Transition in a Supersonic Boundary Layer due to Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam

    2004-01-01

    The boundary layer receptivity process due to the interaction of three-dimensional slow and fast acoustic disturbances with a blunted flat plate is numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 106/inch. The computations are performed with and without two-dimensional isolated roughness element located near the leading edge. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The simulations showed that the linear instability waves are generated very close to the leading edge. The wavelength of the disturbances inside the boundary layer first increases gradually and becomes longer than the wavelength for the instability waves within a short distance from the leading edge. The wavelength then decreases gradually and merges with the wavelength for the Tollmien_Schlichting wave. The initial amplitudes of the instability waves near the neutral points, the receptivity coefficients, are about 1.20 and 0.07 times the amplitude of the free-stream disturbances for the slow and the fast waves respectively. It was also revealed that small isolated roughness element does not enhance the receptivity process for the given nose bluntness.

  2. Transition in a Supersonic Boundary Layer Due to Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2005-01-01

    The boundary layer receptivity process due to the interaction of three-dimensional slow and fast acoustic disturbances with a blunted flat plate is numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 10(exp 6)/inch. The computations are performed with and without two-dimensional isolated roughness element located near the leading edge. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the fifth-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The simulations showed that the linear instability waves are generated very close to the leading edge. The wavelength of the disturbances inside the boundary layer first increases gradually and becomes longer than the wavelength for the instability waves within a short distance from the leading edge. The wavelength then decreases gradually and merges with the wavelength for the Tollmien-Schlichting wave. The initial amplitudes of the instability waves near the neutral points, the receptivity coefficients, are about 1.20 and 0.07 times the amplitude of the free-stream disturbances for the slow and the fast waves respectively. It was also revealed that small isolated roughness element does not enhance the receptivity process for the given nose bluntness.

  3. Comparing comfort and wearability between Type III single-layered and double-layered EVA mouthguards.

    PubMed

    Kenyon, Brian J; Loos, Larry G

    2005-01-01

    This study compared two Type III ethylene vinyl acetate (EVA) mouthguards for wearability, comfort, fit, and patient preference. Twenty-two athletes each received two custom-fabricated athletic mouthguards, a single-layered vacuum-formed EVA mouthguard and a double-layered heat- and pressure-laminated EVA type. Athletes wore each type of mouthguard for a two-week period while playing basketball. At the end of each two-week period, the athletes completed questionnaires that evaluated 17 characteristics of each mouthguard type. Data were analyzed using the binomial test for small numbers. The double-layered heat- and pressure-laminated EVA mouthguard performed as well as or better than the single-layered vacuum-formed type in 14 of the 17 categories. There was a statistically significant patient preference for the double-layered heat- and pressure-laminated mouthguard.

  4. Double layer formation at the interface of complex plasmas

    SciTech Connect

    Yaroshenko, V. V.; Thoma, M. H.; Thomas, H. M.; Morfill, G. E.

    2008-08-15

    Necessary conditions are formulated for the generation of a double layer at the interface of a complex plasma and a particle-free electron-ion plasma in a weakly collisional discharge. Examples are calculated for realistic observed complex plasmas, and it is shown that situations of both ''smooth'' transitions and 'sharp' transitions can exist. The model can explain the abrupt boundaries observed.

  5. Study of the anode plasma double layer: optogalvanic detectors

    SciTech Connect

    Gurlui, S.; Dimitriu, D.; Strat, M.; Strat, Georgeta

    2006-01-15

    The experimental and theoretical results show that the anode double layer (DL) is a very sensitive plasma formation suitable for fine optogalvanic studies. The obtained results demonstrate that the parameters of the oscillations sustained by a DL (frequency, amplitude) can be used as optogalvanic detectors.

  6. Specific ion effects via ion hydration: II. Double layer interaction.

    PubMed

    Ruckenstein, Eli; Manciu, Marian

    2003-09-18

    A simple modified Poisson-Boltzmann formalism, which accounts also for those interactions between electrolyte ions and colloidal particles not included in the mean potential, is used to calculate the force between two parallel plates. It is shown that the short-range interactions between ions and plates, such as those due to the change in the hydration free energy of a structure-making/breaking ion that approaches the interface, affect the double layer interaction at large separations through the modification of the surface potential and surface charge density. While at short separations (below the range of the short-range ion-hydration forces) the interaction can be attractive, at larger separations the interaction is always repulsive, as in the traditional theory. When the long-range van der Waals interactions between the ions and the system (ion-dispersion interactions) are accounted for in the modified Poisson-Boltzmann approach, an attractive force between plates can be generated. At sufficiently large separations, this attraction can become even stronger than the traditional van der Waals attraction between plates of finite thickness, thus generating a dominant long-range 'double layer attraction'. At small plate separations, the attraction generated by the ion-dispersion forces combined with the electrostatic repulsion due to the double layers overlap can lead to a variety of interactions, from a weak attraction (which is typically by at least one order of magnitude smaller than the traditional van der Waals attraction between plates) to a strong double layer repulsion (for sufficiently large surface charges). Both types of ion interactions (long-range van der Waals or short-range ionic hydration) strongly affect the magnitude of the double layer interaction, and can account for the specific ion effects observed experimentally. However, they do not affect qualitatively the traditional theory of the colloid stability, which predicts that the colloid is stable

  7. Bound States in the Continuum in double layer structures

    PubMed Central

    Li, LiangSheng; Yin, Hongcheng

    2016-01-01

    We have theoretically investigated the reflectivity spectrums of single- and double-layer photonic crystal slabs and the dielectric multilayer stack. It is shown that light can be perfectly confined in a single-layer photonic crystal slab at a given incident angle by changing the thickness, permittivity or hole radius of the structure. With a tunable double-layer photonic crystal slab, we demonstrate that the occurrence of tunable bound states in the continuum is dependent on the spacing between two slabs. Moreover, by analytically investigating the Drude lossless multilayer stack model, the spacing dependence of bound states in the continuum is characterized as the phase matching condition that illuminates these states can occur at any nonzero incident angles by adjusting the spacing. PMID:27245435

  8. Layered Structures in Magmatic Systems From Double-Diffusive Convection

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Schmalzl, J.

    2004-05-01

    The evolution of magmatic systems is often influenced by the existence of discrete layers. Such layering can not be explained by gravitational settling and other dynamical mechanisms have been proposed. Double-diffusive convection is considered to be such a mechanism. In the diffusive regime, where the slowly diffusing component (e,g composition) acts to stabilize the system and the fast diffusing component /e.g. heat) provides the destabilizing force, the formation of layers has been observed. Most studies. however, concentrated on the properties of layers and not on the actual formation. In a series of two- and three dimensional numerical experiments, we have investigated the evolution of layers from non-layered initial states. Layer formation is found to depend on the ratio of thermal to compositional diffusivities (the Lewis number). The influence of the Lewis number has been systematically investigated by employing a field approach to monitor the evolution of the composition. Magmatic systems have a very high Lewis number which can hardly be realized with such an approach. We have therefore developed a tracer method, allowing to study the system in the limit of an infinite Lewis number. With both methods we obtain qualitative similar layered structures. In order to better understand layer formation in magmatic systems, we have included effects of temperature-and compositionaly dependent viscosity. Our results show that the viscosity has a strong influence on the temporal evolution of the system and on the resulting type of layering

  9. Ultrasonicated double wall carbon nanotubes for enhanced electric double layer capacitance

    NASA Astrophysics Data System (ADS)

    Pandey, Srikrishna; Maiti, Uday N.; Palanisamy, Kowsalya; Nikolaev, Pavel; Arepalli, Sivaram

    2014-06-01

    An intense ultrasonication of the double wall carbon nanotubes (DWCNTs) causes fractures and splitting of the individual tubes. This not only generates open tips and edges in DWCNTs but also incorporates defects in the tube walls. The electric double layer capacitor (EDLC) electrodes of intensively ultrasonicated DWCNTs (U-DWCNTs) form organized layered-porous structures. The EDLC behavior of U-DWCNTs electrodes shows dramatic improvements (specific capacitance 10 times and 222 times larger than the pristine DWCNTs at scan rates 5 mV s-1 and 500 mV s-1, respectively) due to the increased wettability of electrodes and accessibility of the electrolyte ions.

  10. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2015-11-01

    This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.

  11. Reflected wavefronts modulation with acoustic metasurface based on double-split hollow sphere

    NASA Astrophysics Data System (ADS)

    Ding, Changlin; Zhao, Xiaopeng; Chen, Huaijun; Zhai, Shilong; Shen, Fangliang

    2015-08-01

    Metasurfaces with sub-wavelength thickness and planar profile have exhibited abnormal manipulation to waves that could not be realized by traditional materials. Here, we present an acoustic metasurface (AMS) model composed of double-split hollow sphere (DSHS) resonator arrays with the functionality of modulating reflected wavefronts at will. By tailoring the split-hole diameter of DSHS, the AMS can be designed to cover 2 π phase shifts with a step of π/4. The acoustic waves perpendicularly and obliquely incident on the AMS can be reflected at any angle, including anomalous reflection and negative reflection. These anomalous manipulations of the reflected wave are simulated to fulfill the generalized Snell's law by projecting suitable phase gradient. Such AMS provides another path to acoustic applications such as acoustic imaging, cloaking, beam steering devices.

  12. Spatial instability of viscous double-layer liquid sheets

    NASA Astrophysics Data System (ADS)

    Ye, Han-Yu; Yang, Li-Jun; Fu, Qing-Fei

    2016-10-01

    This paper investigates the spatial instability of a double-layer viscous liquid sheet moving in a stationary gas medium. A linear stability analysis is conducted and two situations are considered, an inviscid-gas situation and a viscous-gas situation. In the inviscid-gas situation, the basic state of the entire gas phase is stationary and the analytical dispersion relation is derived. Similar to single-layer sheets, the instability of double-layer sheets presents two unstable modes, the sinuous and the varicose modes. However, the result of the base-case double-layer sheet indicates that the cutoff wavenumber of the dispersion curve is larger than that of a single-layer sheet. A decomposition of the growth rate is performed and the result shows that for small wavenumbers, the surface tension of all three interfaces and the aerodynamic forces of both the lower and upper gases contribute significantly to the unstable growth rate. In contrast, for large wavenumbers the major contribution to the unstable growth rate is only the surface tension of the upper interface and the aerodynamic force of the upper gas. In the viscous-gas situation, although the majority of the gas phase is stationary, gas boundary layers exist at the vicinity of the moving liquid sheet, and the stability problem is solved by a spectral collocation method. Compared with the inviscid-gas solution, the growth rate at large wavenumber is significantly suppressed. The decomposition of growth rate indicates that all the aerodynamic and surface tension terms behave consistently throughout the entire unstable wavenumber range. The effects of various parameters are discussed. In addition, the effect of gas viscosity and the gas velocity profile is investigated separately, and the results indicate that both factors affect the maximum growth rate and the dominant wavenumber, although the effect of the gas velocity profile is stronger than that of the gas viscosity.

  13. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future. PMID:23403587

  14. Development and current status of electric double-layer capacitors

    SciTech Connect

    Morimoto, Takeshi; Hiratsuka, Kazuya; Sanada, Yasuhiro; Kurihara, Kaname

    1995-12-31

    An electric double layer capacitor (EDLC) based on the charge storage at the interface between a high surface area carbon electrode and an electrolyte solution is widely used as maintenance-free power source for IC memories and microcomputers. New applications for electric double-layer capacitors have been proposed in recent years. The popularity of these devices is derived from their high energy density relative to conventional capacitors and their long cycle life and high power density relative to batteries. In this paper a classification and a characteristics of industrially produced Japanese small EDLCs are reviewed. Structure and performance of power capacitors under development as well as materials and performance of industrially produced small capacitors are discussed.

  15. Electrical Power Generation by Mechanically Modulating Electrical Double Layers

    NASA Astrophysics Data System (ADS)

    Lee, Dongyun; Moon, Jong Kyun; Jeong, Jaeki; Pak, Hyuk Kyu

    2012-11-01

    Many objects in contact with a liquid acquire some electronic charges on their surfaces. These charges on the surface attract counter ions from the liquid phase. This complex system is called electrical double layer (EDL). Since its geometry and structure is similar to an electric capacitor, it is also called an electrical double layer capacitor (EDLC). In this work we studied two EDLCs formed in a liquid droplet bridge between two parallel solid conducting plates. We found that when the bridge height was mechanically modulated, each EDLC was continuously charged and discharged generating an AC electric current across the plates. The results of this experiment can be useful for constructing a micro-fluidic power generation.

  16. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  17. Interlayer tunneling in double-layer quantum hall pseudoferromagnets.

    PubMed

    Balents, L; Radzihovsky, L

    2001-02-26

    We show that the interlayer tunneling I-V in double-layer quantum Hall states displays a rich behavior which depends on the relative magnitude of sample size, voltage length scale, current screening, disorder, and thermal lengths. For weak tunneling, we predict a negative differential conductance of a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic field splits this zero-bias peak, leading instead to a "derivative" feature at V(B)(B(parallel)) = 2 pi Planck's over 2 pi upsilon B(parallel)d/e phi(0), which gives a direct measurement of the dispersion of the Goldstone mode corresponding to the spontaneous symmetry breaking of the double-layer Hall state. PMID:11290258

  18. Experimental investigation of current free double layers in helicon plasmas

    SciTech Connect

    Sahu, B. B.; Tarey, R. D.; Ganguli, A.

    2014-02-15

    The paper presents investigations of current free double layer (CFDL) that forms in helicon plasmas. In contrast to the other work reporting on the same subject, in the present investigations the double layer (DL) forms in a mirror-like magnetic field topology. The RF compensated Langmuir probe measurements show multiple DLs, which are in connection with, the abrupt fall of densities along with potential drop of about 24 V and 18 V. The DLs strengths (e ΔV{sub p})/(k T{sub e}) are about 9.5 and 6, and the corresponding widths are about 6 and 5 D lengths. The potential drop is nearly equal to the thermal anisotropies between the two plasma regions forming the DL, which is present in the plateau region of mirror, unlike the earlier studies on the DL formation in the region of strong gradients in the magnetic field. Also, it presents a qualitative discussion on the mechanism of DL formation.

  19. Observations of double layers in earth's plasma sheet.

    PubMed

    Ergun, R E; Andersson, L; Tao, J; Angelopoulos, V; Bonnell, J; McFadden, J P; Larson, D E; Eriksson, S; Johansson, T; Cully, C M; Newman, D N; Goldman, M V; Roux, A; LeContel, O; Glassmeier, K-H; Baumjohann, W

    2009-04-17

    We report the first direct observations of parallel electric fields (E_{ parallel}) carried by double layers (DLs) in the plasma sheet of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E_{ parallel} signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current sheet, and in plasma sheet boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's plasma sheet. PMID:19518640

  20. Observations of Double Layers in Earth's Plasma Sheet

    SciTech Connect

    Ergun, R. E.; Tao, J.; Andersson, L.; Eriksson, S.; Johansson, T.; Angelopoulos, V.; Bonnell, J.; McFadden, J. P.; Larson, D. E.; Cully, C. M.; Newman, D. N.; Goldman, M. V.; Roux, A.; LeContel, O.; Glassmeier, K.-H.; Baumjohann, W.

    2009-04-17

    We report the first direct observations of parallel electric fields (E{sub parallel}) carried by double layers (DLs) in the plasma sheet of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E{sub parallel} signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current sheet, and in plasma sheet boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's plasma sheet.

  1. Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.; Knott, P. R.; Ebacker, J. J.

    1981-01-01

    Results of a forward Variable Area Bypass Injector test and a Coannular Nozzle test performed on a YJ101 Double Bypass Variable Cycle Engine are reported. These components are intended for use on a Variable Cycle Engine. The forward Variable Area Bypass Injector test demonstrated the mode shifting capability between single and double bypass operation with less than predicted aerodynamic losses in the bypass duct. The acoustic nozzle test demonstrated that coannular noise suppression was between 4 and 6 PNdB in the aft quadrant. The YJ101 VCE equipped with the forward VABI and the coannular exhaust nozzle performed as predicted with exhaust system aerodynamic losses lower than predicted both in single and double bypass modes. Extensive acoustic data were collected including far field, near field, sound separation/ internal probe measurements as Laser Velocimeter traverses.

  2. [Rat uterus anastomoses in a single and a double layer].

    PubMed

    Gianaroli, L; Bufferli, M; Livani, M F

    1980-11-15

    The Authors display their results on microsurgical operations in rat's uteri. After having described the instruments and methods used, the surgical techniques and the differences between a single and a double layer suture are discussed. However the formation of intraoperative adherences, which can damage the functional results of the intervention, is studied. And what's more the mean number of live born foetuses is seen as an attainable parameter for future validations. PMID:7011341

  3. Carrier relaxation time divergence in single and double layer cuprates

    NASA Astrophysics Data System (ADS)

    Schneider, M. L.; Rast, S.; Onellion, M.; Demsar, J.; Taylor, A. J.; Glinka, Y.; Tolk, N. H.; Ren, Y. H.; Lüpke, G.; Klimov, A.; Xu, Y.; Sobolewski, R.; Si, W.; Zeng, X. H.; Soukiassian, A.; Xi, X. X.; Abrecht, M.; Ariosa, D.; Pavuna, D.; Krapf, A.; Manzke, R.; Printz, J. O.; Williamsen, M. S.; Downum, K. E.; Guptasarma, P.; Bozovic, I.

    2003-12-01

    We report the transient optical pump-probe reflectivity measurements on single and double layer cuprate single crystals and thin films of ten different stoichiometries. We find that with sufficiently low fluence the relaxation time (tauR) of all samples exhibits a power law divergence with temperature (T): tauR ∝ T^{-3 ± 0.5}. Further, the divergence has an onset temperature above the superconducting transition temperature for all superconducting samples. Possible causes of this divergence are discussed.

  4. Electrostatic double layers as auroral particle accelerators - a problem

    NASA Astrophysics Data System (ADS)

    Bryant, D. A.; Courtier, G. M.

    2015-04-01

    A search of the Annales Geophysicae database shows that double layers and other quasi-static electric potential structures have been invoked hundreds of times since the year 2000 as being the agents of auroral electron acceleration. This is despite the fact that energy transfer by conservative fields has been known for some 200 years to be impossible. Attention is drawn to a long-standing interpretation of the acceleration process in terms of the dynamic fields of electrostatic waves.

  5. Interpreting Underwater Acoustic Images of the Upper Ocean Boundary Layer

    ERIC Educational Resources Information Center

    Ulloa, Marco J.

    2007-01-01

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of…

  6. Solitary and double-layer structures in quantum bi-ion plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, Mehran; Tribeche, Mouloud

    2016-06-01

    Weak ion-acoustic solitary waves (IASWs) in an unmagnetized quantum plasmas having two-fluid ions and fluid electrons are considered. Using the one-dimensional quantum hydrodynamics model and then the reductive perturbation technique, a generalized form of nonlinear quantum Korteweg-de Vries (KdV) equation governing the dynamics of weak ion acoustic solitary waves is derived. The effects of ion population, warm ion temperature, quantum diffraction, and polarity of ions on the nonlinear properties of these IASWs are analyzed. It is found that our present plasma model may support compressive as well as rarefactive solitary structures. Furthermore, formation and characteristics properties of IA double layers in the present bi-ion plasma model are investigated. The results of this work should be useful and applicable in understanding the wide relevance of nonlinear features of localized electro-acoustic structures in laboratory and space plasma, such as in super-dense astrophysical objects [24] and in the Earth's magnetotail region (Parks [43]. The implications of our results in some space plasma situations are discussed.

  7. Two-dimensional potential double layers and discrete auroras

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Lee, L. C.; Akasofu, S.-I.

    1979-01-01

    This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.

  8. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics

    PubMed Central

    Munje, Rujuta D.; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-01-01

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10–200 ng/mL. PMID:26420511

  9. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics.

    PubMed

    Munje, Rujuta D; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-30

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  10. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics

    NASA Astrophysics Data System (ADS)

    Munje, Rujuta D.; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-01

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  11. Numerical simulations of double layers and auroral electric fields

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Thiemann, H.

    1984-01-01

    Recent one-dimensional and two-dimensional numerical simulations of double layers (DLs) in the electric fields of the auroral plasma are reviewed, with reference to observational data. It is found that two-dimensional DLs driven by current sheets of finite thickness have different characteristics, depending on whether the layer thickness is less than or much greater than the ion gyroradius: When thickness is less than ion gyroradius, V-shaped DLs form with nearly equal parallel and perpendicular potential drops; when layer thickness is much greater than ion gyroradius the major parallel potential drop occurs outside the current sheet and the perpendicular electric fields are localized at the edges of the current sheet. It is shown that some features of the simulated fields, such as the amplitudes and scale lengths, are qualitatively similar to those observed in space.

  12. The acoustic emission of a distributed mode loudspeaker near a porous layer.

    PubMed

    Prokofieva, E Yu; Horoshenkov, Kirill V; Harris, N

    2002-06-01

    Experimental and theoretical modeling of the vibro-acoustic performance of a distributed mode loudspeaker (DML) suggest that their acoustic emission can be significantly affected by the presence of a porous layer. The amplitude of the surface velocity of the panel and the acoustic pressure on the porous surface are reduced largely in the vicinity of structural resonances due to the additional radiation damping and visco-thermal absorption phenomenon in the porous layer. The experimental results suggest that a porous layer between a rigid base and a DML panel can considerably alter its acoustic emission in the near field and in the far field. This is illustrated by a reduction in the level of fluctuations in the emitted acoustic pressure spectra. These fluctuations are normally associated with the interference between the sound emitted by the front surface of the speaker and that emitted from the back. Another contribution comes from the pronounced structural resonances in the surface velocity spectrum. The results of this work suggest that the acoustic boundary conditions near a DML can be modified by the porous layer so that a desired acoustic output can be attained.

  13. Double Layers: Potential Formation and Related Nonlinear Phenomena in Plasmas: Proceedings of the 5th Symposium

    NASA Astrophysics Data System (ADS)

    Iizuka, S.

    1998-02-01

    The Table of Contents for the book is as follows: * PREFACE * INTERNATIONAL SCIENTIFIC COMMITTEE * LOCAL ORGANIZING COMMITTEE AT TOHOKU UNIVERSITY * CHAPTER 1: DOUBLE LAYERS, SHEATHS, AND POTENTIAL STRUCTURES * 1.1 Double Layers * On Fluid Models of Stationary, Acoustic Double Layers (Invited) * Particle Simulation of Double Layer (Invited) * Space-Time Dependence of Non-Steady Double Layers * The Role of Low Energy Electrons for the Generation of Anode Double Layers in Glow Discharges * Arbitrary Amplitude Ion-Acoustic Double Layers in a Dusty Plasma * 1.2 Sheaths * Bounded Plasma Edge Physics as Observed from Simulations in 1D and 2D (Invited) * Control of RF Sheath Structure in RF Diode Discharge * Observation of Density Gradients with Fine Structures and Low Frequency Wave Excitation at the Plasma-Sheath Boundary * Double Sheath Associated with an Electron Emission to a Plasma Containing Negative Ions * Sheath Edge and Floating Potential for Multi-Species Plasmas Including Dust Particles * 1.3 Potential Structures and Oscillations * Potential Structure Formed at a Constriction of a DC He Positive Column and its Coupling with Ionization Wave * Potential Structure in a New RF Magnetron Device with a Hollow Electrode * Potential Disruption in a RF Afterglow Electronegative Plasma * Potential Oscillation in a Strongly Asymmetry RF Discharge Containing Negative Ions * Effects of External Potential Control on Coulomb Dust Behavior * Potential Structure of Carbon Arc Discharge for High-Yield Fullerenes Formation * Control of Axial and Radial Potential Profiles in Tandem Mirrors (Invited) * CHAPTER 2: FIELD-ALIGNED ELECTRIC FIELDS AND RELATED PARTICLE ACCELERATIONS * 2.1 Field-Aligned Potential Formation * Formation of Large Potential Difference in a Plasma Flow along Converging Magnetic Field Lines (Invited) * Presheath Formation in front of an Oblique End-Plate in a Magnetized Sheet Plasma * Plasma Potential Formation Due to ECRH in a Magnetic Well * Electrostatic

  14. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators. PMID:22481769

  15. Large-scale synthesis of highly dispersed layered double hydroxide powders containing delaminated single layer nanosheets.

    PubMed

    Wang, Qiang; O'Hare, Dermot

    2013-07-18

    A facile method for the synthesis of Zn2Al-borate and Mg3Al-borate layered double hydroxides (LDHs) with extremely high specific surface areas of 458.6 and 263 m(2) g(-1) and containing delaminated nanosheets is reported. To the best of our knowledge, this is the first report of LDH powders that still remain exfoliated on drying.

  16. Anode Sheath and Double Layer Solutions with Ionization

    NASA Astrophysics Data System (ADS)

    Scheiner, Brett S.; Baalrud, Scott D.

    2014-10-01

    When an electrode in a plasma is biased more positive than the plasma potential it attracts electrons and repels ions forming a region of negative space charge (electron sheath). Ballistic electrons moving towards this anode gain energy equal to the difference in electrostatic potential energy, Δϕ = ϕ (x) -ϕplasma , with a maximum of ϕanode -ϕplasma . When ϕanode is large enough, electrons can gain enough energy to ionize neutral atoms through electron impact ionization. This leads to a layer of increased ion density near the anode, which can exceed the local electron density at large enough anode biases forming a double layer. We model the sheath potential profile using Poisson's equation with a fluid model for the electron density in the case without ionization and formulate an integral equation for the case with ionization where the ion density depends on an integral from ϕ (x) to ϕanode. An analytic form of the sheath electric field is obtained for the case without ionization and we demonstrate that it asymptotically agrees with the Child-Langmuir solution. We numerically obtain double layer solutions when including ionization and show that the potential profile expands beyond that of the Child-Langmuir solution. This work was supported by the Office of Fusion Science at the U.S. Department of Energy under Contract DE-AC04-94SL85000.

  17. Geodesic acoustic mode in anisotropic plasmas using double adiabatic model and gyro-kinetic equation

    SciTech Connect

    Ren, Haijun; Cao, Jintao

    2014-12-15

    Geodesic acoustic mode in anisotropic tokamak plasmas is theoretically analyzed by using double adiabatic model and gyro-kinetic equation. The bi-Maxwellian distribution function for guiding-center ions is assumed to obtain a self-consistent form, yielding pressures satisfying the magnetohydrodynamic (MHD) anisotropic equilibrium condition. The double adiabatic model gives the dispersion relation of geodesic acoustic mode (GAM), which agrees well with the one derived from gyro-kinetic equation. The GAM frequency increases with the ratio of pressures, p{sub ⊥}/p{sub ∥}, and the Landau damping rate is dramatically decreased by p{sub ⊥}/p{sub ∥}. MHD result shows a low-frequency zonal flow existing for all p{sub ⊥}/p{sub ∥}, while according to the kinetic dispersion relation, no low-frequency branch exists for p{sub ⊥}/p{sub ∥}≳ 2.

  18. Shock waves and double layers in a quantum electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Dip, P. R.; Hossen, M. A.; Salahuddin, M.; Mamun, A. A.

    2016-02-01

    The ion-acoustic (IA) shock waves and double layers (DLs) in an unmagnetized, dissipative, quantum electron-positron-ion (EPI) plasma (composed of a viscous heavy ion fluid, Fermi electrons and positrons) have been theoretically investigated. The higher-order Burgers and Gardner equations are derived by employing the reductive perturbation method. The basic features of the IA shock waves and the DLs are identified by analyzing the solutions of both the higher-order Burgers and Gardner equations. The ratio of the Fermi temperature of the positron to that of the electron, the Fermi pressure of electrons and positrons, the viscous force, the plasma particle number densities, etc. are found to change remarkably the basic features (viz. amplitude, width, phase speed, etc.) of the IA waves. The results of our investigation may be helpful in understanding the nonlinear features of localized IA waves propagating in quantum EPI plasmas which are ubiquitous in astrophysical, as well as laboratory, environments.

  19. Solitary waves and double layers in a dusty electronegative plasma

    SciTech Connect

    Mamun, A. A.; Shukla, P. K.; Eliasson, B.

    2009-10-15

    A dusty electronegative plasma containing Boltzmann electrons, Boltzmann negative ions, cold mobile positive ions, and negatively charged stationary dust has been considered. The basic features of arbitrary amplitude solitary waves (SWs) and double layers (DLs), which have been found to exist in such a dusty electronegative plasma, have been investigated by the pseudopotential method. The small amplitude limit has also been considered in order to study the small amplitude SWs and DLs analytically. It has been shown that under certain conditions, DLs do not exist, which is in good agreement with the experimental observations of Ghim and Hershkowitz [Y. Ghim (Kim) and N. Hershkowitz, Appl. Phys. Lett. 94, 151503 (2009)].

  20. Plasma resonant terahertz photomixers based on double graphene layer structures

    NASA Astrophysics Data System (ADS)

    Ryzhii, Maxim; Shur, Michael S.; Mitin, Vladimir; Satou, Akira; Ryzhii, Victor; Otsuji, Taiichi

    2014-03-01

    We propose terahertz (THz) photomixers based on double graphene layer (DGL) structures, utilizing the interband absorption of modulated optical radiation, tunneling or thermionic inter-GL transitions, and resonant excitation of plasma oscillations. Using the developed device model, we substantiate the operation of the photomixers and calculate their characteristics. We demonstrate that the output frequency-dependent power of THz radiation exhibits pronounced resonant peaks at the plasmonic resonant frequencies. The proposed THz photomixer can surpass the pertinent devices based on the standard heterostructures.

  1. Double-Layered Lateral Meniscus Accompanied by Meniscocapsular Separation.

    PubMed

    Fukuda, Aki; Nishimura, Akinobu; Nakazora, Shigeto; Kato, Ko; Sudo, Akihiro

    2015-01-01

    We report an extremely rare case of double-layered lateral meniscus accompanied by meniscocapsular separation. The upper accessory meniscus was connected with the posterior horn and middle segment of the lower normal meniscus and was more mobile than the lower normal meniscus. A meniscocapsular separation was evident at the overlapping middle segment. Clinical symptoms were significantly improved by the resection of the upper accessory meniscus and the repair of the meniscocapsular separation. Careful arthroscopic analysis of other associated pathologies together with this rare abnormality was needed to achieve clinical improvement.

  2. Simulating Electric Double Layer Capacitance by Using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Gersappe, Dilip

    2015-03-01

    By using the Lattice Boltzmann Method (LBM) we studied diffuse-charge dynamics in electrochemical systems. We use the LBM to solve Poisson-Nernst-Planck equations (PNP) and Modified Poisson-Nernst-Planck equations (MPNP). The isotropic permittivity of electrolyte is modeled using the Booth model. The results show that both steric effect (MPNP) and isotropic permittivity (Booth model) can have large influence on diffuse-charge dynamics, especially when electrolyte concentration or applied potential is high. This model can be applied to simulate electric double layer capacitance of super capacitors with complex geometry and also incorporate other effects such as heat convection in a modular manner.

  3. Langmuir probe measurements of double-layers in a pulsed discharge

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Crawford, F. W.

    1980-01-01

    Langmuir probe measurements were carried out which confirm the occurrence of double-layers in an argon positive column. Pulsing the discharge current permitted probe measurements to be performed in the presence of the double-layer. Supplementary evidence, obtained from DC and pulsed discharges, indicated that the double-layers formed in the two modes of operation were similar. The double-layers observed were weak and stable; their relation to other classes of double-layers are discussed, and directions for future work are suggested.

  4. Parallel electric fields in extragalactic jets - double layers and anomalous resistivity in symbiotic relationships

    SciTech Connect

    Borovsky, J.E.

    1986-07-01

    After examining the properties of Coulomb-collision resistivity, anomalous (collective) resistivity, and double layers, a hybrid anomalous-resistivity/double-layer model is introduced. In this model, beam-driven waves on both sides of a double layer provide electrostatic plasma-wave turbulence that greatly reduces the mobility of charged particles. These regions then act to hold open a density cavity within which the double layer resides. In the double layer, electrical energy is dissipated with 100 percent efficiency into high-energy particles, creating conditions optimal for the collective emission of polarized radio waves. 102 references.

  5. Parallel electric fields in extragalactic jets - Double layers and anomalous resistivity in symbiotic relationships

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1986-01-01

    After examining the properties of Coulomb-collision resistivity, anomalous (collective) resistivity, and double layers, a hybrid anomalous-resistivity/double-layer model is introduced. In this model, beam-driven waves on both sides of a double layer provide electrostatic plasma-wave turbulence that greatly reduces the mobility of charged particles. These regions then act to hold open a density cavity within which the double layer resides. In the double layer, electrical energy is dissipated with 100 percent efficiency into high-energy particles, creating conditions optimal for the collective emission of polarized radio waves.

  6. Langmuir probe measurements of double-layers in a pulsed discharge

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Crawford, F. W.

    1980-01-01

    Langmuir probe measurements have been carried out which confirm the occurrence of double-layers in an argon positive column. Pulsing the discharge current permitted probe measurements to be performed in the presence of the double-layer. Supplementary evidence, obtained from dc and pulsed discharges, indicated that the double-layers formed in the two modes of operation were similar. The double-layers observed were weak and stable; their relation to other classes of double-layers is discussed, and directions for future work are suggested.

  7. Improving acoustic streaming effects in fluidic systems by matching SU-8 and polydimethylsiloxane layers.

    PubMed

    Catarino, S O; Minas, G; Miranda, J M

    2016-07-01

    This paper reports the use of acoustic waves for promoting and improving streaming in tridimensional polymethylmethacrylate (PMMA) cuvettes of 15mm width×14mm height×2.5mm thickness. The acoustic waves are generated by a 28μm thick poly(vinylidene fluoride) - PVDF - piezoelectric transducer in its β phase, actuated at its resonance frequency: 40MHz. The acoustic transmission properties of two materials - SU-8 and polydimethylsiloxane (PDMS) - were numerically compared. It was concluded that PDMS inhibits, while SU-8 allows, the transmission of the acoustic waves to the propagation medium. Therefore, by simulating the acoustic transmission properties of different materials, it is possible to preview the acoustic behavior in the fluidic system, which allows the optimization of the best layout design, saving costs and time. This work also presents a comparison between numerical and experimental results of acoustic streaming obtained with that β-PVDF transducer in the movement and in the formation of fluid recirculation in tridimensional closed domains. Differences between the numerical and experimental results are credited to the high sensitivity of acoustic streaming to the experimental conditions and to limitations of the numerical method. The reported study contributes for the improvement of simulation models that can be extremely useful for predicting the acoustic effects of new materials in fluidic devices, as well as for optimizing the transducers and matching layers positioning in a fluidic structure. PMID:27044029

  8. Improving acoustic streaming effects in fluidic systems by matching SU-8 and polydimethylsiloxane layers.

    PubMed

    Catarino, S O; Minas, G; Miranda, J M

    2016-07-01

    This paper reports the use of acoustic waves for promoting and improving streaming in tridimensional polymethylmethacrylate (PMMA) cuvettes of 15mm width×14mm height×2.5mm thickness. The acoustic waves are generated by a 28μm thick poly(vinylidene fluoride) - PVDF - piezoelectric transducer in its β phase, actuated at its resonance frequency: 40MHz. The acoustic transmission properties of two materials - SU-8 and polydimethylsiloxane (PDMS) - were numerically compared. It was concluded that PDMS inhibits, while SU-8 allows, the transmission of the acoustic waves to the propagation medium. Therefore, by simulating the acoustic transmission properties of different materials, it is possible to preview the acoustic behavior in the fluidic system, which allows the optimization of the best layout design, saving costs and time. This work also presents a comparison between numerical and experimental results of acoustic streaming obtained with that β-PVDF transducer in the movement and in the formation of fluid recirculation in tridimensional closed domains. Differences between the numerical and experimental results are credited to the high sensitivity of acoustic streaming to the experimental conditions and to limitations of the numerical method. The reported study contributes for the improvement of simulation models that can be extremely useful for predicting the acoustic effects of new materials in fluidic devices, as well as for optimizing the transducers and matching layers positioning in a fluidic structure.

  9. Dynamical aspects of various solitary waves and double layers in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Das, G. C.; Sarma, Jnanjyoti; Talukdar, M.

    1998-01-01

    Employing quasipotential analysis, the Sagdeev potential equation has been derived in a multicomponent plasma consisting of free and trapped electrons and contaminated by the dust charged grains forming therein by the attachment of electrons to finite-size dust particles. Because of the free and trapped electrons in the dusty plasma, the plasma-acoustic wave exhibits the different features of various solitary waves. The Sagdeev potential equation, at a small-amplitude approximation, leads to the evaluation, by a proposed new formalism of a simple wave solution technique, of the new scenario of solitary wave propagation in a dusty plasma. It has been shown that the ordering of the nonisothermality in the dusty plasma also plays a unique role. In the case of a plasma with first-order nonisothermality, the Sagdeev potential equation derives the compressive solitary wave propagation, while for plasma with higher-order nonisothermality the method might fail to solve the Sagdeev potential equation and, thus, an alternate method is used to reveal the coexistence of compressive and rarefactive solitary waves. In addition, for certain plasma parameters, the solitary waves disappear and a double layer is expected. Again, with the better approximation in the Sagdeev potential, more features of solitary waves, known as spiky and explosive, along with the double layers, are also highlighted. The observations made of the solitary waves could be of further interest in the understanding of laboratory and space plasmas.

  10. Dynamical aspects of various solitary waves and double layers in dusty plasmas

    SciTech Connect

    Das, G.C.; Sarma, J.; Talukdar, M.

    1998-01-01

    Employing quasipotential analysis, the Sagdeev potential equation has been derived in a multicomponent plasma consisting of free and trapped electrons and contaminated by the dust charged grains forming therein by the attachment of electrons to finite-size dust particles. Because of the free and trapped electrons in the dusty plasma, the plasma-acoustic wave exhibits the different features of various solitary waves. The Sagdeev potential equation, at a small-amplitude approximation, leads to the evaluation, by a proposed new formalism of a simple wave solution technique, of the new scenario of solitary wave propagation in a dusty plasma. It has been shown that the ordering of the nonisothermality in the dusty plasma also plays a unique role. In the case of a plasma with first-order nonisothermality, the Sagdeev potential equation derives the compressive solitary wave propagation, while for plasma with higher-order nonisothermality the method might fail to solve the Sagdeev potential equation and, thus, an alternate method is used to reveal the coexistence of compressive and rarefactive solitary waves. In addition, for certain plasma parameters, the solitary waves disappear and a double layer is expected. Again, with the better approximation in the Sagdeev potential, more features of solitary waves, known as spiky and explosive, along with the double layers, are also highlighted. The observations made of the solitary waves could be of further interest in the understanding of laboratory and space plasmas.{copyright} {ital 1998 American Institute of Physics.}

  11. Heterogeneous Catalysis by Polyoxometalate-Intercalated Layered Double Hydroxides

    NASA Astrophysics Data System (ADS)

    Rives, Vicente; Carriazo, Daniel; Martín, Cristina

    The preparation, characterisation and catalytic performance of layered double hydroxides (LDH) with the hydrotalcite-type structure containing different polyoxometalates (POM) in the interlayer are studied. Special attention is paid to the preparation procedures, as they control the properties of the solids formed and thus their catalytic behaviour. The study is extended to solids prepared upon thermal decomposition of these POM-LDH systems. It is concluded that the LDH does not act as a simple support, but that its specific properties, such as nature of the cations in the brucite-like layers, specific surface area and the method followed for its preparation, have an outstanding effect on the final catalytic properties of the POM-LDH systems.

  12. Performance of electric double layer capacitors with polymer gel electrolytes

    SciTech Connect

    Ishikawa, Masashi; Kishino, Takahiro; Katada, Naoji; Morita, Masayuki

    2000-07-01

    Polymer gel electrolytes consisting of poly(vinylidene fluoride) (PVdF), tetraethylammonium tetrafluoroborate (TEABF{sub 4}), and propylene carbonate (PC) as a plasticizer have been investigated for electric double layer capacitors. The PVdF gel electrolytes showed high ionic conductivity (ca. 6 mS/cm at 298 K). To assemble model capacitors with the PVdF gel electrolytes and activated carbon fiber cloth electrodes, a pair of the fixed electrodes was soaked in a precursor solution containing PC, PVdF, and TEABF{sub 4}, followed by evaporation of the PC solvent in a vacuum oven. The resulting gel electrolytes were in good contact with the electrodes. The model capacitors with the PVdF gel electrolytes showed a large value of capacitance and high coulombic efficiency in operation voltage ranges of 1--2 and 1--3 V. It is worth noting that the capacitors with the PVdF electrolytes showed long voltage retention in a self-discharge test. These good characteristics of the gel capacitors were comparable to those of typical double layer capacitors with a liquid organic electrolyte containing PC and TEABF{sub 4}; rather, the voltage retentivity of the PVdF gel capacitors was much superior to that of the capacitors with the organic electrolyte.

  13. Biodiesel synthesis using calcined layered double hydroxide catalysts

    SciTech Connect

    Schumaker, J. Link; Crofcheck, Czarena; TAckett, S. Adam; Santillan-Jimenez, Eduardo; Morgan, Tonya; Ji, Yaying; Crocker, Mark; Toops, Todd J

    2008-01-01

    The catalytic properties of calcined Li-Al, Mg-Al and Mg-Fe layered double hydroxides (LDHs) were examined in two transesterification reactions, namely, the reaction of glyceryl tributyrate with methanol, and the reaction of soybean oil with methanol. While the Li-Al catalysts showed high activity in these reactions at the reflux temperature of methanol, the Mg-Fe and Mg-Al catalysts exhibited much lower methyl ester yields. CO2 TPD measurements revealed the presence of sites of weak, medium and strong basicity on both Mg-Al and Li-Al catalysts, the latter showing higher concentrations of medium and strong base sites; by implication, these are the main sites active in transesterification catalyzed by calcined Li-Al LDHs. Maximum activity was observed for the Li-Al catalysts when a calcination temperature of 450-500 aC was applied, corresponding to decomposition of the layered double hydroxide to the mixed oxide without formation of crystalline lithium aluminate phases.

  14. Testing of double-layer capacitors for high reliability applications

    SciTech Connect

    Clark, N.H.

    1991-01-01

    Double-Layer Capacitors (DLCs) have been used mainly for computer memory backup in consumer applications during the last ten years. Their high capacitance density, along with maintenance-free operation, makes them suited for these applications. In recent years users, mostly in military applications, have expressed interest in using DLCs in high reliability applications both for backup power and pulse power applications. To meet this need, developers have pursued technologies that use carbon and mixed metal oxides as the electrode material to produce high reliability double-layer capacitors. In this paper, a carbon-based DLC that was manufactured by Evans Company, and a mixed metal oxide (MMO) DLC by Pinnacle Research Inc. were evaluated. There is little published data on their reliability and aging characteristics. In addition, questions have arisen as to their environmental stability as a function of temperature, shock, vibration, and linear acceleration. The purpose of this paper is to review the available test data for both types of DLCs under these stress conditions. The data for this paper was generated by Sandia National Laboratories, General Electric Neutron Devices Department, Motorola Company, and Evans Company.

  15. Electrical Power Generation by Mechanically Modulating Electrical Double Layers

    NASA Astrophysics Data System (ADS)

    Pak, Hyuk Kyu; Moon, Jong Kyun

    2014-11-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system and for understanding the interfacial charge distribution in solid-liquid interfaces in the near future. This work was supported by Center for Soft and Living Matter through IBS prgram in Korea.

  16. Double-layer interaction between two plates with hairy surfaces.

    PubMed

    Huang, Haohao; Ruckenstein, Eli

    2004-05-01

    In most theoretical treatments of colloidal particles with hairy surfaces, only the steric effect is taken into account. The steric force is a short-range interaction and acts only when the chains on different particles begin to interpenetrate each other. However, since the hairy chains are extended into the continuous phase, they constrain the orientation of the water molecules near the surface and, as a result, the dielectric constant in that region can become very different from that in the bulk. The low dielectric constant affects the distributions of ion concentrations and the gradient of the electric field. Therefore, the double-layer interactions between two plates with hairy surfaces cannot be calculated on the basis of the classical Gouy-Chapman theory, which involves a uniform dielectric constant in the Poisson-Boltzmann equation. A model which accounts for the difference in dielectric constants in the hairy region and outside that region is therefore proposed. The ion specificity is also taken into account by using Born's expression for the free energy of hydration of ions. The repulsive forces calculated via the Gouy-Chapman theory and via the new model are compared. The hairy region can have a long range effect on the repulsive double-layer interactions.

  17. Acoustic Radiation from High-Speed Turbulent Boundary Layers in a Tunnel-Like Environment

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2015-01-01

    Direct numerical simulation of acoustic radiation from a turbulent boundary layer in a cylindrical domain will be conducted under the flow conditions corresponding to those at the nozzle exit of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) operated under noisy-flow conditions with a total pressure p(sub t) of 225 kPa and a total temperature of T(sub t) equal to 430 K. Simulations of acoustic radiation from a turbulent boundary layer over a flat surface are used as a reference configuration to illustrate the effects of the cylindrical enclosure. A detailed analysis of acoustic freestream disturbances in the cylindrical domain will be reported in the final paper along with a discussion pertaining to the significance of the flat-plate acoustic simulations and guidelines concerning the modeling of the effects of an axisymmetric tunnel wall on the noise field.

  18. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2013-01-01

    Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.

  19. Structure and dynamics of electrical double layers in organic electrolytes

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Qiao, Rui; Feng, Guang

    2010-01-01

    The organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF{sub 4}) in the aprotic solvent of acetonitrile (ACN) is widely used in electrochemical systems such as electrochemical capacitors. In this paper, we examine the solvation of TEA{sup +} and BF{sub 4}{sup -} in ACN, and the structure, capacitance, and dynamics of the electrical double layers (EDLs) in the TEABF{sub 4}-ACN electrolyte using molecular dynamics simulations complemented with quantum density functional theory calculations. The solvation of TEA+ and BF4- ions is found to be much weaker than that of small inorganic ions in aqueous solutions, and the ACN molecules in the solvation shell of both types of ions show only weak packing and orientational ordering. These solvation characteristics are caused by the large size, charge delocalization, and irregular shape (in the case of TEA+ cation) of the ions. Near neutral electrodes, the double-layer structure in the organic electrolyte exhibits a rich organization: the solvent shows strong layering and orientational ordering, ions are significantly contact-adsorbed on the electrode, and alternating layers of cations/anions penetrate ca. 1.1 nm into the bulk electrolyte. The significant contact adsorption of ions and the alternating layering of cation/anion are new features found for EDLs in organic electrolytes. These features essentially originate from the fact that van der Waals interactions between organic ions and the electrode are strong and the partial desolvation of these ions occurs easily, as a result of the large size of the organic ions. Near charged electrodes, distinct counter-ion concentration peaks form, and the ion distribution cannot be described by the Helmholtz model or the Helmholtz + Poisson-Boltzmann model. This is because the number of counter-ions adsorbed on the electrode exceeds the number of electrons on the electrode, and the electrode is over-screened in parts of the EDL. The computed capacitances of the EDLs are in

  20. Tuning the acoustic frequency of a gold nanodisk through its adhesion layer

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Shun; Wen, Fangfang; Chakraborty, Debadi; Su, Man-Nung; Zhang, Yue; Shuang, Bo; Nordlander, Peter; Sader, John E.; Halas, Naomi J.; Link, Stephan

    2015-05-01

    To fabricate robust metallic nanostructures with top-down patterning methods such as electron-beam lithography, an initial nanometer-scale layer of a second metal is deposited to promote adhesion of the metal of interest. However, how this nanoscale layer affects the mechanical properties of the nanostructure and how adhesion layer thickness controls the binding strength to the substrate are still open questions. Here we use ultrafast laser pulses to impulsively launch acoustic phonons in single gold nanodisks with variable titanium layer thicknesses, and observe an increase in phonon frequencies as a thicker adhesion layer facilitates stronger binding to the glass substrate. In addition to an all-optical interrogation of nanoscale mechanical properties, our results show that the adhesion layer can be used to controllably modify the acoustic phonon modes of a gold nanodisk. This direct coupling between optically excited plasmon modes and phonon modes can be exploited for a variety of emerging optomechanical applications.

  1. Numerical and experimental investigation of the acoustic damping effect of single-layer perforated liners with joint bias-grazing flow

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Ang, Linus; Ji, C. Z.

    2015-04-01

    As one of the most commonly used acoustic dampers, perforated liners are receiving wide spread interest for reducing engine noise and stabilizing combustion systems. Generally, acoustic liner is a cylindrical sheet with perforated orifices fitted along the bounding wall of the combustor. In this work, the damping performances of seven single- and one double-layer perforated liners with different open area ratios are experimentally investigated. For this, a cold-flow pipe with a lined section is designed. Both grazing (mean flow through the pipe) and bias flows (air flow through the perforated holes) are applied and their flow rates are variable. The effects of the open area ratio η, the joint grazing-bias flow and the number of perforated layers on the liner's damping behavior are studied. It is shown experimentally that increasing the liner's open area ratio can increase its damping effect at higher frequency in terms of power absorption. In addition, increasing the grazing flow is shown to reduce the maximum acoustic power absorption, while the bias flow can increase the liners damping effect. Furthermore, the power absorption coefficient is varied periodically over forcing frequency. And the local maximum value is decreased with increased frequency. Comparison is then made between the performance of the single-layer liner and that of double-layer one. It is found that the double-layer liner can increase the damping effect at higher frequency range. In order to simulate the liner damping behavior, a time-domain numerical model is used. It is shown that the liner thickness needs to be considered to correct the predicted damping trend so that the estimated acoustic power absorption agrees well with the measured one over the interested frequency range.

  2. Integrated measurements of acoustical and optical thin layers I: Vertical scales of association

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Moline, Mark A.; Waluk, Chad M.; Robbins, Ian C.

    2010-01-01

    This study combined measurements from multiple platforms with acoustic instruments on moorings and on a ship and optics on a profiler and an autonomous underwater vehicle (AUV) to examine the relationships between fluorescent, bioluminescent, and acoustically scattering layers in Monterey Bay during nighttime hours in July and August of 2006 and May of 2008. We identified thin bioluminescent layers that were strongly correlated with acoustic scattering at the same depth but were part of vertically broad acoustic features, suggesting layers of unique composition inside larger biomass features. These compositional thin layers nested inside larger biomass features may be a common ecosystem component and are likely to have significant ecological impacts but are extremely difficult to identify as most approaches capable of the vertical scales of measurement necessary for the identification of sub-meter scale patterns assess bulk properties rather than specific layer composition. Measurements of multiple types of thin layers showed that the depth offset between thin phytoplankton and zooplankton layers was highly variable with some layers found at the same depth but others found up to 16 m apart. The vertical offset between phytoplankton and zooplankton thin layers was strongly predicted by the fraction of the water column fluorescence contained within a thin phytoplankton layer. Thin zooplankton layers were only vertically associated with thin phytoplankton layers when the phytoplankton in a layer accounted for more than about 18-20% of the water column chlorophyll. Trophic interactions were likely occurring between phytoplankton and zooplankton thin layers but phytoplankton thin layers were exploited by zooplankton only when they represented a large fraction of the available phytoplankton, suggesting zooplankton have some knowledge of the available food over the entire water column. The horizontal extent of phytoplankton layers, discussed in the second paper in this

  3. Laser Induced Fluorescence Studies of Electrostatic Double Layers in an Expanding Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Carr, Jerry, Jr.

    We report the first evidence of a laboratory double layer (DL) collapsing in the presence of an instability studied by Chakraborty Thakur et al. 1 with the use of time resolved laser induced fluorescence (LIF) studies. Higher time resolution studies then provided the first statistically validated proof of the correlation between the ion acoustic instability and a DL. Time-frequency analysis in the form of time resolved cross power spectra and continuous wavelet transforms were used to provide insight into beam formation. The implications of this work is that in the creation of strong DLs in expanding plasmas for plasma propulsion or other applications may be self-limited through instability growth. Over the past decade, experimental and theoretical studies have demonstrated the formation of stable, electrostatic, current-free double layers (CFDLs) in plasmas with a strong density gradient; typically a result of a divergent magnetic field. In this work, we present evidence for the formation of multiple double layers within a single divergent magnetic field structure. Downstream of the divergent magnetic field, multiple accelerated ion populations are observed through laser induced fluorescence measurements of the ion velocity distribution function. The formation of the multiple double layer structure is a strong function of the neutral gas pressure in the experiment. The similarity of the accelerated ion populations observed in these laboratory experiments to ion populations observed in reconnection outflow regions in the magnetosphere and in numerical simulations is also described. If ion energization during magnetic reconnection also results solely from acceleration in electric fields, these observations imply a prediction that the ion heating, i.e., the broadening of ion velocity distribution functions, reported in magnetic reconnection experiments is more accurately described by a superposition of differently accelerated ion populations. Therefore, the ion

  4. Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Balakumar, Ponnampalam

    2007-01-01

    Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.

  5. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  6. Layering and Double-Diffusion Style Convection in Europa's Ocean

    NASA Astrophysics Data System (ADS)

    Vance, S.; Brown, J.

    2004-12-01

    We assess the effects of fluid composition and depth-dependent hydrostatic pressure on dynamics in Europa's ocean for aqueous Na2SO4 and MgSO4. We observe a salinity- and pressure-dependent check on buoyancy in putative upwellings, which may act as mechanism for storing heat in the ocean's base. For either sodium or magnesium, a small excess in salinity of an initially buoyant parcel of water, even for low average ambient salinity, causes upwellings to lose buoyancy before reaching the base of the overlying ice. The result is a two-layer convecting system with a characteristic lifetime dependent on the properties of Europa's ocean, including the balance of heat flow through the system and details of pressure effects on thermal expansion and volumes of mixing. When volume of mixing is neglected plume rise remains dependent on temperature and pressure effects alone. Stratification develops as bottom water continually acquires heat and salt. The added mass of the salt dominates over the thermal expansion. As the rise in temperature becomes sufficient to overcome the salinity effect, upwellings rise to a terminal height determined by the pressure dependence of thermal expansion of the fluid, and by differences in the fluid's temperature and salinity. This regime is similar to double-diffusive convecting systems observed in the Red Sea and Lake Vanda over the last forty years. In the Red Sea, boundary layers separating convecting zones have been observed to move upward as the lower layer acquires heat and salt. By analogy using reasonable parameters for Europa's ocean, we estimate a time scale on the order of 10 Myr for the upward progress of a lower convecting layer saturated with MgSO4, which could correlate with recently inferred change in surface alteration style over the last 70-80 Myr.

  7. Carbon additives for electrical double layer capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Weingarth, D.; Cericola, D.; Mornaghini, F. C. F.; Hucke, T.; Kötz, R.

    2014-11-01

    Electrochemical double layer capacitors (EDLCs) are inherently high power devices when compared to rechargeable batteries. While capacitance and energy storage ability are mainly increased by optimizing the electrode active material or the electrolyte, the power capability could be improved by including conductive additives in the electrode formulations. This publication deals with the use of four different carbon additives - two carbon blacks and two graphites - in standard activated carbon based EDLC electrodes. The investigations include: (i) physical characterization of carbon powder mixtures such as surface area, press density, and electrical resistivity measurements, and (ii), electrochemical characterization via impedance spectroscopy and cyclic voltammetry of full cells made with electrodes containing 5 wt.% of carbon additive and compared to cells made with pure activated carbon electrodes in organic electrolyte. Improved cell performance was observed in both impedance and cyclic voltammetry responses. The results are discussed considering the main characteristics of the different carbon additives, and important considerations about electrode structure and processability are drawn.

  8. Structure and Capacitance of Electrical Double Layers inside Micropores

    NASA Astrophysics Data System (ADS)

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Sumpter, Bobby G.; Meunier, Vincent

    2010-03-01

    Recent experiments indicate that the specific capacitance of micropores (diameter less than 2nm) increases anomalously as the pore size decreases^[1]. To understand the physical origin of this discovery, we performed a series of molecular dynamics simulations to study the electrical double layers (EDLs) in micropores with different shapes (tube vs slit) and pore sizes (0.668nm - 3.342nm). Several different aqueous electrolytes (K^+, Na^+, Cl^-, and F^- in water) were used in these micropores. We quantified the structure of EDLs inside the pores, and computed the capacitance of EDLs. The scaling of capacitance shows a qualitative agreement with the experimental observations. We attribute the anomalous enhancement of capacitance in micropores to the short-range ionelectrode and ionsolvent interactions.[1] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P.L. Taberna, Science 2006, 313, 1760.

  9. Layered Double Hydroxide-Based Nanocarriers for Drug Delivery

    PubMed Central

    Bi, Xue; Zhang, Hui; Dou, Liguang

    2014-01-01

    Biocompatible clay materials have attracted particular attention as the efficient drug delivery systems (DDS). In this article, we review developments in the use of layered double hydroxides (LDHs) for controlled drug release and delivery. We show how advances in the ability to synthesize intercalated structures have a significant influence on the development of new applications of these materials. We also show how modification and/or functionalization can lead to new biotechnological and biomedical applications. This review highlights the most recent progresses in research on LDH-based controlled drug delivery systems, focusing mainly on: (i) DDS with cardiovascular drugs as guests; (ii) DDS with anti-inflammatory drugs as guests; and (iii) DDS with anti-cancer drugs as guests. Finally, future prospects for LDH-based drug carriers are also discussed. PMID:24940733

  10. "Thermal Charging" Phenomenon in Electrical Double Layer Capacitors.

    PubMed

    Wang, Jianjian; Feng, Shien-Ping; Yang, Yuan; Hau, Nga Yu; Munro, Mary; Ferreira-Yang, Emerald; Chen, Gang

    2015-09-01

    Electrical double layer capacitors (EDLCs) are usually charged by applying a potential difference across the positive and negative electrodes. In this paper, we demonstrated that EDLCs can be charged by heating. An open circuit voltage of 80-300 mV has been observed by heating the supercapacitor to 65 °C. The charge generated at high temperature can be stored in the device after its returning to the room temperature, thus allowing the lighting up of LEDs by connecting the "thermally charged" supercapacitors in a series. The underlying mechanism is related to a thermo-electrochemical process that enhances the kinetics of Faradaic process at the electrode surface (e.g., surface redox reaction of functional group, or chemical adsorption/desorption of electrolyte ions) at higher temperature. Effects of "thermal charging" times, activation voltage, rate, and times on "thermally charged" voltage are studied and possible mechanisms are discussed.

  11. Limiting factors for carbon based chemical double layer capacitors

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank; Johnson, C.; Owens, T.; Stevens, B.

    1993-01-01

    The Chemical Double Layer (CDL) capacitor improves energy storage density dramatically when compared with conventional electrolytic capacitors. When compared to batteries, the CDL Capacitor is much less energy dense; however, the power density is orders of magnitude better. As a result, CDL-battery combinations present an interesting pulse power system with many potential applications. Due to the nature of the CDL it is inherently a low voltage device. The applications of the CDL can be tailored to auxiliary energy and burst mode storages which require fast charge/discharge cycles. Typical of the applications envisioned are power system backup, directed energy weapons concepts, electric automobiles, and electric actuators. In this paper, we will discuss some of the general characteristics of carbon-based CDL technology describing the structure, performance parameters, and methods of construction. Further, analytical and experimental results which define the state of the art are presented and described in terms of impact on applications.

  12. Laser Acceleration of Monoenergetic Protons Trapped in Moving Double Layer

    SciTech Connect

    Liu, C. S.; Tripathi, V. K.; Shao, X.

    2008-10-15

    We present analytic theory of monoenergetic protons acceleration by short pulse laser irradiation on a thin foil with specific thickness suggested by Yan et al. in simulations. The laser ponderomotive force pushes the electrons forward, leaving ions behind until the space charge field balances the ponderomotive force at distance {delta}. For the optimal target thickness D = {delta}>c/{omega}{sub p}, the electron sheath piled up at the rear surface of width skin depth moves into vacuum, carrying with it the protons contained in the sheath. These protons are trapped by the self field of the electron sheath and are collectively accelerated as a double layer by the laser ponderomotive force. We present here the analytic expression for the energy of the accelerated protons as a function of time, laser intensity, wavelength, and plasma density. For example, proton energy can reach {approx_equal}200 MeV at a = 5, and pulse length 90 fs.

  13. Nanosized Ni–Al layered double hydroxides—Structural characterization

    SciTech Connect

    Jitianu, Mihaela; Gunness, Darren C.; Aboagye, Doreen E.; Zaharescu, Maria; Jitianu, Andrei

    2013-05-15

    Highlights: ► The takovite anionic clays were obtained using the sol–gel method. ► The effect of samples’ composition on the structural and textural characteristics has been investigated. ► X-ray analysis. ► FTIR spectroscopy evidenced a disordered interlayer structure. ► FESEM and TEM analysis showed that the samples have high porosity. - Abstract: Takovite, a natural mineral with the formula Ni{sub 6}Al{sub 2}(OH){sub 6}CO{sub 3}·5H{sub 2}O belongs to the large class of layered double hydroxides (LDHs) and contains positively charged Ni(II) and Al(III) layers alternating with layers containing carbonate ions and water molecules. Mesoporous takovite-type layered double hydroxides (LDH) of the general formula [Ni{sub 1−x}Al{sub x}(OH){sub 2}]{sup x+}(CO{sub 3}{sup 2−}){sub x/2}·nH{sub 2}O with different Ni/Al molar ratios (1.9–2.8) have been successfully synthesized by the sol–gel method, followed by anionic exchange using nickel acetylacetonate and aluminum isopropylate as cation precursors. A single LDH phase and an anisotropic growth of very small crystallites (below 4 nm) have been evidenced by X-ray diffraction. The effect of samples’ composition on their structural and textural characteristics has been investigated. The BET surface area values are in the range of 100–122 m{sup 2}/g. BJH pore radius decreased with increase in the Al(III) content in the LDHs. FESEM micrographs show large aggregates of highly porous LDH particles, while TEM analysis reveals irregular agglomerates of crystallites, among which some of them displayed a developing hexagonal shape. The average particle size variation with the Al(III) content in the samples follows the same trend as the pore radius, the sample with the highest Ni/Al ratio displaying also the smallest particle size. This sample becomes even more interesting, since TEM analysis shows agglomerates with inside circular structures, feature not observed for the other Ni/Al ratios investigated.

  14. Experimental realization of acoustic metasurface with double-split hollow sphere

    NASA Astrophysics Data System (ADS)

    Ding, Chang-Lin; Wang, Zhen-Ru; Shen, Fang-Liang; Chen, Huai-Jun; Zhai, Shi-Long; Zhao, Xiao-Peng

    2016-03-01

    We experimentally present an acoustic metasurface (AMS) with sub-wavelength thickness based on the meta-molecule consisting of eight different sized double-split hollow spheres (DSHSs). By designing the discontinuous phase profile covered 2π span induced by the DSHSs, the AMS can manipulate the reflected acoustic waves in a way that could not be imitated by natural materials. Both simulations and experiments show that the AMS can realize anomalous reflection, i.e., a normal incident wave can be reflected into an oblique direction. Moreover, the reflection angle can be flexible controlled by mechanically tuning the spatial distance of the DSHSs in the AMS, which is consistent with the generalized Snell's law.

  15. The Primary Electroviscous Effect: Thin Double Layers (akappa>1) and a Stern Layer.

    PubMed

    Sherwood; Rubio-Hernández; Ruiz-Reina

    2000-08-01

    The primary electroviscous effect due to the charge clouds surrounding spherical charged particles suspended in an electrolyte was studied by Hinch and Sherwood (J. Fluid Mech. 132, 337 (1983)) in the limit of double layers thin compared to the particle radius a. Here we introduce the effect of a dynamic Stern layer into that analysis, in order to explain the numerical results of Rubio-Hernández et al. (J. Colloid Interface Sci. 206, 334 (1998)) in terms of the ratio of the tangential ionic fluxes within the charge cloud to those within the Stern layer. The predictions of the asymptotic analysis are compared with those of numerical computations. The thickness of the charge cloud is characterized by the Debye length kappa(-1). If akappa>10 the predictions of the asymptotic analysis exhibit the same qualitative behavior as the numerical results, but akappa>1000 is required to achieve quantitative agreement to within 2.5%. Copyright 2000 Academic Press.

  16. Some dynamical properties of very strong double layers in a triple plasma device

    NASA Technical Reports Server (NTRS)

    Carpenter, T.; Torven, S.

    1987-01-01

    Dynamical properties of very strong double layers seen in a differentially pumped triple plasma device are reported. These double layers are V-shaped. The following findings are discussed: (1) Disruptions in the double layer potential and in the plasma current occur when an inductance is placed in series with the bias supply between the sources in the external circuit. These disruptions, which can be highly periodic, are the result of a negative resistance region. (2) When reactances in the circuit are minimized, the double layer exhibits a jitter motion in position approximately equal to the double layer thickness. (3) When the bias between the sources is rapidly turned on, the initial phase in the double layer formation is the occurrence of a constant electric field for the first few microseconds. First the apparatus used in all of the work is discussed and then each of the three phenomena are considered.

  17. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam

    2012-01-01

    Boundary-layer receptivity and stability of Mach 6 flow over smooth and rough 7 half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances are considered. The effects of two-dimensional isolated and distributed roughness on the receptivity and stability are also simulated. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. An isolated two-dimensional roughness element of height h/delta =1/4 did not produce any difference in the receptivity or in the stability of the boundary layer. Distributed roughness elements produced a small decrease in the receptivity coefficient and also stabilized the boundary layer by small amounts.

  18. Layered-double-hydroxide-modified electrodes: electroanalytical applications.

    PubMed

    Tonelli, Domenica; Scavetta, Erika; Giorgetti, Marco

    2013-01-01

    Two-dimensional inorganic solids, such as layered double hydroxides (LDHs), also defined as anionic clays, have open structures and unique anion-exchange properties which make them very appropriate materials for the immobilization of anions and biomolecules that often bear an overall negative charge. This review aims to describe the important aspects and new developments of electrochemical sensors and biosensors based on LDHs, evidencing the research from our own laboratory and other groups. It is intended to provide an overview of the various types of chemically modified electrodes that have been developed with these 2D layered materials, along with the significant advances made over the last several years. In particular, we report the main methods used for the deposition of LDH films on different substrates, the conductive properties of these materials, the possibility to use them in the development of membranes for potentiometric anion analysis, the early analytical applications of chemically modified electrodes based on the ability of LDHs to preconcentrate redox-active anions and finally the most recent applications exploiting their electrocatalytic properties. Another promising application field of LDHs, when they are employed as host structures for enzymes, is biosensing, which is described considering glucose as an example.

  19. Design of an air ejector for boundary-layer bleed of an acoustically treated turbofan engine inlet during ground testing

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.

    1978-01-01

    An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.

  20. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Jung-San; Chang, I.-Ling; Huang, Wan-Ting; Chen, Lien-Wen; Huang, Guan-Hua

    2016-09-01

    This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  1. Electrochemical double-layer capacitors based on functionalized graphene

    NASA Astrophysics Data System (ADS)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective

  2. Integrated measurements of acoustical and optical thin layers II: Horizontal length scales

    NASA Astrophysics Data System (ADS)

    Moline, Mark A.; Benoit-Bird, Kelly J.; Robbins, Ian C.; Schroth-Miller, Maddie; Waluk, Chad M.; Zelenke, Brian

    2010-01-01

    The degree of layered organization of planktonic organisms in coastal systems impacts trophic interactions, the vertical availability of nutrients, and many biological rate processes. While there is reasonable characterization of the vertical structure of these phenomena, the extent and horizontal length scale of variation has rarely been addressed. Here we extend the examination of the vertical scale in the first paper of the series to the horizontal scale with combined shipboard acoustic measurements and bio-optic measurements taken on an autonomous underwater vehicle. Measurements were made in Monterey Bay, CA from 2002 to 2008 for the bio-optical parameters and during 2006 for acoustic scattering measurements. The combined data set was used to evaluate the horizontal decorrelation length scales of the bio-optical and acoustic scattering layers themselves. Because biological layers are often decoupled from the physical structure of the water column, assessment of the variance within identified layers was appropriate. This differs from other studies in that physical parameters were not used as a basis for the layer definition. There was a significant diel pattern to the decorrelation length scale for acoustic layers with the more abundant nighttime layers showing less horizontal variability despite their smaller horizontal extent. A significant decrease in the decorrelation length scale was found in bio-optical parameters over six years of study, coinciding with a documented shift in the plankton community. Results highlight the importance of considering plankton behavior and time of day with respect to scale when studying layers, and the challenges of sampling these phenomena.

  3. Comparison with Analytical Solution: Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2000-01-01

    An acoustic source inside of a 2-D jet excites an instability wave in the shear layer resulting in sound radiating away from the shear layer. Solve the linearized Euler equations to predict the sound radiation outside of the jet. The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary condition along the x-axis.

  4. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  5. Acoustic transmission through a 2-D orthotropic multi-layered infinite cylindrical shell

    NASA Astrophysics Data System (ADS)

    Blaise, A.; Lesueur, C.

    1992-05-01

    An investigation is presented of the transmission loss of two-dimensional orthotropic multilayered infinite cylindrical shells. Equations of motion are established by using a variational displacement formulation; these equations remain unchanged in form whatever the number of layers. Numerical results are presented illustrating the influence of acoustic and structural parameters on the transmission loss.

  6. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Ariza, A.; Landeira, J. M.; Escánez, A.; Wienerroither, R.; Aguilar de Soto, N.; Røstad, A.; Kaartvedt, S.; Hernández-León, S.

    2016-05-01

    Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400-500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500-600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s - 1 and the long-range ones at 11.5 ± 3.8 cm s - 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.

  7. Large-scale simulations of layered double hydroxide nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Thyveetil, Mary-Ann

    Layered double hydroxides (LDHs) have the ability to intercalate a multitude of anionic species. Atomistic simulation techniques such as molecular dynamics have provided considerable insight into the behaviour of these materials. We review these techniques and recent algorithmic advances which considerably improve the performance of MD applications. In particular, we discuss how the advent of high performance computing and computational grids has allowed us to explore large scale models with considerable ease. Our simulations have been heavily reliant on computational resources on the UK's NGS (National Grid Service), the US TeraGrid and the Distributed European Infrastructure for Supercomputing Applications (DEISA). In order to utilise computational grids we rely on grid middleware to launch, computationally steer and visualise our simulations. We have integrated the RealityGrid steering library into the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 1 . which has enabled us to perform re mote computational steering and visualisation of molecular dynamics simulations on grid infrastruc tures. We also use the Application Hosting Environment (AHE) 2 in order to launch simulations on remote supercomputing resources and we show that data transfer rates between local clusters and super- computing resources can be considerably enhanced by using optically switched networks. We perform large scale molecular dynamics simulations of MgiAl-LDHs intercalated with either chloride ions or a mixture of DNA and chloride ions. The systems exhibit undulatory modes, which are suppressed in smaller scale simulations, caused by the collective thermal motion of atoms in the LDH layers. Thermal undulations provide elastic properties of the system including the bending modulus, Young's moduli and Poisson's ratios. To explore the interaction between LDHs and DNA. we use molecular dynamics techniques to per form simulations of double stranded, linear and plasmid DNA up

  8. Acoustic receptivity of compressible boundary layers: Receptivity by way of surface-temperature variations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    The Goldstein-Ruban theory has been extended within the framework of Zavol'skii et al. to study the acoustic receptivity of compressible boundary layers. We consider the receptivity produced in a region of localized, small-amplitude variation in the surface temperature and compare it with the receptivity that is induced through a similar mechanism by a variation in the suction velocity at the surface. It is found that the orientation of the acoustic wave can have a significant impact on the receptivity process, with the maximum receptivity at a given sound-pressure level being produced by upstream oriented acoustic waves. At sufficiently low Mach numbers, the variation of receptivity with the acoustic-wave orientation can be predicted analytically and is the same for both surface suction and surface heating. However, as a result of the acoustic refraction across the mean boundary layer, the above dependence can become rather complex and, also, dependent on the type of surface nonuniformity. The results also suggest that the receptivity caused by temperature nonuniformities may turn out to be more significant than that produced by the mean-flow perturbations associated with strip suction.

  9. Energy distribution of elastically scattered electrons from double layer samples

    NASA Astrophysics Data System (ADS)

    Tőkési, K.; Varga, D.

    2016-02-01

    We present a theoretical description of the spectra of electrons elastically scattered from thin double layered Au-C samples. The analysis is based on the Monte Carlo simulation of the recoil and Doppler effects in reflection and transmission geometries of the scattering at a fixed angle of 44.3 ° and a primary energy of 40 keV. The relativistic correction is taken into account. Besides the experimentally measurable energy distributions the simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). Furthermore, we present detailed analytical calculations for the main parameters of the single scattering, taking into account both the ideal scattering geometry, i.e. infinitesimally small angular range, and the effect of the real, finite angular range used in the measurements. We show our results for intensity ratios, peak shifts and broadenings for four cases of measurement geometries and layer thicknesses. While in the peak intensity ratios of gold and carbon for transmission geometries were found to be in good agreement with the results of the single scattering model, especially large deviations were obtained in reflection geometries. The separation of the peaks, depending on the geometry and the thickness, generally smaller, and the peak width generally larger than it can be expected from the nominal values of the primary energy, scattering angle, and mean kinetic energy of the atoms. We also show that the peaks are asymmetric even for the case of the single scattering due to the finite solid angle. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with recent measurements.

  10. Thermal effects of asymmetric electrolytes in electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    d'Entremont, Anna L.; Pilon, Laurent

    2015-01-01

    This study presents a thermal model, derived from first principles, for electric double layer capacitors (EDLCs) with multiple ion species and/or asymmetric electrolytes. It accounts for both irreversible and reversible heat generation rates resulting from the transient electrodiffusion of ions within the electrolyte. Detailed numerical simulations of EDLCs with planar electrodes and binary and asymmetric electrolytes were performed under galvanostatic cycling. The irreversible Joule heating decreased with increasing valency and/or diffusion coefficient of either ion. The local reversible heat generation rate near a given electrode was determined by the properties of the counterion. It increased with increasing counterion valency and/or decreasing counterion diameter. As a result, the electrode with the counterion of smaller diameter and/or larger valency experienced significantly larger temperature oscillations during galvanostatic cycling than the opposite electrode. In general, EDLC electrolytes featuring ions with large valency and/or small diameter produce large capacitance but also large reversible heating. The present study suggests that EDLC electrolytes should feature large bulk ion concentrations and at least one ion with a large diffusion coefficient to minimize both irreversible and reversible heating.

  11. Removal of boron species by layered double hydroxides: a review.

    PubMed

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants.

  12. Ambipolar Electric Double Layer Transistors Using Organic Single Crystals

    NASA Astrophysics Data System (ADS)

    Takenobu, Taishi; Wen, Di; Shimotani, Hidekazu; Ono, Shimpei; Iwasa, Yoshihiro

    2011-03-01

    Among organic devices, ambipolar transistors are very unique device, in which both electrons and holes are equally mobile and we are able to observe light emission through the recombination of them. Progress in the applications of such light-emitting transistors (LETs) based on organic single crystals has provided possibilities in developing organic laser. However, in these LETs, the current density is still low for lasing, and, therefore, a different device structure is necessary to overcome this issue. Here we show the first demonstration of organic ambipolar electric double layer transistors (EDLTs), in which the gate dielectric is not a conventional insulator but an electrolyte. The peculiar merit of EDLT is extremely high conductivity due to the huge capacitance of the EDL formed at the organic/electrolyte interfaces. Consequently, we can increase current density. In this study, we used rubrene single crystal and ion-gel as the active material and electrolyte, respectively. These present results will provide a prospect for further development in LET operation.

  13. Experimental investigation of double layers in expanding plasmas

    SciTech Connect

    Plihon, N.; Chabert, P.; Corr, C. S.

    2007-01-15

    Double layers (DLs) have been observed in a plasma reactor composed of a source chamber attached to a larger expanding chamber. Positive ion beams generated across the DL were characterized in the low plasma potential region using retarding field energy analyzers. In electropositive gases, DLs were formed at very low pressures (between 0.1 and 1 mTorr) with the plasma expansion forced by a strongly diverging magnetic field. The DL remains static, robust to changes in boundary conditions, and its position is related to the magnetic field lines. The voltage drop across the DL increases with decreasing pressure; i.e., with increasing electron temperature (around 20 V at 0.17 mTorr). DLs were also observed in electronegative gases without a magnetic field over a greater range of pressure (0.5 to 10 mTorr). The actual profile of the electronegative DL is very sensitive to external parameters and intrusive elements, and they propagate at high negative ion fraction. Electrostatic probes measurements and laser-induced photodetachment show discontinuities in all plasma parameters (electron density, electron temperature, negative ion fraction) at the DL position. The voltage drop across the electronegative DL is about 8 V, is independent of the gas pressure and therefore of the electron temperature.

  14. Lubrication approximation in completed double layer boundary element method

    NASA Astrophysics Data System (ADS)

    Nasseri, S.; Phan-Thien, N.; Fan, X.-J.

    This paper reports on the results of the numerical simulation of the motion of solid spherical particles in shear Stokes flows. Using the completed double layer boundary element method (CDLBEM) via distributed computing under Parallel Virtual Machine (PVM), the effective viscosity of suspension has been calculated for a finite number of spheres in a cubic array, or in a random configuration. In the simulation presented here, the short range interactions via lubrication forces are also taken into account, via the range completer in the formulation, whenever the gap between two neighbouring particles is closer than a critical gap. The results for particles in a simple cubic array agree with the results of Nunan and Keller (1984) and Stoksian Dynamics of Brady etal. (1988). To evaluate the lubrication forces between particles in a random configuration, a critical gap of 0.2 of particle's radius is suggested and the results are tested against the experimental data of Thomas (1965) and empirical equation of Krieger-Dougherty (Krieger, 1972). Finally, the quasi-steady trajectories are obtained for time-varying configuration of 125 particles.

  15. Bionanocomposites based on layered double hydroxides as drug delivery systems

    NASA Astrophysics Data System (ADS)

    Aranda, Pilar; Alcântara, Ana C. S.; Ribeiro, Ligia N. M.; Darder, Margarita; Ruiz-Hitzky, Eduardo

    2012-10-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biopolymers to produce bionanocomposites, able to act as effective drug delivery systems (DDS). Ibuprofen (IBU) and 5-aminosalicylic acid (5-ASA) have been chosen as model drugs, being intercalated in a Mg-Al LDH matrix. On the one side, the LDHIBU intercalation compound prepared by ion-exchange reaction was blended with the biopolymers zein, a highly hydrophobic protein, and alginate, a polysaccharide widely applied for encapsulating drugs. On the other side, the LDH- 5-ASA intercalation compound prepared by co-precipitation was assembled to the polysaccharides chitosan and pectin, which show mucoadhesive properties and resistance to acid pH values, respectively. Characterization of the intercalation compounds and the resulting bionanocomposites was carried out by means of different experimental techniques: X-ray diffraction, infrared spectroscopy, chemical and thermal analysis, as well as optical and scanning electron microscopies. Data on the swelling behavior and drug release under different pH conditions are also reported.

  16. Removal of boron species by layered double hydroxides: a review.

    PubMed

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants. PMID:23635479

  17. Junction conditions in quadratic gravity: thin shells and double layers

    NASA Astrophysics Data System (ADS)

    Reina, Borja; Senovilla, José M. M.; Vera, Raül

    2016-05-01

    The junction conditions for the most general gravitational theory with a Lagrangian containing terms quadratic in the curvature are derived. We include the cases with a possible concentration of matter on the joining hypersurface—termed as thin shells, domain walls or braneworlds in the literature—as well as the proper matching conditions where only finite jumps of the energy-momentum tensor are allowed. In the latter case we prove that the matching conditions are more demanding than in general relativity. In the former case, we show that generically the shells/domain walls are of a new kind because they possess, in addition to the standard energy-momentum tensor, a double layer energy-momentum contribution which actually induces an external energy flux vector and an external scalar pressure/tension on the shell. We prove that all these contributions are necessary to make the entire energy-momentum tensor divergence-free, and we present the field equations satisfied by these energy-momentum quantities. The consequences of all these results are briefly analyzed.

  18. Double Layers in Expanding Plasmas and Their Relevance to the Auroral Plasma Processes

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George

    2003-01-01

    When a dense plasma consisting of a cold and a sufficiently warm electron population expands, a rarefaction shock forms [Bezzerides et al., 1978]. In the expansion of the polar wind in the magnetosphere, it has been previously shown that when a sufficiently warm electron population also exists, in addition to the usual cold ionospheric one, a discontinuity forms in the electrostatic potential distribution along the magnetic field lines [Barakat and Schunk, 1984]. Despite the lack of spatial resolution and the assumption of quasi-neutrality in the polar wind models, such discontinuities have been called double layers (DLs). Recently similar discontinuities have been invoked to partly explain the auroral acceleration of electrons and ions in the upward current region [Ergun et al., 2000]. By means of one-dimensional Vlasov simulations of expanding plasmas, for the first time we make here the connection between (1) the rarefaction shocks, (2) the discontinuities in the potential distributions, and (3) DLs. We show that when plasmas expand from opposite directions into a deep density cavity with a potential drop across it and when the plasma on the high-potential side contains hot and cold electron populations, the temporal evolution of the potential and the plasma distribution generates evolving multiple double layers with an ,extended density cavity between them. One of the DLs is the rarefaction-shock (RFS) and it forms by the reflections of the cold electrons coming from the high-potential side; it supports a part of the potential drop approximately determined by the hot electron temperature. The other DLs evolve from charge separations arising either from reflection of ions coming from the low-potential side or stemming from plasma instabilities; they support the rest of the potential drop. The instabilities forming these additional double layers involve electron-ion (e-i) Buneman or ion-ion (i-i) two-stream interactions. The electron-electron two

  19. Asymmetric Wicking and Reduced Evaporation Time of Droplets Penetrating a Thin Double-Layered Porous Material

    NASA Astrophysics Data System (ADS)

    Vahdani, Aria; Gat, Amir; Nowakowski, Albert; Navaz, Homayun; Gharib, Morteza

    2013-11-01

    We study numerically and experimentally the penetration and evaporation dynamics of droplets wicking into a thin double-layered porous material with order-of-magnitude difference in the physical properties (such as capillary pressure drop, porosity or permeability) between the layers. We show that such double-layered porous materials can be used to create highly asymmetrical wicking properties, preventing liquid droplets wicking from one surface to the other, while allowing for wicking in the reverse direction. In addition, these double-layered porous materials are shown to reduce the evaporation time of droplets penetrating into the porous surface, compared with a single-layered material of equal thickness and physical properties similar to either of the layers. The asymmetric wicking and reduced evaporation time demonstrated in such double-layered porous materials may be of interest to applications such as medical bandages and wearable fabrics.

  20. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2013-06-10

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.

  1. Enhancement of effective electromechanical coupling factor by mass loading in layered surface acoustic wave device structures

    NASA Astrophysics Data System (ADS)

    Tang, Gongbin; Han, Tao; Teshigahara, Akihiko; Iwaki, Takao; Hashimoto, Ken-ya

    2016-07-01

    This paper describes a drastic enhancement of the effective coupling factor K\\text{e}2 by mass loading in layered surface acoustic wave (SAW) device structures such as the ScAlN film/Si substrate structure. This phenomenon occurs when the piezoelectric layer exhibits a high acoustic wave velocity. The mass loading decreases the SAW velocity and causes SAW energy confinement close to the top surface where an interdigital transducer is placed. It is shown that this phenomenon is obvious even when an amorphous SiO2 film is deposited on the top surface for temperature compensation. This K\\text{e}2 enhancement was also found in various combinations of electrode, piezoelectric layer, and/or substrate materials. The existence of this phenomenon was verified experimentally using the ScAlN film/Si substrate structure.

  2. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Liang, Bin; Zou, Xin-Ye; Yang, Jing; Yin, Lei-Lei; Yang, Jun; Cheng, Jian-Chun

    2016-06-01

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy.

  3. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer.

    PubMed

    Jiang, Xue; Liang, Bin; Zou, Xin-Ye; Yang, Jing; Yin, Lei-Lei; Yang, Jun; Cheng, Jian-Chun

    2016-06-16

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy.

  4. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer

    PubMed Central

    Jiang, Xue; Liang, Bin; Zou, Xin-ye; Yang, Jing; Yin, Lei-lei; Yang, Jun; Cheng, Jian-chun

    2016-01-01

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy. PMID:27305973

  5. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer.

    PubMed

    Jiang, Xue; Liang, Bin; Zou, Xin-Ye; Yang, Jing; Yin, Lei-Lei; Yang, Jun; Cheng, Jian-Chun

    2016-01-01

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy. PMID:27305973

  6. Surface acoustic admittance and absorption of highly porous, layered, fibrous materials

    NASA Technical Reports Server (NTRS)

    Tesar, J. S.; Lambert, R. F.

    1984-01-01

    Some acoustic properties of Kevlar-29 - a fine fibered, layered material is investigated. Kevlar is characterized by very high strength, uniform filaments arranged in a parallel batt where most filaments are random in the x-y plane but ordered as planes in the z direction. For experimental purposes, volume porosity, static flow resistance and mean filament diameter are used to identify the material. To determine the acoustic surface admittance of Kevlar, batts of the material are cut into small pads and placed into a standing wave tube terminated by a rigid brass plug. The attenuation and relative phase shift are recorded at each frequency in the range of 50 to 6000 Hz. Normalized conductance and susceptance are combined to form the acoustic absorption coefficient. The data are compared with theory by plotting the normalized admittance and normal incident absorption coefficient versus cyclic frequency.

  7. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  8. Does the plasma radiate near a Double Layer?

    NASA Astrophysics Data System (ADS)

    Pottelette, Raymond; Berthomier, Matthieu; Pickett, Jolene

    2016-04-01

    Earth is an intense radio source in the kilometer wavelength range. Being a direct consequence of the parallel acceleration processes taking place in the Earth's auroral region, the radiation contains fundamental information on the characteristic spatial and temporal scales of the turbulent accelerating layer. It is now widely assumed that the cyclotron maser instability leads to Auroral Kilometric Radiation (AKR) generation. It has been suggested from the FAST measurements that the AKR results from a so-called horseshoe electron distribution. This distribution is generated when a localized parallel electric field - called Double Layer (DL) - accelerates earthward the electrons that propagate into an increasing magnetic field. The magnetic moment of the electrons is conserved so that their pitch angle is increased. This results in the creation of a horseshoe-like shape for the electron distribution exhibiting large positive velocity gradients in the direction perpendicular to B, thereby providing free energy for the AKR generation which takes place at the local electron gyrofrequency. In these circumstances, the radiation is generated far away (several thousand kilometers) from a DL, because the parallel accelerated electrons need to travel a long distance before forming a horseshoe distribution. From an experimental point of view, it is not an easy task to highlight the presence of DLs, because they are moving transient structures so that high time resolution measurements are needed. A detailed analysis suggests that these large-amplitude parallel electric fields are located inside sharp density gradients at the interface separating the cold, dense ionospheric plasma from the hot, tenuous magnetospheric plasma. We present some FAST observations which illustrate the generation of elementary radiation events in the neighborhood of a DL. The events occur 10 to 20% above the local electron gyrofrequency in association with the presence of nonlinear coherent structures

  9. Double layer field shaping systems for toroidal plasmas

    DOEpatents

    Ohyabu, Nobuyoshi

    1982-01-01

    Methods and apparatus for plasma generation, confinement and control such as Tokamak plasma systems are described having a two layer field shaping coil system comprising an inner coil layer close to the plasma and an outer coil layer to minimize the current in the inner coil layer.

  10. An iterated three-layer model of the double layer with permanent dipoles

    NASA Astrophysics Data System (ADS)

    Macdonald, J. Ross; Liu, S. H.

    1983-03-01

    There does not exist a theory of the ionic double layer at a completely blocking metal electrode in liquid electrolytes which is adequate in the charge/potential region where ions and solvent molecules begin to approach saturated conditions. Under these conditions, a continuum theory, such as that of Gouy and Chapman (GC), becomes entirely inadequate. Here the problem is attacked in a semi-discrete way by first partitioning the space charge region into layers parallel to the planar blocking electrode. Each layer is part of a cubic lattice with lattice-site spacing determined by the pure solvent concentration. Lattice sites may be occupied by ions of either sign or by solvent molecules, taken as spheres having a permanent dipole moment. The solvent molecule finite-length dipoles are then approximated by slabs of constant point-dipole polarization. Thus each of the planes parallel to the electrode is a locus of ion centers, and the polarization is accounted for by equal and opposite charge layers equidistant on either side of an ionic charge layer. The mean polarization and ionic concentration in each three-layer region are determined self-consistently by free energy minimization, and electrostatic equations are employed to couple the electrical conditions in one layer to those adjacent. This ion-dipole model (IDM) is solved self-consistently for arbitrary molarity in two regimes: the weak-field situation where the electrode charge approaches zero, and the arbitrary field-strength regime. In the first case, an, exact, closed-form solution is obtained which reduces to that of GC in the appropriate limit, but numerical analysis is required in the second situation. The present treatment provides a more realistic account of the electrical effects of discrete solvent dipoles than do those treatments, such as the GC model, which represent them entirely by a background, non-saturable, or even saturable, bulk dielectric constant. Here polarization saturation enters naturally

  11. Numerical modeling and experimental validation of the acoustic transmission of aircraft's double-wall structures including sound package

    NASA Astrophysics Data System (ADS)

    Rhazi, Dilal

    In the field of aeronautics, reducing the harmful effects of acoustics constitutes a major concern at the international level and justifies the call for further research, particularly in Canada where aeronautics is a key economic sector, which operates in a context of global competition. Aircraft sidewall structure is usually of a double wall construction with a curved ribbed metallic skin and a lightweight composite or sandwich trim separated by a cavity filled with a noise control treatment. The latter is of a great importance in the transport industry, and continues to be of interest in many engineering applications. However, the insertion loss noise control treatment depends on the excitation of the supporting structure. In particular, Turbulent Boundary Layer is of interest to several industries. This excitation is difficult to simulate in laboratory conditions, given the prohibiting costs and difficulties associated with wind tunnel and in-flight tests. Numerical simulation is the only practical way to predict the response to such excitations and to analyze effects of design changes to the response to such excitation. Another kinds of excitations encountered in industrial are monopole, rain on the Roof and diffuse acoustic field. Deterministic methods can calculate in each point the spectral response of the system. Most known are numerical methods such as finite elements and boundary elements methods. These methods generally apply to the low frequency where modal behavior of the structure dominates. However, the high limit of calculation in frequency of these methods cannot be defined in a strict way because it is related to the capacity of data processing and to the nature of the studied mechanical system. With these challenges in mind, and with limitations of the main numerical codes on the market, the manufacturers have expressed the need for simple models immediately available as early as the stage of preliminary drafts. This thesis represents an attempt

  12. Analysis of an existing experiment on the interaction of acoustic waves with a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Schopper, M. R.

    1982-01-01

    The hot-wire anemometer amplitude data contained in the 1977 report of P. J. Shapiro entitled, ""The Influence of Sound Upon Laminar Boundary'' were reevaluated. Because the low-Reynolds number boundary layer disturbance data were misinterpreted, an effort was made to improve the corresponding disturbance growth rate curves. The data are modeled as the sum of upstream and downstream propagating acoustic waves and a wave representing the Tollmien-Schlichting (TS) wave. The amplitude and phase velocity of the latter wave were then adjusted so that the total signal reasonably matched the amplitude and phase angle hot-wire data along the plate laminar boundary layer. The revised rates show growth occurring further upstream than Shapiro found. It appears that the premature growth is due to the adverse pressure gradient created by the shape of the plate. Basic elements of sound propagation in ducts and the experimental and theoretical acoustic-stability literature are reviewed.

  13. A theory study of the multiplication characteristics of InP/InGaAs avalanche photodiodes with double multiplication layers and double charge layers

    NASA Astrophysics Data System (ADS)

    Liu, Guipeng; Chen, Wenjie; Liu, Linsheng; Jin, Peng; Tian, Yonghui; Yang, Jianhong

    2016-09-01

    An In0.53Ga0.47As/InP avalanche photodiodes (APD) structure with double multiplication layers and double charge layers has been proposed. The calculated results with considering the dead space effect show that a thin 2nd multiplication layer will reduce the excess noise factor F in this structure for a fixed mean gain . And its performances will reach the best when the 2nd multiplication layer is 0.01 μm, which will reduce the excess noise factor 7% compared to a conventional APD for =10. The effects of 1st and 2nd charge layers on the APD have also been studied in this paper.

  14. Tunability of double layer coupled plasmonic system and its application in displacement sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Wanwan; Feng, Yuanming; Zhang, Yanxiao; Lin, Wang

    2016-04-01

    We illustrate the mechanism of multispectral Fano-like phenomenon in a double layer coupled plasmonic system and investigate its tunability by changing the geometrical parameters. By tuning the parameters in the double layer system, we show that the height of the dielectric layer between two layers plays an important role in the transmission spectrum for the studied range. The application of the double layer coupled plasmonic system in displacement sensing is also demonstrated by moving the bottom layer leftward and forward with respect to the top layer. The frequency of the spectrum peak is shown to be a linear function of forward displacement up to 2 nm. The simulations demonstrate that the small displacement can lead to frequency shift and amplitude change of the transmission peak.

  15. Calculating acoustical properties of cells: influence of surface topography and liquid layer between cell and substrate.

    PubMed

    Kundu, T; Bereiter-Hahn, J; Hillmann, K

    1992-05-01

    In this paper, a mathematical formulation is presented to compute the V(z) of a tapering layered solid and applying this formulation to the determination of acoustic properties of biological cells and tissues. The formulation is adopted in the simplex inversion algorithm to obtain the acoustic properties of a tapering cell from its V(z) values. The influence of two parameters had been considered: The tapering angle and the presence of a thin liquid layer present between cells and the substratum to which they adhere. Up to a tapering angle less than 10 degrees, it can be safely neglected. However, if a larger angle is neglected, then the acoustic wave velocity in the cell is overestimated. Cell thickness estimation is not affected significantly when the tapering angle is ignored. The calculations of acoustic properties of cells are considerably influenced by the introduction of a thin fluid layer between the solid substratum and the overlying cell, neglecting the presence of at least a very thin layer (20-30 nm), in general, results in a considerable overestimation of sound velocity. The reliability of the data calculated from V(z) values was ascertained using an independent method to determine cell thickness by calculating it from the interference fringe pattern obtained with the reflection-interference light microscope. The shape of the glutaraldehyde-fixed cells was similar to fried eggs. The highest sound velocities were found close to the periphery of the dome-shaped cell center. In the very center and over most of the area of the thin periphery, sound velocity was close to that in saline.

  16. Design of double layer printed spiral coils for wirelessly-powered biomedical implants.

    PubMed

    Ashoori, Ehsan; Asgarian, Farzad; Sodagar, Amir M; Yoon, Euisik

    2011-01-01

    In this paper employing double layer printed spiral coils (PSCs) is proposed for wireless power transmission in implantable biomedical applications. Detailed modeling of this type of PSCs is presented. Both calculations and measurements of fabricated double layer PSCs indicate that this structure can decrease the size of typical single layer PSCs without any change in the most important parameters of the coils, such as quality factor. Also, it is shown that with equal PSC dimensions and design parameters, double layer PSCs achieve significantly higher inductances and quality factors. Ultimately, a pair of double layer PSCs with a distance of 5 mm in air is used in an inductive link. The power transfer efficiency of this link is about 79.8% with a carrier frequency of 5 MHz and coupling coefficient of 0.189. PMID:22254943

  17. Design of double layer printed spiral coils for wirelessly-powered biomedical implants.

    PubMed

    Ashoori, Ehsan; Asgarian, Farzad; Sodagar, Amir M; Yoon, Euisik

    2011-01-01

    In this paper employing double layer printed spiral coils (PSCs) is proposed for wireless power transmission in implantable biomedical applications. Detailed modeling of this type of PSCs is presented. Both calculations and measurements of fabricated double layer PSCs indicate that this structure can decrease the size of typical single layer PSCs without any change in the most important parameters of the coils, such as quality factor. Also, it is shown that with equal PSC dimensions and design parameters, double layer PSCs achieve significantly higher inductances and quality factors. Ultimately, a pair of double layer PSCs with a distance of 5 mm in air is used in an inductive link. The power transfer efficiency of this link is about 79.8% with a carrier frequency of 5 MHz and coupling coefficient of 0.189.

  18. Improving Breakdown Behavior by Substrate Bias in a Novel Double Epi-layer Lateral Double Diffused MOS Transistor

    NASA Astrophysics Data System (ADS)

    Li, Qi; Wang, Wei-Dong; Liu, Yun; Wei, Xue-Ming

    2012-02-01

    A new lateral double diffused MOS (LDMOS) transistor with a double epitaxial layer formed by an n-type substrate and a p-type epitaxial layer is reported (DEL LDMOS). The mechanism of the improved breakdown characteristic is that the high electric field around the drain is reduced by substrate reverse bias, which causes the redistribution of the bulk electric field in the drift region, and the vertical blocking voltage is shared by the drain side and the source side. The numerical results indicate that the trade-off between breakdown voltage and on-resistance of the proposed device is improved greatly in comparison to that of the conventional LDMOS.

  19. Possible variations of E-layer electromagnetic fields by acoustic waves above earthquake preparation regions

    NASA Astrophysics Data System (ADS)

    Meister, C.-V.; Mayer, B.; Hoffmann, D. H. H.

    2012-04-01

    The many-fluid magnetohydrodynamic theory is applied to describe the modification of the electromagnetic field of the ionospheric E-layer by acoustic-type waves. These waves originate from lower altitudes and may be caused by earthquake preparation processes. In comparison to former works, the different stratification of the positively and negatively charged ionospheric particles and of the neutral constituents is taken into account. There also the influence of the mean electric field on the different hight scales of the plasma parameters is discussed. Besides, the hight scales of the electric and magnetic wave fields are modeled. It is shown that at E-layer altitudes the acoustic waves may be converted into Alfvén waves. The dependence of these waves on the height scales of the plasma parameters of the particles and on the momentum transport between the charged and neutral particles is analysed. First estimates of the temperature variations within the E-layer because of the assumed acoustic-type waves of seismic origin are made.

  20. Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear-Layer. Part 2

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Singer, Bart A.; Lockard, David P.

    2002-01-01

    Unsteady computational simulations of a multi-element, high-lift configuration are performed. Emphasis is placed on accurate spatiotemporal resolution of the free shear layer in the slat-cove region. The excessive dissipative effects of the turbulence model, so prevalent in previous simulations, are circumvented by switching off the turbulence-production term in the slat cove region. The justifications and physical arguments for taking such a step are explained in detail. The removal of this excess damping allows the shear layer to amplify large-scale structures, to achieve a proper non-linear saturation state, and to permit vortex merging. The large-scale disturbances are self-excited, and unlike our prior fully turbulent simulations, no external forcing of the shear layer is required. To obtain the farfield acoustics, the Ffowcs Williams and Hawkings equation is evaluated numerically using the simulated time-accurate flow data. The present comparison between the computed and measured farfield acoustic spectra shows much better agreement for the amplitude and frequency content than past calculations. The effect of the angle-of-attack on the slat's flow features radiated acoustic field are also simulated presented.

  1. Electrochemical Double Layered Capacitor Development and Implementation System

    NASA Astrophysics Data System (ADS)

    Strunk, Gavin P.

    Electrochemical Double Layered Capacitors (EDLC's) are becoming a more popular topic of research for hybrid power systems, especially vehicles. They are known for their high power density, high cycle life, low internal resistance, and wider operating temperature compared to batteries. They are rarely used as a standalone power source; however, because of their lack of energy density compared to batteries and fuel cells. Researchers are now discovering the benefits of using them in hybrid systems. The increased complexity of a hybrid power source presents many challenges. A major drawback of this complexity is the lack of design tools to assist a designer in translating a simulation all the way to a full scale implementation. A full spectrum of tools was designed to assist designers at all stages of implementation including: single cell testing, a multi-cell management system, and a full scale vehicle data acquisition system to monitor performance. First, the full scale vehicle data acquisition is described. The system is isolated from the electric shuttle bus it was tested on to allow the system to be ported to other vehicles and applications. This was done to modularize the system to characterize a wide variety of full scale applications. Next, a single cell test system was designed that allows the designer to characterize cell specifications, as well as, test control and safety systems in a controlled environment. The goal is to ensure safety systems can be thoroughly tested to ensure robustness as the bank is scaled up. This system also includes simulation models that provide examples of using the simulation to predict the behavior of a cell and the test system to validate the results of the simulation. This information is then used by the designer to more effectively design sensor ranges for the bank. Finally, a multi-cell EDLC management system was designed to implement a bank. It incorporates 12 series EDLC cells per control module, and the modular design

  2. Efficient uranium capture by polysulfide/layered double hydroxide composites.

    PubMed

    Ma, Shulan; Huang, Lu; Ma, Lijiao; Shim, Yurina; Islam, Saiful M; Wang, Pengli; Zhao, Li-Dong; Wang, Shichao; Sun, Genban; Yang, Xiaojing; Kanatzidis, Mercouri G

    2015-03-18

    There is a need to develop highly selective and efficient materials for capturing uranium (normally as UO2(2+)) from nuclear waste and from seawater. We demonstrate the promising adsorption performance of S(x)-LDH composites (LDH is Mg/Al layered double hydroxide, [S(x)](2-) is polysulfide with x = 2, 4) for uranyl ions from a variety of aqueous solutions including seawater. We report high removal capacities (q(m) = 330 mg/g), large K(d)(U) values (10(4)-10(6) mL/g at 1-300 ppm U concentration), and high % removals (>95% at 1-100 ppm, or ∼80% for ppb level seawater) for UO2(2+) species. The S(x)-LDHs are exceptionally efficient for selectively and rapidly capturing UO2(2+) both at high (ppm) and trace (ppb) quantities from the U-containing water including seawater. The maximum adsorption coeffcient value K(d)(U) of 3.4 × 10(6) mL/g (using a V/m ratio of 1000 mL/g) observed is among the highest reported for U adsorbents. In the presence of very high concentrations of competitive ions such as Ca(2+)/Na(+), S(x)-LDH exhibits superior selectivity for UO2(2+), over previously reported sorbents. Under low U concentrations, (S4)(2-) coordinates to UO2(2+) forming anionic complexes retaining in the LDH gallery. At high U concentrations, (S4)(2-) binds to UO2(2+) to generate neutral UO2S4 salts outside the gallery, with NO3(-) entering the interlayer to form NO3-LDH. In the presence of high Cl(-) concentration, Cl(-) preferentially replaces [S4](2-) and intercalates into LDH. Detailed comparison of U removal efficiency of S(x)-LDH with various known sorbents is reported. The excellent uranium adsorption ability along with the environmentally safe, low-cost constituents points to the high potential of S(x)-LDH materials for selective uranium capture.

  3. Theory of a Stationary Current-Free Double Layer in a Collisionless Plasma

    SciTech Connect

    Ahedo, Eduardo; Martinez Sanchez, Manuel

    2009-09-25

    Current-free double layers can develop in a collisionless, inertia-controlled plasma with two electron populations, expanding in a convergent-divergent nozzle. The double layer characteristics depend on whether they develop at the nozzle divergent side, convergent side, or throat. The divergent-geometry double layer describes faithfully the Hairapetian-Stenzel experiment [Phys. Rev. Lett. 65, 175 (1990)], whereas the two other types correspond with those studied in self-similar expansions and wall-collection models of similar plasmas.

  4. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1987-01-01

    It is known, from laboratory experiments, that double layers will form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  5. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1986-01-01

    It is known from laboratory experiments that double layers can form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  6. Shear-layer acoustic radiation in an excited subsonic jet: experimental study

    NASA Astrophysics Data System (ADS)

    Fleury, Vincent; Bailly, Christophe; Juvé, Daniel

    2005-10-01

    The subharmonic acoustic radiation of a tone excited subsonic jet shear-layer has been investigated experimentally. Two jet velocities U=20 mṡs and U=40 mṡs were studied. For U=20 mṡs, the natural boundary-layer at the nozzle exit is laminar. When the perturbation is applied, the fluctuations of the first and the second subharmonics of the excitation frequency are detected in the shear-layer. In addition, the first subharmonic near pressure field along the spreading jet is constituted of two strong maxima of sinusoidal shape. The far-field directivity pattern displays two lobes separated by an extinction angle θ at around 85° from the jet axis. These observations follow the results of Bridges about the vortex pairing noise. On the other hand, for U=40 mṡs, the initial boundary-layer is transitional and only the first subharmonic is observed in the presence of the excitation. The near pressure field is of Gaussian shape in the jet periphery and the acoustic far-field is superdirective as observed by Laufer and Yen. The state of the initial shear-layer seems to be the key feature to distinguish these two different radiation patterns. To cite this article: V. Fleury et al., C. R. Mecanique 333 (2005).

  7. Surface acoustic wave resonators on a ZnO-on-Si layered medium

    NASA Astrophysics Data System (ADS)

    Martin, S. J.; Schwartz, S. S.; Gunshor, R. L.; Pierret, R. F.

    1983-02-01

    The adaptation of surface acoustic wave resonator technology to a ZnO-on-Si layered medium is presented. Several distributed reflector schemes are considered, including shorted and isolated metallic strips, as well as grooves etched in the ZnO layer. In the case of etched groove reflectors, a first-order velocity perturbation arises due to the dispersive nature of the layered medium. Unique resonator design considerations result from the reflector array velocity and reflectivity characteristics. Transverse mode resonances are characterized and their effect on resonator response eliminated by a novel transducer design. A technique for temperature compensating the devices by use of a thermal SiO2 layer is discussed.

  8. Velocity phase encoded MRI of gas flow in the acoustic boundary layer

    NASA Astrophysics Data System (ADS)

    Archibald, Geoffrey

    This thesis explores the use of magnetic resonance imaging (MRI) to study acoustic oscillations of a gas in a cylindrical tube. It describes experiments performed under conditions where the gas is in the Acoustic Viscous Boundary Layer and its flow is laminar. Velocity maps acquired at discrete phases of the acoustic oscillation are presented, and are compared with thermoacoustic theory. This represents the first time that such information has been obtained using MRI. An important component of the work reported in this thesis involves the design, construction, and characterization of an acousto-mechanical resonator (AMR). This device can drive oscillatory gas motion and impose density variations at rates that are compatible with MRI data acquisition. To date it has been operated at frequencies ranging from 0.7 Hz to 1.65 Hz and with peak gas displacement amplitudes of up to 2.5 cm. The AMR is based on a modular design intended to permit the study of acoustic flow through a variety of different structures and under a variety of different conditions. MRI experiments were performed on a mixture of thermally-polarized 3He and O2. The latter is used to increase the 3He longitudinal nuclear relaxation rate T1 --1 to a value comparable to the acoustic frequency. In turn, measurements of T1 --1 provide a means for determining the precise composition of the gas mixture. Velocity phase-encoding techniques were then used to map acoustic flow fields: A bipolar magnetic field gradient pulse inserted into the imaging sequence stores velocity information in the phase of the complex image data. The MRI pulse sequence is synchronized with the periodic motion of the gas so that the velocity measurement can be performed at discrete and well-defined phases of the acoustic cycle. These non-invasive flow imaging experiments provide information that is complementary to that which can be obtained from other gas velocity probes, and may lead to new opportunities in the study of acoustic

  9. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface.

    PubMed

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J

    2016-01-01

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential. PMID:27576762

  10. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    NASA Astrophysics Data System (ADS)

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.

    2016-08-01

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.

  11. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    PubMed Central

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.

    2016-01-01

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential. PMID:27576762

  12. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    SciTech Connect

    Kumar Paul, Manash; Sharma, P. K.; Thakur, A.; Kulkarni, S. V.; Bora, D.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presence of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.

  13. Sagdeev potential approach for large amplitude compressional Alfvenic double layers in viscous plasmas

    SciTech Connect

    Panwar, Anuraj; Rizvi, H.; Ryu, C. M.

    2013-11-15

    Sagdeev’s technique is used to study the large amplitude compressional Alfvenic double layers in a magnetohydrodynamic plasma taking into account the small plasma β and small values of kinematic viscosity. Dispersive effect raised by non-ideal electron inertia currents perpendicular to the ambient magnetic field. The range of allowed values of the soliton speed, M (Mach number), plasma β (ratio of the plasma thermal pressure to the pressure in the confining magnetic field), and viscosity coefficient, wherein double layer may exist, are determined. In the absence of collisions, viscous dissipation modifies the Sagdeev potential and results in large amplitude compressional Alfvenic double layers. The depth of Sagdeev potential increases with the increasing Mach number and plasma β, however, decreases with the increasing viscosity. The double layer structure increases with the increasing plasma β, but decreases with increasing viscous dissipation μ(tilde sign)

  14. Conditions for double layers in the Earth's magnetosphere and perhaps in other astrophysical objects

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1987-01-01

    Double layers form along auroral field lines in the Earth's magnetosphere. They form in order to maintain current continuity in the ionosphere in the presence of a magnetospheric electric field E with nabla x E is not equal to 0. Features which govern the formation of the double layers are: (1) the divergence of E, (2) the conductivity of the ionosphere, and (3) the current-voltage characteristics of auroral magnetic field lines. Astrophysical situations where nabla x E is not equal to 0 is applied to a conducting plasma similar to the Earth's ionosphere are potential candidates for the formation of double layers. The region with nabla x E is not equal to 0 can be generated within, or along field lines connected to, the conducting plasma. In addition to nabla x E, shear neutral flow in the conducting plasma can also form double layers.

  15. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface.

    PubMed

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J

    2016-08-31

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.

  16. Simulation of double-layer capacitor performance in two PMAD applications

    SciTech Connect

    Bone, N.K.; Moss, B.S.; White, C.S.; Nelms, R.M.; Spyker, R.L.

    1998-07-01

    Recent developments in double-layer capacitor technology have yielded devices with increased capacitance and energy storage capability. As a result, these capacitors can now be considered for higher power and energy applications such as electric vehicle acceleration and electromechanical actuation. Presented in this paper are the results from an examination into using double-layer capacitors in two high power applications. The first is the starting transient of a large DC motor from a battery with and without a double-layer capacitor bank. In the second, a double-layer capacitor bank is used with an inverter to provide ride-through capability to a load during a fault on an AC power system. Both applications are simulated using SABER, a commercial software package.

  17. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    PubMed

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  18. Transition in a Supersonic Boundary-Layer Due to Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2003-01-01

    The transition process induced by the interaction of an isolated roughness with acoustic disturbances in the free stream is numerically investigated for a boundary layer over a flat plate with a blunted leading edge at a free stream Mach number of 3.5. The roughness is assumed to be of Gaussian shape and the acoustic disturbances are introduced as boundary condition at the outer field. The governing equations are solved using the 5'h-rder accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third- order total-variation-diminishing (TVD) Runge- Kutta scheme for time integration. The steady field induced by the two and three-dimensional roughness is also computed. The flow field induced by two-dimensional roughness exhibits different characteristics depending on the roughness heights. At small roughness heights the flow passes smoothly over the roughness, at moderate heights the flow separates downstream of the roughness and at larger roughness heights the flow separates upstream and downstream of the roughness. Computations also show that disturbances inside the boundary layer is due to the direct interaction of the acoustic waves and isolated roughness plays a minor role in generating instability waves.

  19. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  20. ANGULAR MOMENTUM TRANSPORT AND VARIABILITY IN BOUNDARY LAYERS OF ACCRETION DISKS DRIVEN BY GLOBAL ACOUSTIC MODES

    SciTech Connect

    Belyaev, Mikhail A.; Stone, James M.; Rafikov, Roman R.

    2012-11-20

    Disk accretion onto a weakly magnetized central object, e.g., a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high-resolution two-dimensional hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of the order of the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation of acoustic modes in weak shocks provides a universal mechanism for angular momentum and mass transport even in purely hydrodynamic (i.e., non-magnetized) boundary layers. We discuss the possible implications of these trapped modes for explaining the variability seen in accreting compact objects.

  1. Double-layer-gate architecture for few-hole GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, D. Q.; Hamilton, A. R.; Farrer, I.; Ritchie, D. A.; Klochan, O.

    2016-08-01

    We report the fabrication of single and double hole quantum dots using a double-layer-gate design on an undoped accumulation mode {{Al}}x{{Ga}}1-x{As}/GaAs heterostructure. Electrical transport measurements of a single quantum dot show varying addition energies and clear excited states. In addition, the two-level-gate architecture can also be configured into a double quantum dot with tunable inter-dot coupling.

  2. Synthesis and properties of a cuprate superconductor containing double mercury-oxygen layers.

    PubMed

    Radaelli, P G; Perroux, M; Marezio, M; de Brion, S; Tholence, J L; Huang, Q; Santoro, A

    1994-07-15

    A cuprate superconductor containing double mercury layers was synthesized with a high-pressure, high-temperature technique. The compound, with chemical formula Hg(2)Ba(2)-Y1-xCaxCu(2)O(8-delta), contains a double HgO layer with structure similar to that of rock salt. The prototype compound Hg(2)Ba(2)YCu(2)O(8-delta) is an insulator. Superconductivity is induced in the system by partially replacing yttrium with calcium.

  3. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories.

    PubMed

    Schiffter, Heiko; Lee, Geoffrey

    2007-09-01

    The suitability of a single droplet drying acoustic levitator as a model for the spray drying of aqueous, pharmaceutically-relevant solutes used to produce protein-loaded particles has been examined. The acoustic levitator was initially evaluated by measuring the drying rates of droplets of pure water in dependence of drying-air temperature and flow rate. The measured drying rates were higher than those predicted by boundary layer theory because of the effects of primary acoustic streaming. Sherwood numbers of 2.6, 3.6, and 4.4 at drying-air temperatures of 25 degrees C, 40 degrees C, and 60 degrees C were determined, respectively. Acoustic levitation theory could predict the measured drying rates and Sherwood numbers only when a forced-convection drying-air stream was used to neuralize the retarding effect of secondary acoustic streaming on evaporation rate. At still higher drying-air flow rates, the Ranz-Marshall correlation accurately predicts Sherwood number, provided a stable droplet position in the standing acoustic wave is maintained. The measured Sherwood numbers and droplet Reynolds numbers show that experiments performed in the levitator in still air are taking place effectively under conditions of substantial forced convection. The similitude of these values to those occurring in spray dryers is fortuitous for the suitability of the acoustic levitator as a droplet evaporation model for spray drying. PMID:17582811

  4. Experiments on hypersonic boundary layer transition on blunt cones with acoustic-absorption coating

    NASA Astrophysics Data System (ADS)

    Shiplyuk, A.; Lukashevich, S.; Bountin, D.; Maslov, A.; Knaus, H.

    2012-01-01

    The laminar-turbulent transition is studied experimentally on a cone with an acoustic-absorption coating and with different nose bluntness in a high-speed flow. The acoustic-absorption coating is a felt metal sheet with a random microstructure. Experiments were carried out on a 1-meter length 7 degree cone at free-stream Mach number M = 8 and zero angle of attack. Locations of the laminar-turbulent transition are detected using heat flux distributions registered by calorimeter sensors. In addition, boundary layer pulsations are measured by means of ultrafast heat flux sensors. It is shown that the laminar-turbulent transition is caused by the second-mode instability, and the laminar run extends as the bluntness is increased. The porous coating effectively suppresses this instability for all tested bluntness values and 1.3-1.85 times extends the laminar run.

  5. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators.

  6. Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear Layer

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Singer, Bart A.; Berkman, Mert E.

    2001-01-01

    A detailed computational aeroacoustic analysis of a high-lift flow field is performed. Time-accurate Reynolds Averaged Navier-Stokes (RANS) computations simulate the free shear layer that originates from the slat cusp. Both unforced and forced cases are studied. Preliminary results show that the shear layer is a good amplifier of disturbances in the low to mid-frequency range. The Ffowcs-Williams and Hawkings equation is solved to determine the acoustic field using the unsteady flow data from the RANS calculations. The noise radiated from the excited shear layer has a spectral shape qualitatively similar to that obtained from measurements in a corresponding experimental study of the high-lift system.

  7. Overview of the Use of Graphene in Electric Double Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Coleman, Arthur

    2012-10-01

    Advances in the manufacture and optimization of Electric Double Layer Capacitors or ultra-capacitors may make them a good alternative to batteries. Using graphene in the EDLC layers seems to limit the high self-discharge and voltage loss on discharge that plagues ultra-capacitors.

  8. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  9. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  10. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  11. Wrinkle Behavior of Hydroforming of Aluminum Alloy Double-Layer Sheets

    NASA Astrophysics Data System (ADS)

    Zhou, Bin-Jun; Xu, Yong-Chao

    2016-07-01

    In this article, the wrinkling behavior and thickness distribution of 5A06 aluminum alloy sheets in an annealed state with thickness of 1.0 mm and 2.5 mm was numerically and experimentally investigated under different hydraulic pressures in the hydroforming of single-layer and double-layer sheets. Note that, in double-layer sheets hydroforming, an upper-aided sheet is needed. The upper, thicker sheet synchronously deforms with the lower, thinner sheet during hydroforming. When the double-layer sheets are separated, a thinner curved sheet part will be manufactured. As can be seen from the simulation and experimental results, the upper, thicker sheet could effectively suppress the wrinkles of the lower, thinner sheet and improve the thickness distribution due to the increasing anti-wrinkle ability of the formed sheet and the interfacial friction between the double-layer sheets. In addition, the maximum hydraulic pressure can be decreased via hydroforming of double-layer sheets; this approach reduces the drawing force for large sheet parts and meets the requirement of energy conservation.

  12. Topological defects in electric double layers of ionic liquids at carbon interfaces

    DOE PAGES

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore » utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less

  13. Topological defects in electric double layers of ionic liquids at carbon interfaces

    SciTech Connect

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here we utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.

  14. Double-layered target and identification method of individual target correlated with evaporation residues

    NASA Astrophysics Data System (ADS)

    Kaji, D.; Morimoto, K.

    2015-08-01

    A double-layered target system and an identification method (target ID) for individual targets mounted on a rotating wheel using correlation with evaporation residues were newly developed for the study of superheavy elements (SHE). The target system can be used in three modes: conventional single-layered mode, double-layered mode, and energy-degrader mode. The target ID method can be utilized for masking a target, measuring an excitation function without changing the beam energy from the accelerator, and searching for SHE nuclides using multiple targets during a single irradiation.

  15. Radial Strains of Double-layer Cylinders in Hydraulic Props of Powered Supports

    NASA Astrophysics Data System (ADS)

    Buyalich, G. D.; Buyalich, К G.; Voevodin, V. V.

    2016-04-01

    At present a lot of efforts are made to use double-layer power cylinders in hydraulic props of powered supports. To study the response of these cylinders to loads a special finite-element model has been developed and used for investigations into tension effect and double-layer cylinder thickness - radial strain relation under pressure of hydraulic liquid 50 MPa. It has been revealed that double-layer cylinders are distinguished by much lower radial strains in the zone of cup-like sealing elements as if compared with one-layer cylinders, as well as equivalent stresses are lower, and safety factor is higher. The data of the study can be recommended to calculate appropriate geometrical parameters of hydraulic props with respect to lower radial strains of a hydraulic cylinder, which improve its leak-tightness and functioning of cup-like sealing elements. The obtained results can be useful for design and construction of powered supports.

  16. Radial Strains of Double-layer Cylinders in Hydraulic Props of Powered Supports

    NASA Astrophysics Data System (ADS)

    Buyalich, G. D.; Buyalich, К G.; Voevodin, V. V.

    2016-04-01

    At present a lot of efforts are made to use double-layer power cylinders in hydraulic props of powered supports. To study the response of these cylinders to loads a special finite-element model has been developed and used for investigations into tension effect and double-layer cylinder thickness – radial strain relation under pressure of hydraulic liquid 50 МPа. It has been revealed that double-layer cylinders are distinguished by much lower radial strains in the zone of cup-like sealing elements as if compared with one-layer cylinders, as well as equivalent stresses are lower, and safety factor is higher. The data of the study can be recommended to calculate appropriate geometrical parameters of hydraulic props with respect to lower radial strains of a hydraulic cylinder, which improve its leak-tightness and functioning of cup-like sealing elements. The obtained results can be useful for design and construction of powered supports.

  17. Unipolar complementary circuits using double electron layer tunneling transistors

    SciTech Connect

    Moon, J.S.; Simmons, J.A.; Blount, M.A.; Reno, J.L.; Hafich, M.J.

    1999-01-01

    We demonstrate unipolar complementary circuits consisting of a pair of resonant tunneling transistors based on the gate control of two-dimensional{endash}two-dimensional interlayer tunneling, where a single transistor{emdash}in addition to exhibiting a well-defined negative-differential resistance{emdash}can be operated with either positive or negative transconductance. Details of the device operation are analyzed in terms of the quantum capacitance effect and bandbending in a double quantum well structure, and show good agreement with experiment. Application of resonant tunneling complementary logic is discussed by demonstrating complementary static random access memory using two devices connected in series. {copyright} {ital 1999 American Institute of Physics.}

  18. Unipolar Complementary Circuits Using Double Electron Layer Tunneling Tansistors

    SciTech Connect

    Blount, M.A.; Hafich, M.J.; Moon, J.S.; Reno, J.L.; Simmons, J.A.

    1998-10-19

    We demonstrate unipolar complementary circuits consisting of a pair of resonant tunneling transistors based on the gate control of 2D-2D interlayer tunneling, where a single transistor - in addition to exhibiting a welldefined negative-differential-resistance can be operated with either positive or negative transconductance. Details of the device operation are analyzed in terms of the quantum capacitance effect and band-bending in a double quantum well structure, and show good agreement with experiment. Application of resonant tunneling complementary logic is discussed by demonstrating complementary static random access memory using two devices connected in series.

  19. Computationally efficient parabolic equation solutions to seismo-acoustic problems involving thin or low-shear elastic layers.

    PubMed

    Metzler, Adam M; Collis, Jon M

    2013-04-01

    Shallow-water environments typically include sediments containing thin or low-shear layers. Numerical treatments of these types of layers require finer depth grid spacing than is needed elsewhere in the domain. Thin layers require finer grids to fully sample effects due to elasticity within the layer. As shear wave speeds approach zero, the governing system becomes singular and fine-grid spacing becomes necessary to obtain converged solutions. In this paper, a seismo-acoustic parabolic equation solution is derived utilizing modified difference formulas using Galerkin's method to allow for variable-grid spacing in depth. Propagation results are shown for environments containing thin layers and low-shear layers.

  20. Acoustic emission and fatigue damage induced in plasma-sprayed hydroxyapatite coating layers.

    PubMed

    Laonapakul, Teerawat; Otsuka, Yuichi; Nimkerdphol, Achariya Rakngarm; Mutoh, Yoshiharu

    2012-04-01

    In order to improve the adhesive strength of hydroxyapatite (HAp) coatings, grit blasting with Al(2)O(3) powder and then wet blasting with HAp/Ti mixed powders was carried out on a commercially pure Ti (cp-Ti) substrate. Subsequently, an HAp/Ti bond coat layer and HAp top coat layer were deposited by plasma spraying. Fatigue tests of the HAp-coated specimens were carried out under four-point bending. Acoustic emission (AE) signals during the entire fatigue test were monitored to investigate the fatigue cracking behavior of the HAp-coated specimens. The HAp-coated specimens could survive up to 10(7) cycles without spallation of the HAp coating layers at the stress amplitude of 120 MPa. The HAp-coated specimens without HAp/Ti bond coat layer showed shorter fatigue life and easy crack nucleation compared to the HAp-coated specimens with HAp/Ti bond coat layer. The delamination and spallation of the HAp top coat with HAp/Ti bond coat on cp-Ti was not observed until the crack propagated into the cp-Ti during the final fracture stage of the fatigue cycle. Therefore, the HAp/Ti bond coat layer was found to greatly improve the fatigue damage resistance of the HAp coating layer. Three stages of the fatigue failure behavior of the HAp top coat with HAp/Ti bond coat on a cp-Ti substrate can be clearly estimated by the AE monitoring technique. These stages are cracks nucleating and propagating in the coating layer, cracks propagating in the substrate, and cracks propagating unstably to final fracture.

  1. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  2. Bulk and surface acoustic waves in solid-fluid Fibonacci layered materials.

    PubMed

    Quotane, I; El Boudouti, E H; Djafari-Rouhani, B; El Hassouani, Y; Velasco, V R

    2015-08-01

    We study theoretically the propagation and localization of acoustic waves in quasi-periodic structures made of solid and fluid layers arranged according to a Fibonacci sequence. We consider two types of structures: either a given Fibonacci sequence or a periodic repetition of a given sequence called Fibonacci superlattice. Various properties of these systems such as: the scaling law and the self-similarity of the transmission spectra or the power law behavior of the measure of the energy spectrum have been highlighted for waves of sagittal polarization in normal and oblique incidence. In addition to the allowed modes which propagate along the system, we study surface modes induced by the surface of the Fibonacci superlattice. In comparison with solid-solid layered structures, the solid-fluid systems exhibit transmission zeros which can break the self-similarity behavior in the transmission spectra for a given sequence or induce additional gaps other than Bragg gaps in a periodic structure.

  3. Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation

    PubMed Central

    Han, Joong Tark; Jang, Jeong In; Kim, Haena; Hwang, Jun Yeon; Yoo, Hyung Keun; Woo, Jong Seok; Choi, Sua; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Cho, Kilwon; Lee, Geon-Woong

    2014-01-01

    Layered materials must be exfoliated and dispersed in solvents for diverse applications. Usually, highly energetic probe sonication may be considered to be an unfavourable method for the less defective exfoliation and dispersion of layered materials. Here we show that judicious use of ultrasonic cavitation can produce exfoliated transition metal dichalcogenide nanosheets extraordinarily dispersed in non-toxic solvent by minimising the sonolysis of solvent molecules. Our method can also lead to produce less defective, large graphene oxide nanosheets from graphite oxide in a short time (within 10 min), which show high electrical conductivity (>20,000 S m−1) of the printed film. This was achieved by adjusting the ultrasonic probe depth to the liquid surface to generate less energetic cavitation (delivered power ~6 W), while maintaining sufficient acoustic shearing (0.73 m s−1) and generating additional microbubbling by aeration at the liquid surface. PMID:24875584

  4. Bulk and surface acoustic waves in solid-fluid Fibonacci layered materials.

    PubMed

    Quotane, I; El Boudouti, E H; Djafari-Rouhani, B; El Hassouani, Y; Velasco, V R

    2015-08-01

    We study theoretically the propagation and localization of acoustic waves in quasi-periodic structures made of solid and fluid layers arranged according to a Fibonacci sequence. We consider two types of structures: either a given Fibonacci sequence or a periodic repetition of a given sequence called Fibonacci superlattice. Various properties of these systems such as: the scaling law and the self-similarity of the transmission spectra or the power law behavior of the measure of the energy spectrum have been highlighted for waves of sagittal polarization in normal and oblique incidence. In addition to the allowed modes which propagate along the system, we study surface modes induced by the surface of the Fibonacci superlattice. In comparison with solid-solid layered structures, the solid-fluid systems exhibit transmission zeros which can break the self-similarity behavior in the transmission spectra for a given sequence or induce additional gaps other than Bragg gaps in a periodic structure. PMID:25819878

  5. Scattering reduction of an acoustically hard cylinder covered with layered pentamode metamaterials.

    PubMed

    Boisvert, Jeffrey E; Scandrett, Clyde L; Howarth, Thomas R

    2016-06-01

    Transformational acoustics offers the theoretical possibility of cloaking obstacles within fluids, provided metamaterials having continuously varying bulk moduli and densities can be found or constructed. Realistically, materials with the proper, continuously varying anisotropies do not presently exist. However, discretely layered cloaks having constant material parameters within each layer may be a viable alternative in practice. The present work considers a range of cloaks, from those comprised of fluid layers that are isotropic in bulk moduli with anisotropic density (inertial cloaks) to those having anisotropic bulk moduli and isotropic density (pentamode cloaks). In this paper an analytical solution is obtained for the case of plane wave scattering from a submerged rigid cylinder covered with a multilayered cylindrical cloak composed of discrete anisotropic fluid layers. An investigation of the parameter space defining such cloaks is undertaken with the goal of minimizing the far-field scattered pressure, using layer constituent anisotropic properties (density and bulk modulus) constrained to lie within reasonable ranges relative to those of water.

  6. Scattering reduction of an acoustically hard cylinder covered with layered pentamode metamaterials.

    PubMed

    Boisvert, Jeffrey E; Scandrett, Clyde L; Howarth, Thomas R

    2016-06-01

    Transformational acoustics offers the theoretical possibility of cloaking obstacles within fluids, provided metamaterials having continuously varying bulk moduli and densities can be found or constructed. Realistically, materials with the proper, continuously varying anisotropies do not presently exist. However, discretely layered cloaks having constant material parameters within each layer may be a viable alternative in practice. The present work considers a range of cloaks, from those comprised of fluid layers that are isotropic in bulk moduli with anisotropic density (inertial cloaks) to those having anisotropic bulk moduli and isotropic density (pentamode cloaks). In this paper an analytical solution is obtained for the case of plane wave scattering from a submerged rigid cylinder covered with a multilayered cylindrical cloak composed of discrete anisotropic fluid layers. An investigation of the parameter space defining such cloaks is undertaken with the goal of minimizing the far-field scattered pressure, using layer constituent anisotropic properties (density and bulk modulus) constrained to lie within reasonable ranges relative to those of water. PMID:27369167

  7. Switchable and tunable film bulk acoustic resonator fabricated using barium strontium titanate active layer and Ta2O5/SiO2 acoustic reflector

    NASA Astrophysics Data System (ADS)

    Sbrockey, N. M.; Kalkur, T. S.; Mansour, A.; Khassaf, H.; Yu, H.; Aindow, M.; Alpay, S. P.; Tompa, G. S.

    2016-08-01

    A solidly mounted acoustic resonator was fabricated using a Ba0.60Sr0.40TiO3 (BST) film deposited by metal organic chemical vapor deposition. The device was acoustically isolated from the substrate using a Bragg reflector consisting of three pairs of Ta2O5/SiO2 layers deposited by chemical solution deposition. Transmission electron microscopy verified that the Bragg reflector was not affected by the high temperatures and oxidizing conditions necessary to process high quality BST films. Electrical characterization of the resonator demonstrated a quality factor (Q) of 320 and an electromechanical coupling coefficient (Kt2) of 7.0% at 11 V.

  8. Layered double hydroxide formation in Bayer liquor and its promotional effect on oxalate precipitation

    SciTech Connect

    Perrotta, A.J.; Williams, F.

    1996-10-01

    Enhancing the precipitation of sodium oxalate from Bayer process liquor to improve the quality of alumina product remains an important objective for Bayer refining. The formation of layered double hydroxides by the reaction of alkaline earth oxides, such as lime and magnesia, with Bayer liquor gives a crystal structure which is capable of intercalating anions, both inorganic and organic, within its structure. Both lime and magnesia, with long contact times in Bayer liquor, show layered double hydroxide formation. This layered double hydroxide formation is accompanied with a decrease in the sodium oxalate content in the liquor from about 3 g/L to below 1 g/L. Short contact times lead to a destabilization of the liquor which facilitates sodium oxalate precipitation. Additional work on magnesium hydroxide shows, in comparison to lime and magnesia, much less layered double hydroxide formation with equivalent residence time in the liquor. Destabilization of the liquor also occurs, giving enhanced oxalate precipitation with less alumina being consumed in agreement with lower layered double hydroxide formation. Thermal regeneration of these structures, followed by in-situ recrystallization in Bayer liquor, also gives enhanced oxalate precipitation, suggesting that there is an opportunity for a regenerable oxalate reduction system. The implementation of these experiments and other related technology into the plant has resulted in the Purox Process for enhancing the precipitation of sodium oxalate from Bayer liquor.

  9. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    PubMed

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007

  10. Conditions for establishing quasistable double layers in the Earth's auroral upward current region

    SciTech Connect

    Main, D. S.; Newman, D. L.; Ergun, R. E.

    2010-12-15

    The strength and stability of simulated double layers at the ionosphere-auroral cavity boundary have been studied as a function of cold ionospheric electron temperature and density. The simulations are performed with an open boundary one-dimensional particle-in- cell (PIC) simulation and are initialized by imposing a density cavity within the simulation domain. The PIC simulation includes H{sup +} and O{sup +} ion beams, a hot H{sup +} background population, cold ionospheric electrons, and a hot electron population. It is shown that a double layer remains quasistable for a variety of initial conditions and plasma parameters. The average potential drop of the double layer is found to increase as the cold electron temperature decreases. However, in terms of cold electron density, the average potential drop of the double layer is found to increase up to some critical cold electron density and decreases above this value. Comparisons with FAST observations are made and agreement is found between simulation results and observations in the shape and width of the double layer. This study helps put a constraint on the plasma conditions in which a DL can be expected to form and remain quasistable.

  11. Sedimentation Velocity and Potential in Concentrated Suspensions of Charged Spheres with Arbitrary Double-Layer Thickness.

    PubMed

    Keh; Ding

    2000-07-15

    The sedimentation in a homogeneous suspension of charged spherical particles with an arbitrary thickness of the electric double layers is analytically studied. The effects of particle interactions are taken into account by employing a unit cell model. Overlap of the double layers of adjacent particles is allowed, and the polarization effect in the double layer surrounding each particle is considered. The electrokinetic equations that govern the ionic concentration distributions, the electric potential profile, and the fluid flow field in the electrolyte solution in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved for a symmetrically charged electrolyte with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. An analytical expression for the settling velocity of the charged sphere in closed form is obtained from a balance among its gravitational, electrostatic, and hydrodynamic forces. A closed-form formula for the sedimentation potential in a suspension of identical charged spheres is also derived by using the requirement of zero net electric current. Our results demonstrate that the effects of overlapping double layers are quite significant, even for the case of thin double layers. Copyright 2000 Academic Press.

  12. Dislocated double-layered lateral meniscus mimicking the bucket-handle tear.

    PubMed

    Lee, Kwang Won; Yang, Dae Suk; Choy, Won Sik

    2013-10-01

    Various shapes of congenital abnormalities of the meniscus have been reported. Among them, the double-layered meniscus is rare. This article describes a 22-year-old man with a double-layered lateral meniscus who reported right knee pain with no history of trauma. The double-layered lateral meniscus included both the upper and lower meniscus. The anterior and posterior edge of the upper meniscus was attached to the lower lateral meniscus, and its periphery was not connected to the capsule and the lower meniscus. In addition, the upper meniscus was dislocated into the intercondylar notch, mimicking a bucket-handle tear. However, the lower meniscus was normal in appearance, so a bucket-handle or horizontal tear of the meniscus was ruled out of the differential diagnosis. Although this is a rare case, clinicians should be aware of this anomaly due to the potential for a double-layered meniscus to contribute to a bucket-handle or horizontal tear of the lower meniscus. Therefore, early diagnosis and proper treatment of a double-layered meniscus are needed before an additional injury occurs to a normal meniscus.

  13. Umbilical Cord Mesenchymal Stem Cells Combined With a Collagenfibrin Double-layered Membrane Accelerates Wound Healing.

    PubMed

    Nan, Wenbin; Liu, Rui; Chen, Hongli; Xu, Zhihao; Chen, Jiannan; Wang, Manman; Yuan, Zhiqing

    2015-05-01

    The aim of this study was to examine the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) in combination with a collagen-fibrin double-layered membrane on wound healing in mice. A collagen-fibrin double-layered membrane was prepared, and the surface properties of the support material were investigated using a scanning electron microscope. Twenty-four mice were prepared for use as full-thickness skin wound models and randomly divided into 3 groups: group A, a control group in which the wounds were bound using a conventional method; group B, a group treated with hUCMSCs combined with a collagen membrane; and group C, a group treated with hUCMSCs combined with a collagen-fibrin double-layered membrane. The postoperative concrescence of the wounds was observed daily to evaluate the effects of the different treatments. Scanning electron microscope observation showed the collagen-fibrin scaffolds exhibited a highly porous and interconnected structure, and wound healing in the double-layered membrane group was better than in groups A or B. Treatment with hUCMSCs combined with a collagen-fibrin double-layered membrane accelerated wound healing.

  14. Double Layer of a Gold Electrode Probed by AFM Force Measurements.

    PubMed

    Barten, D; Kleijn, J M; Duval, J; Leeuwen, H P V; Lyklema, J; Cohen Stuart, M A

    2003-02-18

    Colloidal probe atomic force microscopy was used to determine the electric double layer interactions between a gold electrode and a spherical silica probe. The double layer properties of the gold/solution interface were varied through the pH and salt concentration of the electrolyte, as well as by externally applying an electric potential. The double layer potentials ψ(d) of the gold surface were obtained by fitting the force-distance curves according to the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, using earlier obtained values for the double layer potential of the silica probe as input parameter. It was found that the gold electrode combines the features of reversible and polarizable interfaces; i.e., its charge and potential are determined by both the solution pH and the external potential. The pH dependence is attributed to proton adsorption and desorption from oxidic groups on the gold surface. In the potential range studied, ψ(d) varies linearly with the applied potential; the variation in ψ(d) is roughly 10% of that in the applied potential. The potential of zero force (the external potential at which ψ(d) = 0) varies with pH. The various features of the gold/electrolyte interface are described well by an amphifunctional double layer model. The results of this study form the basis of the interpretation of adsorption studies on gold as a function of pH and externally applied potential.

  15. Double-gate SnO{sub 2} nanowire electric-double-layer transistors with tunable threshold voltage

    SciTech Connect

    Liu, Huixuan

    2015-06-08

    Double-gate Sb-SnO{sub 2} nanowire electric-double-layer (EDL) transistors with in-plane gates were fabricated using only one shadow mask. The threshold voltage of such devices can be tuned in a wide range from −0.13 V to 0.72 V by the in-plane gate, which allows the device to switch from depletion-mode to enhancement-mode operation. The operation voltage of the double-gate device is 1 V because the EDL gate dielectric can lead to a high gate capacitance (>3.5 μF/cm{sup 2}). Moreover, all double-gate devices show good electrical characteristics with high field-effect mobility (>200 cm{sup 2}/V·s), high drain-current I{sub on/off} ratio (>7 × 10{sup 4}), and small subthreshold slope (<100 mV/dec). These double-gate nanowire EDL transistors can pave the way for an electrically working low-voltage nano-electronic process.

  16. Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene

    NASA Astrophysics Data System (ADS)

    Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar, M.; Salavati-fard, T.

    2016-07-01

    We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron-electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, {ρyy}/{ρxx} , can reach up to ˜ 3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer.

  17. Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene.

    PubMed

    Saberi-Pouya, S; Vazifehshenas, T; Farmanbar, M; Salavati-Fard, T

    2016-07-20

    We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron-electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, [Formula: see text], can reach up to [Formula: see text]3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer.

  18. Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene

    NASA Astrophysics Data System (ADS)

    Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar, M.; Salavati-fard, T.

    2016-07-01

    We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron–electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, {ρyy}/{ρxx} , can reach up to ∼ 3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer.

  19. Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene.

    PubMed

    Saberi-Pouya, S; Vazifehshenas, T; Farmanbar, M; Salavati-Fard, T

    2016-07-20

    We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron-electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, [Formula: see text], can reach up to [Formula: see text]3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer. PMID:27221580

  20. Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells.

    PubMed

    Yang, Tianshu; Wang, Xiaodong; Liu, Wen; Shi, Yanpeng; Yang, Fuhua

    2013-07-29

    Multilayer anti-reflection (AR) coatings can be used to improve the efficiency of Gallium Arsenide (GaAs) solar cells. We propose an alternate method to obtain optical thin films with specified refractive indices, which is using a self-assembled nanoporous anodic aluminum oxide (AAO) template as an optical thin film whose effective refractive index can be tuned by pore-widening. Different kinds of double-layer AR coatings each containing an AAO layer were designed and investigated by finite difference time domain (FDTD) method. We demonstrate that a λ /4n - λ /4n AR coating consisting of a TiO(2) layer and an AAO layer whose effective refractive index is 1.32 realizes a 96.8% light absorption efficiency of the GaAs solar cell under AM1.5 solar spectrum (400 nm-860 nm). We also have concluded some design principles of the double-layer AR coating containing an AAO layer for GaAs solar cells.

  1. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James

    2009-09-01

    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  2. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  3. Acoustic waves guided by a fluid layer on a piezoelectric substrate

    NASA Astrophysics Data System (ADS)

    Darinskii, A. N.; Weihnacht, M.

    2008-09-01

    This paper theoretically studies the propagation and the generation of leaky acoustic waves in a fluid layer enclosed between the half-infinite YZ-LiNbO3 (lithium niobate) substrate coated with a thin SiO2 (silicone dioxide) layer and the half-infinite domain occupied by silicone rubber. The plane wave spectrum in the structure is computed, and the specific features of the behavior of the real and imaginary parts of the leaky wave velocity depending on the fluid layer thickness and the electric boundary conditions are analyzed. Besides, the numerical estimations are made of the coupling-of-mode (COM) parameters describing a periodic grating deposited on the LiNbO3 substrate under the SiO2 layer. The dependence of the COM parameters is investigated on characteristics and conditions specifying the structure, such as the fluid layer thickness, the SiO2 coating thickness, and the presence or the absence of projections on the SiO2 coating face in contact with the fluid. In particular, it is found that the reflection and the transduction coefficients remain high enough even when the fluid layer is several wavelengths thick provided that the frequency is close to the value f0=vl0'/2p, where vl0' is the real leaky wave velocity at the zeroth thickness of the fluid layer and p is the grating period. It is also found that projections on the SiO2-fluid interface significantly increase the reflection coefficient.

  4. Influence of acoustic anisotropy of paratellurite crystal on the double acousto-optic Bragg light scattering

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.; Voloshinov, V. B.

    2016-09-01

    Influence of acoustic anisotropy on acousto-optic interaction in optically and acoustically anisotropic media is theoretically and experimentally studied. A specific type of acousto-optic diffraction is analyzed with allowance for the phase-matching conditions for two diffraction maxima. Analytical expressions for the phase-mismatch parameters versus the angle between the phase and group velocities of acoustic wave are derived. Light intensity in the diffraction peaks is numerically calculated, and experimental data on the diffraction in the paratellurite crystal at an acoustic walk-off angle of 54° are presented.

  5. Flow and mixing characteristics of swirling double-concentric jets subject to acoustic excitation

    NASA Astrophysics Data System (ADS)

    Huang, R. F.; Jufar, S. R.; Hsu, C. M.

    2013-01-01

    Characteristic flow modes, flow evolution processes, jet spread width, turbulence properties, and dispersion characteristics of swirling double-concentric jets were studied experimentally. Jet pulsations were induced by means of acoustic excitation. Streak pictures of smoke flow patterns, illuminated by a laser-light sheet, were recorded by a high-speed digital camera. A hot-wire anemometer was used to digitize instantaneous velocity instabilities in the flow. Jet spread width was obtained through a binary edge identification technique. Tracer-gas concentrations were measured for information on jet dispersions. Two characteristic flow patterns were observed: (1) synchronized vortex rings appeared in the low excitation intensity regime (the excitation intensity less than one) and (2) synchronized puffing turbulent jets appeared in the high excitation intensity regime (the excitation intensity greater than one). In the high excitation intensity regime, the "suction back" phenomenon occurred and therefore induced in-tube mixing. The jet spread width and turbulent fluctuation intensity exhibited particularly large values in the high excitation intensity regime at the excitation Strouhal numbers smaller than 0.85. At the excitation Strouhal numbers >0.85, the high-frequency effect caused significant decay of jet breakup and dispersion—the jet spread width and fluctuation intensity decreased sharply and may, at very high Strouhal numbers, asymptotically approach values almost the same as the values associated with unexcited jets. Exciting the jets at the high excitation intensity regime, the effects of puffing motion and in-tube mixing caused breakup of the jet in the near field and therefore resulted in a small Lagrangian integral time and small length scales of fluctuating eddies. This effect, in turn, caused drastic dispersion of the central jet fluids. It is possible that the excited jets can attain 90 % more improvements than the unexcited jets. We provide a

  6. Flow and mixing characteristics of swirling double-concentric jets subject to acoustic excitation

    NASA Astrophysics Data System (ADS)

    Huang, R. F.; Jufar, S. R.; Hsu, C. M.

    2012-12-01

    Characteristic flow modes, flow evolution processes, jet spread width, turbulence properties, and dispersion characteristics of swirling double-concentric jets were studied experimentally. Jet pulsations were induced by means of acoustic excitation. Streak pictures of smoke flow patterns, illuminated by a laser-light sheet, were recorded by a high-speed digital camera. A hot-wire anemometer was used to digitize instantaneous velocity instabilities in the flow. Jet spread width was obtained through a binary edge identification technique. Tracer-gas concentrations were measured for information on jet dispersions. Two characteristic flow patterns were observed: (1) synchronized vortex rings appeared in the low excitation intensity regime (the excitation intensity less than one) and (2) synchronized puffing turbulent jets appeared in the high excitation intensity regime (the excitation intensity greater than one). In the high excitation intensity regime, the "suction back" phenomenon occurred and therefore induced in-tube mixing. The jet spread width and turbulent fluctuation intensity exhibited particularly large values in the high excitation intensity regime at the excitation Strouhal numbers smaller than 0.85. At the excitation Strouhal numbers >0.85, the high-frequency effect caused significant decay of jet breakup and dispersion—the jet spread width and fluctuation intensity decreased sharply and may, at very high Strouhal numbers, asymptotically approach values almost the same as the values associated with unexcited jets. Exciting the jets at the high excitation intensity regime, the effects of puffing motion and in-tube mixing caused breakup of the jet in the near field and therefore resulted in a small Lagrangian integral time and small length scales of fluctuating eddies. This effect, in turn, caused drastic dispersion of the central jet fluids. It is possible that the excited jets can attain 90 % more improvements than the unexcited jets. We provide a

  7. Observation of warm, higher energy electrons transiting a double layer in a helicon plasma

    SciTech Connect

    Sung, Yung-Ta Li, Yan; Scharer, John E.

    2015-03-15

    Measurements of an inductive RF helicon argon plasma double layer with two temperature electron distributions including a fast (>80 eV) tail are observed at 0.17 mTorr Ar pressure. The fast, untrapped electrons observed downstream of the double layer have a higher temperature (13 eV) than the trapped (T{sub e} = 4 eV) electrons. The reduction of plasma potential and density observed in the double layer region would require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The experimental observation in Madison helicon experiment indicates that fast electrons with substantial density fractions can be created at low helicon operating pressures.

  8. Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Tien, Chien-Pin; Teng, Hsisheng

    A single graphene sheet represents a carbon material with the highest surface area available to accommodating molecules or ions for physical and chemical interactions. Here we demonstrate in an electric double layer capacitor the outstanding performance of graphite oxide for providing a platform for double layer formation. Graphite oxide is generally the intermediate compound for obtaining separated graphene sheets. Instead of reduction with hydrazine, we incorporate graphite oxide with a poly(ethylene oxide)-based polymer and anchor the graphene oxide sheets with poly(propylene oxide) diamines. This polymer/graphite oxide composite shows in a "dry" gel-electrolyte system a double layer capacitance as high as 130 F g -1. The polymer incorporation developed here can significantly diversify the application of graphene-based materials in energy storage devices.

  9. Influence of suprathermal background electrons on strong auroral double layers: Laminar and turbulent regimes

    SciTech Connect

    Newman, D. L.; Goldman, M. V.; Sen, N.; Andersson, L.; Ergun, R. E.

    2008-07-15

    A series of one-dimensional Vlasov simulations [Newman et al., Phys. Plasmas 15, 072902 (2008), this issue] show that a sufficiently dense and hot suprathermal electron population can stabilize strong laminar double layers over long periods while regulating their strength and velocity. When suprathermals are less dense or absent, the double layers tend to be sporadic and turbulent. A detailed comparison of the laminar and turbulent regimes reveals that the disruption of the laminar state can be triggered by kinetically modified Buneman instabilities on the low-potential side of the double layer, and by density perturbations that develop into nonlinear coherent shocklike structures on the high-potential side. These findings suggest that the suprathermal electrons may be responsible for suppressing both of these routes to disruption of the laminar state.

  10. Acoustic anechoic layers with singly periodic array of scatterers: Computational methods, absorption mechanisms, and optimal design

    NASA Astrophysics Data System (ADS)

    Yang, Hai-Bin; Li, Yue; Zhao, Hong-Gang; Wen, Ji-Hong; Wen, Xi-Sen

    2014-10-01

    The acoustic properties of anechoic layers with a singly periodic array of cylindrical scatterers are investigated. A method combined plane wave expansion and finite element analysis is extended for out-of-plane incidence. The reflection characteristics of the anechoic layers with cavities and locally resonant scatterers are discussed. The backing is a steel plate followed by an air half space. Under this approximate zero transmission backing condition, the reflection reduction is induced by the absorption enhancement. The absorption mechanism is explained by the scattering/absorption cross section of the isolated scatterer. Three types of resonant modes which can induce efficient absorption are revealed. Due to the fact that the frequencies of the resonant modes are related to the size of the scatterers, anechoic layers with scatterers of mixed size can broaden the absorption band. A genetic optimization algorithm is adopted to design the anechoic layer with scatterers of mixed size at a desired frequency band from 2 kHz to 10 kHz for normal incidence, and the influence of the incident angle is also discussed.

  11. Generation and Radiation of Acoustic Waves from a 2D Shear Layer

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2000-01-01

    A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable. Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the downstream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic. Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of noise. The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness is constant. With the source amplitude small enough, the problem is governed by the following set of linear equations given in dimensional form.

  12. Acoustic resonator with Al electrodes on an AlN layer and using a GaAs substrate

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-12-03

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  13. Conditions for double layers in the earth's magnetosphere and perhaps in other astrophysical objects

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1987-01-01

    It is suggested that the features which govern the formation of the double layers are: (1) the divergence of the magnetospheric electric field, (2) the ionospheric conductivity, and (3) the current-voltage characteristics of auroral magnetic field lines. Also considered are conditions in other astrophysical objects that could lead to the formation of DLs in a manner analogous to what occurs in the earth's auroral zones. It is noted that two processes can drive divergent Pedersen currents within a collisional conducting layer: (1) sheared plasma flow applied anywhere along the magnetic field lines connected to the conducting layer and (2) a neutral flow with shear within the conducting layer.

  14. Organic electrical double layer transistors gated with ionic liquids

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Frisbie, C. Daniel

    2011-03-01

    Transport in organic semiconductors gated with several types of ionic liquids has been systematically studied at charge densities larger than 1013 cm-2 . We observe a pronounced maximum in channel conductance for both p-type and n-type organic single crystals which is attributed to carrier localization at the semiconductor-electrolyte interface. Carrier mobility, as well as charge density and dielectric capacitance are determined through displacement current measurement and capacitance-voltage measurement. By using a larger-sized and spherical anion, tris(pentafluoroethyl)trifluorophosphate (FAP), effective carrier mobility in rubrene can be enhanced substantially up to 3.2 cm2 V-1 s -1 . Efforts have been made to maximize the charge density in rubrene single crystals, and at low temperature when higher gate bias can be applied, charge density can more than double the amount of that at room temperature, reaching 8*1013 cm-2 holes (0.4 holes per rubrene molecule). NSF MRSEC program at the University of Minnesota.

  15. Climatology of a Bottom Boundary Layer and Acoustic Proxies for Sediment Suspension

    NASA Astrophysics Data System (ADS)

    Howd, P.

    2002-12-01

    A multi-year effort was recently initiated to study the time history of the seabed (and objects placed on it) on the inner continental shelf off the west coast of Florida (Gulf of Mexico). One goal of this program is to estimate the bed shear stress due to combined effects of surface waves and currents and the resulting mobility of the seabed. Measurements of the bottom boundary layer are made using a downward looking acoustic Doppler profiler operating in pulse-coherent mode. The useful profile distance is approximately 1.0 m with bins of 5 cm. The near bed flows are tied to the remainder of the water column using a standard bottom-mounted ADP. The total water depth at the measurement site is approximately 14 m. These instruments give excellent vertical resolution of the near bed mean flow for estimation of bed shear velocity and bed roughness using standard log-layer approach. Inclusion of wave effects follows the work of Grant and Madsen as modified through the years. These sensors also measure acoustic backscatter strength, a function, at least in part, of the suspended sediments in the water column. Additional suspended sediment information is gained from OBS and LISST-100 measurements. We will report on 14 months of data, concentrating first on the time history of boundary layer characteristics, then correlating temporal variability in those characteristics with fluctuations in the suspended sediment concentration proxies. Contrasts between storm and non-storm periods will be made to highlight the importance of surface waves at this site. The Office of Naval Research supports this work.

  16. Contact condition for the density profiles in spherical and cylindrical double layers

    NASA Astrophysics Data System (ADS)

    Silvestre-Alcantara, Whasington; Henderson, Douglas; Bari Bhuiyan, Lutful

    2015-11-01

    Exact sum rules involving the contact values of the density profiles and bulk osmotic pressure in spherical and cylindrical electric double layers are formulated. When the radius of curvature in these systems tends to infinity, the contact conditions reduce to the well-known contact condition in planar double layer due to Henderson, Blum, and Lebowitz (1979). However, unlike the latter relation, the contact conditions in the non-planar geometries are non-local, and require for their implementation full knowledge of the electrode-ion singlet distribution functions.

  17. Ion phase-space vortices and their relation to small amplitude double layers

    NASA Technical Reports Server (NTRS)

    Pecseli, Hans L.

    1987-01-01

    The properties of ion phase-space vortices are reviewed with particular attention to their role in the formation of small amplitude double layers in current-carrying plasmas. In a one-dimensional analysis, many such double layers simply add up to produce a large voltage drop. A laboratory experiment is carried out in order to investigate the properties of ion phase-space vortices in three dimensions. Their lifetime is significantly reduced as compared with similar results from one-dimensional numerical simulations of the problem.

  18. Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas

    SciTech Connect

    Gogoi, Runmoni; Devi, Nirupama

    2008-07-15

    Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.

  19. Tooth preparation and fabrication of porcelain veneers using a double-layer technique.

    PubMed

    Chpindel, P; Cristou, M

    1994-09-01

    This article discusses proper tooth preparation when using the double-layered porcelain technique for constructing porcelain veneers designed to produce strength and translucency. Indications for this technique include color correction, restoration of lost tooth structure or improper tooth size, and overall smile design. A new indication--misalignment--has been added. The objective of this article is to review tooth preparation and double-layered laboratory techniques using hydrothermal ceramics in combination. Four cases are used to illustrate the procedure, concentrating on the correction of misaligned teeth.

  20. General Bohm and Langmuir conditions for a strong double layer in space plasmas

    NASA Technical Reports Server (NTRS)

    Williams, A. C.

    1986-01-01

    The appropriate Bohm and Langmuir conditions when there are three beam-type particles passing through the double layer in addition to the usual two species of trapped particles are derived. It is shown that the Langmuir conditions, which normally imply a net current through the double layer, are consistent with zero net current when the class of accreting ions is included. It is also found that the Bohm criterion is quite different from its usual form, and that it has nothing to do with instabilities of the plasma at some critical level, as is believed to be true.

  1. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    SciTech Connect

    Nelson, J.T. . Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA )

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  2. Expanded graphite—Phenolic resin composites based double layer microwave absorber for X-band applications

    NASA Astrophysics Data System (ADS)

    Gogoi, Jyoti Prasad; Bhattacharyya, Nidhi Saxena

    2014-11-01

    In this investigation, double layer microwave absorbers are designed and developed with paired combination of 5 wt. %, 7 wt. %, 8 wt. %, and 10 wt. % expanded graphite-novolac phenolic resin (EG-NPR) composites, in the frequency range of 8.2-12.4 GHz. The thickness and compositional combination of the two layers constituting the absorber are optimized to achieve minimum value of reflection loss (dB) and a broad microwave absorption bandwidth. Double layer combinations showing -25 dB absorption bandwidth >2 GHz and -30 dB absorption bandwidth >1 GHz are chosen for fabrication. The total thickness of the fabricated double layer microwave absorber is varied from 3 mm to 3.4 mm. Absorption bandwidths at -10 dB, -20 dB, -25 dB and -30 dB are determined for the fabricated structure. The maximum -25 dB and -30 dB absorption bandwidth of 2.47 GHz and 1.77 GHz, respectively, are observed for the double layer structure with (5 wt. %-8 wt. %) EG-NPR composites with total thickness of 3.2 mm, while -10 dB bandwidth covers the entire X-band range.

  3. Fabrication of fiber-optic EFPI with double-layer SU-8 diaphragm

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Chen, Na; Guo, Qiang; Chen, Zhenyi; Liu, Shupeng; Pang, Fufei; Wang, Tingyun

    2011-12-01

    In this paper, we fabricated fiber-optic extrinsic Fabry-Perot interferometric (EFPI) sensors with photolithography . The sensor has double-layer SU-8 diaphragm: one is the pressure transduction layer; the other is cavity control layer. Since SU-8 material has a low Young's modulus, high pressure sensitivity can be achieved with SU-8 diaphragm. The EFPI were formed by a single mode fiber and a double-layer SU-8 diaphragm. To improve the fringe contrast, gold mirrors with a reflectivity of 50% were evaporated onto the end face of the single mode fiber and the inner face of the SU-8 diaphragm respectively. Experiments were done to estimate the performance of the sensor for static pressure measurement. The results show that an expected cavity length of the sensor was obtained and the EFPI sensor has a good linearity from 100 to 2500 Pa with 100 Pa resolution and a sensitivity of 154.8 nm/kPa.

  4. Surface double-layer structure in (110) oriented BiFeO{sub 3} thin film

    SciTech Connect

    Yang, Tieying; Zhang, Xingmin; Gao, Xingyu; Li, Zhong; Li, Xiaolong; Wang, Can; Feng, Yu; Guo, Haizhong; Jin, Kuijuan

    2014-11-17

    Surface double-layer structure different from the interior was found in BiFeO{sub 3} thin film grown on SrRuO{sub 3} covered SrTiO{sub 3} (110) substrate by pulsed laser deposition. It was shown that BiFeO{sub 3} film exhibits epitaxial phase with single domain. X-ray reflectivity and X-ray photoelectron spectroscopy results revealed a skin layer of less than 1 nm with a reduced electron density and different surface state. Grazing incidence x-ray diffraction convinced a surface multi-domain structure of several nm beneath the surface skin layer. The double-layer near surface structure would be originated from the large depolarization field produced by the single-domain structure with strain.

  5. Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite

    SciTech Connect

    Black, Jennifer M; Walters, Deron; Labuda, Aleksander; Feng, Guang; Hillesheim, Patrick C; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Proksch, Roger; Balke, Nina

    2013-01-01

    Bias-dependent structure of electrochemical double layers at liquid-solid interfaces underpin a multitude of phenomena in virtually all areas of scientific enquiry ranging from energy storage and conversion systems, biology, to geophysics and geochemistry. Here we report the bias-evolution of the electric double layer structure of an ionic liquid on highly ordered pyrolytic graphite as a model system for carbon-based electrodes for electrochemical supercapacitors measured by atomic force microscopy. Matching the observed structures to molecular dynamics simulations allows us to resolve steric effects due to cation and anion layers. We observe reconfiguration under applied bias and the orientational transitions in the Stern layer. The synergy between molecular dynamics simulation and experiment provides a comprehensive picture of structural phenomena and long- and short range interactions. This insight will improve understanding of the mechanism of charge storage in electrochemical capacitors on a molecular level which can be used to enhance their electrochemical performance.

  6. Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

    NASA Technical Reports Server (NTRS)

    Agarwal, Anurag; Morris, Philip J.

    2000-01-01

    A parallel numerical simulation of the radiation of sound from an acoustic source inside a 2-D jet is presented in this paper. This basic benchmark problem is used as a test case for scattering problems that are presently being solved by using the Impedance Mismatch Method (IMM). In this technique, a solid body in the domain is represented by setting the acoustic impedance of each medium, encountered by a wave, to a different value. This impedance discrepancy results in reflected and scattered waves with appropriate amplitudes. The great advantage of the use of this method is that no modifications to a simple Cartesian grid need to be made for complicated geometry bodies. Thus, high order finite difference schemes may be applied simply to all parts of the domain. In the IMM, the total perturbation field is split into incident and scattered fields. The incident pressure is assumed to be known and the equivalent sources for the scattered field are associated with the presence of the scattering body (through the impedance mismatch) and the propagation of the incident field through a non-uniform flow. An earlier version of the technique could only handle uniform flow in the vicinity of the source and at the outflow boundary. Scattering problems in non-uniform mean flow are of great practical importance (for example, scattering from a high lift device in a non-uniform mean flow or the effects of a fuselage boundary layer). The solution to this benchmark problem, which has an acoustic wave propagating through a non-uniform mean flow, serves as a test case for the extensions of the IMM technique.

  7. Double layers and plasma-wave resistivity in extragalactic jets - Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    Current driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur in extragalactic jets for estimated values of the carried currents. Strong plasma double layers, however, may exist within self-maintained density cavities. The relativistic double-layer-emitted electron and ion beams drive plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  8. Double layers and plasma-wave resistivity in extragalactic jets: Cavity formation and radio-wave emission

    NASA Technical Reports Server (NTRS)

    Borovsky, Joseph E.

    1987-01-01

    For estimated values of the currents carried by extragalactic jets, current-driven electrostatic-wave- and electromagnetic-wave-produced resistivities do not occur. Strong plasma double layers, however, may exist within self-maintained density cavities, the relativistic double-layer-emitted electron, and ion beams driving plasma-wave resistivities in the low- and high-potential plasma adjacent to the double layers. The double-layer-emitted electron beams may also emit polarized radio waves via a collective bremsstrahlung process mediated by electrostatic two-stream instabilities.

  9. Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite.

    PubMed

    Black, Jennifer M; Walters, Deron; Labuda, Aleksander; Feng, Guang; Hillesheim, Patrick C; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Proksch, Roger; Balke, Nina

    2013-01-01

    Here we report the bias-evolution of the electrical double layer structure of an ionic liquid on highly ordered pyrolytic graphite measured by atomic force microscopy. We observe reconfiguration under applied bias and the orientational transitions in the Stern layer. The synergy between molecular dynamics simulation and experiment provides a comprehensive picture of structural phenomena and long and short-range interactions, which improves our understanding of the mechanism of charge storage on a molecular level.

  10. Micromagnetic analysis of Heusler alloy-based perpendicular double barrier synthetic antiferromagnetic free layer MTJs

    NASA Astrophysics Data System (ADS)

    Ghosh, Bahniman; Dwivedi, Kshitij

    2015-07-01

    We investigate spin transfer torque switching in a perpendicular double barrier synthetic antiferromagnetic free layer MTJ stack using micromagnetic simulations. For the material used in free layers, we use two different Cobalt-based Heusler alloys and compare their performance on the basis of switching speed, thermal stability and Tunnel magnetoresistance. We show that for Heusler alloys switching from one state to other is significantly faster but they suffer from the drawback of low thermal stability.

  11. Acoustic interferometry for geoacoustic characterization in a soft-layered sediment environment.

    PubMed

    Ren, Qun-yan; Hermand, Jean-Pierre

    2013-01-01

    The broadband spectrogram of a moving surface ship usually exhibits striations. Their structure is determined by bottom conditions of the shallow water waveguide and can therefore be used for environmental characterization. A two-step acoustic interferometry technique is proposed to estimate main geoacoustic properties of unconsolidated sediment by exploiting local features of the striations. Their positions at low frequencies are first used to detect the changes in sediment properties with respect to a reference sediment and provide a reliable estimation of the changes through the determination of a frequency shift. Then toward higher frequencies, local frequency-range areas with salient striations are selected to refine the solution with their structure features. The technique is tested with passive acoustic ship run data collected southeast of the island of Elba in the Mediterranean Sea in 2007. Data from the four receivers of a shallow sparse vertical array are processed to estimate the thickness and compression wave speed of a soft clay layer overlying a harder bottom. The results from individual receivers are close and agree well with active inversion results and seismic profiles in the same area. Moreover, a better resolution is obtained by combining these results. This method is demonstrated to be robust to source range uncertainties due to the striation stability to its small variation. The good experimental results suggest the technique is an effective tool for mapping the geoacoustic properties of wide coastal areas with easily deployed receiver systems or even one single receiver. PMID:23297885

  12. Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer

    PubMed Central

    Chen, Guohao; Zhao, Xinru; Wang, Xiaozhi; Jin, Hao; Li, Shijian; Dong, Shurong; Flewitt, A. J.; Milne, W. I.; Luo, J. K.

    2015-01-01

    The film bulk acoustic resonator (FBAR) is a widely-used MEMS device which can be used as a filter, or as a gravimetric sensor for biochemical or physical sensing. Current device architectures require the use of an acoustic mirror or a freestanding membrane and are fabricated as discrete components. A new architecture is demonstrated which permits fabrication and integration of FBARs on arbitrary substrates. Wave confinement is achieved by fabricating the resonator on a polyimide support layer. Results show when the polymer thickness is greater than a critical value, d, the FBARs have similar performance to devices using alternative architectures. For ZnO FBARs operating at 1.3–2.2 GHz, d is ~9 μm, and the devices have a Q-factor of 470, comparable to 493 for the membrane architecture devices. The polymer support makes the resonators insensitive to the underlying substrate. Yields over 95% have been achieved on roughened silicon, copper and glass. PMID:25824706

  13. Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer.

    PubMed

    Chen, Guohao; Zhao, Xinru; Wang, Xiaozhi; Jin, Hao; Li, Shijian; Dong, Shurong; Flewitt, A J; Milne, W I; Luo, J K

    2015-01-01

    The film bulk acoustic resonator (FBAR) is a widely-used MEMS device which can be used as a filter, or as a gravimetric sensor for biochemical or physical sensing. Current device architectures require the use of an acoustic mirror or a freestanding membrane and are fabricated as discrete components. A new architecture is demonstrated which permits fabrication and integration of FBARs on arbitrary substrates. Wave confinement is achieved by fabricating the resonator on a polyimide support layer. Results show when the polymer thickness is greater than a critical value, d, the FBARs have similar performance to devices using alternative architectures. For ZnO FBARs operating at 1.3-2.2 GHz, d is ~9 μm, and the devices have a Q-factor of 470, comparable to 493 for the membrane architecture devices. The polymer support makes the resonators insensitive to the underlying substrate. Yields over 95% have been achieved on roughened silicon, copper and glass. PMID:25824706

  14. Photoacoustic tomography based on the Green's function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer

    SciTech Connect

    Yin, Jie; Tao, Chao Cai, Peng; Liu, Xiaojun

    2015-06-08

    Acoustically inhomogeneous mediums with multiple scattering are often the nightmare of photoacoustic tomography. In order to break this limitation, a photoacoustic tomography scheme combining ultrasound interferometry and time reversal is proposed to achieve images in acoustically scattering medium. An ultrasound interferometry is developed to determine the unknown Green's function of strong scattering tissue. Using the determined Greens' function, a time-reversal process is carried out to restore images behind an acoustically inhomogeneous layer from the scattering photoacoustic signals. This method effectively decreases the false contrast, noise, and position deviation of images induced by the multiple scattering. Phantom experiment is carried out to validate the method. Therefore, the proposed method could have potential value in extending the biomedical applications of photoacoustic tomography in acoustically inhomogeneous tissue.

  15. Surface acoustic wave characterization of optical sol-gel thin layers.

    PubMed

    Fall, Dame; Compoint, François; Duquennoy, Marc; Piombini, Hervé; Ouaftouh, Mohammadi; Jenot, Frédéric; Piwakowski, Bogdan; Belleville, Philippe; Ambard, Chrystel

    2016-05-01

    Controlling the thin film deposition and mechanical properties of materials is a major challenge in several fields of application. We are more particularly interested in the characterization of optical thin layers produced using sol-gel processes to reduce laser-induced damage. The mechanical properties of these coatings must be known to control and maintain optimal performance under various solicitations during their lifetime. It is therefore necessary to have means of characterization adapted to the scale and nature of the deposited materials. In this context, the dispersion of ultrasonic surface waves induced by a micrometric layer was studied on an amorphous substrate (fused silica) coated with a layer of ormosil using a sol-gel process. Our ormosil material is a silica-PDMS mixture with a variable polydimethylsiloxane (PDMS) content. The design and implementation of Surface Acoustic Wave InterDigital Transducers (SAW-IDT) have enabled quasi-monochromatic Rayleigh-type SAW to be generated and the dispersion phenomenon to be studied over a wide frequency range. Young's modulus and Poisson's ratio of coatings were estimated using an inverse method.

  16. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators. PMID:26812132

  17. Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

    2015-06-21

    The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0 nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.

  18. Single layer planar near-field acoustic holography for compact sources and a parallel reflector

    NASA Astrophysics Data System (ADS)

    Zea, Elias; Lopez Arteaga, Ines

    2016-10-01

    We consider the problem of planar near-field acoustic holography (PNAH) and introduce a new reconstruction method that can be used to process single layer pressure measurements performed in the presence of a reflective surface that is parallel to the measurement plane. The method is specially tailored for compact sources, or for problems in which the scattered field due to the source can be neglected. The approach consists in formulating a seismic model (WRW model) in wavenumber-space and employ it for sound source reconstructions. The proposed method is validated with numerical and experimental data, and, although the most accurate results are obtained when an estimate of the surface impedance is known beforehand, we show that it can substantially improve the reconstruction performance with respect to that of free-field PNAH.

  19. Double-HE-Layer Detonation-Confinement Sandwich Tests: The Effect of Slow-Layer Density

    NASA Astrophysics Data System (ADS)

    Hill, Larry

    2013-06-01

    Over a period of several years, we have explored the phenomenon in which slabs of high explosives (HEs) with differing detonation speeds are joined along one of their faces. Both are initiated (usually by a line-wave generator) at one edge. If there were no coupling between the layers, the detonation in the fast HE would outrun that in the slow HE. In reality, the detonation in the fast HE transmits an oblique shock into the slow HE, the phase speed of which is equal to the speed of the fast HE. This has one of two effects depending on the particulars. First, the oblique shock transmitted to the slow HE can pre-shock and deaden it, extinguishing the detonation in the slow HE. Second, the oblique shock can transversely initiate the slow layer, pulling its detonation along at the fast HE speed. When the second occurs, it does so at the ``penalty'' of a nominally dead layer, which forms in the slow HE adjacent to the material interface. We present the results of tests in which the fast layer was 3-mm-thick PBX 9501 (95 wt% HMX), and the slow layer was 8-mm-thick PBX 9502 (95 wt% TATB). The purpose was to observe the effect of slow layer density on the ``dead'' layer thickness. Very little effect was observed across the nominal PBX 9502 density range, 1.885-1.895 g/cc.

  20. Design of an Advanced Membrane Electrode Assembly Employing a Double-Layered Cathode for a PEM Fuel Cell.

    PubMed

    Kim, GyeongHee; Eom, KwangSup; Kim, MinJoong; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Cho, EunAe

    2015-12-23

    The membrane electrolyte assembly (MEA) designed in this study utilizes a double-layered cathode: an inner catalyst layer prepared by a conventional decal transfer method and an outer catalyst layer directly coated on a gas diffusion layer. The double-layered structure was used to improve the interfacial contact between the catalyst layer and membrane, to increase catalyst utilization and to modify the removal of product water from the cathode. Based on a series of MEAs with double-layered cathodes with an overall Pt loading fixed at 0.4 mg cm(-2) and different ratios of inner-to-outer Pt loading, the MEA with an inner layer of 0.3 mg Pt cm(-2) and an outer layer of 0.1 mg Pt cm(-2) exhibited the best performance. This performance was better than that of the conventional single-layered electrode by 13.5% at a current density of 1.4 A cm(-2).

  1. The tail effect on the shape of an electrical double layer differential capacitance curve

    NASA Astrophysics Data System (ADS)

    Henderson, Douglas; Lamperski, Stanisław; Bari Bhuiyan, Lutful; Wu, Jianzhong

    2013-04-01

    The differential capacitance curve for the double layer formed by an electrolyte dissolved in a solvent is commonly believed to be parabolic-like with a minimum at low electrolyte charge concentration and low electrode surface charge density, and independent of electrolyte concentration at high electrolyte concentrations and high electrode charge and would be, in the absence of solvent effects, featureless at these latter conditions. This is the prediction of the popular Gouy-Chapman-Stern theory. In contrast, for an ionic liquid this curve can have a single or a double hump (or a bell or camel shape). Fedorov et al. [Electrochem. Commun. 12, 296 (2010)], 10.1016/j.elecom.2009.12.019 have related these humps, particularly the double hump, to the neutral tails of ions in many ionic liquids. Evidence presented here shows, however, that such humps are general features of the differential capacitance of a double layer, whether it be formed by ions with or without a neutral tail. The presence of a double or single hump results from the magnitude of the electrolyte charge concentration. For both spherical ions or non-spherical ions consisting of charged heads and neutral tails, the shape of the differential capacitance transforms continuously from a double hump to a single hump as the electrolyte concentration is increased.

  2. Generation and Radiation of Acoustic Waves from a 2-D Shear Layer using the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    In the present work, the generation and radiation of acoustic waves from a 2-D shear layer problem is considered. An acoustic source inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation. The numerical solution is obtained by solving the Euler equations using the space time conservation element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All other conditions are the same except that the Crocco's relation has a slightly different form. In the following, after a brief sketch of the CE/SE method, the numerical results for this problem are presented.

  3. Impedance analysis of nano thickness layered AlGaN acoustic sensor deposited by thermionic vacuum arc

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Bilgiç, Eyüp; Gülmez, Gülay; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2016-03-01

    In this study, AlGaN acoustic sensor was deposited on aluminum metal substrate by thermionic vacuum arc (TVA) method for the first time. Gallium materials are used in many applications for optoelectronic device and semiconductor technology. Thermionic vacuum arc is the deposition technology for the variously materials and applications field. The thickness of the acoustic sensor is in deposited as nano layer. Impedance analyses were realized. Also, TVA production parameters and some properties of the deposited layers were investigated. TVA is a fast deposition technology for the gallium compounds and doped gallium compounds. Obtained results show that AlGaN materials are very promising materials. Moreover, these acoustic sensors have been produced by TVA technology.

  4. Double Layer Charging for Conductivity Enhancement of Pure Metallic and Semiconducting Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mayo, Nathanael; Kuznetsov, Alexander; Zakhidov, Anvar

    2011-03-01

    Injecting high electronic charge densities can profoundly change the optical, electrical, and magnetic properties of materials. Evidence suggests a possibility of significantly improving conductivity of carbon nanotubes through double layer charge injection. Double layer charge injection can prove to be a powerful method when applied to carbon nanotubes because of theirs high surface area and chemical stability. Investigation has commenced on the effect of charging on various types of carbon nanotubes, specifically 99% purified single wall semiconducting and single wall metallic tubes. An electrical double layer is electrochemically introduced upon a sheet of carbon nanotubes via application of potential (up to +/- 5 volts) to a sample immersed in ionic-liquid-based electrolyte. Resistance of carbon nanotube as a function of applied charging voltage is recorded to determine the effects of charge injection. Results show that the electrical double layer considerably reduces the resistance across both samples. ESR/LFMA studies combined with low temperature magnetic and transport measurements are conducted to search for charge injection induced superconductivity in carbon nanotubes. Supported by AFOSR grant FA 9550-09-1-0384.

  5. A variational solution to the hypernetted chain equations applied to the electrical double layer

    SciTech Connect

    Feller, S.E.; McQuarrie, D.A.

    1992-04-16

    A variational method for the solution to the hypernetted chain/mean spherical approximation equations applied to the electrical double layer is presented and demonstrated with calculations in the restricted primitive model for electrolytes near a charged planar surface. This variational method is also compared with the modified Gouy-Chapman theory. 20 refs., 7 figs.

  6. Laser cutting silicon-glass double layer wafer with laser induced thermal-crack propagation

    NASA Astrophysics Data System (ADS)

    Cai, Yecheng; Yang, Lijun; Zhang, Hongzhi; Wang, Yang

    2016-07-01

    This study was aimed at introducing the laser induced thermal-crack propagation (LITP) technology to solve the silicon-glass double layer wafer dicing problems in the packaging procedure of silicon-glass device packaged by WLCSP technology, investigating the feasibility of this idea, and studying the crack propagation process of LITP cutting double layer wafer. In this paper, the physical process of the 1064 nm laser beam interact with the double layer wafer during the cutting process was studied theoretically. A mathematical model consists the volumetric heating source and the surface heating source has been established. The temperature and stress distribution was simulated by using finite element method (FEM) analysis software ABAQUS. The extended finite element method (XFEM) was added to the simulation as the supplementary features to simulate the crack propagation process and the crack propagation profile. The silicon-glass double layer wafer cutting verification experiment under typical parameters was conducted by using the 1064 nm semiconductor laser. The crack propagation profile on the fracture surface was examined by optical microscope and explained from the stress distribution and XFEM status. It was concluded that the quality of the finished fracture surface has been greatly improved, and the experiment results were well supported by the numerical simulation results.

  7. Highly oriented nanoplates of layered double hydroxides as an ultra slow release system.

    PubMed

    Lee, Jong Hyeon; Jung, Duk-Young

    2012-06-01

    A novel controlled molecular release based on highly oriented nanoplates of layered double hydroxide was fabricated on indium tin oxide substrates by electrophoretic deposition of exfoliated LDH nanosheets. The LDH particle coating exhibited a superior release performance of the order of hours. PMID:22531710

  8. Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model

    NASA Astrophysics Data System (ADS)

    Sun, Weitao; Ba, Jing; Carcione, José M.

    2016-04-01

    Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic properties of rocks and fluid patch distributions is important to interpret the observed seismic wave phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation process in a double-porosity media saturated with two immiscible fluids. The double-porosity rock consists of a solid matrix with unique host porosity and inclusions which contain the second type of pores. Two immiscible fluids are considered in concentric spherical patches, where the inner pocket and the outer sphere are saturated with different fluids. The kinetic and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated through oscillations in spherical coordinates. The wave propagation equations of the TLP model are based on Biot's theory and the corresponding Lagrangian equations. The P-wave dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow (related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis from the Christoffel equations. Numerical examples and laboratory measurements indicate that P-wave dispersion and attenuation are significantly influenced by the spatial distributions of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in reasonably good agreement with White's and Johnson's models. However, differences in phase velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distribution should be taken into account when describing the P-wave dispersion and attenuation in partially saturated rocks.

  9. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls

    NASA Astrophysics Data System (ADS)

    Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.

    2014-11-01

    Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.

  10. A numerical study of active structural acoustic control in a stiffened, double wall cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Coats, T. J.; Lester, H. C.; Silcox, R. J.

    1994-01-01

    It is demonstrated that active structural acoustic control of complex structural/acoustic coupling can be numerically modeled using finite element and boundary element techniques in conjunction with an optimization procedure to calculate control force amplitudes. Appreciable noise reduction is obtained when the structure is excited at a structural resonance of the outer shell or an acoustic resonance of the inner cavity. Adding ring stiffeners as a connection between the inner and outer shells provides an additional structural transmission path to the interior cavity and coupled the modal behavior of the inner and outer shells. For the case of excitation at the structural resonance of the unstiffened outer shell, adding the stiffeners raises the structural resonance frequencies. The effectiveness of the control forces is reduced due to the off resonance structural response. For excitation at an acoustic cavity resonance, the controller effectiveness is enhanced.

  11. Significantly Enhanced Separation using ZIF-8 Membranes by Partial Conversion of Calcined Layered Double Hydroxide Precursors.

    PubMed

    Liu, Yi; Peng, Yuan; Wang, Nanyi; Li, Yanshuo; Pan, Jia Hong; Yang, Weishen; Caro, Jürgen

    2015-11-01

    Significantly enhanced H2 /CH4 (ca. 80) selectivity was realized by effective suppression of the framework flexibility of a prepared ZIF-8 membrane. Initially a ZnO buffer layer consisting of 20 nm-sized ZnO-nanoparticle aggregates was fabricated by controlled calcination of a ZnAl-NO3 layered double hydroxide membrane. Owing to its high chemical reactivity, the ZnO buffer layer was partially converted into a well-intergrown ZIF-8 membrane with a certain penetration depth upon solvothermal treatment with ligands. Our method may represent a new concept for the design of advanced MOF membranes with high selectivity. PMID:26427908

  12. Bio-Inspired Aquaporinz Containing Double-Skinned Forward Osmosis Membrane Synthesized through Layer-by-Layer Assembly

    PubMed Central

    Wang, Shuzheng; Cai, Jin; Ding, Wande; Xu, Zhinan; Wang, Zhining

    2015-01-01

    We demonstrated a novel AquaporinZ (AqpZ)-incorporated double-skinned forward osmosis (FO) membrane by layer-by-layer (LbL) assembly strategy. Positively charged poly(ethyleneimine) (PEI) and negatively charged poly(sodium 4-styrenesulfonate) (PSS) were alternately deposited on both the top and bottom surfaces of a hydrolyzed polyacrylonitrile (H-PAN) substrate. Subsequently, an AqpZ-embedded 1,2-dioleloyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-3-trimethylammonium- propane (chloride salt) (DOTAP) supported lipid bilayer (SLB) was formed on PSS-terminated (T-PSS) membrane via vesicle rupture method. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), scanning electron microscope (SEM), Fourier transform infrared spectrometer using the attenuated total reflection technique (ATR-FTIR), and contact angle. Moreover, the FO performance of the resultant membrane was measured by using 2 M MgCl2 solution as draw solution and deionized (DI) water as feed solution, respectively. The membrane with a protein-to-lipid weight ratio (P/L) of 1/50 exhibits 13.2 L/m2h water flux and 3.2 g/m2h reversed flux by using FO mode, as well as 15.6 L/m2h water flux and 3.4 L/m2h reversed flux for PRO mode (the draw solution is placed against the active layer). It was also shown that the SLB layer of the double-skinned FO membrane can increase the surface hydrophilicity and reduce the surface roughness, which leads to an improved anti-fouling performance against humic acid foulant. The current work introduced a new method of fabricating high performance biomimetic FO membrane by combining AqpZ and a double-skinned structure based on LbL assembly. PMID:26266426

  13. Using martian single and double layered ejecta craters to probe subsurface stratigraphy

    NASA Astrophysics Data System (ADS)

    Jones, Eriita; Osinski, Gordon R.

    2015-02-01

    Martian craters with fluidized ejecta - including single-layered, double-layered and multiple-layered craters - have been studied extensively, with their formation generally suggested to require some presence of volatiles in the subsurface. However, experimental reproduction of these morphologies, impact modelling, and the occurrence of layered ejecta in putative volatile poor regions suggests that other factors may also play important roles. A recent extensive catalogue of martian impact craters (Robbins, S.J., Hynek, B.M. [2012a]. J. Geophys. Res. 117, E05004) classifies crater ejecta along with their location, diameters and ejecta extents, potentially providing new information on the links between these morphologies and the subsurface. We utilise this catalogue to examine the regional variation in ejecta mobility, onset diameter and the correlation between ejecta mobility and diameter for single- and double-layered ejecta craters on Mars. A simple regional stratigraphic model is developed to explain the observed trends through the viscosity of the layers within the target. Using this model, the potential relative thickness and burial depths of low viscosity layers in the martian subsurface are hypothesised, and compared to other observations and models of subsurface volatiles and how they have varied throughout time.

  14. Si/Ge double-layered nanotube array as a lithium ion battery anode.

    PubMed

    Song, Taeseup; Cheng, Huanyu; Choi, Heechae; Lee, Jin-Hyon; Han, Hyungkyu; Lee, Dong Hyun; Yoo, Dong Su; Kwon, Moon-Seok; Choi, Jae-Man; Doo, Seok Gwang; Chang, Hyuk; Xiao, Jianliang; Huang, Yonggang; Park, Won Il; Chung, Yong-Chae; Kim, Hansu; Rogers, John A; Paik, Ungyu

    2012-01-24

    Problems related to tremendous volume changes associated with cycling and the low electron conductivity and ion diffusivity of Si represent major obstacles to its use in high-capacity anodes for lithium ion batteries. We have developed a group IVA based nanotube heterostructure array, consisting of a high-capacity Si inner layer and a highly conductive Ge outer layer, to yield both favorable mechanics and kinetics in battery applications. This type of Si/Ge double-layered nanotube array electrode exhibits improved electrochemical performances over the analogous homogeneous Si system, including stable capacity retention (85% after 50 cycles) and doubled capacity at a 3C rate. These results stem from reduced maximum hoop strain in the nanotubes, supported by theoretical mechanics modeling, and lowered activation energy barrier for Li diffusion. This electrode technology creates opportunities in the development of group IVA nanotube heterostructures for next generation lithium ion batteries.

  15. Larger bandgap of elliptical cylinders in two-dimensional double-layer photonic crystals

    NASA Astrophysics Data System (ADS)

    Niu, Jin; Xiang, Yang

    2013-08-01

    We investigate the bandgap properties of two-dimensional double-layer photonic crystals composed of elliptical cylinders in square and triangular lattices, considering cylinders formed of dielectric cores surrounded by interfacial layers of air in magnesium fluoride background. Using the plane-wave numerical expansion method, the bandgap spectrum for the cylinders covered by air rings is obtained for different structural parameters, such as the radius, orientation angle, and lattice constant. The results show that the bandgap of the two-dimensional double-layer photonic crystal is greatly improved compared with traditional two-dimensional photonic crystal and the triangular lattice presents a larger bandgap than the square lattice. The optimal structure parameters to broaden the bandgap are presented.

  16. Design, fabrication and characterization of a double layer solid oxide fuel cell (DLFC)

    NASA Astrophysics Data System (ADS)

    Wang, Guangjun; Wu, Xiangying; Cai, Yixiao; Ji, Yuan; Yaqub, Azra; Zhu, Bin

    2016-11-01

    A double layer solid oxide fuel cell (DLSOFC) without using the electrolyte (layer) has been designed by integrating advantages of positive electrode material of lithium ion battery(LiNi0.8Co0.15Al0.05O2) and oxygen-permeable membranes material (trace amount cobalt incorporated terbium doped ceria, TDC + Co) based on the semiconductor physics principle. Instead of using an electrolyte layer, the depletion layer between the anode and cathode served as an electronic insulator to block the electrons but to maintain the electrolyte function for ionic transport. Thus the device with two layers can realize the function of SOFC and at the same time avoids the electronic short circuiting problem. Such novel DLFC showed good performance at low temperatures, for instance, a maximum power density of 230 mWcm-2 was achieved at 500 °C. The working principle of the new device is presented.

  17. Study of spatial growth of disturbances in an Incompressible Double Shear Layer flow configuration

    NASA Astrophysics Data System (ADS)

    Natarajan, Hareshram; Jacobs, Gustaaf

    2014-11-01

    The spatial growth of disturbance within the linear instability regime in an incompressible 2D double shear layer flow configuration is studied by performing a Direct Numerical Simulation. The motivation of this study is to characterize the effect of the presence of an additional shear layer on the spatial growth of a shear layer instability. Initially, a DNS of an incompressible single shear layer is performed and the spatial growth rate of various disturbance frequency modes are validated with Linear Stability Analysis. The addtional shear layer is found to impact the spatial growth rates of the different disturbances and the frequency of the mode with the maximum growth rate is found to be shifted.

  18. Acoustic receptivity due to weak surface inhomogeneities in adverse pressure gradient boundary layers

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Ng, Lian; Streett, Craig

    1995-01-01

    The boundary layer receptivity to free-stream acoustic waves in the presence of localized surface disturbances is studied for the case of incompressible Falkner-Skan flows with adverse pressure gradients. These boundary layers are unstable to both viscous and inviscid (i.e., inflectional) modes, and the finite Reynolds number extension of the Goldstein-Ruban theory provides a convenient method to compare the efficiency of the localized receptivity processes in these two cases. The value of the efficiency function related to the receptivity caused by localized distortions in surface geometry is relatively insensitive to the type of instability mechanism, provided that the same reference length scale is used to normalize the efficiency function for each type of instability. In contrast, when the receptivity is induced by variations in wall suction velocity or in wall admittance distribution, the magnitudes of the related efficiency functions, as well as the resulting coupling coefficients, are smaller for inflectional (i.e., Rayleigh) modes than for the viscous Tollmien-Schlichting waves. The reduced levels of receptivity can be attributed mainly to the shorter wavelengths and higher frequencies of the inflectional modes. Because the most critical band of frequencies shifts toward higher values, the overall efficiency of the wall suction- and the wall admittance-induced receptivity decreases with an increase in the adverse pressure gradient.

  19. Experimental investigation of the Marangoni effect on the stability of a double-diffusive layer

    NASA Technical Reports Server (NTRS)

    Tanny, Josef; Chen, Chuan F.

    1994-01-01

    Stability experiments were carried out in 4-cm-thick, salt-stratified fluid layer by heating from below and cooling from above. The bottom boundary was rigid while the top was either free or rigid. The initial solute Rayleigh number varied from 2.5 x 10(exp 6) to 4.6 x 10(exp 7). For the rigid-free case, at initial solute Rayleigh numbers R(sub s) greater than 5.4 x 10(exp 6), thermal Marangoni instabilities were observed to onset along the free surface at a relatively low thermal Rayleigh number, R(sub t). The convection was very weak, and it had almost no effect on the concentration and temperature distributions. Double-diffusive instabilities along the top free surface were observed to onset at a higher R(sub t), with much stronger convection causing changes in the concentration and temperature distributions near the top. At a yet higher R(sub t), double-diffusive convection was observed to onset along the bottom boundary. Fluid motion in the layer then evolved into fully developed thermal convection of a homogeneous fluid without any further increase in the imposed Delta T. For layers with R(sub s) less than 5.4 x 10(exp 6), Marangoni and double-diffusive instabilities onset simultaneously along the free surface first, while double-diffusive instabilities along the bottom wall onset at a higher R(sub t).

  20. Synthesis of Zn–Fe layered double hydroxides via an oxidation process and structural analysis of products

    SciTech Connect

    Morimoto, Kazuya; Tamura, Kenji; Anraku, Sohtaro; Sato, Tsutomu; Suzuki, Masaya; Yamada, Hirohisa

    2015-08-15

    The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. The product derived from the synthesis employing Fe(II) was found to transition to a Zn–Fe(III) layered double hydroxides phase following oxidation process. In contrast, the product obtained with Fe(III) did not contain a layered double hydroxides phase, but rather consisted of simonkolleite and hydrous ferric oxide. It was determined that the valency of the Fe reagent used in the initial synthesis affected the generation of the layered double hydroxides phase. Fe(II) species have ionic radii and electronegativities similar to those of Zn, and therefore are more likely to form trioctahedral hydroxide layers with Zn species. - Graphical abstract: The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. - Highlights: • Iron valency affected the generation of Zn–Fe layered double hydroxides. • Zn–Fe layered double hydroxides were successfully synthesized using Fe(II). • Fe(II) species were likely to form trioctahedral hydroxide layers with Zn species.

  1. Performance of double three-dimensional rigid barriers used to create an acoustic space—A normal derivative integral equationapproach

    NASA Astrophysics Data System (ADS)

    António, J.; Tadeu, A.; Castro, I.

    2013-06-01

    This paper simulates the propagation of sound generated by point pressure sources in the vicinity of double three-dimensional (3D) barriers, placed so as to create an indoor acoustic space. The barriers are assumed to be very thin rigid elements. The problem is solved by developing and implementing a 3D Boundary Element Method formulation using a normal derivative integral equation (TBEM), thereby allowing the definition of models in which only the discretization of the barriers as single open surfaces is required. The TBEM is formulated in the frequency domain and the resulting hypersingular terms are computed analytically. After the verification of the model against two-and-a-half-dimensional (2.5D) BEM solutions, several numerical applications are described to illustrate the applicability and usefulness of the proposed approaches. Different barrier shape geometries and their relative position with respect to a lateral wall are analyzed to evaluate the performance of double 3D rigid barriers in the creation of an acoustic space.

  2. Spreading Layers in Accreting Objects: Role of Acoustic Waves for Angular Momentum Transport, Mixing, and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M.

    2016-01-01

    Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

  3. DX center analysis in Sn-doped AlGaAs layer of double heterostructures

    NASA Astrophysics Data System (ADS)

    Kaniewski, J.; Kaniewska, M.; Ždánský, K.

    1987-12-01

    Capacitance as well as photovoltage methods have been used to analyze deep centers in an n-type AlGaAs:Sn layer of double heterostructures. It is suggested that the trap with thermal activation energy equal to ΔE2=0.33±0.02 eV is associated with the L minimum of AlGaAs and could be interpreted as a DX center related to Sn. The observed changes of deep center concentration in double heterostructures are due to different Al contents within the depletion region.

  4. The Acoustic Field Generated by Interaction of a Shear-Layer Instability Wave with the Downstream Lip of a Cavity

    NASA Astrophysics Data System (ADS)

    Kerschen, E. J.

    1997-11-01

    High amplitude acoustic resonances may develop in cavities that are exposed to high-speed flows. These resonances arise from a feedback loop which involves a downstream-propagating instability wave in the shear layer across the open face of the cavity, and an upstream-propagating acoustic field inside the cavity. These two wave fields are coupled by the interactions at the edges of the cavity. A theory is presented for the acoustic field generated by the interaction of a shear-layer instability wave with a thin overhanging downstream lip of a cavity. The theory addresses the case of a supersonic free stream and utilizes the vortex-sheet approximation for the shear layer. The linearized unsteady flow is described by a mixed boundary value problem which is solved utilizing the Wiener-Hopf technique. The upstream-propagating acoustic field within the cavity is expressed as a eigenfunction series in terms of the leaky-cavity modes. Results for the pressure distribution along the bottom surface of the cavity are presented for a representative case. For shallow cavities, the feedback to the upstream lip is dominated by the first few leaky-cavity modes.

  5. Bulk-wave and guided-wave photoacoustic evaluation of the mechanical properties of aluminum/silicon nitride double-layer thin films.

    PubMed

    Zhang, Feifei; Krishnaswamy, Sridhar; Lilley, Carmen M

    2006-12-01

    The development of devices made of micro- and nano-structured thin film materials has resulted in the need for advanced measurement techniques to characterize their mechanical properties. Photoacoustic techniques, which use pulsed laser irradiation to nondestructively induce very high frequency ultrasound in a test object via rapid thermal expansion, are suitable for nondestructive and non-contact evaluation of thin films. In this paper, we compare two photoacoustic techniques to characterize the mechanical parameters of edge-supported aluminum and silicon nitride double-layer thin films. The elastic properties and residual stresses in such films affect their mechanical performance. In a first set of experiments, a femtosecond transient pump-probe technique is used to investigate the Young's moduli of the aluminum and silicon nitride layers by launching ultra-high frequency bulk acoustic waves in the films. The measured transient signals are compared with simulated transient thermoelastic signals in multi-layer structures, and the elastic moduli are determined. Independent pump-probe tests on silicon substrate-supported region and unsupported region are in good agreement. In a second set of experiments, dispersion curves of the A(0) mode of the Lamb waves that propagate along the unsupported films are measured using a broadband photoacoustic guided-wave method. The residual stresses and flexural rigidities for the same set of double-layer membranes are determined from these dispersion curves. Comparisons of the results obtained by the two photoacoustic techniques are made and discussed.

  6. Prospective comparative study of single-layer versus double-layer closure of leg wounds after long saphenous vein harvest in coronary artery bypass graft operations

    PubMed Central

    Siddiqi, Mohammad Salman; Al Sabti, Hilal; Mukaddirov, Mirdavron; Sharma, Ashok Kumar

    2011-01-01

    Introduction Wound infection is one of the major complication post CABG that leads to prolonged length of stay and cost post surgery. Coronary artery bypass grafting is one of the most commonly performed operations in the world. The long saphenous vein harvested by traditional techniques is still widely used and caries a risk of wound infection. Objective The purpose of this study is to ascertain if a single-layer closure result in better wound healing and functional outcome as compared with the traditional two-layer closure after harvest of saphenous vein. Methods Sixty-seven consecutive patients undergoing CABG were prospectively randomized to have their leg wound closed by either a single-layer technique with a suction drain or double layers without suction drain. All wounds were assessed for the presence of serous discharge, inflammation, edema, purulent exudates, infection of the deep tissues, and pain postoperatively and two weeks after discharge. Results There were trends towards increased rates of wound related outcomes in patients in double layer group when compared with single layer group. Out of 77 patients in our study, 52 patients underwent single layer closure (males, n = 37; females, n= 15) and 25 patients underwent double layer closure (males, n = 21; females, n = 04). There was significant statistical difference between the treatment groups with single layer group having lower average scores (4.038) compared to double layer group (9.467), P- value 0.001. Patients whose legs were closed with the single layer technique had less post operative edema (23.07% vs 53.30) and pain (44.2 vs 73.33) compared with the double layer group. Conclusions Single-layer leg wound closure over a suction drain has shown a better wound outcome compared to traditional double-layer closure. A possible mechanism of better wound healing in the former technique might be through decreased tissue handling and a reduction in leg edema. PMID:22263084

  7. Skin explosion of double-layer conductors in fast-rising high magnetic fields

    SciTech Connect

    Chaikovsky, S. A. Datsko, I. M.; Labetskaya, N. A.; Ratakhin, N. A.

    2014-04-15

    An experiment has been performed to study the electrical explosion of thick cylindrical conductors using the MIG pulsed power generator capable of producing a peak current of 2.5 MA within 100 ns rise time. The experimental goal was to compare the skin explosion of a solid conductor with that of a double-layer conductor whose outer layer had a lower conductivity than the inner one. It has been shown that in magnetic fields of peak induction up to 300 T and average induction rise rate 3 × 10{sup 9} T/s, the double-layer structure of a conductor makes it possible to achieve higher magnetic induction at the conductor surface before it explodes. This can be accounted for, in particular, by the reduction of the ratio of the Joule heat density to the energy density of the magnetic field at the surface of a double-layer conductor due to redistribution of the current density over the conductor cross section.

  8. Catalyzed double layer cathodes for high performance and long life molten carbonate fuel cells

    SciTech Connect

    Bischoff, M.; Jantsch, U.; Rohland, B.

    1996-12-31

    NiO/LiCoO{sub 2} double layer cathodes (DLCs) were prepared with a thin highly active LiCoO{sub 2}-layer by a new double layer tape casting/sintering procedure. The resulting metallic porous precursor plates were mounted into the MCFC and heated up by a special procedure to form LiCoO{sub 2} from air, Co and Li{sub 2}CO{sub 3} in a solid/gas reaction. MCFCs with highly active NiO/LiCoO{sub 2}-DLCs can operate over prolonged periods of time with a Ni-precipitation which is 10% lower than one finds with state of the art NiO cathodes. According to LiCoO{sub 2}-cathodes have theoretical life times of more than 100 000 hours at nonpressurized conditions. MCFCs with new NiO/LiCoO{sub 2} double layer cathodes (DLC) were investigated with regard to variable parameters of their microstructure. From the agglomerate model of the porous MCFC cathode, the dependence of the polarization resistance from the radius of the agglomerates and the inner agglomerate surface area was calculated.

  9. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance

    NASA Astrophysics Data System (ADS)

    Zhao, Hui

    2012-11-01

    Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse

  10. Solvent-free synthesis of new metal phosphites with double-layered, pillared-layered, and framework structures

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhang, Wei; Shi, Zhonghua; Chen, Yaoqiang; Lin, Zhien

    2014-12-01

    Three new metal phosphites, formulated as (H3O)2·Mn2(HPO3)3 (1), Co(bpy) (H2O) (HPO3) (2), and H2tmpda·Zn3(HPO3)4 (3), have been synthesized under solvent-free conditions, where bpy = 4,4‧-bipyridine, and tmpda = N,N,N‧,N‧-tetramethyl-1,3-propanediamine. Compound 1 has a double-layered structure with a thickness of 5.68 Å. Compound 2 has an inorganic-organic hybrid framework with cobalt phosphite layers pillared by bpy ligands. Compound 3 has a three-dimensional open-framework structure containing 8-ring channels. The temperature dependence of the magnetic susceptibility of compounds 1 and 2 were also investigated.

  11. Micrometer-Thick Graphene Oxide-Layered Double Hydroxide Nacre-Inspired Coatings and Their Properties.

    PubMed

    Yan, You-Xian; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2016-02-10

    Robust, functional, and flame retardant coatings are attractive in various fields such as building construction, food packaging, electronics encapsulation, and so on. Here, strong, colorful, and fire-retardant micrometer-thick hybrid coatings are reported, which can be constructed via an enhanced layer-by-layer assembly of graphene oxide (GO) nanosheets and layered double hydroxide (LDH) nanoplatelets. The fabricated GO-LDH hybrid coatings show uniform nacre-like layered structures that endow them good mechanic properties with Young's modulus of ≈ 18 GPa and hardness of ≈ 0.68 GPa. In addition, the GO-LDH hybrid coatings exhibit nacre-like iridescence and attractive flame retardancy as well due to their well-defined 2D microstructures. This kind of nacre-inspired GO-LDH hybrid thick coatings will be applied in various fields in future due to their high strength and multifunctionalities.

  12. AA stacking, tribological and electronic properties of double-layer graphene with krypton spacer.

    PubMed

    Popov, Andrey M; Lebedeva, Irina V; Knizhnik, Andrey A; Lozovik, Yurii E; Potapkin, Boris V; Poklonski, Nikolai A; Siahlo, Andrei I; Vyrko, Sergey A

    2013-10-21

    Structural, energetic, and tribological characteristics of double-layer graphene with commensurate and incommensurate krypton spacers of nearly monolayer coverage are studied within the van der Waals-corrected density functional theory. It is shown that when the spacer is in the commensurate phase, the graphene layers have the AA stacking. For this phase, the barriers to relative in-plane translational and rotational motion and the shear mode frequency of the graphene layers are calculated. For the incommensurate phase, both of the barriers are found to be negligibly small. A considerable change of tunneling conductance between the graphene layers separated by the commensurate krypton spacer at their relative subangstrom displacement is revealed by the use of the Bardeen method. The possibility of nanoelectromechanical systems based on the studied tribological and electronic properties of the considered heterostructures is discussed.

  13. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric

    PubMed Central

    Ki Min, Bok; Kim, Seong K.; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-01-01

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer. PMID:26530817

  14. Micrometer-Thick Graphene Oxide-Layered Double Hydroxide Nacre-Inspired Coatings and Their Properties.

    PubMed

    Yan, You-Xian; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2016-02-10

    Robust, functional, and flame retardant coatings are attractive in various fields such as building construction, food packaging, electronics encapsulation, and so on. Here, strong, colorful, and fire-retardant micrometer-thick hybrid coatings are reported, which can be constructed via an enhanced layer-by-layer assembly of graphene oxide (GO) nanosheets and layered double hydroxide (LDH) nanoplatelets. The fabricated GO-LDH hybrid coatings show uniform nacre-like layered structures that endow them good mechanic properties with Young's modulus of ≈ 18 GPa and hardness of ≈ 0.68 GPa. In addition, the GO-LDH hybrid coatings exhibit nacre-like iridescence and attractive flame retardancy as well due to their well-defined 2D microstructures. This kind of nacre-inspired GO-LDH hybrid thick coatings will be applied in various fields in future due to their high strength and multifunctionalities. PMID:26682698

  15. Mechanisms governing the interfacial delamination of thermal barrier coating system with double ceramic layers

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Fan, Xueling; Wang, T. J.

    2016-05-01

    A systematic study of factors affecting the interfacial delamination of thermal barrier coating system (TBCs) with double ceramic layers (DCL) is presented. Crack driving forces for delaminations at two weak interfaces are examined. The results show that a thicker outermost ceramic layer can induce dramatic increase in crack driving force and make the interface between two ceramic coatings become more prone to delamination. The behavior is shown to be more prominent in TBCs with stiffer outmost coating. The thickness ratio of two ceramic layers is an important parameter for controlling the failure mechanisms and determining the lifetime of DCL TBCs under inservice condition. By accounting for the influences of thickness ratio of two ceramic layers and interfacial fracture toughnesses of two involved interfaces, the fracture mechanism map of DCL TBCs has been constructed, in which different failure mechanisms are identified. The results quanlitatively agree with the aviliable experimental data.

  16. High Altitude Double Sodium Layer Observed at Low Latitude and Possible Formation: A Case Study

    NASA Astrophysics Data System (ADS)

    Xue, X.

    2012-12-01

    We report the lidar observations of a double sodium layer (DSL) at Lijiang, China, in March 2012, in which, a high-altitude secondary sodium layer (SeSL) and a sporadic sodium layer (SSL) are co-existed. The SeSL has a maximum density 120 cm-3, 6.7% of that of main layer, and starts at 122 km with full width at half maximum (FWHM) ~ 4-8 km. It does not merge into the main layer for whole observational period. The SSL with a peak density 5500 cm-3, 3 times larger than that of the main layer, appears at 105 km and accompanies with SeSL all the time. Further observations illustrate that multi-layer sporadic E (Es) layers are related to the formation of SeSL and SSL through meridional and zonal diurnal tidal (DT) wind shear mechanisms, respectively, whose efficiency differ at a given altitude according to the ratio of ion-neutral collision frequency to ion gyrofrequency.

  17. Spatial anisotropy and character of the exchange interaction in single and double layer manganites^*.

    NASA Astrophysics Data System (ADS)

    Mryasov, O. N.; Sabiryanov, R. F.; Jaswal, S. S.; Freeman, A. J.

    1998-03-01

    The influence of the doping and number of layers (double vs. single layer) on spatial anisotropy (in-plane J_in vs. inter-plane J_out) in single LaMnO3 and double layer LaSr_2Mn_2O7 manganites studied on the basis of the ab-initio calculations using the linear muffin-tin orbital method generalized to treat non-collinear magnetic configurations^1. We find that contribution of the DE is not effected significantly by the doping (Ca,Sr,Ba) and is substantially smaller than predicted by the Anderson-Hasegawa model. On the other hand, both global and internal lattice distortions dramatically influence the character and strength of the exchange interactions. Spatial anisotropy of the exchange interaction in pure LaMnO3 is found to be slightly underestimated (J_in = 2.0 mRy but J_out = -1.2 mRy) if compared with extracted from newtron scattering experiments (J_in = 1.6 mRy but J_out = -0.8 mRy). We find that exchange interactions in double layer manganites have pronounced two dimensional character with layers effectivaly decoupled (J=0.05 mRy) due to the effect of buffer Sr/La atoms, however within layers J_in = 1 mRy but J_out = 0.3 mRy. ^* Work at NU supported by U.S. DOE (Grant No. DE-FG02-ER45372) and at UNL by NSF [Grant No. OSR9255225], DOE [Grant No. DE-FG2-86ER45262]. ^1 O.N.Mryasov et al., J. of Phys: Condensed Matter 3, 7683 (1991).

  18. Numerical Well Testing Interpretation Model and Applications in Crossflow Double-Layer Reservoirs by Polymer Flooding

    PubMed Central

    Guo, Hui; He, Youwei; Li, Lei; Du, Song; Cheng, Shiqing

    2014-01-01

    This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV), permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I) wellbore storage section, (II) intermediate flow section (transient section), (III) mid-radial flow section, (IV) crossflow section (from low permeability layer to high permeability layer), and (V) systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR). PMID:25302335

  19. A double layer model for solar X-ray and microwave pulsations

    NASA Technical Reports Server (NTRS)

    Tapping, K. F.

    1986-01-01

    The wide range of wavelengths over which quasi-periodic pulsations have been observed suggests that the mechanism causing them acts upon the supply of high energy electrons driving the emission processes. A model is described which is based upon the radial shrinkage of a magnetic flux tube. The concentration of the current, along with the reduction in the number of available charge carriers, can rise to a condition where the current demand exceeds the capacity of the thermal electrons. Driven by the large inductance of the external current circuit, an instability takes place in the tube throat, resulting in the formation of a potential double layer, which then accelerates electrons and ions to MeV energies. The double layer can be unstable, collapsing and reforming repeatedly. The resulting pulsed particle beams give rise to pulsating emission which are observed at radio and X-ray wavelengths.

  20. Simulation of double layers in a model auroral circuit with nonlinear impedance

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1986-01-01

    A reduced circuit description of the U-shaped potential structure of a discrete auroral arc, consisting of the flank transmission line plus parallel-electric-field region, is used to provide the boundary condition for one-dimensional simulations of the double-layer evolution. The model yields asymptotic scalings of the double-layer potential, as a function of an anomalous transport coefficient alpha and of the perpendicular length scale l(a) of the arc. The arc potential phi(DL) scales approximately linearly with alpha, and for alpha fixed phi (DL) about l(a) to the z power. Using parameters appropriate to the auroral zone acceleration region, potentials of phi (DPL) 10 kV scale to projected ionospheric dimensions of about 1 km, with power flows of the order of magnitude of substorm dissipation rates.

  1. Controlling spin–orbit interaction in a ferromagnetic Fe/Au double layer

    SciTech Connect

    Samarin, Sergey N.; Kostylev, Mikhail; Williams, James F.; Artamonov, Oleg M.; Baraban, Alexander P.; Guagliardo, Paul

    2015-01-26

    Using spin-polarized single- and two-electron spectroscopy, we probe exchange and spin–orbit interaction in a double layer of Fe and Au on W(110) and measure the spin asymmetry of the Bloch spectral density function of the sample. In a 5 ML iron film, the spin-orbit contribution to the measured asymmetry of the (e,2e) spectra was not detectable, whereas a deposition of about 1 ML of gold introduced a substantial spin-orbit component in the measured asymmetry. At the same time, this double layer still exhibits ferromagnetic properties: (i) the spectral density function asymmetry demonstrate imbalance of spin-up and spin-down electron densities in the valence band and (ii) the Stoner excitation asymmetry has almost the same value as in a pure Fe film.

  2. Detection of copper ions from aqueous solutions using layered double hydroxides thin films deposited by PLD

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Birjega, R.; Matei, A.; Luculescu, C.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2015-10-01

    Layered double hydroxides (LDHs) thin films with Mg-Al were deposited using pulsed laser deposition (PLD) technique. We studied the ability of our films to detect copper ions in aqueous solutions. Copper is known to be a common pollutant in water, originating from urban and industrial waste. Clay minerals, including layered double hydroxides (LDHs), can reduce the toxicity of such wastes by adsorbing copper. We report on the uptake of copper ions from aqueous solution on LDH thin films obtained via PLD. The obtained thin films were characterized using X-ray Diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy with Energy Dispersive X-ray analysis. The results in this study indicate that LDHs thin films obtained by PLD have potential as an efficient adsorbent for removing copper from aqueous solution.

  3. Two-dimensional double layer in plasma in a diverging magnetic field

    SciTech Connect

    Saha, S. K.; Raychaudhuri, S.; Chowdhury, S.; Janaki, M. S.; Hui, A. K.

    2012-09-15

    Plasma created by an inductive RF discharge is allowed to expand along a diverging magnetic field. Measurement of the axial plasma potential profile reveals the formation of an electric double layer near the throat of the expansion chamber. An accelerated ion beam has been detected in the downstream region, confirming the presence of the double layer. The 2-D nature of the ion energy distribution function of the downstream plasma has been studied by a movable ion energy analyser, which shows that the beam radius increases along the axial distance. The 2-D structure of the plasma potential has been studied by a movable emissive probe. The existence of a secondary lobe in the contour plot of plasma equipotential is a new observation. It is also an interesting observation that the most diverging magnetic field line not intercepting the junction of the discharge tube and the expansion chamber has an electric field aligned with it.

  4. Multinuclear in situ magnetic resonance imaging of electrochemical double-layer capacitors.

    PubMed

    Ilott, Andrew J; Trease, Nicole M; Grey, Clare P; Jerschow, Alexej

    2014-08-01

    The last decade has seen an intensified interest in the development and use of electrochemical double-layer capacitors, fuelled by the availability of new electrode materials. The use of nanoporous carbons, in particular, with extremely high surface areas for ion adsorption has enabled the development of working devices with significantly increased capacitances that have become viable alternatives to lithium-ion batteries in certain applications. An understanding of the charge storage mechanism and the ion dynamics inside the nanopores is only just emerging, with the most compelling evidence coming from simulation. Here we present the first in situ magnetic resonance imaging experiments of electrochemical double-layer capacitors. These experiments overcome the limitations of other techniques and give spatially resolved chemical information about the electrolyte ions in real time for a working capacitor of standard geometry. The results provide insight into the predominant capacitive processes occurring at different states of charge and discharge.

  5. Topology optimization of double- and triple-layer grids using a hybrid methodology

    NASA Astrophysics Data System (ADS)

    Dehghani, M.; Mashayekhi, M.; Salajegheh, E.

    2016-08-01

    In this article, a hybrid methodology combining evolutionary structural optimization (ESO) and gravitational particle swarm (GPS) methods is proposed for topology optimization of double- and triple-layer grids. In the present methodology, which is called the ESO-GPS method, the size optimization of double- and triple-layer grids is first performed by ESO. Then, the outcomes of the ESO are used to improve the GPS through four modifications. Structural weight is minimized against constraints on the displacements of nodes, internal stresses and element slenderness ratio. The GPS is used to investigate the optimum topology of large-scale skeletal structures with discrete variables whose agents update their respective positions by the particle swarm optimization velocity and the acceleration of the gravitational search algorithm. The numerical results show that the proposed algorithm, the ESO-GPS, performs better than the GPS and the other methods presented in the literature.

  6. Removal of perchlorate in water by calcined MgAl-CO3 layered double hydroxides.

    PubMed

    Yang, Yiqiong; Gao, Naiyun; Deng, Yang; Yu, Guoping

    2013-04-01

    Perchlorate is widely known as an inorganic endocrine disruptor. In this study, MgAl-CO3 layered double hydroxides with different Mg/Al molar ratios were prepared using a coprecipitation method and followed by a calcination process at a temperature range of 300 to 700 degrees C. Results showed that the best synthesis conditions were a calcination temperature of 550 degrees C and Mg/Al molar ratio of 3. Further, the adsorbent and its adsorption product were characterized by x-ray diffraction, Fourier transform-infrared spectroscopy, and thermogravimetric-differential thermal analysis. The layered double hydroxides structures in the adsorbent were lost during calcination at 550 degrees C but were reconstructed subsequent to adsorption of perchlorate, indicating that the "memory effect" appeared to play an important role in perchlorate adsorption. The perchlorate adsorption pattern was best described by the pseudo-second-order kinetics model, while the Freundlich isotherms appropriately explained perchlorate adsorption data.

  7. Kinetic model for an auroral double layer that spans many gravitational scale heights

    SciTech Connect

    Robertson, Scott

    2014-12-15

    The electrostatic potential profile and the particle densities of a simplified auroral double layer are found using a relaxation method to solve Poisson's equation in one dimension. The electron and ion distribution functions for the ionosphere and magnetosphere are specified at the boundaries, and the particle densities are found from a collisionless kinetic model. The ion distribution function includes the gravitational potential energy; hence, the unperturbed ionospheric plasma has a density gradient. The plasma potential at the upper boundary is given a large negative value to accelerate electrons downward. The solutions for a wide range of dimensionless parameters show that the double layer forms just above a critical altitude that occurs approximately where the ionospheric density has fallen to the magnetospheric density. Below this altitude, the ionospheric ions are gravitationally confined and have the expected scale height for quasineutral plasma in gravity.

  8. Measurement of the magnetic induction vector in superconductors using a double-layer Hall sensor array

    NASA Astrophysics Data System (ADS)

    Abulafia, Y.; McElfresh, M.; Shaulov, A.; Yeshurun, Y.; Paltiel, Y.; Majer, D.; Shtrikman, H.; Zeldov, E.

    1998-06-01

    We describe an experimental technique for simultaneous measurement of both the normal (Bz) and the in-plane (Bx) components of the magnetic induction field near the surface of a superconducting sample. This technique utilizes a novel design of a double-layered Hall sensor array fabricated from a GaAs/AlGaAs heterostructure containing two parallel layers of a two-dimensional electron gas. The effectiveness of this technique is demonstrated in measurements of Bx and Bz and the current distribution at the surface of a thin YBa2Cu3O7 crystal.

  9. Nonlinear resonant magnetoelectric interactions and efficient frequency doubling in a ferromagnetic-ferroelectric layered structure

    NASA Astrophysics Data System (ADS)

    Fetisov, L. Y.; Fetisov, Y. K.; Sreenivasulu, G.; Srinivasan, G.

    2013-03-01

    Mechanical strain mediated non-linear magnetoelectric (NLME) coupling is studied in layered composites of ferromagnetic FeBSiC and piezoelectric lead zirconate titanate (PZT) bimorph. The NLME manifests as frequency doubling in the voltage response of the sample to an applied ac magnetic field. It is shown that NLME is strong (i) in the absence of DC magnetic bias, (ii) when the frequency of h is tuned to half the frequency for bending oscillations, and (iii) a PZT bimorph (instead of a single layer of PZT) is used. A model is discussed for the non-linear magnetoelectric coupling that is of interest for RF frequency doublers.

  10. Structural-acoustic optimization of structures excited by turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Shepherd, Micah R.

    In order to reduce noise radiation of aircraft or marine panels, a general structural-acoustic optimization technique is presented. To compute the structural-acoustic response, a modal approach based on finite element / boundary element analysis is used which can easily incorporate fluid loading, added structures and static pre-loads. Simple deterministic or complex random forcing functions are included in the analysis by transforming their cross-spectral density matrices to modal space. Particular emphasis is placed in this dissertation on structures excited by the fluctuating pressures due to turbulent boundary layer (TBL) flow. An efficient frequency-spacing is also used to minimize evaluation time but ensure accuracy. The response from the structural-acoustic analysis is coupled to an evolutionary strategy with covariance matrix adaptation (CMA-ES) to find the best design for low noise and weight. CMA-ES, a stochastic optimizer with robust search properties, samples candidate solutions from a multi-variate normal distribution and adapts the covariance matrix to favor good solutions. The optimization procedure is validated by minimizing the sound radiated by a point-driven ribbed panel and comparing the optimization results to an exhaustive search of the design space. Structural-acoustic optimization is then performed on a curved marine panel with heavy fluid loading excited by slow TBL flow. A weighted combination of noise radiation and mass are minimized by changing the thickness of strips and patches of elements. An uncorrelated pressure approximation is used to estimate the modal force due to TBL flow thus reducing the evaluation time required to compute the objective function. The results show that the best noise reduction is achieved by minimizing the modal acceptance of energy by the panel. This is equivalent to pushing the structural modes away from the peak frequency range of the forcing function. Additionally, the Pareto trade-off curve between total

  11. Amniotic membrane extract-loaded double-layered wound dressing: evaluation of gel properties and wound healing.

    PubMed

    Choi, Yeung Keun; Din, Fakhar Ud; Kim, Dong Wuk; Kim, Yong-Il; Kim, Jong Oh; Ku, Sae Kwang; Ra, Jeong-Chan; Huh, Jae-Wook; Lee, Jangik I; Sohn, Dong Hwan; Yong, Chul Soon; Choi, Han-Gon

    2014-07-01

    The conservative single-layered wound dressing system is decomposed when mixed in polyvinyl alcohol (PVA) solution, which means it cannot be used with a temperature-sensitive drug. The goal of this investigation was to make an amniotic membrane extract (AME)-loaded double-layered wound dressing with an improved healing result compared to the conservative single-layered wound dressing systems. The double-layered wound dressing was developed with PVA/sodium alginate using a freeze-melting technique; one layer was PVA layer and the other was the drug-loaded sodium alginate layer. Its gel properties were assessed compared to single-layered wound dressings. Moreover, in vivo wound-healing effects and histopathology were calculated compared to commercial products. The double-layered wound dressing gave a similar gel fraction and Young's module as single-layered wound bandages developed with only PVA, and a similar inflammation ability and WVTR as single-layered wound dressings developed with PVA and sodium alginate. Our data indicate that these double-layered wound bandages were just as swellable, but more elastic and stronger than single-layered wound dressings comprised of the same polymers and quantities, possibly giving an acceptable level of moisture and accumulation of exudates in the wound zone. Compared to the commercial product, the double-layered wound dressing comprising 6.7% PVA, 0.5% sodium alginate and 0.01% AME significantly enhanced the wound-healing effect in the wound-healing test. Histological investigations showed that superior full-thickness wound-healing effects compared to the commercial product. Therefore, the double-layered wound dressing would be an outstanding wound-dressing system with improved wound healing and good gel property.

  12. High power, solvent-free electrochemical double layer capacitors based on pyrrolidinium dicyanamide ionic liquids

    NASA Astrophysics Data System (ADS)

    Wolff, Christian; Jeong, Sangsik; Paillard, Elie; Balducci, Andrea; Passerini, Stefano

    2015-10-01

    In this manuscript are reported the synthesis and physicochemical characterization of low viscosity pyrrolidinium dicyanamide (DCA-) ionic liquids (ILs). Due to their high ionic conductivity, these fluorine-free, molecular solvent-free ILs are excellent candidates to be employed as electrolytes in electrochemical double layer capacitors (EDLCs). Tests of lab-scale prototypes reported herein show that DCA--based EDLCs display high power at room temperature as well as high cycling stability.

  13. Synthesis of ACECLOFENAC/HYDROXYPROPYL-β-CYCLODEXTRIN Intercalated Layered Double Hydroxides and Controlled Release Properties

    NASA Astrophysics Data System (ADS)

    Li, Shifeng; Shen, Yanming; Liu, Dongbin; Fan, Lihui; Wu, Keke; Xiao, Min

    2013-06-01

    Aceclofenac (AC)/hydroxypropyl-β-cyclodextrin (HP-β-CD) complex intercalated layered double hydroxides (LDHs) have been synthesized by reconstruction method. X-ray diffraction, Fourier transform infrared and thermal gravimetric analyses indicated a successful intercalation of AC/HP-β-CD complex into the LDHs gallery. The AC release properties were also studied in different pH values buffer solution. The results indicate that the AC/HP-β-CD intercalated LDH has a potential application in drug delivery agent.

  14. Non-mean-field theory of anomalously large double layer capacitance

    NASA Astrophysics Data System (ADS)

    Loth, M. S.; Skinner, Brian; Shklovskii, B. I.

    2010-07-01

    Mean-field theories claim that the capacitance of the double layer formed at a metal/ionic conductor interface cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments the apparent width of the double layer capacitor is substantially smaller. We propose an alternate non-mean-field theory of the ionic double layer to explain such large capacitance values. Our theory allows for the binding of discrete ions to their image charges in the metal, which results in the formation of interface dipoles. We focus primarily on the case where only small cations are mobile and other ions form an oppositely charged background. In this case, at small temperature and zero applied voltage dipoles form a correlated liquid on both contacts. We show that at small voltages the capacitance of the double layer is determined by the transfer of dipoles from one electrode to the other and is therefore limited only by the weak dipole-dipole repulsion between bound ions so that the capacitance is very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the much smaller mean-field value, as seen in experimental data. We test our analytical predictions with a Monte Carlo simulation and find good agreement. We further argue that our “one-component plasma” model should work well for strongly asymmetric ion liquids. We believe that this work also suggests an improved theory of pseudocapacitance.

  15. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3

  16. Observation of warm, higher energy electrons transiting a double layer in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Sung, Yung-Ta; Li, Yan; Scharer, John

    2015-11-01

    Experimental observations in MadiHeX indicate that fast electrons with substantial density fractions can be created at low helicon operating pressure. Two-temperature electron distributions including a fast (>80 eV) tail are observed in an inductive RF helicon argon plasma double layer at 0.17 mTorr Ar pressure. The fast, untrapped electrons measured downstream of the double layer have a higher temperature of 13 eV than the trapped, upstream electrons with a temperature of 4 eV. The reduction of plasma potential and density observed in the double layer region would require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. Upstream fluctuations of +/- 30% are also observed in the emissive probe measured plasma potential. Sideband frequencies have been observed at +/- 2 kHz of the driven RF frequency of 13.56 MHz, implying a beam instability effect dominantly upstream of the double layer. This can affect ion acceleration and electron temperature distribution in the region. The mechanism behind this has been explored via several plasma diagnostics tools. An RF-compensated Langmuir probe has been used to measure the electron temperatures and densities, which are cross-checked with ADAS, OES and millimeter wave IF. The EEDF in the plasma has also been profiled to understand the acceleration mechanism. A four-grid RPA and an emissive probe have been used to measure the IEDF and plasma potential. The measured IEDF has also been checked with LIF techniques.

  17. Tunable Electronic Transport Properties of 2D Layered Double Hydroxide Crystalline Microsheets with Varied Chemical Compositions.

    PubMed

    Zhao, Yibing; Hu, Hai; Yang, Xiaoxia; Yan, Dongpeng; Dai, Qing

    2016-09-01

    Transistors based on layered double hydroxides (LDH) single microcrystal are fabricated, whose conductivity of LDH can be tuned by varying metal cations or interlayer anions, but weakly affected by external electric field. The carrier mobility can reach about 1 × 10(-5) cm(2) V(-1) s(-1) , a value comparable to that of organic C60-based transistors. This work paves a way for future electrical applications of LDH. PMID:27416544

  18. Double-Layered PTFE-Covered Nitinol Stents: Experience in 32 Patients with Malignant Esophageal Strictures

    SciTech Connect

    Park, Jung Gu; Jung, Gyoo-Sik Oh, Kyung Seung; Park, Seon-Ja

    2010-08-15

    We evaluated the effectiveness of a double-layered polytetrafluoroethylene (PTFE)-covered nitinol stent in the palliative treatment of malignant esophageal strictures. A double-layered PTFE-covered nitinol stent was designed to reduce the propensity to migration of conventional covered stent. The stent consists of an inner PTFE-covered stent and an outer uncovered nitinol stent tube. With fluoroscopic guidance, the stent was placed in 32 consecutive patients with malignant esophageal strictures. During the follow-up period, the technical and clinical success rates, complications, and cumulative patient survival and stent patency were evaluated. Stent placement was technically successful in all patients, and no procedural complications occurred. After stent placement, the symptoms of 30 patients (94%) showed improvement. During the mean follow-up of 103 days (range, 9-348 days), 11 (34%) of 32 patients developed recurrent symptoms due to tumor overgrowth in five patients (16%), tumor ingrowth owing to detachment of the covering material (PTFE) apart from the stent wire in 3 (9%), mucosal hyperplasia in 2 (6%), and stent migration in 1 (3%). Ten of these 11 patients were treated by means of placing a second covered stent. Thirty patients died, 29 as a result of disease progression and 1 from aspiration pneumonia. The median survival period was 92 days. The median period of primary stent patency was 190 days. The double-layered PTFE-covered nitinol stent seems to be effective for the palliative treatment of malignant esophageal strictures. We believe that the double-layer configuration of this stent can contribute to decreasing the stent's migration rate.

  19. Charge density dependent two-channel conduction in organic electric double layer transistors (EDLTs).

    PubMed

    Xie, Wei; Liu, Feilong; Shi, Sha; Ruden, P Paul; Frisbie, C Daniel

    2014-04-23

    A transport model based on hole-density-dependent trapping is proposed to explain the two unusual conductivity peaks at surface hole densities above 10(13) cm(-2) in rubrene electric double layer transistors (EDLTs). Hole transport in rubrene is described to occur via multiple percolation pathways, where conduction is dominated by transport in the free-site channel at low hole density, and in the trap-site channel at larger hole density. PMID:24496822

  20. Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; Smart, Marshall C.; West, William C.

    2011-01-01

    Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent

  1. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites.

    PubMed

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322

  2. The capacitance of ionic liquid electric double layer near nanostructured electrodes

    NASA Astrophysics Data System (ADS)

    Park, Yun Sung; Ahn, Myung Mo; Kang, In Seok

    2015-11-01

    The electric double layer capacitors (EDLC) with nanostructured electrodes have attracted much attention of researchers due to their high power density and long life time. Recently, the ionic liquids are used as an electrolyte of EDLC owing to their electrochemical stability. When ionic liquids are used as an electrolyte, the interrelations between the electric double layer of ionic liquids and the nanostructured electrode must be studied. In this study, the EDLC systems with nanostructured electrodes and ionic liquids are simulated by solving the modified Poisson-Boltzmann equation proposed by Bazant, Storey, and Kornyshev with COMSOL Multiphysics. Several electrode geometries including exohedral, endohedral and arrayed shapes with different length scales are simulated. The potential and charge distributions in the normal direction to the electrode surface are analyzed. The capacitance per unit area is obtained and compared to that of flat electrode. The structure determines the space for counter-ion packing and co-ion gathering, thus has crucial effects on electric double layer capacitance. The critical increase of capacitance with nanoscale confined space is observed with low electrode potential. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant Number: 2013R1A1A2011956).

  3. Repair of Inaccessible Ventral Dural Defect in Thoracic Spine: Double Layered Duraplasty

    PubMed Central

    Lee, Dong-Hyun; Park, Jeong-Ill; Park, Ki-Su; Cho, Dae-Chul; Sung, Joo-Kyung

    2016-01-01

    We propose a double layered (intradural and epidural patch) duraplasty that utilizes Lyoplant and Duraseal. We examined a 47-year-old woman after decompression for thoracic ossification of posterior longitudinal ligament was performed in another hospital. On postoperative day 7, she complained of weakness in both legs. Postoperative magnetic resonance imaging (MRI) showed cerebrospinal fluid (CSF) collection with cord compression. In the operative field, we found 2 large dural defects on the ventral dura mater. We performed a conventional fat graft with fibrin glue. However, the patient exhibited neurologic deterioration, and a postoperative MRI again showed CSF collection. We performed dorsal midline durotomy and inserted a intradural and epidural Lyoplant patch. She immediately experienced diminishing back pain postoperatively. Her visual analog scale and motor power improved markedly. Postoperative MRIs performed at 2 and 16 months showed no spinal cord compression or CSF leakage to the epidural space. We describe a new technique for double layered duraplasty. Although we do not recommend this technique for all dural repairs, double-layered duraplasty may be useful for repairing large inaccessible dural tears in cases of persistent CSF leakage refractory to conventional management. PMID:27437022

  4. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  5. Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.

    1987-01-01

    The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.

  6. Low Temperature Double-layer Capacitors with Improved Energy Density: An Overview of Recent Development Efforts

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Yushin, Gleb; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek

    2012-01-01

    Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.

  7. Magnetohydrodynamic effects on a charged colloidal sphere with arbitrary double-layer thickness.

    PubMed

    Hsieh, Tzu H; Keh, Huan J

    2010-10-01

    An analytical study is presented for the magnetohydrodynamic (MHD) effects on a translating and rotating colloidal sphere in an arbitrary electrolyte solution prescribed with a general flow field and a uniform magnetic field at a steady state. The electric double layer surrounding the charged particle may have an arbitrary thickness relative to the particle radius. Through the use of a simple perturbation method, the Stokes equations modified with an electric force term, including the Lorentz force contribution, are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution from solving the linearized Poisson-Boltzmann equation, we obtain closed-form formulas for the translational and angular velocities of the spherical particle induced by the MHD effects to the leading order. It is found that the MHD effects on the particle movement associated with the translation and rotation of the particle and the ambient fluid are monotonically increasing functions of κa, where κ is the Debye screening parameter and a is the particle radius. Any pure rotational Stokes flow of the electrolyte solution in the presence of the magnetic field exerts no MHD effect on the particle directly in the case of a very thick double layer (κa→0). The MHD effect caused by the pure straining flow of the electrolyte solution can drive the particle to rotate, but it makes no contribution to the translation of the particle.

  8. Swelling pressure of a divalent-rich bentonite: Diffuse double-layer theory revisited

    NASA Astrophysics Data System (ADS)

    Schanz, Tom; Tripathy, Snehasis

    2009-05-01

    Physicochemical forces are responsible for the swelling pressure development in saturated bentonites. In this paper, the swelling pressures of several compacted bentonite specimens for a range of dry density of 1.10-1.73 Mg/m3 were measured experimentally. The clay used was a divalent-rich Ca-Mg-bentonite with 12% exchangeable Na+ ions. The theoretical swelling pressure-dry density relationship for the bentonite was determined from the Gouy-Chapman diffuse double-layer theory. A comparison of experimental and theoretical results showed that the experimental swelling pressures are either smaller or greater than their theoretical counterparts within different dry density ranges. It is shown that for dry density of the clay less than about 1.55 Mg/m3, a possible dissociation of ions from the surface of the clay platelets contributed to the diffuse double-layer repulsion. At higher dry densities, the adsorptive forces due to surface and ion hydration dominated the swelling pressures of the clay. A comparison of the modified diffuse double-layer theory equations proposed in the literature to determine the swelling pressures of compacted bentonites and the experimental results for the clay in this study showed that the agreement between the calculated and experimental swelling pressure results is very good for dry densities less than 1.55 Mg/m3, whereas at higher dry densities the use of the equations was found to be limited.

  9. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites

    PubMed Central

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322

  10. Predictive double-layer modeling of metal sorption in mine-drainage systems

    SciTech Connect

    Smith, K.S.; Plumlee, G.S.; Ranville, J.F.; Macalady, D.L.

    1996-10-01

    Previous comparison of predictive double-layer modeling and empirically derived metal-partitioning data has validated the use of the double-layer model to predict metal sorption reactions in iron-rich mine-drainage systems. The double-layer model subsequently has been used to model data collected from several mine-drainage sites in Colorado with diverse geochemistry and geology. This work demonstrates that metal partitioning between dissolved and sediment phases can be predictively modeled simply by knowing the water chemistry and the amount of suspended iron-rich particulates present in the system. Sorption on such iron-rich suspended sediments appears to control metal and arsenic partitioning between dissolved and sediment phases, with sorption on bed sediment playing a limited role. At pH > 5, Pb and As are largely sorbed by iron-rich suspended sediments and Cu is partially sorbed; Zn, Cd, and Ni usually remain dissolved throughout the pH range of 3 to 8.

  11. Repair of Inaccessible Ventral Dural Defect in Thoracic Spine: Double Layered Duraplasty.

    PubMed

    Lee, Dong-Hyun; Kim, Kyoung-Tae; Park, Jeong-Ill; Park, Ki-Su; Cho, Dae-Chul; Sung, Joo-Kyung

    2016-06-01

    We propose a double layered (intradural and epidural patch) duraplasty that utilizes Lyoplant and Duraseal. We examined a 47-year-old woman after decompression for thoracic ossification of posterior longitudinal ligament was performed in another hospital. On postoperative day 7, she complained of weakness in both legs. Postoperative magnetic resonance imaging (MRI) showed cerebrospinal fluid (CSF) collection with cord compression. In the operative field, we found 2 large dural defects on the ventral dura mater. We performed a conventional fat graft with fibrin glue. However, the patient exhibited neurologic deterioration, and a postoperative MRI again showed CSF collection. We performed dorsal midline durotomy and inserted a intradural and epidural Lyoplant patch. She immediately experienced diminishing back pain postoperatively. Her visual analog scale and motor power improved markedly. Postoperative MRIs performed at 2 and 16 months showed no spinal cord compression or CSF leakage to the epidural space. We describe a new technique for double layered duraplasty. Although we do not recommend this technique for all dural repairs, double-layered duraplasty may be useful for repairing large inaccessible dural tears in cases of persistent CSF leakage refractory to conventional management. PMID:27437022

  12. Interaction of a turbulent boundary layer with a cavity-backed circular orifice and tonal acoustic excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Bodony, Daniel

    2013-11-01

    Acoustic liners are effective reducers of jet exhaust and core noise and work by converting acoustic-bound energy into non-radiating, vorticity-bound energy through scattering, viscous, and non-linear processes. Modern liners are designed using highly-calibrated semi-empirical models that will not be effective for expected parameter spaces on future aircraft. The primary model limitation occurs when a turbulent boundary layer (TBL) grazes the liner; there are no physics-based methods for predicting the sound-liner interaction. We thus utilize direct numerical simulations to study the interaction of a Mach 0.5 zero pressure gradient TBL with a cavity-backed circular orifice under acoustic excitation. Acoustic field frequencies span the energy-containing range within the TBL and amplitudes range from 6 to 40 dB above the turbulent fluctuations. Impedance predictions are in agreement with NASA Langley-measured data and the simulation databases are analyzed in detail. A physics-based reduced-order model is proposed that connects the turbulence-vorticity-acoustic interaction and its accuracy and limitations are discussed. This work is funded by Aeroacoustics Research Consortium.

  13. Dichotomy of the electronic structure and superconductivity between single-layer and double-layer FeSe/SrTiO3 films.

    PubMed

    Liu, Xu; Liu, Defa; Zhang, Wenhao; He, Junfeng; Zhao, Lin; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2014-09-23

    The latest discovery of possible high-temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate has generated much attention. Initial work found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer film shows an insulating behaviour. Such a marked layer-dependent difference is surprising and the underlying origin remains unclear. Here we report a comparative angle-resolved photoemission study between the single-layer and double-layer FeSe/SrTiO3 films annealed in vacuum. We find that, different from the single-layer FeSe/SrTiO3 film, the double-layer FeSe/SrTiO3 film is hard to get doped and remains in the semiconducting/insulating state under an extensive annealing condition. Such a behaviour originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the doping mechanism and the origin of superconductivity in the FeSe/SrTiO3 films.

  14. Theoretical investigation of magnetoelectric surface acoustic wave characteristics of ZnO/Metglas layered composite

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Lyu, Qingqing; Wen, Dandan; Zhong, Zhiyong; Zhang, Huaiwu; Bai, Feiming

    2016-01-01

    The surface acoustic wave properties of piezoelectric/magnetostrictive layered structures consisting of insulating ZnO and metallic Metglas with giant Δ E effect were studied based on a stable scattering matrix method. Only the first Rayleigh mode was found with phase velocity between 2200 m/s and 2650 m/s, and the maximum electro-mechanical coupling coefficient about 1%. It was found that the center frequency of ZnO/Metglas is highly sensitive on the change of magnetic field, up to 440 MHz/Oe. However, there is a cutoff Young's modulus of Metglas for different designs of SAW, below which the Rayleigh mode will disappear. For a magnetoelectric SAW design with the center frequency of 335 MHz and covering a full magnetic field range from -1.4 to +1.4 Oe, the frequency sensitivity is 212 MHz/Oe, equivalent to a magnetic field sensitivity of 5 × 10-12 Tesla. Unlike conventional magnetoelectric bulk laminates or film stacks, the detection of frequency shift instead of electrical charge allows not only shrinkage of device volume but also a broad frequency band detection of weak magnetic field.

  15. Highly transparent low resistance Ga doped ZnO/Cu grid double layers prepared at room temperature

    NASA Astrophysics Data System (ADS)

    Jang, Cholho; Zhizhen, Ye; Jianguo, Lü

    2015-12-01

    Ga doped ZnO (GZO)/Cu grid double layer structures were prepared at room temperature (RT). We have studied the electrical and optical characteristics of the GZO/Cu grid double layer as a function of the Cu grid spacing distance. The optical transmittance and sheet resistance of the GZO/Cu grid double layer are higher than that of the GZO/Cu film double layer regardless of the Cu grid spacing distance and increase as the Cu grid spacing distance increases. The calculated values for the transmittance and sheet resistance of the GZO/Cu grid double layer well follow the trend of the experimentally observed transmittance and sheet resistance ones. For the GZO/Cu grid double layer with a Cu grid spacing distance of 1 mm, the highest figure of merit (ΦTC = 6.19 × 10-3 Ω-1) was obtained. In this case, the transmittance, resistivity and filling factor (FF) of the GZO/Cu grid double layer are 83.74%, 1.10 × 10-4 Ω·cm and 0.173, respectively. Project supported by the Key Project of the National Natural Science Foundation of China (No. 91333203), the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT13037), the National Natural Science Foundation of China (No. 51172204), and the Zhejiang Provincial Department of Science and Technology of China (No. 2010R50020).

  16. Boosted output performance of triboelectric nanogenerator via electric double layer effect

    PubMed Central

    Chun, Jinsung; Ye, Byeong Uk; Lee, Jae Won; Choi, Dukhyun; Kang, Chong-Yun; Kim, Sang-Woo; Wang, Zhong Lin; Baik, Jeong Min

    2016-01-01

    For existing triboelectric nanogenerators (TENGs), it is important to explore unique methods to further enhance the output power under realistic environments to speed up their commercialization. We report here a practical TENG composed of three layers, in which the key layer, an electric double layer, is inserted between a top layer, made of Al/polydimethylsiloxane, and a bottom layer, made of Al. The efficient charge separation in the middle layer, based on Volta's electrophorus, results from sequential contact configuration of the TENG and direct electrical connection of the middle layer to the earth. A sustainable and enhanced output performance of 1.22 mA and 46.8 mW cm−2 under low frequency of 3 Hz is produced, giving over 16-fold enhancement in output power and corresponding to energy conversion efficiency of 22.4%. Finally, a portable power-supplying system, which provides enough d.c. power for charging a smart watch or phone battery, is also successfully developed. PMID:27703165

  17. Electronic absorption band broadening and surface roughening of phthalocyanine double layers by saturated solvent vapor treatment

    SciTech Connect

    Kim, Jinhyun; Yim, Sanggyu

    2012-10-15

    Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughness and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.

  18. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  19. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-07-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  20. Boosted output performance of triboelectric nanogenerator via electric double layer effect

    NASA Astrophysics Data System (ADS)

    Chun, Jinsung; Ye, Byeong Uk; Lee, Jae Won; Choi, Dukhyun; Kang, Chong-Yun; Kim, Sang-Woo; Wang, Zhong Lin; Baik, Jeong Min

    2016-10-01

    For existing triboelectric nanogenerators (TENGs), it is important to explore unique methods to further enhance the output power under realistic environments to speed up their commercialization. We report here a practical TENG composed of three layers, in which the key layer, an electric double layer, is inserted between a top layer, made of Al/polydimethylsiloxane, and a bottom layer, made of Al. The efficient charge separation in the middle layer, based on Volta's electrophorus, results from sequential contact configuration of the TENG and direct electrical connection of the middle layer to the earth. A sustainable and enhanced output performance of 1.22 mA and 46.8 mW cm-2 under low frequency of 3 Hz is produced, giving over 16-fold enhancement in output power and corresponding to energy conversion efficiency of 22.4%. Finally, a portable power-supplying system, which provides enough d.c. power for charging a smart watch or phone battery, is also successfully developed.

  1. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  2. The role of buffer layers and double windows layers in a solar cell CZTS performances

    NASA Astrophysics Data System (ADS)

    Mebarkia, C.; Dib, D.; Zerfaoui, H.; Belghit, R.

    2016-07-01

    In the overall context of the diversification of the use of natural resources, the use of renewable energy including solar photovoltaic has become increasingly indispensable. As such, the development of a new generation of photovoltaic cells based on CuZnSnS4 (CZTS) looks promising. Cu2ZnSnS4 (CZTS) is a new film absorber, with good physical properties (band gap energy 1.4-1.6 eV with a large absorption coefficient over 104 cm-1). Indeed, the performance of these cells exceeded 30% in recent years. In the present paper, our work based on modeling and numerical simulation, we used SCAPS to study the performance of solar cells based on Cu2ZnSnS4 (CZTS) and thus evaluate the electrical efficiency η for typical structures of n-ZnO:Al / i-ZnO / n-CdS / p-CZTS and n-ITO / n-ZnO:Al / n-CdS /p-CZTS. Furthermore, the influence of the change of CdS by ZnSeand In2S3buffer layer was treated in this paper.

  3. Enhancement of proton acceleration field in laser double-layer target interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Li, X. F.; Yu, Q.; Wang, P. X.; Ma, Y. Y.

    2013-07-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  4. Enhancement of proton acceleration field in laser double-layer target interaction

    SciTech Connect

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.

    2013-07-15

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  5. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation

    PubMed Central

    Kang, Homan; Cho, Hong-Jun; Park, Sung-Jun; Yang, Jin-Kyoung; Kim, Sehoon; Kim, Hyung-Mo; Jun, Bong-Hyun; Lee, Yoon-Sik

    2015-01-01

    Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules. PMID:26599084

  6. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    PubMed

    Kyeong, San; Jeong, Cheolhwan; Kang, Homan; Cho, Hong-Jun; Park, Sung-Jun; Yang, Jin-Kyoung; Kim, Sehoon; Kim, Hyung-Mo; Jun, Bong-Hyun; Lee, Yoon-Sik

    2015-01-01

    Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules. PMID:26599084

  7. Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications.

    PubMed

    Shao, Mingfei; Zhang, Ruikang; Li, Zhenhua; Wei, Min; Evans, David G; Duan, Xue

    2015-11-14

    Two-dimensional (2D) materials have attracted increasing interest in electrochemical energy storage and conversion. As typical 2D materials, layered double hydroxides (LDHs) display large potential in this area due to the facile tunability of their composition, structure and morphology. Various preparation strategies, including in situ growth, electrodeposition and layer-by-layer (LBL) assembly, have been developed to directly modify electrodes by using LDH materials. Moreover, several composite materials based on LDHs and conductive matrices have also been rationally designed and employed in supercapacitors, batteries and electrocatalysis with largely enhanced performances. This feature article summarizes the latest developments in the design, preparation and evaluation of LDH materials toward electrochemical energy storage and conversion.

  8. Double-layer anisotropic light diffusion films fabricated using a two-step UV curing technique

    NASA Astrophysics Data System (ADS)

    Kusama, Kentaro; Ishinabe, Takahiro; Katagiri, Baku; Orui, Tomoo; Shoshi, Satoru; Fujikake, Hideo

    2016-04-01

    We developed a novel light diffusion film with a double diffusion layer structure for high reflectivity and a wide diffusion angle range. We demonstrated that the internal layer structure of the light diffusion film is controlled by the diffusion angle of the ultraviolet (UV) light used for photopolymerization. We successfully fabricated two different diffusion layers in a single polymer film using a two-step UV curing process and achieved a wide diffusion angle range and high reflectivity normal to the film surface. Our light diffusion film can control the distribution of diffused light, and should contribute to the development of future low-power reflective displays with high reflectivity similar to the white paper.

  9. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    SciTech Connect

    Mascali, D. Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G.; Torrisi, G.; Sorbello, G.

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  10. Results from long-term detection of mixing layer height: ceilometer and comparison with Radio-Acoustic Sounding System

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Emeis, Stefan; Jahn, Carsten; Tuma, Michael; Münkel, Christoph; Suppan, Peter

    2012-11-01

    The mixing layer height (MLH) is an important factor which influences exchange processes of ground level emissions. The continuous knowledge of MLH is supporting the understanding of processes directing air quality. If the MLH is located near to the ground, which occurs mainly during winter and night-time, air pollution can be high due to a strongly limited air mass dilution. Since 2006 different methods for long-term continuous remote sensing of mixing layer height (MLH) are operated in Augsburg. The Vaisala ceilometers LD40 and CL31 are used which are eye-safe commercial mini-lidar systems. The ceilometer measurements provide information about the range-dependent aerosol concentration; gradient minima within this profile mark the borders of mixed layers. Special software for these ceilometers provides routine retrievals of lower atmosphere layering from vertical profiles of laser backscatter data. The radiosonde data from the station Oberschleissheim near Munich (about 50 km away from Augsburg city) are also used for MLH determination. The profile behavior of relative humidity (strong decrease) and virtual potential temperature (inversion) of the radiosonde agree mostly well with the MLH indication from ceilometer laser backscatter density gradients. A RASS (Radio-Acoustic Sounding System) from Metek is applied which detects the height of a turbulent layer characterized by high acoustic backscatter intensities due to thermal fluctuations and a high variance of the vertical velocity component as well as the vertical temperature profile from the detection of acoustic signal propagation and thus temperature inversions which mark atmospheric layers. These data of RASS measurements are the input for a software-based determination of MLH. A comparison of the results of the remote sensing methods during simultaneous measurements was performed. The information content of the different remote sensing instruments for MLH in dependence from different weather classes was

  11. The use of acoustically tuned resonators to improve the sound transmission loss of double-panel partitions

    NASA Astrophysics Data System (ADS)

    Mason, J. M.; Fahy, F. J.

    1988-07-01

    Double-leaf partitions are often utilized in situations requiring low weight structures with high transmission loss, an example of current interest being the fuselage walls of propeller-driven aircraft. In this case, acoustic excitation is periodic and, if one of the frequencies of excitation lies in the region of the fundamental mass-air-mass frequency of the partition, insulation performance is considerably less than desired. The potential effectiveness of tuned Helmholtz resonators connected to the partition cavity is investigated as a method of improving transmission loss. This is demonstrated by a simple theoretical model and then experimentally verified. Results show that substantial improvements may be obtained at and around the mass-air-mass frequency for a total resonator volume 15 percent of the cavity volume.

  12. Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer

    PubMed Central

    Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.

    2014-01-01

    We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications. PMID:25425458

  13. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  14. Synthesis of layered double hydroxide nanosheets by coprecipitation using a T-type microchannel reactor

    SciTech Connect

    Pang, Xiujiang; Sun, Meiyu; Ma, Xiuming; Hou, Wanguo

    2014-02-15

    The synthesis of Mg{sub 2}Al–NO{sub 3} layered double hydroxide (LDH) nanosheets by coprecipitation using a T-type microchannel reactor is reported. Aqueous LDH nanosheet dispersions were obtained. The LDH nanosheets were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy and particle size analysis, and the transmittance and viscosity of LDH nanosheet dispersions were examined. The two-dimensional LDH nanosheets consisted of 1–2 brucite-like layers and were stable for ca. 16 h at room temperature. In addition, the co-assembly between LDH nanosheets and dodecyl sulfate (DS) anions was carried out, and a DS intercalated LDH nanohybrid was obtained. To the best of our knowledge, this is the first report of LDH nanosheets being directly prepared in bulk aqueous solution. This simple, cheap method can provide naked LDH nanosheets in high quantities, which can be used as building blocks for functional materials. - Graphical abstract: Layered double hydroxide (LDH) nanosheets were synthesized by coprecipitation using a T-type microchannel reactor, and could be used as basic building blocks for LDH-based functional materials. Display Omitted - Highlights: • LDH nanosheets were synthesized by coprecipitation using a T-type microchannel reactor. • Naked LDH nanosheets were dispersed in aqueous media. • LDH nanosheets can be used as building blocks for functional materials.

  15. Analytical model of LDMOS with a double step buried oxide layer

    NASA Astrophysics Data System (ADS)

    Yuan, Song; Duan, Baoxing; Cao, Zhen; Guo, Haijun; Yang, Yintang

    2016-09-01

    In this paper, a two-dimensional analytical model is established for the Buried Oxide Double Step Silicon On Insulator structure proposed by the authors. Based on the two-dimensional Poisson equation, the analytic expressions of the surface electric field and potential distributions for the device are achieved. In the BODS (Buried Oxide Double Step Silicon On Insulator) structure, the buried oxide layer thickness changes stepwise along the drift region, and the positive charge in the drift region can be accumulated at the corner of the step. These accumulated charge function as the space charge in the depleted drift region. At the same time, the electric field in the oxide layer also varies with the different drift region thickness. These variations especially the accumulated charge will modulate the surface electric field distribution through the electric field modulation effects, which makes the surface electric field distribution more uniform. As a result, the breakdown voltage of the device is improved by 30% compared with the conventional SOI structure. To verify the accuracy of the analytical model, the device simulation software ISE TCAD is utilized, the analytical values are in good agreement with the simulation results by the simulation software. That means the established two-dimensional analytical model for BODS structure is valid, and it also illustrates the breakdown voltage enhancement by the electric field modulation effect sufficiently. The established analytical models will provide the physical and mathematical basis for further analysis of the new power devices with the patterned buried oxide layer.

  16. Heat transfer performance of a novel double-layer mini-channel heat sink

    NASA Astrophysics Data System (ADS)

    Tang, Biao; Zhou, Rui; Bai, Pengfei; Fu, Ting; Lu, Longsheng; Zhou, Guofu

    2016-07-01

    High pressure drop and significant non-uniformity in temperature distribution along the streamwise direction are still challenges to the design of mini-channel heat sink. High density mini-channel arrays with high liquid-wall contact area are usually pursued in a conventional single-layer design of heat sink, which also inevitably brings high pressure drop. A novel double-layer structured heat sink is proposed in this paper. Four heat sinks with various designs in mini-channel density and flow direction were fabricated and studied experimentally on the heat transfer performance. The single factor of heat load does not show obvious effect on the overall thermal resistance of the heat sinks. On the other hand, slight decrease in thermal resistance was found with the increase in heat load at high flow rates. Moreover, a computational fluid dynamics modeling work was conducted. The results indicate that the parallel cross-flow field regulated by the double-layer structure enhances the heat exchange in both horizontal and vertical directions and consequently gives an uniform temperature distribution and high heat transfer efficiency.

  17. Spin transport in tantalum studied using magnetic single and double layers

    NASA Astrophysics Data System (ADS)

    Montoya, Eric; Omelchenko, Pavlo; Coutts, Chris; Lee-Hone, Nicholas R.; Hübner, René; Broun, David; Heinrich, Bret; Girt, Erol

    2016-08-01

    We report on spin transport in sputter-grown Ta films measured by ferromagnetic resonance. Spin diffusion length and spin mixing conductance are determined from magnetic damping measurements for a varying thickness of Ta layer 0 ≤dTa≤10 nm. The different boundary conditions of single- and double-magnetic-layer heterostructures Py |Ta and Py |Ta | [Py |Fe ] allow us to significantly narrow down the parameter space and test various models. We show that a common approach of using bulk resistivity value in the analysis yields inconsistent spin diffusion length and spin mixing conductance values for magnetic single- and double-layer structures. X-ray diffraction shows that bulk Ta is a combination of β -Ta and bcc-Ta . However, in the region of significant spin transport, ≲2 nm, there is an intermediate region of growth where the Ta lacks long-range structural order, as observed by transmission electron microscopy. Thickness-dependent resistivity measurements confirm that the bulk and intermediate regions have significantly different resistivity values. We find that the data can be well represented if the intermediate region resistivity value is used in the analysis. Additionally, the data can be fit if resistivity has the measured thickness dependence and spin diffusion length is restricted to be inversely proportional to resistivity. Finally, we rule out a model in which spin diffusion length is a constant, while the resistivity has the measured thickness dependence.

  18. Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstruction method.

    PubMed

    Nakayama, Hirokazu; Wada, Natsuko; Tsuhako, Mitsutomo

    2004-01-28

    The intercalation of amino acids and some peptides into Mg-Al layered double hydroxide known as hydrotalcite was examined. Although the intercalation by ion-exchange method was unsuccessful, all the amino acids except for Lys and Arg, and peptides examined could be intercalated into the layered double hydroxide by reconstruction method using Mg-Al oxide precursor. The uptake amounts of amino acids and peptides were 0.9-2.7 mmol per 1 g of LDH. Intercalation compounds were examined by using XRD and solid-state NMR. For Gly, Ala, Ser, Thr, Pro, Asn, Gln, Asp, Glu, and aspartame the intercalation accompanied the expansion of interlayer distance of the solid products, whereas the other amino acids and oligoglycine showed no expansion. The intercalation mechanism and release profile in K(2)CO(3) aqueous solution were also investigated. And the cointercalation of amino acids and peptides into Mg-Al LDH and easy release of amino acids from the LDH layer were found.

  19. A counter-charge layer in generalized solvents framework for electrical double layers in neat and hybrid ionic liquid electrolytes

    SciTech Connect

    Huang, Jingsong; Feng, Guang; Sumpter, Bobby G; Qiao, Rui; Meunier, Vincent

    2011-01-01

    Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure capacitance relationships for these systems. Here we present a theoretical framework termed counter-charge layer in generalized solvents (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominately by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) and in a mixture of [BMIM][BF4] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF4]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero

  20. Acoustic characterization of void distributions across carbon-fiber composite layers

    NASA Astrophysics Data System (ADS)

    Tayong, Rostand B.; Smith, Robert A.; Pinfield, Valerie J.

    2016-02-01

    Carbon Fiber Reinforced Polymer (CFRP) composites are often used as aircraft structural components, mostly due to their superior mechanical properties. In order to improve the efficiency of these structures, it is important to detect and characterize any defects occurring during the manufacturing process, removing the need to mitigate the risk of defects through increased thicknesses of structure. Such defects include porosity, which is well-known to reduce the mechanical performance of composite structures, particularly the inter-laminar shear strength. Previous work by the authors has considered the determination of porosity distributions in a fiber-metal laminate structure [1]. This paper investigates the use of wave-propagation modeling to invert the ultrasonic response and characterize the void distribution within the plies of a CFRP structure. Finite Element (FE) simulations are used to simulate the ultrasonic response of a porous composite laminate to a typical transducer signal. This simulated response is then applied as input data to an inversion method to calculate the distribution of porosity across the layers. The inversion method is a multi-dimensional optimization utilizing an analytical model based on a normal-incidence plane-wave recursive method and appropriate mixture rules to estimate the acoustical properties of the structure, including the effects of plies and porosity. The effect of porosity is defined through an effective wave-number obtained from a scattering model description. Although a single-scattering approach is applied in this initial study, the limitations of the method in terms of the considered porous layer, percentage porosity and void radius are discussed in relation to single- and multiple-scattering methods. A comparison between the properties of the modeled structure and the void distribution obtained from the inversion is discussed. This work supports the general study of the use of ultrasound methods with inversion to

  1. A Spherically-Shaped PZT Thin Film Ultrasonic Transducer with an Acoustic Impedance Gradient Matching Layer Based on a Micromachined Periodically Structured Flexible Substrate

    PubMed Central

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-01-01

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20–50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a −6 dB bandwidth of approximately 65%. PMID:24113683

  2. The acoustic performance of double-skin facades: A design support tool for architects

    NASA Astrophysics Data System (ADS)

    Batungbakal, Aireen

    This study assesses and validates the influence of measuring sound in the urban environment and the influence of glass facade components in reducing sound transmission to the indoor environment. Among the most reported issues affecting workspaces, increased awareness to minimize noise led building designers to reconsider the design of building envelopes and its site environment. Outdoor sound conditions, such as traffic noise, challenge designers to accurately estimate the capability of glass facades in acquiring an appropriate indoor sound quality. Indicating the density of the urban environment, field-tests acquired existing sound levels in areas of high commercial development, employment, and traffic activity, establishing a baseline for sound levels common in urban work areas. Composed from the direct sound transmission loss of glass facades simulated through INSUL, a sound insulation software, data is utilized as an informative tool correlating the response of glass facade components towards existing outdoor sound levels of a project site in order to achieve desired indoor sound levels. This study progresses to link the disconnection in validating the acoustic performance of glass facades early in a project's design, from conditioned settings such as field-testing and simulations to project completion. Results obtained from the study's facade simulations and facade comparison supports that acoustic comfort is not limited to a singular solution, but multiple design options responsive to its environment.

  3. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    NASA Astrophysics Data System (ADS)

    Jabbari, Iraj; Poursaleh, Ali Mohammad; Khalafi, Hossein

    2016-08-01

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  4. Investigation of magnetic transitions through ultrasonic measurements in double-layered CMR manganite La1.2Sr1.8Mn2O7

    NASA Astrophysics Data System (ADS)

    Reddy, Y. S.; Vishnuvardhan Reddy, C.

    2014-03-01

    A polycrystalline, double-layered, colossal magnetoresistive manganite La1.2Sr1.8Mn2O7 is synthesized by sol-gel process and its magnetic and ultrasonic properties were investigated in the temperature range 80-300 K. The sample has Curie temperature at 124 K, where the sample exhibits a transition from paramagnetic insulator to ferromagnetic metallic state. The longitudinal sound velocity measurements show a significant hardening of sound velocity below TC, which may be attributed to the coupling between ferromagnetic spins and longitudinal acoustic phonons. The magnetization and ultrasonic studies reveal the presence of secondary transition at ≈ 260 K in this sample. The present sound velocity measurement results confirm the reliability of ultrasonic investigations as an independent tool to probe magnetic transitions in manganites.

  5. Direct calculation of acoustic streaming including the boundary layer phenomena in an ultrasonic air pump

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-05-01

    Direct finite difference fluid simulation of acoustic streaming on the fine-meshed three-dimensiona model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have never been observed in the calculation in the ultrasonic air pump of this type.

  6. Numerical simulation of current-free double layers created in a helicon plasma device

    SciTech Connect

    Rao, Sathyanarayan; Singh, Nagendra

    2012-09-15

    Two-dimensional simulations reveal that when radially confined source plasma with magnetized electrons and unmagnetized ions expands into diverging magnetic field B, a current-free double layer (CFDL) embedded in a conical density structure forms, as experimentally measured in the Australian helicon plasma device (HPD). The magnetized electrons follow the diverging B while the unmagnetized ions tend to flow directly downstream of the source, resulting in a radial electric field (E{sub Up-Tack }) structure, which couples the ion and electron flows. Ions are transversely (radially) accelerated by E{sub Up-Tack} on the high potential side of the double layer in the CFDL. The accelerated ions are trapped near the conical surface, where E{sub Up-Tack} reverses direction. The potential structure of the CFDL is U-shaped and the plasma density is enhanced on the conical surface. The plasma density is severely depleted downstream of the parallel potential drop ({phi}{sub Double-Vertical-Line Double-Vertical-Line o}) in the CFDL; the density depletion and the potential drop are related by quasi-neutrality condition, including the divergence in the magnetic field and in the plasma flow in the conical structure. The potential and density structures, the CFDL spatial size, its electric field strengths and the electron and ion velocities and energy distributions in the CFDL are found to be in good agreements with those measured in the Australian experiment. The applicability of our results to measured axial potential profiles in magnetic nozzle experiments in HPDs is discussed.

  7. Ultrafast switching of an electrochromic device based on layered double hydroxide/Prussian blue multilayered films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxi; Zhou, Awu; Dou, Yibo; Pan, Ting; Shao, Mingfei; Han, Jingbin; Wei, Min

    2015-10-01

    Electrochromic materials are the most important and essential components in an electrochromic device. Herein, we fabricated high-performance electrochromic films based on exfoliated layered double hydroxide (LDH) nanosheets and Prussian blue (PB) nanoparticles via the layer-by-layer assembly technique. X-ray diffraction and UV-vis absorption spectroscopy indicate a periodic layered structure with uniform and regular growth of (LDH/PB)n ultrathin films (UTFs). The resulting (LDH/PB)n UTF electrodes exhibit electrochromic behavior arising from the reversible K+ ion migration into/out of the PB lattice, which induces a change in the optical properties of the UTFs. Furthermore, an electrochromic device (ECD) based on the (LDH/PB)n-ITO/0.1 M KCl electrolyte/ITO sandwich structure displays superior response properties (0.91/1.21 s for coloration/bleaching), a comparable coloration efficiency (68 cm2 C-1) and satisfactory optical contrast (45% at 700 nm), in comparison with other inorganic material-based ECDs reported previously. Therefore, this work presents a facile and cost-effective strategy to immobilize electrochemically active nanoparticles in a 2D inorganic matrix for potential application in displays, smart windows and optoelectronic devices.Electrochromic materials are the most important and essential components in an electrochromic device. Herein, we fabricated high-performance electrochromic films based on exfoliated layered double hydroxide (LDH) nanosheets and Prussian blue (PB) nanoparticles via the layer-by-layer assembly technique. X-ray diffraction and UV-vis absorption spectroscopy indicate a periodic layered structure with uniform and regular growth of (LDH/PB)n ultrathin films (UTFs). The resulting (LDH/PB)n UTF electrodes exhibit electrochromic behavior arising from the reversible K+ ion migration into/out of the PB lattice, which induces a change in the optical properties of the UTFs. Furthermore, an electrochromic device (ECD) based on the (LDH

  8. New layered double hydroxides by prepared by the intercalation of gibbsite

    SciTech Connect

    Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M.

    2015-04-15

    New layered double hydroxides (LDHs) with the composition [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH){sub 3}, with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl{sub 2}·2H{sub 2}O and ZnCl{sub 2} failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl{sub 4}(OH){sub 12}](NO{sub 3}){sub 2}·1.5H{sub 2}O (M=Co, Ni) compounds. - Graphical abstract: New layered double hydroxides (LDHs) with the composition [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH){sub 3}, with the appropriate chloride salt in a synthesis in which no additional solvent is used and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature. - Highlights: • Synthesis of new layered double hydroxides, [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni). • Demonstration of the anion exchange capacity with both organic and inorganic anions. • Demonstration of the generality of the synthesis for LDHs.

  9. Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium.

    PubMed

    Baldessari, Fabio; Santiago, Juan G

    2008-09-15

    In this paper a new model is described for calculating the electric potential field in a long, thin nanochannel with overlapped electric double layers. Electrolyte concentration in the nanochannel is predicted self-consistently via equilibrium between ionic solution in the wells and within the nanochannel. Differently than published models that require detailed iterative numerical solutions of coupled differential equations, the framework presented here is self-consistent and predictions are obtained solving a simple one-dimensional integral. The derivation clearly shows that the electric potential field depends on three new parameters: the ratio of ion density in the channel to ion density in the wells; the ratio of free-charge density to bulk ion density within the channel; and a modified Debye-Hückel thickness, which is the relevant scale for shielding of surface net charge. For completeness, three wall-surface boundary conditions are analyzed: specified zeta-potential; specified surface net charge density; and charge regulation. Predictions of experimentally observable quantities based on the model proposed here, such as depth-averaged electroosmotic flow and net ionic current, are significantly different than results from previous overlapped electric double layer models. In this first paper of a series of two, predictions are presented where channel depth is varied at constant well concentration. Results show that under conditions of electric double layer overlap, electroosmosis contributes only a small fraction of the net ionic current, and that most of the measurable current is due to ionic conduction in conditions of increased counterion density in the nanochannel. In the second of this two-paper series, predictions are presented where well-concentration is varied and the channel depth is held constant, and the model described here is employed to study the dependence of ion mobility on ionic strength, and compare predictions to measurements of ionic

  10. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    SciTech Connect

    Gao, Xiaorui; Lei, Lixu; O'Hare, Dermot; Xie, Juan; Gao, Pengran; Chang, Tao

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  11. Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2.

    PubMed

    Katase, Takayoshi; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2014-03-18

    A(1-x)Fe(2-y)Se2 (A = K, Cs, Rb, Tl) are recently discovered iron-based superconductors with critical temperatures (Tc) ranging up to 32 K. Their parent phases have unique properties compared with other iron-based superconductors; e.g., their crystal structures include ordered Fe vacancies, their normal states are antiferromagnetic (AFM) insulating phases, and they have extremely high Néel transition temperatures. However, control of carrier doping into the parent AFM insulators has been difficult due to their intrinsic phase separation. Here, we fabricated an Fe-vacancy-ordered TlFe1.6Se2 insulating epitaxial film with an atomically flat surface and examined its electrostatic carrier doping using an electric double-layer transistor (EDLT) structure with an ionic liquid gate. The positive gate voltage gave a conductance modulation of three orders of magnitude at 25 K, and further induced and manipulated a phase transition; i.e., delocalized carrier generation by electrostatic doping is the origin of the phase transition. This is the first demonstration, to the authors' knowledge, of an EDLT using a Mott insulator iron selenide channel and opens a way to explore high Tc superconductivity in iron-based layered materials, where carrier doping by conventional chemical means is difficult.

  12. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.

    2014-10-01

    A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  13. Mössbauer and XRD study of intercalated CaFe-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Sipiczki, Mónika; Kuzmann, Ernő; Pálinkó, István; Homonnay, Zoltán; Sipos, Pál; Kukovecz, Ákos; Kónya, Zoltán

    2014-04-01

    N-containing fully saturated (L-prolinate) or aromatic (indole-2-carboxylate) heterocyclic anions were immobilised in CaFe-layered double hydroxide with the dehydration-rehydration method from aqueous ethanol or acetone. The structure of the resulting organic-inorganic hybrids was characterised mainly with powder X-ray diffraction and 57Fe Mössbauer spectroscopy, and as supplementary analysis scanning electron microscopy, energy dispersive X-ray spectroscopy with elemental mapping and molecular modelling were also applied. It was found that the solvent mixture used for the synthesis caused enormous difference in the interlayer spacings of the obtained inorganic-organic hybrids.

  14. Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Funabashi, Tsubasa; Mizuno, Jun; Sato, Masamichi; Kitajima, Masao; Matsuura, Makoto; Shoji, Shuichi

    2013-09-01

    A novel thin, wood-based carbon material with heterogeneous pores, film of lignocellulosic carbon material (FLCM), was successfully fabricated by carbonizing softwood samples of Picea jezoensis (Jezo spruce). Simultaneous increase in the specific surface area of FLCM and its affinity for electrolyte solvents in an electric double-layer capacitor (EDLC) were achieved by the vacuum ultraviolet/ozone (VUV/O3) treatment. This treatment increased the specific surface area of FLCM by 50% over that of original FLCM. The results obtained in this study confirmed that FLCM is an appropriate self-supporting EDLC electrode material without any warps and cracks.

  15. Temperature aspect of degradation of electrochemical double-layer capacitors (EDLC)

    NASA Astrophysics Data System (ADS)

    Baek, Dong-Cheon; Kim, Hyun-Ho; Lee, Soon-Bok

    2015-03-01

    Electric double layer capacitors (EDLC) cells have a process variation and temperature dependency in capacitance so that balancing is required when they are connected in series, which includes electronic voltage management based on capacitance monitoring. This paper measured temperature aspect of capacitance periodically to monitor health and degradation behavior of EDLC stressed under high temperatures and zero below temperatures respectively, which enables estimation of the state of health (SOH) regardless of temperature. At high temperature, capacitance saturation and delayed expression of degradation was observed. After cyclic stress at zero below temperature, less effective degradation and time recovery phenomenon were occurred.

  16. Numerical study of Electrical double layer development: Analysis of the charge genesis

    NASA Astrophysics Data System (ADS)

    Leblanc, P.; Cabaleiro, J. M.; Paillat, T.

    2015-10-01

    This work presents a numerical simulation of the Electric Double Layer (EDL) development process at a solid/liquid interface for adsorption and corrosion models. First, the study is conducted for static EDL development (without liquid flow) until it reaches a static equilibrium. Afterwards, the EDL is perturbed by a laminar liquid flow leading to flow electrification phenomena (dynamic study). The charge conservation equations of the liquid species have been implemented in an industrial code. A parametric study was performed to consider different chemical reaction scenarios and different models.

  17. Superconductivity. Light-induced superconductivity using a photoactive electric double layer.

    PubMed

    Suda, Masayuki; Kato, Reizo; Yamamoto, Hiroshi M

    2015-02-13

    Electric double layers (EDLs) of ionic liquids have been used in superconducting field-effect transistors as nanogap capacitors. Because of the freezing of the ionic motion below ~200 kelvin, modulations of the carrier density have been limited to the high-temperature regime. Here we observe carrier-doping-induced superconductivity in an organic Mott insulator with a photoinduced EDL based on a photochromic spiropyran monolayer. Because the spiropyran can isomerize reversibly between nonionic and zwitterionic isomers through photochemical processes, two distinct built-in electric fields can modulate the carrier density even at cryogenic conditions. PMID:25678657

  18. A photochromic thin film based on salicylideneaniline derivatives intercalated layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Xin Rui; Lu, Jun; Yan, Dongpeng; Wei, Min; Evans, David G.; Duan, Xue

    2010-06-01

    Optically transparent thin films with photochromic properties have been fabricated by means of co-intercalation of azomethine-H anions (AMH) and 1-pentanesulfonate (PS) with different molar ratios into the galleries of a ZnAl layered double hydroxide (LDH). The photochromism of AMH occurred in a 2D confined inorganic matrix has been studied by steady state and transient UV-vis spectroscopy. The AMH anion undergoes an excited-state intramolecular proton transfer from the enol tautomer to trans-keto tautomer after UV excitation, and the relaxed back-isomerization to the ground state of enol tautomer was investigated by transient UV-vis spectroscopy.

  19. Thin-shell wormholes with a double layer in quadratic F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Eiroa, Ernesto F.; Figueroa Aguirre, Griselda

    2016-08-01

    We present a family of spherically symmetric Lorentzian wormholes in quadratic F (R ) gravity, with a thin shell of matter corresponding to the throat. At each side of the shell, the geometry has a different constant value of the curvature scalar R . The junction conditions determine the equation of state between the pressure and energy density at the throat, where a double layer is also located. We analyze the stability of the configurations under perturbations preserving the spherical symmetry. In particular, we study thin-shell wormholes with mass and charge. We find that there exist values of the parameters for which stable static solutions are possible.

  20. Synthesis and carbon dioxide sorption of layered double hydroxide/silica foam nanocomposites with hierarchical mesostructure.

    PubMed

    Fu, Liling; Qi, Genggeng; Shekhah, Osama; Belmabkhout, Youssef; Estevez, Luis; Eddaoudi, Mohamed; Giannelis, Emmanuel P

    2014-04-01

    Layered double hydroxides (LDHs) with a hierarchical mesostructure are successfully synthesized on mesoporous silica foams by simple impregnation and hydrothermal treatment. The as-synthesized LDH/silica foam nanocomposites show well-defined mesostructures with high surface areas, large pore volumes, and mesopores of 6-7 nm. The nanocomposites act as carbon dioxide (CO2 ) sorbents under simulated flue gas conditions. They also exhibit significantly enhanced CO2 capacities under high-pressure conditions and high CO2 /N2 and CO2 /CH4 selectivities.

  1. Post heat treatment effects on double layer metal structures for VLSI applications

    NASA Technical Reports Server (NTRS)

    Wade, T. E.; Trotter, J. D.

    1978-01-01

    The realization of high yield double layer metal systems using wet chemistry processes and the ability to extend yields beyond that attainable with wet chemistry by means of post sintering processes at temperatures below 500 C for potential applications in very large scale integration structures were studied. Yields in excess of 98% and average total contact resistance of less than 150 ohms and 200 ohms were realized for a series of 560 vias of 0.5 X 0.5 mils and 0.2 X 0.2 mils in size, respectively.

  2. Electrostatic solitary wave and double layer in a plasma with heavy ions and nonthermally distributed electrons

    SciTech Connect

    Choi, C.-R.; Min, K.-W.; Woo, M.-H.; Ryu, C.-M.

    2010-09-15

    The existence condition for bump and dip type, as well as double layer (DL), solutions of electrostatic solitary waves (ESWs) in a nonthermal electron plasma with heavy ions is investigated by a pseudopotential method. It is found that the nonthermality of electrons determines the existence of the DL solution and that the amplitude of ESWs is enhanced by the density of heavy ions. When the heavy ion density is beyond a certain critical value, ESWs and DLs cannot exist. It is also found that both the lower and upper critical Mach numbers are reduced by the presence of heavy ions.

  3. Double layers in plasmas; Proceedings of the Conference, Huntsville, AL, Mar. 1986

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor)

    1987-01-01

    Papers are presented on such topics as double layers (DLs) and plasma-wave resistivity in extragalactic jets; the formation of a DL leading to the critical velocity phenomenon; formation mechanisms of laboratory DLs in triple plasma devices; and linear Vlasov stability in one-dimensional DLs. Consideration is also given to weak DLs in the auroral ionosphere; the dynamical properties of very strong DLs in a triple plasma device; particle simulation of auroral DLs; a muonic X-ray laser assisted by the catalyzed fusion of deuterium and tritium; and the feasbility of measuring the nuclear reaction cross sections at energies of several keV in a target under laser compression.

  4. Structure and charging kinetics of electrical double layers at large electrode voltage

    SciTech Connect

    Cagle, Clint; Feng, Guang; Qiao, Rui; Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2009-01-01

    The structure and charging kinetics of electrical double layers (EDLs) at interfaces of NaCl solutions and planar electrodes are studied by molecular dynamics (MD) and Poisson Nernst Planck (PNP) simulations. Based on the MD results and prior experimental data, we show that counterion packing in planar EDLs does not reach the steric limit at electrode voltages below 1 V. In addition, we demonstrate that a PNP model, when complemented with a Stern model, can be effectively used to capture the overall charging kinetics. However, the PNP/Stern model can only give a qualitative description of the fine features of the EDL.

  5. DOUBLE-DIFFUSIVE INSTABILITIES OF A SHEAR-GENERATED MAGNETIC LAYER

    SciTech Connect

    Silvers, Lara J.; Proctor, Michael R. E.; Vasil, Geoffrey M.; Brummell, Nicholas H.

    2009-09-01

    Previous theoretical work has speculated about the existence of double-diffusive magnetic buoyancy instabilities of a dynamically evolving horizontal magnetic layer generated by the interaction of forced vertically sheared velocity and a background vertical magnetic field. Here, we confirm numerically that if the ratio of the magnetic to thermal diffusivities is sufficiently low then such instabilities can indeed exist, even for high Richardson number shear flows. Magnetic buoyancy may therefore occur via this mechanism for parameters that are likely to be relevant to the solar tachocline, where regular magnetic buoyancy instabilities are unlikely.

  6. Direct thrust measurement of a permanent magnet helicon double layer thruster

    SciTech Connect

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  7. Direct thrust measurement of a permanent magnet helicon double layer thruster

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-01

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  8. The similarity of electric double-layer interaction from the general Poisson-Boltzmann theory.

    PubMed

    Zhang, Junfeng; Drechsler, Astrid; Grundke, Karina; Kwok, Daniel Y

    2006-08-01

    We studied electric double-layer (EDL) interactions in electrolytes with different valence combinations. Our results show that the interactions are similar for electrolytes with the same co-ion valences and concentrations and such similarity increases with the co-ion valence and surface potential. A scaled surface potential was defined and found to be useful in characterizing the difference in EDL interaction. These results show that co-ions play a more important role than counterions in determining EDL potential and interaction in an electrolyte solution, especially for systems with high co-ion valence and/or high surface potentials.

  9. Effects of mixed discrete surface charges on the electrical double layer.

    PubMed

    Jiménez-Ángeles, Felipe

    2012-08-01

    Adsorption of surface coions and charge reversal are induced at the electrical double layer of a wall charged with positive and negative surface sites next to an electrolyte solution. While for the considered surface charge density these effects are found over a wide range of conditions, they are not observed for the typically employed surface models in equivalent conditions. Important consequences in electrophoresis experiments for different colloids with equal effective surface charge density are foreseen. This study is carried out by means of molecular dynamics simulations.

  10. The Skylab barium plasma injection experiments. II - Evidence for a double layer

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Davis, T. N.; Peek, H. M.

    1976-01-01

    Television observations of a barium-plasma flux tube extending from near 4500 km to near 10,000 km during a magnetic substorm and dawn-sector auroral display indicated several interesting anomalous events. Beyond 5500 km, there was a rapid increase in brightness accompanied by flux-tube splitting and diffusion, leaving behind a truncated single flux tube. From the orientation of the flux tube compared with theoretical field models, the presence of a substantial field-aligned current sheet is deduced. A suggested explanation of these phenomena is given in terms of a plasma potential double layer.

  11. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, G.N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are disclosed. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material. 6 figs.

  12. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic-impedance measurements. [Patent application

    DOEpatents

    Not Available

    1981-06-10

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are presented. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  13. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, Gary N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  14. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  15. Nonpolarizing single layer inorganic and double layer organic-inorganic one-dimensional guided mode resonance filters

    NASA Astrophysics Data System (ADS)

    Saleem, Muhammad Rizwan; Honkanen, Seppo; Turunen, Jari

    2013-03-01

    Guided mode resonance (GMRF) phenomena occurs when the evanescent orders of a diffraction grating are coupled to the waveguide modes and propagate out at given optical parameters such as wavelength, angle, and state of polarization of incident light. The outcoupling field from a waveguide is, in general, polarization sensitive. Polarization insensitive 1D subwavelength grating structures with high diffraction efficiency at normal and oblique incidence are required, for example, in optical communications where output light may possess any polarization state. This means that an s- or p-polarized input optical field, which generally couples TE- or TM-modes in the waveguide under different resonance conditions, can be tuned at one resonance by selecting suitable grating parameters, regardless of the input polarization state. All of the polarization insensitive devices fabricated to date either employing a method which is not cost-effective or simple enough to some extent. In this work, we report the design and fabrication of two types of non-polarizing binary-structured onedimensional (1D) GMRF at normal incidence. A single layer binary-profile TiO2 resonant grating (grating-I) is fabricated by Atomic layer deposition (ALD), electron beam lithography (EBL) and reactive ion etching (RIE), which demonstrates almost perfect non-polarizing filtering effect with 1D grating under normal incidence. A double layer rectangular-profile polycarbonate-TiO2 1D GMR grating (grating-II) is fabricated by nanoimprint lithography (NIL) and ALD which also shows good non-polarizing property and the potential of cost-effective mass fabrication of such functional devices.

  16. Electric Double Layer electrostatics of spherical polyelectrolyte brushes with pH-dependent charge density

    NASA Astrophysics Data System (ADS)

    Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team

    Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.

  17. Zn-Co layered double hydroxide modified hematite photoanode for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Xu, Dongyu; Rui, Yichuan; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2015-12-01

    Zinc-cobalt layered double hydroxide (LDH) was electrodeposited on Ti-doped hematite photoanodes for the first time, and a significant enhanced performance for photoelectrochemical water splitting was demonstrated over the composite photoanodes. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS) were characterized with the resulted photoanodes. With the electrodepositing treatment, the photocurrent density increased from 1.27 mA/cm2 for pristine hematite to 1.73 mA/cm2 for modified materials at 1.23 V vs. RHE (i.e. 36% improvement). The photocurrent improvement is mainly attributed to a suppression of electron-hole recombination and reduced overpotential for water oxidation at the hematite-electrolyte interface due to the formation of Zn-Co LDH layer on hematite.

  18. Hybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Clemente-León, Miguel; Coronado, Eugenio; Primo, Vicent; Ribera, Antonio; Soriano-Portillo, Alejandra

    2008-12-01

    A hybrid magnetic material formed by ferritin intercalated into a layered double hydroxide (LDH) of Mg and Al (Mg/Al molar ratio 2) is prepared and characterized through powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, electron probe microanalysis (EPMA) and high resolution transmission electron microscopy (HRTEM). One observes an enhancement in the thermal stability of the ferritin molecules when they are inserted in the layered material. Magnetic measurements of the hybrid material exhibit the typical superparamagnetic behaviour of the ferritin molecule. On the other hand, the intercalation of ferritin into the LDH guarantees a homogeneous dispersion of the ferritin molecules, which do not aggregate even after calcination of the sample. This feature allows obtaining well-dispersed magnetic metal oxide nanoparticles upon calcination of the hybrid material.

  19. Reciprocity in spatial evolutionary public goods game on double-layered network.

    PubMed

    Kim, Jinho; Yook, Soon-Hyung; Kim, Yup

    2016-08-09

    Spatial evolutionary games have mainly been studied on a single, isolated network. However, in real world systems, many interaction topologies are not isolated but many different types of networks are inter-connected to each other. In this study, we investigate the spatial evolutionary public goods game (SEPGG) on double-layered random networks (DRN). Based on the mean-field type arguments and numerical simulations, we find that SEPGG on DRN shows very rich interesting phenomena, especially, depending on the size of each layer, intra-connectivity, and inter-connected couplings, the network reciprocity of SEPGG on DRN can be drastically enhanced through the inter-connected coupling. Furthermore, SEPGG on DRN can provide a more general framework which includes the evolutionary dynamics on multiplex networks and inter-connected networks at the same time.

  20. Electrical double layers and differential capacitance in molten salts from density functional theory

    DOE PAGES

    Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.

    2014-08-05

    Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less