Sample records for acoustic emissions monitoring

  1. Acoustic-Emission Weld-Penetration Monitor

    NASA Technical Reports Server (NTRS)

    Maram, J.; Collins, J.

    1986-01-01

    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  2. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  3. Biomechanical monitoring of healing bone based on acoustic emission technology.

    PubMed

    Hirasawa, Yasusuke; Takai, Shinro; Kim, Wook-Cheol; Takenaka, Nobuyuki; Yoshino, Nobuyuki; Watanabe, Yoshinobu

    2002-09-01

    Acoustic emission testing is a well-established method for assessment of the mechanical integrity of general construction projects. The purpose of the current study was to investigate the usefulness of acoustic emission technology in monitoring the yield strength of healing callus during external fixation. Thirty-five patients with 39 long bones treated with external fixation were evaluated for fracture healing by monitoring load for the initiation of acoustic emission signal (yield strength) under axial loading. The major criteria for functional bone union based on acoustic emission testing were (1) no acoustic emission signal on full weightbearing, and (2) a higher estimated strength than body weight. The yield strength monitored by acoustic emission testing increased with the time of healing. The external fixator could be removed safely and successfully in 97% of the patients. Thus, the acoustic emission method has good potential as a reliable method for monitoring the mechanical status of healing bone.

  4. Acoustic emission monitoring of polymer composite materials

    NASA Technical Reports Server (NTRS)

    Bardenheier, R.

    1981-01-01

    The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.

  5. Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei

    2016-04-01

    Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.

  6. Acoustic emission monitoring of steel bridge members : interim report.

    DOT National Transportation Integrated Search

    1995-01-01

    This interim report describes the current status of acoustic emission (AE) monitoring of steel bridge members. The report includes a brief introduction to the theory of acoustic emission and a comprehensive summary of previous efforts to apply AE mon...

  7. Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring

    DOT National Transportation Integrated Search

    1995-01-01

    Acoustic emission monitoring was performed in a unique way on concrete specimens containing reinforcing steel and the acoustic emission events correlated with the presence of rebar corrosion. Verification of rebar corrosion was done by galvanic curre...

  8. Design of acoustic emission monitoring system based on VC++

    NASA Astrophysics Data System (ADS)

    Yu, Yang; He, Wei

    2015-12-01

    At present, a lot of companies at home and abroad have researched and produced a batch of specialized monitoring instruments for acoustic emission (AE). Most of them cost highly and the system function exists in less stable and less portability for the testing environment and transmission distance and other aspects. Depending on the research background and the status quo, a dual channel intelligent acoustic emission monitoring system was designed based on Microsoft Foundation Classes in Visual Studio C++ to solve some of the problems in the acoustic emission research and meet the needs of actual monitoring task. It contains several modules such as main module, acquisition module, signal parameters setting module and so on. It could give out corrosion AE waveform and signal parameters results according to the main menu selected parameters. So the needed information could be extracted from the experiments datum to solve the problem deeply. This soft system is the important part of AE detection g system.

  9. Acoustic emission monitoring of composite containment systems

    NASA Astrophysics Data System (ADS)

    Maguire, John R.

    2011-07-01

    This paper considers two different types of composite containment system, and two different types of acoustic emission (AE) monitoring approach. The first system is a composite reinforced pressure vessel (CRPV) which is monitored both during construction and in-service using a broadband modal acoustic emission (MAE) technique. The second system is a membrane cargo containment system which is monitored using both a global as well as a local AE technique. For the CRPV, the damage assessment is concerned mainly with the integrity of the composite outer layer at the construction stage, and possible fatigue cracking of the inner steel liner at the in-service stage. For the membrane tank, the damage assessment is concerned with locating and quantifying any abnormal porosities that might develop in-service. By comparing and contrasting the different types of structural system and different monitoring approaches inferences are drawn as to what role AE monitoring could take in the damage assessment of other types of composite containment system. (Detailed technical data have not been included, due to client confidentiality constraints.)

  10. Acoustic emission data assisted process monitoring.

    PubMed

    Yen, Gary G; Lu, Haiming

    2002-07-01

    Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.

  11. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements

    PubMed Central

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-01-01

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface. PMID:28327510

  12. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements.

    PubMed

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-03-22

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.

  13. Acoustic emission monitoring of steel bridge members : final report.

    DOT National Transportation Integrated Search

    1997-01-01

    This report describes the results of a study to characterize the acoustic emission (AE) associated with steel cracking and various sources of noise in a typical bridge environment. It summarizes previous applications ofAE monitoring of steel bridges ...

  14. Smart acoustic emission system for wireless monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol

    2008-03-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical

  15. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  16. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  17. Acoustic emission monitoring of degradation of cross ply laminates.

    PubMed

    Aggelis, D G; Barkoula, N M; Matikas, T E; Paipetis, A S

    2010-06-01

    The scope of this study is to relate the acoustic activity of damage in composites to the failure mechanisms associated with these materials. Cross ply fiber reinforced composites were subjected to tensile loading with recording of their acoustic activity. Acoustic emission (AE) parameters were employed to monitor the transition of the damage mechanism from transverse cracking (mode I) to delamination (mode II). Wave propagation measurements in between loading steps revealed an increase in the relative amplitude of the propagated wave, which was attributed to the development of delamination that confined the wave to the top longitudinal plies of the composite.

  18. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors.

    PubMed

    Qin, Lei; Ren, Hong-Wei; Dong, Bi-Qin; Xing, Feng

    2014-10-02

    Acoustic emission (AE) is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1-3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  19. Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang

    Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).

  20. FRP/steel composite damage acoustic emission monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Chen, Zhi

    2015-04-01

    FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.

  1. Thick-film acoustic emission sensors for use in structurally integrated condition-monitoring applications.

    PubMed

    Pickwell, Andrew J; Dorey, Robert A; Mba, David

    2011-09-01

    Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.

  2. Acoustic emission monitoring of CFRP cables for cable-stayed bridges

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Lanza di Scalea, Francesco

    2001-08-01

    The advantages of fiber-reinforced polymer (FRP) composite include excellent corrosion resistance, high specific strength and stiffness, as well as outstanding fatigue behavior. The University of California San Diego's I- 5/Gilman Advanced Technology Bridge Project will help demonstrating the use of such materials in civil infrastructures. This paper presents an acoustic emission (AE) study performed during laboratory proof tests of carbon fiber-reinforced polymer stay-cables of possible use in the I-5/Gilman bridge. Three types of cables, both braided and single strand, were tested to failure at lengths ranging from 5500 mm to 5870 mm. AE allowed to monitor damage initiation and progression in the test pieces more accurately than the conventional load versus displacement curve. All of the cables exhibited acoustic activities revealing some degree of damage well before reaching final collapse, which is expected in FRP's. It was also shown that such cables are excellent acoustic waveguides exhibiting very low acoustic attenuation, which makes them an ideal application for an AE-based health monitoring approach.

  3. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    PubMed

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Quantitative acoustic emission monitoring of fatigue cracks in fracture critical steel bridges.

    DOT National Transportation Integrated Search

    2014-01-01

    The objective of this research is to evaluate the feasibility to employ quantitative acoustic : emission (AE) techniques for monitoring of fatigue crack initiation and propagation in steel : bridge members. Three A36 compact tension steel specimens w...

  5. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    DOE PAGES

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less

  6. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.

    PubMed

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.

  7. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    PubMed Central

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  8. Monitoring industrial pharmaceutical crystallization processes using acoustic emission in pure and impure media.

    PubMed

    Gherras, Nesrine; Serris, Eric; Fevotte, Gilles

    2012-12-15

    Acoustic emission (AE) which has been successfully applied for monitoring a rather wide variety of solids elaboration processes was almost never evaluated in the field of industrial pharmaceutical crystallization. Few papers reported that solution crystallization processes give rise to acoustic emission signals that could be related to the development of the basic crystallization phenomena. This study is intended to demonstrate new perspectives opened up by the possible use of acoustic emission (AE) as a non-intrusive and non destructive sensor for monitoring solution crystallization with a particular focus being put on the presence of impurities in real industrial processes. The wealth of acquired AE information is highlighted and it is suggested that such information could allow the design of innovative multipurpose sensing strategies. It is shown notably that AE provides a very early detection of nucleation events, much before the onset of the so-called "nucleation burst". It is also shown that AE brings new insight into the effect of impurities on both the development of the crystallization process and the quality of the crystallized product. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. System for Multiplexing Acoustic Emission (AE) Instrumentation

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)

    2003-01-01

    An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.

  10. Acoustic Emission Monitoring for Assessment of Steel Bridge Details

    NASA Astrophysics Data System (ADS)

    Kosnik, D. E.; Hopwood, T.; Corr, D. J.

    2011-06-01

    Acoustic emission (AE) testing was deployed on details of two large steel Interstate Highway bridges: one cantilever through-truss and one trapezoidal box girder bridge. Quantitative measurements of activity levels at known and suspected crack locations were made by monitoring AE under normal service loads (e.g., live traffic and wind). AE indications were used to direct application of radiography, resulting in identification of a previously unknown flaw, and to inform selection of a retrofit detail.

  11. Origin of acoustic emission produced during single point machining

    NASA Astrophysics Data System (ADS)

    Heiple, C. R.; Carpenter, S. H.; Armentrout, D. L.

    1991-05-01

    Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emission produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent.

  12. Origin of acoustic emission produced during single point machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R,.; Carpenter, S.H.; Armentrout, D.L.

    1991-01-01

    Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emissionmore » produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent. 21 refs., 19 figs., 4 tabs.« less

  13. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  14. Laser acoustic emission thermal technique (LAETT): a technique for generating acoustic emission in dental composites.

    PubMed

    Duray, S J; Lee, S Y; Menis, D L; Gilbert, J L; Lautenschlager, E P; Greener, E H

    1996-01-01

    This study was designed to investigate a new method for generating interfacial debonding between the resin matrix and filler particles of dental composites. A pilot study was conducted to evaluate laser-induced acoustic emission in dental resins filled with varying quantities of particles. Model systems of 50/50 BisGMA/TEGDMA resin reinforced with 0, 25, and 75 wt% 5-10 micrometers silanated BaSiO(6) were analyzed. The sample size was 3.5 mm diameter x 0.25-0.28 mm thick. A continuous wave CO2 laser (Synrad Infrared Gas Laser Model 48-1) was used to heat the composite samples. Acoustic events were detected, recorded and processed by a model 4610 Smart Acoustic Monitor (SAM) with a 1220A preamp (Physical Acoustic Corp.) as a function of laser power. Initially, the acoustic signal from the model composites produced a burst pattern characteristic of fracturing, about 3.7 watts laser power. Acoustic emission increased with laser power up to about 6 watts. At laser powers above 6 watts, the acoustic emission remained constant. The amount of acoustic emission followed the trend: unfilled resin > composite with 25 wt% BaSiO(6) > composite with 75 wt% BaSiO(6). Acoustic emission generated by laser thermal heating is dependent on the weight percent of filler particles in the composite and the amount of laser power. For this reason, laser thermal acoustic emission might be useful as a nondestructive form of analysis of dental composites.

  15. Acoustic emissions (AE) monitoring of large-scale composite bridge components

    NASA Astrophysics Data System (ADS)

    Velazquez, E.; Klein, D. J.; Robinson, M. J.; Kosmatka, J. B.

    2008-03-01

    Acoustic Emissions (AE) has been successfully used with composite structures to both locate and give a measure of damage accumulation. The current experimental study uses AE to monitor large-scale composite modular bridge components. The components consist of a carbon/epoxy beam structure as well as a composite to metallic bonded/bolted joint. The bonded joints consist of double lap aluminum splice plates bonded and bolted to carbon/epoxy laminates representing the tension rail of a beam. The AE system is used to monitor the bridge component during failure loading to assess the failure progression and using time of arrival to give insight into the origins of the failures. Also, a feature in the AE data called Cumulative Acoustic Emission counts (CAE) is used to give an estimate of the severity and rate of damage accumulation. For the bolted/bonded joints, the AE data is used to interpret the source and location of damage that induced failure in the joint. These results are used to investigate the use of bolts in conjunction with the bonded joint. A description of each of the components (beam and joint) is given with AE results. A summary of lessons learned for AE testing of large composite structures as well as insight into failure progression and location is presented.

  16. Advanced Computing Methods for Knowledge Discovery and Prognosis in Acoustic Emission Monitoring

    ERIC Educational Resources Information Center

    Mejia, Felipe

    2012-01-01

    Structural health monitoring (SHM) has gained significant popularity in the last decade. This growing interest, coupled with new sensing technologies, has resulted in an overwhelming amount of data in need of management and useful interpretation. Acoustic emission (AE) testing has been particularly fraught by the problem of growing data and is…

  17. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors

    PubMed Central

    Rescalvo, Francisco J.; Valverde-Palacios, Ignacio; Gallego, Antolino

    2018-01-01

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures. PMID:29673155

  18. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors.

    PubMed

    Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino

    2018-04-17

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  19. Fundamental and assessment of concrete structure monitoring by using acoustic emission technique testing: A review

    NASA Astrophysics Data System (ADS)

    Desa, M. S. M.; Ibrahim, M. H. W.; Shahidan, S.; Ghadzali, N. S.; Misri, Z.

    2018-04-01

    Acoustic emission (AE) technique is one of the non-destructive (NDT) testing, where it can be used to determine the damage of concrete structures such as crack, corrosion, stability, sensitivity, as structure monitoring and energy formed within cracking opening growth in the concrete structure. This article gives a comprehensive review of the acoustic emission (AE) technique testing due to its application in concrete structure for structural health monitoring (SHM). Assessment of AE technique used for structural are reviewed to give the perception of its structural engineering such as dam, bridge and building, where the previous research has been reviewed based on AE application. The assessment of AE technique focusing on basic fundamental of parametric and signal waveform analysis during analysis process and its capability in structural monitoring. Moreover, the assessment and application of AE due to its function have been summarized and highlighted for future references

  20. In-situ acoustic signature monitoring in additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  1. Controlled Ultrasound-Induced Blood-Brain Barrier Disruption Using Passive Acoustic Emissions Monitoring

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; Vykhodtseva, Natalia; McDannold, Nathan

    2012-01-01

    The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R2 = 0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology. PMID:23029240

  2. Method and means for measuring acoustic emissions

    DOEpatents

    Renken, Jr., Claus J.

    1976-01-06

    The detection of acoustic emissions emanating from an object is achieved with a capacitive transducer coupled to the object. The capacitive transducer is charged and then allowed to discharge with the rate of discharge being monitored. Oscillations in the rate of discharge about the normally exponential discharge curve for the capacitive transducer indicate the presence of acoustic emissions.

  3. A comparison of force and acoustic emission sensors in monitoring precision cylindrical grinding; Technical Digest

    NASA Astrophysics Data System (ADS)

    Marsh, Eric R.; Couey, Jeremiah A.; Knapp, Byron R.; Vallance, R. R.

    2005-05-01

    Aerostatic spindles are used in precision grinding applications requiring high stiffness and very low error motions (5 to 25 nm). Forces generated during precision grinding are small and present challenges for accurate and reliable process monitoring. These challenges are met by incorporating non-contact displacement sensors into an aerostatic spindle that are calibrated to measure grinding forces from rotor motion. Four experiments compare this force-sensing approach to acoustic emission (AE) in detecting workpiece contact, process monitoring with small depths of cut, detecting workpiece defects, and evaluating abrasive wheel wear/loading. Results indicate that force measurements are preferable to acoustic emission in precision grinding since the force sensor offers improved contact sensitivity, higher resolution, and is capable of detecting events occurring within a single revolution of the grinding wheel.

  4. Monitoring damage growth in titanium matrix composites using acoustic emission

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Prosser, W. H.; Johnson, W. S.

    1993-01-01

    The application of the acoustic emission (AE) technique to locate and monitor damage growth in titanium matrix composites (TMC) was investigated. Damage growth was studied using several optical techniques including a long focal length, high magnification microscope system with image acquisition capabilities. Fracture surface examinations were conducted using a scanning electron microscope (SEM). The AE technique was used to locate damage based on the arrival times of AE events between two sensors. Using model specimens exhibiting a dominant failure mechanism, correlations were established between the observed damage growth mechanisms and the AE results in terms of the events amplitude. These correlations were used to monitor the damage growth process in laminates exhibiting multiple modes of damage. Results revealed that the AE technique is a viable and effective tool to monitor damage growth in TMC.

  5. Acoustic Emission Monitoring of the DC-XA Composite Liquid Hydrogen Tank During Structural Testing

    NASA Technical Reports Server (NTRS)

    Wilkerson, C.

    1996-01-01

    The results of acoustic emission (AE) monitoring of the DC-XA composite liquid hydrogen tank are presented in this report. The tank was subjected to pressurization, tensile, and compressive loads at ambient temperatures and also while full of liquid nitrogen. The tank was also pressurized with liquid hydrogen. AE was used to monitor the tank for signs of structural defects developing during the test.

  6. Thermal protection system (TPS) monitoring using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hurley, D. A.; Huston, D. R.; Fletcher, D. G.; Owens, W. P.

    2011-04-01

    This project investigates acoustic emission (AE) as a tool for monitoring the degradation of thermal protection systems (TPS). The AE sensors are part of an array of instrumentation on an inductively coupled plasma (ICP) torch designed for testing advanced thermal protection aerospace materials used for hypervelocity vehicles. AE are generated by stresses within the material, propagate as elastic stress waves, and can be detected with sensitive instrumentation. Graphite (POCO DFP-2) is used to study gas-surface interaction during degradation of thermal protection materials. The plasma is produced by a RF magnetic field driven by a 30kW power supply at 3.5 MHz, which creates a noisy environment with large spikes when powered on or off. AE are waveguided from source to sensor by a liquid-cooled copper probe used to position the graphite sample in the plasma stream. Preliminary testing was used to set filters and thresholds on the AE detection system (Physical Acoustics PCI-2) to minimize the impact of considerable operating noise. Testing results show good correlation between AE data and testing environment, which dictates the physics and chemistry of the thermal breakdown of the sample. Current efforts for the project are expanding the dataset and developing statistical analysis tools. This study shows the potential of AE as a powerful tool for analysis of thermal protection material thermal degradations with the unique capability of real-time, in-situ monitoring.

  7. A new strategy toward Internet of Things: structural health monitoring using a combined fiber optic and acoustic emission wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Nguyen, A. D.; Page, C.; Wilson, C. L.

    2016-04-01

    This paper investigates a new low-power structural health monitoring (SHM) strategy where fiber Bragg grating (FBG) rosettes can be used to continuously monitor for changes in a host structure's principal strain direction, suggesting damage and thus enabling the immediate triggering of a higher power acoustic emissions (AE) sensor to provide for better characterization of the damage. Unlike traditional "always on" AE platforms, this strategy has the potential for low power, while the wireless communication between different sensor types supports the Internet of Things (IoT) approach. A combination of fiber-optic sensor rosettes for strain monitoring and a fiber-optic sensor for acoustic emissions monitoring was attached to a sample and used to monitor crack initiation. The results suggest that passive principal strain direction monitoring could be used as a damage initiation trigger for other active sensing elements such as acoustic emissions. In future work, additional AE sensors can be added to provide for damage location; and a strategy where these sensors can be powered on periodically to further establish reliability while preserving an energy efficient scheme can be incorporated.

  8. Considerations for acoustic emission monitoring of spherical Kevlar/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.; Patterson, R. G.

    1977-01-01

    We are continuing to research the applications of acoustic emission testing for predicting burst pressure of filament-wound Kevlar 49/epoxy pressure vessels. This study has focused on three specific areas. The first area involves development of an experimental technique and the proper instrumentation to measure the energy given off by the acoustic emission transducer per acoustic emission burst. The second area concerns the design of a test fixture in which to mount the composite vessel so that the acoustic emission transducers are held against the outer surface of the composite. Included in this study area is the calibration of the entire test setup including couplant, transducer, electronics, and the instrument measuring the energy per burst. In the third and final area of this study, we consider the number, location, and sensitivity of the acoustic emission transducers used for proof testing composite pressure vessels.

  9. Acoustic emission evolution during sliding friction of Hadfield steel single crystal

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.

    2017-12-01

    Friction is a complex dynamic process. Direct observation of processes occurring in the friction zone is impossible due to a small size of a real contact area and, as a consequence, requires various additional methods applicable to monitor a tribological contact state. One of such methods consists in the analysis of acoustic emission data of a tribological contact. The use of acoustic emission entails the problem of interpreting physical sources of signals. In this paper, we analyze the evolution of acoustic emission signal frames in friction of Hadfield steel single crystals. The chosen crystallographic orientation of single crystals enables to identify four stages related to friction development as well as acoustic emission signals inherent in these stages. Acoustic emission signal parameters are studied in more detail by the short-time Fourier transform used to determine the time variation of the median frequency and its power spectrum. The results obtained will facilitate the development of a more precise method to monitor the tribological contact based on the acoustic emission method.

  10. Acoustic emission monitoring of damage in ceramic matrix composites: Effects of weaves and feature

    NASA Astrophysics Data System (ADS)

    Ojard, Greg; Mordasky, Matt; Kumar, Rajesh

    2018-04-01

    Ceramic matrix composites (CMCs) are a class of high temperature materials with better damage tolerance properties compared to monolithic ceramics. The improved toughness is attributed to weak interface coating between the fiber and the matrix that allows for crack deflection and fiber pull-out. Thus, CMCs have gained consideration over monolithic materials for high temperature applications such as in gas turbines. The current standard fiber architecture for CMCs is a harness satin (HS) balanced weave (5HS and 8HS); however, other architectures such as uni-weave materials (tape layup) are now being considered due to fiber placement control and higher fiber volume fraction in the tensile loading direction. Engineering components require additional features in the CMC laminates, such as holes for attachments. Past work has shown that acoustic emission could differentiate the effect of changing interface conditions due to heat treatment effects. The focus of the present work is to investigate the effects of different weaves and the presence of a feature on damage behavior of CMCs as observed via acoustic emission technique. The results of the tensile testing with acoustic emission monitoring will be presented and discussed.

  11. Acoustic Emission Weld Monitoring in the 2195 Aluminum-Lithium Alloy

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2005-01-01

    Due to its low density, the 2195 aluminum-lithium alloy was developed as a replacement for alloy 2219 in the Space Shuttle External Tank (ET). The external tank is the single largest component of the space shuttle system. It is 154 feet long and 27.6 feet in diameter, and serves as the structural backbone for the shuttle during launch, absorbing most of the 7 million plus pounds of thrust produced. The almost 4% decrease in density between the two materials provides an extra 7500 pounds of payload capacity necessary to put the International Space Station components into orbit. The ET is an all-welded structure; hence, the requirement is for up to five rewelds without hot cracking. Unfortunately, hot cracking during re-welding or repair operations was occurring and had to be dealt with before the new super lightweight tank could be used. Weld metal porosity formation was also of concern because it leads to hot cracking during weld repairs. Accordingly, acoustic emission (AE) nondestructive testing was employed to monitor the formation of porosity and hot cracks in order to select the best filler metal and optimize the weld schedule. The purpose of this work is to determine the feasibility of detecting hot cracking in welded aluminum-lithium (Al-Li) structures through the analysis of acoustic emission data. By acoustically characterizing the effects of reheating during a repair operation, the potential for hidden flaws coalescing and becoming "unstable" as the panel is repaired could be reduced. Identification of regions where microcrack growth is likely to occur and the location of active flaw growth in the repair weld will provide the welder with direct feedback as to the current weld quality enabling adjustments to the repair process be made in the field. An acoustic emission analysis of the source mechanisms present during welding has been conducted with the goals of locating regions in the weld line that are susceptible to damage from a repair operation

  12. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    PubMed Central

    Aggelis, Dimitrios. G.; Strantza, Maria; Louis, Olivia; Boulpaep, Frans; Polyzos, Demosthenes; van Hemelrijck, Danny

    2015-01-01

    The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure. PMID:25763648

  13. Constitutive acoustic-emission elastic-stress behavior of magnesium alloy

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Emerson, G. P.

    1977-01-01

    Repeated laoding and unloading of a magnesium alloy below the macroscopic yield stress result in continuous acoustic emissions which are generally repeatable for a given specimen and which are reproducible between different specimens having the same load history. An acoustic emission Bauschinger strain model is proposed to describe the unloading emission behavior. For the limited range of stress examined, loading and unloading stress delays of the order of 50 MN/sq m are observed, and they appear to be dependent upon the direction of loading, the stress rate, and the stress history. The stress delay is hypothesized to be the manifestation of an effective friction stress. The existence of acoustic emission elastic stress constitutive relations is concluded, which provides support for a previously proposed concept for the monitoring of elastic stresses by acoustic emission.

  14. Remote Acoustic Emission Monitoring of Metal Ware and Welded Joints

    NASA Astrophysics Data System (ADS)

    Kapranov, Boris I.; Sutorikhin, Vladimir A.

    2017-10-01

    An unusual phenomenon was revealed in the metal-ultrasound interaction. Microwave sensor generates surface electric conductivity oscillations from exposure to elastic ultrasonic vibrations on regions of defects embracing micro-defects termed as “crack mouth.” They are known as the region of “acoustic activity,” method of Acoustic Emission (AE) method. It was established that the high phase-modulation coefficient of reflected field generates intentional Doppler radar signal with the following parameters: amplitude-1-5 nm, 6-30 dB adjusted to 70- 180 mm. This phenomenon is termed as “Gorbunov effect,” which is applied as a remote non-destructive testing method replacing ultrasonic flaw detection and acoustic emission methods.

  15. Acoustic Emission of Deformation Twinning in Magnesium.

    PubMed

    Mo, Chengyang; Wisner, Brian; Cabal, Mike; Hazeli, Kavan; Ramesh, K T; El Kadiri, Haitham; Al-Samman, Talal; Molodov, Konstantin D; Molodov, Dmitri A; Kontsos, Antonios

    2016-08-06

    The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach.

  16. Sonification of acoustic emission data

    NASA Astrophysics Data System (ADS)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  17. Nondestructive online testing method for friction stir welding using acoustic emission

    NASA Astrophysics Data System (ADS)

    Levikhina, Anastasiya

    2017-12-01

    The paper reviews the possibility of applying the method of acoustic emission for online monitoring of the friction stir welding process. It is shown that acoustic emission allows the detection of weld defects and their location in real time. The energy of an acoustic signal and the median frequency are suggested to be used as informative parameters. The method of calculating the median frequency with the use of a short time Fourier transform is applied for the identification of correlations between the defective weld structure and properties of the acoustic emission signals received during welding.

  18. Acoustic Emission of Deformation Twinning in Magnesium

    PubMed Central

    Mo, Chengyang; Wisner, Brian; Cabal, Mike; Hazeli, Kavan; Ramesh, K. T.; El Kadiri, Haitham; Al-Samman, Talal; Molodov, Konstantin D.; Molodov, Dmitri A.; Kontsos, Antonios

    2016-01-01

    The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach. PMID:28773786

  19. Acoustic emission evaluation of reinforced concrete bridge beam with graphite composite laminate

    NASA Astrophysics Data System (ADS)

    Johnson, Dan E.; Shen, H. Warren; Finlayson, Richard D.

    2001-07-01

    A test was recently conducted on August 1, 2000 at the FHwA Non-Destructive Evaluation Validation Center, sponsored by The New York State DOT, to evaluate a graphite composite laminate as an effective form of retrofit for reinforced concrete bridge beam. One portion of this testing utilized Acoustic Emission Monitoring for Evaluation of the beam under test. Loading was applied to this beam using a two-point loading scheme at FHwA's facility. This load was applied in several incremental loadings until the failure of the graphite composite laminate took place. Each loading culminated by either visual crack location or large audible emissions from the beam. Between tests external cracks were located visually and highlighted and the graphite epoxy was checked for delamination. Acoustic Emission data was collected to locate cracking areas of the structure during the loading cycles. To collect this Acoustic Emission data, FHwA and NYSDOT utilized a Local Area Monitor, an Acoustic Emission instrument developed in a cooperative effort between FHwA and Physical Acoustics Corporation. Eight Acoustic Emission sensors were attached to the structure, with four on each side, in a symmetrical fashion. As testing progressed and culminated with beam failure, Acoustic Emission data was gathered and correlated against time and test load. This paper will discuss the analysis of this test data.

  20. Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Zook, J. David

    1998-07-01

    An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.

  1. Evaluation of bridge cables corrosion using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ou, Jinping

    2010-04-01

    Owing to the nature of the stress, corrosion of bridge cable may result in catastrophic failure of the structure. However, using electrochemical techniques isn't fully efficient for the detection and control on line of the corrosion phenomenon. A non-destructive testing method based on acoustic emission technique monitoring bridge cable corrosion was explored. The steel strands were placed at room temperature in 5% NaCl solution. Acoustic emission (AE) characteristic parameters were recorded in the whole corrosion experiment process. Based on the plot of cumulated acoustic activity, the bridge cables corrosion included three stages. It can be clearly seen that different stages have different acoustic emission signal characteristics. The AE characteristic parameters would be increased with cables corrosion development. Finally, the bridge cables corrosion experiment with different stress state and different corrosion environment was performed. The results shows that stress magnitude only affects the bridge cable failure time, however, the AE characteristic parameters value has changed a little. It was verified that AE technique can be used to detect the bridge cable early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.

  2. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location

  3. Feasibility of detecting orthopaedic screw overtightening using acoustic emission.

    PubMed

    Pullin, Rhys; Wright, Bryan J; Kapur, Richard; McCrory, John P; Pearson, Matthew; Evans, Sam L; Crivelli, Davide

    2017-03-01

    A preliminary study of acoustic emission during orthopaedic screw fixation was performed using polyurethane foam as the bone-simulating material. Three sets of screws, a dynamic hip screw, a small fragment screw and a large fragment screw, were investigated, monitoring acoustic-emission activity during the screw tightening. In some specimens, screws were deliberately overtightened in order to investigate the feasibility of detecting the stripping torque in advance. One set of data was supported by load cell measurements to directly measure the axial load through the screw. Data showed that acoustic emission can give good indications of impending screw stripping; such indications are not available to the surgeon at the current state of the art using traditional torque measuring devices, and current practice relies on the surgeon's experience alone. The results suggest that acoustic emission may have the potential to prevent screw overtightening and bone tissue damage, eliminating one of the commonest sources of human error in such scenarios.

  4. Signal identification in acoustic emission monitoring of fatigue cracking in steel bridges

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo P.; Ziehl, Paul; Pollock, Adrian

    2012-04-01

    Signal identification including noise filtering and reduction of acquired signals is needed to achieve efficient and accurate data interpretation for remote acoustic emission (AE) monitoring of in-service steel bridges. Noise filtering may ensure that genuine hits from crack growth are involved in the estimation of fatigue damage and remaining fatigue life. Reduction of the data quantity is desirable for the sensing system to conserve energy in the data transmission and processing procedures. Identification and categorization of acquired signals is a promising approach to effectively filter and reduce AE data in the application of bridge monitoring. In this study an investigation on waveform features (time domain and frequency domain) and relevant filters is carried out using the results from AE monitored fatigue tests. It is verified that duration-amplitude (D-A) filters are effective to discriminate against noise for results of steel fatigue tests. The study is helpful to find an appropriate AE data filtering protocol for field implementations.

  5. Acoustic emission based damage localization in composites structures using Bayesian identification

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Eaton, M. J.; Al-Jumali, S.; Sikdar, S.; Pullin, R.

    2017-05-01

    Acoustic emission based damage detection in composite structures is based on detection of ultra high frequency packets of acoustic waves emitted from damage sources (such as fibre breakage, fatigue fracture, amongst others) with a network of distributed sensors. This non-destructive monitoring scheme requires solving an inverse problem where the measured signals are linked back to the location of the source. This in turn enables rapid deployment of mitigative measures. The presence of significant amount of uncertainty associated with the operating conditions and measurements makes the problem of damage identification quite challenging. The uncertainties stem from the fact that the measured signals are affected by the irregular geometries, manufacturing imprecision, imperfect boundary conditions, existing damages/structural degradation, amongst others. This work aims to tackle these uncertainties within a framework of automated probabilistic damage detection. The method trains a probabilistic model of the parametrized input and output model of the acoustic emission system with experimental data to give probabilistic descriptors of damage locations. A response surface modelling the acoustic emission as a function of parametrized damage signals collected from sensors would be calibrated with a training dataset using Bayesian inference. This is used to deduce damage locations in the online monitoring phase. During online monitoring, the spatially correlated time data is utilized in conjunction with the calibrated acoustic emissions model to infer the probabilistic description of the acoustic emission source within a hierarchical Bayesian inference framework. The methodology is tested on a composite structure consisting of carbon fibre panel with stiffeners and damage source behaviour has been experimentally simulated using standard H-N sources. The methodology presented in this study would be applicable in the current form to structural damage detection under varying

  6. Acoustic emission monitoring of recycled aggregate concrete under bending

    NASA Astrophysics Data System (ADS)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  7. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in KEVLAR® 49 Composites

    NASA Astrophysics Data System (ADS)

    Waller, J. M.; Andrade, E.; Saulsberry, R. L.

    2010-02-01

    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar® 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio <1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  8. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  9. INNOVATIVE CONCEPTS FOR DETECTING AND LOCATING LEAKS IN WASTE IMPOUNDMENT LINER SYSTEMS: ACOUSTIC EMISSION MONITORING AND TIME DOMAIN REFLECTOMETRY

    EPA Science Inventory

    This project is part of a program to investigate the use of innovative techniques for detecting and locating leaks in waste impoundment liners. Laboratory and small scale field studies were undertaken to evaluate the potential of Acoustic Emission Monitoring (AEM) and Time Domain...

  10. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    PubMed

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  11. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  12. Passive acoustic monitoring of bed load for fluvial applications

    USDA-ARS?s Scientific Manuscript database

    The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...

  13. Novel Fiber-Optic Ring Acoustic Emission Sensor

    PubMed Central

    Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-01

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments. PMID:29342858

  14. Examination on the use of acoustic emission for monitoring metal forging process: A study using simulation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, W.M.; Irwin, R.D.; Malas, J.C. III

    The aim of this study is to determine the feasibility of using acoustic emission as a monitoring technique for metal forging operations. From the sensor development paradigm proposed by McClean et al. the most likely approach to determining feasibility for application is through signal recognition. For this reason, signature prediction and analysis was chosen to determine the suitability for forging applications.

  15. Concurrent Ultrasonic Tomography and Acoustic Emission in Solid Materials

    NASA Astrophysics Data System (ADS)

    Chow, Thomas M.

    A series of experiments were performed to detect stress induced changes in the elastic properties of various solid materials. A technique was developed where these changes were monitored concurrently by two methods, ultrasonic tomography and acoustic emission monitoring. This thesis discusses some experiments in which acoustic emission (AE) and ultrasonic tomography were performed on various samples of solid materials including rocks, concrete, metals, and fibre reinforced composites. Three separate techniques were used to induce stress in these samples. Disk shaped samples were subject to stress via diametral loading using an indirect tensile test geometry. Cylindrical samples of rocks and concrete were subject to hydraulic fracture tests, and rectangular samples of fibre reinforced composite were subject to direct tensile loading. The majority of the samples were elastically anisotropic. Full waveform acoustic emission and tomographic data were collected while these samples were under load to give information concerning changes in the structure of the material as it was undergoing stress change and/or failure. Analysis of this data indicates that AE and tomographic techniques mutually compliment each other to give a view of the stress induced elastic changes in the tested samples.

  16. Monitoring of temperature fatigue failure mechanism for polyvinyl alcohol fiber concrete using acoustic emission sensors.

    PubMed

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed.

  17. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555

  18. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  19. Preliminary Development of Online Monitoring Acoustic Emission System for the Integrity of Research Reactor Components

    NASA Astrophysics Data System (ADS)

    Bakhri, S.; Sumarno, E.; Himawan, R.; Akbar, T. Y.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    Three research reactors owned by BATAN have been more than 25 years. Aging of (Structure, System and Component) SSC which is mainly related to mechanical causes become the most important issue for the sustainability and safety operation. Acoustic Emission (AE) is one of the appropriate and recommended methods by the IAEA for inspection as well as at the same time for the monitoring of mechanical SSC related. However, the advantages of AE method in detecting the acoustic emission both for the inspection and the online monitoring require a relatively complex measurement system including hardware software system for the signal detection and analysis purposes. Therefore, aim of this work was to develop an AE system based on an embedded system which capable for doing both the online monitoring and inspection of the research reactor’s integrity structure. An embedded system was selected due to the possibility to install the equipment on the field in extreme environmental condition with capability to store, analyses, and send the required information for further maintenance and operation. The research was done by designing the embedded system based on the Field Programmable Gate Array (FPGA) platform, because of their execution speed and system reconfigurable opportunities. The AE embedded system is then tested to identify the AE source location and AE characteristic under tensile material testing. The developed system successfully acquire the AE elastic waveform and determine the parameter-based analysis such as the amplitude, peak, duration, rise time, counts and the average frequency both for the source location test and the tensile test.

  20. Time-resolved acoustic emission tomography in the laboratory: tracking localised damage in rocks

    NASA Astrophysics Data System (ADS)

    Brantut, N.

    2017-12-01

    Over the past three decades, there has been tremendous technological developments of laboratory equipment and studies using acoustic emission and ultrasonic monitoring of rock samples during deformation. Using relatively standard seismological techniques, acoustic emissions can be detected, located in space and time, and source mechanisms can be obtained. In parallel, ultrasonic velocities can be measured routinely using standard pulse-receiver techniques.Despite these major developments, current acoustic emission and ultrasonic monitoring systems are typically used separately, and the poor spatial coverage of acoustic transducers precludes performing active 3D tomography in typical laboratory settings.Here, I present an algorithm and software package that uses both passive acoustic emission data and active ultrasonic measurements to determine acoustic emission locations together with the 3D, anisotropic P-wave structure of rock samples during deformation. The technique is analogous to local earthquake tomography, but tailored to the specificities of small scale laboratory tests. The fast marching method is employed to compute the forward problem. The acoustic emission locations and the anisotropic P-wave field are jointly inverted using the Quasi-Newton method.The method is used to track the propagation of compaction bands in a porous sandstone deformed in the ductile, cataclastic flow regime under triaxial stress conditions. Near the yield point, a compaction front forms at one end of the sample, and slowly progresses towards the other end. The front is illuminated by clusters of Acoustic Emissions, and leaves behind a heavily damaged material where the P-wave speed has dropped by up to 20%.The technique opens new possibilities to track in-situ strain localisation and damage around laboratory faults, and preliminary results on quasi-static rupture in granite will be presented.

  1. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Karl A.; Candy, Jim V.; Guss, Gabe

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  2. Filament Breakage Monitoring in Fused Deposition Modeling Using Acoustic Emission Technique

    PubMed Central

    Jin, Li; Yan, Youruiling; Mei, Yiming

    2018-01-01

    Polymers are being used in a wide range of Additive Manufacturing (AM) applications and have been shown to have tremendous potential for producing complex, individually customized parts. In order to improve part quality, it is essential to identify and monitor the process malfunctions of polymer-based AM. The present work endeavored to develop an alternative method for filament breakage identification in the Fused Deposition Modeling (FDM) AM process. The Acoustic Emission (AE) technique was applied due to the fact that it had the capability of detecting bursting and weak signals, especially from complex background noises. The mechanism of filament breakage was depicted thoroughly. The relationship between the process parameters and critical feed rate was obtained. In addition, the framework of filament breakage detection based on the instantaneous skewness and relative similarity of the AE raw waveform was illustrated. Afterwards, we conducted several filament breakage tests to validate their feasibility and effectiveness. Results revealed that the breakage could be successfully identified. Achievements of the present work could be further used to develop a comprehensive in situ FDM monitoring system with moderate cost. PMID:29494559

  3. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in Kevlar (R) 49 Composites

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.; Andrade, Eduardo

    2009-01-01

    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar(Registeres TradeMark) 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio < 1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  4. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    PubMed Central

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  5. Acoustic Emission Beamforming for Detection and Localization of Damage

    NASA Astrophysics Data System (ADS)

    Rivey, Joshua Callen

    The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over

  6. Acoustic emission signatures of damage modes in concrete

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Mpalaskas, A. C.; Matikas, T. E.; Van Hemelrijck, D.

    2014-03-01

    The characterization of the dominant fracture mode may assist in the prediction of the remaining life of a concrete structure due to the sequence between successive tensile and shear mechanisms. Acoustic emission sensors record the elastic responses after any fracture event converting them into electric waveforms. The characteristics of the waveforms vary according to the movement of the crack tips, enabling characterization of the original mode. In this study fracture experiments on concrete beams are conducted. The aim is to examine the typical acoustic signals emitted by different fracture modes (namely tension due to bending and shear) in a concrete matrix. This is an advancement of a recent study focusing on smaller scale mortar and marble specimens. The dominant stress field and ultimate fracture mode is controlled by modification of the four-point bending setup while acoustic emission is monitored by six sensors at fixed locations. Conclusions about how to distinguish the sources based on waveform parameters of time domain (duration, rise time) and frequency are drawn. Specifically, emissions during the shear loading exhibit lower frequencies and longer duration than tensile. Results show that, combination of AE features may help to characterize the shift between dominant fracture modes and contribute to the structural health monitoring of concrete. This offers the basis for in-situ application provided that the distortion of the signal due to heterogeneous wave path is accounted for.

  7. Acoustic Purcell Effect for Enhanced Emission

    NASA Astrophysics Data System (ADS)

    Landi, Maryam; Zhao, Jiajun; Prather, Wayne E.; Wu, Ying; Zhang, Likun

    2018-03-01

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi's golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  8. Remote monitoring and prognosis of fatigue cracking in steel bridges with acoustic emission

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo Peter; Ziehl, Paul; Pollock, Adrian

    2011-04-01

    Acoustic emission (AE) monitoring is desirable to nondestructively detect fatigue damage in steel bridges. Investigations of the relationship between AE signals and crack growth behavior are of paramount importance prior to the widespread application of passive piezoelectric sensing for monitoring of fatigue crack propagation in steel bridges. Tests have been performed to detect AE from fatigue cracks in A572G50 steel. Noise induced AE signals were filtered based on friction emission tests, loading pattern, and a combined approach involving Swansong II filters and investigation of waveforms. The filtering methods based on friction emission tests and load pattern are of interest to the field evaluation using sparse datasets. The combined approach is suitable for data filtering and interpretation of actual field tests. The pattern recognition program NOESIS (Envirocoustics) was utilized for the evaluation of AE data quality. AE parameters are associated with crack length, crack growth rate, maximum stress intensity and stress intensity range. It is shown that AE hits, counts, absolute energy, and signal strength are able to provide warnings at the critical cracking level where cracking progresses from stage II (stable propagation) to stage III (unstable propagation which may result in failure). Absolute energy rate and signal strength rate may be better than count rate to assess the remaining fatigue life of inservice steel bridges.

  9. Time series analysis of tool wear in sheet metal stamping using acoustic emission

    NASA Astrophysics Data System (ADS)

    Vignesh Shanbhag, V.; Pereira, P. Michael; Rolfe, F. Bernard; Arunachalam, N.

    2017-09-01

    Galling is an adhesive wear mode that often affects the lifespan of stamping tools. Since stamping tools represent significant economic cost, even a slight improvement in maintenance cost is of high importance for the stamping industry. In other manufacturing industries, online tool condition monitoring has been used to prevent tool wear-related failure. However, monitoring the acoustic emission signal from a stamping process is a non-trivial task since the acoustic emission signal is non-stationary and non-transient. There have been numerous studies examining acoustic emissions in sheet metal stamping. However, very few have focused in detail on how the signals change as wear on the tool surface progresses prior to failure. In this study, time domain analysis was applied to the acoustic emission signals to extract features related to tool wear. To understand the wear progression, accelerated stamping tests were performed using a semi-industrial stamping setup which can perform clamping, piercing, stamping in a single cycle. The time domain features related to stamping were computed for the acoustic emissions signal of each part. The sidewalls of the stamped parts were scanned using an optical profilometer to obtain profiles of the worn part, and they were qualitatively correlated to that of the acoustic emissions signal. Based on the wear behaviour, the wear data can be divided into three stages: - In the first stage, no wear is observed, in the second stage, adhesive wear is likely to occur, and in the third stage severe abrasive plus adhesive wear is likely to occur. Scanning electron microscopy showed the formation of lumps on the stamping tool, which represents galling behavior. Correlation between the time domain features of the acoustic emissions signal and the wear progression identified in this study lays the basis for tool diagnostics in stamping industry.

  10. Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion

    NASA Astrophysics Data System (ADS)

    Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.

    2011-04-01

    The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.

  11. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  12. Acoustic emissions monitoring and synchrotron X-ray diffraction analysis of mineral dehydrations at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Guillon, S.; Schubnel, A. J.; Brunet, F.; Lathe, C.; Mueller, H.

    2009-12-01

    We have monitored from in-situ X-ray diffraction coupled to Acoustic Emission (AE) imaging, the behavior of several materials under elevated pressures and temperatures (quartz, kaolinite, serpentinite). The samples were placed in a boron-epoxy assembly with an 8mm edge-length and loaded in the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg). AE were recorded using six piezoceramic transducers (2 MHz eigen frequency) glued on each of the six WC anvils. Full waveforms were acquired using an eight channel digital oscilloscope and a continuous acoustic recorder. Our system was first tested using quartz beads (500μm) aggregates. During cold compression performed on these samples many acoustic events were recorded and located inside the samples. These are obviously related to the fragile fracturing of the quartz due to the porosity loss. During the heating cycles performed on the same samples, the acoustic activity progressively vanishes between 300 and 400°C indicating the transition to the ductile regime towards higher temperatures. Further experiments were performed by mixing 20wt% of kaolinite to the quartz. As a result, the amount of acoustic emissions recorded during cold compression is significantly reduced. This is thought to be a result of the ductile behaviour of kaolinite even at low temperatures. This assumption has been confirmed by performing experiments on pure kaolinite which did not produce acoustic emissions during cold compression nor during heating cycles up to 1000°C (i.e. beyond the kaolinite dehydration temperature). This set of experiments clearly established that no acoustic activity is produced by the assembly and that AEs produced by the samples are accurately located by the software. The behaviour of serpentinite dehydration was then investigated under various pressure conditions (i.e. various volume changes), from ~0.6 to ~40kbars. These experiments were performed under deviatoric stress conditions

  13. Acoustic emissions monitoring and synchrotron X-ray diffraction analysis of mineral dehydrations at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Schubnel, Alexandre; Julien, Gasc; Sophie, Guillon; Fabrice, Brunet; Christian, Lathe; Hans-Joachim, Mueller

    2010-05-01

    We have monitored from in-situ X-ray diffraction coupled to Acoustic Emission (AE) imaging, the behavior of several materials under elevated pressures and temperatures (quartz, kaolinite, serpentinite). The samples were placed in a boron-epoxy assembly with an 8mm edge-length and loaded in the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg). AE were recorded using six piezoceramic transducers (2 MHz eigen frequency) glued on each of the six WC anvils. Full waveforms were acquired using an eight channel digital oscilloscope and a continuous acoustic recorder. Our system was first tested using quartz beads (500μm) aggregates. During cold compression performed on these samples many acoustic events were recorded and located inside the samples. These are obviously related to the fragile fracturing of the quartz due to the porosity loss. During the heating cycles performed on the same samples, the acoustic activity progressively vanishes between 300 and 400°C indicating the transition to the ductile regime towards higher temperatures. Further experiments were performed by mixing 20wt% of kaolinite to the quartz. As a result, the amount of acoustic emissions recorded during cold compression is significantly reduced. This is thought to be a result of the ductile behaviour of kaolinite even at low temperatures. This assumption has been confirmed by performing experiments on pure kaolinite which did not produce acoustic emissions during cold compression nor during heating cycles up to 1000°C (i.e. beyond the kaolinite dehydration temperature). This set of experiments clearly established that no acoustic activity is produced by the assembly and that AEs produced by the samples are accurately located by the software. The behaviour of serpentinite dehydration was then investigated under various pressure conditions (i.e. various volume changes), from ~0.6 to ~40kbars. These experiments were performed under deviatoric stress conditions

  14. Analysis of acoustic emission during abrasive waterjet machining of sheet metals

    NASA Astrophysics Data System (ADS)

    Mokhtar, Nazrin; Gebremariam, MA; Zohari, H.; Azhari, Azmir

    2018-04-01

    The present paper reports on the analysis of acoustic emission (AE) produced during abrasive waterjet (AWJ) machining process. This paper focuses on the relationship of AE and surface quality of sheet metals. The changes in acoustic emission signals recorded by the mean of power spectral density (PSD) via covariance method in relation to the surface quality of the cut are discussed. The test was made using two materials for comparison namely aluminium 6061 and stainless steel 304 with five different feed rates. The acoustic emission data were captured by Labview and later processed using MATLAB software. The results show that the AE spectrums correlated with different feed rates and surface qualities. It can be concluded that the AE is capable of monitoring the changes of feed rate and surface quality.

  15. Double negative acoustic metastructure for attenuation of acoustic emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Bhushan, Pulak; Prakash, Om; Bhattacharya, Shantanu

    2018-03-01

    Acoustic metamaterials hold great potential for attenuation of low frequency acoustic emissions. However, a fundamental challenge is achieving high transmission loss over a broad frequency range. In this work, we report a double negative acoustic metastructure for absorption of low frequency acoustic emissions in an aircraft. This is achieved by utilizing a periodic array of hexagonal cells interconnected with a neck and mounted with an elastic membrane on both ends. An average transmission loss of 56 dB under 500 Hz and an overall absorption of over 48% have been realized experimentally. The negative mass density is derived from the dipolar resonances created as a result of the in-phase movement of the membranes. Further, the negative bulk modulus is ascribed to the combined effect of out-of-phase acceleration of the membranes and the Helmholtz resonator. The proposed metastructure enables absorption of low frequency acoustic emissions with improved functionality that is highly desirable for varied applications.

  16. Acoustic signal emission monitoring as a novel method to predict steam pops during radiofrequency ablation: preliminary observations.

    PubMed

    Chik, William W B; Kosobrodov, Roman; Bhaskaran, Abhishek; Barry, Michael Anthony Tony; Nguyen, Doan Trang; Pouliopoulos, Jim; Byth, Karen; Sivagangabalan, Gopal; Thomas, Stuart P; Ross, David L; McEwan, Alistair; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-04-01

    predictably occur before imminent steam popping during RF ablations. Such acoustic emissions can be carefully monitored during an ablation and may be useful to prevent serious complications during RF delivery. © 2014 Wiley Periodicals, Inc.

  17. Study of acoustic emission during mechanical tests of large flight weight tank structure

    NASA Technical Reports Server (NTRS)

    Mccauley, B. O.; Nakamura, Y.; Veach, C. L.

    1973-01-01

    A PPO-insulated, flight-weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test x-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws. For these non-verifiable emission sources, a problem still remains in correctly interpreting observed emission signals.

  18. Study of acoustic emission during mechanical tests of large flight weight tank structure

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Mccauley, B. O.; Veach, C. L.

    1972-01-01

    A polyphenylane oxide insulated, flight weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test X-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws.

  19. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of

  20. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy Tows and Implications for Composite Structures

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.; Nichols, Charles T.; Wentzel, Daniel J.

    2010-01-01

    This slide presentation reviews the use of Modal Acoustic Emission to monitor damage progression to carbon fiber/epoxy tows. There is a risk for catastrophic failure of composite overwrapped pressure vessels (COPVs) due to burst-before-leak (BBL) stress rupture (SR) failure of carbon-epoxy (C/Ep) COPVs. A lack of quantitative nondestructive evaluation (NDE) is causing problems in current and future spacecraft designs. It is therefore important to develop and demonstrate critical NDE that can be implemented during stages of the design process since the observed rupture can occur with little of no advanced warning. Therefore a program was required to develop quantitative acoustic emission (AE) procedures specific to C/Ep overwraps, but which also have utility for monitoring damage accumulation in composite structure in general, and to lay the groundwork for establishing critical thresholds for accumulated damage in composite structures, such as COPVs, so that precautionary or preemptive engineering steps can be implemented to minimize of obviate the risk of catastrophic failure. A computed Felicity Ratio (FR) coupled with fast Fourier Transform (FFT) frequency analysis shows promise as an analytical pass/fail criterion. The FR analysis and waveform and FFT analysis are reviewed

  1. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-06-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a Wireless Sensor Network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  2. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-11-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a wireless sensor network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  3. The sound of orthopaedic surgery--the application of acoustic emission technology in orthopaedic surgery: a review.

    PubMed

    Rashid, Mustafa S; Pullin, Rhys

    2014-01-01

    Acoustic emission technology has been developed and extensively used as a non-destructive method of testing within engineering. In recent years, acoustic emission has gained popularity within the field of Orthopaedic research in a variety of situations. It is an attractive method in the detection of flaws within structures due its high sensitivity and non-destructive nature. The aim of this article is firstly to critically review the research conducted using acoustic emission testing in a variety of Orthopaedic-related situations and to present the technique to the wider Orthopaedic community. A summary of the principles and practical aspects of using acoustic emission testing are outlined. Acoustic emission has been validated as a method of early detection of aseptic loosening in femoral components in total hip arthroplasty in several well-conducted in vitro studies [1-3]. Other studies have used acoustic emission to detect microdamage in bone and to assess the biomechanical properties of bone and allografts [9]. Researchers have also validated the use of acoustic emission to detect and monitor fracture healing [4]. Several studies have applied acoustic emission to spinal surgery and specifically to assess the biomechanical environment in titanium mesh cages used in spinal surgery [10, 11]. Despite its growing popularity within Orthopaedic research, acoustic emission remains are relatively unfamiliar technique to the majority of Orthopaedic surgeons.

  4. Studies on Automobile Clutch Release Bearing Characteristics with Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Chen, Guoliang; Chen, Xiaoyang

    Automobile clutch release bearings are important automotive driveline components. For the clutch release bearing, early fatigue failure diagnosis is significant, but the early fatigue failure response signal is not obvious, because failure signals are susceptible to noise on the transmission path and to working environment factors such as interference. With an improvement in vehicle design, clutch release bearing fatigue life indicators have increasingly become an important requirement. Contact fatigue is the main failure mode of release rolling bearing components. Acoustic emission techniques in contact fatigue failure detection have unique advantages, which include highly sensitive nondestructive testing methods. In the acoustic emission technique to detect a bearing, signals are collected from multiple sensors. Each signal contains partial fault information, and there is overlap between the signals' fault information. Therefore, the sensor signals receive simultaneous source information integration is complete fragment rolling bearing fault acoustic emission signal, which is the key issue of accurate fault diagnosis. Release bearing comprises the following components: the outer ring, inner ring, rolling ball, cage. When a failure occurs (such as cracking, pitting), the other components will impact damaged point to produce acoustic emission signal. Release bearings mainly emit an acoustic emission waveform with a Rayleigh wave propagation. Elastic waves emitted from the sound source, and it is through the part surface bearing scattering. Dynamic simulation of rolling bearing failure will contribute to a more in-depth understanding of the characteristics of rolling bearing failure, because monitoring and fault diagnosis of rolling bearings provide a theoretical basis and foundation.

  5. Introduction to acoustic emission

    NASA Technical Reports Server (NTRS)

    Possa, G.

    1983-01-01

    Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.

  6. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires, light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  7. Acoustic Emission Analysis Applet (AEAA) Software

    NASA Technical Reports Server (NTRS)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  8. Could Acoustic Emission Testing Show a Pipe Failure in Advance?

    NASA Astrophysics Data System (ADS)

    Soares, S. D.; Teixeira, J. C. G.

    2004-02-01

    During the last 20 years PETROBRAS has been attempting to use Acoustic Emission (AE) as an inspection tool. In this period the AE concept has changed from a revolutionary method to a way of finding areas to make a complete inspection. PETROBRAS has a lot of pressure vessels inspected by AE and with other NDTs techniques to establish their relationship. In other hand, PETROBRAS R&D Center has conducted destructive hydrostatic tests in pipelines samples with artificial defects made by milling. Those tests were monitored by acoustic emission and manual ultrasonic until the complete failure of pipe sample. This article shows the results obtained and a brief proposal of analysis criteria for this environment of test.

  9. Acoustic emission testing on an F/A-18 E/F titanium bulkhead

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Van Way, Craig B.; Lockyer, Allen J.; Kudva, Jayanth N.; Ziola, Steve M.

    1995-04-01

    An important opportunity recently transpired at Northrop Grumman Corporation to instrument an F/A - 18 E/F titanium bulkhead with broad band acoustic emission sensors during a scheduled structural fatigue test. The overall intention of this effort was to investigate the potential for detecting crack propagation using acoustic transmission signals for a large structural component. Key areas of experimentation and experience included (1) acoustic noise characterization, (2) separation of crack signals from extraneous noise, (3) source location accuracy, and (4) methods of acoustic transducer attachment. Fatigue cracking was observed and monitored by strategically placed acoustic emission sensors. The outcome of the testing indicated that accurate source location still remains enigmatic for non-specialist engineering personnel especially at this level of structural complexity. However, contrary to preconceived expectations, crack events could be readily separated from extraneous noise. A further dividend from the investigation materialized in the form of close correspondence between frequency domain waveforms of the bulkhead test specimen tested and earlier work with thick plates.

  10. Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strantza, Maria; Van Hemelrijck, Danny; Guillaume, Patrick

    We report that additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crackmore » growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. Finally, this is the first time that AE is applied in AM components under fatigue.« less

  11. Acoustic emission monitoring of crack propagation in additively manufactured and conventional titanium components

    DOE PAGES

    Strantza, Maria; Van Hemelrijck, Danny; Guillaume, Patrick; ...

    2017-05-31

    We report that additive manufacturing (AM) is a novel and innovative production technology that can produce complex and lightweight engineering products. In AM components, as in all engineering materials, fatigue is considered as one of the principle causes of unexpected failure. In order to detect, localise and characterise cracks in various material components and metals, acoustic emission (AE) is used as a non-destructive monitoring technique. One of the main advantages of AE is that it can be also used for dynamic damage characterisation and specifically for crack propagation monitoring. In this research, we use AE to monitor the fatigue crackmore » growth behaviour of Ti6Al4V components under four-point bending. The samples were produced by means of AM as well as conventional material. Notched and unnotched specimens were investigated with respect to the crack severity and crack detection using AE. The main AE signal parameters –such as cumulative events, hits, duration, average frequency and rise time– were evaluated and indicate sensitivity to damage propagation in order to lead to a warning against the final fracture occurrence. Finally, this is the first time that AE is applied in AM components under fatigue.« less

  12. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  13. Acoustic Emission Monitoring of Multicell Reinforced Concrete Box Girders Subjected to Torsion

    PubMed Central

    Bagherifaez, Marya; Behnia, Arash; Majeed, Abeer Aqeel; Hwa Kian, Chai

    2014-01-01

    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis. PMID:25180203

  14. An FBG acoustic emission source locating system based on PHAT and GA

    NASA Astrophysics Data System (ADS)

    Shen, Jing-shi; Zeng, Xiao-dong; Li, Wei; Jiang, Ming-shun

    2017-09-01

    Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipment. In this paper, four fiber Bragg grating (FBG) sensors are used to establish the sensor array to locate the acoustic emission source. Firstly, the nonlinear locating equations are established based on the principle of acoustic emission, and the solution of these equations is transformed into an optimization problem. Secondly, time difference extraction algorithm based on the phase transform (PHAT) weighted generalized cross correlation provides the necessary conditions for the accurate localization. Finally, the genetic algorithm (GA) is used to solve the optimization model. In this paper, twenty points are tested in the marble plate surface, and the results show that the absolute locating error is within the range of 10 mm, which proves the accuracy of this locating method.

  15. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd, Shukri; Holford, Karen M.; Pullin, Rhys

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup usingmore » H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.« less

  16. Acoustic emission beamforming for enhanced damage detection

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.

    2008-03-01

    As civil infrastructure ages, the early detection of damage in a structure becomes increasingly important for both life safety and economic reasons. This paper describes the analysis procedures used for beamforming acoustic emission techniques as well as the promising results of preliminary experimental tests on a concrete bridge deck. The method of acoustic emission offers a tool for detecting damage, such as cracking, as it occurs on or in a structure. In order to gain meaningful information from acoustic emission analyses, the damage must be localized. Current acoustic emission systems with localization capabilities are very costly and difficult to install. Sensors must be placed throughout the structure to ensure that the damage is encompassed by the array. Beamforming offers a promising solution to these problems and permits the use of wireless sensor networks for acoustic emission analyses. Using the beamforming technique, the azmuthal direction of the location of the damage may be estimated by the stress waves impinging upon a small diameter array (e.g. 30mm) of acoustic emission sensors. Additional signal discrimination may be gained via array processing techniques such as the VESPA process. The beamforming approach requires no arrival time information and is based on very simple delay and sum beamforming algorithms which can be easily implemented on a wireless sensor or mote.

  17. Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang

    Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack

  18. Gaussian mixture modeling of acoustic emissions for structural health monitoring of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2013-04-01

    Reinforced Concrete (RC) has been widely used in construction of infrastructures for many decades. The cracking behavior in concrete is crucial due to the harmful effects on structural performance such as serviceability and durability requirements. In general, in loading such structures until failure, tensile cracks develop at the initial stages of loading, while shear cracks dominate later. Therefore, monitoring the cracking modes is of paramount importance as it can lead to the prediction of the structural performance. In the past two decades, significant efforts have been made toward the development of automated structural health monitoring (SHM) systems. Among them, a technique that shows promises for monitoring RC structures is the acoustic emission (AE). This paper introduces a novel probabilistic approach based on Gaussian Mixture Modeling (GMM) to classify AE signals related to each crack mode. The system provides an early warning by recognizing nucleation of numerous critical shear cracks. The algorithm is validated through an experimental study on a full-scale reinforced concrete shear wall subjected to a reversed cyclic loading. A modified conventional classification scheme and a new criterion for crack classification are also proposed.

  19. Correlation of acoustic emissions associated with effects from diagnostic and therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Samuel, Stanley

    2007-12-01

    This research has investigated the correlation of acoustic emissions with associated contrast-mediated ultrasound bio-effects. The hypothesis that motivated this study was that during exposure with ultrasound, the cavitation occurring in tissue emits acoustical signals, which if correlated with specific bio-effects, could provide a way to monitor the potential bio-effects of exposure. A good bio-effects indicator would find immediate use in research on drug and gene delivery, and could have clinical application in avoiding bio-effects in diagnosis. Studies conducted to test the hypothesis involved investigation of (i) the influence of pulse repetition frequency (PRF) and number of exposures on cell damage, (ii) the effect of total exposure duration and pulse-to-pulse bubble distribution on acoustic emissions and corresponding cell damage, and (iii) the translation of in vitro effects to an in situ environment. Exposures were primarily conducted at a peak rarefactional pressure of 2 MPa, 2.25 MHz insonating frequency and pulse length of 46 cycles. PRFs of 1-, 10-, 100-, 500-, and 1000 Hz were compared. High speed photography (2000 fps) was employed for the investigation of pulse-to-pulse bubble distribution while intravital microscopy was used for in situ studies. A strong correlation was observed between acoustic emissions and bio-effects with the availability of bubbles of resonant size serving as a key link between the two. It was observed that total exposure duration may play an important role in cell damage. Damage increased with increasing total exposure duration from 0 ms to 100 ms with a plateau at above 100 ms. These results were consistent for all studies. There is, therefore, an implication that manipulating these parameters may allow for measurement and control of the extent of bioeffects. Moreover, the correlation of acoustic emission and extravasation observed in in situ studies reveals that cumulative function of the relative integrated power spectrum

  20. Acoustic emission studies of posterior stabilized and cruciate retaining knee arthroplasties.

    PubMed

    Schwarzkopf, Ran; Kummer, Frederick J; Jaffe, William L

    2011-09-01

    Different acoustic frequencies have been used to diagnose progression of osteoarthritis, gross pathology, and wear in knee prostheses. It is possible that detailed analysis of higher frequencies could detect and quantify the smaller geometric changes (asperities) that develop in articular prosthetic wear. In this study we evaluated the feasibility of using ultrasonic emission to determine total knee arthroplasty (TKA) type and time from implantation using a simple, handheld measurement system. We examined the ultrasound emission generated by similar designs of posterior stabilized (PS) and cruciate retaining (CR) total knee prostheses and native knees of 58 patients and 10 controls. The subjects were asked to sit, rise, sit again, and take five steps while recording the acoustic data from both knees. Acoustic emission analysis examined frequency distributions and power spectrums of the recorded signals, and their relations to prosthesis type and time from implantation. We screened 44 CR and 48 PS TKAs, as well as 24 native knees. Analysis of this data suggested a possibility of differentiating between type of implants, and a relation to time since implantation. Our data suggest that we might be able to assess the status and time from implantation of a TKA by acoustic emission signals. Further in vitro analysis of the relationship of wear to ultrasonic emission data are needed for accurate quantification of arthroplasty wear. A simple, in-office screening tool for TKA patients could indicate which patients require closer follow-up and monitoring due to risk of potential problems.

  1. Location of acoustic emission sources generated by air flow

    PubMed

    Kosel; Grabec; Muzic

    2000-03-01

    The location of continuous acoustic emission sources is a difficult problem of non-destructive testing. This article describes one-dimensional location of continuous acoustic emission sources by using an intelligent locator. The intelligent locator solves a location problem based on learning from examples. To verify whether continuous acoustic emission caused by leakage air flow can be located accurately by the intelligent locator, an experiment on a thin aluminum band was performed. Results show that it is possible to determine an accurate location by using a combination of a cross-correlation function with an appropriate bandpass filter. By using this combination, discrete and continuous acoustic emission sources can be located by using discrete acoustic emission sources for locator learning.

  2. Assessment of corrosion fatigue damage by acoustic emission and periodic proof tests

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, P.

    1976-03-01

    The development of a better nondestructive inspection method for detecting corrosion fatigue damage based on acoustic emission (AE) and periodic proof testing (PPT) is studied for corrosion fatigue tests in salt water solution under tension-tension loading. It is shown that PPT combined with AE monitoring can be a sensitive method for assessing the progress of corrosion fatigue damage as the continuous AE monitoring method. The AE-PPT technique is shown to be dependent on the geometry and size of the crack relative to the test specimen. A qualitative method based on plateauing of acoustic emission counts during proof tests due to changes in the fracture mode is used to predict the remaining fatigue life up to 70% of the actual values. PPT is shown to have no adverse effect on fatigue performance in salt water.

  3. A new qualitative acoustic emission parameter based on Shannon's entropy for damage monitoring

    NASA Astrophysics Data System (ADS)

    Chai, Mengyu; Zhang, Zaoxiao; Duan, Quan

    2018-02-01

    An important objective of acoustic emission (AE) non-destructive monitoring is to accurately identify approaching critical damage and to avoid premature failure by means of the evolutions of AE parameters. One major drawback of most parameters such as count and rise time is that they are strongly dependent on the threshold and other settings employed in AE data acquisition system. This may hinder the correct reflection of original waveform generated from AE sources and consequently bring difficulty for the accurate identification of the critical damage and early failure. In this investigation, a new qualitative AE parameter based on Shannon's entropy, i.e. AE entropy is proposed for damage monitoring. Since it derives from the uncertainty of amplitude distribution of each AE waveform, it is independent of the threshold and other time-driven parameters and can characterize the original micro-structural deformations. Fatigue crack growth test on CrMoV steel and three point bending test on a ductile material are conducted to validate the feasibility and effectiveness of the proposed parameter. The results show that the new parameter, compared to AE amplitude, is more effective in discriminating the different damage stages and identifying the critical damage.

  4. Localizing sources of acoustic emission during the martensitic transformation

    NASA Astrophysics Data System (ADS)

    Niemann, R.; Kopeček, J.; Heczko, O.; Romberg, J.; Schultz, L.; Fähler, S.; Vives, E.; Mañosa, L.; Planes, A.

    2014-06-01

    Acoustic avalanches are a general feature of solids under stress, e.g., evoked by external compression or arising from internal processes like martensitic phase transformations. From integral measurements, it is usually concluded that nucleation, phase boundary pinning, or interface incompatibilities during this first-order phase transition all may generate acoustic emission. This paper studies the local sources of acoustic emission to enlight the microscopic mechanisms. From two-dimensional spatially resolved acoustic emission measurement and simultaneous optical observation of the surface, we can identify microstructural events at the phase boundary that lead to acoustic emission. A resolution in the 100-μm range was reached for the location of acoustic emission sources on a coarse-grained Ni-Mn-Ga polycrystal. Both, the acoustic activity and the size distribution of the microstructural transformation events, exhibit power-law behavior. The origin of the acoustic emission are elastically incompatible areas, such as differently oriented martensitic plates that meet each other, lamellae growing up to grain boundaries, and grain boundaries in proximity to transforming grains. Using this result, we propose a model to explain the decrease of the critical exponent under a mechanical stress or magnetic field.

  5. Acoustic transducer for nuclear reactor monitoring

    DOEpatents

    Ahlgren, Frederic F.; Scott, Paul F.

    1977-01-01

    A transducer to monitor a parameter and produce an acoustic signal from which the monitored parameter can be recovered. The transducer comprises a modified Galton whistle which emits a narrow band acoustic signal having a frequency dependent upon the parameter being monitored, such as the temperature of the cooling media of a nuclear reactor. Multiple locations within a reactor are monitored simultaneously by a remote acoustic receiver by providing a plurality of transducers each designed so that the acoustic signal it emits has a frequency distinct from the frequencies of signals emitted by the other transducers, whereby each signal can be unambiguously related to a particular transducer.

  6. Study of Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  7. Acoustic emission and nondestructive evaluation of biomaterials and tissues.

    PubMed

    Kohn, D H

    1995-01-01

    Acoustic emission (AE) is an acoustic wave generated by the release of energy from localized sources in a material subjected to an externally applied stimulus. This technique may be used nondestructively to analyze tissues, materials, and biomaterial/tissue interfaces. Applications of AE include use as an early warning tool for detecting tissue and material defects and incipient failure, monitoring damage progression, predicting failure, characterizing failure mechanisms, and serving as a tool to aid in understanding material properties and structure-function relations. All these applications may be performed in real time. This review discusses general principles of AE monitoring and the use of the technique in 3 areas of importance to biomedical engineering: (1) analysis of biomaterials, (2) analysis of tissues, and (3) analysis of tissue/biomaterial interfaces. Focus in these areas is on detection sensitivity, methods of signal analysis in both the time and frequency domains, the relationship between acoustic signals and microstructural phenomena, and the uses of the technique in establishing a relationship between signals and failure mechanisms.

  8. Development of acoustic emission evaluation method for repaired prestressed concrete bridge girders.

    DOT National Transportation Integrated Search

    2011-06-01

    Acoustic emission (AE) monitoring has proven to be a useful nondestructive testing tool in ordinary reinforced concrete beams. Over the past decade, however, the technique has also been used to test other concrete structures. It has been seen that ac...

  9. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron.

    PubMed

    Jones, Kevin C; Vander Stappen, François; Bawiec, Christopher R; Janssens, Guillaume; Lewin, Peter A; Prieels, Damien; Solberg, Timothy D; Sehgal, Chandra M; Avery, Stephen

    2015-12-01

    To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  10. Intermodal transportation infrastructure interactions : utilizing acoustic emission and other non-destructive evaluation technologies.

    DOT National Transportation Integrated Search

    2014-09-01

    This project studied application of acoustic emission (AE) technology to perform structural : health monitoring of highway bridges. Highway bridges are a vital part of transportation : infrastructure and there is need for reliable non-destructive met...

  11. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  12. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  13. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be onmore » the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.« less

  14. Data quality enhancement and knowledge discovery from relevant signals in acoustic emission

    NASA Astrophysics Data System (ADS)

    Mejia, Felipe; Shyu, Mei-Ling; Nanni, Antonio

    2015-10-01

    The increasing popularity of structural health monitoring has brought with it a growing need for automated data management and data analysis tools. Of great importance are filters that can systematically detect unwanted signals in acoustic emission datasets. This study presents a semi-supervised data mining scheme that detects data belonging to unfamiliar distributions. This type of outlier detection scheme is useful detecting the presence of new acoustic emission sources, given a training dataset of unwanted signals. In addition to classifying new observations (herein referred to as "outliers") within a dataset, the scheme generates a decision tree that classifies sub-clusters within the outlier context set. The obtained tree can be interpreted as a series of characterization rules for newly-observed data, and they can potentially describe the basic structure of different modes within the outlier distribution. The data mining scheme is first validated on a synthetic dataset, and an attempt is made to confirm the algorithms' ability to discriminate outlier acoustic emission sources from a controlled pencil-lead-break experiment. Finally, the scheme is applied to data from two fatigue crack-growth steel specimens, where it is shown that extracted rules can adequately describe crack-growth related acoustic emission sources while filtering out background "noise." Results show promising performance in filter generation, thereby allowing analysts to extract, characterize, and focus only on meaningful signals.

  15. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    NASA Technical Reports Server (NTRS)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  16. Magneto acoustic emission apparatus for testing materials for embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Min, Namkung (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1990-01-01

    A method and apparatus for testing steel components for temper embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an ac current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a dc current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.

  17. Experimental Study on Mechanical and Acoustic Emission Characteristics of Rock-Like Material Under Non-uniformly Distributed Loads

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao

    2018-03-01

    The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.

  18. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction

    NASA Astrophysics Data System (ADS)

    Brantut, Nicolas

    2018-02-01

    Acoustic emission and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenised wave velocity measurements and approximate source locations. Here I present a numerical method and its implementation in a free software to perform a joint inversion of acoustic emission locations together with the three-dimensional, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from acoustic emissions and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of acoustic emissions progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse acoustic emissions are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15%, with an increase in anisotropy of up to 20%. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localised changes associated with microcracking and damage generation.

  19. Particle filtering based structural assessment with acoustic emission sensing

    NASA Astrophysics Data System (ADS)

    Yan, Wuzhao; Abdelrahman, Marwa; Zhang, Bin; Ziehl, Paul

    2017-02-01

    Nuclear structures are designed to withstand severe loading events under various stresses. Over time, aging of structural systems constructed with concrete and steel will occur. This deterioration may reduce service life of nuclear facilities and/or lead to unnecessary or untimely repairs. Therefore, online monitoring of structures in nuclear power plants and waste storage has drawn significant attention in recent years. Of many existing non-destructive evaluation and structural monitoring approaches, acoustic emission is promising for assessment of structural damage because it is non-intrusive and is sensitive to corrosion and crack growth in reinforced concrete elements. To provide a rapid, actionable, and graphical means for interpretation Intensity Analysis plots have been developed. This approach provides a means for classification of damage. Since the acoustic emission measurement is only an indirect indicator of structural damage, potentially corrupted by non-genuine data, it is more suitable to estimate the states of corrosion and cracking in a Bayesian estimation framework. In this paper, we will utilize the accelerated corrosion data from a specimen at the University of South Carolina to develop a particle filtering-based diagnosis and prognosis algorithm. Promising features of the proposed algorithm are described in terms of corrosion state estimation and prediction of degradation over time to a predefined threshold.

  20. Simulation Experiment and Acoustic Emission Study on Coal and Gas Outburst

    NASA Astrophysics Data System (ADS)

    Li, Hui; Feng, Zengchao; Zhao, Dong; Duan, Dong

    2017-08-01

    A coal and gas outburst is an extreme hazard in underground mining. The present paper conducts a laboratory simulation of a coal and gas outburst combined with acoustic emission analysis. The experiment uses a three-dimensional stress loading system and a PCI-2 acoustic emission monitoring system. Furthermore, the development of a coal and gas outburst is numerically studied. The results demonstrate that the deformation and failure of a coal sample containing methane under three-dimensional stress involves four stages: initial compression, elastic deformation, plastic deformation and failure. The development of internal microscale fractures within a coal sample containing methane is reflected by the distribution of acoustic emission events. We observed that the deformation and failure zone for a coal sample under three-dimensional stress has an ellipsoid shape. Primary acoustic emission events are generated at the weak structural surface that compresses with ease due to the external ellipsoid-shaped stress. The number of events gradually increases until an outburst occurs. A mathematical model of the internal gas pressure and bulk stress is established through an analysis of the internal gas pressure and bulk stress of a coal sample, and it is useful for reproducing experimental results. The occurrence of a coal and gas outburst depends not only on the in situ stress, gas pressure and physical and mechanical characteristics of the coal mass but also on the free weak surface of the outburst outlet of the coal mass. It is more difficult for an outburst to occur from a stronger free surface.

  1. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  2. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  3. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    PubMed

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-07

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  4. An acoustic emission study of plastic deformation in polycrystalline aluminium

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  5. Assessment of the application of acoustic emission technology for monitoring the presence of sand under multiphase flow condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Alej, M., E-mail: m.elalej@cranfield.ac.uk; Mba, D., E-mail: m.elalej@cranfield.ac.uk; Yeung, H., E-mail: m.elalej@cranfield.ac.uk

    2014-04-11

    The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)

  6. Acoustic emission studies of large advanced composite rocket motor cases.

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1973-01-01

    Acoustic emission (AE) patterns were measured during pressure testing of advanced composite rocket motor cases made of boron/epoxy and graphite/epoxy. Both accelerometers and high frequency AE transducers were used, and both frequency spectrum and amplitude distribution were studied. The AE patterns suggest that precursor emission might be used in certain cases to anticipate failure. The technique of hold-cycle AE monitoring was also evaluated and could become a valuable decision gate for test continuation/termination. Data presented show similarity of accelerometers and AE transducer responses despite the different frequency response, and suggest that structural AE phenomena are broadband.

  7. Acoustically based fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Baker, Donald A.; Zuckerwar, Allan J.

    1991-01-01

    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.

  8. Acoustic emission from composite materials. [nondestructive tests

    NASA Technical Reports Server (NTRS)

    Visconti, I. C.; Teti, R.

    1979-01-01

    The two basic areas where the acoustic emission (AE) technique can be applied are materials research and the evaluation of structural reliability. This experimental method leads to a better understanding of fracture mechanisms and is an NDT technique particularly well suited for the study of propagating cracks. Experiments are described in which acoustic emissions were unambiguously correlated with microstructural fracture mechanisms. The advantages and limitations of the AE technique are noted.

  9. Acoustic emissions correlated with hydration of Saguaro Cactus

    NASA Astrophysics Data System (ADS)

    Wardell, L. J.; Rowe, C. A.

    2012-12-01

    For some years it has been demonstrated that hardwood trees produce acoustic emissions during periods of drought, which arise from cavitation in the xylem as water is withdrawn. These emissions not only provide insights into the fluid transport behavior within these trees, but also the degree to which cavitation can proceed before inevitable tree mortality. Such studies can have significant impact on our understanding of forest die-off in the face of climate change. Plant mortality is not limited to woody trees, however, and it is not only the coniferous and deciduous forests whose response to climate and rainfall changes are important. In the desert Southwest we observe changes to survival rates of numerous species of flora. One of the most conspicuous of these plants is the iconic Saguaro Cactus (Carnegiea gigantean). These behemoths of the Sonoran Desert are very sensitive to small perturbations in their environment. Specifically, during the summer monsoon season when the cacti become well-hydrated, they can absorb hundreds of gallons of water within a very short time frame. We have obtained a juvenile saguaro on which we are conducting experiments to monitor acoustic emissions during hydration and dessication cycles. We will report on our observations obtained using piezoelectric ceramic accelerometers whose signals are digitized up to 44 Khz and recorded during hydration.

  10. Acoustic emissions correlated with hydration of Saguaro Cactus

    NASA Astrophysics Data System (ADS)

    Wardell, L. J.; Rowe, C. A.

    2013-12-01

    For some years it has been demonstrated that hardwood trees produce acoustic emissions during periods of drought, which arise from cavitation in the xylem as water is withdrawn. These emissions not only provide insights into the fluid transport behavior within these trees, but also the degree to which cavitation can proceed before inevitable tree mortality. Such studies can have significant impact on our understanding of forest die-off in the face of climate change. Plant mortality is not limited to woody trees, however, and it is not only the coniferous and deciduous forests whose response to climate and rainfall changes are important. In the desert Southwest we observe changes to survival rates of numerous species of flora. One of the most conspicuous of these plants is the iconic Saguaro Cactus (Carnegiea gigantean). These behemoths of the Sonoran Desert are very sensitive to small perturbations in their environment. Specifically, during the summer monsoon season when the cacti become well-hydrated, they can absorb hundreds of gallons of water within a very short time frame. We have obtained a juvenile saguaro on which we are conducting experiments to monitor acoustic emissions during hydration and dessication cycles. We will report on our observations obtained using piezoelectric ceramic accelerometers whose signals are digitized up to 44 Khz and recorded during hydration.

  11. Structural health monitoring and damage evaluation for steel confined reinforced concrete column using the acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Du, Fangzhu; Li, Dongsheng

    2018-03-01

    As a new kind of composite structures, the using of steel confined reinforced concrete column attract increasing attention in civil engineer. During the damage process, this new structure offers highly complex and invisible failure mechanism due to the combination effects of steel tubes, concrete, and steel rebar. Acoustic emission (AE) technique has been extensively studied in nondestructive testing (NDT) and is currently applied in civil engineering for structural health monitoring (SHM) and damage evaluation. In the present study, damage property and failure evolution of steel confined and unconfined reinforced concrete (RC) columns are investigated under quasi-static loading through (AE) signal. Significantly improved loading capacity and excellent energy dissipation characteristic demonstrated the practicality of that proposed structure. AE monitoring results indicated that the progressive deformation of the test specimens occur in three stages representing different damage conditions. Sentry function compares the logarithm ratio between the stored strain energy (Es) and the released acoustic energy (Ea); explicitly disclose the damage growth and failure mechanism of the test specimens. Other extended AE features including index of damage (ID), and relax ratio are calculated to quantitatively evaluate the damage severity and critical point. Complicated temporal evolution of different AE features confirms the potential importance of integrated analysis of two or more parameters. The proposed multi-indicators analysis is capable of revealing the damage growth and failure mechanism for steel confined RC columns, and providing critical warning information for structure failure.

  12. Real-time, in situ monitoring of nanoporation using electric field-induced acoustic signal

    NASA Astrophysics Data System (ADS)

    Zarafshani, Ali; Faiz, Rowzat; Samant, Pratik; Zheng, Bin; Xiang, Liangzhong

    2018-02-01

    The use of nanoporation in reversible or irreversible electroporation, e.g. cancer ablation, is rapidly growing. This technique uses an ultra-short and intense electric pulse to increase the membrane permeability, allowing non-permeant drugs and genes access to the cytosol via nanopores in the plasma membrane. It is vital to create a real-time in situ monitoring technique to characterize this process and answer the need created by the successful electroporation procedure of cancer treatment. All suggested monitoring techniques for electroporation currently are for pre-and post-stimulation exposure with no real-time monitoring during electric field exposure. This study was aimed at developing an innovative technology for real-time in situ monitoring of electroporation based on the typical cell exposure-induced acoustic emissions. The acoustic signals are the result of the electric field, which itself can be used in realtime to characterize the process of electroporation. We varied electric field distribution by varying the electric pulse from 1μ - 100ns and varying the voltage intensity from 0 - 1.2ܸ݇ to energize two electrodes in a bi-polar set-up. An ultrasound transducer was used for collecting acoustic signals around the subject under test. We determined the relative location of the acoustic signals by varying the position of the electrodes relative to the transducer and varying the electric field distribution between the electrodes to capture a variety of acoustic signals. Therefore, the electric field that is utilized in the nanoporation technique also produces a series of corresponding acoustic signals. This offers a novel imaging technique for the real-time in situ monitoring of electroporation that may directly improve treatment efficiency.

  13. Probabilistic location estimation of acoustic emission sources in isotropic plates with one sensor

    NASA Astrophysics Data System (ADS)

    Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-04-01

    This paper presents a probabilistic acoustic emission (AE) source localization algorithm for isotropic plate structures. The proposed algorithm requires only one sensor and uniformly monitors the entire area of such plates without any blind zones. In addition, it takes a probabilistic approach and quantifies localization uncertainties. The algorithm combines a modal acoustic emission (MAE) and a reflection-based technique to obtain information pertaining to the location of AE sources. To estimate confidence contours for the location of sources, uncertainties are quantified and propagated through the two techniques. The approach was validated using standard pencil lead break (PLB) tests on an Aluminum plate. The results demonstrate that the proposed source localization algorithm successfully estimates confidence contours for the location of AE sources.

  14. Waveform Based Acoustic Emission Detection and Location of Matrix Cracking in Composites

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    1995-01-01

    The operation of damage mechanisms in a material or structure under load produces transient acoustic waves. These acoustic waves are known as acoustic emission (AE). In composites they can be caused by a variety of sources including matrix cracking, fiber breakage, and delamination. AE signals can be detected and analyzed to determine the location of the acoustic source by triangulation. Attempts are also made to analyze the signals to determine the type and severity of the damage mechanism. AE monitoring has been widely used for both laboratory studies of materials, and for testing the integrity of structures in the field. In this work, an advanced, waveform based AE system was used in a study of transverse matrix cracking in cross-ply graphite/epoxy laminates. This AE system featured broad band, high fidelity sensors, and high capture rate digital acquisition and storage of acoustic signals. In addition, analysis techniques based on plate wave propagation models were employed. These features provided superior source location and noise rejection capabilities.

  15. Damage Source Identification of Reinforced Concrete Structure Using Acoustic Emission Technique

    PubMed Central

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures. PMID:23997681

  16. Damage source identification of reinforced concrete structure using acoustic emission technique.

    PubMed

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures.

  17. Acoustic emission of retrofitted fiber-wrapped columns

    NASA Astrophysics Data System (ADS)

    El Echary, Hazem; Mirmiran, Amir

    1998-03-01

    In recent years, fiber-wrapping technique has become increasingly popular for retrofitting of existing bridge pier columns in seismic zones. By the way of confinement, the external jacket enhances strength, ductility and shear performance of the column. However, since state of the concrete core is not visible from outside of the jacket, it is of great necessity to develop proper non-destructive methods to evaluate structural integrity of the column. Extensive research on FRP-confined concrete at the University of Central Florida has shown that failure of such hybrid columns is often accompanied by considerable audible and sub-audible noise, making acoustic emission (AE) a viable NDE technique for retrofitted columns. Acoustic emission from fiber-wrapped concrete specimens were monitored. A total of 24 concrete specimens with two types of construction (bonded and unbonded) and four different number of layers (1, 3, 5 and 7) were tested under uniaxial compression. All specimens were made of S-glass fabric and polyester resin with a core diameter of 6' and a length of 12'. Some of the specimens were subjected to cycles of loading and unloading to examine the presence of the Kaiser and the Felicity effects. A 4-channel AEDSP-32/16 (Mistras-2001) machine from Physical Acoustics Corp. was used for the experiments. Results indicate that AE energy and the number of AE counts can both be good representatives for the response of confined concrete. Further, plots of AE energy versus load follows the same bilinear trend that has been observed in the stress-strain response of such specimens. Finally, Felicity effect was observed in all composite specimens.

  18. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  19. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  20. Impact of the Test Device on the Behavior of the Acoustic Emission Signals: Contribution of the Numerical Modeling to Signal Processing

    NASA Astrophysics Data System (ADS)

    Issiaka Traore, Oumar; Cristini, Paul; Favretto-Cristini, Nathalie; Pantera, Laurent; Viguier-Pla, Sylvie

    2018-01-01

    In a context of nuclear safety experiment monitoring with the non destructive testing method of acoustic emission, we study the impact of the test device on the interpretation of the recorded physical signals by using spectral finite element modeling. The numerical results are validated by comparison with real acoustic emission data obtained from previous experiments. The results show that several parameters can have significant impacts on acoustic wave propagation and then on the interpretation of the physical signals. The potential position of the source mechanism, the positions of the receivers and the nature of the coolant fluid have to be taken into account in the definition a pre-processing strategy of the real acoustic emission signals. In order to show the relevance of such an approach, we use the results to propose an optimization of the positions of the acoustic emission sensors in order to reduce the estimation bias of the time-delay and then improve the localization of the source mechanisms.

  1. Health diagnosis of arch bridge suspender by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ou, Jinping

    2007-01-01

    Conventional non-destructive methods can't be dynamically monitored the suspenders' damage levels and types, so acoustic emission (AE) technique is proposed to monitor its activity. The validity signals are determined by the relationship with risetime and duration. The ambient noise is eliminated using float threshold value and placing a guard sensor. The cement mortar and steel strand damage level is analyzed by AE parameter method and damage types are judged by waveform analyzing technique. Based on these methods, all the suspenders of Sichuan Ebian Dadu river arch bridge have been monitored using AE techniques. The monitoring results show that AE signal amplitude, energy, counts can visually display the suspenders' damage levels, the difference of waveform and frequency range express different damage type. The testing results are well coincide with the practical situation.

  2. Signature analysis of acoustic emission from graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Henneke, E. G., II

    1977-01-01

    Acoustic emissions were monitored for crack extension across and parallel to the fibers in a single ply and multiply laminates of graphite epoxy composites. Spectrum analysis was performed on the transient signal to ascertain if the fracture mode can be characterized by a particular spectral pattern. The specimens were loaded to failure quasistatically in a tensile machine. Visual observations were made via either an optical microscope or a television camera. The results indicate that several types of characteristics in the time and frequency domain correspond to different types of failure.

  3. Development of a MEMS device for acoustic emission testing

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Pessiki, Stephen P.; Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2003-08-01

    Acoustic emission testing is an important technology for evaluating structural materials, and especially for detecting damage in structural members. Significant new capabilities may be gained by developing MEMS transducers for acoustic emission testing, including permanent bonding or embedment for superior coupling, greater density of transducer placement, and a bundle of transducers on each device tuned to different frequencies. Additional advantages include capabilities for maintenance of signal histories and coordination between multiple transducers. We designed a MEMS device for acoustic emission testing that features two different mechanical types, a hexagonal plate design and a spring-mass design, with multiple detectors of each type at ten different frequencies in the range of 100 kHz to 1 MHz. The devices were fabricated in the multi-user polysilicon surface micromachining (MUMPs) process and we have conducted electrical characterization experiments and initial experiments on acoustic emission detection. We first report on C(V) measurements and perform a comparison between predicted (design) and measured response. We next report on admittance measurements conducted at pressures varying from vacuum to atmospheric, identifying the resonant frequencies and again providing a comparison with predicted performance. We then describe initial calibration experiments that compare the performance of the detectors to other acoustic emission transducers, and we discuss the overall performance of the device as a sensor suite, as contrasted to the single-channel performance of most commercial transducers.

  4. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  5. Environmentally induced acoustic emission from reinforced concrete

    NASA Astrophysics Data System (ADS)

    Pollock, Adrian A.; Gonzalez-Nunez, Miguel; Shokri, Tala

    2011-04-01

    A system is being developed to monitor in-service deterioration of reinforced concrete (RC) in highway bridges. The system includes the monitoring of acoustic emission (AE). To develop a preliminary understanding of AE source mechanisms and their causes while also getting closer to the challenges of separating relevant AE from noise, a 6ft long RC test article was monitored in the outdoors environment of a New Jersey summer. There were indications of daily swings in the AE rate, coinciding with the daily swings in temperature. However this correlation was not consistent or reproducible. As the monitoring was extended into the winter and the test site was buried in snow, the AE rate dropped drastically. It was concluded that temperature changes were instrumental in stimulating AE from this damaged concrete. Implications for the formulation of AE evaluation criteria are discussed. Also, the summer swings provoked consideration of the underlying stress field, the fractal nature of the heterogeneous material and the stochastic AE phenomenon. An analysis of calm time distributions yielded results similar to those found by Abe and Suzuki for earthquake time distributions. Analysis of this kind may help to differentiate relevant AE from some kinds of noise.

  6. Shear Behaviour and Acoustic Emission Characteristics of Bolted Rock Joints with Different Roughnesses

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhang, Yongzheng; Jiang, Yujing; Liu, Peixun; Guo, Yanshuang; Liu, Jiankang; Ma, Ming; Wang, Ke; Wang, Shugang

    2018-06-01

    To study shear failure, acoustic emission counts and characteristics of bolted jointed rock-like specimens are evaluated under compressive shear loading. Model joint surfaces with different roughnesses are made of rock-like material (i.e. cement). The jointed rock masses are anchored with bolts with different elongation rates. The characteristics of the shear mechanical properties, the failure mechanism, and the acoustic emission parameters of the anchored joints are studied under different surface roughnesses and anchorage conditions. The shear strength and residual strength increase with the roughness of the anchored joint surface. With an increase in bolt elongation, the shear strength of the anchored joint surface gradually decreases. When the anchored structural plane is sheared, the ideal cumulative impact curve can be divided into four stages: initial emission, critical instability, cumulative energy, and failure. With an increase in the roughness of the anchored joint surface, the peak energy rate and the cumulative number of events will also increase during macro-scale shear failure. With an increase in the bolt elongation, the energy rate and the event number increase during the shearing process. Furthermore, the peak energy rate, peak number of events and cumulative energy will all increase with the bolt elongation. The results of this study can provide guidance for the use of the acoustic emission technique in monitoring and predicting the static shear failure of anchored rock masses.

  7. Modeling of karst deformation and analysis of acoustic emission during sinkhole formation

    NASA Astrophysics Data System (ADS)

    Bakeev, R. A.; Stefanov, Yu. P.; Duchkov, A. A.; Myasnikov, A. V.

    2017-12-01

    In this paper, the fracture pattern and formation of a sinkhole are estimated depending on the rock properties. The possibility of using geophysical methods for recording and analyzing acoustic emission to monitor and predict the state of the medium is considered. The problem of deformation of the sedimentary cover over the growing karst cavity is solved on the basis of the elastoplastic Drucker-Prager-Nikolaevsky model and the equation of damage accumulation. The specified kinetics of accumulation of damages allows us to describe slow processes of degradation of the strength of the medium under stresses that are low for the development of inelastic deformations. The results are obtained for different values of the strength of karst rock; we show the influence of the kinetic parameters of damage accumulation on the shape of collapse depressions. We also model acoustic emission caused by the material fracture. One can follow different stages of the karst development by looking at patterns of cells which fail at a given time. Our observations show the relation between the intensity of material fracture and the intensity of seismic emission.

  8. Acoustic Emission Test for Aircraft Halon 1301 Fire Extinguisher Bottles

    DOT National Transportation Integrated Search

    1998-04-01

    An acoustic emission test for aircraft Halon 1301 bottles has been developed, a prototype acoustic emission test system constructed, and over 200 used bottles tested at the repair facilities of the two manufacturers of these bottles. The system monit...

  9. Acoustic emission and acousto-ultrasonic techniques for wood and wood-based composites: a review

    Treesearch

    Sumire Kawamoto; R. Sam Williams

    2002-01-01

    This review focuses on the feasibility of acoustic emission (AE) and acousto-ultrasonic (AU) techniques for monitoring defects in wood, particularly during drying. The advantages and disadvantages of AE and AU techniques are described. Particular emphasis is placed on the propagation and attenuation of ultrasonic waves in wood and the associated measurement problems....

  10. Novel Methods for Sensing Acoustical Emissions From the Knee for Wearable Joint Health Assessment.

    PubMed

    Teague, Caitlin N; Hersek, Sinan; Toreyin, Hakan; Millard-Stafford, Mindy L; Jones, Michael L; Kogler, Geza F; Sawka, Michael N; Inan, Omer T

    2016-08-01

    We present the framework for wearable joint rehabilitation assessment following musculoskeletal injury. We propose a multimodal sensing (i.e., contact based and airborne measurement of joint acoustic emission) system for at-home monitoring. We used three types of microphones-electret, MEMS, and piezoelectric film microphones-to obtain joint sounds in healthy collegiate athletes during unloaded flexion/extension, and we evaluated the robustness of each microphone's measurements via: 1) signal quality and 2) within-day consistency. First, air microphones acquired higher quality signals than contact microphones (signal-to-noise-and-interference ratio of 11.7 and 12.4 dB for electret and MEMS, respectively, versus 8.4 dB for piezoelectric). Furthermore, air microphones measured similar acoustic signatures on the skin and 5 cm off the skin (∼4.5× smaller amplitude). Second, the main acoustic event during repetitive motions occurred at consistent joint angles (intra-class correlation coefficient ICC(1, 1) = 0.94 and ICC(1, k) = 0.99). Additionally, we found that this angular location was similar between right and left legs, with asymmetry observed in only a few individuals. We recommend using air microphones for wearable joint sound sensing; for practical implementation of contact microphones in a wearable device, interface noise must be reduced. Importantly, we show that airborne signals can be measured consistently and that healthy left and right knees often produce a similar pattern in acoustic emissions. These proposed methods have the potential for enabling knee joint acoustics measurement outside the clinic/lab and permitting long-term monitoring of knee health for patients rehabilitating an acute knee joint injury.

  11. Investigation of fatigue crack growth in acrylic bone cement using the acoustic emission technique.

    PubMed

    Roques, A; Browne, M; Thompson, J; Rowland, C; Taylor, A

    2004-02-01

    Failure of the bone cement mantle has been implicated in the loosening process of cemented hip stems. Current methods of investigating degradation of the cement mantle in vitro often require sectioning of the sample to confirm failure paths. The present research investigates acoustic emission as a passive experimental method for the assessment of bone cement failure. Damage in bone cement was monitored during four point bending fatigue tests through an analysis of the peak amplitude, duration, rise time (RT) and energy of the events emitted from the damage sections. A difference in AE trends was observed during failure for specimens aged and tested in (i) air and (ii) Ringer's solution at 37 degrees C. It was noted that the acoustic behaviour varied according to applied load level; events of higher duration and RT were emitted during fatigue at lower stresses. A good correlation was observed between crack location and source of acoustic emission, and the nature of the acoustic parameters that were most suited to bone cement failure characterisation was identified. The methodology employed in this study could potentially be used as a pre-clinical assessment tool for the integrity of cemented load bearing implants.

  12. Acoustic emission monitoring of tensile testing of corroded and un-corroded clad aluminum 2024-T3 and characterization of effects of corrosion on AE source events and material tensile properties

    NASA Astrophysics Data System (ADS)

    Okafor, A. Chukwujekwu; Natarajan, Shridhar

    2014-02-01

    Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.

  13. Acoustic emissions verification testing of International Space Station experiment racks at the NASA Glenn Research Center Acoustical Testing Laboratory

    NASA Astrophysics Data System (ADS)

    Akers, James C.; Passe, Paul J.; Cooper, Beth A.

    2005-09-01

    The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.

  14. A Modified Empirical Wavelet Transform for Acoustic Emission Signal Decomposition in Structural Health Monitoring.

    PubMed

    Dong, Shaopeng; Yuan, Mei; Wang, Qiusheng; Liang, Zhiling

    2018-05-21

    The acoustic emission (AE) method is useful for structural health monitoring (SHM) of composite structures due to its high sensitivity and real-time capability. The main challenge, however, is how to classify the AE data into different failure mechanisms because the detected signals are affected by various factors. Empirical wavelet transform (EWT) is a solution for analyzing the multi-component signals and has been used to process the AE data. In order to solve the spectrum separation problem of the AE signals, this paper proposes a novel modified separation method based on local window maxima (LWM) algorithm. It searches the local maxima of the Fourier spectrum in a proper window, and automatically determines the boundaries of spectrum segmentations, which helps to eliminate the impact of noise interference or frequency dispersion in the detected signal and obtain the meaningful empirical modes that are more related to the damage characteristics. Additionally, both simulation signal and AE signal from the composite structures are used to verify the effectiveness of the proposed method. Finally, the experimental results indicate that the proposed method performs better than the original EWT method in identifying different damage mechanisms of composite structures.

  15. A Modified Empirical Wavelet Transform for Acoustic Emission Signal Decomposition in Structural Health Monitoring

    PubMed Central

    Dong, Shaopeng; Yuan, Mei; Wang, Qiusheng; Liang, Zhiling

    2018-01-01

    The acoustic emission (AE) method is useful for structural health monitoring (SHM) of composite structures due to its high sensitivity and real-time capability. The main challenge, however, is how to classify the AE data into different failure mechanisms because the detected signals are affected by various factors. Empirical wavelet transform (EWT) is a solution for analyzing the multi-component signals and has been used to process the AE data. In order to solve the spectrum separation problem of the AE signals, this paper proposes a novel modified separation method based on local window maxima (LWM) algorithm. It searches the local maxima of the Fourier spectrum in a proper window, and automatically determines the boundaries of spectrum segmentations, which helps to eliminate the impact of noise interference or frequency dispersion in the detected signal and obtain the meaningful empirical modes that are more related to the damage characteristics. Additionally, both simulation signal and AE signal from the composite structures are used to verify the effectiveness of the proposed method. Finally, the experimental results indicate that the proposed method performs better than the original EWT method in identifying different damage mechanisms of composite structures. PMID:29883411

  16. Acoustic Emission Measurements for Tool Wear Evaluation in Drilling

    NASA Astrophysics Data System (ADS)

    Gómez, Martín P.; Migliori, Julio; Ruzzante, José E.; D'Attellis, Carlos E.

    2009-03-01

    In this work, the tool condition in a drilling process of SAE 1040 steel samples was studied by means of acoustic emission. The studied drill bits were modified with artificial and real failures, such as different degrees of wear in the cutting edge and in the outer corner. Some correlation between mean power of the acoustic emission parameters and the drill bit wear condition was found.

  17. Acoustic emission by self-organising effects of micro-hollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Kotschate, Daniel; Gaal, Mate; Kersten, Holger

    2018-04-01

    We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.

  18. Deformation and failure information from composite materials via acoustic emission

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.

    1978-01-01

    The paper reviews some principles of applying acoustic emission (AE) to the study of fiber-composite materials and structures. This review covers the basics of using AE to monitor the deformation and fracture processes that occur when fiber-composite materials are stressed. Also, new results in some areas of current research interest are presented. The following areas are emphasized: study of couplants for AE testing of composites, evaluation of a special immersion-type AE transducer, and wave propagation complications and the development of techniques for locating AE sources in Kevlar 49/epoxy composite pre

  19. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy and Implications for Composite Structures

    NASA Technical Reports Server (NTRS)

    Waller, J. M.; Nichols, C. T.; Wentzel, D. J.; Saulsberry R. L.

    2010-01-01

    Broad-band modal acoustic emission (AE) data was used to characterize micromechanical damage progression in uniaxial IM7 and T1000 carbon fiber-epoxy tows and an IM7 composite overwrapped pressure vessel (COPV) subjected to an intermittent load hold tensile stress profile known to activate the Felicity ratio (FR). Damage progression was followed by inspecting the Fast Fourier Transforms (FFTs) associated with acoustic emission events. FFT analysis revealed the occurrence of cooperative micromechanical damage events in a frequency range between 100 kHz and 1 MHz. Evidence was found for the existence of a universal damage parameter, referred to here as the critical Felicity ratio, or Felicity ratio at rupture (FR*), which had a value close to 0.96 for the tows and the COPV tested. The implications of using FR* to predict failure in carbon/epoxy composite materials and related composite components such as COPVs are discussed. Trends in the FFT data are also discussed; namely, the difference between the low and high energy events, the difference between early and late-life events, comparison of IM7 and T1000 damage progression, and lastly, the similarity of events occurring at the onset of significant acoustic emission used to calculate the FR.

  20. Wearable knee health rehabilitation assessment using acoustical emissions

    NASA Astrophysics Data System (ADS)

    Teague, Caitlin N.; Hersek, Sinan; Conant, Jordan L.; Gilliland, Scott M.; Inan, Omer T.

    2017-02-01

    We have developed a novel, wearable sensing system based on miniature piezoelectric contact microphones for measuring the acoustical emissions from the knee during movement. The system consists of two contact microphones, positioned on the medial and lateral sides of the patella, connected to custom, analog pre-amplifier circuits and a microcontroller for digitization and data storage on a secure digital card. Tn addition to the acoustical sensing, the system includes two integrated inertial measurement sensors including accelerometer and gyroscope modalities to enable joint angle calculations; these sensors, with digital outputs, are connected directly to the same microcontroller. The system provides low noise, accurate joint acoustical emission and angle measurements in a wearable form factor and has several hours of battery life.

  1. Signal frequency distribution and natural-time analyses from acoustic emission monitoring of an arched structure in the Castle of Racconigi

    NASA Astrophysics Data System (ADS)

    Niccolini, Gianni; Manuello, Amedeo; Marchis, Elena; Carpinteri, Alberto

    2017-07-01

    The stability of an arch as a structural element in the thermal bath of King Charles Albert (Carlo Alberto) in the Royal Castle of Racconigi (on the UNESCO World Heritage List since 1997) was assessed by the acoustic emission (AE) monitoring technique with application of classical inversion methods to recorded AE data. First, damage source location by means of triangulation techniques and signal frequency analysis were carried out. Then, the recently introduced method of natural-time analysis was preliminarily applied to the AE time series in order to reveal a possible entrance point to a critical state of the monitored structural element. Finally, possible influence of the local seismic and microseismic activity on the stability of the monitored structure was investigated. The criterion for selecting relevant earthquakes was based on the estimation of the size of earthquake preparation zones. The presented results suggest the use of the AE technique as a tool for detecting both ongoing structural damage processes and microseismic activity during preparation stages of seismic events.

  2. Investigation of acoustic emission coupling techniques

    NASA Technical Reports Server (NTRS)

    Jolly, W. D.

    1988-01-01

    A three-phase research program was initiated by NASA in 1983 to investigate the use of acoustic monitoring techniques to detect incipient failure in turbopump bearings. Two prototype acoustic coupler probes were designed and evaluated, and four units of the final probe design were fabricated. Success in this program could lead to development of an on-board monitor which could detect bearing damage in flight and reduce or eliminate the need for disassembly after each flight. This final report reviews the accomplishments of the first two phases and presents the results of fabrication and testing completed in the final phase of the research program.

  3. Investigation and Characterization of Acoustic Emissions of Tornadoes Using Arrays of Infrasound Sensors

    NASA Astrophysics Data System (ADS)

    Frazier, W. G.; Talmadge, C. L.; Waxler, R.; Knupp, K. R.; Goudeau, B.; Hetzer, C. H.

    2017-12-01

    Working in co-ordination with the NOAA Vortex Southeast (Vortex SE) research program, 9 infrasound sensor arrays were deployed at fixed sites across North Alabama, South-central Tennessee, and Northwest Georgia during March and April of 2017, to investigate the emission and characterization of infrasonic acoustic energy from tornadoes and related phenomena. Each array consisted of seven broadband acoustic sensors with calibrated frequency response from 0.02 Hz to 200 Hz. The arrays were configured in a pattern such that accurate bearings to acoustic sources could be obtained over a broad range of frequencies (nominally from 1 Hz to 100 Hz). Data were collected synchronously at a rate of 1000 samples per second. On 22 April 2017 a line of strong storms passed directly through the area being monitored producing at least three verified tornadoes. Two of these were rated at EF0 and the other an EF1. Subsequent processing of the data from several of the arrays revealed acoustic emissions from the tornadic storms ranging in frequencies below 1 Hz to frequencies greater than 10 Hz. Accurate bearings to the storms have been calculated from distances greater than 60 km. Preliminary analysis has revealed that continuous emissions occurred prior to the estimated touchdown times, while the storms were on the ground, and for short periods after the tornadoes lifted; however, the strongest emissions appeared to occur while the storms were on the ground. One of the storms passed near two arrays simultaneously, and therefore accurate an accurate track of the storm as it moved has been obtained only using the infrasound measurements. Initial results from the analysis of the infrasound data will be presented. Under Vortex SE meteorological data was collected on a large suite of sensors. Correlations between the infrasound data and the meteorological data will be investigated and discussed.

  4. Excitation of Ion Acoustic Waves in Plasmas with Electron Emission from Walls

    NASA Astrophysics Data System (ADS)

    Khrabrov, A. V.; Wang, H.; Kaganovich, I. D.; Raitses, Y.; Sydorenko, D.

    2015-11-01

    Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand details of electron kinetics in plasmas with strong emission, we have performed kinetic simulations of such plasmas using EDIPIC code. We show that excitation of ion acoustic waves is ubiquitous phenomena in many different plasma configurations with strong electron emission from walls. Ion acoustic waves were observed to be generated near sheath if the secondary electron emission from the walls is strong. Ion acoustic waves were also observed to be generated in the plasma bulk due to presence of an intense electron beam propagating from the cathode. This intense electron beam can excite strong plasma waves, which in turn drive the ion acoustic waves. Research supported by the U.S. Air Force Office of Scientific Research.

  5. Acoustically regulated optical emission dynamics from quantum dot-like emission centers in GaN/InGaN nanowire heterostructures

    NASA Astrophysics Data System (ADS)

    Lazić, S.; Chernysheva, E.; Hernández-Mínguez, A.; Santos, P. V.; van der Meulen, H. P.

    2018-03-01

    We report on experimental studies of the effects induced by surface acoustic waves on the optical emission dynamics of GaN/InGaN nanowire quantum dots. We employ stroboscopic optical excitation with either time-integrated or time-resolved photoluminescence detection. In the absence of the acoustic wave, the emission spectra reveal signatures originated from the recombination of neutral exciton and biexciton confined in the probed nanowire quantum dot. When the nanowire is perturbed by the propagating acoustic wave, the embedded quantum dot is periodically strained and its excitonic transitions are modulated by the acousto-mechanical coupling. Depending on the recombination lifetime of the involved optical transitions, we can resolve acoustically driven radiative processes over time scales defined by the acoustic cycle. At high acoustic amplitudes, we also observe distortions in the transmitted acoustic waveform, which are reflected in the time-dependent spectral response of our sensor quantum dot. In addition, the correlated intensity oscillations observed during temporal decay of the exciton and biexciton emission suggest an effect of the acoustic piezoelectric fields on the quantum dot charge population. The present results are relevant for the dynamic spectral and temporal control of photon emission in III-nitride semiconductor heterostructures.

  6. Sensors of vibration and acoustic emission for monitoring of boring with skiving cutters

    NASA Astrophysics Data System (ADS)

    Shamarin, N. N.; Filippov, A. V.; Podgornyh, O. A.; Filippova, E. O.

    2017-01-01

    Diagnosing processing system conditions is a key area in automation of modern machinery production. The article presents the results of a preliminary experimental research of the boring process using conventional and skiving cutters under the conditions of the low stiffness processing system. Acoustic emission and vibration sensors are used for cutting process diagnosis. Surface roughness after machining is determined using a laser scanning microscope. As a result, it is found that the use of skiving cutters provides greater stability of the cutting process and lower surface roughness as compared with conventional cutters.

  7. Correlating Inertial Acoustic Cavitation Emissions with Material Erosion Resistance

    NASA Astrophysics Data System (ADS)

    Ibanez, I.; Hodnett, M.; Zeqiri, B.; Frota, M. N.

    The standard ASTM G32-10 concerns the hydrodynamic cavitation erosion resistance of materials by subjecting them to acoustic cavitation generated by a sonotrode. The work reported extends this technique by detecting and monitoring the ultrasonic cavitation, considered responsible for the erosion process, specifically for coupons of aluminium-bronze alloy. The study uses a 65 mm diameter variant of NPL's cavitation sensor, which detects broadband acoustic emissions, and logs acoustic signals generated in the MHz frequency range, using NPL's Cavimeter. Cavitation readings were made throughout the exposure duration, which was carried out at discrete intervals (900 to 3600 s), allowing periodic mass measurements to be made to assess erosion loss under a strict protocol. Cavitation measurements and erosion were compared for different separations of the sonotrode tip from the material under test. The maximum variation associated with measurement of cavitation level was between 2.2% and 3.3% when the separation (λ) between the transducer horn and the specimen increased from 0.5 to 1.0 mm, for a transducer (sonotrode) displacement amplitude of 43.5 μm. Experiments conducted at the same transducer displacement amplitude show that the mass loss of the specimen -a measure of erosion- was 67.0 mg (λ = 0.5 mm) and 66.0 mg (λ = 1.0 mm).

  8. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.

    1985-01-01

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  9. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  10. Fault growth and acoustic emissions in confined granite

    USGS Publications Warehouse

    Lockner, David A.; Byerlee, James D.

    1992-01-01

    The failure process in a brittle granite was studied by using acoustic emission techniques to obtain three dimensional locations of the microfracturing events. During a creep experiment the nucleation of faulting coincided with the onset of tertiary creep, but the development of the fault could not be followed because the failure occurred catastrophically. A technique has been developed that enables the failure process to be stabilized by controlling the axial stress to maintain a constant acoustic emission rate. As a result the post-failure stress-strain curve has been followed quasi-statically, extending to hours the fault growth process that normally would occur violently in a fraction of a second. The results from the rate-controlled experiments show that the fault plane nucleated at a point on the sample surface after the stress-strain curve reached its peak. Before nucleation, the microcrack growth was distributed throughout the sample. The fault plane then grew outward from the nucleation site and was accompanied by a gradual drop in stress. Acoustic emission locations showed that the fault propagated as a fracture front (process zone) with dimensions of 1 to 3 cm. As the fracture front passed by a given fixed point on the fault plane, the subsequent acoustic emission would drop. When growth was allowed to progress until the fault bisected the sample, the stress dropped to the frictional strength. These observations are in accord with the behavior predicted by Rudnicki and Rice's bifurcation analysis but conflict with experiments used to infer that shear localization would occur in brittle rock while the material is still hardening.

  11. Real-time nondestructive monitoring of the gas tungsten arc welding (GTAW) process by combined airborne acoustic emission and non-contact ultrasonics

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto

    2018-03-01

    Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.

  12. Acoustic emission monitoring of low velocity impact damage in graphite/epoxy laminates during tensile loading

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    1992-01-01

    An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.

  13. Visualization of stress wave propagation via air-coupled acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan

    2017-02-01

    We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.

  14. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H

    1987-12-01

    Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.

  15. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  16. Resonant-type MEMS transducers excited by two acoustic emission simulation techniques

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2004-07-01

    Acoustic emission testing is a passive nondestructive testing technique used to identify the onset and characteristics of damage through the detection and analysis of transient stress waves. Successful detection and implementation of acoustic emission requires good coupling, high transducer sensitivity and ability to discriminate noise from real signals. We report here detection of simulated acoustic emission signals using a MEMS chip fabricated in the multi-user polysilicon surface micromachining (MUMPs) process. The chip includes 18 different transducers with 10 different resonant frequencies in the range of 100 kHz to 1 MHz. It was excited by two different source simulation techniques; pencil lead break and impact loading. The former simulation was accomplished by breaking 0.5 mm lead on the ceramic package. Four transducer outputs were collected simultaneously using a multi-channel oscilloscope. The impact loading was repeated for five different diameter ball bearings. Traditional acoustic emission waveform analysis methods were applied to both data sets to illustrate the identification of different source mechanisms. In addition, a sliding window Fourier transform was performed to differentiate frequencies in time-frequency-amplitude domain. The arrival and energy contents of each resonant frequency were investigated in time-magnitude plots. The advantages of the simultaneous excitation of resonant transducers on one chip are discussed and compared with broadband acoustic emission transducers.

  17. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra

    NASA Astrophysics Data System (ADS)

    Kumar, Jagadish; Ananthakrishna, G.

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum

  18. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.

    PubMed

    Kumar, Jagadish; Ananthakrishna, G

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum

  19. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    PubMed

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (p<0.05). Initial fracture strength of UFRC (170.0 MPa) was significantly higher than MFRC (124.6 MPa) and NRC (87.9 MPa). Final fracture strength of UFRC (198.1 MPa) was also significantly higher than MFRC (151.0 MPa) and NRC (109.2 MPa). Initial and final fracture strengths were significantly correlated (r=0.971). It was concluded that fiber reinforcement improved the fracture resistance of composite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process.

  20. Simulation on the steel galvanic corrosion and acoustic emission

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Shi, Xin; Yang, Ping

    2015-12-01

    Galvanic corrosion is a very destructive localized corrosion. The research on galvanic corrosion could determine equipment corrosion and prevent the accidents occurrence. Steel corrosion had been studied by COMSOL software with mathematical modeling. The galvanic corrosion of steel-aluminum submerged into 10% sodium chloride solution had been on-line detected by PIC-2 acoustic emission system. The results show that the acoustic emission event counts detected within unit time can qualitative judge galvanic corrosion rate and further erosion trend can be judged by the value changes.

  1. Diagnostics of flexible workpiece using acoustic emission, acceleration and eddy current sensors in milling operation

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Tarasov, S. Yu.; Filippova, E. O.; Chazov, P. A.; Shamarin, N. N.; Podgornykh, O. A.

    2016-11-01

    Monitoring of the edge clamped workpiece deflection during milling has been carried our using acoustic emission, accelerometer and eddy current sensors. Such a monitoring is necessary in precision machining of vital parts used in air-space engineering where a majority of them made by milling. The applicability of the AE, accelerometers and eddy current sensors has been discussed together with the analysis of measurement errors. The appropriate sensor installation diagram has been proposed for measuring the workpiece elastic deflection exerted by the cutting force.

  2. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source.

    PubMed

    Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi

    2014-01-20

    The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.

  3. Modeling of acoustic emission signal propagation in waveguides.

    PubMed

    Zelenyak, Andreea-Manuela; Hamstad, Marvin A; Sause, Markus G R

    2015-05-21

    Acoustic emission (AE) testing is a widely used nondestructive testing (NDT) method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM) was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing.

  4. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  5. Acoustical Emission Source Location in Thin Rods Through Wavelet Detail Crosscorrelation

    DTIC Science & Technology

    1998-03-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS ACOUSTICAL EMISSION SOURCE LOCATION IN THIN RODS THROUGH WAVELET DETAIL CROSSCORRELATION...ACOUSTICAL EMISSION SOURCE LOCATION IN THIN RODS THROUGH WAVELET DETAIL CROSSCORRELATION 6. AUTHOR(S) Jerauld, Joseph G. 5. FUNDING NUMBERS Grant...frequency characteristics of Wavelet Analysis. Software implementation now enables the exploration of the Wavelet Transform to identify the time of

  6. Characteristics of acoustic emissions from shearing of granular media

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Cohen, Denis; Or, Dani

    2010-05-01

    Deformation and abrupt formation of small failure cracks on hillslopes often precede sudden release of shallow landslides. The associated frictional sliding, breakage of cementing agents and rupture of embedded biological fibers or liquid bonds between grain contacts are associated with measurable acoustic emissions (AE). The aim of this study was to characterize small scale shear induced failure events (as models of precursors prior to a landslide) by capturing elastic body waves emitted from such events. We conducted a series of experiments with a specially-designed shear frame to measure and characterize high frequency (kHz range) acoustic emissions under different conditions using piezoelectric sensors. Tests were performed at different shear rates ranging from 0.01mm/sec to 2mm/sec with different dry and wet granular materials. In addition to acoustic emissions the setup allows to measure forces and deformations in both horizontal and vertical directions. Results provide means to define characteristic AE signature for different failure events. We observed an increase in AE activity during dilation of granular samples. In wet material AE signals were attributed to the snap-off of liquid bridges between single gains. Acoustic emissions clearly provide an experimental tool for exploring micro-mechanical processes in dry and wet material. Moreover, high sampling rates found in most AE systems coupled with waveguides to overcome signal attenuation offer a promise for field applications as an early warning method for observing the progressive development of slip planes prior to the onset of a landslide.

  7. Acoustic emission from a growing crack

    NASA Technical Reports Server (NTRS)

    Jacobs, Laurence J.

    1989-01-01

    An analytical method is being developed to determine the signature of an acoustic emission waveform from a growing crack and the results of this analysis are compared to experimentally obtained values. Within the assumptions of linear elastic fracture mechanics, a two dimensional model is developed to examine a semi-infinite crack that, after propagating with a constant velocity, suddenly stops. The analytical model employs an integral equation method for the analysis of problems of dynamic fracture mechanics. The experimental procedure uses an interferometric apparatus that makes very localized absolute measurements with very high fidelity and without acoustically loading the specimen.

  8. Studies of acoustic emission from point and extended sources

    NASA Technical Reports Server (NTRS)

    Sachse, W.; Kim, K. Y.; Chen, C. P.

    1986-01-01

    The use of simulated and controlled acoustic emission signals forms the basis of a powerful tool for the detailed study of various deformation and wave interaction processes in materials. The results of experiments and signal analyses of acoustic emission resulting from point sources such as various types of indentation-produced cracks in brittle materials and the growth of fatigue cracks in 7075-T6 aluminum panels are discussed. Recent work dealing with the modeling and subsequent signal processing of an extended source of emission in a material is reviewed. Results of the forward problem and the inverse problem are presented with the example of a source distributed through the interior of a specimen.

  9. Resonant capacitive MEMS acoustic emission transducers

    NASA Astrophysics Data System (ADS)

    Ozevin, D.; Greve, D. W.; Oppenheim, I. J.; Pessiki, S. P.

    2006-12-01

    We describe resonant capacitive MEMS transducers developed for use as acoustic emission (AE) detectors, fabricated in the commercial three-layer polysilicon surface micromachining process (MUMPs). The 1 cm square device contains six independent transducers in the frequency range between 100 and 500 kHz, and a seventh transducer at 1 MHz. Each transducer is a parallel plate capacitor with one plate free to vibrate, thereby causing a capacitance change which creates an output signal in the form of a current under a dc bias voltage. With the geometric proportions we employed, each transducer responds with two distinct resonant frequencies. In our design the etch hole spacing was chosen to limit squeeze film damping and thereby produce an underdamped vibration when operated at atmospheric pressure. Characterization experiments obtained by capacitance and admittance measurements are presented, and transducer responses to physically simulated AE source are discussed. Finally, we report our use of the device to detect acoustic emissions associated with crack initiation and growth in weld metal.

  10. Acoustic monitoring method and system in laser-induced optical breakdown (LIOB)

    DOEpatents

    O'Donnell, Matthew [Ann Arbor, MI; Ye, Jing Yong [Ann Arbor, MI; Norris, Theodore B [Dexter, MI; Baker, Jr., James R.; Balogh, Lajos P [Ann Arbor, MI; Milas, Susanne M [Ann Arbor, MI; Emelianov, Stanislav Y [Ann Arbor, MI; Hollman, Kyle W [Fenton, MI

    2008-05-06

    An acoustic monitoring method and system in laser-induced optical breakdown (LIOB) provides information which characterize material which is broken down, microbubbles in the material, and/or the microenvironment of the microbubbles. In one embodiment of the invention, femtosecond laser pulses are focused just inside the surface of a volume of aqueous solution which may include dendrimer nanocomposite (DNC) particles. A tightly focused, high frequency, single-element ultrasonic transducer is positioned such that its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a microbubble forms and a shock or pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble may be actively probed with pulse-echo measurements from the same transducer. After the microbubble forms, received pulse-echo signals have an extra pulse, describing the microbubble location and providing a measure of axial microbubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of microbubbles due to optical breakdown. These same plots can also be used to quantify LIOB thresholds.

  11. Acoustic emission from single point machining: Part 2, Signal changes with tool wear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.

    1989-01-01

    Changes in acoustic emission signal characteristics with tool wear were monitored during single point machining of 4340 steel and Ti-6Al-4V heat treated to several strength levels, 606l-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, 410 stainless steel, lead, and teflon. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristic with wear for a given material may be sufficient to be used to monitor tool wear.

  12. Acoustic Techniques for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  13. Acoustic Emission Detection of Impact Damage on Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.

    2004-01-01

    The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.

  14. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  15. Effect of fiber surface conditioning on the acoustic emission behavior of steel fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Soulioti, D. V.; Gatselou, E.; Barkoula, N. M.; Paipetis, A.; Matikas, T. E.

    2011-04-01

    The role of coating in preserving the bonding between steel fibers and concrete is investigated in this paper. Straight types of fibers with and without chemical coating are used in steel fiber reinforced concrete mixes. The specimens are tested in bending with concurrent monitoring of their acoustic emission activity throughout the failure process using two broadband sensors. The different stages of fracture (before, during and after main crack formation) exhibit different acoustic fingerprints, depending on the mechanisms that are active during failure (concrete matrix micro-cracking, macro-cracking and fiber pull out). Additionally, it was seen that the acoustic emission behaviour exhibits distinct characteristics between coated and uncoated fiber specimens. Specifically, the frequency of the emitted waves is much lower for uncoated fiber specimens, especially after the main fracture incident, during the fiber pull out stage of failure. Additionally, the duration and the rise time of the acquired waveforms are much higher for uncoated specimens. These indices are used to distinguish between tensile and shear fracture in concrete and suggest that friction is much stronger for the uncoated fibers. On the other hand, specimens with coated fibers exhibit more tensile characteristics, more likely due to the fact that the bond between fibers and concrete matrix is stronger. The fibers therefore, are not simply pulled out but also detach a small volume of the brittle concrete matrix surrounding them. It seems that the effect of chemical coating can be assessed by acoustic emission parameters additionally to the macroscopic measurements of ultimate toughness.

  16. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  17. Evaluation of Acoustic Emission SHM of PRSEUS Composite Pressure Cube Tests

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2013-01-01

    A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) pressure cube were conducted during third quarter 2011 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. The AE signals of the later tests are consistent with the final failure progression through two of the pressure cube panels. Calibration tests and damage precursor AE indications, from preliminary checkout pressurizations, indicated areas of concern that eventually failed. Hence those tests have potential for vehicle health monitoring.

  18. Monitoring radio-frequency thermal ablation with ultrasound by low frequency acoustic emissions--in vitro and in vivo study.

    PubMed

    Winkler, Itai; Adam, Dan

    2011-05-01

    The object of this study was to evaluate the monitoring of thermal ablation therapy by measuring the nonlinear response to ultrasound insonation at the region being treated. Previous reports have shown that during tissue heating, microbubbles are formed. Under the application of ultrasound, these microbubbles may be driven into nonlinear motion that produces acoustic emissions at sub-harmonic frequencies and a general increase of emissions at low frequencies. These low frequency emissions may be used to monitor ablation surgery. In this study, a modified commercial ultrasound system was used for transmitting ultrasound pulses and for recording raw RF-lines from a scan plane in porcine (in vitro) and rabbit (in vivo) livers during radio-frequency ablation (RFA). The transmission pulse was 15 cycles in length at 4 MHz (in vitro) and 3.6 MHz (in vivo). Thermocouples were used for monitoring temperatures during the RFA treatment.In the in vitro experiments, recorded RF signals (A-lines) were segmented, and the total energy was measured at two different frequency bands: at a low frequency band (LFB) of 1-2.5 MHz and at the transmission frequency band (TFB) of 3.5-4.5 MHz. The mean energy at the LFB and at the TFB increased substantially in areas adjacent to the RF needle. These energies also changed abruptly at higher temperatures, thus, producing great variance in the received energy. Mean energies in areas distant from RF needle showed little change and variation during treatment. It was also shown that a 3 dB increase of energy at the low frequency band was typically obtained in regions in which temperature was above 53.3 ± 5° C. Thus, this may help in evaluating regions undergoing hyperthermia. In the in vivo experiments, an imaging algorithm based on measuring the LFB energy was used. The algorithm performs a moving average of the LFB energies measured at segments within the scan plane.Results show that a colored region is formed on the image and that it is

  19. The Effect of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions

    PubMed Central

    Dhar, Sumitrajit

    2009-01-01

    Evoked otoacoustic emissions are often used to study the medial olivocochlear (MOC) efferents in humans. There has been concern that the emission-evoking stimulus may itself elicit efferent activity and alter the evoked otoacoustic emission. Spontaneous otoacoustic emissions (SOAEs) are hence advantageous as no external stimulation is necessary to record the response in the test ear. Contralateral acoustic stimulation (CAS) has been shown to suppress SOAE level and elevate SOAE frequency, but the time course of these effects is largely unknown. By utilizing the Choi–Williams distribution, here we report a gradual adaptation during the presence of CAS and an overshoot following CAS offset in both SOAE magnitude and frequency from six normal-hearing female human subjects. Furthermore, we have quantified the time constants of both magnitude and frequency shifts at the onset, presence, and offset of four levels of CAS. Most studies using contralateral elicitors do not stringently control the middle-ear muscle (MEM) reflex, leaving the results difficult to interpret. In addition to clinically available measures of the MEM reflex, we have incorporated a sensitive laboratory technique to monitor the MEM reflex in our subjects, allowing us to interpret the results with greater confidence. PMID:19798532

  20. Acoustic Emission during Intermittent Creep in an Aluminum-Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Shibkov, A. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.

    2018-01-01

    The use of high-speed methods to measure deformation, load, and the dynamics of deformation bands, as well as the correlation between the intermittent creep characteristics of the AlMg6 aluminum-magnesium alloy and the parameters of the acoustic emission signals, has been studied experimentally. It has been established that the emergence and rapid expansion of the primary deformation band, which generates a characteristic acoustic emission signal in the frequency range of 10-1000 Hz, is a trigger for the development of a deformation step in the creep curve. The results confirm the accuracy of the mechanism of generating an acoustic signal associated with the emergence of a dislocation band on the external surface of the specimen.

  1. Pen-chant: Acoustic emissions of handwriting and drawing

    NASA Astrophysics Data System (ADS)

    Seniuk, Andrew G.

    The sounds generated by a writing instrument ('pen-chant') provide a rich and underutilized source of information for pattern recognition. We examine the feasibility of recognition of handwritten cursive text, exclusively through an analysis of acoustic emissions. We design and implement a family of recognizers using a template matching approach, with templates and similarity measures derived variously from: smoothed amplitude signal with fixed resolution, discrete sequence of magnitudes obtained from peaks in the smoothed amplitude signal, and ordered tree obtained from a scale space signal representation. Test results are presented for recognition of isolated lowercase cursive characters and for whole words. We also present qualitative results for recognizing gestures such as circling, scratch-out, check-marks, and hatching. Our first set of results, using samples provided by the author, yield recognition rates of over 70% (alphabet) and 90% (26 words), with a confidence of +/-8%, based solely on acoustic emissions. Our second set of results uses data gathered from nine writers. These results demonstrate that acoustic emissions are a rich source of information, usable---on their own or in conjunction with image-based features---to solve pattern recognition problems. In future work, this approach can be applied to writer identification, handwriting and gesture-based computer input technology, emotion recognition, and temporal analysis of sketches.

  2. The application of acoustic emission technique to fatigue crack measurement. [in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Crews, J. H., Jr.

    1974-01-01

    The applicability of acoustic emission technique to measure fatigue cracks in aluminum alloy specimens was investigated. There are several variables, such as the metallurgical and the physical treatment of the specimen, that can affect the level of acoustic activity of a fatigue specimen. It is therefore recommended that the acoustic emission technique be supplemented by other nondestructive evaluation methods to obtain quantitative data on crack growth.

  3. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.

    PubMed

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-04-25

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade.

  4. Real time monitoring of progressive damage during loading of a simplified total hip stem construct using embedded acoustic emission sensors.

    PubMed

    Mavrogordato, Mark; Taylor, Mark; Taylor, Andrew; Browne, Martin

    2011-05-01

    Acoustic emission (AE) is a non-destructive technique that is capable of passively monitoring failure of a construct with excellent temporal resolution. Previous investigations using AE to monitor the integrity of a total hip replacement (THR) have used surface mounted sensors; however, the AE signal attenuates as it travels through materials and across interfaces. This study proposes that directly embedded sensors within the femoral stem of the implant will reduce signal attenuation effects and eliminate potential complications and variability associated with fixing the sensor to the sample. Data was collected during in vitro testing of implanted constructs, and information from both embedded and externally mounted AE sensors was compared and corroborated by micro-Computed Tomography (micro-CT) images taken before and after testing. The results of this study indicate that the embedded sensors gave a closer corroboration to observed damage using micro-CT and were less affected by unwanted noise sources. This has significant implications for the use of AE in assessing the state of THR constructs in vitro and it is hypothesised that directly embedded AE sensors may provide the first steps towards an in vivo, cost effective, user friendly, non-destructive system capable of continuously monitoring the condition of the implanted construct. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Emission Enhancement of Sound Emitters using an Acoustic Metamaterial Cavity

    PubMed Central

    Song, Kyungjun; Lee, Seong-Hyun; Kim, Kiwon; Hur, Shin; Kim, Jedo

    2014-01-01

    The emission enhancement of sound without electronic components has wide applications in a variety of remote systems, especially when highly miniaturized (smaller than wavelength) structures can be used. The recent advent of acoustic metamaterials has made it possible to realize this. In this study, we propose, design, and demonstrate a new class of acoustic cavity using a double-walled metamaterial structure operating at an extremely low frequency. Periodic zigzag elements which exhibit Fabry-Perot resonant behavior below the phononic band-gap are used to yield strong sound localization within the subwavelength gap, thus providing highly effective emission enhancement. We show, both theoretically and experimentally, 10 dB sound emission enhancement near 1060 Hz that corresponds to a wavelength approximately 30 times that of the periodicity. We also provide a general guideline for the independent tuning of the quality factor and effective volume of acoustic metamaterials. This approach shows the flexibility of our design in the efficient control of the enhancement rate. PMID:24584552

  6. Acoustic emission monitoring and critical failure identification of bridge cable damage

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ou, Jinping

    2008-03-01

    Acoustic emission (AE) characteristic parameters of bridge cable damage were obtained on tensile test. The testing results show that the AE parameter analysis method based on correlation figure of count, energy, duration time, amplitude and time can express the whole damage course, and can correctly judge the signal difference of broken wire and unbroken wire. It found the bridge cable AE characteristics aren't apparent before yield deformation, however they are increasing after yield deformation, at the time of breaking, and they reach to maximum. At last, the bridge cable damage evolution law is studied applying the AE characteristic parameter time series fractal theory. In the initial and middle stage of loading, the AE fractal value of bridge cable is unsteady. The fractal value reaches to the minimum at the critical point of failure. According to this changing law, it is approached how to make dynamic assessment and estimation of damage degrees.

  7. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  8. Structural tests using a MEMS acoustic emission sensor

    NASA Astrophysics Data System (ADS)

    Oppenheim, Irving J.; Greve, David W.; Ozevin, Didem; Hay, D. Robert; Hay, Thomas R.; Pessiki, Stephen P.; Tyson, Nathan L.

    2006-03-01

    In a collaborative project at Lehigh and Carnegie Mellon, a MEMS acoustic emission sensor was designed and fabricated as a suite of six resonant-type capacitive transducers in the frequency range between 100 and 500 kHz. Characterization studies showed good comparisons between predicted and experimental electro-mechanical behavior. Acoustic emission events, simulated experimentally in steel ball impact and in pencil lead break tests, were detected and source localization was demonstrated. In this paper we describe the application of the MEMS device in structural testing, both in laboratory and in field applications. We discuss our findings regarding housing and mounting (acoustic coupling) of the MEMS device with its supporting electronics, and we then report the results of structural testing. In all tests, the MEMS transducers were used in parallel with commercial acoustic emission sensors, which thereby serve as a benchmark and permit a direct observation of MEMS device functionality. All tests involved steel structures, with particular interest in propagation of existing cracks or flaws. A series of four laboratory tests were performed on beam specimens fabricated from two segments (Grade 50 steel) with a full penetration weld (E70T-4 electrode material) at midspan. That weld region was notched, an initial fatigue crack was induced, and the specimens were then instrumented with one commercial transducer and with one MEMS device; data was recorded from five individual transducers on the MEMS device. Under a four-point bending test, the beam displayed both inelastic behavior and crack propagation, including load drops associated with crack instability. The MEMS transducers detected all instability events as well as many or most of the acoustic emissions occurring during plasticity and stable crack growth. The MEMS transducers were less sensitive than the commercial transducer, and did not detect as many events, but the normalized cumulative burst count obtained

  9. Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines

    NASA Astrophysics Data System (ADS)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-04-01

    A sparse reconstruction localization method is proposed, which is capable of localizing multiple acoustic emission events occurring closely in time. The events may be due to a number of sources, such as the growth of corrosion patches or cracks. Such acoustic emissions may yield localization failure if a triangulation method is used. The proposed method is implemented both theoretically and experimentally on large diameter thin-walled pipes. Experimental examples are presented, which demonstrate the failure of a triangulation method when multiple sources are present in this structure, while highlighting the capabilities of the proposed method. The examples are generated from experimental data of simulated acoustic emission events. The data corresponds to helical guided ultrasonic waves generated in a 3 m long large diameter pipe by pencil lead breaks on its outer surface. Acoustic emission waveforms are recorded by six sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface of the pipe. The same array of transducers is used for both the proposed and the triangulation method. It is demonstrated that the proposed method is able to localize multiple events occurring closely in time. Furthermore, the matching pursuit algorithm and the basis pursuit densoising approach are each evaluated as potential numerical tools in the proposed sparse reconstruction method.

  10. Towards identifying the dynamics of sliding by acoustic emission and vibration

    NASA Astrophysics Data System (ADS)

    Korchuganov, M. A.; Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2016-11-01

    The results of experiments with high load and sliding speed sliding conditions on tribologically mated pairs such as steel 1045/steel 1045 (test 1), steel 1045/basalt (test 2) and Hadfield steel/basalt (test 3) have been carried out in order to identify their response in terms of the acoustic emission and vibration signals. The steel to rock and rock to steel transfer has been revealed by examining the worn surfaces of both steel and rock samples with the use of laser scanning microscopy. The AE signal characteristics have been determined for the tribological pairs studied. The dynamics of sliding has been evaluated by measuring the vibration accelerations. Relationship between wear mode and either acoustic emission signal or vibration signal has been established. The minimal vibration oscillations amplitude and acoustic emission signal energy have been found out in sliding Hadfield steel/basalt pair.

  11. Acoustic emission from single point machining: Part 2, Signal changes with tool wear. Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.

    1989-12-31

    Changes in acoustic emission signal characteristics with tool wear were monitored during single point machining of 4340 steel and Ti-6Al-4V heat treated to several strength levels, 606l-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, 410 stainless steel, lead, and teflon. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristic with wear for a given material may be sufficient to be used to monitor tool wear.

  12. Phenomenological Description of Acoustic Emission Processes Occurring During High-Pressure Sand Compaction

    NASA Astrophysics Data System (ADS)

    Delgado-Martín, Jordi; Muñoz-Ibáñez, Andrea; Grande-García, Elisa; Rodríguez-Cedrún, Borja

    2016-04-01

    Compaction, pore collapse and grain crushing have a significant impact over the hydrodynamic properties of sand formations. The assessment of the crushing stress threshold constitutes valuable information in order to assess the behavior of these formations provided that it can be conveniently identified. Because of the inherent complexities of the direct observation of sand crushing, different authors have developed several indirect methods, being acoustic emission a promising one. However, previous researches have evidenced that there are different processes triggering acoustic emissions which need to be carefully accounted. Worth mentioning among them are grain bearing, grain to container friction, intergranular friction and crushing. The work presented here addresses this purpose. A broadband acoustic emission sensor (PA MicroHF200) connected to a high-speed data acquisition system and control software (AeWIN for PCI1 2.10) has been attached to a steel ram and used to monitor the different processes occurring during the oedometric compaction of uniform quartz sand up to an axial load of about 110 MPa and constant temperature. Load was stepwise applied using a servocontrolled hydraulic press acting at a constant load rate. Axial strain was simultaneously measured with the aid of a LDT device. Counts, energy, event duration, rise time and amplitude were recorded along each experiment and after completion selected waveforms were transformed from the time to the frequency domain via FFT transform. Additional simplified tests were performed in order to isolate the frequency characteristics of the dominant processes occurring during sand compaction. Our results show that, from simple tests, it is possible to determine process-dependent frequency components. When considering more complex experiments, many of the studied processes overlap but it is still possible to identify when a particular one dominates as well as the likely onset of crushing.

  13. Experimental facility for the study of acoustic emission registered in the primary circuit components of WWER power units

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Hovakimyan, T. H.; Yeghoyan, E. A.; Hovhannisyan, H. T.; Mayilyan, D. G.; Petrosyan, A. P.

    2017-01-01

    This paper is dedicated to the creation of a facility for the experimental study of a phenomenon of background acoustic emission (AE), which is detected in the main circulation loop (MCL) of WWER power units. The analysis of the operating principle and the design of a primary feed-and-blow down system (FB) deaerator of NPP as the most likely source of continuous acoustic emission is carried out. The experimental facility for the systematic study of a phenomenon of continuous AE is developed. A physical model of a thermal deaerator is designed and constructed. A thermal monitoring system is introduced. An automatic system providing acoustic signal registration in a low frequency (0.03-30 kHz) and high frequency (30-300 kHz) bands and study of its spectral characteristics is designed. Special software for recording and processing of digitized electrical sensor signals is developed. A separate and independent principle of study of the most probable processes responsible for the generation of acoustic emission signals in the deaerator is applied. Trial series of experiments and prechecks of acoustic signals in different modes of the deaerator model are conducted. Compliance of basic technological parameters with operating range of the real deaerator was provided. It is shown that the acoustic signal time-intensity curve has several typical regions. The pilot research showed an impact of various processes that come about during the operation of the deaerator physical model on the intensity of the AE signal. The experimental results suggest that the main sources of generation of the AE signals are the processes of steam condensation, turbulent flow of gas-vapor medium, and water boiling.

  14. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission

    PubMed Central

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-01-01

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade. PMID:29693556

  15. The Identification of the Deformation Stage of a Metal Specimen Based on Acoustic Emission Data Analysis

    PubMed Central

    Zou, Shenao; Yan, Fengying; Yang, Guoan; Sun, Wei

    2017-01-01

    The acoustic emission (AE) signals of metal materials have been widely used to identify the deformation stage of a pressure vessel. In this work, Q235 steel samples with different propagation distances and geometrical structures are stretched to get the corresponding acoustic emission signals. Then the obtained acoustic emission signals are de-noised by empirical mode decomposition (EMD), and then decomposed into two different frequency ranges, i.e., one mainly corresponding to metal deformation and the other mainly corresponding to friction signals. The ratio of signal energy between two frequency ranges is defined as a new acoustic emission characteristic parameter. Differences can be observed at different deformation stages in both magnitude and data distribution range. Compared with other acoustic emission parameters, the proposed parameter is valid in different setups of the propagation medium and the coupled stiffness. PMID:28387703

  16. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  17. Acoustic emission analysis for the detection of appropriate cutting operations in honing processes

    NASA Astrophysics Data System (ADS)

    Buj-Corral, Irene; Álvarez-Flórez, Jesús; Domínguez-Fernández, Alejandro

    2018-01-01

    In the present paper, acoustic emission was studied in honing experiments obtained with different abrasive densities, 15, 30, 45 and 60. In addition, 2D and 3D roughness, material removal rate and tool wear were determined. In order to treat the sound signal emitted during the machining process, two methods of analysis were compared: Fast Fourier Transform (FFT) and Hilbert Huang Transform (HHT). When density 15 is used, the number of cutting grains is insufficient to provide correct cutting, while clogging appears with densities 45 and 60. The results were confirmed by means of treatment of the sound signal. In addition, a new parameter S was defined as the relationship between energy in low and high frequencies contained within the emitted sound. The selected density of 30 corresponds to S values between 0.1 and 1. Correct cutting operations in honing processes are dependent on the density of the abrasive employed. The density value to be used can be selected by means of measurement and analysis of acoustic emissions during the honing operation. Thus, honing processes can be monitored without needing to stop the process.

  18. Characterization of delamination and transverse cracking in graphite/epoxy laminates by acoustic emission

    NASA Technical Reports Server (NTRS)

    Garg, A.; Ishaei, O.

    1983-01-01

    Efforts to characterize and differentiate between two major failure processes in graphite/epoxy composites - transverse cracking and Mode I delamination are described. Representative laminates were tested in uniaxial tension and flexure. The failure processes were monitored and identified by acoustic emission (AE). The effect of moisture on AE was also investigated. Each damage process was found to have a distinctive AE output that is significantly affected by moisture conditions. It is concluded that AE can serve as a useful tool for detecting and identifying failure modes in composite structures in laboratory and in service environments.

  19. Acoustic emission characterization of steel fibre reinforced concrete during bending

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Soulioti, D. V.; Sapouridis, N.; Barkoula, N. M.; Paipetis, A. S.; Matikas, T. E.

    2010-04-01

    The acoustic emission (AE) behaviour of steel fibre reinforced concrete is studied in this paper. The experiments were conducted in four-point bending with concurrent monitoring of AE signals. The sensors used, were of broadband response in order to capture a wide range of fracturing phenomena. The results indicate that AE parameters undergo significant changes much earlier than the final fracture of the specimens, even if the AE hit rate seems approximately constant. Specifically, the Ib-value which takes into account the amplitude distribution of the recent AE hits decreases when the load reaches about 60-70 % of its maximum value. Additionally, the average frequency of the signals decreases abruptly when a fracture incident occurs, indicating that matrix cracking events produce higher frequencies than fibre pull-out events. It is concluded that proper study of AE parameters enables the characterization of structural health of large structures in cases where remote monitoring is applied.

  20. Acoustic emission-based sensor analysis and damage classification for structural health monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Uprety, Bibhisha

    Within the aerospace industry the need to detect and locate impact events, even when no visible damage is present, is important both from the maintenance and design perspectives. This research focused on the use of Acoustic Emission (AE) based sensing technologies to identify impact events and characterize damage modes in composite structures for structural health monitoring. Six commercially available piezoelectric AE sensors were evaluated for use with impact location estimation algorithms under development at the University of Utah. Both active and passive testing were performed to estimate the time of arrival and plate wave mode velocities for impact location estimation. Four sensors were recommended for further comparative investigations. Furthermore, instrumented low-velocity impact experiments were conducted on quasi-isotropic carbon/epoxy composite laminates to initiate specific types of damage: matrix cracking, delamination and fiber breakage. AE signal responses were collected during impacting and the test panels were ultrasonically C-scanned after impact to identify the internal damage corresponding to the AE signals. Matrix cracking and delamination damage produced using more compliant test panels and larger diameter impactor were characterized by lower frequency signals while fiber breakage produced higher frequency responses. The results obtained suggest that selected characteristics of sensor response signals can be used both to determine whether damage is produced during impacting and to characterize the types of damage produced in an impacted composite structure.

  1. A wireless data acquisition system for acoustic emission testing

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. T.; Lynch, J. P.

    2013-01-01

    As structural health monitoring (SHM) systems have seen increased demand due to lower costs and greater capabilities, wireless technologies have emerged that enable the dense distribution of transducers and the distributed processing of sensor data. In parallel, ultrasonic techniques such as acoustic emission (AE) testing have become increasingly popular in the non-destructive evaluation of materials and structures. These techniques, which involve the analysis of frequency content between 1 kHz and 1 MHz, have proven effective in detecting the onset of cracking and other early-stage failure in active structures such as airplanes in flight. However, these techniques typically involve the use of expensive and bulky monitoring equipment capable of accurately sensing AE signals at sampling rates greater than 1 million samples per second. In this paper, a wireless data acquisition system is presented that is capable of collecting, storing, and processing AE data at rates of up to 20 MHz. Processed results can then be wirelessly transmitted in real-time, creating a system that enables the use of ultrasonic techniques in large-scale SHM systems.

  2. Acoustic emission from trabecular bone during mechanical testing: the effect of osteoporosis and osteoarthritis.

    PubMed

    Leichter, I; Bivas, A; Margulies, J Y; Roman, I; Simkin, A

    1990-01-01

    This study examines the relation between the nature of acoustic emission signals emitted from cancellous bone under compression and the mechanical properties of the tissue. The examined bone specimens were taken from 12 normal, 31 osteoporotic and six osteoarthritic femoral heads. The mechanical behaviour of the osteoporotic bone specimens was found to be significantly different from that of the normal specimens both in the pre-yield and post-yield ranges. In the osteoarthritic bones only the elastic behaviour was significantly different. The rates of acoustic events before yield and beyond it were found to be significantly higher both in the osteoporotic and osteoarthritic bone specimens. The average peak amplitude of the signals was also significantly higher in the diseased bones. Stepwise regression analysis showed that a combination of the acoustic emission parameters could significantly predict some mechanical properties of the bone. The energy absorbed during compression and the ultimate compressive stress of the specimens could be estimated from the rate of pre-yield acoustic events, the average amplitude of the signals and the rate of post-yield events. However, the explanation power of the acoustic emission parameters was only moderate. The nature of acoustic emission signals was thus demonstrated to be a potential tool for assessing bone quality.

  3. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  4. Non-destructive examination of interfacial debonding using acoustic emission.

    PubMed

    Li, Haiyan; Li, Jianying; Yun, Xiaofei; Liu, Xiaozhou; Fok, Alex Siu-Lun

    2011-10-01

    This study aims to assess the viability of using the acoustic emission (AE) measurement technique to detect and monitor in situ the interfacial debonding in resin composite restorations due to build-up of shrinkage stresses during polymerization of the composite. The non-destructive testing technique that measures acoustic emission (AE) was used to detect and monitor the interfacial debonding in resin composite during curing of the composite. Four groups of specimens, n=4 each, were tested: (1) intact human molars with Class-I cavities restored with the composite Z100 (3M ESPE, USA); (2) intact human molars with Class-I cavities restored with the composite Filtek™ P90 (3M ESPE, USA); (3) ring samples prepared from the root of a single bovine tooth and 'restored' with Z100; (4) freestanding pea-size specimens of Z100 directly placed on the AE sensor. The restorations in Groups (1)-(3) were bonded to the tooth tissues with the adhesive Adper™ Scotchbond™ SE Self-Etch (3M ESPE, USA). The composites in all the specimens were cured with a blue light (3M ESPE, USA) for 40s. The AE signals were recorded continuously for 10 min from the start of curing. Non-destructive 3D imaging was performed using X-ray micro-computed tomography (micro-CT) to examine the bonding condition at the tooth-restoration interface. The development of AE events followed roughly that of the shrinkage stress, which was determined separately by the cantilever beam method. The number of AE events in the real human tooth samples was more than that in the ring samples, and no AE events were detected in the pea-size specimens placed directly on the AE sensor. The number of AE events recorded in the specimens restored using Z100 was more than that found in specimens restored with Filtek P90. The micro-CT imaging results showed clear interfacial debondings in the tooth specimens restored with Z100 after curing, but no clear debonding was found in the P90 specimens. The AE technique is an effective

  5. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  6. The application of compressed sensing to long-term acoustic emission-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alessandro; Park, Gyuhae; Farrar, Charles; Mascareñas, David

    2012-04-01

    The acoustic emission (AE) phenomena generated by a rapid release in the internal stress of a material represent a promising technique for structural health monitoring (SHM) applications. AE events typically result in a discrete number of short-time, transient signals. The challenge associated with capturing these events using classical techniques is that very high sampling rates must be used over extended periods of time. The result is that a very large amount of data is collected to capture a phenomenon that rarely occurs. Furthermore, the high energy consumption associated with the required high sampling rates makes the implementation of high-endurance, low-power, embedded AE sensor nodes difficult to achieve. The relatively rare occurrence of AE events over long time scales implies that these measurements are inherently sparse in the spike domain. The sparse nature of AE measurements makes them an attractive candidate for the application of compressed sampling techniques. Collecting compressed measurements of sparse AE signals will relax the requirements on the sampling rate and memory demands. The focus of this work is to investigate the suitability of compressed sensing techniques for AE-based SHM. The work explores estimating AE signal statistics in the compressed domain for low-power classification applications. In the event compressed classification finds an event of interest, ι1 norm minimization will be used to reconstruct the measurement for further analysis. The impact of structured noise on compressive measurements is specifically addressed. The suitability of a particular algorithm, called Justice Pursuit, to increase robustness to a small amount of arbitrary measurement corruption is investigated.

  7. Intelligent processing of acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Sachse, Wolfgang; Grabec, Igor

    1992-07-01

    Recent developments in applying neural-like signal-processing procedures for analyzing acoustic emission signals are summarized. These procedures employ a set of learning signals to develop a memory that can subsequently be utilized to process other signals to recover information about an unknown source. A majority of the current applications to process ultrasonic waveforms are based on multilayered, feed-forward neural networks, trained with some type of back-error propagation rule.

  8. Acoustic Transmitters for Underwater Neutrino Telescopes

    PubMed Central

    Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  9. Acoustic emission analysis of fiber-reinforced composite in flexural testing.

    PubMed

    Alander, Pasi; Lassila, Lippo V J; Tezvergil, Arzu; Vallittu, Pekka K

    2004-05-01

    The aim of this study was to examine the emission of acoustic signals from six commercially available fiber-reinforced composites (FRC) used in the frameworks of fixed partial dentures in material bending. FRC test specimens were made of six commercially available fiber products of polyethylene or glass and five light-curing resins. FRC test specimens were polymerized with a hand light-curing unit or with a light-curing oven. The flexural test for determination of ultimate flexural strength of test specimens (n = 6) was based on the ISO 10477 standard after the specimens were stored in air or in water for two weeks. The acoustic emission (AE) signals were monitored during three-point loading test of the test specimens using a test with increasing loading levels until the specimens fractured. Generally, stress level required for the AE activity initiation ranged from 107 MPa (Ribbond) to 579 MPa (everStick). The ultimate flexural strength of FRC specimens were higher, ranging from 132 to 764 MPa, being highest with everStick and Vectris FRC, and lowest with Ribbond FRC. ANOVA showed a statistically significant difference between the initiation of AE activity and the ultimate flexural strength according to the brand (p < 0.001) storing conditions (p < 0.001) and polymerization procedure (p < 0.001). AE activity and ultimate flexural strength correlated significantly (p < 0.010, r = 0.887). The result of this study suggested that AE activity in FRC specimens started at a 19-32% lower stress level than occurred at final fracture.

  10. Simultaneous Ultrasound Therapy and Monitoring of Microbubble-Seeded Acoustic Cavitation Using a Single-Element Transducer.

    PubMed

    Heymans, Sophie V; Martindale, Christine F; Suler, Andrej; Pouliopoulos, Antonios N; Dickinson, Robert J; Choi, James J

    2017-08-01

    Ultrasound-driven microbubble (MB) activity is used in therapeutic applications such as blood clot dissolution and targeted drug delivery. The safety and performance of these technologies are linked to the type and distribution of MB activities produced within the targeted area, but controlling and monitoring these activities in vivo and in real time has proven to be difficult. As therapeutic pulses are often milliseconds long, MB monitoring currently requires a separate transducer used in a passive reception mode. Here, we present a simple, inexpensive, integrated setup, in which a focused single-element transducer can perform ultrasound therapy and monitoring simultaneously. MBs were made to flow through a vessel-mimicking tube, placed within the transducer's focus, and were sonicated with therapeutic pulses (peak rarefactional pressure: 75-827 kPa, pulse lengths: [Formula: see text] and 20 ms). The MB-seeded acoustic emissions were captured using the same transducer. The received signals were separated from the therapeutic signal with a hybrid coupler and a high-pass filter. We discriminated the MB-generated cavitation signal from the primary acoustic field and characterized MB behavior in real time. The simplicity and versatility of our circuit could make existing single-element therapeutic transducers also act as cavitation detectors, allowing the production of compact therapeutic systems with real time monitoring capabilities.

  11. A new setup for studying thermal microcracking through acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Baud, Patrick; Schmittbuhl, Jean

    2016-04-01

    Thermal stressing is common in geothermal environments and has been shown in the laboratory to induce changes in the physical and mechanical properties of rocks. These changes are generally considered to be a consequence of the generation of thermal microcracks and debilitating chemical reactions. Thermal microcracks form as a result of the build-up of internal stresses due to: (1) the thermal expansion mismatch between the different phases present in the material, (2) thermal expansion anisotropy within individual minerals, and (3) thermal gradients. The generation of cracks during thermal stressing has been monitored in previous studies using the output of acoustic emissions (AE), a common proxy for microcrack damage, and through microstructural observations. Here we present a new experimental setup which is optimised to record AE from a rock sample at high temperatures and under a servo-controlled uniaxial stress. The design is such that the AE transducer is embedded in the top of the piston, which acts as a continuous wave guide to the sample. In this way, we simplify the ray path geometry whilst minimising the number of interfaces between the microcrack and the transducer, maximising the quality of the signal. This allows for an in-depth study of waveform attributes such as energy, amplitude, counts and duration. Furthermore, the capability of this device to apply a servo-controlled load on the sample, whilst measuring strain in real time, leads to a spectrum of possible tests combining mechanical and thermal stress. It is also an essential feature to eliminate the build-up of stresses through thermal expansion of the pistons and the sample. We plan a systematic experimental study of the AE of thermally stressed rock during heating and cooling cycles. We present results from pilot tests performed on Darley Dale sandstone and Westerly granite. Understanding the effects of thermal stressing in rock is of particular interest at a geothermal site, where

  12. Nonlinear ball chain waveguides for acoustic emission and ultrasound sensing of ablation

    NASA Astrophysics Data System (ADS)

    Pearson, Stephen H.

    Harsh environment acoustic emission and ultrasonic wave sensing applications often benefit from placing the sensor in a remote and more benign physical location by using waveguides to transmit elastic waves between the structural location under test and the transducer. Waveguides are normally designed to have high fidelity over broad frequency ranges to minimize distortion -- often difficult to achieve in practice. This thesis reports on an examination of using nonlinear ball chain waveguides for the transmission of acoustic emission and ultrasonic waves for the monitoring of thermal protection systems undergoing severe heat loading, leading to ablation and similar processes. Experiments test the nonlinear propagation of solitary, harmonic and mixed harmonic elastic waves through a copper tube filled with steel and elastomer balls and various other waveguides. Triangulation of pencil lead breaks occurs on a steel plate. Data are collected concerning the usage of linear waveguides and a water-cooled linear waveguide. Data are collected from a second water-cooled waveguide monitoring Atmospheric Reentry Materials in UVM's Inductively-Coupled Plasma Torch Facility. The motion of the particles in the dimer waveguides is linearly modeled with a three ball and spring chain model and the results are compared per particle. A theoretical nonlinear model is presented which is capable of exactly modeling the motion of the dimer chains. The shape of the waveform propagating through the dimer chain is modeled in a sonic vacuum. Mechanical pulses of varying time widths and amplitudes are launched into one end of the ball chain waveguide and observed at the other end in both time and frequency domains. Similarly, harmonic and mixed harmonic mechanical loads are applied to one end of the waveguide. Balls of different materials are analyzed and discriminated into categories. A copper tube packed with six steel particles, nine steel or marble particles and a longer copper tube

  13. Beamforming array techniques for acoustic emission monitoring of large concrete structures

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.

    2010-06-01

    This paper introduces a novel method of acoustic emission (AE) analysis which is particularly suited for field applications on large plate-like reinforced concrete structures, such as walls and bridge decks. Similar to phased-array signal processing techniques developed for other non-destructive evaluation methods, this technique adapts beamforming tools developed for passive sonar and seismological applications for use in AE source localization and signal discrimination analyses. Instead of relying on the relatively weak P-wave, this method uses the energy-rich Rayleigh wave and requires only a small array of 4-8 sensors. Tests on an in-service reinforced concrete structure demonstrate that the azimuth of an artificial AE source can be determined via this method for sources located up to 3.8 m from the sensor array, even when the P-wave is undetectable. The beamforming array geometry also allows additional signal processing tools to be implemented, such as the VESPA process (VElocity SPectral Analysis), whereby the arrivals of different wave phases are identified by their apparent velocity of propagation. Beamforming AE can reduce sampling rate and time synchronization requirements between spatially distant sensors which in turn facilitates the use of wireless sensor networks for this application.

  14. Coherent changes of multifractal properties of continuous acoustic emission at failure of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Panteleev, Ivan; Bayandin, Yuriy; Naimark, Oleg

    2017-12-01

    This work performs a correlation analysis of the statistical properties of continuous acoustic emission recorded in different parts of marble and fiberglass laminate samples under quasi-static deformation. A spectral coherent measure of time series, which is a generalization of the squared coherence spectrum on a multidimensional series, was chosen. The spectral coherent measure was estimated in a sliding time window for two parameters of the acoustic emission multifractal singularity spectrum: the spectrum width and the generalized Hurst exponent realizing the maximum of the singularity spectrum. It is shown that the preparation of the macrofracture focus is accompanied by the synchronization (coherent behavior) of the statistical properties of acoustic emission in allocated frequency intervals.

  15. A guide to processing bat acoustic data for the North American Bat Monitoring Program (NABat)

    USGS Publications Warehouse

    Reichert, Brian; Lausen, Cori; Loeb, Susan; Weller, Ted; Allen, Ryan; Britzke, Eric; Hohoff, Tara; Siemers, Jeremy; Burkholder, Braden; Herzog, Carl; Verant, Michelle

    2018-06-14

    The North American Bat Monitoring Program (NABat) aims to improve the state of conservation science for all species of bats shared by the United States, Canada, and Mexico. To accomplish this goal, NABat offers guidance and standardized protocols for acoustic monitoring of bats. In this document, “A Guide to Processing Bat Acoustic Data for the North American Bat Monitoring Program (NABat),” we provide general recommendations and specific workflows for the process of identifying bat species from acoustic files recorded using the NABat stationary point and mobile transect acoustic monitoring protocols.

  16. High-Speed Edge Trimming of CFRP and Online Monitoring of Performance of Router Tools Using Acoustic Emission

    PubMed Central

    Prakash, Rangasamy; Krishnaraj, Vijayan; Zitoune, Redouane; Sheikh-Ahmad, Jamal

    2016-01-01

    Carbon fiber reinforced polymers (CFRPs) have found wide-ranging applications in numerous industrial fields such as aerospace, automotive, and shipping industries due to their excellent mechanical properties that lead to enhanced functional performance. In this paper, an experimental study on edge trimming of CFRP was done with various cutting conditions and different geometry of tools such as helical-, fluted-, and burr-type tools. The investigation involves the measurement of cutting forces for the different machining conditions and its effect on the surface quality of the trimmed edges. The modern cutting tools (router tools or burr tools) selected for machining CFRPs, have complex geometries in cutting edges and surfaces, and therefore a traditional method of direct tool wear evaluation is not applicable. An acoustic emission (AE) sensing was employed for on-line monitoring of the performance of router tools to determine the relationship between AE signal and length of machining for different kinds of geometry of tools. The investigation showed that the router tool with a flat cutting edge has better performance by generating lower cutting force and better surface finish with no delamination on trimmed edges. The mathematical modeling for the prediction of cutting forces was also done using Artificial Neural Network and Regression Analysis. PMID:28773919

  17. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO 2 emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO 2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO 2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5more » times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO 2 . The sensor frequency change was around 300ppm for pure CO 2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.« less

  18. CORROSION PROCESS IN REINFORCED CONCRETE IDENTIFIED BY ACOUSTIC EMISSION

    NASA Astrophysics Data System (ADS)

    Kawasaki, Yuma; Kitaura, Misuzu; Tomoda, Yuichi; Ohtsu, Masayasu

    Deterioration of Reinforced Concrete (RC) due to salt attack is known as one of serious problems. Thus, development of non-destructive evaluation (NDE) techniques is important to assess the corrosion process. Reinforcement in concrete normally does not corrode because of a passive film on the surface of reinforcement. When chloride concentration at reinfo rcement exceeds the threshold level, the passive film is destroyed. Thus maintenance is desirable at an early stage. In this study, to identify the onset of corrosion and the nucleation of corrosion-induced cracking in concrete due to expansion of corrosion products, continuous acoustic emission (AE) monitoring is applied. Accelerated corrosion and cyclic wet and dry tests are performed in a laboratory. The SiGMA (Simplified Green's functions for Moment tensor Analysis) proce dure is applied to AE waveforms to clarify source kinematics of micro-cracks locations, types and orientations. Results show that the onset of corrosion and the nu cleation of corrosion-induced cracking in concrete are successfully identified. Additionally, cross-sections inside the reinforcement are observed by a scanning electron microscope (SEM). From these results, a great promise for AE techniques to monitor salt damage at an early stage in RC structures is demonstrated.

  19. Tools for automated acoustic monitoring within the R package monitoR

    USGS Publications Warehouse

    Katz, Jonathan; Hafner, Sasha D.; Donovan, Therese

    2016-01-01

    The R package monitoR contains tools for managing an acoustic-monitoring program including survey metadata, template creation and manipulation, automated detection and results management. These tools are scalable for use with small projects as well as larger long-term projects and those with expansive spatial extents. Here, we describe typical workflow when using the tools in monitoR. Typical workflow utilizes a generic sequence of functions, with the option for either binary point matching or spectrogram cross-correlation detectors.

  20. Acoustic emission strand burning technique for motor burning rate prediction

    NASA Technical Reports Server (NTRS)

    Christensen, W. N.

    1978-01-01

    An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.

  1. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  2. Acoustic emission analysis: A test method for metal joints bonded by adhesives

    NASA Technical Reports Server (NTRS)

    Brockmann, W.; Fischer, T.

    1978-01-01

    Acoustic emission analysis is applied to study adhesive joints which had been subjected to mechanical and climatic stresses, taking into account conditions which make results applicable to adhesive joints used in aerospace technology. Specimens consisting of the alloy AlMgSi0.5 were used together with a phenolic resin adhesive, an epoxy resin modified with a polyamide, and an epoxy resin modified with a nitrile. Results show that the acoustic emission analysis provides valuable information concerning the behavior of adhesive joints under load and climatic stresses.

  3. Development of a MEMS acoustic emission sensor system

    NASA Astrophysics Data System (ADS)

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first

  4. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  5. Acoustical monitoring of fish behavior in a tank

    NASA Astrophysics Data System (ADS)

    Conti, Stephan G.; Maurer, Benjamin D.; Roux, Philippe; Fauvel, Christian; Demer, David A.; Waters, Kendall R.

    2004-10-01

    In recent publications, it has been demonstrated that the total scattering cross section of fish moving in a tank can be estimated from ensembles of reverberation time series. However, the reproducibility of these measurements is influenced by parameters such as the motion or the behavior of the fish. In this work, we propose to observe acoustically the behavior of fish in a tank, and to measure their average speed. The total scattering cross section of live fish (sardines, sea bass and bocaccio) in a tank was measured repeatedly over multiple days. The species used in this study have different behaviors, which are reflected in the acoustical measurements. Depending on the behavior of the fish, such as the average displacement between two acoustic pings or the aggregation type, the total scattering cross section is different. Correlation between the acoustical measurements and the day and night behavior of the fish is demonstrated. Interpretation of such measurements can lead to monitoring acoustically and nonintrusively the behavior of fish in tanks.

  6. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, Alexey V., E-mail: a-bulanov@me.com; V.I. Il’ichev Pacific Oceanological Institute, Vladivostok, Russia 690041; Nagorny, Ivan G., E-mail: ngrn@mail.ru

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission inmore » fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.« less

  7. Variabilities detected by acoustic emission from filament-wound Aramid fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.

    1978-01-01

    Two hundred and fifty Aramid fiber/epoxy pressure vessels were filament-wound over spherical aluminum mandrels under controlled conditions typical for advanced filament-winding. A random set of 30 vessels was proof-tested to 74% of the expected burst pressure; acoustic emission data were obtained during the proof test. A specially designed fixture was used to permit in situ calibration of the acoustic emission system for each vessel by the fracture of a 4-mm length of pencil lead (0.3 mm in diameter) which was in contact with the vessel. Acoustic emission signatures obtained during testing showed larger than expected variabilities in the mechanical damage done during the proof tests. To date, identification of the cause of these variabilities has not been determined.

  8. Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring.

    PubMed

    Stimpert, Alison K; Au, Whitlow W L; Parks, Susan E; Hurst, Thomas; Wiley, David N

    2011-01-01

    Humpback whales (Megaptera novaeangliae) are one of several baleen whale species in the Northwest Atlantic that coexist with vessel traffic and anthropogenic noise. Passive acoustic monitoring strategies can be used in conservation management, but the first step toward understanding the acoustic behavior of a species is a good description of its acoustic repertoire. Digital acoustic tags (DTAGs) were placed on humpback whales in the Stellwagen Bank National Marine Sanctuary to record and describe the non-song sounds being produced in conjunction with foraging activities. Peak frequencies of sounds were generally less than 1 kHz, but ranged as high as 6 kHz, and sounds were generally less than 1 s in duration. Cluster analysis distilled the dataset into eight groups of sounds with similar acoustic properties. The two most stereotyped and distinctive types ("wops" and "grunts") were also identified aurally as candidates for use in passive acoustic monitoring. This identification of two of the most common sound types will be useful for moving forward conservation efforts on this Northwest Atlantic feeding ground.

  9. In-situ study of the cracking of metal hydride electrodes by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Didier-Laurent, S.; Idrissi, H.; Roué, L.

    Pulverisation phenomena occurring during the charge/discharge cycling of metal hydride materials were studied by acoustic emission coupled to electrochemical measurements. Two kinds of materials were studied: a commercial LaNi 5-based alloy and a ball-milled MgNi alloy. In both alloys, two populations of acoustic signals were detected during charging steps: P1, showing peak frequencies between 230 and 260 kHz, high energy and low rise time, and P2 with peak frequencies between 150 and 180 kHz, lower energy and longer rise time. Population P2 is related to the hydrogen evolution reaction whereas P1 is associated with pulverisation phenomena. No acoustic activity was detected during discharge. We also investigated pulverisation phenomena through cycles by monitoring the P1 population. It appears that pulverisation occurs mainly during the five first cycles for LaNi 5 with a maximum at the second cycle, while pulverisation takes place all along the cycling for MgNi, but at a decreasing rate. By comparing the P1 activities, it appears that the pulverization phenomenon is less intensive on the MgNi electrode than on the LaNi 5-based electrode.

  10. Acoustic emission non-destructive testing of structures using source location techniques.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one onmore » aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.« less

  11. Acoustic emission-microstructural relationships in ferritic steels. Part 2: The effect of tempering

    NASA Astrophysics Data System (ADS)

    Scruby, C. B.; Wadley, H. N. G.

    1985-07-01

    Tempering of Fe-3.25 wt%Ni alloys with carbon contents of between 0.057 and 0.49 wt% leads to a pronounced acoustic emission activity during ambient temperature tensile testing. The maximum emission occurs from samples tempered approx. 250 deg C and appears only weakly influenced by carbon content. Mechanical property determinations link the maximum to a precipitation hardening effect. A model involving the cooperative motion of dislocations over distances corresponding to the lath-packet dimension is proposed. The mechanism responsible for cooperative motion is believed to be a precipitate shearing process, the first time such a process has been proposed for quenched and tempered ferritic steels. A second, much weaker source of emission has been identified in material subjected to prolonged tempering at 625 deg C. The mechanism responsible for this emission is believed to be the sudden multiplication and propagation of dislocations during microyield events. No evidence has been found to support the view that carbide fracture in quenched and tempered steels is a direct source of acoustic emission. The microstructural states in which most quenched and tempered steels are used in practice, generate very little detectable acoustic emission either during deformation or fracture, irrespective of carbon content.

  12. Efficient sensor network vehicle classification using peak harmonics of acoustic emissions

    NASA Astrophysics Data System (ADS)

    William, Peter E.; Hoffman, Michael W.

    2008-04-01

    An application is proposed for detection and classification of battlefield ground vehicles using the emitted acoustic signal captured at individual sensor nodes of an ad hoc Wireless Sensor Network (WSN). We make use of the harmonic characteristics of the acoustic emissions of battlefield vehicles, in reducing both the computations carried on the sensor node and the transmitted data to the fusion center for reliable and effcient classification of targets. Previous approaches focus on the lower frequency band of the acoustic emissions up to 500Hz; however, we show in the proposed application how effcient discrimination between battlefield vehicles is performed using features extracted from higher frequency bands (50 - 1500Hz). The application shows that selective time domain acoustic features surpass equivalent spectral features. Collaborative signal processing is utilized, such that estimation of certain signal model parameters is carried by the sensor node, in order to reduce the communication between the sensor node and the fusion center, while the remaining model parameters are estimated at the fusion center. The transmitted data from the sensor node to the fusion center ranges from 1 ~ 5% of the sampled acoustic signal at the node. A variety of classification schemes were examined, such as maximum likelihood, vector quantization and artificial neural networks. Evaluation of the proposed application, through processing of an acoustic data set with comparison to previous results, shows that the improvement is not only in the number of computations but also in the detection and false alarm rate as well.

  13. Could the Use of Acoustic Reflexes Prior to Administering Distortion Product Otoacoustic Emissions (DPOAEs) Affect the Results of DPOAEs?

    PubMed

    Garrette, Rachel; Jones, Alisha L; Wilson, Martha W

    2018-05-15

    The purpose of this study is to investigate whether acoustic reflex threshold testing before administration of distortion product otoacoustic emissions can affect the results of the distortion product otoacoustic emissions testing using an automated protocol. Fifteen young adults with normal hearing ranging in age from 19 to 25 years participated in the study. All participants had clear external ear canals and normal Jerger Type A tympanograms and had passed a hearing screening. Testing was performed using the Interacoustics Titan acoustic reflex threshold and distortion product otoacoustic emissions protocol. Participants underwent baseline distortion product otoacoustic emissions. A paired-samples t test was conducted for both the right and left ears to assess within-group differences between baseline distortion product otoacoustic emissions and repeated distortion product otoacoustic emissions measures. No significant differences were found in distortion product otoacoustic emission measures following administration of acoustic reflexes. The use of a protocol when using an automated system that includes both acoustic reflexes and distortion product otoacoustic emissions is important. Overall, presentation of acoustic reflexes prior to measuring distortion product otoacoustic emission did not affect distortion product otoacoustic emission results; therefore, test sequence can be modified as needed.

  14. Acoustic emission of rock mass under the constant-rate fluid injection

    NASA Astrophysics Data System (ADS)

    Shadrin Klishin, AV, VI

    2018-03-01

    The authors study acoustic emission in coal bed and difficult-to-cave roof under injection of fluid by pumps at a constant rate. The functional connection between the roof hydrofracture length and the total number of AE pulses is validated, it is also found that the coal bed hydroloosening time, injection rate and time behavior of acoustic emission activity depend on the fluid injection volume required until the fluid breakout in a roadway through growing fractures. In the formulas offered for the practical application, integral parameters that characterize permeability and porosity of rock mass and process parameters of the technology are found during test injection.

  15. Predicting failure: acoustic emission of berlinite under compression.

    PubMed

    Nataf, Guillaume F; Castillo-Villa, Pedro O; Sellappan, Pathikumar; Kriven, Waltraud M; Vives, Eduard; Planes, Antoni; Salje, Ekhard K H

    2014-07-09

    Acoustic emission has been measured and statistical characteristics analyzed during the stress-induced collapse of porous berlinite, AlPO4, containing up to 50 vol% porosity. Stress collapse occurs in a series of individual events (avalanches), and each avalanche leads to a jerk in sample compression with corresponding acoustic emission (AE) signals. The distribution of AE avalanche energies can be approximately described by a power law p(E)dE = E(-ε)dE (ε ~ 1.8) over a large stress interval. We observed several collapse mechanisms whereby less porous minerals show the superposition of independent jerks, which were not related to the major collapse at the failure stress. In highly porous berlinite (40% and 50%) an increase of energy emission occurred near the failure point. In contrast, the less porous samples did not show such an increase in energy emission. Instead, in the near vicinity of the main failure point they showed a reduction in the energy exponent to ~ 1.4, which is consistent with the value reported for compressed porous systems displaying critical behavior. This suggests that a critical avalanche regime with a lack of precursor events occurs. In this case, all preceding large events were 'false alarms' and unrelated to the main failure event. Our results identify a method to use pico-seismicity detection of foreshocks to warn of mine collapse before the main failure (the collapse) occurs, which can be applied to highly porous materials only.

  16. Experimental investigation on the fracture behaviour of black shale by acoustic emission monitoring and CT image analysis during uniaxial compression

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, C. H.; Hu, Y. Z.

    2018-04-01

    Plenty of mechanical experiments have been done to investigate the deformation and failure characteristics of shale; however, the anisotropic failure mechanism has not been well studied. Here, laboratory Uniaxial Compressive Strength tests on cylindrical shale samples obtained by drilling at different inclinations to bedding plane were performed. The failure behaviours of the shale samples were studied by real-time acoustic emission (AE) monitoring and post-test X-ray computer tomography (CT) analysis. The experimental results suggest that the pronounced bedding planes of shale have a great influence on the mechanical properties and AE patterns. The AE counts and AE cumulative energy release curves clearly demonstrate different morphology, and the `U'-shaped curve relationship between the AE counts, AE cumulative energy release and bedding inclination was first documented. The post-test CT image analysis shows the crack patterns via 2-D image reconstructions, an index of stimulated fracture density is defined to represent the anisotropic failure mode of shale. What is more, the most striking finding is that the AE monitoring results are in good agreement with the CT analysis. The structural difference in the shale sample is the controlling factor resulting in the anisotropy of AE patterns. The pronounced bedding structure in the shale formation results in an anisotropy of elasticity, strength and AE information from which the changes in strength dominate the entire failure pattern of the shale samples.

  17. Fatigue crack localization with near-field acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Zhang, Yunfeng

    2013-04-01

    This paper presents an AE source localization technique using near-field acoustic emission (AE) signals induced by crack growth and propagation. The proposed AE source localization technique is based on the phase difference in the AE signals measured by two identical AE sensing elements spaced apart at a pre-specified distance. This phase difference results in canceling-out of certain frequency contents of signals, which can be related to AE source direction. Experimental data from simulated AE source such as pencil breaks was used along with analytical results from moment tensor analysis. It is observed that the theoretical predictions, numerical simulations and the experimental test results are in good agreement. Real data from field monitoring of an existing fatigue crack on a bridge was also used to test this system. Results show that the proposed method is fairly effective in determining the AE source direction in thick plates commonly encountered in civil engineering structures.

  18. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    NASA Astrophysics Data System (ADS)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  19. Acoustic emission detection of macro-cracks on engraving tool steel inserts during the injection molding cycle using PZT sensors.

    PubMed

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

    2013-05-14

    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  20. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    PubMed Central

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

    2013-01-01

    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process. PMID:23673677

  1. Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan

    This presentation includes slides on Project Goals; Heavy Water Production Monitoring: A New Challenge for the IAEA; Noninvasive Measurements in SFAI Cell; Large Scatter in Literature Values; Large Scatter in Literature Values; Highest Precision Sound Speed Data Available: New Standard in H/D; ~400 pts of data; Noninvasive Measurements in SFAI Cell; New funding from NA241 SGTech; Uranium Solution Monitoring: Inspired by IAEA Challenge in Kazakhstan; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; and finally a summary.

  2. Improving the Navys Passive Underwater Acoustic Monitoring of Marine Mammal Populations

    DTIC Science & Technology

    2015-09-30

    DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Improving the Navy’s Passive Underwater Acoustic...mpl.ucsd.edu LONG-TERM GOALS The long-term goals of this research effort are to improve the Navy’s passive underwater acoustic monitoring of marine...research of a graduate student in marine bioacoustics and ocean acoustics at the Scripps Institution of Oceanography. OBJECTIVES The

  3. Frequency-Based Precursory Acoustic Emission Failure Sequences In Sedimentary And Igneous Rocks Under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Colin, C.; Anderson, R. C.; Chasek, M. D.; Peters, G. H.; Carey, E. M.

    2016-12-01

    Identifiable precursors to rock failure have been a long pursued and infrequently encountered phenomena in rock mechanics and acoustic emission studies. Since acoustic emissions in compressed rocks were found to follow the Gutenberg-Richter law, failure-prediction strategies based on temporal changes in b-value have been recurrent. In this study, we extend on the results of Ohnaka and Mogi [Journal of Geophysical Research, Vol. 87, No. B5, p. 3873-3884, (1982)], where the bulk frequency characteristics of rocks under incremental uniaxial compression were observed in relation to changes in b-value before and after failure. Based on the proposition that the number of low-frequency acoustic emissions is proportional to the number of high-amplitude acoustic emissions in compressed rocks, Ohnaka and Mogi (1982) demonstrated that b-value changes in granite and andesite cores under incremental uniaxial compression could be expressed in terms of the percent abundance of low-frequency events. In this study, we attempt to demonstrate that the results of Ohnaka and Mogi (1982) hold true for different rock types (basalt, sandstone, and limestone) and different sample geometries (rectangular prisms). In order to do so, the design of the compression tests was kept similar to that of Ohnaka and Mogi (1982). Two high frequency piezoelectric transducers of 1 MHz and a 500 kHz coupled to the sides of the samples detected higher and lower frequency acoustic emission signals. However, rather than gathering parametric data from an analog signal using a counter as per Ohnaka and Mogi (1982), we used an oscilloscope as an analog to digital converter interfacing with LabVIEW 2015 to record the complete waveforms. The digitally stored waveforms were then processed, detecting acoustic emission events using a statistical method, and filtered using a 2nd order Butterworth filter. In addition to calculating the percent abundance of low-frequency events over time, the peak frequency of the

  4. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    van Capel, P. J. S.; Turchinovich, D.; Porte, H. P.; Lahmann, S.; Rossow, U.; Hangleiter, A.; Dijkhuis, J. I.

    2011-08-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlated with electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured spectral intensity of the detected Brillouin signal corresponds to a maximum strain amplitude of generated acoustic pulses of 2%. This value coincides with the static lattice-mismatch-induced strain in In0.2Ga0.8N/GaN, demonstrating the total release of static strain in MQWs via impulsive THz acoustic emission. This confirms the ultrafast dynamical screening mechanism in MQWs as a highly efficient method for impulsive strain generation.

  5. Study and application of acoustic emission testing in fault diagnosis of low-speed heavy-duty gears.

    PubMed

    Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei

    2011-01-01

    Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis.

  6. Study and Application of Acoustic Emission Testing in Fault Diagnosis of Low-Speed Heavy-Duty Gears

    PubMed Central

    Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei

    2011-01-01

    Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis. PMID:22346592

  7. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    NASA Astrophysics Data System (ADS)

    Omar, Al Haj; Véronique, Peres; Eric, Serris; François, Grosjean; Jean, Kittel; François, Ropital; Michel, Cournil

    2015-06-01

    Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO2 layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and not in the dense zirconia layer after 5 h of oxidation.

  8. A Volcano Monitoring Seismo-Acoustic Network in the CNMI

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Crippen, S. E.; Hayward, C.; Quick, J. E.

    2011-12-01

    In late spring and early summer of 2011, a seismo-acoustic network was installed in the Commonwealth of the Northern Mariana Islands (CNMI) for volcano monitoring. The network consists of a seismo-acoustic array on Saipan, an acoustic array on Sarigan with one seismometer, and a seismic network on Anatahan. On Saipan the array consists of a central site and 3 embedded triangular arrays with apertures of 100 m, 300 m and 1000 m. Four 50-foot porous hoses in a clover-leaf arrangement are used for spatial filtering at each acoustic site. Broadband seismometers were installed at the central site and the 1000 m sites. The Sarigan Array consists of a central acoustic site with 5 surrounding sites evenly spaced at 50 m radius, and one broadband seismic station. Two hoses were used for each site on Sarigan. Four broadband seismic stations were also installed on Anatahan which last erupted in 2005. Data from each array is sent by radio telemetry to the Emergency Management Office on Saipan, where it is routed to the USGS and SMU. Data will be used for volcano monitoring which will allow the CNMI to resume economic activity in the uninhabited northern islands. Initial data streams show high seismic noise levels as expected for an island installation. The Sarigan acoustic sites are also noisy as a result of being more exposed to wind than the Saipan sites. Many small events have already been observed in the infrasound data. This network was installed through the collaborative efforts of CNMI, USGS and SMU.

  9. Based on optical fiber Michelson interferometer for acoustic emission detection experimental research

    NASA Astrophysics Data System (ADS)

    Liang, Yijun; Qu, Dandan; Deng, Hu

    2013-08-01

    A type of Michelson interferometer with two optical fiber loop reflectors acoustic emission sensor is proposed in the article to detect the vibrations produced by ultrasonic waves propagating in a solid body. Two optical fiber loop reflectors are equivalent to the sensing arm and the reference arm instead of traditional Michelson interferometer end reflecter Theoretical analyses indicate that the sensitivity of the system has been remarkably increased because of the decrease of the losses of light energy. The best operating point of optical fiber sensor is fixed by theoretical derivation and simulation of computer, and the signal frequency which is detected by the sensor is the frequency of input signal. PZT (Piezoelectric Ceramic) is powered by signal generator as known ultrasonic source, The Polarization controller is used to make the reflected light interference,The fiber length is changed by adjusting the DC voltage on the PZT with the fiber loop to make the sensor system response that ΔΦ is closed to π/2. the signal basis frequency detected by the sensor is the frequency of the input signal. Then impacts the surface of the marble slab with home-made mechanical acoustic emission source. And detect it. and then the frequency characteristic of acoustic emission signal is obtained by Fourier technique. The experimental results indicate that the system can identify the frequency characteristic of acoustic emission signal, and it can be also used to detect the surface feeble vibration which is generated by ultrasonic waves propagating in material structure.

  10. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, Vladmir

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  11. Basic Information about Air Emissions Monitoring

    EPA Pesticide Factsheets

    This site is about types of air emissions monitoring and the Clean Air Act regulations, including Ambient Air Quality Monitoring, Stationary Source Emissions Monitoring, and Continuous Monitoring Systems.

  12. Inelastic Compaction in High-Porosity Limestone Monitored Using Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Baud, Patrick; Schubnel, Alexandre; Heap, Michael; Rolland, Alexandra

    2017-12-01

    We performed a systematic investigation of mechanical compaction and strain localization in Saint-Maximin limestone, a quartz-rich, high-porosity (37%) limestone from France. Our new data show that the presence of a significant proportion of secondary mineral (i.e., quartz) did not impact the mechanical strength of the limestone in both the brittle faulting and cataclastic flow regimes, but that the presence of water exerted a significant weakening effect. In contrast to previously published studies on deformation in limestones, inelastic compaction in Saint-Maximin limestone was accompanied by abundant acoustic emission (AE) activity. The location of AE hypocenters during triaxial experiments revealed the presence of compaction localization. Two failure modes were identified in agreement with microstructural analysis and X-ray computed tomography imaging: compactive shear bands developed at low confinement and complex diffuse compaction bands formed at higher confinement. Microstructural observations on deformed samples suggest that the recorded AE activity associated with inelastic compaction, unusual for a porous limestone, could have been due to microcracking at the quartz grain interfaces. Similar to published data on high-porosity macroporous limestones, the crushing of calcite grains was the dominant micromechanism of inelastic compaction in Saint-Maximin limestone. New P wave velocity data show that the effect of microcracking was dominant near the yield point and resulted in a decrease in P wave velocity, while porosity reduction resulted in a significant increase in P wave velocity beyond a few percent of plastic volumetric strain. These new data highlight the complex interplay between mineralogy, rock microstructure, and strain localization in porous rocks.

  13. Neural Network Prediction of Aluminum-Lithium Weld Strengths from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Israel, Peggy L.; Knotts, Gregory L.

    1993-01-01

    Acoustic Emission (AE) flaw growth activity was monitored in aluminum-lithium weld specimens from the onset tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was the applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.

  14. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Bai, F.; Gagar, D.; Foote, P.; Zhao, Y.

    2017-02-01

    Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors in an array is essential in performing localisation. Currently, this is determined using a fixed threshold which is particularly prone to errors when not set to optimal values. This paper presents three new methods for determining the onset of AE signals without the need for a predetermined threshold. The performance of the techniques is evaluated using AE signals generated during fatigue crack growth and compared to the established Akaike Information Criterion (AIC) and fixed threshold methods. It was found that the 1D location accuracy of the new methods was within the range of < 1 - 7.1 % of the monitored region compared to 2.7% for the AIC method and a range of 1.8-9.4% for the conventional Fixed Threshold method at different threshold levels.

  15. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle

    USDA-ARS?s Scientific Manuscript database

    Methods to estimate intake in grazing livestock include using markers, visual observation, mechanical sensors that respond to jaw movement and acoustic recording. In most of the acoustic monitoring studies, the microphone is inverted on the forehead of the grazing livestock and the skull is utilize...

  16. Usage Autocorrelation Function in the Capacity of Indicator Shape of the Signal in Acoustic Emission Testing of Intricate Castings

    NASA Astrophysics Data System (ADS)

    Popkov, Artem

    2016-01-01

    The article contains information about acoustic emission signals analysing using autocorrelation function. Operation factors were analysed, such as shape of signal, the origins time and carrier frequency. The purpose of work is estimating the validity of correlations methods analysing signals. Acoustic emission signal consist of different types of waves, which propagate on different trajectories in object of control. Acoustic emission signal is amplitude-, phase- and frequency-modeling signal. It was described by carrier frequency at a given point of time. Period of signal make up 12.5 microseconds and carrier frequency make up 80 kHz for analysing signal. Usage autocorrelation function like indicator the origin time of acoustic emission signal raises validity localization of emitters.

  17. In-flight fiber optic acoustic emission sensor (FAESense) system for the real time detection, localization, and classification of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    Acoustic emission sensing is a leading structural health monitoring technique use for the early warning detection of structural damage associated with impacts, cracks, fracture, and delaminations in advanced materials. Current AE systems based on electronic PZT transducers suffer from various limitations that prevent its wide dynamic use in practical avionics and aerospace applications where weight, size and power are critical for operation. This paper describes progress towards the development of a wireless in-flight distributed fiber optic acoustic emission monitoring system (FAESense™) suitable for the onboard-unattended detection, localization, and classification of damage in avionics and aerospace structures. Fiber optic AE sensors offer significant advantages over its counterpart electronic AE sensors by using a high-density array of micron-size AE transducers distributed and multiplex over long lengths of a standard single mode optical fiber. Immediate SHM applications are found in commercial and military aircraft, helicopters, spacecraft, wind mil turbine blades, and in next generation weapon systems, as well as in the petrochemical and aerospace industries, civil structures, power utilities, and a wide spectrum of other applications.

  18. A review of the application Acoustic Emission (AE) incorporating mechanical approach to monitor Reinforced concrete (RC) strengthened with Fiber Reinforced Polymer (FRP) properties under fracture

    NASA Astrophysics Data System (ADS)

    Syed Mazlan, S. M. S.; Abdullah, S. R.; Shahidan, S.; Noor, S. R. Mohd

    2017-11-01

    Concrete durability may be affected by so many factors such as chemical attack and weathering action that reduce the performance and the service life of concrete structures. Low durability Reinforced concrete (RC) can be greatly improved by using Fiber Reinforce Polymer (FRP). FRP is a commonly used composite material for repairing and strengthening RC structures. A review on application of Acoustic Emission (AE) techniques of real time monitoring for various mechanical tests for RC strengthened with FRP involving four-point bending, three-point bending and cyclic loading was carried out and discussed in this paper. Correlations between each AE analyses namely b-value, sentry and intensity analysis on damage characterization also been critically reviewed. From the review, AE monitoring involving RC strengthened with FRP using b-value, sentry and intensity analysis are proven to be successful and efficient method in determining damage characterization. However, application of AE analysis using sentry analysis is still limited compared to b-value and intensity analysis in characterizing damages especially for RC strengthened with FRP specimen.

  19. Size Distribution of Sperm Whales Acoustically Identified during Long Term Deep-Sea Monitoring in the Ionian Sea

    PubMed Central

    Caruso, Francesco; Sciacca, Virginia; Bellia, Giorgio; De Domenico, Emilio; Larosa, Giuseppina; Papale, Elena; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Simeone, Francesco; Speziale, Fabrizio; Viola, Salvatore; Pavan, Gianni

    2015-01-01

    The sperm whale (Physeter macrocephalus) emits a typical short acoustic signal, defined as a “click”, almost continuously while diving. It is produced in different time patterns to acoustically explore the environment and communicate with conspecifics. Each emitted click has a multi-pulse structure, resulting from the production of the sound within the sperm whale’s head. A Stable Inter Pulse Interval (Stable IPI) can be identified among the pulses that compose a single click. Applying specific algorithms, the measurement of this interval provides useful information to assess the total length of the animal recorded. In January 2005, a cabled hydrophone array was deployed at a depth of 2,100 m in the Central Mediterranean Sea, 25 km offshore Catania (Ionian Sea). The acoustic antenna, named OνDE (Ocean noise Detection Experiment), was in operation until November 2006. OνDE provided real time acoustic data used to perform Passive Acoustic Monitoring (PAM) of cetacean sound emissions. In this work, an innovative approach was applied to automatically measure the Stable IPI of the clicks, performing a cepstrum analysis to the energy (square amplitude) of the signals. About 2,100 five-minute recordings were processed to study the size distribution of the sperm whales detected during the OνDE long term deep-sea acoustic monitoring. Stable IPIs were measured in the range between 2.1 ms and 6.4 ms. The equations of Gordon (1991) and of Growcott (2011) were used to convert the IPIs into measures of size. The results revealed that the sperm whales recorded were distributed in length from about 7.5 m to 14 m. The size category most represented was from 9 m to 12 m (adult females or juvenile males) and specimens longer than 14 m (old males) seemed to be absent. PMID:26675588

  20. Mount Rainier National Park : acoustical monitoring Report 2009

    DOT National Transportation Integrated Search

    2011-09-01

    During the summer (July September 2009), baseline acoustical data were collected for approximately one month at two sites deployed by NPS personnel in Mount Rainier National Park (MORA). The purpose of the monitoring effort was to supplement prio...

  1. Acoustic emission testing of 12-nickel maraging steel pressure vessels

    NASA Technical Reports Server (NTRS)

    Dunegan, H. L.

    1973-01-01

    Acoustic emission data were obtained from three point bend fracture toughness specimens of 12-nickel maraging steel, and two pressure vessels of the same material. One of the pressure vessels contained a prefabricated flaw which was extended and sharpened by fatigue cycling. It is shown that the flawed vessel had similar characteristics to the fracture specimens, thereby allowing estimates to be made of its nearness to failure during a proof test. Both the flawed and unflawed pressure vessel survived the proof pressure and 5 cycles to the working pressure, but it was apparent from the acoustic emission response during the proof cycle and the 5 cycles to the working pressure that the flawed vessel was very near failure. The flawed vessel did not survive a second cycle to the proof pressure before failure due to flaw extension through the wall (causing a leak).

  2. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  3. Acoustic emission analysis as a non-destructive test procedure for fiber compound structures

    NASA Technical Reports Server (NTRS)

    Block, J.

    1983-01-01

    The concept of acoustic emission analysis is explained in scientific terms. The detection of acoustic events, their localization, damage discrimination, and event summation curves are discussed. A block diagram of the concept of damage-free testing of fiber-reinforced synthetic materials is depicted. Prospects for application of the concept are assessed.

  4. Improving the Navy’s Passive Underwater Acoustic Monitoring of Marine Mammal Populations

    DTIC Science & Technology

    2013-09-30

    passive acoustic monitoring: Correcting humpback whale call detections for site-specific and time-dependent environmental characteristics ,” JASA Exp...marine mammal species using passive acoustic monitoring, with application to obtaining density estimates of transiting humpback whale populations in...minimize the variance of the density estimates, 3) to apply the numerical modeling methods for humpback whale vocalizations to understand distortions

  5. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  6. Mesoscale analysis of failure in quasi-brittle materials: comparison between lattice model and acoustic emission data.

    PubMed

    Grégoire, David; Verdon, Laura; Lefort, Vincent; Grassl, Peter; Saliba, Jacqueline; Regoin, Jean-Pierre; Loukili, Ahmed; Pijaudier-Cabot, Gilles

    2015-10-25

    The purpose of this paper is to analyse the development and the evolution of the fracture process zone during fracture and damage in quasi-brittle materials. A model taking into account the material details at the mesoscale is used to describe the failure process at the scale of the heterogeneities. This model is used to compute histograms of the relative distances between damaged points. These numerical results are compared with experimental data, where the damage evolution is monitored using acoustic emissions. Histograms of the relative distances between damage events in the numerical calculations and acoustic events in the experiments exhibit good agreement. It is shown that the mesoscale model provides relevant information from the point of view of both global responses and the local failure process. © 2015 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.

  7. Biomechanical interactions of endodontically treated tooth implant-supported prosthesis under fatigue test with acoustic emission monitoring.

    PubMed

    Huang, Shao-Fu; Chen, Wan-Rung; Lin, Chun-Li

    2016-02-24

    This study investigated the biomechanical interactions in endodontically treated tooth implant-supported prosthesis (TISP) with implant system variations under dynamic cyclic loads monitored using the acoustic emission (AE) technique. Macrostructure implants using a taper integrated screw-in (TIS; 2-piece implant) and a retaining-screw (RS; 3-piece implant) connected to an abutment were used for this investigation and their corresponding mechanical resistances in conformity with the ISO 14801 standard were evaluated. The endodontically treated TISP samples were constructed containing TIS and RS implants splinted to the second premolar with fatigue tests performed by applying occlusal force onto the premolar simulating the bending moment effect. The numbers of accumulated AE signals in the fatigue tests and failure modes for the sample were recorded to evaluate the mechanical resistance. The maximum load in the static test for RS (3-piece) implant (797N) was significantly higher than that for the TIS (2-piece) implant (559N). Large deformations were found at abutment screws in both RS and TIS implants. Although the numbers of accumulated AE signals for the TIS implant (72511) were higher than those for the RS implant (437), statistical non-significant differences were found between TIS and RS implants. No obvious damage was noted in endodontically treated TISP samples using RS implants but two of the corresponding TIS implants fractured in the abutment screws. Splints with RS (3-piece) implant prosthesis produce better mechanical responses than the TIS (2-piece) implant when connected to an endodontically treated tooth restored with a post core and crown.

  8. A Comparative Experimental Study on the Use of Machine Learning Approaches for Automated Valve Monitoring Based on Acoustic Emission Parameters

    NASA Astrophysics Data System (ADS)

    Ali, Salah M.; Hui, K. H.; Hee, L. M.; Salman Leong, M.; Al-Obaidi, M. A.; Ali, Y. H.; Abdelrhman, Ahmed M.

    2018-03-01

    Acoustic emission (AE) analysis has become a vital tool for initiating the maintenance tasks in many industries. However, the analysis process and interpretation has been found to be highly dependent on the experts. Therefore, an automated monitoring method would be required to reduce the cost and time consumed in the interpretation of AE signal. This paper investigates the application of two of the most common machine learning approaches namely artificial neural network (ANN) and support vector machine (SVM) to automate the diagnosis of valve faults in reciprocating compressor based on AE signal parameters. Since the accuracy is an essential factor in any automated diagnostic system, this paper also provides a comparative study based on predictive performance of ANN and SVM. AE parameters data was acquired from single stage reciprocating air compressor with different operational and valve conditions. ANN and SVM diagnosis models were subsequently devised by combining AE parameters of different conditions. Results demonstrate that ANN and SVM models have the same results in term of prediction accuracy. However, SVM model is recommended to automate diagnose the valve condition in due to the ability of handling a high number of input features with low sampling data sets.

  9. Electron emission and acoustic emission from the fracture of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.; Jahan-Latibari, A.; Jensen, L. C.

    1985-01-01

    In past studies it has been shown that the fracture of materials leads to the emission of a variety of species, including electrons, ions, neutral molecules, and photons, all encompassed by the term 'fractoemission' (FE). In this paper, electron emission (EE) from the fracture of single graphite fibers and neat epoxy resin is examined. Measurements of EE are also combined with the detection of acoustic emission (AE) during the testing of graphite-epoxy composite specimens with various fiber orientation. The characteristics of these signals are related to known failure mechanisms in fiber-reinforced plastics. This study suggests that by comparing data from AE and FE measurements, one can detect and distinguish the onset of internal and external failure in composites. EE measurements are also shown to be sensitive to the locus of fracture in a composite material.

  10. Development of high temperature acoustic emission sensing system using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Pang, Dandan; Sui, Qingmei; Wang, Ming; Guo, Dongmei; Sai, Yaozhang

    2018-03-01

    In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed with a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25 ° to 200 °. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.

  11. Acoustic monitoring of first responder's physiology for health and performance surveillance

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2002-08-01

    Acoustic sensors have been used to monitor firefighter and soldier physiology to assess health and performance. The Army Research Laboratory has developed a unique body-contacting acoustic sensor that can monitor the health and performance of firefighters and soldiers while they are doing their mission. A gel-coupled sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. This technology can monitor heartbeats, breaths, blood pressure, motion, voice, and other indicators that can provide vital feedback to the medics and unit commanders. Diverse physiological parameters can be continuously monitored with acoustic sensors and transmitted for remote surveillance of personnel status. Body-worn acoustic sensors located at the neck, breathing mask, and wrist do an excellent job at detecting heartbeats and activity. However, they have difficulty extracting physiology during rigorous exercise or movements due to the motion artifacts sensed. Rigorous activity often indicates that the person is healthy by virtue of being active, and injury often causes the subject to become less active or incapacitated making the detection of physiology easier. One important measure of performance, heart rate variability, is the measure of beat-to-beat timing fluctuations derived from the interval between two adjacent beats. The Lomb periodogram is optimized for non-uniformly sampled data, and can be applied to non-stationary acoustic heart rate features (such as 1st and 2nd heart sounds) to derive heart rate variability and help eliminate errors created by motion artifacts. Simple peak-detection above or below a certain threshold or waveform derivative parameters can produce the timing and amplitude features necessary for the Lomb periodogram and cross-correlation techniques. High-amplitude motion artifacts may contribute to a different

  12. The transition from brittle cataclasis to viscous flow during the weakening of carbonate gouges sheared at seismic velocities recorded through the activity of acoustic emissions.

    NASA Astrophysics Data System (ADS)

    Pozzi, G.; Benson, P. M.; Guerin-Marthe, S.; De Paola, N.; Nielsen, S. B.; Bowen, L.; Tomas, R.; Holdsworth, R.

    2017-12-01

    Our recent experimental and microstructural studies in carbonate nanograin gouges have suggested that the activation of grain boundary sliding mechanisms in a slip zone (SZ) of finite thickness ( 30 microns), at high temperatures (T ≥ 800 °C) and strain rates, can weaken faults and facilitate earthquake propagation. However, neither mechanical data alone or microstructural analysis of post-mortem experimental samples allow a continuous monitoring of the evolution of the deformation mechanisms through the weakening history of the gouges. Here, we present results from experiments performed on a rotary shear apparatus at normal load of 25 MPa and slip rates of up to 1 ms-1, which have been monitored for acoustic emissions. This has been achieved by modifying a hollow cylinder sample assembly (titanium-vanadium alloy) to contain a radial array of 6 piezoelectric sensors. Acoustic emissions fully support a 4-stage evolution of friction. In particular, high frequencies recorded during initial cataclasis and shear localization, when friction coefficient is within Byerlee's range (> 0.6), gradually fade out at the onset of weakening and through the transient stage of friction decay to low (rate-dependent) steady state friction values. During this stage only low-frequency events (< 0.83 MHz) show appreciable intensity. Acoustic emissions strongly support our model of weakening in carbonate gauges, where brittle processes (strong emission of AEs) predate the onset of thermally activated, diffusion-accommodated viscous flow in a thin SZ. Furthermore, discrete emissions with high frequency content are recorded after the stop of the machine supporting the hypothesis that free, shiny surfaces (e.g. mirror surfaces) are formed in the latest stages of the experiments by thermal cracking along pre-existing anisotropies (the PSZ boundaries). This evidence further supports our interpretation of dynamic weakening due to viscous flow in a SZ of finite thickness, ruling out

  13. Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation.

    PubMed

    Tsangouri, E; Aggelis, D G; Van Tittelboom, K; De Belie, N; Van Hemelrijck, D

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.

  14. Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation

    PubMed Central

    Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process. PMID:24381518

  15. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  16. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  17. Bearing Fault Detection Based on Empirical Wavelet Transform and Correlated Kurtosis by Acoustic Emission.

    PubMed

    Gao, Zheyu; Lin, Jing; Wang, Xiufeng; Xu, Xiaoqiang

    2017-05-24

    Rolling bearings are widely used in rotating equipment. Detection of bearing faults is of great importance to guarantee safe operation of mechanical systems. Acoustic emission (AE), as one of the bearing monitoring technologies, is sensitive to weak signals and performs well in detecting incipient faults. Therefore, AE is widely used in monitoring the operating status of rolling bearing. This paper utilizes Empirical Wavelet Transform (EWT) to decompose AE signals into mono-components adaptively followed by calculation of the correlated kurtosis (CK) at certain time intervals of these components. By comparing these CK values, the resonant frequency of the rolling bearing can be determined. Then the fault characteristic frequencies are found by spectrum envelope. Both simulation signal and rolling bearing AE signals are used to verify the effectiveness of the proposed method. The results show that the new method performs well in identifying bearing fault frequency under strong background noise.

  18. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    PubMed Central

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  19. Acoustic emission characteristics of a single cylinder diesel generator at various loads and with a failing injector

    NASA Astrophysics Data System (ADS)

    Dykas, Brian; Harris, James

    2017-09-01

    Acoustic emission sensing techniques have been applied in recent years to dynamic machinery with varying degrees of success in diagnosing various component faults and distinguishing between operating conditions. This work explores basic properties of acoustic emission signals measured on a small single cylinder diesel engine in a laboratory setting. As reported in other works in the open literature, the measured acoustic emission on the engine is mostly continuous mode and individual burst events are generally not readily identifiable. Therefore, the AE are processed into the local (instantaneous) root mean square (rms) value of the signal which is averaged over many cycles to obtain a mean rms AE in the crank angle domain. Crank-resolved spectral representation of the AE is also given but rigorous investigation of the AE spectral qualities is left to future study. Cycle-to-cycle statistical dispersion of the AE signal is considered to highlight highly variable engine processes. Engine speed was held constant but load conditions are varied to investigate AE signal sensitivity to operating condition. Furthermore, during the course of testing the fuel injector developed a fault and acoustic emission signals were captured and several signal attributes were successful in distinguishing this altered condition. The sampling and use of instantaneous rms acoustic emission signal demonstrated promise for non-intrusive and economical change detection of engine injection, combustion and valve events.

  20. Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves.

    PubMed

    Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J

    2011-04-13

    We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.

  1. Can acoustic emission detect the initiation of fatigue cracks: Application to high-strength light alloys used in aeronautics

    NASA Technical Reports Server (NTRS)

    Bathias, C.; Brinet, B.; Sertour, G.

    1978-01-01

    Acoustic emission was used for the detection of fatigue cracking in a number of high-strength light alloys used in aeronautical structures. Among the features studied were: the influence of emission frequency, the effect of surface oxidation, and the influence of grains. It was concluded that acoustic emission is an effective nondestructive technique for evaluating the initiation of fatigue cracking in such materials.

  2. Acoustic Flow Monitor System - User Manual

    USGS Publications Warehouse

    LaHusen, Richard

    2005-01-01

    INTRODUCTION The Acoustic Flow Monitor (AFM) is a portable system that was designed by the U.S. Geological Survey Cascades Volcano Observatory to detect and monitor debris flows associated with volcanoes. It has been successfully used internationally as part of real-time warning systems in valleys threatened by such flows (Brantley, 1990; Marcial and others, 1996; Lavigne and others, 2000). The AFM system has also been proven to be an effective tool for monitoring some non-volcanic debris flows. This manual is intended to serve as a basic guide for the installation, testing, and maintenance of AFM systems. An overview of how the system works, as well as instructions for installation and guidelines for testing, is included. Interpretation of data is not covered in this manual; rather, the user should refer to the references provided for published examples of AFM data.

  3. Analysis of Acoustic Emission Parameters from Corrosion of AST Bottom Plate in Field Testing

    NASA Astrophysics Data System (ADS)

    Jomdecha, C.; Jirarungsatian, C.; Suwansin, W.

    Field testing of aboveground storage tank (AST) to monitor corrosion of the bottom plate is presented in this chapter. AE testing data of the ten AST with different sizes, materials, and products were employed to monitor the bottom plate condition. AE sensors of 30 and 150 kHz were used to monitor the corrosion activity of up to 24 channels including guard sensors. Acoustic emission (AE) parameters were analyzed to explore the AE parameter patterns of occurring corrosion compared to the laboratory results. Amplitude, count, duration, and energy were main parameters of analysis. Pattern recognition technique with statistical was implemented to eliminate the electrical and environmental noises. The results showed the specific AE patterns of corrosion activities related to the empirical results. In addition, plane algorithm was utilized to locate the significant AE events from corrosion. Both results of parameter patterns and AE event locations can be used to interpret and locate the corrosion activities. Finally, basic statistical grading technique was used to evaluate the bottom plate condition of the AST.

  4. Piezoelectric and Electrostatic Polymeric Transducers for Acoustic Emission Detection.

    DTIC Science & Technology

    1984-12-01

    the fabrication of ultrasonic transducers for acoustic emission (A.E.) detection using polyvinylidene fluoride ( PVDF ) active elements. ii) the...characterization of PVDF transducers. The second report compared the sensitivity of PVDF transducers with polypropylene electrostatic transducer...detection using polyvinylidene 1uoride ( PVDF ) active elements. ii) the fabrication of electrostatic transducers using thin film of non-polar

  5. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 wheremore » the emissivity reduction coefficient is too weak and lost among the noise.« less

  6. Detection of Delamination in Composite Beams Using Broadband Acoustic Emission Signatures

    NASA Technical Reports Server (NTRS)

    Okafor, A. C.; Chandrashekhara, K.; Jiang, Y. P.

    1996-01-01

    Delamination in composite structure may be caused by imperfections introduced during the manufacturing process or by impact loads by foreign objects during the operational life. There are some nondestructive evaluation methods to detect delamination in composite structures such as x-radiography, ultrasonic testing, and thermal/infrared inspection. These methods are expensive and hard to use for on line detection. Acoustic emission testing can monitor the material under test even under the presence of noise generated under load. It has been used extensively in proof-testing of fiberglass pressure vessels and beams. In the present work, experimental studies are conducted to investigate the use of broadband acoustic emission signatures to detect delaminations in composite beams. Glass/epoxy beam specimens with full width, prescribed delamination sizes of 2 inches and 4 inches are investigated. The prescribed delamination is produced by inserting Teflon film between laminae during the fabrication of composite laminate. The objectives of this research is to develop a method for predicting delamination size and location in laminated composite beams by combining smart materials concept and broadband AE analysis techniques. More specifically, a piezoceramic (PZT) patch is bonded on the surface of composite beams and used as a pulser. The piezoceramic patch simulates the AE wave source as a 3 cycles, 50KHz, burst sine wave. One broadband AE sensor is fixed near the PZT patch to measure the AE wave near the AE source. A second broadband AE sensor, which is used as a receiver, is scanned along the composite beams at 0.25 inch step to measure propagation of AE wave along the composite beams. The acquired AE waveform is digitized and processed. Signal strength, signal energy, cross-correlation of AE waveforms, and tracking of specific cycle of AE waveforms are used to detect delamination size and location.

  7. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    PubMed

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-06

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.

  8. Study on acoustic emission source localization of 16Mn structural steel of high temperature deformation

    NASA Astrophysics Data System (ADS)

    Zhang, Yubo; Deng, Muhan; Yang, Rui; Jin, Feixiang

    2017-09-01

    The location technique of acoustic emission (AE) source for deformation damage of 16Mn steel in high temperature environment is studied by using linear time-difference-of-arrival (TDOA) location method. The distribution characteristics of strain induced acoustic emission source signals at 20°C and 400°C of tensile specimens were investigated. It is found that the near fault has the location signal of the cluster, which can judge the stress concentration and cause the fracture.

  9. Remote Acoustic Monitoring of North Atlantic Right Whales (Eubalaena glacialis) Reveals Seasonal and Diel Variations in Acoustic Behavior

    PubMed Central

    Matthews, Leanna P.; McCordic, Jessica A.; Parks, Susan E.

    2014-01-01

    Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis) is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the “gunshot” sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for females or as an agonistic signal toward other males. This study uses remote acoustic monitoring to analyze the presence of gunshots over a two-year period at two sites on the Scotian Shelf to determine if there is evidence that North Atlantic right whales may use these locations for breeding activities. Seasonal analyses at both locations indicate that gunshot sound production is highly seasonal, with an increase in the autumn. One site, Roseway West, had significantly more gunshot sounds overall and exhibited a clear diel trend in production of these signals at night. The other site, Emerald South, also showed a seasonal increase in gunshot production during the autumn, but did not show any significant diel trend. This difference in gunshot signal production at the two sites indicates variation either in the number or the behavior of whales at each location. The timing of the observed seasonal increase in gunshot sound production is consistent with the current understanding of the right whale breeding season, and our results demonstrate that detection of gunshots with remote acoustic monitoring can be a reliable way to track shifts in distribution and changes in acoustic behavior including possible mating activities. PMID:24646524

  10. Remote acoustic monitoring of North Atlantic right whales (Eubalaena glacialis) reveals seasonal and diel variations in acoustic behavior.

    PubMed

    Matthews, Leanna P; McCordic, Jessica A; Parks, Susan E

    2014-01-01

    Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis) is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the "gunshot" sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for females or as an agonistic signal toward other males. This study uses remote acoustic monitoring to analyze the presence of gunshots over a two-year period at two sites on the Scotian Shelf to determine if there is evidence that North Atlantic right whales may use these locations for breeding activities. Seasonal analyses at both locations indicate that gunshot sound production is highly seasonal, with an increase in the autumn. One site, Roseway West, had significantly more gunshot sounds overall and exhibited a clear diel trend in production of these signals at night. The other site, Emerald South, also showed a seasonal increase in gunshot production during the autumn, but did not show any significant diel trend. This difference in gunshot signal production at the two sites indicates variation either in the number or the behavior of whales at each location. The timing of the observed seasonal increase in gunshot sound production is consistent with the current understanding of the right whale breeding season, and our results demonstrate that detection of gunshots with remote acoustic monitoring can be a reliable way to track shifts in distribution and changes in acoustic behavior including possible mating activities.

  11. Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity.

    PubMed

    Buxton, Rachel; McKenna, Megan F; Clapp, Mary; Meyer, Erik; Stabenau, Erik; Angeloni, Lisa M; Crooks, Kevin; Wittemyer, George

    2018-04-20

    Passive acoustic monitoring has the potential to be a powerful approach for assessing biodiversity across large spatial and temporal scales. However, extracting meaningful information from recordings can be prohibitively time consuming. Acoustic indices offer a relatively rapid method for processing acoustic data and are increasingly used to characterize biological communities. We examine the ability of acoustic indices to predict the diversity and abundance of biological sounds within recordings. First we reviewed the acoustic index literature and found that over 60 indices have been applied to a range of objectives with varying success. We then implemented a subset of the most successful indices on acoustic data collected at 43 sites in temperate terrestrial and tropical marine habitats across the continental U.S., developing a predictive model of the diversity of animal sounds observed in recordings. For terrestrial recordings, random forest models using a suite of acoustic indices as covariates predicted Shannon diversity, richness, and total number of biological sounds with high accuracy (R 2 > = 0.94, mean squared error MSE < = 170.2). Among the indices assessed, roughness, acoustic activity, and acoustic richness contributed most to the predictive ability of models. Performance of index models was negatively impacted by insect, weather, and anthropogenic sounds. For marine recordings, random forest models predicted Shannon diversity, richness, and total number of biological sounds with low accuracy (R 2 < = 0.40, MSE > = 195), indicating that alternative methods are necessary in marine habitats. Our results suggest that using a combination of relevant indices in a flexible model can accurately predict the diversity of biological sounds in temperate terrestrial acoustic recordings. Thus, acoustic approaches could be an important contribution to biodiversity monitoring in some habitats in the face of accelerating human-caused ecological change. This article is

  12. Information Theory Filters for Wavelet Packet Coefficient Selection with Application to Corrosion Type Identification from Acoustic Emission Signals

    PubMed Central

    Van Dijck, Gert; Van Hulle, Marc M.

    2011-01-01

    The damage caused by corrosion in chemical process installations can lead to unexpected plant shutdowns and the leakage of potentially toxic chemicals into the environment. When subjected to corrosion, structural changes in the material occur, leading to energy releases as acoustic waves. This acoustic activity can in turn be used for corrosion monitoring, and even for predicting the type of corrosion. Here we apply wavelet packet decomposition to extract features from acoustic emission signals. We then use the extracted wavelet packet coefficients for distinguishing between the most important types of corrosion processes in the chemical process industry: uniform corrosion, pitting and stress corrosion cracking. The local discriminant basis selection algorithm can be considered as a standard for the selection of the most discriminative wavelet coefficients. However, it does not take the statistical dependencies between wavelet coefficients into account. We show that, when these dependencies are ignored, a lower accuracy is obtained in predicting the corrosion type. We compare several mutual information filters to take these dependencies into account in order to arrive at a more accurate prediction. PMID:22163921

  13. Report on Non-invasive acoustic monitoring of D2O concentration Oct 31 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan

    There is an urgent need for real-time monitoring of the hydrogen /deuterium ratio (H/D) for heavy water production monitoring. Based upon published literature, sound speed is sensitive to the deuterium content of heavy water and can be measured using existing acoustic methods to determine the deuterium concentration in heavy water solutions. We plan to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of quantifying H/D ratios in solution. A successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended H/D ratio measurements with a resolution of lessmore » than 0.2% vol.« less

  14. An algorithm of the wildfire classification by its acoustic emission spectrum using Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Khamukhin, A. A.; Demin, A. Y.; Sonkin, D. M.; Bertoldo, S.; Perona, G.; Kretova, V.

    2017-01-01

    Crown fires are extremely dangerous as the speed of their distribution is dozen times higher compared to surface fires. Therefore, it is important to classify the fire type as early as possible. A method for forest fires classification exploits their computed acoustic emission spectrum compared with a set of samples of the typical fire acoustic emission spectrum stored in the database. This method implies acquisition acoustic data using Wireless Sensors Networks (WSNs) and their analysis in a central processing and a control center. The paper deals with an algorithm which can be directly implemented on a sensor network node that will allow reducing considerably the network traffic and increasing its efficiency. It is hereby suggested to use the sum of the squares ratio, with regard to amplitudes of low and high frequencies of the wildfire acoustic emission spectrum, as the indicator of a forest fire type. It is shown that the value of the crown fires indicator is several times higher than that of the surface ones. This allows classifying the fire types (crown, surface) in a short time interval and transmitting a fire type indicator code alongside with an alarm signal through the network.

  15. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    USGS Publications Warehouse

    Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.

    2006-01-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.

  16. Experimental Research Into Generation of Acoustic Emission Signals in the Process of Friction of Hadfield Steel Single Crystals

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Filippov, A. V.; Novitskaia, O. S.; Kolubaev, E. A.; Sizova, O. V.

    2016-08-01

    The results of experimental research into dry sliding friction of Hadfield steel single crystals involving registration of acoustic emission are presented in the paper. The images of friction surfaces of Hadfield steel single crystals and wear grooves of the counterbody surface made after completion of three serial experiments conducted under similar conditions and friction regimes are given. The relation of the acoustic emission waveform envelope to the changing friction factor is revealed. Amplitude-frequency characteristics of acoustic emission signal frames are determined on the base of Fast Fourier Transform and Short Time Fourier Transform during the run-in stage of tribounits and in the process of stable friction.

  17. A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Siracusano, Giulio; Lamonaca, Francesco; Tomasello, Riccardo; Garescì, Francesca; Corte, Aurelio La; Carnì, Domenico Luca; Carpentieri, Mario; Grimaldi, Domenico; Finocchio, Giovanni

    2016-06-01

    The acoustic emission (AE) is a powerful and potential nondestructive testing method for structural monitoring in civil engineering. Here, we show how systematic investigation of crack phenomena based on AE data can be significantly improved by the use of advanced signal processing techniques. Such data are a fundamental source of information that can be used as the basis for evaluating the status of the material, thereby paving the way for a new frontier of innovation made by data-enabled analytics. In this article, we propose a framework based on the Hilbert-Huang Transform for the evaluation of material damages that (i) facilitates the systematic employment of both established and promising analysis criteria, and (ii) provides unsupervised tools to achieve an accurate classification of the fracture type, the discrimination between longitudinal (P-) and traversal (S-) waves related to an AE event. The experimental validation shows promising results for a reliable assessment of the health status through the monitoring of civil infrastructures.

  18. New approaches for automatic threedimensional source localization of acoustic emissions--Applications to concrete specimens.

    PubMed

    Kurz, Jochen H

    2015-12-01

    The task of locating a source in space by measuring travel time differences of elastic or electromagnetic waves from the source to several sensors is evident in varying fields. The new concepts of automatic acoustic emission localization presented in this article are based on developments from geodesy and seismology. A detailed description of source location determination in space is given with the focus on acoustic emission data from concrete specimens. Direct and iterative solvers are compared. A concept based on direct solvers from geodesy extended by a statistical approach is described which allows a stable source location determination even for partly erroneous onset times. The developed approach is validated with acoustic emission data from a large specimen leading to travel paths up to 1m and therefore to noisy data with errors in the determined onsets. The adaption of the algorithms from geodesy to the localization procedure of sources of elastic waves offers new possibilities concerning stability, automation and performance of localization results. Fracture processes can be assessed more accurately. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Combining Digital Image Correlation and Acoustic Emission for Monitoring of the Strain Distribution until Yielding During Compression of Bovine Cancellous Bone

    NASA Astrophysics Data System (ADS)

    Tsirigotis, Athanasios; Deligianni, Despoina D.

    2017-12-01

    In this work, the surface heterogeneity in mechanical compressive strain of cancellous bone was investigated with digital image correlation (DIC). Moreover, the onset and progression of failure was studied by acoustic emission (AE). Cubic cancellous bone specimens, with side of 15 mm, were obtained from bovine femur and kept frozen at -20ºC until testing. Specimen strain was analyzed by measuring the change of distance between the platens (crosshead) and via an optical method, by following the strain evolution with a camera. Simultaneously, AE monitoring was performed. The experiments showed that compressive Young’s modulus determined by crosshead strain is underestimated at 23% in comparison to optically determined strain. However, surface strain fields defined by DIC displayed steep strain gradients, which can be attributed to cancellous bone porosity and inhomogeneity. The cumulative number of events for the total AE activity recorded from the sensors showed that the activity started at a mean load level of 36% of the maximum load and indicated the initiation of micro-cracking phenomena. Further experiments, determining 3D strain with μCT apart from surface strain, are necessary to clarify the issue of strain inhomogeneity in cancellous bone.

  20. Acoustical Detection Of Leakage In A Combustor

    NASA Technical Reports Server (NTRS)

    Puster, Richard L.; Petty, Jeffrey L.

    1993-01-01

    Abnormal combustion excites characteristic standing wave. Acoustical leak-detection system gives early warning of failure, enabling operating personnel to stop combustion process and repair spray bar before leak grows large enough to cause damage. Applicable to engines, gas turbines, furnaces, and other machines in which acoustic emissions at known frequencies signify onset of damage. Bearings in rotating machines monitored for emergence of characteristic frequencies shown in previous tests associated with incipient failure. Also possible to monitor for signs of trouble at multiple frequencies by feeding output of transducer simultaneously to multiple band-pass filters and associated circuitry, including separate trigger circuit set to appropriate level for each frequency.

  1. Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics, microstreaming, and biological effects.

    PubMed

    Pereno, V; Aron, M; Vince, O; Mannaris, C; Seth, A; de Saint Victor, M; Lajoinie, G; Versluis, M; Coussios, C; Carugo, D; Stride, E

    2018-05-01

    The study of the effects of ultrasound-induced acoustic cavitation on biological structures is an active field in biomedical research. Of particular interest for therapeutic applications is the ability of oscillating microbubbles to promote both cellular and tissue membrane permeabilisation and to improve the distribution of therapeutic agents in tissue through extravasation and convective transport. The mechanisms that underpin the interaction between cavitating agents and tissues are, however, still poorly understood. One challenge is the practical difficulty involved in performing optical microscopy and acoustic emissions monitoring simultaneously in a biologically compatible environment. Here we present and characterise a microfluidic layered acoustic resonator ( μ LAR) developed for simultaneous ultrasound exposure, acoustic emissions monitoring, and microscopy of biological samples. The μ LAR facilitates in vitro ultrasound experiments in which measurements of microbubble dynamics, microstreaming velocity fields, acoustic emissions, and cell-microbubble interactions can be performed simultaneously. The device and analyses presented provide a means of performing mechanistic in vitro studies that may benefit the design of predictable and effective cavitation-based ultrasound treatments.

  2. Monitoring of diesel engine combustions based on the acoustic source characterisation of the exhaust system

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gu, F.; Gennish, R.; Moore, D. J.; Harris, G.; Ball, A. D.

    2008-08-01

    Acoustic methods are among the most useful techniques for monitoring the condition of machines. However, the influence of background noise is a major issue in implementing this method. This paper introduces an effective monitoring approach to diesel engine combustion based on acoustic one-port source theory and exhaust acoustic measurements. It has been found that the strength, in terms of pressure, of the engine acoustic source is able to provide a more accurate representation of the engine combustion because it is obtained by minimising the reflection effects in the exhaust system. A multi-load acoustic method was then developed to determine the pressure signal when a four-cylinder diesel engine was tested with faults in the fuel injector and exhaust valve. From the experimental results, it is shown that a two-load acoustic method is sufficient to permit the detection and diagnosis of abnormalities in the pressure signal, caused by the faults. This then provides a novel and yet reliable method to achieve condition monitoring of diesel engines even if they operate in high noise environments such as standby power stations and vessel chambers.

  3. 40 CFR 60.264 - Emission monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring. 60.264 Section 60... Facilities § 60.264 Emission monitoring. (a) The owner or operator subject to the provisions of this subpart shall install, calibrate, maintain and operate a continuous monitoring system for measurement of the...

  4. Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubakaddi, S. S., E-mail: sskubakaddi@gmail.com

    2016-05-21

    Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd{sub 3}As{sub 2} in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity v{sub d} is greater than the sound velocity v{sub s}. This occurs at small E (∼few V/cm) due to large mobility. Frequency (ω{sub q}) and angular (θ) distribution of phonon emission spectrum P(ω{sub q}, θ) are studied for different electron drift velocities v{sub d} (i.e., differentmore » E) and electron concentrations n{sub e}. The frequency dependence of P(ω{sub q}, θ) shows a maximum P{sub m}(ω{sub q}, θ) at about ω{sub m} ≈ 1 THz and is found to increase with the increasing v{sub d} and n{sub e}. The value of ω{sub m} shifts to higher region for larger n{sub e}. It is found that ω{sub m}/n{sub e}{sup 1/3} and P{sub m}(ω{sub q}, θ)/n{sub e}{sup 2/3} are nearly constants. The latter is in contrast with the P{sub m}(ω{sub q}, θ)n{sub e}{sup 1/2 }= constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly “2k{sub f} cutoff,” where k{sub f} is the Fermi wave vector. Angular dependence of P(ω{sub q}, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing v{sub d}. P(θ) is found to increase linearly with n{sub e} giving the ratio P(θ)/(n{sub e}v{sub d}) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and n{sub e}. 3DDS with large n{sub e} and mobility can be a good source of acoustic phonon generation in ∼THz regime.« less

  5. Experimental investigation of starting characteristics and wave propagation from a shallow open cavity and its acoustic emission at supersonic speed

    NASA Astrophysics Data System (ADS)

    Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo

    2018-01-01

    Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.

  6. An echolocation model for the restoration of an acoustic image from a single-emission echo

    NASA Astrophysics Data System (ADS)

    Matsuo, Ikuo; Yano, Masafumi

    2004-12-01

    Bats can form a fine acoustic image of an object using frequency-modulated echolocation sound. The acoustic image is an impulse response, known as a reflected-intensity distribution, which is composed of amplitude and phase spectra over a range of frequencies. However, bats detect only the amplitude spectrum due to the low-time resolution of their peripheral auditory system, and the frequency range of emission is restricted. It is therefore necessary to restore the acoustic image from limited information. The amplitude spectrum varies with the changes in the configuration of the reflected-intensity distribution, while the phase spectrum varies with the changes in its configuration and location. Here, by introducing some reasonable constraints, a method is proposed for restoring an acoustic image from the echo. The configuration is extrapolated from the amplitude spectrum of the restricted frequency range by using the continuity condition of the amplitude spectrum at the minimum frequency of the emission and the minimum phase condition. The determination of the location requires extracting the amplitude spectra, which vary with its location. For this purpose, the Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The location is estimated from the temporal changes of the amplitude spectra. .

  7. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  8. Development of a portable passive-acoustic bedload monitoring system

    USDA-ARS?s Scientific Manuscript database

    A hydrophone-based passive acoustic bedload-monitoring system was designed, tested and deployed by researchers at the University of Mississippi and the National Sedimentation Laboratory in Oxford, MS. The hydrophone system was designed to be easily deployed and operated by non-experts. In addition, ...

  9. Signal processing methodologies for an acoustic fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  10. Delayed Alumina Scale Spallation on Rene'n5+y: Moisture Effects and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Morscher, Gregory N.

    2001-01-01

    The single crystal superalloy Rene'N5 (with or without Y-doping and hydrogen annealing) was cyclically oxidized at 1150 C for 1000 hours. After considerable scale growth (>= 500 hours), even the adherent alumina scales formed on Y-doped samples exhibited delayed interfacial spallation during subsequent water immersion tests, performed up to one year after oxidation. Spallation was characterized by weight loss, the amount of spalled area, and acoustic emission response. Hydrogen annealing (prior to oxidation) reduced spallation both before and after immersion, but without measurably reducing the bulk sulfur content of the Y-doped alloys. The duration and frequency of sequential, co-located acoustic emission events implied an interfacial crack growth rate at least 10(exp -3) m/s, but possibly higher than 10(exp 2) m/s. This is much greater than classic moisture-assisted slow crack growth rates in bulk alumina (10(exp -6) to 10(exp -3) m/s), which may still have occurred undetected by acoustic emission. An alternative failure sequence is proposed: an incubation process for preferential moisture ingress leads to a local decrease in interfacial toughness, thus allowing fast fracture driven by stored strain energy.

  11. Acoustic wave simulation using an overset grid for the global monitoring system

    NASA Astrophysics Data System (ADS)

    Kushida, N.; Le Bras, R.

    2017-12-01

    The International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been monitoring hydro-acoustic and infrasound waves over the globe. Because of the complex natures of the oceans and the atmosphere, computer simulation can play an important role in understanding the observed signals. In this regard, methods which depend on partial differential equations and require minimum modelling, are preferable. So far, to our best knowledge, acoustic wave propagation simulations based on partial differential equations on such a large scale have not been performed (pp 147 - 161 of ref [1], [2]). The main difficulties in building such simulation codes are: (1) considering the inhomogeneity of medium including background flows, (2) high aspect ratio of computational domain, (3) stability during long time integration. To overcome these difficulties, we employ a two-dimensional finite different (FDM) scheme on spherical coordinates with the Yin-Yang overset grid[3] solving the governing equation of acoustic waves introduces by Ostashev et. al.[4]. The comparison with real recording examples in hydro-acoustic will be presented at the conference. [1] Paul C. Etter: Underwater Acoustic Modeling and Simulation, Fourth Edition, CRC Press, 2013. [2] LIAN WANG et. al.: REVIEW OF UNDERWATER ACOUSTIC PROPAGATION MODELS, NPL Report AC 12, 2014. [3] A. Kageyama and T. Sato: "Yin-Yang grid": An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5, Q09005, 2004. [4] Vladimir E. Ostashev et. al: Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, Acoustical Society of America. DOI: 10.1121/1.1841531, 2005.

  12. Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.

    PubMed

    André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. Copyright © 2011. Published by Elsevier Ltd.

  13. The deformation and acoustic emission of aluminum-magnesium alloy under non-isothermal thermo-mechanical loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, S. V.; Plotnikov, V. A., E-mail: plotnikov@phys.asu.ru; Lysikov, M. V.

    2015-10-27

    The following study investigates the deformation behavior and acoustic emission in aluminum-magnesium alloy under conditions of non-isothermal thermo-mechanical loading. The accumulation of deformation in the alloy, in conditions of change from room temperature to 500°C, occurs in two temperature intervals (I, II), characterized by different rates of deformation. The rate of deformation accumulation is correlated with acoustic emission. With load increasing in cycles from 40 to 200 MPa, the value of the boundary temperature (T{sub b}) between intervals I and II changes non-monotonically. In cycles with load up to 90 MPa, the T{sub b} value increases, while an increase up to 200 MPamore » makes T{sub b} shift toward lower temperatures. This suggests that the shift of boundaries in the region of low temperatures and the appearance of high-amplitude pulses of acoustic emission characterize the decrease of the magnitude of thermal fluctuations with increasing mechanical load, leading to the rupture of interatomic bonds in an elementary deformation act.« less

  14. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media — A review

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Cohen, Denis; Or, Dani

    2012-05-01

    The formation of cracks and emergence of shearing planes and other modes of rapid macroscopic failure in geologic granular media involve numerous grain scale mechanical interactions often generating high frequency (kHz) elastic waves, referred to as acoustic emissions (AE). These acoustic signals have been used primarily for monitoring and characterizing fatigue and progressive failure in engineered systems, with only a few applications concerning geologic granular media reported in the literature. Similar to the monitoring of seismic events preceding an earthquake, AE may offer a means for non-invasive, in-situ, assessment of mechanical precursors associated with imminent landslides or other types of rapid mass movements (debris flows, rock falls, snow avalanches, glacier stick-slip events). Despite diverse applications and potential usefulness, a systematic description of the AE method and its relevance to mechanical processes in Earth sciences is lacking. This review is aimed at providing a sound foundation for linking observed AE with various micro-mechanical failure events in geologic granular materials, not only for monitoring of triggering events preceding mass mobilization, but also as a non-invasive tool in its own right for probing the rich spectrum of mechanical processes at scales ranging from a single grain to a hillslope. We review first studies reporting use of AE for monitoring of failure in various geologic materials, and describe AE generating source mechanisms in mechanically stressed geologic media (e.g., frictional sliding, micro-crackling, particle collisions, rupture of water bridges, etc.) including AE statistical features, such as frequency content and occurrence probabilities. We summarize available AE sensors and measurement principles. The high sampling rates of advanced AE systems enable detection of numerous discrete failure events within a volume and thus provide access to statistical descriptions of progressive collapse of systems

  15. Developing a Passive Acoustic Monitoring Network for Harbor Porpoise in California

    NASA Astrophysics Data System (ADS)

    Jacobson, Eiren Kate

    Assessing the abundance of and trends in whale, dolphin, and porpoise (cetacean) populations using traditional visual methods can be challenging due primarily to their limited availability at the surface of the ocean. As a result, researchers are increasingly interested in incorporating non-visual and remote observations to improve cetacean population assessments. Passive acoustic monitoring (PAM) can complement or replace visual surveys for cetaceans that produce echolocation clicks, whistles, and other vocalizations. My doctoral dissertation is focused on developing methods to improve PAM of cetaceans. I used the Monterey Bay population of harbor porpoise (Phocoena phocoena ) as a case study for methods development. In Chapter 2, I used passive acoustic data to document that harbor porpoises avoid bottlenose dolphins (Tursiops truncatus) in nearshore Monterey Bay. In Chapter 3, I investigated whether different passive acoustic instruments could be used to monitor harbor porpoise. I recorded harbor porpoise echolocation clicks simultaneously on two different passive acoustic instruments and compared the number and peak frequency of echolocation signals recorded on the two instruments. I found that the number of echolocation clicks was highly correlated between instruments but that the peak frequency of echolocation clicks was not well-correlated, suggesting that some instruments may not be capable of discriminating harbor porpoise echolocation clicks in regions where multiple species with similar echolocation signals are present. In Chapter 4, I used paired visual and passive acoustic surveys to estimate the effective detection area of the passive acoustic sensors in a Bayesian framework. This approach resulted in a posterior distribution of the effective detection area that was consistent with previously published values. In Chapter 5, I used aerial survey and passive acoustic data in a simulation framework to investigate the statistical power of different

  16. Passive acoustic monitoring of the decline of Mexico's critically endangered vaquita.

    PubMed

    Jaramillo-Legorreta, Armando; Cardenas-Hinojosa, Gustavo; Nieto-Garcia, Edwyna; Rojas-Bracho, Lorenzo; Ver Hoef, Jay; Moore, Jeffrey; Tregenza, Nicholas; Barlow, Jay; Gerrodette, Tim; Thomas, Len; Taylor, Barbara

    2017-02-01

    The vaquita (Phocoena sinus) is the world's most endangered marine mammal with approximately 245 individuals remaining in 2008. This species of porpoise is endemic to the northern Gulf of California, Mexico, and historically the population has declined because of unsustainable bycatch in gillnets. An illegal gillnet fishery for an endangered fish, the totoaba (Totoaba macdonaldi), has recently resurged throughout the vaquita's range. The secretive but lucrative wildlife trade with China for totoaba swim bladders has probably increased vaquita bycatch mortality by an unknown amount. Precise population monitoring by visual surveys is difficult because vaquitas are inherently hard to see and have now become so rare that sighting rates are very low. However, their echolocation clicks can be identified readily on specialized acoustic detectors. Acoustic detections on an array of 46 moored detectors indicated vaquita acoustic activity declined by 80% between 2011 and 2015 in the central part of the species' range. Statistical models estimated an annual rate of decline of 34% (95% Bayesian credible interval -48% to -21%). Based on results from 2011 to 2014, the government of Mexico enacted and is enforcing an emergency 2-year ban on gillnets throughout the species' range to prevent extinction, at a cost of US$74 million to compensate fishers. Developing precise acoustic monitoring methods proved critical to exposing the severity of vaquitas' decline and emphasizes the need for continual monitoring to effectively manage critically endangered species. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  17. Acoustic method respiratory rate monitoring is useful in patients under intravenous anesthesia.

    PubMed

    Ouchi, Kentaro; Fujiwara, Shigeki; Sugiyama, Kazuna

    2017-02-01

    Respiratory depression can occur during intravenous general anesthesia without tracheal intubation. A new acoustic method for respiratory rate monitoring, RRa ® (Masimo Corp., Tokyo, Japan), has been reported to show good reliability in post-anesthesia care and emergency units. The purpose of this study was to investigate the reliability of the acoustic method for measurement of respiratory rate during intravenous general anesthesia, as compared with capnography. Patients with dental anxiety undergoing dental treatment under intravenous anesthesia without tracheal intubation were enrolled in this study. Respiratory rate was recorded every 30 s using the acoustic method and capnography, and detectability of respiratory rate was investigated for both methods. This study used a cohort study design. In 1953 recorded respiratory rate data points, the number of detected points by the acoustic method (1884, 96.5 %) was significantly higher than that by capnography (1682, 86.1 %) (P < 0.0001). In the intraoperative period, there was a significant difference in the LOA (95 % limits of agreement of correlation between difference and average of the two methods)/ULLOA (under the lower limit of agreement) in terms of use or non-use of a dental air turbine (P < 0.0001). In comparison between capnography, the acoustic method is useful for continuous monitoring of respiratory rate in spontaneously breathing subjects undergoing dental procedures under intravenous general anesthesia. However, the acoustic method might not accurately detect in cases in with dental air turbine.

  18. Audible acoustics in high-shear wet granulation: application of frequency filtering.

    PubMed

    Hansuld, Erin M; Briens, Lauren; McCann, Joe A B; Sayani, Amyn

    2009-08-13

    Previous work has shown analysis of audible acoustic emissions from high-shear wet granulation has potential as a technique for end-point detection. In this research, audible acoustic emissions (AEs) from three different formulations were studied to further develop this technique as a process analytical technology. Condenser microphones were attached to three different locations on a PMA-10 high-shear granulator (air exhaust, bowl and motor) to target different sound sources. Size, flowability and tablet break load data was collected to support formulator end-point ranges and interpretation of AE analysis. Each formulation had a unique total power spectral density (PSD) profile that was sensitive to granule formation and end-point. Analyzing total PSD in 10 Hz segments identified profiles with reduced run variability and distinct maxima and minima suitable for routine granulation monitoring and end-point control. A partial least squares discriminant analysis method was developed to automate selection of key 10 Hz frequency groups using variable importance to projection. The results support use of frequency refinement as a way forward in the development of acoustic emission analysis for granulation monitoring and end-point control.

  19. Acoustic localization at large scales: a promising method for grey wolf monitoring.

    PubMed

    Papin, Morgane; Pichenot, Julian; Guérold, François; Germain, Estelle

    2018-01-01

    The grey wolf ( Canis lupus ) is naturally recolonizing its former habitats in Europe where it was extirpated during the previous two centuries. The management of this protected species is often controversial and its monitoring is a challenge for conservation purposes. However, this elusive carnivore can disperse over long distances in various natural contexts, making its monitoring difficult. Moreover, methods used for collecting signs of presence are usually time-consuming and/or costly. Currently, new acoustic recording tools are contributing to the development of passive acoustic methods as alternative approaches for detecting, monitoring, or identifying species that produce sounds in nature, such as the grey wolf. In the present study, we conducted field experiments to investigate the possibility of using a low-density microphone array to localize wolves at a large scale in two contrasting natural environments in north-eastern France. For scientific and social reasons, the experiments were based on a synthetic sound with similar acoustic properties to howls. This sound was broadcast at several sites. Then, localization estimates and the accuracy were calculated. Finally, linear mixed-effects models were used to identify the factors that influenced the localization accuracy. Among 354 nocturnal broadcasts in total, 269 were recorded by at least one autonomous recorder, thereby demonstrating the potential of this tool. Besides, 59 broadcasts were recorded by at least four microphones and used for acoustic localization. The broadcast sites were localized with an overall mean accuracy of 315 ± 617 (standard deviation) m. After setting a threshold for the temporal error value associated with the estimated coordinates, some unreliable values were excluded and the mean accuracy decreased to 167 ± 308 m. The number of broadcasts recorded was higher in the lowland environment, but the localization accuracy was similar in both environments, although it varied

  20. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.

    PubMed

    Chitnis, Parag V; Cleveland, Robin O

    2006-04-01

    Measurements are presented of acoustic emissions from cavitation collapses on the surface of a synthetic kidney stone in response to shock waves (SWs) from an electrohydraulic lithotripter. A fiber optic probe hydrophone was used for pressure measurements, and passive cavitation detection was used to identify acoustic emissions from bubble collapse. At a lithotripter charging voltage of 20 kV, the focused SW incident on the stone surface resulted in a peak pressure of 43 +/- 6 MPa compared to 23 +/- 4 MPa in the free field. The focused SW incident upon the stone appeared to be enhanced due to the acoustic emissions from the forced cavitation collapse of the preexisting bubbles. The peak pressure of the acoustic emission from a bubble collapse was 34 +/- 15 MPa, that is, the same magnitude as the SWs incident on the stone. These data indicate that stresses induced by focused SWs and cavitation collapses are similar in magnitude thus likely play a similar role in stone fragmentation.

  1. Comparison of PAM Systems for Acoustic Monitoring and Further Risk Mitigation Application.

    PubMed

    Ludwig, Stefan; Kreimeyer, Roman; Knoll, Michaela

    2016-01-01

    We present results of the SIRENA 2011 research cruises conducted by the NATO Undersea Research Centre (NURC) and joined by the Research Department for Underwater Acoustics and Geophysics (FWG), Bundeswehr Technical Centre (WTD 71) and the Universities of Kiel and Pavia. The cruises were carried out in the Ligurian Sea. The main aim of the FWG was to test and evaluate the newly developed towed hydrophone array as a passive acoustic monitoring (PAM) tool for risk mitigation applications. The system was compared with the PAM equipment used by the other participating institutions. Recorded sounds were used to improve an automatic acoustic classifier for marine mammals, and validated acoustic detections by observers were compared with the results of the classifier.

  2. 40 CFR 61.183 - Emission monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.183 Emission monitoring. (a... arsenic trioxide and metallic arsenic process emission stream that exits from a control device. (b) The...

  3. 40 CFR 61.183 - Emission monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.183 Emission monitoring. (a... arsenic trioxide and metallic arsenic process emission stream that exits from a control device. (b) The...

  4. An Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun

    Fishes and other marine mammals suffer a range of potential effects from intense sound sources generated by anthropogenic underwater processes such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording devices (USR) were built to monitor the acoustic sound pressure waves generated by those anthropogenic underwater activities, so the relevant processing software becomes indispensable for analyzing the audio files recorded by these USRs. However, existing software packages did not meet performance and flexibility requirements. In this paper, we provide a detailed description of a new software package, named Aquatic Acoustic Metrics Interface (AAMI), which is a Graphicalmore » User Interface (GUI) designed for underwater sound monitoring and analysis. In addition to the general functions, such as loading and editing audio files recorded by USRs, the software can compute a series of acoustic metrics in physical units, monitor the sound's influence on fish hearing according to audiograms from different species of fishes and marine mammals, and batch process the sound files. The detailed applications of the software AAMI will be discussed along with several test case scenarios to illustrate its functionality.« less

  5. Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, B.; Hulbert, C.; Ren, C. X.; Bolton, D. C.; Marone, C.; Johnson, P. A.

    2017-12-01

    Fault friction controls nearly all aspects of fault rupture, yet it is only possible to measure in the laboratory. Here we describe laboratory experiments where acoustic emissions are recorded from the fault. We find that by applying a machine learning approach known as "extreme gradient boosting trees" to the continuous acoustical signal, the fault friction can be directly inferred, showing that instantaneous characteristics of the acoustic signal are a fingerprint of the frictional state. This machine learning-based inference leads to a simple law that links the acoustic signal to the friction state, and holds for every stress cycle the laboratory fault goes through. The approach does not use any other measured parameter than instantaneous statistics of the acoustic signal. This finding may have importance for inferring frictional characteristics from seismic waves in Earth where fault friction cannot be measured.

  6. Apparatus and method for acoustic monitoring of steam quality and flow

    DOEpatents

    Sinha, Dipen N.; Pantea, Cristian

    2016-09-13

    An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.

  7. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    PubMed Central

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  8. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique.

    PubMed

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G; Alver, Ninel

    2015-08-05

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  9. Passive acoustic monitoring of coastally associated Hawaiian spinner dolphins, Stenella longirostris, ground-truthed through visual surveys.

    PubMed

    Heenehan, Heather L; Tyne, Julian A; Bejder, Lars; Van Parijs, Sofie M; Johnston, David W

    2016-07-01

    Effective decision making to protect coastally associated dolphins relies on monitoring the presence of animals in areas that are critical to their survival. Hawaiian spinner dolphins forage at night and rest during the day in shallow bays. Due to their predictable presence, they are targeted by dolphin-tourism. In this study, comparisons of presence were made between passive acoustic monitoring (PAM) and vessel-based visual surveys in Hawaiian spinner dolphin resting bays. DSG-Ocean passive acoustic recording devices were deployed in four bays along the Kona Coast of Hawai'i Island between January 8, 2011 and August 30, 2012. The devices sampled at 80 kHz, making 30-s recordings every four minutes. Overall, dolphins were acoustically detected on 37.1% to 89.6% of recording days depending on the bay. Vessel-based visual surveys overlapped with the PAM surveys on 202 days across the four bays. No significant differences were found between visual and acoustic detections suggesting acoustic surveys can be used as a proxy for visual surveys. Given the need to monitor dolphin presence across sites, PAM is the most suitable and efficient tool for monitoring long-term presence/absence. Concomitant photo-identification surveys are necessary to address changes in abundance over time.

  10. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  11. The Extended Concept Of Symmetropy And Its Application To Earthquakes And Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Nanjo, K.; Yodogawa, E.

    2003-12-01

    There is the notion of symmetropy that can be considered as a powerful tool to measure quantitatively entropic heterogeneity regarding symmetry of a pattern. It can be regarded as a quantitative measure to extract the feature of asymmetry of a pattern (Yodogawa, 1982; Nanjo et al., 2000, 2001, 2002 in press). In previous studies, symmetropy was estimated for the spatial distributions of acoustic emissions generated before the ultimate whole fracture of a rock specimen in the laboratory experiment and for the spatial distributions of earthquakes in the seismic source model with self-organized criticality (SOC). In each of these estimations, the outline of the region in which symmetropy is estimated for a pattern is determined to be equal to that of the rock specimen in which acoustic emissions are generated or that of the SOC seismic source model from which earthquakes emerge. When local seismicities like aftershocks, foreshocks and earthquake swarms in the Earth's crust are considered, it is difficult to determine objectively the outline of the region characterizing these local seismicities without the need of subjectiveness. So, the original concept of symmetropy is not appropriate to be directly applied to such local seismicities and the proper modification of the original one is needed. Here, we introduce the notion of symmetropy for the nonlinear geosciences and extend it for the purpose of the application to local seismicities such as aftershocks, foreshocks and earthquake swarms. We employ the extended concept to the spatial distributions of acoustic emissions generated in a previous laboratory experiment where the failure process in a brittle granite sample can be stabilized by controlling axial stress to maintain a constant rate of acoustic emissions and, as a result, detailed view of fracture nucleation and growth was observed. Moreover, it is applied to the temporal variations of spatial distributions of aftershocks and foreshocks of the main shocks

  12. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emissions (AE) generated from Kevlar 49/epoxy composite pressure vessels subjected to sustained load-to-failure tests were studied. Data from two different transducer locations on the vessels were compared. It was found that AE from vessel wall-mounted transducers showed a wide variance from those for identical vessels subjected to the same pressure loading. Emissions from boss-mounted transducers did, however, yield values that were relatively consistent. It appears that the signals from the boss-mounted transducers represent an integrated average of the emissions generated by fibers fracturing during the vessel tests. The AE from boss-mounted transducers were also independent of time for vessel failure. This suggests that a similar number of fiber fractures must occur prior to initiation of vessel failure. These studies indicate a potential for developing an AE test procedure for predicting the residual service life or integrity of composite vessels.

  13. Acoustic emission and sorptive deformation induced in coals of various rank by the sorption-desorption of gas

    NASA Astrophysics Data System (ADS)

    Majewska, Zofia; Ziętek, Jerzy

    2007-09-01

    Simultaneous measurements of acoustic emission (AE) and expansion/contraction of coal samples subjected to gas sorption-desorption processes were conducted on high-and medium-rank coal. The aim of this study was to examine the influence of the coal rank and type of sorbate on measured AE and strain characteristics. The experimental equipment employed in this study consisted of a pressure vessel and associated pressurisation and monitoring units. The arrangement of pressure-vacuum valves permitted the coal sample to be pressurised and depressurised. Carbon-dioxide and methane were used as sorbats. Acoustic emission and strains were recorded continuously for a period of 50 hours during sorption and for at least 12 hours during the desorption process. Tests were conducted on cylindrical coal samples at 298 K. The experimental data were presented as plots of AE basic parameters versus time and in strain diagrams. These studies lead to the following conclusions: 1. There are significant differences in AE and strain characteristics for the two systems (coal-CO2 and coal-CH4); 2. There is a direct influence of rank and type of coal on its behaviour during the sorption-desorption of gas. An attempt has been made to interpret the results obtained on the grounds of the copolymer model of coal structure. More research is needed into this topic in order to get a quantitative description of the observed facts.

  14. An acoustic emission and acousto-ultrasonic analysis of impact damaged composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Workman, Gary L. (Principal Investigator); Walker, James L.

    1996-01-01

    The use of acoustic emission to characterize impact damage in composite structures is being performed on composite bottles wrapped with graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology will include neural net analysis and/or other multivariate techniques to enhance the capability of the technique to identify dominant failure mechanisms during fracture. The acousto-ultrasonics technique will also continue to be investigated to determine its ability to predict regions prone to failure prior to the burst tests. Characterization of the stress wave factor before, and after impact damage will be useful for inspection purposes in manufacturing processes. The combination of the two methods will also allow for simple nondestructive tests capable of predicting the performance of a composite structure prior to its being placed in service and during service.

  15. Diagnostics of Polymer Composite Materials and Analysis of Their Production Technology by Using the Method of Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Bashkov, O. V.; Protsenko, A. E.; Bryanskii, A. A.; Romashko, R. V.

    2017-09-01

    The strength properties of glass-fiber-reinforced plastics produced by vacuum and vacuum autoclave molding techniques are studied. Based on acoustic emission data, a method of diagnostic and prediction of the bearing capacity of polymer composite materials by using data from three-point bending tests is developed. The method is based on evaluating changes in the exponent of a power function relating the total acoustic emission to the test stress.

  16. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  17. Acoustic emission analysis of tooth-composite interfacial debonding.

    PubMed

    Cho, N Y; Ferracane, J L; Lee, I B

    2013-01-01

    This study detected tooth-composite interfacial debonding during composite restoration by means of acoustic emission (AE) analysis and investigated the effects of composite properties and adhesives on AE characteristics. The polymerization shrinkage, peak shrinkage rate, flexural modulus, and shrinkage stress of a methacrylate-based universal hybrid, a flowable, and a silorane-based composite were measured. Class I cavities on 49 extracted premolars were restored with 1 of the 3 composites and 1 of the following adhesives: 2 etch-and-rinse adhesives, 2 self-etch adhesives, and an adhesive for the silorane-based composite. AE analysis was done for 2,000 sec during light-curing. The silorane-based composite exhibited the lowest shrinkage (rate), the longest time to peak shrinkage rate, the lowest shrinkage stress, and the fewest AE events. AE events were detected immediately after the beginning of light-curing in most composite-adhesive combinations, but not until 40 sec after light-curing began for the silorane-based composite. AE events were concentrated at the initial stage of curing in self-etch adhesives compared with etch-and-rinse adhesives. Reducing the shrinkage (rate) of composites resulted in reduced shrinkage stress and less debonding, as evidenced by fewer AE events. AE is an effective technique for monitoring, in real time, the debonding kinetics at the tooth-composite interface.

  18. Monitoring the integrity of the cement-metal interface of total joint components in vitro using acoustic emission and ultrasound.

    PubMed

    Davies, J P; Tse, M K; Harris, W H

    1996-08-01

    Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.

  19. Air Emissions Monitoring for Permits

    EPA Pesticide Factsheets

    Operating permits document how air pollution sources will demonstrate compliance with emission limits and also how air pollution sources will monitor, either periodically or continuously, their compliance with emission limits and all other requirements.

  20. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques

    NASA Astrophysics Data System (ADS)

    Delvecchio, S.; Bonfiglio, P.; Pompoli, F.

    2018-01-01

    This paper deals with the state-of-the-art strategies and techniques based on vibro-acoustic signals that can monitor and diagnose malfunctions in Internal Combustion Engines (ICEs) under both test bench and vehicle operating conditions. Over recent years, several authors have summarized what is known in critical reviews mainly focused on reciprocating machines in general or on specific signal processing techniques: no attempts to deal with IC engine condition monitoring have been made. This paper first gives a brief summary of the generation of sound and vibration in ICEs in order to place further discussion on fault vibro-acoustic diagnosis in context. An overview of the monitoring and diagnostic techniques described in literature using both vibration and acoustic signals is also provided. Different faulty conditions are described which affect combustion, mechanics and the aerodynamics of ICEs. The importance of measuring acoustic signals, as opposed to vibration signals, is due since the former seem to be more suitable for implementation on on-board monitoring systems in view of their non-intrusive behaviour, capability in simultaneously capturing signatures from several mechanical components and because of the possibility of detecting faults affecting airborne transmission paths. In view of the recent needs of the industry to (-) optimize component structural durability adopting long-life cycles, (-) verify the engine final status at the end of the assembly line and (-) reduce the maintenance costs monitoring the ICE life during vehicle operations, monitoring and diagnosing system requests are continuously growing up. The present review can be considered a useful guideline for test engineers in understanding which types of fault can be diagnosed by using vibro-acoustic signals in sufficient time in both test bench and operating conditions and which transducer and signal processing technique (of which the essential background theory is here reported) could be

  1. 40 CFR 61.163 - Emission monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....163 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions From Glass Manufacturing Plants § 61.163 Emission monitoring. (a) An owner or operator of a glass...

  2. Transmission of acoustic emission in bones, implants and dental materials.

    PubMed

    Ossi, Zannar; Abdou, Wael; Reuben, Robert L; Ibbetson, Richard J

    2013-11-01

    There is considerable interest in using acoustic emission (AE) and ultrasound to assess the quality of implant-bone interfaces and to monitor for micro-damage leading to loosening. However, remarkably little work has been done on the transmission of ultrasonic waves though the physical and biological structures involved. The aim of this in vitro study is to assess any differences in transmission between various dental materials and bovine rib bones with various degrees of hydration. Two types of tests have been carried out using pencil lead breaks as a standard AE source. The first set of tests was configured to assess the surface propagation of AE on various synthetic materials compared with fresh bovine rib bone. The second is a set of transmission tests on fresh, dried and hydrated bones each fitted with dental implants with various degrees of fixity, which includes components due to bone and interface transmission. The results indicate that transmission through glass ionomer cement is closest to the bone. This would suggest that complete osseointegration could potentially be simulated using such cement. The transmission of AE energy through bone was found to be dependent on its degree of hydration. It was also found that perfusing samples of fresh bone with water led to an increase in transmitted energy, but this appeared to affect transmission across the interface more than transmission through the bone. These findings have implications not only for implant interface inspection but also for passive AE monitoring of implants.

  3. Acoustic Monitoring of Ebullitive Flux from a Mire Ecosystem in Subarctic Sweden

    NASA Astrophysics Data System (ADS)

    Burke, S. A.; Varner, R. K.; Palace, M. W.; Wik, M.; Crill, P. M.; McCalley, C. K.; Amante, J.

    2012-12-01

    Methane (CH4) is a potent green house gas with wetlands being the largest natural source to the atmosphere. Studies in the Stordalen Mire, a dynamic peatland complex 11km east of the Abisko Scientific Research Station (ANS) in northern Sweden, that focused on CH4 transport to the atmosphere from peatlands have shown increased emissions over the past decades. Ebullitive flux (bubbling) is a potentially significant pathway of CH4 from mire/lake ecosystems. Ebullitive fluxes were successfully monitored acoustically in peat and lakes in 2011. This work expands those measurements with installation of sensors in ponds and permafrost thaw margins in 2012. Eighteen acoustic sensors were installed in peat (6), pond (6), and lake (6) sites at Stordalen Mire. Recorders collected acoustic data continuously from each sensor and gas samples were collected from the traps at least once per week beginning 7 July. The CH4 concentration in the gas was measured using gas chromatography and selected samples were also analyzed for 13C-CH4 using a Quantum Cascade Laser (QCL). The acoustic data were evaluated using a MATLAB program for determine the timing and volume of each ebullition event. The CH4 ebullitive flux from the peat was greater in July 2011 than during the same period in 2012. In comparison, the ponds and thaw margins released CH4 at a faster rate in 2012 than was observed in the peat and lake sensors in 2011. Inter-annual differences in ebullitive rates suggest that weather scale differences between years may control CH4 ebullitive flux. 13C-CH4 measured in the pore waters of pond sediment suggests that not all ponds are dominated by the same production processes. However, 13C-CH4 measured in bubbles and sediments are not different, implying little or no oxidation of CH4 during transport to the water surface. Our data suggests that changes in atmospheric pressure and water table height correlated with the ebullitive release in all three sub-ecosystems.

  4. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  5. The Potential of Using Acoustical Emission to Detect Termites Within Wood

    Treesearch

    Vernard R. Lewis; Richard L. Lemaster

    1991-01-01

    Acoustical emission (AE) equipment was used to detect drywood termites Incisitermes minor in ponderosa pine Pinus ponderosa blocks under laboratory conditions. Using a 60 kHz transducer, AE levels were recorded for 0, 5, 10, 15, and 20 termites per block. The association of AE and varying numbers of drywood termites best fit an...

  6. Acoustic monitoring of coastal dolphins and their response to naval mine neutralization exercises

    PubMed Central

    Howe, Marian; Zang, Eden; McElligott, Megan; Engelhaupt, Amy; Munger, Lisa

    2017-01-01

    To investigate the potential impacts of naval mine neutralization exercises (MINEX) on odontocete cetaceans, a long-term passive acoustic monitoring study was conducted at a US Navy training range near Virginia Beach, USA. Bottom-moored acoustic recorders were deployed in 2012–2016 near the epicentre of MINEX training activity and were refurbished every 2–4 months. Recordings were analysed for the daily presence/absence of dolphins, and dolphin acoustic activity was quantified in detail for the hours and days before and after 31 MINEX training events. Dolphins occurred in the area year-round, but there was clear seasonal variability, with lower presence during winter months. Dolphins exhibited a behavioural response to underwater detonations. Dolphin acoustic activity near the training location was lower during the hours and days following detonations, suggesting that animals left the area and/or reduced their signalling. Concurrent acoustic monitoring farther away from the training area suggested that the radius of response was between 3 and 6 km. A generalized additive model indicated that the predictors that explained the greatest amount of deviance in the data were the day relative to the training event, the hour of the day and circumstances specific to each training event. PMID:29308219

  7. Acoustic monitoring of coastal dolphins and their response to naval mine neutralization exercises.

    PubMed

    Lammers, Marc O; Howe, Marian; Zang, Eden; McElligott, Megan; Engelhaupt, Amy; Munger, Lisa

    2017-12-01

    To investigate the potential impacts of naval mine neutralization exercises (MINEX) on odontocete cetaceans, a long-term passive acoustic monitoring study was conducted at a US Navy training range near Virginia Beach, USA. Bottom-moored acoustic recorders were deployed in 2012-2016 near the epicentre of MINEX training activity and were refurbished every 2-4 months. Recordings were analysed for the daily presence/absence of dolphins, and dolphin acoustic activity was quantified in detail for the hours and days before and after 31 MINEX training events. Dolphins occurred in the area year-round, but there was clear seasonal variability, with lower presence during winter months. Dolphins exhibited a behavioural response to underwater detonations. Dolphin acoustic activity near the training location was lower during the hours and days following detonations, suggesting that animals left the area and/or reduced their signalling. Concurrent acoustic monitoring farther away from the training area suggested that the radius of response was between 3 and 6 km. A generalized additive model indicated that the predictors that explained the greatest amount of deviance in the data were the day relative to the training event, the hour of the day and circumstances specific to each training event.

  8. Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Jesse; Gutierrez, Marte; Matzar, Luis

    Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less

  9. Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests

    DOE PAGES

    Hampton, Jesse; Gutierrez, Marte; Matzar, Luis; ...

    2018-06-11

    Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less

  10. Simultaneous detection of acoustic emission and Barkhausen noise during the martensitic transition of a Ni-Mn-Ga magnetic shape-memory alloy

    NASA Astrophysics Data System (ADS)

    Baró, Jordi; Dixon, Steve; Edwards, Rachel S.; Fan, Yichao; Keeble, Dean S.; Mañosa, Lluís; Planes, Antoni; Vives, Eduard

    2013-11-01

    We present simultaneous measurements of acoustic emission and magnetic Barkhausen noise during the thermally induced martensitic transition in a Ni-Mn-Ga single crystal. The range where structural acoustic emission avalanches are detected extends for more than 50 K for both cooling and heating ramps, with a hysteresis of ˜10 K. The magnetic activity occurs during the structural transition, exhibiting similar hysteresis, but concentrated in the lower half of the temperature range. Statistical analysis of individual signals allows characterization of the broad distributions of acoustic emission and Barkhausen amplitudes. By studying the times of arrival of the avalanche events we detect the existence of correlations between the two kinds of signals, with a number of acoustic emission signals occurring shortly after a Barkhausen signal. The order of magnitude of the observed delays is compatible with the time needed for the propagation of ultrasound through the sample, showing correlation of some of the signals.

  11. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectricmore » actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.« less

  12. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction

    NASA Astrophysics Data System (ADS)

    Brantut, Nicolas

    2018-06-01

    Acoustic emission (AE) and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenized wave velocity measurements and approximate source locations. Here, I present a numerical method and its implementation in a free software to perform a joint inversion of AE locations together with the 3-D, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from AEs and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of AEs progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse AEs are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15 per cent, with an increase in anisotropy of up to 20 per cent. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localized changes associated with microcracking and damage generation.

  13. Time-distance domain transformation for Acoustic Emission source localization in thin metallic plates.

    PubMed

    Grabowski, Krzysztof; Gawronski, Mateusz; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw J; Uhl, Tadeusz; Kundu, Tribikram; Packo, Pawel

    2016-05-01

    Acoustic Emission used in Non-Destructive Testing is focused on analysis of elastic waves propagating in mechanical structures. Then any information carried by generated acoustic waves, further recorded by a set of transducers, allow to determine integrity of these structures. It is clear that material properties and geometry strongly impacts the result. In this paper a method for Acoustic Emission source localization in thin plates is presented. The approach is based on the Time-Distance Domain Transform, that is a wavenumber-frequency mapping technique for precise event localization. The major advantage of the technique is dispersion compensation through a phase-shifting of investigated waveforms in order to acquire the most accurate output, allowing for source-sensor distance estimation using a single transducer. The accuracy and robustness of the above process are also investigated. This includes the study of Young's modulus value and numerical parameters influence on damage detection. By merging the Time-Distance Domain Transform with an optimal distance selection technique, an identification-localization algorithm is achieved. The method is investigated analytically, numerically and experimentally. The latter involves both laboratory and large scale industrial tests. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Modal Acoustic Emission Used at Elevated Temperatures to Detect Damage and Failure Location in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Ceramic matrix composites are being developed for elevated-temperature engine applications. A leading material system in this class of materials is silicon carbide (SiC) fiber-reinforced SiC matrix composites. Unfortunately, the nonoxide fibers, matrix, and interphase (boron nitride in this system) can react with oxygen or water vapor in the atmosphere, leading to strength degradation of the composite at elevated temperatures. For this study, constant-load stress-rupture tests were performed in air at temperatures ranging from 815 to 960 C until failure. From these data, predictions can be made for the useful life of such composites under similar stressed-oxidation conditions. During these experiments, the sounds of failure events (matrix cracking and fiber breaking) were monitored with a modal acoustic emission (AE) analyzer through transducers that were attached at the ends of the tensile bars. Such failure events, which are caused by applied stress and oxidation reactions, cause these composites to fail prematurely. Because of the nature of acoustic waveform propagation in thin tensile bars, the location of individual source events and the eventual failure event could be detected accurately.

  15. Compensating for ear-canal acoustics when measuring otoacoustic emissions

    PubMed Central

    Charaziak, Karolina K.; Shera, Christopher A.

    2017-01-01

    Otoacoustic emissions (OAEs) provide an acoustic fingerprint of the inner ear, and changes in this fingerprint may indicate changes in cochlear function arising from efferent modulation, aging, noise trauma, and/or exposure to harmful agents. However, the reproducibility and diagnostic power of OAE measurements is compromised by the variable acoustics of the ear canal, in particular, by multiple reflections and the emergence of standing waves at relevant frequencies. Even when stimulus levels are controlled using methods that circumvent standing-wave problems (e.g., forward-pressure-level calibration), distortion-product otoacoustic emission (DPOAE) levels vary with probe location by 10–15 dB near half-wave resonant frequencies. The method presented here estimates the initial outgoing OAE pressure wave at the eardrum from measurements of the conventional OAE, allowing one to separate the emitted OAE from the many reflections trapped in the ear canal. The emitted pressure level (EPL) represents the OAE level that would be recorded were the ear canal replaced by an infinite tube with no reflections. When DPOAEs are expressed using EPL, their variation with probe location decreases to the test–retest repeatability of measurements obtained at similar probe positions. EPL provides a powerful way to reduce the variability of OAE measurements and improve their ability to detect cochlear changes. PMID:28147590

  16. Acoustic Emission and Damage Accumulation for Various Woven C/SiC Composites Tested in Tension at Room Temperature

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory; Petko, Jeanne; Kiser, James D.

    2002-01-01

    Modal acoustic emission (AE) has proven to be an excellent technique to monitor damage accumulation in ceramic matrix composites. In this study, AE was used to monitor tensile load-unload-reload hysteresis tests for a variety of C fiber reinforced, Sic matrix composites. C/SiC composites were reinforced with T-300 and IM7 fibers, had C, multilayer, or pseudo-porous C interphases, and had chemical vapor infiltrated Sic or melt-infiltrated SiC matrices. All of the composites exhibited considerable AE during testing. The extent and nature of the AE activity will be analyzed and discussed in light of matrix cracking and the variety of composite constituents. It is hoped that understanding the nature of stress-dependent damage accumulation in these materials can be of use in life-modeling for these types of composites.

  17. Acoustic Emission and Damage Accumulation for Various Woven C/SiC Composites Tested in Tension at Room Temperature

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Petko, Jeanne; Kiser, James D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Modal acoustic emission (AE) has proven to be an excellent technique to monitor damage accumulation in ceramic matrix composites. In this study, AE was used to monitor tensile load-unload-reload hysteresis tests for a variety of C fiber reinforced, SiC matrix composites. C/SiC composites were reinforced with T300 and IM7 fibers, had C, multilayer, or pseudo-porous C interphases, and had chemical vapor infiltrated SiC or melt-infiltrated SiC matrices. All of the composites exhibited considerable AE during testing. The extent and nature of the AE activity will be analyzed and discussed in light of matrix cracking and the variety of composite constituents. It is hoped that understanding the nature of stress dependent damage accumulation in these materials can be of use in life modeling for these types of composites.

  18. Investigation of the effect of electric current on serrated deformation and acoustic emission in the aluminum-magnesium alloy 5056

    NASA Astrophysics Data System (ADS)

    Shibkov, A. A.; Denisov, A. A.; Zheltov, M. A.; Zolotov, A. E.; Gasanov, M. F.; Ivolgin, V. I.

    2015-06-01

    The effect of direct electric current on the serrated deformation of the aluminum-magnesium alloy 5056 has been studied using the acoustic emission method and high-speed video filming of propagating deformation bands. The phenomenon of the electric current-induced suppression of low-frequency acoustic emission signals has been revealed in the range of 1 Hz-2 kHz, which is connected with the development of Portevin-Le Chatelier deformation bands. The characteristic times of damping and growth of plastic instabilities and acoustic signals caused by them after current turn-on and turn-off, respectively, have been estimated.

  19. Acoustic emission during tensile deformation of M250 grade maraging steel

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Chandan Kumar; Rajkumar, Kesavan Vadivelu; Chandra Rao, Bhaghi Purna; Jayakumar, Tamanna

    2012-05-01

    Acoustic emission (AE) generated during room temperature tensile deformation of varyingly heat treated (solution annealed and thermally aged) M250 grade maraging steel specimens have been studied. Deformation of microstructure corresponding to different heat treated conditions in this steel could be distinctly characterized using the AE parameters such as RMS voltage, counts and peak amplitude of AE hits (events).

  20. Concurrent recordings of Electrical Current Emissions and Acoustic Emissions detected from marble specimens subjected to mechanical stress up to fracture

    NASA Astrophysics Data System (ADS)

    Stavrakas, I.; Hloupis, G.; Triantis, D.; Vallianatos, F.

    2012-04-01

    The emission of electrical signals during the application of mechanical stress on brittle geo-materials (the so called Pressure Stimulated Current - PSC[1,2]), provides significant information regarding the mechanical status of the studied rock sample, since PSCs are originated as a result of the opening of cracks and microfractures[3]. The latter mechanism for the creation of PSCs it is straightforward to associated with the recording of acoustic emissions (AE). To justify the common origin of PSCs and AE due to opening of cracks, a combined study was performed implicating the concurrent recording of electric current emissions and AE on marble samples when they are subjected to linearly increasing mechanical load up to the fracture. The electric signal detected is recorded by an ultra sensitive electrometer (Keithley 6514). The sensor used for detecting the electric current is a pair of gold plated electrodes adapted bilaterally on the sample found under axial mechanical stress[4]. The AE were recorded through the Physical Acoustics PCI-2 Acquisition System. The experimental results prove the strong association of the recorded electrical signals and the corresponding acoustic emissions justifying their common origin due to opening of microfractures. Furthermore, when the applied mechanical load exceeds the yield stress then an increasing of PSCs amplitude along with that of AE rate is observed. Acknowledgments. This work was partly supported by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive statistical physics - Application to the geodynamic system of the Hellenic Arc. SEISMO FEAR HELLARC".

  1. Acoustic Emission from Breaking a Bamboo Chopstick

    NASA Astrophysics Data System (ADS)

    Tsai, Sun-Ting; Wang, Li-Min; Huang, Panpan; Yang, Zhengning; Chang, Chin-De; Hong, Tzay-Ming

    2016-01-01

    The acoustic emission from breaking a bamboo chopstick or a bundle of spaghetti is found to exhibit similar behavior as the famous seismic laws of Gutenberg and Richter, Omori, and Båth. By the use of a force-sensing detector, we establish a positive correlation between the statistics of sound intensity and the magnitude of a tremor. We also manage to derive these laws analytically without invoking the concept of a phase transition, self-organized criticality, or fractal. Our model is deterministic and relies on the existence of a structured cross section, either fibrous or layered. This success at explaining the power-law behavior supports the proposal that geometry is sometimes more important than mechanics.

  2. Examination of coating failure by acoustic emission

    NASA Technical Reports Server (NTRS)

    Berndt, Christopher C.

    1985-01-01

    Coatings of NiCrAlY bond coat with a zirconia - 12 wt percent yttria overlay were applied to disc-shaped specimens of U-700 alloy. A waveguide of 1 mm diameter platinum was TIG welded to the specimen and allowed it to be suspended in a tubular furnace. The specimen was thermally cycled to 1150 C, and the acoustic emission (AE) monitored. The weight gain per thermal cycle was also measured. A computer system based on the IBM-XT microcomputer was used extensively to acquire the AE data with respect to temperature. This system also controlled the temperature by using a PD software loop. Several different types of AE analyses were performed. A major feature of these tests, not addressed by previous work in this area, was that the coatings covered 100 percent of the specimen and also that the AE was amplified at two different levels. It is believed that this latter feature allows a qualitative appraisal of the relative number of cracks per AE event. The difference in AE counts between the two channels is proportional to the number of cracks per AE event, and this parameter may be thought of as the crack density. The ratio of the AE count difference to the AE count magnitude of one channel is inversely proportional to the crack growth. Both of these parameters allow the crack distribution and crack growth within each specimen to be qualitatively followed during the thermal cycling operation. Recent results which used these principles will be presented.

  3. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography.

    PubMed

    Lin, Chun-Li; Kuo, Wen-Chuan; Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Yun-Chu

    2014-08-01

    This study investigates monitored micro-crack growth and damage in the ceramic/enamel adhesive interface using the acoustic emission (AE) technique with optical coherence tomography (OCT) under fatigue shear testing. Shear bond strength (SBS) was measured first with eight prepared ceramic/enamel adhesive specimens under static loads. The fatigue shear testing was performed with three specimens at each cyclic load according to a modified ISO14801 method, applying at 80%, 75%, 70%, and 65% of the SBS to monitor interface debonding. The number of cycles at each load was recorded until ceramic/enamel adhesive interface debonding occurred. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 18.07 ± 1.72 MPa (mean ± standard deviation), expressed in Newton's at 56.77 ± 5.40N. The average number of fatigue cycles in which ceramic/enamel interface damage was detected in 80%, 75%, 70% and 65% of the SBS were 41, 410, 8141 and 76,541, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 65% and 70% fatigue tests. A good correlation was observed between the crack location in OCT images and the number of AE signal hits. The AE technique combined with OCT images as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/enamel bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 10.98 MPa (about 34.48 N) passing 10(6) fatigue cyclic. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jing; Lu, Jiren; Peng, Suping; Jiang, Tianqi

    2018-02-01

    The conventional arrival pick-up algorithms cannot avoid the manual modification of the parameters for the simultaneous identification of multiple events under different signal-to-noise ratios (SNRs). Therefore, in order to automatically obtain the arrivals of multiple events with high precision under different SNRs, in this study an algorithm was proposed which had the ability to pick up the arrival of microseismic or acoustic emission events based on deep recurrent neural networks. The arrival identification was performed using two important steps, which included a training phase and a testing phase. The training process was mathematically modelled by deep recurrent neural networks using Long Short-Term Memory architecture. During the testing phase, the learned weights were utilized to identify the arrivals through the microseismic/acoustic emission data sets. The data sets were obtained by rock physics experiments of the acoustic emission. In order to obtain the data sets under different SNRs, this study added random noise to the raw experiments' data sets. The results showed that the outcome of the proposed method was able to attain an above 80 per cent hit-rate at SNR 0 dB, and an approximately 70 per cent hit-rate at SNR -5 dB, with an absolute error in 10 sampling points. These results indicated that the proposed method had high selection precision and robustness.

  5. Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography.

    PubMed

    Lin, Chun-Li; Kuo, Wen-Chuan; Yu, Jin-Jie; Huang, Shao-Fu

    2013-04-01

    CAD/CAM ceramic restorative material is routinely bonded to tooth substrates using adhesive cement. This study investigates micro-crack growth and damage in the ceramic/dentin adhesive interface under fatigue shear testing monitored using the acoustic emission (AE) technique with optical coherence tomography (OCT). Ceramic/dentin adhesive samples were prepared to measure the shear bond strength (SBS) under static load. Fatigue shear testing was performed using a modified ISO14801 method. Loads in the fatigue tests were applied at 80%, 70%, and 60% of the SBS to monitor interface debonding. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 10.61±2.23MPa (mean±standard deviation). The average number of fatigue cycles in which ceramic/dentin interface damage was detected in 80%, 70% and 60% of the SBS were 152, 1962 and 9646, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 60% and 70% fatigue tests. A good correlation was observed between crack location in OCT images and the number of AE signal hits. The AE technique and OCT images employed in this study could potentially be used as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/dentin-bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 4.18MPa passing 10(6) fatigue cyclic. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Development and Application of On-line Monitor for the ZLW-1 Axis Cracks

    NASA Astrophysics Data System (ADS)

    Shi-jun, Yang; Qian-hui, Yang; Jian-guo, Jin

    2018-03-01

    This article mainly introduces a method that uses acoustic emission techniques to achieve on-line monitor for the shaft cracks and crack growth. According to this method, axis crack monitor is produced by acoustic emission techniques. This instrument can apply to all the pressure vessels, pipelines and rotor machines that can bear buckling load. It has the online real-time monitoring, automatic recording, printing, sound and light alarm, collecting crack information function. After a series of tests in both laboratory and field, it shows that this instrument is very versatile and possesses broad prospects of development and application.

  7. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    PubMed

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  8. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    PubMed Central

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms. PMID:22969330

  9. Correlation between average frequency and RA value (rise time/amplitude) for crack classification of reinforced concrete beam using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Noorsuhada, M. N.; Abdul Hakeem, Z.; Soffian Noor, M. S.; Noor Syafeekha, M. S.; Azmi, I.

    2017-12-01

    Health monitoring of structures during their service life become a vital thing as it provides crucial information regarding the performance and condition of the structures. Acoustic emission (AE) is one of the non-destructive techniques (NDTs) that could be used to monitor the performance of the structures. Reinforced concrete (RC) beam associated with AE monitoring was monotonically loaded to failure under three-point loading. Correlation between average frequency and RA value (rise time / amplitude) was computed. The relationship was established to classify the crack types that propagated in the RC beam. The crack was classified as tensile crack and shear crack. It was found that the relationship is well matched with the actual crack pattern that appeared on the beam surface. Hence, this relationship is useful for prediction of the crack occurrence in the beam and its performance can be determined.

  10. Acoustic emission as a screening tool for ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  11. 40 CFR 61.163 - Emission monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission monitoring. 61.163 Section 61.163 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic...

  12. 40 CFR 61.163 - Emission monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Emission monitoring. 61.163 Section 61.163 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic...

  13. Wear detection by means of wavelet-based acoustic emission analysis

    NASA Astrophysics Data System (ADS)

    Baccar, D.; Söffker, D.

    2015-08-01

    Wear detection and monitoring during operation are complex and difficult tasks especially for materials under sliding conditions. Due to the permanent contact and repetitive motion, the material surface remains during tests non-accessible for optical inspection so that attrition of the contact partners cannot be easily detected. This paper introduces the relevant scientific components of reliable and efficient condition monitoring system for online detection and automated classification of wear phenomena by means of acoustic emission (AE) and advanced signal processing approaches. The related experiments were performed using a tribological system consisting of two martensitic plates, sliding against each other. High sensitive piezoelectric transducer was used to provide the continuous measurement of AE signals. The recorded AE signals were analyzed mainly by time-frequency analysis. A feature extraction module using a novel combination of Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were used for the first time. A detailed correlation analysis between complex signal characteristics and the surface damage resulting from contact fatigue was investigated. Three wear process stages were detected and could be distinguished. To obtain quantitative and detailed information about different wear phases, the AE energy was calculated using STFT and decomposed into a suitable number of frequency levels. The individual energy distribution and the cumulative AE energy of each frequency components were analyzed using CWT. Results show that the behavior of individual frequency component changes when the wear state changes. Here, specific frequency ranges are attributed to the different wear states. The study reveals that the application of the STFT-/CWT-based AE analysis is an appropriate approach to distinguish and to interpret the different damage states occurred during sliding contact. Based on this results a new generation of condition monitoring

  14. Spectral Characteristics of Continuous Acoustic Emission (AE) Data from Laboratory Rock Deformation Experiments

    NASA Astrophysics Data System (ADS)

    Flynn, J. William; Goodfellow, Sebastian; Reyes-Montes, Juan; Nasseri, Farzine; Young, R. Paul

    2016-04-01

    Continuous acoustic emission (AE) data recorded during rock deformation tests facilitates the monitoring of fracture initiation and propagation due to applied stress changes. Changes in the frequency and energy content of AE waveforms have been previously observed and were associated with microcrack coalescence and the induction or mobilisation of large fractures which are naturally associated with larger amplitude AE events and lower-frequency components. The shift from high to low dominant frequency components during the late stages of the deformation experiment, as the rate of AE events increases and the sample approaches failure, indicates a transition from the micro-cracking to macro-cracking regime, where large cracks generated result in material failure. The objective of this study is to extract information on the fracturing process from the acoustic records around sample failure, where the fast occurrence of AE events does not allow for identification of individual AE events and phase arrivals. Standard AE event processing techniques are not suitable for extracting this information at these stages. Instead the observed changes in the frequency content of the continuous record can be used to characterise and investigate the fracture process at the stage of microcrack coalescence and sample failure. To analyse and characterise these changes, a detailed non-linear and non-stationary time-frequency analysis of the continuous waveform data is required. Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis (HSA) are two of the techniques used in this paper to analyse the acoustic records which provide a high-resolution temporal frequency distribution of the data. In this paper we present the results from our analysis of continuous AE data recorded during a laboratory triaxial deformation experiment using the combined EMD and HSA method.

  15. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  16. HYDROBS: a long-term autonomous mooring for passive acoustic monitoring

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Royer, J. Y.; Yegikyan, M.

    2017-12-01

    Passive acoustics proves an effective way for monitoring the low-level seismic activity of the ocean floor and low-frequency sounds from the ocean (baleen whales, sea-state, icebergs). Networks of synchronized autonomous hydrophones have thus been commonly deployed in the world ocean to monitor large sections of mid-oceanic ridges. HYDROBS is an improved system that meet two requirements: an easy access to the data collected by the instruments together with long-term deployments - up to 4 consecutive years - reducing the need of large vessels capable of yearly mooring operations in open seas. The system has two components: a data logger, up-to-date but similar to previous systems, and three messengers, releasable on demand to collect the data. The mooring line itself is classical, with an expandable weight at the sea-bottom to maintain the mooring, an acoustic release to free the mooring line for recovery, a line adjustable to the seafloor depth, and an immerged buoy, holding the acquisition system, to maintain the sensors at a constant depth and to bring the mooring line to the surface for its recovery. The data logger is based on a low-power microprocessor, an A/D-32bit convertor sampling at 250Hz, a 10-8 real time clock and SD card storage. Lithium batteries provide 3-4 years of autonomy. Acoustic communications with the surface-ship provide control over all functionalities at deployment and a health bulletin on demand. The 3 shuttles, encapsulated in 13" glass spheres, use the same CPU board and clock as the main station. Data transfer from the data logger to the shuttles is wireless (1Mbit/s digital inductive through water). Data are duplicated once per day on shuttles N and N+1 for redundancy. Prior to their release by acoustic command, the shuttles are synchronized with the master clock. At sea-surface, shuttles (as the main unit) look for GPS time and calculate their clock drift. So, the master clock drift can be monitored over time at every shuttle release

  17. Complex monitoring and alert network for electromagnetic, infrasound, acoustic seismotectonic phenomena

    NASA Astrophysics Data System (ADS)

    -Emilian Toader, Victorin; Moldovan, Iren-Adelina; Constantin, Ionescu

    2014-05-01

    The Romanian seismicity recorded in 2013 three important events: the largest seismic "silence", the shortest sequence of two earthquakes greater than 4.8R in less than 14 days after the "Romanian National Institute for Earth Physics" (NIEP) developed a digital network, and a very high crustal activity in Galati area. We analyze the variations of the telluric currents and local magnetic field, variations of the atmospheric electrostatic field, infrasound, temperature, humidity, wind speed and direction, atmospheric pressure, variations in the earth crust with inclinometers and animal behavior. The general effect is the first high seismic energy discontinuity that could be a precursor factor. Since 1977 Romania did not register any important earthquake that would generate a sense of fear among the population. In parallel with the seismic network NIEP developed a magneto-telluric, bioseismic, VLF and acoustic network. A large frequency spectrum is covered for mechanical vibration, magnetic and electric field with ground and air sensors. Special software was designed for acquisition, analysis and real time alert using internet direct connection, web page, email and SMS. Many examples show the sensitivity of telluric current, infrasound, acoustic records (from air-ground), and the effect of tectonic stress on the magnetic field or ground deformation. The next update of the multidisciplinary monitoring network will include measurement of ionization, radon emission, sky color, solar radiation and extension of infrasound and VL/LF equipment. NOAA Space Weather satellites transmit solar activity magnetic field data, X ray flux, electron, and proton flux information useful for complex analysis.

  18. 4-D imaging of seepage in earthen embankments with time-lapse inversion of self-potential data constrained by acoustic emissions localization

    NASA Astrophysics Data System (ADS)

    Rittgers, J. B.; Revil, A.; Planes, T.; Mooney, M. A.; Koelewijn, A. R.

    2015-02-01

    New methods are required to combine the information contained in the passive electrical and seismic signals to detect, localize and monitor hydromechanical disturbances in porous media. We propose a field experiment showing how passive seismic and electrical data can be combined together to detect a preferential flow path associated with internal erosion in a Earth dam. Continuous passive seismic and electrical (self-potential) monitoring data were recorded during a 7-d full-scale levee (earthen embankment) failure test, conducted in Booneschans, Netherlands in 2012. Spatially coherent acoustic emissions events and the development of a self-potential anomaly, associated with induced concentrated seepage and internal erosion phenomena, were identified and imaged near the downstream toe of the embankment, in an area that subsequently developed a series of concentrated water flows and sand boils, and where liquefaction of the embankment toe eventually developed. We present a new 4-D grid-search algorithm for acoustic emissions localization in both time and space, and the application of the localization results to add spatially varying constraints to time-lapse 3-D modelling of self-potential data in the terms of source current localization. Seismic signal localization results are utilized to build a set of time-invariant yet spatially varying model weights used for the inversion of the self-potential data. Results from the combination of these two passive techniques show results that are more consistent in terms of focused ground water flow with respect to visual observation on the embankment. This approach to geophysical monitoring of earthen embankments provides an improved approach for early detection and imaging of the development of embankment defects associated with concentrated seepage and internal erosion phenomena. The same approach can be used to detect various types of hydromechanical disturbances at larger scales.

  19. Differential responses to acoustic damage and furosemide in auditory brainstem and otoacoustic emission measures

    NASA Astrophysics Data System (ADS)

    Mills, David M.

    2003-02-01

    Characteristics of distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs) were measured in Mongolian gerbil before and after the introduction of two different auditory dysfunctions: (1) acoustic damage with a high-intensity tone, or (2) furosemide intoxication. The goal was to find emission parameters and measures that best differentiated between the two dysfunctions, e.g., at a given ABR threshold elevation. Emission input-output or ``growth'' functions were used (frequencies f1 and f2, f2/f1=1.21) with equal levels, L1=L2, and unequal levels, with L1=L2+20 dB. The best parametric choice was found to be unequal stimulus levels, and the best measure was found to be the change in the emission threshold level, Δx. The emission threshold was defined as the stimulus level required to reach a criterion emission amplitude, in this case -10 dB SPL. (The next best measure was the change in emission amplitude at high stimulus levels, specifically that measured at L1×L2=90×70 dB SPL.) For an ABR threshold shift of 20 dB or more, there was essentially no overlap in the emission threshold measures for the two conditions, sound damage or furosemide. The dividing line between the two distributions increased slowly with the change in ABR threshold, ΔABR, and was given by Δxt=0.6 ΔABR+8 dB. For a given ΔABR, if the shift in emission threshold was more than the calculated dividing line value, Δxt, the auditory dysfunction was due to acoustic damage, if less, it was due to furosemide.

  20. An acoustic sensor for monitoring airflow in pediatric tracheostomy patients.

    PubMed

    Ruscher, Thomas; Wicks Phd, Alexandrina; Muelenaer Md, Andre

    2012-01-01

    Without proper monitoring, patients with artificial airways in the trachea are at high risk for complications or death. Despite routine maintenance of the tube, dislodged or copious mucus can obstruct the airway. Young children ( 3yrs) have difficulty tending to their own tubes and are particularly vulnerable to blockages. They require external respiratory sensors. In a hospital environment, ventilators, end-tidal CO2 monitors, thermistors, and other auxiliary equipment provide sufficient monitoring of respiration. However, outpatient monitoring methods, such as thoracic impedance and pulse oximetry, are indirect and prone to false positives. Desensitization of caregivers to frequent false alarms has been cited in medical literature as a contributing factor in cases of child death. Ultrasonic time-of-flight (TOF) is a technique used in specialized industrial applications to non-invasively measure liquid and gas flow. Two transducers are oriented at a diagonal across a flow channel. Velocity measurement is accomplished by detecting slight variations in transit time of contra-propagating acoustic signals with a directional component parallel to air flow. Due to the symmetry of acoustic pathway between sensors, velocity measurements are immune to partial fouling in the tube from mucus, saliva, and condensation. A first generation proof of concept prototype was constructed to evaluate the ultrasonic TOF technique for medical tracheostomy monitoring. After successful performance, a second generation prototype was designed with a smaller form factor and more advanced electronics. This prototype was tested and found to measure inspired volume with a root-mean-square error < 2% during initial trials.

  1. A novel Bayesian approach to acoustic emission data analysis.

    PubMed

    Agletdinov, E; Pomponi, E; Merson, D; Vinogradov, A

    2016-12-01

    Acoustic emission (AE) technique is a popular tool for materials characterization and non-destructive testing. Originating from the stochastic motion of defects in solids, AE is a random process by nature. The challenging problem arises whenever an attempt is made to identify specific points corresponding to the changes in the trends in the fluctuating AE time series. A general Bayesian framework is proposed for the analysis of AE time series, aiming at automated finding the breakpoints signaling a crossover in the dynamics of underlying AE sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Estimation of Fine and Oversize Particle Ratio in a Heterogeneous Compound with Acoustic Emissions.

    PubMed

    Nsugbe, Ejay; Ruiz-Carcel, Cristobal; Starr, Andrew; Jennions, Ian

    2018-03-13

    The final phase of powder production typically involves a mixing process where all of the particles are combined and agglomerated with a binder to form a single compound. The traditional means of inspecting the physical properties of the final product involves an inspection of the particle sizes using an offline sieving and weighing process. The main downside of this technique, in addition to being an offline-only measurement procedure, is its inability to characterise large agglomerates of powders due to sieve blockage. This work assesses the feasibility of a real-time monitoring approach using a benchtop test rig and a prototype acoustic-based measurement approach to provide information that can be correlated to product quality and provide the opportunity for future process optimisation. Acoustic emission (AE) was chosen as the sensing method due to its low cost, simple setup process, and ease of implementation. The performance of the proposed method was assessed in a series of experiments where the offline quality check results were compared to the AE-based real-time estimations using data acquired from a benchtop powder free flow rig. A designed time domain based signal processing method was used to extract particle size information from the acquired AE signal and the results show that this technique is capable of estimating the required ratio in the washing powder compound with an average absolute error of 6%.

  3. Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions.

    PubMed

    Deeter, Ryan; Abel, Rebekah; Calandruccio, Lauren; Dhar, Sumitrajit

    2009-11-01

    Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2f(1)-f(2) DPOAE was recorded (f(2)/f(1)=1.22, L(1)=55 dB, and L(2)=40 dB) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.

  4. The effect of process parameters on audible acoustic emissions from high-shear granulation.

    PubMed

    Hansuld, Erin M; Briens, Lauren; Sayani, Amyn; McCann, Joe A B

    2013-02-01

    Product quality in high-shear granulation is easily compromised by minor changes in raw material properties or process conditions. It is desired to develop a process analytical technology (PAT) that can monitor the process in real-time and provide feedback for quality control. In this work, the application of audible acoustic emissions (AAEs) as a PAT tool was investigated. A condenser microphone was placed at the top of the air exhaust on a PMA-10 high-shear granulator to collect AAEs for a design of experiment (DOE) varying impeller speed, total binder volume and spray rate. The results showed the 10 Hz total power spectral densities (TPSDs) between 20 and 250 Hz were significantly affected by the changes in process conditions. Impeller speed and spray rate were shown to have statistically significant effects on granulation wetting, and impeller speed and total binder volume were significant in terms of process end-point. The DOE results were confirmed by a multivariate PLS model of the TPSDs. The scores plot showed separation based on impeller speed in the first component and spray rate in the second component. The findings support the use of AAEs to monitor changes in process conditions in real-time and achieve consistent product quality.

  5. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  6. Optimization of real-time acoustical and mechanical monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for high focused ultrasound (HMIFU).

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2013-01-01

    Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95.

  7. Acoustic emission study of deformation behavior of nacre

    NASA Astrophysics Data System (ADS)

    Luo, Shunfei; Luo, Hongyun; Han, Zhiyuan

    2016-02-01

    A study on the acoustic emission (AE) characteristics during deformation of nacre material was performed. We found that intermittent AE events are generated during nacre deformation. These avalanches may be attributed to microfracture events of the aragonite (CaCO3) nano-asperities and bridges during tablet sliding. These events show several critical features, such as the power-law distributions of the avalanche sizes and interval. These results suggest that the underlying fracture dynamics during nacre deformation display a self-organized criticality (SOC). The results also imply that the disorder and long-range correlation between local microfracture events may play important roles in nacre deformation.

  8. AECM-4; Proceedings of the 4th International Symposium on Acoustic Emission from Composite Materials, Seattle, WA, July 27-31, 1992

    NASA Astrophysics Data System (ADS)

    Various papers on AE from composite materials are presented. Among the individual topics addressed are: acoustic analysis of tranverse lamina cracking in CFRP laminates under tensile loading, characterization of fiber failure in graphite-epoxy (G/E) composites, application of AE in the study of microfissure damage to composite used in the aeronautic and space industries, interfacial shear properties and AE behavior of model aluminum and titanium matrix composites, amplitude distribution modelling and ultimate strength prediction of ASTM D-3039 G/E tensile specimens, AE prefailure warning system for composite structural tests, characterization of failure mechanisms in G/E tensile tests specimens using AE data, development of a standard testing procedure to yield an AE vs. strain curve, benchmark exercise on AE measurements from carbon fiber-epoxy composites. Also discussed are: interpretation of optically detected AE signals, acoustic emission monitoring of fracture process of SiC/Al composites under cyclic loading, application of pattern recognition techniques to acousto-ultrasonic testing of Kevlar composite panels, AE for high temperature monitoring of processing of carbon/carbon composite, monitoring the resistance welding of thermoplastic composites through AE, plate wave AE composite materials, determination of the elastic properties of composite materials using simulated AE signals, AE source location in thin plates using cross-correlation, propagation of flexural mode AE signals in Gr/Ep composite plates.

  9. Dual instrument passive acoustic monitoring of belugas in Cook Inlet, Alaska.

    PubMed

    Castellote, Manuel; Small, Robert J; Lammers, Marc O; Jenniges, Justin J; Mondragon, Jeff; Atkinson, Shannon

    2016-05-01

    As part of a long-term research program, Cook Inlet beluga (Delphinapterus leucas) presence was acoustically monitored with two types of acoustic sensors utilized in tandem in moorings deployed year-round: an ecological acoustic recorder (EAR) and a cetacean and porpoise detector (C-POD). The EAR was used primarily to record the calls, whistles, and buzzes produced by belugas and killer whales (Orcinus orca). The C-POD was used to log and classify echolocation clicks from belugas, killer whales, and porpoises. This paper describes mooring packages that maximized the chances of successful long-term data collection in the particularly challenging Cook Inlet environment, and presents an analytical comparison of odontocete detections obtained by the collocated EAR and C-POD instruments from two mooring locations in the upper inlet. Results from this study illustrate a significant improvement in detecting beluga and killer whale presence when the different acoustic signals detected by EARs and C-PODs are considered together. Further, results from concurrent porpoise detections indicating prey competition and feeding interference with beluga, and porpoise displacement due to ice formation are described.

  10. Failure Progress of 3D Reinforced GFRP Laminate during Static Bending, Evaluated by Means of Acoustic Emission and Vibrations Analysis.

    PubMed

    Koziol, Mateusz; Figlus, Tomasz

    2015-12-14

    The work aimed to assess the failure progress in a glass fiber-reinforced polymer laminate with a 3D-woven and (as a comparison) plain-woven reinforcement, during static bending, using acoustic emission signals. The innovative method of the separation of the signal coming from the fiber fracture and the one coming from the matrix fracture with the use of the acoustic event's energy as a criterion was applied. The failure progress during static bending was alternatively analyzed by evaluation of the vibration signal. It gave a possibility to validate the results of the acoustic emission. Acoustic emission, as well as vibration signal analysis proved to be good and effective tools for the registration of failure effects in composite laminates. Vibration analysis is more complicated methodologically, yet it is more precise. The failure progress of the 3D laminate is "safer" and more beneficial than that of the plain-woven laminate. It exhibits less rapid load capacity drops and a higher fiber effort contribution at the moment of the main laminate failure.

  11. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    PubMed

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  12. Acoustic emissions imaging and synchrotron X-ray diffraction analysis of calcite at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Brantut, N.; Schubnel, A.; Brunet, F.; Mueller, H.

    2008-12-01

    We have monitored from in-situ X-ray diffraction coupled to Acoustic Emission (AE) imaging, the behavior of a fine grained synthetic calcite aggregate, at 0.66 GPa and for temperatures ranging from ambient to 1200° C. The powder sample was placed in a boron-epoxy assembly with an 8 mm edge-length and loaded in the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg). AE were recorded using five piezoceramic transducers (5 MHz eigen frequency) glued on each of the five WC anvils (4 side anvils and upper one). Full waveforms were acquired using an eight channel digital oscilloscope and located using the software Insite (ASC Ltd). Beyond 600° C, calcite grains started growing as evidenced by huge changes in the relative intensity of the diffraction lines. This is correlated to a sudden burst of AE which all located within the sample volume. These AE may indicate that stress relaxation, going on as intra-crystalline plasticity mechanisms were activated, released enough acoustic energy to be recorded and located. Although the diffraction data showed that grain growth continued beyond 800° C, the acoustic activity progressively decreased to below the sensitivity of our recording device (i.e. the triggering level). However, at temperature higher than 1000° C, a large number of AE were recorded again ( 2000 events). AE location revealed that the AE front progressed inwards the sample. The complete loss of diffraction signal and the post-mortem recovery of small amounts of CaO suggest that the second AE burst may be related to calcite melting/decarbonation. Perspectives include thorough microstructural analysis of the samples using electron microscopies (SEM and TEM) as well as a statistical and mechanical analysis of the acoustic data.

  13. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  14. Last call: Passive acoustic monitoring shows continued rapid decline of critically endangered vaquita.

    PubMed

    Thomas, Len; Jaramillo-Legorreta, Armando; Cardenas-Hinojosa, Gustavo; Nieto-Garcia, Edwyna; Rojas-Bracho, Lorenzo; Ver Hoef, Jay M; Moore, Jeffrey; Taylor, Barbara; Barlow, Jay; Tregenza, Nicholas

    2017-11-01

    The vaquita is a critically endangered species of porpoise. It produces echolocation clicks, making it a good candidate for passive acoustic monitoring. A systematic grid of sensors has been deployed for 3 months annually since 2011; results from 2016 are reported here. Statistical models (to compensate for non-uniform data loss) show an overall decline in the acoustic detection rate between 2015 and 2016 of 49% (95% credible interval 82% decline to 8% increase), and total decline between 2011 and 2016 of over 90%. Assuming the acoustic detection rate is proportional to population size, approximately 30 vaquita (95% credible interval 8-96) remained in November 2016.

  15. Employment of adaptive learning techniques for the discrimination of acoustic emissions

    NASA Astrophysics Data System (ADS)

    Erkes, J. W.; McDonald, J. F.; Scarton, H. A.; Tam, K. C.; Kraft, R. P.

    1983-11-01

    The following aspects of this study on the discrimination of acoustic emissions (AE) were examined: (1) The analytical development and assessment of digital signal processing techniques for AE signal dereverberation, noise reduction, and source characterization; (2) The modeling and verification of some aspects of key selected techniques through a computer-based simulation; and (3) The study of signal propagation physics and their effect on received signal characteristics for relevant physical situations.

  16. Ultrasonic emissions during ice nucleation and propagation in plant xylem.

    PubMed

    Charrier, Guillaume; Pramsohler, Manuel; Charra-Vaskou, Katline; Saudreau, Marc; Améglio, Thierry; Neuner, Gilbert; Mayr, Stefan

    2015-08-01

    Ultrasonic acoustic emission analysis enables nondestructive monitoring of damage in dehydrating or freezing plant xylem. We studied acoustic emissions (AE) in freezing stems during ice nucleation and propagation, by combining acoustic and infrared thermography techniques and controlling the ice nucleation point. Ultrasonic activity in freezing samples of Picea abies showed two distinct phases: the first on ice nucleation and propagation (up to 50 AE s(-1) ; reversely proportional to the distance to ice nucleation point), and the second (up to 2.5 AE s(-1) ) after dissipation of the exothermal heat. Identical patterns were observed in other conifer and angiosperm species. The complex AE patterns are explained by the low water potential of ice at the ice-liquid interface, which induced numerous and strong signals. Ice propagation velocities were estimated via AE (during the first phase) and infrared thermography. Acoustic activity ceased before the second phase probably because the exothermal heating and the volume expansion of ice caused decreasing tensions. Results indicate cavitation events at the ice front leading to AE. Ultrasonic emission analysis enabled new insights into the complex process of xylem freezing and might be used to monitor ice propagation in natura. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Simultaneous acoustic and dielectric real time curing monitoring of epoxy systems

    NASA Astrophysics Data System (ADS)

    Gkikas, G.; Saganas, Ch.; Grammatikos, S. A.; Aggelis, D. G.; Paipetis, A. S.

    2012-04-01

    The attainment of structural integrity of the reinforcing matrix in composite materials is of primary importance for the final properties of the composite structure. The detailed monitoring of the curing process on the other hand is paramount (i) in defining the optimal conditions for the impregnation of the reinforcement by the matrix (ii) in limiting the effects of the exotherm produced by the polymerization reaction which create unwanted thermal stresses and (iii) in securing optimal behavior in matrix controlled properties, such as off axis or shear properties and in general the durability of the composite. Dielectric curing monitoring is a well known technique for distinguishing between the different stages of the polymerization of a typical epoxy system. The technique successfully predicts the gelation and the vitrification of the epoxy and has been extended for the monitoring of prepregs. Recent work has shown that distinct changes in the properties of the propagated sound in the epoxy which undergoes polymerization is as well directly related to the gelation and vitrification of the resin, as well as to the attainment of the final properties of the resin system. In this work, a typical epoxy is simultaneously monitored using acoustic and dielectric methods. The system is isothermally cured in an oven to avoid effects from the polymerization exotherm. Typical broadband sensors are employed for the acoustic monitoring, while flat interdigital sensors are employed for the dielectric scans. All stages of the polymerization process were successfully monitored and the validity of both methods was cross checked and verified.

  18. 76 FR 18415 - Continuous Emission Monitoring

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 75 Continuous Emission Monitoring CFR Correction In... Sec. 75.11, paragraph (f) is added to read as follows: Sec. 75.11 Specific provisions for monitoring... wood, refuse, or other material in addition to oil or gas shall comply with the monitoring provisions...

  19. Electromagnetic emission memory phenomena related to LiF ionic crystal deformation

    NASA Astrophysics Data System (ADS)

    Mavromatou, C.; Tombras, G. S.; Ninos, D.; Hadjicontis, V.

    2008-04-01

    During the uniaxial compression of LiF ionic monocrystals, acoustic and electromagnetic emissions (EME) are detected. We observed that when the compression is performed in successive loading, unloading cycles and these emissions are being monitored, no new emissions will occur unless the maximum stress of the previous cycle is exceeded, meaning that the material presents memory characteristics. This is observed not only for the acoustic emission (AE), which is the well known Kaiser effect, but for the EME as well. In other words, the material appears to memorize and reveal the previously maximum stress it suffered while being deformed. The importance of an electromagnetic memory feature of a material can be related to various applications in material science, especially when the detection of AE is not feasible or gives false alert. Such cases may very well be earthquakes' predictive indications, monitoring of mines' stability, imminent landslides, etc.

  20. Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region & West Coast Naval Training Range Demonstration of Glider-based Passive Acoustic Monitoring

    DTIC Science & Technology

    2012-09-30

    generalized power-law detection algorithm for humpback whale vocalizations. J. Acous. Soc. Am. 131(4), 2682-2699. Roch, M. A., H. Klinck, S...Heaney (2012b). Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones. J. Acous. Soc. Am...monitoring: Correcting humpback call detections for site-specific and time-dependent environmental characteristics . JASA Express Letters, submitted October, 2012, 5 pgs plus 3 figs.

  1. Acoustic methods to monitor sliver linear density and yarn strength

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    Methods and apparatus are provided for monitoring sliver and yarn characteristics. Transverse waves are generated relative to the sliver or yarn. At least one acoustic sensor is in contact with the sliver or yarn for detecting waves coupled to the sliver or yarn and for generating a signal. The generated signal is processed to identify the predefined characteristics including sliver or yarn linear density. The transverse waves can be generated with a high-powered acoustic transmitter spaced relative to the sliver or yarn with large amplitude pulses having a central frequency in a range between 20 KHz and 40 KHz applied to the transmitter. The transverse waves can be generated by mechanically agitating the sliver or yarn with a tapping member.

  2. Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring

    DTIC Science & Technology

    2016-05-02

    individual animals . 15. SUBJECT TERMS Marine mammal; Passive acoustic monitoring ; Localization; Tracking ; Multiple source ; Sparse array 16. SECURITY...al. 2004; Thode 2005; Nosal 2007] to localize animals in situations where straight-line propagation assumptions made by conventional marine mammal...Objective 1: Inveti for sound speed profiles. hydrophone position and hydrophone timing offset in addition to animal position Almost all marine mammal

  3. Improvements to Passive Acoustic Tracking Methods for Marine Mammal Monitoring

    DTIC Science & Technology

    2016-05-02

    separate and associate calls from individual animals . Marine mammal; Passive acoustic monitoring; Localization; Tracking; Multiple source; Sparse array...position and hydrophone timing offset in addition to animal position Almost all marine mammal tracking methods treat animal position as the only unknown...Workshop on Detection, Classification and Localization (DCL) of Marine Mammals). The animals were expected to be relatively close to the surface

  4. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase.

    PubMed

    Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M; Soares, Alexei S

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals. © 2015 Society for Laboratory Automation and Screening.

  5. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, Daniel L.; Yin, Xingyu; Scalia, Alexander

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were usedmore » to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals.« less

  6. Piezoelectric micromachined acoustic emission sensors for early stage damage detection in structures

    NASA Astrophysics Data System (ADS)

    Kabir, Minoo; Kazari, Hanie; Ozevin, Didem

    2018-03-01

    Acoustic emission (AE) is a passive nondestructive evaluation (NDE) method that relies on the energy release of active flaws. The passive nature of this NDE method requires highly sensitive transducers in addition to low power and lightweight characteristics. With the advancement of micro-electro-mechanical systems (MEMS), acoustic emission (AE) transducers can be developed in low power and miniaturized. In this paper, the AE transducers operating in plate flexural mode driven piezoelectrically known as Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) are presented. The AE PMUTs are manufactured using PiezoMUMPS process by MEMSCAP and tuned to 46 kHz and 200 kHz. The PiezoMUMPs is a 5-mask level SOI (silicon-on-insulator) patterning and etching process followed by deposition of 0.5 micron Aluminum Nitride (AlN) to form piezoelectric layer to form the transducers. The AE transducers are numerically modeled using COMSOL Multiphysics software in order to optimize the performance before manufacturing. The electrometrical characterization experiments are presented. The efficiency of the proposed AE PMUTs compared to the conventional AE transducers in terms of power consumption, weight and sensitivity is presented.

  7. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  8. 40 CFR 75.13 - Specific provisions for monitoring CO2 emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Specific provisions for monitoring CO2... monitoring CO2 emissions. (a) CO 2 continuous emission monitoring system. If the owner or operator chooses to... operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow monitoring system...

  9. 40 CFR 75.13 - Specific provisions for monitoring CO2 emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Specific provisions for monitoring CO2... monitoring CO2 emissions. (a) CO 2 continuous emission monitoring system. If the owner or operator chooses to... operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow monitoring system...

  10. 40 CFR 75.13 - Specific provisions for monitoring CO2 emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring CO2... monitoring CO2 emissions. (a) CO 2 continuous emission monitoring system. If the owner or operator chooses to... operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow monitoring system...

  11. Evaluation of Acoustic Emission NDE of Kevlar Composite Over Wrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2008-01-01

    Pressurization and failure tests of small Kevlar/epoxy COPV bottles were conducted during 2006 and 2007 by Texas Research Institute Austin, Inc., at TRI facilities. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. Results of some of the tests indicate a possibility that AE can be used to track the stress-rupture degradation of COPV vessels.

  12. MONITORING OF INCINERATOR EMISSIONS

    EPA Science Inventory

    Monitoring of Incinerator Emissions is a chapter to be included in a book entitled Hazardous Waste Incineration, edited by A. Sarofim and D. Pershing, and published by John Wiley and Sons. he chapter describes stack sampling and analysis procedures in use on hazardous waste incin...

  13. Cyclic Crack Growth Testing of an A.O. Smith Multilayer Pressure Vessel with Modal Acoustic Emission Monitoring and Data Assessment

    NASA Technical Reports Server (NTRS)

    Ziola, Steven M.

    2014-01-01

    Digital Wave Corp. (DWC) was retained by Jacobs ATOM at NASA Ames Research Center to perform cyclic pressure crack growth sensitivity testing on a multilayer pressure vessel instrumented with DWC's Modal Acoustic Emission (MAE) system, with captured wave analysis to be performed using DWCs WaveExplorerTM software, which has been used at Ames since 2001. The objectives were to document the ability to detect and characterize a known growing crack in such a vessel using only MAE, to establish the sensitivity of the equipment vs. crack size and / or relevance in a realistic field environment, and to obtain fracture toughness materials properties in follow up testing to enable accurate crack growth analysis. This report contains the results of the testing.

  14. Evaluation of Redoubt Volcano's sulfur dioxide emissions by the Ozone Monitoring Instrument

    USGS Publications Warehouse

    Lopez, Taryn; Carn, Simon A.; Werner, Cynthia A.; Fee, David; Kelly, Peter; Doukas, Michael P.; Pfeffer, Melissa; Webley, Peter; Cahill, Catherine F.; Schneider, David

    2013-01-01

    The 2009 eruption of Redoubt Volcano, Alaska, provided a rare opportunity to compare satellite measurements of sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) with airborne SO2 measurements by the Alaska Volcano Observatory (AVO). Herein we: (1) compare OMI and airborne SO2 column density values for Redoubt's tropospheric plume, (2) calculate daily SO2 masses from Mount Redoubt for the first three months of the eruption, (3) develop simple methods to convert daily measured SO2 masses into emission rates to allow satellite data to be directly integrated with the airborne SO2 emissions dataset, (4) calculate cumulative SO2 emissions from the eruption, and (5) evaluate OMI as a monitoring tool for high-latitude degassing volcanoes. A linear correlation (R2 ~ 0.75) is observed between OMI and airborne SO2 column densities. OMI daily SO2 masses for the sample period ranged from ~ 60.1 kt on 24 March to below detection limit, with an average daily SO2 mass of ~ 6.7 kt. The highest SO2 emissions were observed during the initial part of the explosive phase and the emissions exhibited an overall decreasing trend with time. OMI SO2 emission rates were derived using three methods and compared to airborne measurements. This comparison yields a linear correlation (R2 ~ 0.82) with OMI-derived emission rates consistently lower than airborne measurements. The comparison results suggest that OMI's detection limit for high latitude, springtime conditions varies from ~ 2000 to 4000 t/d. Cumulative SO2 masses calculated from daily OMI data for the sample period are estimated to range from 542 to 615 kt, with approximately half of this SO2 produced during the explosive phase of the eruption. These cumulative masses are similar in magnitude to those estimated for the 1989–90 Redoubt eruption. Strong correlations between daily OMI SO2 mass and both tephra mass and acoustic energy during the explosive phase of the eruption suggest that OMI data may

  15. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  16. Initial Evaluation of Acoustic Emission SHM of PRSEUS Multi-bay Box Tests

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2016-01-01

    A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) HWB Multi-Bay Test Article were conducted during the second quarter of 2015 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This report documents the Acoustic Emission (AE) data collected during those tests along with an initial analysis of the data. A more detailed analysis will be presented in future publications.

  17. Damage characterization on human femur bone by means of ultrasonics and acoustic emission

    NASA Astrophysics Data System (ADS)

    Strantza, M.; Polyzos, D.; Louis, O.; Boulpaep, F.; Van Hemelrijck, D.; Aggelis, D. G.

    2015-07-01

    Human bone tissue is characterized as a material with high brittleness. Due to this nature, visible signs of cracking are not easy to be detected before final failure. The main objective of this work is to investigate if the acoustic emission (AE) technique can offer valuable insight to the fracture process of human femur specimens as in other engineering materials characterization. This study describes the AE activity during fracture of whole femur bones under flexural load. Before fracture, broadband AE sensors were used in order to measure parameters like wave velocity dispersion and attenuation. Waveform parameters like the duration, rise time and average frequency, were also examined relatively to the propagation distance as a preparation for the AE monitoring during fracture. After the ultrasonic study, the samples were partly cast in concrete and fixed as cantilevers. A point load was applied on the femur head, which due to the test geometry resulted in a combination of two different patterns of fracture, bending and torsion. Two AE broadband sensors were placed in different points of the sample, one near the fixing end and the other near the femur head. Preliminary analysis shows that parameters like the number of acquired AE signals and their amplitude are well correlated with the load history. Furthermore, the parameters of rise time and frequency can differentiate the two fracture patterns. Additionally, AE allows the detection of the load at the onset of fracture from the micro-cracking events that occur at the early loading stages, allowing monitoring of the whole fracture process. Parameters that have been used extensively for monitoring and characterization of fracture modes of engineering materials seem to poses characterization power in the case of bone tissue monitoring as well.

  18. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.

    PubMed

    Johnston, Keith; Tapia-Siles, Cecilia; Gerold, Bjoern; Postema, Michiel; Cochran, Sandy; Cuschieri, Alfred; Prentice, Paul

    2014-12-01

    Single clouds of cavitation bubbles, driven by 254kHz focused ultrasound at pressure amplitudes in the range of 0.48-1.22MPa, have been observed via high-speed shadowgraphic imaging at 1×10(6) frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48MPa generated shock-waves with an average period of 7.9±0.5μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8±0.3, 15.8±0.3, 19.8±0.2μs, at pressure amplitudes of 0.64, 0.92 and 1.22MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r=0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Acoustic Emission Analysis of Shuttle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Lane, John; Hooker, Jeffery; Immer, Christopher; Walker, James

    2004-01-01

    Acoustic emission (AE) signals generated from projectile impacts on reinforced and advanced carbon/carbon (RCC and ACC) panels, fired from a compressed-gas gun, identify the type and severity of damage sustained by the target. This type of testing is vital in providing the required "return to flight" (RTF) data needed to ensure continued and safe operation of NASA's Space Shuttle fleet. The gas gun at Kennedy Space Center is capable of propelling 12-inch by 3-inch cylinders of external tank (ET) foam at exit velocities exceeding 1,000 feet per second. Conventional AE analysis techniques require time domain processing of impulse data, along with amplitude distribution analysis. It is well known that identical source excitations can produce a wide range of AE signals amplitudes. In order to satisfy RTF goals, it is necessary to identify impact energy levels above and below damage thresholds. Spectral analysis techniques involving joint time frequency analysis (JTFA) are used to reinforce time domain AE analysis. JTFA analysis of the AE signals consists of short-time Fourier transforms (STFT) and the Huang-Hilbert transform (HHT). The HHT provides a very good measure of the instantaneous frequency of impulse events dominated by a single component. Identifying failure modes and cracking of fibers from flexural and/or extensional mode acoustic signals will help support in-flight as well as postflight impact analysis.

  20. Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xiao, Gui-yong; Chen, Lu-bin; Lu, Yu-peng

    2014-12-01

    Acoustic emission (AE) monitored tensile tests were performed on 35CrMnSiA steel subjected to different heat treatments. The results showed that quenching and partitioning (Q-P) heat treatments enhanced the combined mechanical properties of high strength and high ductility for commercial 35CrMnSiA steel, as compared with traditional heat treatments such as quenching and tempering (Q-T) and austempering (AT). AE signals with high amplitude and high energy were produced during the tensile deformation of 35CrMnSiA steel with retained austenite (RA) in the microstructure (obtained via Q-P and AT heat treatments) due to an austenite-to-martensite phase transformation. Moreover, additional AE signals would not appear again and the mechanical properties would degenerate to a lower level once RA degenerated by tempering for the Q-P treated steel.

  1. Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan

    2017-11-02

    The goals of the project are to leverage laboratory scientific strength in physical acoustics for critical international safeguards applications; create hardware demonstration capability for noninvasive, near real time, and low cost process monitor to capture future technology development programs; and measure physical property data to support method applicability.

  2. Comparison of acoustic recorders and field observers for monitoring tundra bird communities

    USGS Publications Warehouse

    Vold, Skyler T.; Handel, Colleen M.; McNew, Lance B.

    2017-01-01

    Acoustic recorders can be useful for studying bird populations but their efficiency and accuracy should be assessed in pertinent ecological settings before use. We investigated the utility of an acoustic recorder for monitoring abundance of tundra‐breeding birds relative to point‐count surveys in northwestern Alaska, USA, during 2014. Our objectives were to 1) compare numbers of birds and species detected by a field observer with those detected simultaneously by an acoustic recorder; 2) evaluate how detection probabilities for the observer and acoustic recorder varied with distance of birds from the survey point; and 3) evaluate whether avian guild‐specific detection rates differed between field observers and acoustic recorders relative to habitat. Compared with the observer, the acoustic recorder detected fewer species (βMethod = −0.39 ± 0.07) and fewer individuals (βMethod = −0.56 ± 0.05) in total and for 6 avian guilds. Discrepancies were attributed primarily to differences in effective area surveyed (91% missed by device were >100 m), but also to nonvocal birds being missed by the recorder (55% missed <100 m were silent). The observer missed a few individuals and one species detected by the device. Models indicated that relative abundance of various avian guilds was associated primarily with maximum shrub height and less so with shrub cover and visual obstruction. The absence of a significant interaction between survey method (observer vs. acoustic recorder) and any habitat characteristic suggests that traditional point counts and acoustic recorders would yield similar inferences about ecological relationships in tundra ecosystems. Pairing of the 2 methods could increase survey efficiency and allow for validation and archival of survey results.

  3. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods.

    PubMed

    Strantza, Maria; Aggelis, Dimitrios G; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-10-21

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

  4. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Qualification Monitoring § 60.2939 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon... carbon monoxide. (b) You must install, evaluate, and operate each continuous emission monitoring system...

  5. 40 CFR 60.2939 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Qualification Monitoring § 60.2939 What continuous emission monitoring systems must I install? (a) You must install, calibrate, maintain, and operate continuous emission monitoring systems for carbon... carbon monoxide. (b) You must install, evaluate, and operate each continuous emission monitoring system...

  6. Rayleigh wave acoustic emission during crack propagation in steel

    NASA Astrophysics Data System (ADS)

    Horne, Michael R.

    2003-07-01

    An investigation was conducted of the existence of seismic surface pulses (SSP) on crack faces in near-failure fatigue. An SSP has components of various modes of wave propagation. The component with the largest amplitude is a Rayleigh surface wave pulse. The possibility that these surface modes have much higher amplitudes than bulk modes of acoustic emission (AE) was illustrated by an idealized thought experiment relating an SSP on a half-space to the response of crack faces to crack extension. A number of aspects of AE monitoring in finite objects were investigated. Attributes of surface wave propagation on the edge of a specimen were found to be easier to monitor than other modes of wave propagation. Wavelet analysis was used to compare the characteristics of brittle AE with other sources. A new testing paradigm was developed to reduce interference from secondary sources of AE and enhance the investigation of AE from critical crack behavior. Unique specimen design features were developed, data acquisition features sought and validated, a dead weight load frame was modified, and data analysis procedures were developed. Criteria based on velocity, frequency content, amplitude and shape were devised to determine if an AE event is an SSP. The tests were designed to mimic load conditions on structures such as bridges and hence investigate the difference between AE generated in field conditions and that of typical laboratory conditions. Varieties of steel, from very ductile to very brittle, were tested. It was concluded that plastic zone formation, considered a secondary source of AE, was found not to interfere with the SSP activity. The SSP was found experimentally to have 2-3 times the amplitude of the bulk wave AE. The lack of sufficient AE did not allow for determination of conclusive changes in the AE as the specimens approached failure. However, it was found that brittle crack extension in fatigue and ductile failure can produce wave propagation resembling the

  7. Rayleigh wave acoustic emission during crack propagation in steel

    NASA Astrophysics Data System (ADS)

    Horne, Michael R.

    An investigation was conducted of the existence of seismic surface pulses (SSP) on crack faces in near-failure fatigue. An SSP has components of various modes of wave propagation. The component with the largest amplitude is a Rayleigh surface wave pulse. The possibility that these surface modes have much higher amplitudes than bulk modes of acoustic emission (AE) was illustrated by an idealized thought experiment relating an SSP on a half-space to the response of crack faces to crack extension. A number of aspects of AE monitoring in finite objects were investigated. Attributes of surface wave propagation on the edge of a specimen were found to be easier to monitor than other modes of wave propagation. Wavelet analysis was used to compare the characteristics of brittle AE with other sources. A new testing paradigm was developed to reduce interference from secondary sources of AE and enhance the investigation of AE from critical crack behavior. Unique specimen design features were developed, data acquisition features sought and validated, a dead weight load frame was modified, and data analysis procedures were developed. Criteria based on velocity, frequency content, amplitude and shape were devised to determine if an AE event is an SSP. The tests were designed to mimic load conditions on structures such as bridges and hence investigate the difference between AE generated in field conditions and that of typical laboratory conditions. Varieties of steel, from very ductile to very brittle, were tested. It was concluded that plastic zone formation, considered a secondary source of AE, was found not to interfere with the SSP activity. The SSP was found experimentally to have 2-3 times the amplitude of the bulk wave AE. The lack of sufficient AE did not allow for determination of conclusive changes in the AE as the specimens approached failure. However, it was found that brittle crack extension in fatigue and ductile failure can produce wave propagation resembling the

  8. Application of acoustic emission on the characterization of fracture in textile reinforced cement laminates.

    PubMed

    Blom, J; Wastiels, J; Aggelis, D G

    2014-01-01

    This work studies the acoustic emission (AE) behavior of textile reinforced cementitious (TRC) composites under flexural loading. The main objective is to link specific AE parameters to the fracture mechanisms that are successively dominating the failure of this laminated material. At relatively low load, fracture is initiated by matrix cracking while, at the moment of peak load and thereafter, the fiber pull-out stage is reached. Stress modeling of the material under bending reveals that initiation of shear phenomena can also be activated depending on the shape (curvature) of the plate specimens. Preliminary results show that AE waveform parameters like frequency and energy are changing during loading, following the shift of fracturing mechanisms. Additionally, the AE behavior of specimens with different curvature is very indicative of the stress mode confirming the results of modeling. Moreover, AE source location shows the extent of the fracture process zone and its development in relation to the load. It is seen that AE monitoring yields valuable real time information on the fracture of the material and at the same time supplies valuable feedback to the stress modeling.

  9. 40 CFR 62.15205 - What minimum amount of monitoring data must I collect with my continuous emission monitoring...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must I collect with my continuous emission monitoring systems and is this requirement enforceable? 62... with my continuous emission monitoring systems and is this requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure the...

  10. 40 CFR 62.15205 - What minimum amount of monitoring data must I collect with my continuous emission monitoring...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must I collect with my continuous emission monitoring systems and is this requirement enforceable? 62... with my continuous emission monitoring systems and is this requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure the...

  11. Acoustic-sensor-based detection of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Foote, Peter; Martin, Tony; Read, Ian

    2004-03-01

    Acoustic emission detection is a well-established method of locating and monitoring crack development in metal structures. The technique has been adapted to test facilities for non-destructive testing applications. Deployment as an operational or on-line automated damage detection technology in vehicles is posing greater challenges. A clear requirement of potential end-users of such systems is a level of automation capable of delivering low-level diagnosis information. The output from the system is in the form of "go", "no-go" indications of structural integrity or immediate maintenance actions. This level of automation requires significant data reduction and processing. This paper describes recent trials of acoustic emission detection technology for the diagnosis of damage in composite aerospace structures. The technology comprises low profile detection sensors using piezo electric wafers encapsulated in polymer film ad optical sensors. Sensors are bonded to the structure"s surface and enable acoustic events from the loaded structure to be located by triangulation. Instrumentation has been enveloped to capture and parameterise the sensor data in a form suitable for low-bandwidth storage and transmission.

  12. Helium gas purity monitor based on low frequency acoustic resonance

    NASA Astrophysics Data System (ADS)

    Kasthurirengan, S.; Jacob, S.; Karunanithi, R.; Karthikeyan, A.

    1996-05-01

    Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type are commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.

  13. Analysis on accuracy improvement of rotor-stator rubbing localization based on acoustic emission beamforming method.

    PubMed

    He, Tian; Xiao, Denghong; Pan, Qiang; Liu, Xiandong; Shan, Yingchun

    2014-01-01

    This paper attempts to introduce an improved acoustic emission (AE) beamforming method to localize rotor-stator rubbing fault in rotating machinery. To investigate the propagation characteristics of acoustic emission signals in casing shell plate of rotating machinery, the plate wave theory is used in a thin plate. A simulation is conducted and its result shows the localization accuracy of beamforming depends on multi-mode, dispersion, velocity and array dimension. In order to reduce the effect of propagation characteristics on the source localization, an AE signal pre-process method is introduced by combining plate wave theory and wavelet packet transform. And the revised localization velocity to reduce effect of array size is presented. The accuracy of rubbing localization based on beamforming and the improved method of present paper are compared by the rubbing test carried on a test table of rotating machinery. The results indicate that the improved method can localize rub fault effectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Testing of containers made of glass-fiber reinforced plastic with the aid of acoustic emission analysis

    NASA Technical Reports Server (NTRS)

    Wolitz, K.; Brockmann, W.; Fischer, T.

    1979-01-01

    Acoustic emission analysis as a quasi-nondestructive test method makes it possible to differentiate clearly, in judging the total behavior of fiber-reinforced plastic composites, between critical failure modes (in the case of unidirectional composites fiber fractures) and non-critical failure modes (delamination processes or matrix fractures). A particular advantage is that, for varying pressure demands on the composites, the emitted acoustic pulses can be analyzed with regard to their amplitude distribution. In addition, definite indications as to how the damages occurred can be obtained from the time curves of the emitted acoustic pulses as well as from the particular frequency spectrum. Distinct analogies can be drawn between the various analytical methods with respect to whether the failure modes can be classified as critical or non-critical.

  15. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emission (AE) tests have been conducted on small-diameter Kevlar 49/epoxy pressure vessels subjected to long-term sustained load-to-failure tests. Single-cycle burst tests were used as a basis for determining the test pressure in the sustained-loading tests. AE data from two vessel locations were compared. The data suggest that AE from vessel wall-mounted transducers is quite different for identical vessels subjected to the same pressure loading. AE from boss-mounted transducers yielded relatively consistent values. These values were not a function of time for vessel failure. The development of an AE test procedure for predicting the residual service life or integrity of composite vessels is discussed.

  16. 40 CFR 60.373 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Monitoring of emissions and operations. 60.373 Section 60.373 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...-Acid Battery Manufacturing Plants § 60.373 Monitoring of emissions and operations. The owner or...

  17. Acoustic Emission of Large PRSEUS Structures (Pultruded Rod Stitched Efficient Unitized Structure)

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Juarez, Peter D.

    2016-01-01

    In the role of structural health monitoring (SHM), Acoustic Emission (AE) analysis is being investigated as an effective method for tracking damage development in large composite structures under load. Structures made using Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) for damage tolerant, light, and economical airframe construction are being pursued by The Boeing Company and NASA under the Environmentally Responsible Aircraft initiative (ERA). The failure tests of two PRSEUS substructures based on the Boeing Hybrid Wing Body fuselage concept were conducted during third quarter 2011 and second quarter 2015. One fundamental concern of these tests was determining the effectiveness of the stitched integral stiffeners to inhibit damage progression. By design, severe degradation of load carrying capability should not occur prior to Design Ultimate Load (DUL). While minor damage prior to DUL was anticipated, the integral stitching should not fail since this would allow a stiffener-skin delamination to progress rapidly and alter the transfer of load into the stiffeners. In addition, the stiffeners should not fracture because they are fundamental to structural integrity. Getting the best information from each AE sensor is a primary consideration because a sparse network of sensors is implemented. Sensitivity to stiffener-contiguous degradation is supported by sensors near the stiffeners, which increases the coverage per sensor via AE waveguide actions. Some sensors are located near potentially critical areas or "critical zones" as identified by numerical analyses. The approach is compared with the damage progression monitored by other techniques (e.g. ultrasonic C-scan).

  18. Accurate Damage Location in Complex Composite Structures and Industrial Environments using Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Eaton, M.; Pearson, M.; Lee, W.; Pullin, R.

    2015-07-01

    The ability to accurately locate damage in any given structure is a highly desirable attribute for an effective structural health monitoring system and could help to reduce operating costs and improve safety. This becomes a far greater challenge in complex geometries and materials, such as modern composite airframes. The poor translation of promising laboratory based SHM demonstrators to industrial environments forms a barrier to commercial up take of technology. The acoustic emission (AE) technique is a passive NDT method that detects elastic stress waves released by the growth of damage. It offers very sensitive damage detection, using a sparse array of sensors to detect and globally locate damage within a structure. However its application to complex structures commonly yields poor accuracy due to anisotropic wave propagation and the interruption of wave propagation by structural features such as holes and thickness changes. This work adopts an empirical mapping technique for AE location, known as Delta T Mapping, which uses experimental training data to account for such structural complexities. The technique is applied to a complex geometry composite aerospace structure undergoing certification testing. The component consists of a carbon fibre composite tube with varying wall thickness and multiple holes, that was loaded under bending. The damage location was validated using X-ray CT scanning and the Delta T Mapping technique was shown to improve location accuracy when compared with commercial algorithms. The onset and progression of damage were monitored throughout the test and used to inform future design iterations.

  19. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  20. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  1. 40 CFR 63.7747 - How do I apply for alternative monitoring requirements for a continuous emissions monitoring system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring requirements for a continuous emissions monitoring system? 63.7747 Section 63.7747 Protection of... apply for alternative monitoring requirements for a continuous emissions monitoring system? (a) You may... prevention technique, a description of the continuous monitoring system or method including appropriate...

  2. 40 CFR 63.7747 - How do I apply for alternative monitoring requirements for a continuous emissions monitoring system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... monitoring requirements for a continuous emissions monitoring system? 63.7747 Section 63.7747 Protection of... apply for alternative monitoring requirements for a continuous emissions monitoring system? (a) You may... prevention technique, a description of the continuous monitoring system or method including appropriate...

  3. 40 CFR 75.13 - Specific provisions for monitoring CO 2 emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the general operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow... specified in §§ 75.11(a) through (e) or § 75.16, except that the phrase “CO2 continuous emission monitoring system” shall apply rather than “SO2 continuous emission monitoring system,” the phrase “CO2...

  4. 40 CFR 75.13 - Specific provisions for monitoring CO 2 emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the general operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow... specified in §§ 75.11(a) through (e) or § 75.16, except that the phrase “CO2 continuous emission monitoring system” shall apply rather than “SO2 continuous emission monitoring system,” the phrase “CO2...

  5. Design, characterization, and experimental use of the second generation MEMS acoustic emission device

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2005-05-01

    We describe the design, fabrication, testing and application (in structural experiments) of our 2004 (second generation) MEMS device, designed for acoustic emission sensing based upon experiments with our 2002 (first generation) device. Both devices feature a suite of resonant-type transducers in the frequency range between 100 kHz and 1 MHz. The 2002 device was designed to operate in an evacuated housing because of high squeeze film damping, as confirmed in our earlier experiments. In additional studies involving the 2002 device, experimental simulation of acoustic emissions in a steel plate, using pencil lead break or ball impact loading, showed that the transducers in the frequency range of 100 kHz-500 kHz presented clearer output signals than the transducers with frequencies higher than 500 kHz. Using the knowledge gained from the 2002 device, we designed and fabricated our second generation device in 2004 using the multi-user polysilicon surface micromachining (MUMPs) process. The 2004 device has 7 independent capacitive type transducers, compared to 18 independent transducers in the 2002 device, including 6 piston type transducers in the frequency range of 100 kHz to 500 kHz and 1 piston type transducer at 1 MHz to capture high frequency information. Piston type transducers developed in our research have two uncoupled modes so that twofold information can be acquired from a single transducer. In addition, the piston shape helps to reduce residual stress effect of surface micromachining process. The center to center distance between etch holes in the vibrating plate was reduced from 30 μm to 13 μm, in order to reduce squeeze film damping. As a result, the Q factor under atmospheric pressure for the 100 kHz transducer was increased to 2.37 from 0.18, and therefore the vacuum housing has been eliminated from the 2004 device. Sensitivities of transducers were also increased, by enlarging transducer area, in order to capture significant small amplitude acoustic

  6. The Sacred Mountain of Varallo in Italy: seismic risk assessment by acoustic emission and structural numerical models.

    PubMed

    Carpinteri, Alberto; Lacidogna, Giuseppe; Invernizzi, Stefano; Accornero, Federico

    2013-01-01

    We examine an application of Acoustic Emission (AE) technique for a probabilistic analysis in time and space of earthquakes, in order to preserve the valuable Italian Renaissance Architectural Complex named "The Sacred Mountain of Varallo." Among the forty-five chapels of the Renaissance Complex, the structure of the Chapel XVII is of particular concern due to its uncertain structural condition and due to the level of stress caused by the regional seismicity. Therefore, lifetime assessment, taking into account the evolution of damage phenomena, is necessary to preserve the reliability and safety of this masterpiece of cultural heritage. A continuous AE monitoring was performed to assess the structural behavior of the Chapel. During the monitoring period, a correlation between peaks of AE activity in the masonry of the "Sacred Mountain of Varallo" and regional seismicity was found. Although the two phenomena take place on very different scales, the AE in materials and the earthquakes in Earth's crust, belong to the same class of invariance. In addition, an accurate finite element model, performed with DIANA finite element code, is presented to describe the dynamic behavior of Chapel XVII structure, confirming visual and instrumental inspections of regional seismic effects.

  7. Stochastic dislocation kinetics and fractal structures in deforming metals probed by acoustic emission and surface topography measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradov, A.; Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490; Yasnikov, I. S.

    2014-06-21

    We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a commonmore » platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.« less

  8. Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload

    NASA Technical Reports Server (NTRS)

    Welsh, David; Smith, Holly; Wang, Shuo

    2010-01-01

    Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.

  9. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Specific provisions for monitoring NOX...

  10. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Specific provisions for monitoring NOX...

  11. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Specific provisions for monitoring NOX...

  12. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Specific provisions for monitoring NOX...

  13. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring NOX...

  14. Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring.

    PubMed

    Chen, Da; Song, Shuren; Ma, Jilong; Zhang, Zhen; Wang, Peng; Liu, Weihui; Guo, Qiuquan

    2017-05-15

    Monitoring blood coagulation is an important issue in the surgeries and the treatment of cardiovascular diseases. In this work, we reported a novel strategy for the blood coagulation monitoring based on a micro-electromechanical film bulk acoustic resonator. The resonator was excited by a lateral electric field and operated under the shear mode with a frequency of 1.9GHz. According to the apparent step-ladder curves of the frequency response to the change of blood viscoelasticity, the coagulation time (prothrombin time) and the coagulation kinetics were measured with the sample consumption of only 1μl. The procoagulant activity of thromboplastin and the anticoagulant effect of heparin on the blood coagulation process were illustrated exemplarily. The measured prothrombin times showed a good linear correlation with R 2 =0.99969 and a consistency with the coefficient of variation less than 5% compared with the commercial coagulometer. The proposed film bulk acoustic sensor, which has the advantages of small size, light weight, low cost, simple operation and little sample consumption, is a promising device for miniaturized, online and automated analytical system for routine diagnostics of hemostatic status and personal health monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Toward a probabilistic acoustic emission source location algorithm: A Bayesian approach

    NASA Astrophysics Data System (ADS)

    Schumacher, Thomas; Straub, Daniel; Higgins, Christopher

    2012-09-01

    Acoustic emissions (AE) are stress waves initiated by sudden strain releases within a solid body. These can be caused by internal mechanisms such as crack opening or propagation, crushing, or rubbing of crack surfaces. One application for the AE technique in the field of Structural Engineering is Structural Health Monitoring (SHM). With piezo-electric sensors mounted to the surface of the structure, stress waves can be detected, recorded, and stored for later analysis. An important step in quantitative AE analysis is the estimation of the stress wave source locations. Commonly, source location results are presented in a rather deterministic manner as spatial and temporal points, excluding information about uncertainties and errors. Due to variability in the material properties and uncertainty in the mathematical model, measures of uncertainty are needed beyond best-fit point solutions for source locations. This paper introduces a novel holistic framework for the development of a probabilistic source location algorithm. Bayesian analysis methods with Markov Chain Monte Carlo (MCMC) simulation are employed where all source location parameters are described with posterior probability density functions (PDFs). The proposed methodology is applied to an example employing data collected from a realistic section of a reinforced concrete bridge column. The selected approach is general and has the advantage that it can be extended and refined efficiently. Results are discussed and future steps to improve the algorithm are suggested.

  16. Acoustic Monitoring of the Arctic Ice Cap

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.

    2012-12-01

    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two

  17. 40 CFR 75.11 - Specific provisions for monitoring SO2 emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Specific provisions for monitoring SO2... PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.11 Specific provisions for monitoring SO2 emissions. (a) Coal-fired units. The owner or operator shall meet the general operating...

  18. 40 CFR 75.11 - Specific provisions for monitoring SO2 emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring SO2... PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.11 Specific provisions for monitoring SO2 emissions. (a) Coal-fired units. The owner or operator shall meet the general operating...

  19. 40 CFR 75.11 - Specific provisions for monitoring SO2 emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Specific provisions for monitoring SO2... PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.11 Specific provisions for monitoring SO2 emissions. (a) Coal-fired units. The owner or operator shall meet the general operating...

  20. Acoustic emission testing of in-service conventionally reinforced concrete deck girder superstructures on highway bridges : final report.

    DOT National Transportation Integrated Search

    2008-09-01

    Three reports were produced from research sponsored by the Oregon Department of Transportation on acoustic emission (AE). The first describes the evaluation of AE techniques applied to two reinforced concrete (RC) bridge girders, which were loaded to...