Science.gov

Sample records for acoustic energy density

  1. On the relationship between acoustic energy density flux near the jet and far field acoustic intensity

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    1973-01-01

    The relationship between the distribution of the outflow of acoustic energy over the jet boundary and the far-field directivity and intensity distribution is established by measurement and analysis. The numerical and experimental procedures involved have been checked out by using a known source. The results indicate that the acoustic power output per unit length of the jet, in the region from which the sound emanates, peaks at approximately 9 diameters downstream. The acoustic emission for a jet Strouhal number of about 0.3 exceeds the emission for all other Strouhal numbers nearly everywhere along the measurement plane. However, the far-field peak intensity distribution obtained from the contribution of each station was found to depend on the spatial extent of the region where sound emanates from the jet, which, in turn, depends more on the far-field angle than on the Strouhal number. The implications of these results for sound suppression techniques are discussed.

  2. Generalized acoustic energy density based active noise control in single frequency diffuse sound fields.

    PubMed

    Xu, Buye; Sommerfeldt, Scott D

    2014-09-01

    In a diffuse sound field, prior research has established that a secondary source can theoretically achieve perfect cancellation at an error microphone in the far field of the secondary source. However, the sound pressure level is generally only reduced in a small zone around the error sensor, and at a distance half of a wavelength away from the error sensor, the averaged sound pressure level will be increased by more than 10 dB. Recently an acoustic energy quantity, referred to as the generalized acoustic energy density (GED), has been introduced. The GED is obtained by using a weighting factor in the formulation of total acoustic energy density. Different values of the weighting factor can be chosen for different applications. When minimizing the GED at the error sensor, one can adjust the weighting factor to increase the spatial extent of the "quiet zone" and to achieve a desired balance between the degree of attenuation in the quiet zone and the total energy added into the sound field. PMID:25190386

  3. Experimental analysis of the relationship between reverberant acoustic intensity and energy density inside long rooms.

    PubMed

    Visentin, Chiara; Prodi, Nicola; Valeau, Vincent; Picaut, Judicaël

    2015-07-01

    In this paper, the validity of the Fick's law of diffusion in room acoustics is experimentally investigated inside long rooms. The room-acoustics diffusion model relies on Fick's law stating a proportionality relationship between sound intensity and energy density gradient inside a room through a constant diffusion coefficient. This relationship is investigated in the stationary state for the particular case of long rooms with different amounts of boundary scattering. Measurements were performed inside a 1:16 scale model, using a p-u sound intensity probe (calibrated with digital filters) to collect concurrent data in terms of sound pressure and axial velocity components. Then for each receiver position, sound intensity and energy density gradient were derived. The results show that inside long rooms the diffusion coefficient is not a constant but increases with the distance from the source with a slope depending on the scattering coefficient of the walls. Numerical simulations of the enclosures were performed too by using a sound particle-tracing code; a substantial agreement with the experimental findings is observed. The results imply that for such long enclosures, the diffusion model should consider a space-varying diffusion coefficient to be more consistent with real phenomena. PMID:26233018

  4. Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method.

    PubMed

    Barnkob, Rune; Iranmanesh, Ida; Wiklund, Martin; Bruus, Henrik

    2012-07-01

    We present a simple and rapid method for measuring the acoustic energy density in microchannel acoustophoresis based on light-intensity measurements of a suspension of particles. The method relies on the assumption that each particle in the suspension undergoes single-particle acoustophoresis. It is validated by the single-particle tracking method, and we show by proper re-scaling that the re-scaled light intensity plotted versus re-scaled time falls on a universal curve. The method allows for analysis of moderate-resolution images in the concentration range encountered in typical experiments, and it is an attractive alternative to particle tracking and particle image velocimetry for quantifying acoustophoretic performance in microchannels. PMID:22522812

  5. On the relationship between acoustic energy density flux near the jet axis and far field acoustic intensity

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    1973-01-01

    By measurement and analysis, the relationship between the distribution of the outflow of acoustic energy over the jet boundary and the far-field intensity is considered. The physical quantity used is the gradient of the pressure evaluated on a geometrical plane at the smallest possible radial distance from the jet axis, but outside the vortical region, in the area where the homogeneous wave equation is reasonably well satisfied. The numerical and experimental procedures involved have been checked out by using a known source. Results indicate that the acoustic power output per unit length of the jet, in the region from which the sound emanates, peaks at approximately 9 diameters downstream. The acoustic emission for a jet Strouhal number of about 0.3 exceeds the emission for all other Strouhal numbers nearly everywhere along the measurement plane. However, the far-field peak intensity distribution obtained from the contribution of each station was found to depend on the spatial extent of the region where sound emanates from the jet, which, in turn, depends more on the far-field angle than on the Strouhal number.

  6. Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: influence of acoustic energy density and temperature.

    PubMed

    Tao, Yang; Zhang, Zhihang; Sun, Da-Wen

    2014-07-01

    The effects of acoustic energy density (6.8-47.4 W/L) and temperature (20-50 °C) on the extraction yields of total phenolics and tartaric esters during ultrasound-assisted extraction from grape marc were investigated in this study. The ultrasound treatment was performed in a 25-kHz ultrasound bath system and the 50% aqueous ethanol was used as the solvent. The initial extraction rate and final extraction yield increased with the increase of acoustic energy density and temperature. The two site kinetic model was used to simulate the kinetics of extraction process and the diffusion model based on the Fick's second law was employed to determine the effective diffusion coefficient of phenolics in grape marc. Both models gave satisfactory quality of data fit. The diffusion process was divided into one fast stage and one slow stage and the diffusion coefficients in both stages were calculated. Within the current experimental range, the diffusion coefficients of total phenolics and tartaric esters for both diffusion stages increased with acoustic energy density. Meanwhile, the rise of temperature also resulted in the increase of diffusion coefficients of phenolics except the diffusion coefficient of total phenolics in the fast stage, the value of which being the highest at 40 °C. Moreover, an empirical equation was suggested to correlate the effective diffusion coefficient of phenolics in grape marc with acoustic energy density and temperature. In addition, the performance comparison of ultrasound-assisted extraction and convention methods demonstrates that ultrasound is an effective and promising technology to extract bioactive substances from grape marc. PMID:24613646

  7. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  8. Acoustic energy density distribution and sound intensity vector field inside coupled spaces.

    PubMed

    Meissner, Mirosław

    2012-07-01

    In this paper, the modal expansion method supported by a computer implementation has been used to predict steady-state distributions of the potential and kinetic energy densities, and the active and reactive sound intensities inside two coupled enclosures. The numerical study was dedicated to low-frequency room responses. Calculation results have shown that the distribution of energetic quantities in coupled spaces is strongly influenced by the modal localization. Appropriate descriptors of the localization effect were introduced to identify localized modes. As was evidenced by numerical data, the characteristic objects in the active intensity field are vortices positioned irregularly inside the room. It was found that vortex centers lie exactly on the lines corresponding to zeros of the eigenfunction for a dominant mode. Finally, an impact of the wall impedance on the quantitative relationship between the active and reactive intensities was analyzed and it was concluded that for very small sound damping the behavior of the sound intensity inside the room space is essentially only oscillatory. PMID:22779472

  9. Acoustic energy in ducts - Further observations

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1979-01-01

    The transmission of acoustic energy in uniform ducts carrying uniform flow is investigated with the purpose of clarifying two points of interest. The two commonly used definitions of acoustic 'energy' flux are shown to be related by a Legendre transformation of the Lagrangian density exactly as in deriving the Hamiltonian density in mechanics. In the acoustic case the total energy density and the Hamiltonian density are not the same which accounts for two different 'energy' fluxes. When the duct has acoustically absorptive walls neither of the two flux expressions gives correct results. A reevaluation of the basis of derivation of the energy density and energy flux provides forms which yield consistent results for soft walled ducts.

  10. Acoustic energy shaping

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D. (Inventor)

    1977-01-01

    A suspended mass is shaped by melting all or a selected portion of the mass and applying acoustic energy in varying amounts to different portions of the mass. In one technique for forming an optical waveguide slug, a mass of oval section is suspended and only a portion along the middle of the cross-section is heated to a largely fluid consistency. Acoustic energy is applied to opposite edges of the oval mass to press the unheated opposite edge portions together so as to form bulges at the middle of the mass. In another technique for forming a ribbon of silicon for constructing solar cells, a cylindrical thread of silicon is drawn from a molten mass of silicon, and acoustic energy is applied to opposite sides of the molten thread to flatten it into a ribbon.

  11. Estimating animal population density using passive acoustics

    PubMed Central

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-01-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds

  12. Estimating animal population density using passive acoustics.

    PubMed

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-05-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds

  13. Acoustic measurements of gas density

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1990-01-01

    Sound transmission through gases in an enclosure is considered. Analytical results are given in terms of geometrical parameters, wave numbers, and source type for simple model problems, and are compared with data obtained by Haran (1983). It is concluded that density measurements can be made in a gas contained in an enclosure by measuring the sound pressure level at a receiver located near a dipole source driven at a constant velocity amplitude at low frequencies.

  14. Acoustic levitation methods for density measurements

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Hsu, C. J.

    1986-12-01

    The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.

  15. Acoustic levitation methods for density measurements

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Hsu, C. J.

    1986-01-01

    The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.

  16. Bird population density estimated from acoustic signals

    USGS Publications Warehouse

    Dawson, D.K.; Efford, M.G.

    2009-01-01

    Many animal species are detected primarily by sound. Although songs, calls and other sounds are often used for population assessment, as in bird point counts and hydrophone surveys of cetaceans, there are few rigorous methods for estimating population density from acoustic data. 2. The problem has several parts - distinguishing individuals, adjusting for individuals that are missed, and adjusting for the area sampled. Spatially explicit capture-recapture (SECR) is a statistical methodology that addresses jointly the second and third parts of the problem. We have extended SECR to use uncalibrated information from acoustic signals on the distance to each source. 3. We applied this extension of SECR to data from an acoustic survey of ovenbird Seiurus aurocapilla density in an eastern US deciduous forest with multiple four-microphone arrays. We modelled average power from spectrograms of ovenbird songs measured within a window of 0??7 s duration and frequencies between 4200 and 5200 Hz. 4. The resulting estimates of the density of singing males (0??19 ha -1 SE 0??03 ha-1) were consistent with estimates of the adult male population density from mist-netting (0??36 ha-1 SE 0??12 ha-1). The fitted model predicts sound attenuation of 0??11 dB m-1 (SE 0??01 dB m-1) in excess of losses from spherical spreading. 5.Synthesis and applications. Our method for estimating animal population density from acoustic signals fills a gap in the census methods available for visually cryptic but vocal taxa, including many species of bird and cetacean. The necessary equipment is simple and readily available; as few as two microphones may provide adequate estimates, given spatial replication. The method requires that individuals detected at the same place are acoustically distinguishable and all individuals vocalize during the recording interval, or that the per capita rate of vocalization is known. We believe these requirements can be met, with suitable field methods, for a significant

  17. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  18. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  19. Density-dependent acoustic properties of PBX 9502

    SciTech Connect

    Brown, Geoffrey W; Thompson, Darla G; Deluca, Racci; Hartline, Ernest L; Hagelberg, Stephanie I

    2009-07-31

    We have measured the longitudinal and shear acoustic velocities of PBX 9502 as a function of density for die-pressed samples over the range 1.795 g/cc to 1.888 g/cc. The density dependence of the velocities is linear. Thermal cycling of PBX 9502 is known to induce irreversible volume growth. We have measured this volume growth dependence on density for a subset of the pressed parts and find that the most growth occurs for the samples with lowest initial density. The acoustic velocity changes due to the volume growth are significant and reflect damage in the samples.

  20. Method and apparatus for generating acoustic energy

    DOEpatents

    Guerrero, Hector N.

    2002-01-01

    A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.

  1. A probability density function method for acoustic field uncertainty analysis

    NASA Astrophysics Data System (ADS)

    James, Kevin R.; Dowling, David R.

    2005-11-01

    Acoustic field predictions, whether analytical or computational, rely on knowledge of the environmental, boundary, and initial conditions. When knowledge of these conditions is uncertain, acoustic field predictions will also be uncertain, even if the techniques for field prediction are perfect. Quantifying acoustic field uncertainty is important for applications that require accurate field amplitude and phase predictions, like matched-field techniques for sonar, nondestructive evaluation, bio-medical ultrasound, and atmospheric remote sensing. Drawing on prior turbulence research, this paper describes how an evolution equation for the probability density function (PDF) of the predicted acoustic field can be derived and used to quantify predicted-acoustic-field uncertainties arising from uncertain environmental, boundary, or initial conditions. Example calculations are presented in one and two spatial dimensions for the one-point PDF for the real and imaginary parts of a harmonic field, and show that predicted field uncertainty increases with increasing range and frequency. In particular, at 500 Hz in an ideal 100 m deep underwater sound channel with a 1 m root-mean-square depth uncertainty, the PDF results presented here indicate that at a range of 5 km, all phases and a 10 dB range of amplitudes will have non-negligible probability. Evolution equations for the two-point PDF are also derived.

  2. Origin of negative density and modulus in acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Lee, Sam H.; Wright, Oliver B.

    2016-01-01

    This paper provides a review and fundamental physical interpretation for the effective densities and moduli of acoustic metamaterials. We introduce the terminology of hidden force and hidden source of volume: the effective density or modulus is negative when the hidden force or source of volume is larger than, and operates in antiphase to, respectively, the force or volume change that would be obtained in their absence. We demonstrate this ansatz for some established acoustic metamaterials with elements based on membranes, Helmholtz resonators, springs, and masses. The hidden force for membrane-based acoustic metamaterials, for instance, is the force from the membrane tension. The hidden source for a Helmholtz-resonator-based metamaterial is the extra air volume injected from the resonator cavity. We also explain the analogous concepts for pure mass-and-spring systems, in which case, hidden forces can arise from masses and springs fixed inside other masses, whereas hidden sources—more aptly termed hidden expanders of displacement in this case—can arise from light rigid trusses coupled to extra degrees of freedom for mechanical motion such as the case of coupling to masses that move at right angles to the wave-propagation direction. This overall picture provides a powerful tool for conceptual understanding and design of new acoustic metamaterials, and avoids common pitfalls involved in determining the effective parameters of such materials.

  3. High Energy Density Capacitors

    SciTech Connect

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  4. Density can be misleading for low-density species: benefits of passive acoustic monitoring.

    PubMed

    Rogers, Tracey L; Ciaglia, Michaela B; Klinck, Holger; Southwell, Colin

    2013-01-01

    Climate-induced changes may be more substantial within the marine environment, where following ecological change is logistically difficult, and typically expensive. As marine animals tend to produce stereotyped, long-range signals, they are ideal for repeatable surveying. In this study we illustrate the potential for calling rates to be used as a tool for determining habitat quality by using an Antarctic pack-ice seal, the leopard seal, as a model.With an understanding of the vocal behavior of a species, their seasonal and diurnal patterns, sex and age-related differences, an underwater passive-acoustic survey conducted alongside a visual survey in an arc of 4,225 km across the Davis Sea, Eastern Antarctica, showed that while acoustic and visual surveys identified similar regions as having high densities, the acoustic surveys surprisingly identified the opposite regions as being 'critical' habitats. Density surveys of species that cannot be differentiated into population classes may be misleading because overall density can be a negative indicator of habitat quality.Under special circumstances acoustics can offer enormous advantage over traditional techniques and open up monitoring to regions that are remote, difficult and expensive to work within, no longer restricting long-term community assessment to resource-wealthy communities. As climatic change affects a broad range of organisms across geographic boundaries we propose that capitalizing on the significant advances in passive acoustic technology, alongside physical acoustics and population modeling, can help in addressing ecological questions more broadly. PMID:23326339

  5. Density Can Be Misleading for Low-Density Species: Benefits of Passive Acoustic Monitoring

    PubMed Central

    Rogers, Tracey L.; Ciaglia, Michaela B.; Klinck, Holger; Southwell, Colin

    2013-01-01

    Climate-induced changes may be more substantial within the marine environment, where following ecological change is logistically difficult, and typically expensive. As marine animals tend to produce stereotyped, long-range signals, they are ideal for repeatable surveying. In this study we illustrate the potential for calling rates to be used as a tool for determining habitat quality by using an Antarctic pack-ice seal, the leopard seal, as a model.With an understanding of the vocal behavior of a species, their seasonal and diurnal patterns, sex and age-related differences, an underwater passive-acoustic survey conducted alongside a visual survey in an arc of 4,225 km across the Davis Sea, Eastern Antarctica, showed that while acoustic and visual surveys identified similar regions as having high densities, the acoustic surveys surprisingly identified the opposite regions as being ‘critical’ habitats. Density surveys of species that cannot be differentiated into population classes may be misleading because overall density can be a negative indicator of habitat quality.Under special circumstances acoustics can offer enormous advantage over traditional techniques and open up monitoring to regions that are remote, difficult and expensive to work within, no longer restricting long-term community assessment to resource-wealthy communities. As climatic change affects a broad range of organisms across geographic boundaries we propose that capitalizing on the significant advances in passive acoustic technology, alongside physical acoustics and population modeling, can help in addressing ecological questions more broadly. PMID:23326339

  6. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1985-01-01

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  7. Method of measuring reactive acoustic power density in a fluid

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1985-09-03

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas. 5 figs.

  8. Generalization and extension of the law of acoustic energy conservation in a nonuniform flow

    NASA Technical Reports Server (NTRS)

    Myers, M. K.

    1986-01-01

    An exact conservation equation is derived which generalizes the familiar acoustic energy equations. The new relation is valid for arbitrary disturbances to a viscous, compressible flow. It is suggested by a development of the acoustic energy equation by means of a regular perturbation expansion of the general energy equation of fluid mechanics. A perturbation energy density and flux are defined and identified as the exact physical quantities whose leading order perturbation representations are the usual acoustic energy density and flux. The conservation equation governing the perturbation energy quantities is shown to yield previously known results for several special cases.

  9. Acoustic methods to monitor sliver linear density and yarn strength

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    Methods and apparatus are provided for monitoring sliver and yarn characteristics. Transverse waves are generated relative to the sliver or yarn. At least one acoustic sensor is in contact with the sliver or yarn for detecting waves coupled to the sliver or yarn and for generating a signal. The generated signal is processed to identify the predefined characteristics including sliver or yarn linear density. The transverse waves can be generated with a high-powered acoustic transmitter spaced relative to the sliver or yarn with large amplitude pulses having a central frequency in a range between 20 KHz and 40 KHz applied to the transmitter. The transverse waves can be generated by mechanically agitating the sliver or yarn with a tapping member.

  10. Acoustic metamaterial with negative mass density in water

    SciTech Connect

    Chen, Huaijun; Zhai, Shilong; Ding, Changlin; Luo, Chunrong; Zhao, Xiaopeng

    2015-09-07

    A two-dimensional (2D) acoustic metamaterial (AM) with negative effective mass density in water is designed by periodically arranging hollow tube “meta-atoms.” Experimental and simulated results demonstrate that transmission dips accompanied with inverse phases are presented in the transmission spectra of the 2D AM at the ultrasonic frequency band. Effective parameters extracted from the experimental measured transmission and reflection coefficients of the 2D AM show that the effective mass density and refractive index are negative near the dip frequency range of 35.31–35.94 kHz. The simulation also shows the negative response in the 2D AM. Due to the excellent properties, the 2D AM is appealing for the potential applications in areas such as subwavelength imaging, ultrasonic cloaking in water, and so on.

  11. High Energy Density Microwaves

    SciTech Connect

    Phillips, R.M.

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  12. Nuclear Energy Density Optimization

    SciTech Connect

    Kortelainen, Erno M; Lesinski, Thomas; More, J.; Nazarewicz, W.; Sarich, J.; Schunck, N.; Stoitsov, M. V.; Wild, S.

    2010-01-01

    We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

  13. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  14. Hybrid CFx–Ag2V4O11 as a high-energy, power density cathode for application in an underwater acoustic microtransmitter

    SciTech Connect

    Meduri, Praveen; Chen, Honghao; Chen, Xilin; Xiao, Jie; Gross, Mark E.; Carlson, Thomas J.; Zhang, Jiguang; Deng, Zhiqun

    2011-12-01

    This study demonstrates the excellent electrochemical performance of the hybrid carbon fluoride(CFx)/silver vanadium oxide(SVO)/graphene(G) cathode and its potential utilization in Acoustic Telemetry System Transmitter (ATST). The impedance increase issue caused by LiF formation from CFx is effectively addressed by the deposition of conductive silver metal from the reduction of SVO aided by the coexistence of graphene additive thus a prolonged operation voltage is observed with enhanced electronic conductivity throughout the whole discharge process. In particular, the hybrid shows capacity retention of {approx}462 mAhg-1 at 5C rate and 661 mAhg-1 at 1C rate. The peak current delivered from the as-designed hybrid cathode is improved compared with that of commercial Zn/Ag2O batteries suggesting the possibility of the further reduction on the size/weight of the micro batteries which is critical for the transmitters.

  15. Acoustic Energy Estimates in Inhomogeneous Moving Media

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Farris, Mark

    1999-01-01

    In ducted fan engine noise research, there is a need for defining a simple and easy to use acoustic energy conservation law to help in quantification of noise control techniques. There is a well known conservation law relating acoustic energy and acoustic energy flux in the case of an isentropic irrotational flow. Several different approaches have been taken to generalize this conservation law. For example, Morfey finds an identity by separating out the irrotational part of the perturbed flow. Myers is able to find a series of indentities by observing an algebraic relationship between the basic conservation of energy equation for a background flow and the underlying equations of motion. In an approximate sense, this algebraic relationship is preserved under perturbation. A third approach which seems to have not been pursued in the literature is a result known as Noether's theorem. There is a Lagrangian formulation for the Euler equation of fluid mechanics. Noether's theorem says that any group action that leaves the Lagrangian action invariant leads to a conserved quantity. This presentation will include a survey of current results regarding acoustic energy and preliminary results on the symmetries of the Lagrangian.

  16. Density-dependent covariant energy density functionals

    SciTech Connect

    Lalazissis, G. A.

    2012-10-20

    Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

  17. Properties of acoustic energy quantities

    NASA Astrophysics Data System (ADS)

    Uosukainen, Seppo

    1989-09-01

    The sound power of a source is shown to depend on other sources and environment through the coherent and incoherent interaction and on the mounting conditions of the source. The conditions for a source to be a constant power source (being a rare exception amoung sound sources) are defined. A new quantity semianalytic intensity is defined. By its help the mean value, time-dependent, active and reactive intensity are defined in general time-dependent fields. In time harmonic fields the active part of the mean value intensity is rotational. The rotationality is proportional to the polarization vector of particle velocity, the polarization being elliptical in general. The changes of sound field are shown to generate rotationality in all intensity components. The negative pI-indicator is shown to be a possible indication of the rotationality of intensity. Fundamental intensity vortices are defined. The size of the lowest order vortices is of the order of 0.5 to 0.7 (Lambda). A modified J.M.C. method is developed for the basis of the vector and dyadic weighting, the former of which weights the sound pressure and particle velocity differently, and the latter also changes the polarization (or direction) of the particle velocity. Theoretical possibilities of general field modifications and acoustic sink optimization based on these new field reshapers are presented. A new field indicator for intensity measurements is defined. It can be used as a measure of the diffuseness and reactivity as a function of time and observation direction.

  18. Zebra mussel control using acoustic energy

    SciTech Connect

    Tiller, G.W.; Gaucher, T.A.; Menezes, J.K.; Dolat, S.W. )

    1992-01-01

    A practical and economical device or method that reduces zebra mussel colonization without detrimental side effects is highly desirable. An ideal method is one that could be installed near, on, or in existing raw water intakes and conduits. It must have a known effect that is limited to a defined area, should have maximum effects on a targeted species, and preferably have a low life cycle cost than the current alternative methods of control and maintenance. Underwater sound could be such a desirable solution, if found to be an effective control measure for zebra mussels. Although sound most often applies specifically to acoustic energy that is audible to humans, 20 Hertz (Hz) to 20 kiloHertz (kHz), in this report we will use the terms sound and acoustic to include acoustic energy between 100 Hz and 100 MegaHertz (MHz). This research on zebra mussel biofouling is designed to effect the early developmental stages in the life cycle of Dreissena polymorpha (Pallas). Vulnerable stages in the development of D. polymorpha that might yield to site-specific acoustic deterrence measures include the free-swimming larval veliger stage, the postveliger pre-attachment demersal stage, and the immediate post-attachment stage. The proposed applications include surface treatment to prevent, reduce or eliminate colonization on underwater structures, and the stream treatment to reduce or eliminate (destroy) mussel larvae entrained in a moving volume of water.

  19. Diffusive Propagation of Energy in a Non-acoustic Chain

    NASA Astrophysics Data System (ADS)

    Komorowski, Tomasz; Olla, Stefano

    2016-08-01

    We consider a non-acoustic chain of harmonic oscillators with the dynamics perturbed by a random local exchange of momentum, such that energy and momentum are conserved. The macroscopic limits of the energy density, momentum and the curvature (or bending) of the chain satisfy a system of evolution equations. We prove that, in a diffusive space-time scaling, the curvature and momentum evolve following a linear system that corresponds to a damped Euc(uler)-Buc(ernoulli) beam equation. The macroscopic energy density evolves following a non linear diffusive equation. In particular, the energy transfer is diffusive in this dynamics. This provides a first rigorous example of a normal diffusion of energy in a one dimensional dynamics that conserves the momentum.

  20. Acoustical problems in high energy pulsed E-beams lasers

    NASA Technical Reports Server (NTRS)

    Horton, T. E.; Wylie, K. F.

    1976-01-01

    During the pulsing of high energy, CO2, electron beam lasers, a significant fraction of input energy ultimately appears as acoustical disturbances. The magnitudes of these disturbances were quantified by computer analysis. Acoustical and shock impedance data are presented on materials (Rayleigh type) which show promise in controlling acoustical disturbance in E-beam systems.

  1. Active minimization of energy density in three-dimensional enclosures

    NASA Technical Reports Server (NTRS)

    Sommerfeldt, Scott D.

    1996-01-01

    The objective of this study was to further investigate and develop a novel approach for actively controlling the sound field in enclosures that is based on the acoustic energy density. Typically the acoustic field in an enclosure has been controlled by minimizing the sum of the squared pressures from several microphones distributed throughout the enclosure. The approach investigated in this study involved minimizing the acoustic energy density at the sensor locations, rather than the squared pressure. Research previous to this study in a simple one-dimensional enclosure showed that improved global attenuation of the acoustic field is often obtained by minimizing the energy density, rather than the pressure. The current study built on the previous research by extending the method of controlling the acoustic energy density to three-dimensional enclosures. The study was intended to help establish if improved control can still be expected in a more general enclosure. The study was designed to be both analytical/numerical and experimental in nature.

  2. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  3. High energy density electrochemical cell

    NASA Technical Reports Server (NTRS)

    Byrne, J. J.; Williams, D. L.

    1970-01-01

    Primary cell has an anode of lithium, a cathode containing dihaloisocyanuric acid, and a nonaqueous electrolyte comprised of a solution of lithium perchlorate in methyl formate. It produces an energy density of 213 watt hrs/lb and can achieve a high current density.

  4. Effects of high activation energies on acoustic timescale detonation initiation

    NASA Astrophysics Data System (ADS)

    Regele, J. D.; Kassoy, D. R.; Vasilyev, O. V.

    2012-08-01

    Acoustic timescale Deflagration-to-Detonation Transition (DDT) has been shown to occur through the generation of compression waves emitted by a hot spot or reaction centre where the pressure and temperature increase with little diminution of density. In order to compensate for the multi-scale nature of the physico-chemical processes, previous numerical simulations in this area have been limited to relatively small activation energies. In this work, a computational study investigates the effect of increased activation energy on the time required to form a detonation wave and the change in behaviour of each hot spot as the activation energy is increased. The simulations use a localised spatially distributed thermal power deposition of limited duration into a finite volume of reactive gas to facilitate DDT. The Adaptive Wavelet-Collocation Method is used to solve efficiently the 1-D reactive Euler equations with one-step Arrhenius kinetics. The DDT process as described in previous work is characterised by the formation of hot spots during an initial transient period, explosion of the hot spots and creation of an accelerating reaction front that reaches the lead shock and forms an overdriven detonation wave. Current results indicate that as the activation energy is raised the chemical heat release becomes more temporally distributed. Hot spots that produce an accelerating reaction front with low activation energies change behaviour with increased activation energy so that no accelerating reaction front is created. An acoustic timescale ratio is defined that characterises the change in behaviour of each hot spot.

  5. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  6. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.

    PubMed

    Ahmed, Suzanne; Wang, Wei; Bai, Lanjun; Gentekos, Dillon T; Hoyos, Mauricio; Mallouk, Thomas E

    2016-04-26

    Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave end of these rods is inconsistent with a scattering mechanism that we proposed earlier for acoustic propulsion, but is consistent with an acoustic streaming model developed more recently by Nadal and Lauga ( Phys. Fluids 2014 , 26 , 082001 ). Longer rods were slower at constant power, and their speed was proportional to the square of the power density, in agreement with the acoustic streaming model. The streaming model was further supported by a correlation between the disassembly of spinning chains of rods and a sharp decrease in the axial speed of autonomously moving motors within the levitation plane of the cylindrical acoustic cell. However, with bimetallic rods containing metals of different densities, a consistent polarity of motion was observed with the lighter metal end leading. Speed comparisons between single-metal rods of different densities showed that those of lower density are propelled faster. So far, these density effects are not explained in the streaming model. The directionality of bimetallic rods in acoustic fields is intriguing and offers some new possibilities for designing motors in which shape, material, and chemical asymmetry might be combined for enhanced functionality. PMID:26991933

  7. Energy Efficient Engine acoustic supporting technology report

    NASA Technical Reports Server (NTRS)

    Lavin, S. P.; Ho, P. Y.

    1985-01-01

    The acoustic development of the Energy Efficient Engine combined testing and analysis using scale model rigs and an integrated Core/Low Spool demonstration engine. The scale model tests show that a cut-on blade/vane ratio fan with a large spacing (S/C = 2.3) is as quiet as a cut-off blade/vane ratio with a tighter spacing (S/C = 1.27). Scale model mixer tests show that separate flow nozzles are the noisiest, conic nozzles the quietest, with forced mixers in between. Based on projections of ICLS data the Energy Efficient Engine (E3) has FAR 36 margins of 3.7 EPNdB at approach, 4.5 EPNdB at full power takeoff, and 7.2 EPNdB at sideline conditions.

  8. High Energy Density Electrolytic Capacitor

    NASA Technical Reports Server (NTRS)

    Evans, David A.

    1996-01-01

    A new type of electrolytic capacitor which combines an electrolytic capacitor anode with an electrochemical capacitor cathode was developed. The resulting capacitor has a four time higher energy density than standard electrolytic capacitors, with comparable electric performance. The prototype, a 480 microFarad, 200 V device, has an energy density exceeding 4 J/cc. Now a 680 microFarad 50 V, MIL-style all tantalum device has been constructed and is undergoing qualification testing. Pending a favorable outcome, work will begin on other ratings. The potential for commercially significant development exists in applying this technology to aluminum-based electrolytic capacitors. It is possible to at least double the energy density of aluminum electrolytics, while using existing manufacturing methods, and without adding material expense. Data presented include electrical characteristics and performance measurements of the 200 V and 50 V hybrid capacitors and results from ongoing qualification testing of the MIL-style tantalum capacitors.

  9. High energy density electrolytic capacitor

    NASA Technical Reports Server (NTRS)

    Evans, David A.

    1995-01-01

    Recently a new type of electrolytic capacitor was developed. This capacitor, the Evans Hybrid, combines an electrolytic capacitor anode with an electrochemical capacitors cathode. The resulting capacitor has four times the energy density of other electrolytic capacitors, with comparable electrical performance. The prototype, a 480 micro F, 200 V device, had an energy density exceeding 4 J/cc. Now, a 680 micro F, 50 V, MIL-style all tantalum device has been constructed and is undergoing qualification testing. Pending a favorable outcome, work will begin on other ratings. Potential for commercially significant development exists in applying this technology to aluminum-based electrolytic capacitors. It is possible to at least double the energy density of aluminum electrolytics, while using existing manufacturing methods, and without adding material expense. Data presented include electrical characteristics and performance measurements of the 200 V and 50 V Hybrid capacitors and results of ongolng qualification status of the MJL-style tantalum.

  10. Improved energy density homopolar generator

    NASA Astrophysics Data System (ADS)

    Walls, W. A.; Weldon, Wm. F.; Driga, M. D.; Manifold, S. M.; Woodson, H. H.

    1986-11-01

    The preliminary design of a self excited, air-core (SEAC) homopolar generator (HPG) which stores about 250 MJ inertially and is capable of delivering 3.2 MA current pulses is presented. In aiming for maximum energy density in an HPG and inductor power supply for electromagnetic (EM) accelerators, the improved energy density (IED) machine uses its self-excited field coils as energy storage inductors and a lightweight graphite reinforced flywheel for inertial energy storage. Weighing approximately 5,000 kg, the design represents a twenty-fold increase in mass energy density over the state of the art and addresses the problem of trapping flux in the rotor during discharge by separating the voltage generating and energy storage functions. Voltage is generated across a squirrel-cage rotor armature by an opposed pair of five-turn cryogenically cooled field coils/inductors. Inertial energy is stored in a graphite-reinforced epoxy flywheel which will operate at a maximum tip speed of 1,100 m/s. The machine is expected to develop about 500 V at half speed while charging the coils to 130 MJ at 3.2 MA. Peak output voltage during discharge of coils will be roughly 10 kV.

  11. Origami acoustics: using principles of folding structural acoustics for simple and large focusing of sound energy

    NASA Astrophysics Data System (ADS)

    Harne, Ryan L.; Lynd, Danielle T.

    2016-08-01

    Fixed in spatial distribution, arrays of planar, electromechanical acoustic transducers cannot adapt their wave energy focusing abilities unless each transducer is externally controlled, creating challenges for the implementation and portability of such beamforming systems. Recently, planar, origami-based structural tessellations are found to facilitate great versatility in system function and properties through kinematic folding. In this research we bridge the physics of acoustics and origami-based design to discover that the simple topological reconfigurations of a Miura-ori-based acoustic array yield many orders of magnitude worth of reversible change in wave energy focusing: a potential for acoustic field morphing easily obtained through deployable, tessellated architectures. Our experimental and theoretical studies directly translate the roles of folding the tessellated array to the adaptations in spectral and spatial wave propagation sensitivities for far field energy transmission. It is shown that kinematic folding rules and flat-foldable tessellated arrays collectively provide novel solutions to the long-standing challenges of conventional, electronically-steered acoustic beamformers. While our examples consider sound radiation from the foldable array in air, linear acoustic reciprocity dictates that the findings may inspire new innovations for acoustic receivers, e.g. adaptive sound absorbers and microphone arrays, as well as concepts that include water-borne waves.

  12. An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia

    PubMed Central

    Kidney, Darren; Rawson, Benjamin M.; Borchers, David L.; Stevenson, Ben C.; Marques, Tiago A.; Thomas, Len

    2016-01-01

    Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers’ estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method

  13. An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.

    PubMed

    Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len

    2016-01-01

    Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method

  14. Acoustic energy-driven fluid pump and method

    SciTech Connect

    Janus, Michael C.; Richards, George A.; Robey, Edward H.

    1997-12-01

    Bulk fluid motion is promoted in a gaseous fluid contained within a conduit system provided with a diffuser without the need for a mean pressure differential across the conduit system. The contacting of the gaseous fluid with unsteady energy at a selected frequency and pressure amplitude induces fluid flow through the conical diffuser. The unsteady energy can be provided by pulse combustors, thermoacoustic engines, or acoustic energy generators such as acoustic speakers.

  15. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  16. Error analysis and implementation issues for energy density probe

    NASA Astrophysics Data System (ADS)

    Locey, Lance L.; Woolford, Brady L.; Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2001-05-01

    Previous research has demonstrated the utility of acoustic energy density measurements as a means to gain a greater understanding of acoustic fields. Three spherical energy density probe designs are under development. The first probe design has three orthogonal pairs of surface mounted microphones. The second probe design utilizes a similarly sized sphere with four surface mounted microphones. The four microphones are located at the origin and unit vectors of a Cartesian coordinate system, where the origin and the tips of the three unit vectors all lie on the surface of the sphere. The third probe design consists of a similarly sized sphere, again with four surface microphones, each placed at the vertices of a regular tetrahedron. The sensing elements of all three probes are Panasonic electret microphones. The work presented here will expand on previously reported work, and address bias errors, spherical scattering effects, and practical implementation issues. [Work supported by NASA.

  17. Broadband energy harvesting using acoustic black hole structural tailoring

    NASA Astrophysics Data System (ADS)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2014-06-01

    This paper explores the concept of an acoustic black hole (ABH) as a main design framework for performing dynamic structural tailoring of mechanical systems for vibration energy harvesting applications. The ABH is an integral feature embedded in the host structure that allows for a smooth reduction of the phase velocity, theoretically approaching zero, while minimizing the reflected energy. This mechanism results in structural areas with high energy density that can be effectively exploited to develop enhanced vibration-based energy harvesting. Fully coupled electro-mechanical models of an ABH tapered structure with surface mounted piezo-transducers are developed to numerically simulate the response of the system to both steady state and transient excitations. The design performances are numerically evaluated using structural intensity data as well as the instantaneous voltage/power and energy output produced by the piezo-transducer network. Results show that the dynamically tailored structural design enables a drastic increase in the harvested energy as compared to traditional structures, both under steady state and transient excitation conditions.

  18. Enhanced vibration based energy harvesting using embedded acoustic black holes

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Semperlotti, F.; Conlon, S. C.

    2014-03-01

    In this paper, we investigate the use of dynamic structural tailoring via the concept of an Acoustic Black Hole (ABH) to enhance the performance of piezoelectric based energy harvesting from operational mechanical vibrations. The ABH is a variable thickness structural feature that can be embedded in the host structure allowing a smooth reduction of the phase velocity while minimizing the amplitude of reflected waves. The ABH thickness variation is typically designed according to power-law profiles. As a propagating wave enters the ABH, it is progressively slowed down while its wavelength is compressed. This effect results in structural areas with high energy density that can be exploited effectively for energy harvesting. The potential of ABH for energy harvesting is shown via a numerical study based on fully coupled finite element electromechanical models of an ABH tapered plate with surface mounted piezo-transducers. The performances of the novel design are evaluated by direct comparison with a non-tapered structure in terms of energy ratios and attenuation indices. Results show that the tailored structural design allows a drastic increase in the harvested energy both for steady state and transient excitation. Performance dependencies of key design parameters are also investigated.

  19. High-Energy-Density Capacitors

    NASA Technical Reports Server (NTRS)

    Slenes, Kirk

    2003-01-01

    Capacitors capable of storing energy at high densities are being developed for use in pulse-power circuits in such diverse systems as defibrillators, particle- beam accelerators, microwave sources, and weapons. Like typical previously developed energy-storage capacitors, these capacitors are made from pairs of metal/solid-dielectric laminated sheets that are wound and pressed into compact shapes to fit into cans, which are then filled with dielectric fluids. Indeed, these capacitors can be fabricated largely by conventional fabrication techniques. The main features that distinguish these capacitors from previously developed ones are improvements in (1) the selection of laminate materials, (2) the fabrication of the laminated sheets from these materials, and (3) the selection of dielectric fluids. In simplest terms, a high-performance laminated sheet of the type used in these capacitors is made by casting a dielectric polymer onto a sheet of aluminized kraft paper. The dielectric polymer is a siloxane polymer that has been modified with polar pendant groups to increase its permittivity and dielectric strength. Potentially, this polymer is capable of withstanding an energy density of 7.5 J/cm3, which is four times that of the previous state-of-the-art-capacitor dielectric film material. However, the full potential of this polymer cannot be realized at present because (1) at thicknesses needed for optimum performance (.8.0 m), the mechanical strength of a film of this polymer is insufficient for incorporation into a wound capacitor and (2) at greater thickness, the achievable energy density decreases because of a logarithmic decrease in dielectric strength with increasing thickness. The aluminized kraft paper provides the mechanical strength needed for processing of the laminate and fabrication of the capacitor, and the aluminum film serves as an electrode layer. Because part of the thickness of the dielectric is not occupied by the modified siloxane polymer, the

  20. High Energy Density Laboratory Astrophysics

    SciTech Connect

    Remington, B A

    2004-11-11

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we will review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  1. Acoustic energy transmission in cast iron pipelines

    NASA Astrophysics Data System (ADS)

    Kiziroglou, Michail E.; Boyle, David E.; Wright, Steven W.; Yeatman, Eric M.

    2015-12-01

    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.

  2. The role of energy density.

    PubMed

    Drewnowski, Adam

    2003-02-01

    Dietary energy density (ED) appears to have a major influence on the regulation of food intake and body weight. If people consume a fixed weight of food each day, then high-ED diets should be associated with high energy intakes and with overweight. In contrast, low-ED diets should result in lower daily energy intakes and therefore weight loss. For this approach to work, low-ED foods must be as palatable as high-ED foods and, calorie for calorie, have a greater satiating power. Each of those assumptions is debatable. Dietary ED depends chiefly on the water content of foods. As a rule, high-ED foods are more palatable but less satiating, whereas low-ED foods are more satiating but less palatable. Consumer preferences for high-ED foods can be explained in terms of good taste, low cost, and convenience. Low-ED foods, such as fresh produce, provide less energy per unit cost than do high-ED foods, which often contain added sugars and fats. Poverty and obesity may well be linked through the habitual consumption of a low-cost, high-ED diet. PMID:12733741

  3. Empirical and quadrature approximation of acoustic field and array response probability density functions.

    PubMed

    Hayward, Thomas J; Oba, Roger M

    2013-07-01

    Numerical methods are presented for approximating the probability density functions (pdf's) of acoustic fields and receiver-array responses induced by a given joint pdf of a set of acoustic environmental parameters. An approximation to the characteristic function of the random acoustic field (the inverse Fourier transform of the field pdf) is first obtained either by construction of the empirical characteristic function (ECF) from a random sample of the acoustic parameters, or by application of generalized Gaussian quadrature to approximate the integral defining the characteristic function. The Fourier transform is then applied to obtain an approximation of the pdf by a continuous function of the field variables. Application of both the ECF and generalized Gaussian quadrature is demonstrated in an example of a shallow-water ocean waveguide with two-dimensional uncertainty of sound speed and attenuation coefficient in the ocean bottom. Both approximations lead to a smoother estimate of the field pdf than that provided by a histogram, with generalized Gaussian quadrature providing a smoother estimate at the tails of the pdf. Potential applications to acoustic system performance quantification and to nonparametric acoustic signal processing are discussed. PMID:23862782

  4. Reverberant acoustic energy in auditoria that comprise systems of coupled rooms

    NASA Astrophysics Data System (ADS)

    Summers, Jason E.

    2003-11-01

    A frequency-dependent model for reverberant energy in coupled rooms is developed and compared with measurements for a 1:10 scale model and for Bass Hall, Ft. Worth, TX. At high frequencies, prior statistical-acoustics models are improved by geometrical-acoustics corrections for decay within sub-rooms and for energy transfer between sub-rooms. Comparisons of computational geometrical acoustics predictions based on beam-axis tracing with scale model measurements indicate errors resulting from tail-correction assuming constant quadratic growth of reflection density. Using ray tracing in the late part corrects this error. For mid-frequencies, the models are modified to account for wave effects at coupling apertures by including power transmission coefficients. Similarly, statical-acoustics models are improved through more accurate estimates of power transmission measurements. Scale model measurements are in accord with the predicted behavior. The edge-diffraction model is adapted to study transmission through apertures. Multiple-order scattering is theoretically and experimentally shown inaccurate due to neglect of slope diffraction. At low frequencies, perturbation models qualitatively explain scale model measurements. Measurements confirm relation of coupling strength to unperturbed pressure distribution on coupling surfaces. Measurements in Bass Hall exhibit effects of the coupled stage house. High frequency predictions of statistical acoustics and geometrical acoustics models and predictions of coupling apertures all agree with measurements.

  5. Acoustic logging on ultralow density cement bonded quality evaluation in cased hole

    NASA Astrophysics Data System (ADS)

    Wang, H.; Shang, X.; Chen, T.; Tao, G.

    2011-12-01

    Cementing operation after drilling boreholes ensures oil and gas to be extracted effectively and avoids oil spill events such as BP Mexico oil leakage events. However, the loss of cement in deep formation due to its high density happens and raises issues. In order to overcome this problem, ultralow density cement or gas-based cements are used more and more commonly in recent years. Current acoustic evaluation tools, used to determine the cement bond quality, are designed for conventional high density cement. Therefore, they are not capable to image the ultralow density cement, whose acoustic properties are similar to borehole drilling mud. In this paper, a new acoustic technique is developed to image the ultralow density cement behind case. Finite difference method and analytical methods are used to simulate the wave-field of cased borehole which ultralow density cement bonded on. Based on the simulations, the optimal parameters of the evaluation tool design are proposed including spacing (from source to the nearest receiver and between the two neighboring receiver), frequency of source.

  6. Characterization of energy trapping in a bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Kokkonen, Kimmo; Meltaus, Johanna; Pensala, Tuomas; Kaivola, Matti

    2010-12-01

    Acoustic wave fields both within the active electrode area of a solidly mounted 1.8 GHz bulk acoustic wave resonator, and around it in the surrounding region, are measured using a heterodyne laser interferometer. Plate-wave dispersion diagrams for both regions are extracted from the measurement data. The experimental dispersion data reveal the cutoff frequencies of the acoustic vibration modes in the region surrounding the resonator, and, therefore, the energy trapping range of the resonator can readily be determined. The measured dispersion properties of the surrounding region, together with the abruptly diminishing amplitude of the dispersion curves in the resonator, signal the onset of acoustic leakage from the resonator. This information is important for verifying and further developing the simulation tools used for the design of the resonators. Experimental wave field images, dispersion diagrams for both regions, and the threshold for energy leakage are discussed.

  7. Detection of Large Acoustic Energy Flux in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Franz, M.; Martínez Pillet, V.; Bonet, J. A.; Solanki, S. K.; del Toro Iniesta, J. C.; Schmidt, W.; Gandorfer, A.; Domingo, V.; Barthol, P.; Berkefeld, T.; Knölker, M.

    2010-11-01

    We study the energy flux carried by acoustic waves excited by convective motions at sub-photospheric levels. The analysis of high-resolution spectropolarimetric data taken with IMaX/SUNRISE provides a total energy flux of ~6400-7700 W m-2 at a height of ~250 km in the 5.2-10 mHz range, i.e., at least twice the largest energy flux found in previous works. Our estimate lies within a factor of two of the energy flux needed to balance radiative losses from the chromosphere according to the estimates of Anderson & Athay and revives interest in acoustic waves for transporting energy to the chromosphere. The acoustic flux is mainly found in the intergranular lanes but also in small rapidly evolving granules and at the bright borders, forming dark dots and lanes of splitting granules.

  8. A Correlated Study of the Response of a Satellite to Acoustic Radiation Using Statistical Energy Analysis and Acoustic Test Data

    SciTech Connect

    CAP,JEROME S.; TRACEY,BRIAN

    1999-11-15

    Aerospace payloads, such as satellites, are subjected to vibroacoustic excitation during launch. Sandia's MTI satellite has recently been certified to this environment using a combination of base input random vibration and reverberant acoustic noise. The initial choices for the acoustic and random vibration test specifications were obtained from the launch vehicle Interface Control Document (ICD). In order to tailor the random vibration levels for the laboratory certification testing, it was necessary to determine whether vibration energy was flowing across the launch vehicle interface from the satellite to the launch vehicle or the other direction. For frequencies below 120 Hz this issue was addressed using response limiting techniques based on results from the Coupled Loads Analysis (CLA). However, since the CLA Finite Element Analysis FEA model was only correlated for frequencies below 120 Hz, Statistical Energy Analysis (SEA) was considered to be a better choice for predicting the direction of the energy flow for frequencies above 120 Hz. The existing SEA model of the launch vehicle had been developed using the VibroAcoustic Payload Environment Prediction System (VAPEPS) computer code [1]. Therefore, the satellite would have to be modeled using VAPEPS as well. As is the case for any computational model, the confidence in its predictive capability increases if one can correlate a sample prediction against experimental data. Fortunately, Sandia had the ideal data set for correlating an SEA model of the MTI satellite--the measured response of a realistic assembly to a reverberant acoustic test that was performed during MTI's qualification test series. The first part of this paper will briefly describe the VAPEPS modeling effort and present the results of the correlation study for the VAPEPS model. The second part of this paper will present the results from a study that used a commercial SEA software package [2] to study the effects of in-plane modes and to

  9. Oxides having high energy densities

    DOEpatents

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  10. Acoustic device and method for measuring gas densities

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy (Inventor); Kwack, Eug Y. (Inventor); Back, Lloyd (Inventor)

    1992-01-01

    Density measurements can be made in a gas contained in a flow through enclosure by measuring the sound pressure level at a receiver or microphone located near a dipole sound source which is driven at constant velocity amplitude at low frequencies. Analytical results, which are provided in terms of geometrical parameters, wave numbers, and sound source type for systems of this invention, agree well with published data. The relatively simple designs feature a transmitter transducer at the closed end of a small tube and a receiver transducer on the circumference of the small tube located a small distance away from the transmitter. The transmitter should be a dipole operated at low frequency with the kL value preferable less that about 0.3.

  11. Converting acoustic energy into useful other energy forms

    DOEpatents

    Putterman, Seth J.; Barber, Bradley Paul; Hiller, Robert Anthony; Lofstedt, Ritva Maire Johanna

    1997-01-01

    Sonoluminescence is an off-equilibrium phenomenon in which the energy of a resonant sound wave in a liquid is highly concentrated so as to generate flashes of light. The conversion of sound to light represents an energy amplification of eleven orders of magnitude. The flashes which occur once per cycle of the audible or ultrasonic sound fields can be comprised of over one million photons and last for less 100 picoseconds. The emission displays a clocklike synchronicity; the jitter in time between consecutive flashes is less than fifty picoseconds. The emission is blue to the eye and has a broadband spectrum increasing from 700 nanometers to 200 nanometers. The peak power is about 100 milliWatts. The initial stage of the energy focusing is effected by the nonlinear oscillations of a gas bubble trapped in the liquid. For sufficiently high drive pressures an imploding shock wave is launched into the gas by the collapsing bubble. The reflection of the shock from its focal point results in high temperatures and pressures. The sonoluminescence light emission can be sustained by sensing a characteristic of the emission and feeding back changes into the driving mechanism. The liquid is in a sealed container and the seeding of the gas bubble is effected by locally heating the liquid after sealing the container. Different energy forms than light can be obtained from the converted acoustic energy. When the gas contains deuterium and tritium there is the feasibility of the other energy form being fusion, namely including the generation of neutrons.

  12. Sound insulation and energy harvesting based on acoustic metamaterial plate

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2015-03-01

    The emergence of artificially designed sub-wavelength acoustic materials, denoted acoustic metamaterials (AMM), has significantly broadened the range of materials responses found in nature. These engineered materials can indeed manipulate sound/vibration in surprising ways, which include vibration/sound insulation, focusing, cloaking, acoustic energy harvesting …. In this work, we report both on the analysis of the airborne sound transmission loss (STL) through a thin metamaterial plate and on the possibility of acoustic energy harvesting. We first provide a theoretical study of the airborne STL and confronted them to the structure-borne dispersion of a metamaterial plate. Second, we propose to investigate the acoustic energy harvesting capability of the plate-type AMM. We have developed semi-analytical and numerical methods to investigate the STL performances of a plate-type AMM with an airborne sound excitation having different incident angles. The AMM is made of silicone rubber stubs squarely arranged in a thin aluminum plate, and the STL is calculated at low-frequency range [100Hz to 3kHz] for an incoming incident sound pressure wave. The obtained analytical and numerical STL present a very good agreement confirming the reliability of developed approaches. A comparison between computed STL and the band structure of the considered AMM shows an excellent agreement and gives a physical understanding of the observed behavior. On another hand, the acoustic energy confinement in AMM with created defects with suitable geometry was investigated. The first results give a general view for assessing the acoustic energy harvesting performances making use of AMM.

  13. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion.

    PubMed

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester. PMID:26931884

  14. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    NASA Astrophysics Data System (ADS)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  15. Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams

    SciTech Connect

    Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; Bentsen, G.S.; /Rochester U.

    2011-12-13

    The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

  16. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  17. Baryon acoustic oscillation intensity mapping of dark energy.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy. PMID:18352692

  18. PEDOT as a Flexible Organic Electrode for a Thin Film Acoustic Energy Harvester.

    PubMed

    Kim, Younghoon; Na, Jongbeom; Park, Chihyun; Shin, Haijin; Kim, Eunkyoung

    2015-08-01

    An efficient thin film acoustic energy harvester was explored using flexible poly(3,4-ethylene dioxythiophene) (PEDOT) films as electrodes in an all-organic triboelectric generator (AO-TEG). A thin film AO-TEG structured as PEDOT/Kapton//PET/PEDOT was prepared by the solution casting polymerization(SCP) on the dielectric polymer films. As-prepared AO-TEG showed high flexibility and durability due to the strong adhesion between the electrodes and the dielectric polymer. The short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum power density (Pw) reached 50 mA/m(2), 700 V, and 12.9 W/m(2) respectively. The output current density decreased with the increase in the electrode resistance (Re), but the energy loss in the organic electrodes was negligible. The AO-TEG could light up 180 LEDs instantaneously upon touching of the AO-TEG with a palm (∼120 N). With the flexible structure, the AO-TEG was worn as clothes and generated electricity to light LEDs upon regular human movement. Furthermore, the AO-TEG was applicable as a thin film acoustic energy harvester, which used music to generate electricity enough for powering of 5 LEDs. An AO-TEG with a PEDOT electrode (Re = 200 Ω) showed instantaneous peak-to-peak voltage generation of 11 V under a sound pressure level (SPL) of 90-100 dB. The harvested acoustic energy through the AO-TEG was 350 μJ from the 4 min playing of the same single song. This is the first demonstration of a flexible triboelectric generator (TEG) using an organic electrode for harvesting acoustic energy from ambient environment. PMID:26153798

  19. A comparative analysis of acoustic energy models for churches.

    PubMed

    Berardi, Umberto; Cirillo, Ettore; Martellotta, Francesco

    2009-10-01

    Different models to improve prediction of energy-based acoustic parameters in churches have been proposed by different researchers [E. Cirillo and F. Martellotta, J. Acoust. Soc. Am. 118, 232-248 (2005); T. Zamarreño et al., J. Acoust. Soc. Am. 121, 234-250 (2006)]. They all suggested variations to the "revised" theory proposed by Barron and Lee [J. Acoust. Soc. Am. 84, 618-628 (1988)], starting from experimental observations. The present paper compares these models and attempts to generalize their use taking advantage of the measurements carried out in 24 Italian churches differing in style, typology, and location. The whole sample of churches was divided into two groups. The first was used to fine-tune existing models, with particular reference to the "mu model," which was originally tested only on Mudejar-Gothic churches. Correlations between model parameters and major typological and architectural factors were found, leading to a classification that greatly simplifies parameter choice. Finally, the reliability of each model was verified on the rest of the sample, showing that acoustic parameters can be predicted with reasonable accuracy provided that one of the specifically modified theories is used. The results show that the model requiring more input parameters performs slightly better than the other which, conversely, is simpler to apply. PMID:19813798

  20. Energy balance of acoustic gravity waves above the polar caps according to the data of satellite measurements

    NASA Astrophysics Data System (ADS)

    Fedorenko, A. K.

    2010-02-01

    Wave disturbances of the Neutral Atmosphere above the polar caps are studied based on the Dynamic Explorer 2 satellite measurements. The characteristic spatial scales of these disturbances are 500— 600 km. Based on an analysis of the synchronous variations in different parameters, these disturbances were interpreted as propagating acoustic gravity waves (AGWs). The mass-spectrometer measurements of concentrations of individual atmospheric gases made it possible to determine the following AGW components: density of the acoustic compression, thermobaric, and average kinetic energies. It has been found out that the average (during the period) densities of the acoustic and thermobaric energies are approximately equal for polar AGWs. The results indicate that the contribution of these waves to the energy of the polar upper atmosphere is considerable.

  1. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  2. Gas density does not affect pulmonary acoustic transmission in normal men.

    PubMed

    Mahagnah, M; Gavriely, N

    1995-03-01

    Fremitus, the transmission of sound and vibration from the mouth to the chest wall, has long been used clinically to examine the pulmonary system. Recently, modern technology has become available to measure the acoustic transfer function (TF) and transit times (TT) of the pulmonary system. Because sound speed is inversely proportional to the square root of gas density in free gas, but not in porous media, we measured the effect of air and Heliox (80% He-20% O2) breathing on pulmonary sound transmission in six healthy subjects to investigate the mechanism of sound transmission. Wide-band noise (75-2,000 Hz) was "injected" into the mouth and picked up over the trachea and chest wall. The averaged power spectra, TF, phase, and coherence were calculated using a fast Fourier transform-based algorithm. The phase data were used to calculate TT as a function of frequency. TF was found to consist of a low-pass filter property with essentially flat transmitted energy to 300 Hz and exponential decline to 600 Hz at the anterior right upper lobe (CR) and flat transmission to 100 Hz with exponential decline to 150 Hz at the right posterior base (BR). TF was not affected by breathing Heliox. The average TT values, calculated from the slopes of the averaged phase, were 1.5 +/- 0.5 ms for trachea to CR and 5.2 +/- 0.5 ms for trachea to BR transmission during air breathing. During Heliox breathing, the values of TT were 1.5 +/- 0.5 ms and 4.9 +/- 0.5 ms from the trachea to CR and from the trachea to BR locations, respectively. These results suggest that sound transmission in the respiratory system is dominated by wave propagation through the parenchymal porous structure. PMID:7775338

  3. REMOVING BARYON-ACOUSTIC-OSCILLATION PEAK SHIFTS WITH LOCAL DENSITY TRANSFORMS

    SciTech Connect

    McCullagh, Nuala; Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan

    2013-01-20

    Large-scale bulk flows in the universe distort the initial density field, broadening the baryon-acoustic-oscillation (BAO) feature that was imprinted when baryons were strongly coupled to photons. Additionally, there is a small shift inward in the peak of the conventional overdensity correlation function, a mass-weighted statistic. This shift occurs when high-density peaks move toward each other. We explore whether this shift can be removed by applying to the density field a transform (such as a logarithm) that gives fairer statistical weight to fluctuations in underdense regions. Using configuration-space perturbation theory in the Zel'dovich approximation, we find that the log-density correlation function shows a much smaller inward shift in the position of the BAO peak at low redshift than is seen in the overdensity correlation function. We also show that if the initial, Lagrangian density of matter parcels could be estimated at their Eulerian positions, giving a displaced-initial-density field, its peak shift would be even smaller. In fact, a transformed field that accentuates underdensities, such as the reciprocal of the density, pushes the peak the other way, outward. In our model, these shifts in the peak position can be attributed to shift terms, involving the derivative of the linear correlation function, that entirely vanish in this displaced-initial-density field.

  4. Array of piezoelectric wires in acoustic energy harvesting

    NASA Astrophysics Data System (ADS)

    Golestanyan, Edvin

    An acoustic energy harvesting mechanism to harvest a travelling sound wave at a low audible frequency (180 ˜ 200Hz) is further developed and studied both experimentally and numerically. The acoustic energy harvester in this study consists of a quarter-wavelength straight tube resonator and multiple piezoelectric oscillators in wire and plate shapes placed inside the tube. When the tube resonator is excited by an incident sound at its acoustic resonant frequency, the amplified acoustic pressure inside the tube drives the vibration motions of piezoelectric oscillators, resulting in generating electricity. It has been found that a single piezoelectric plate generates more power than a wire, but with placing in multiple-rows piezoelectric wires more power is produced. Parallel and series connections of multiple piezoelectric oscillators have also been studied and expressions for calculating optimum loading resistance have been presented. It has been found that the series connection generates more power than parallel connection. As the number of piezoelectric oscillators increases, the magnitude of the single loading resistance decreases. The decrease of loading resistance is more intense in multiple wires than in multiple plates and in parallel connection than in series connection.

  5. Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator

    NASA Astrophysics Data System (ADS)

    Li, Bin; You, Jeong Ho; Kim, Yong-Joe

    2013-05-01

    A novel and practical acoustic energy harvesting mechanism to harvest traveling sound at low audible frequency is introduced and studied both experimentally and numerically. The acoustic energy harvester in this study contains a quarter-wavelength straight tube resonator with lead zirconate titanate (PZT) piezoelectric cantilever plates placed inside the tube. When the tube resonator is excited by an incident sound at its acoustic resonance frequency, the amplified acoustic pressure inside the tube drives the vibration motions of piezoelectric plates, resulting in the generation of electricity. To increase the total voltage and power, multiple PZT plates were placed inside the tube. The number of PZT plates to maximize the voltage and power is limited due to the interruption of air particle motion by the plates. It has been found to be more beneficial to place the piezoelectric plates in the first half of the tube rather than along the entire tube. With an incident sound pressure level of 100 dB, an output voltage of 5.089 V was measured. The output voltage increases linearly with the incident sound pressure. With an incident sound pressure of 110 dB, an output voltage of 15.689 V and a power of 12.697 mW were obtained. The corresponding areal and volume power densities are 0.635 mW cm-2 and 15.115 μW cm-3, respectively.

  6. Flute-model acoustic metamaterials with simultaneously negative bulk modulus and mass density

    NASA Astrophysics Data System (ADS)

    Zeng, Hong-Cheng; Luo, Chun-Rong; Chen, Huai-Jun; Zhai, Shi-Long; Ding, Chang-Lin; Zhao, Xiao-Peng

    2013-11-01

    We experimentally constructed a three-dimensional flute-model meta-molecule structure acoustic metamaterial (AM) from a periodic array of perforated hollow steel tubes (PHSTs) and investigated its transmission and reflection behaviors in an impedance tube system. The AM exhibited a peak and dip, and an inverse phase, thus exhibiting the local resonance of the PHSTs. Based on the homogeneous media theory, the effective bulk modulus and mass density of the AM were calculated to be simultaneously negative; the refractive index was also negative. PHST AM slab focusing experiments showed that the medium with a resonant structure exhibited a distinct metamaterial property.

  7. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico

    PubMed Central

    Hildebrand, John A.; Baumann-Pickering, Simone; Frasier, Kaitlin E.; Trickey, Jennifer S.; Merkens, Karlina P.; Wiggins, Sean M.; McDonald, Mark A.; Garrison, Lance P.; Harris, Danielle; Marques, Tiago A.; Thomas, Len

    2015-01-01

    Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010–2013). Beaked whale species detected include: Gervais’ (Mesoplodon europaeus), Cuvier’s (Ziphius cavirostris), Blainville’s (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf — BWG). For Gervais’ and Cuvier’s beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais’ beaked whales were present throughout the monitoring period, but Cuvier’s beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais’ and Cuvier’s beaked whales had a high density throughout the monitoring period. PMID:26559743

  8. Compact transformable acoustic logic gates for broadband complex Boolean operations based on density-near-zero metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Cheng, Ying; Yuan, Bao-Guo; Guo, Jian-Zhong; Liu, Xiao-Jun

    2016-05-01

    The extraordinary transmission in density-near-zero (DNZ) acoustic metamaterials (AMs) provides possibilities to manipulate acoustic signals with extremely large effective phase velocity and wavelength. Here, we report compact transformable acoustic logic gates with a subwavelength size as small as 0.82λ based on DNZ AMs. The basic acoustic logic gates, composed of a tri-port structure filled with space-coiling DNZ AMs, enable precise direct linear interference of input signals with considerably small phase lag and wavefront distortion. We demonstrate both theoretically and experimentally the basic Boolean logic operations such as OR, AND, XOR, and NOT with wide operational frequency ranges and controllability, by adjusting the phase difference between two input signals. More complex logic calculus, such as "I1 + I2 × I3," are also realized by cascading of the basic logic gates. Our proposal provides diverse routes to construct devices for acoustic signal computing and manipulations.

  9. Simulation chain for acoustic ultra-high energy neutrino detectors

    NASA Astrophysics Data System (ADS)

    Neff, M.; Anton, G.; Enzenhöfer, A.; Graf, K.; Hößl, J.; Katz, U.; Lahmann, R.

    2013-10-01

    Acoustic neutrino detection is a promising approach for large-scale ultra-high energy neutrino detectors in water. In this paper, a Monte Carlo simulation chain for acoustic neutrino detection devices in water is presented. It is designed within the SeaTray/IceTray software framework. Its modular architecture is highly flexible and makes it easy to adapt to different environmental conditions, detector geometries, and hardware. The simulation chain covers the generation of the acoustic pulse produced by a neutrino interaction and the propagation to the sensors within the detector. In this phase of the development, ambient and transient noise models for the Mediterranean Sea and simulations of the data acquisition hardware, similar to the one used in ANTARES/AMADEUS, are implemented. A pre-selection scheme for neutrino-like signals based on matched filtering is employed, as it can be used for on-line filtering. To simulate the whole processing chain for experimental data, signal classification and acoustic source reconstruction algorithms are integrated. In this contribution, an overview of the design and capabilities of the simulation chain will be given, and some applications and preliminary studies will be presented.

  10. A hydrophone prototype for ultra high energy neutrino acoustic detection

    NASA Astrophysics Data System (ADS)

    Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.

    2009-06-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  11. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  12. Meta-atom cluster acoustic metamaterial with broadband negative effective mass density

    SciTech Connect

    Chen, Huaijun; Zhai, Shilong; Ding, Changlin; Liu, Song; Luo, Chunrong; Zhao, Xiaopeng

    2014-02-07

    We design a resonant meta-atom cluster, via which a two-dimensional (2D) acoustic metamaterial (AM) with broadband negative effective mass density from 1560 Hz to 5580 Hz is fabricated. Experimental results confirm that there is only weak interaction among the meta-atoms in the cluster. And then the meta-atoms in the cluster independently resonate, resulting in the cluster becoming equivalent to a broadband resonance unit. Extracted effective refractive indices from reflection and transmission measurements of the 2D AM appear to be negative from 1500 Hz to 5480 Hz. The broadband negative refraction has also been demonstrated by our further experiments. We expect that this meta-atom cluster AM will significantly contribute to the design of broadband negative effective mass density AM.

  13. Quantum kinetic energy densities: An operational approach

    SciTech Connect

    Muga, J.G.; Seidel, D.; Hegerfeldt, G.C.

    2005-04-15

    We propose and investigate a procedure to measure, at least in principle, a positive quantum version of the local kinetic energy density. This procedure is based, under certain idealized limits, on the detection rate of photons emitted by moving atoms which are excited by a localized laser beam. The same type of experiment, but in different limits, can also provide other non-positive-definite versions of the kinetic energy density. A connection with quantum arrival time distributions is discussed.

  14. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. PMID:25465962

  15. Stellar acoustic radii, mean densities, and ages from seismic inversion techniques

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Reese, D. R.; Dupret, M. A.; Samadi, R.

    2015-01-01

    Context. Determining stellar characteristics such as the radius, mass or age is crucial when studying stellar evolution or exoplanetary systems, or when characterising stellar populations in the Galaxy. Asteroseismology is the golden path to accurately obtain these characteristics. In this context, a key question is how to make these methods less model-dependent. Aims: Building on the previous work of Daniel Reese, we wish to extend the Substractive Optimally Localized Averages (SOLA) inversion technique to new stellar global characteristics beyond the mean density. The goal is to provide a general framework in which to estimate these characteristics as accurately as possible in low-mass main-sequence stars. Methods: First, we describe our framework and discuss the reliability of the inversion technique and possible sources of error. We then apply this methodology to the acoustic radius, an age indicator based on the sound speed derivative and the mean density, and compare it to estimates based on the average large and small frequency separations. These inversions are carried out for several test cases including various metallicities, different mixing-lengths, non-adiabatic effects, and turbulent pressure. Results: We observe that the SOLA method yields accurate results in all test cases whereas results based on the large and small frequency separations are less accurate and more sensitive to surface effects and structural differences in the models. If we include the surface corrections of Kjeldsen et al. (2008, ApJ, 683, L175), we obtain results of comparable accuracy for the mean density. Overall, the mean density and acoustic radius inversions are more robust than the inversions for the age indicator. Moreover, the current approach is limited to relatively young stars with radiative cores. Increasing the number of observed frequencies improves the reliability and accuracy of the method. Appendices are available in electronic form at http://www.aanda.org

  16. Local Measurement of Electron Density and Temperature in High Temperature Laser Plasma Using the Ion-Acoustic Dispersion

    SciTech Connect

    Froula, D H; Davis, P; Ross, S; Meezan, N; Divol, L; Price, D; Glenzer, S H; Rousseaux, C

    2005-09-20

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas.

  17. Universal Nuclear Energy Density Functional

    SciTech Connect

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  18. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    SciTech Connect

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.

  19. Nonlinear optimization of acoustic energy harvesting using piezoelectric devices.

    PubMed

    Lallart, Mickaeël; Guyomar, Daniel; Richard, Claude; Petit, Lionel

    2010-11-01

    In the first part of the paper, a single degree-of-freedom model of a vibrating membrane with piezoelectric inserts is introduced and is initially applied to the case when a plane wave is incident with frequency close to one of the resonance frequencies. The model is a prototype of a device which converts ambient acoustical energy to electrical energy with the use of piezoelectric devices. The paper then proposes an enhancement of the energy harvesting process using a nonlinear processing of the output voltage of piezoelectric actuators, and suggests that this improves the energy conversion and reduces the sensitivity to frequency drifts. A theoretical discussion is given for the electrical power that can be expected making use of various models. This and supporting experimental results suggest that a nonlinear optimization approach allows a gain of up to 10 in harvested energy and a doubling of the bandwidth. A model is introduced in the latter part of the paper for predicting the behavior of the energy-harvesting device with changes in acoustic frequency, this model taking into account the damping effect and the frequency changes introduced by the nonlinear processes in the device. PMID:21110569

  20. Treated cabin acoustic prediction using statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Ingraham, Steven T.; Moore, James A.

    1987-01-01

    The application of statistical energy analysis (SEA) to the modeling and design of helicopter cabin interior noise control treatment is demonstrated. The information presented here is obtained from work sponsored at NASA Langley for the development of analytic modeling techniques and the basic understanding of cabin noise. Utility and executive interior models are developed directly from existing S-76 aircraft designs. The relative importance of panel transmission loss (TL), acoustic leakage, and absorption to the control of cabin noise is shown using the SEA modeling parameters. It is shown that the major cabin noise improvement below 1000 Hz comes from increased panel TL, while above 1000 Hz it comes from reduced acoustic leakage and increased absorption in the cabin and overhead cavities.

  1. Enhanced output power by eigenfrequency shift in acoustic energy harvester

    NASA Astrophysics Data System (ADS)

    Li, Bin; You, Jeong Ho

    2014-04-01

    In our previous studies, multiple piezoelectric cantilever plates were placed inside a quarter-wavelength straight tube resonator to harvest low frequency acoustic energy. To investigate the modification of eigenmodes in the tube resonator due to the presence of piezoelectric plates, the eigenfrequency shift properties by introducing single and multiple rectangular blockages in open-closed ducts are studied by using 1D segmented Helmholtz equations, Webster horn equation, and finite element simulations. The first-mode eigenfrequency of the duct is reduced when the blockage is placed near the open inlet. The decrease of eigenfrequency leads to the enhancement of absorbed acoustic power in the duct. Furthermore, the first half of the tube resonator possesses high pressure gradient resulting in larger driving forces for the vibration motion of piezoelectric plates. Therefore, in our harvesters, it is better to place the piezoelectric plates in the first half of the tube resonator to obtain high output voltage and power.

  2. Acoustic metamaterials capable of both sound insulation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2016-04-01

    Membrane-type acoustic metamaterials are well known for low-frequency sound insulation. In this work, by introducing a flexible piezoelectric patch, we propose sound-insulation metamaterials with the ability of energy harvesting from sound waves. The dual functionality of the metamaterial device has been verified by experimental results, which show an over 20 dB sound transmission loss and a maximum energy conversion efficiency up to 15.3% simultaneously. This novel property makes the metamaterial device more suitable for noise control applications.

  3. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    SciTech Connect

    Yang, Aichao; Li, Ping Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-15

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density at 170–206 Hz.

  4. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams.

    PubMed

    Yang, Aichao; Li, Ping; Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-01

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170-206 Hz has 28-188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137-1.43 mW output power corresponding to 0.035-0.36 μW cm(-3) volume power density at 170-206 Hz. PMID:24985867

  5. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-01

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170-206 Hz has 28-188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137-1.43 mW output power corresponding to 0.035-0.36 μW cm-3 volume power density at 170-206 Hz.

  6. Considerations on the acoustic energy radiated by toothed gears. [model for calculating noise intensity

    NASA Technical Reports Server (NTRS)

    Popinceanu, N. G.; Kremmer, I.

    1974-01-01

    A mechano-acoustic model is reported for calculating acoustic energy radiated by a working gear. According to this model, a gear is an acoustic coublet formed of the two wheels. The wheel teeth generate cylindrical acoustic waves while the front surfaces of the teeth behave like vibrating pistons. Theoretical results are checked experimentally and good agreement is obtained with open gears. The experiments show that the air noise effect is negligible as compared with the structural noise transmitted to the gear box.

  7. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California

    NASA Astrophysics Data System (ADS)

    Helble, Tyler Adam

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. Automated methods are needed to aid in the analyses of the recorded data. When a mammal vocalizes in the marine environment, the received signal is a filtered version of the original waveform emitted by the marine mammal. The waveform is reduced in amplitude and distorted due to propagation effects that are influenced by the bathymetry and environment. It is important to account for these effects to determine a site-specific probability of detection for marine mammal calls in a given study area. A knowledge of that probability function over a range of environmental and ocean noise conditions allows vocalization statistics from recordings of single, fixed, omnidirectional sensors to be compared across sensors and at the same sensor over time with less bias and uncertainty in the results than direct comparison of the raw statistics. This dissertation focuses on both the development of new tools needed to automatically detect humpback whale vocalizations from single-fixed omnidirectional sensors as well as the determination of the site-specific probability of detection for monitoring sites off the coast of California. Using these tools, detected humpback calls are "calibrated" for environmental properties using the site-specific probability of detection values, and presented as call densities (calls per square kilometer per time). A two-year monitoring effort using these calibrated call densities reveals important biological and ecological information on migrating humpback whales off the coast of California. Call density trends are compared between the monitoring sites and at the same monitoring site over time. Call densities also are compared to several natural and human-influenced variables including season, time of day, lunar illumination, and ocean noise. The results reveal substantial differences in call densities

  8. Acoustic planar hyperlens based on anisotropic density-near-zero metamaterials

    SciTech Connect

    Gu, Yuan; Cheng, Ying Liu, Xiaojun

    2015-09-28

    Based on anisotropic density-near-zero metamaterials, we demonstrate a planar hyperlens with resolution beyond the diffraction limit in both one and two lateral dimensions. In contrast to the cylindrical hyperlens with elliptical dispersions of finite anisotropy, the proposed planar hyperlens is designed with flat near-zero dispersion that supports wave tunneling with extremely high phase velocity for infinite large transverse wave vectors. Therefore, the acoustic evanescent waves immediately concentrate into the designed oblique path till the output surface, leading to a subwavelength resolution. Prototype hyperlens is constructed with a membrane-network by means of equivalent lumped-circuit model, and the subwavelength magnifying performance for a pair of one-dimensional line objects as well as the complex two-dimensional structure is demonstrated. This method provides diverse routes to construct hyperlens operating without the limitation on imaging region in practical applications.

  9. On the evaluation of effective density for plate- and membrane-type acoustic metamaterials without mass attached.

    PubMed

    Huang, Tai-Yun; Shen, Chen; Jing, Yun

    2016-08-01

    The effective densities of plate- and membrane-type acoustic metamaterials (AMMs) without mass attached are studied theoretically and numerically. Three models, including the analytic model (based on the plate flexural wave equation and the membrane wave equation), approximate model (under the low frequency approximation), and the finite element method (FEM) model, are first used to calculate the acoustic impedance of square and clamped plates or membranes. The effective density is then obtained using the resulting acoustic impedance and a lumped model. Pressure transmission coefficients of the AMMs are computed using the obtained densities. The effect of the loss from the plate is also taken into account. Results from different models are compared and good agreement is found, particularly between the analytic model and the FEM model. The approximate model is less accurate when the frequency of interest is above the first resonance frequency of the plate or membrane. The approximate model, however, provides simple formulae to predict the effective densities of plate- or membrane-type AMMs and is accurate for the negative density frequency region. The methods presented in this paper are useful in designing AMMs for manipulating acoustic waves. PMID:27586723

  10. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Chirstopher

    2013-10-15

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.

  11. Search for acoustic signals from high energy cascades

    NASA Technical Reports Server (NTRS)

    Bell, R.; Bowen, T.

    1985-01-01

    High energy cosmic ray secondaries can be detected by means of the cascades they produce when they pass through matter. When the charged particles of these cascades ionize the matter they are traveling through, the heat produced and resulting thermal expansion causes a thermoacoustic wave. These sound waves travel at about one hundred-thousandth the speed of light, and should allow an array of acoustic transducers to resolve structure in the cascade to about 1 cm without high speed electronics or segmentation of the detector.

  12. Helmholtz Resonator for Lead Zirconate Titanate Acoustic Energy Harvester

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomohiro; Tomii, Kazuki; Hagiwara, Saori; Miyake, Shuntaro; Hasegawa, Yuichi; Sato, Takamitsu; Kaneko, Yuta; Nishioka, Yasushiro

    2013-12-01

    Acoustic energy harvesters that function in environments where sound pressure is extremely high (~150 dB), such as in engine rooms of aircrafts, are expected to be capable of powering wireless health monitoring systems. This paper presents the power generation performances of a lead-zirconate-titanate (PZT) acoustic energy harvester with a vibrating PZT diaphragm. The diaphragm had a diameter of 2 mm, consisting of Al(0.1 μm)/PZT(1 μm)/Pt(0.1 μm)/Ti(0.1 μm)/SiO2(1.5 μm). The harvester generated a power of 1.7×10-13 W under a sound pressure level of 110 dB at the first resonance frequency of 6.28 kHz. It was found that the generated power was increased to 6.8×10-13 W using a sound-collecting Helmholtz resonator cone with the height of 60 mm. The cone provided a Helmholtz resonance at 5.8 kHz, and the generated power increased from 3.4×10-14 W to 1.4×10-13 W at this frequency. The cone was also effective in increasing the bandwidth of the energy harvester.

  13. Intermolecular electrostatic energies using density fitting

    PubMed Central

    Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.

    2009-01-01

    A method is presented to calculate the electron-electron and nuclear-electron intermolecular Coulomb interaction energy between two molecules by separately fitting the unperturbed molecular electron density of each monomer. This method is based on the variational Coulomb fitting method which relies on the expansion of the ab initio molecular electron density in site-centered auxiliary basis sets. By expanding the electron density of each monomer in this way the integral expressions for the intermolecular electrostatic calculations are simplified, lowering the operation count as well as the memory usage. Furthermore, this method allows the calculation of intermolecular Coulomb interactions with any level of theory from which a one-electron density matrix can be obtained. Our implementation is initially tested by calculating molecular properties with the density fitting method using three different auxiliary basis sets and comparing them to results obtained from ab initio calculations. These properties include dipoles for a series of molecules, as well as the molecular electrostatic potential and electric field for water. Subsequently, the intermolecular electrostatic energy is tested by calculating ten stationary points on the water dimer potential-energy surface. Results are presented for electron densities obtained at four different levels of theory using two different basis sets, fitted with three auxiliary basis sets. Additionally, a one-dimensional electrostatic energy surface scan is performed for four different systems (H2O dimer, Mg2+–H2O, Cu+–H2O, and n-methyl-formamide dimer). Our results show a very good agreement with ab initio calculations for all properties as well as interaction energies. PMID:16095348

  14. First measurement of backscatter dependence on ion acoustic damping in a high density helium/hydrogen laser-plasma

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Williams, E. A.; Lours, L.; Sanchez, J. J.; Berger, R. L.; Collins, G. A.; Decker, C. B.; Divol, L.; Glenzer, S. H.; Hammel, B. A.; Jones, R.; Kirkwood, R. K.; Kruer, W. L.; MacGowan, B. J.; Pipes, J.; Suter, L. J.; Thoe, R.; Unites, W.; Young, P. E.

    2004-05-01

    The dependence of stimulated backward and forward scattered light on ion acoustic damping (νi) is measured for the first time in a long scale length He/H2 composition plasma at a density of 0.08 critical for 351-nm laser light. Both the stimulated Raman and Brillouin backscattering decrease with increasing ion acoustic damping. Modeling of the backward scattering agrees with the measurements when the Langmuir and ion acoustic fluctuations saturate at δn/n=0.01 and 0.001, respectively. These low saturation levels cannot be explained using standard nonlinear wave decay saturation mechanisms and may indicate that other saturation mechanisms are active in this plasma. Modeling of the forward scattering agrees qualitatively with the measurements and provides an estimate of the density fluctuations in the plasma.

  15. Strongly Interacting Matter at High Energy Density

    SciTech Connect

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  16. High-energy-density composite flywheel

    NASA Astrophysics Data System (ADS)

    Satchwell, D. L.; Towgood, D. A.

    1980-02-01

    A flywheel was designed and fabricated to demonstrate a high energy density of 80 w-h/kg in the rotor. The rotor design consists of a multiring, subcircular rim made of S-glass/epoxy composite and Kevlar/epoxy composite materials and mounted on a spoked hub made of graphite/epoxy composite materials.

  17. On the energy density of helical proteins.

    PubMed

    Barros, Manuel; Ferrández, Angel

    2014-12-01

    We solve the problem of determining the energy actions whose moduli space of extremals contains the class of Lancret helices with a prescribed slope. We first see that the energy density should be linear both in the total bending and in the total twisting, such that the ratio between the weights of them is the prescribed slope. This will give an affirmative answer to the conjecture stated in Barros and Ferrández (J Math Phys 50:103529, 2009). Then, we normalize to get the best choice for the helical energy. It allows us to show that the energy, for instance of a protein chain, does not depend on the slope and is invariant under homotopic changes of the cross section which determines the cylinder where the helix is lying. In particular, the energy of a helix is not arbitrary, but it is given as natural multiples of some basic quantity of energy. PMID:24390481

  18. Nonlinear effects of dark energy clustering beyond the acoustic scales

    SciTech Connect

    Anselmi, Stefano; Sefusatti, Emiliano E-mail: dlopez_n@ictp.it

    2014-07-01

    We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available.

  19. Density-velocity equations with bulk modulus for computational hydro-acoustics

    NASA Astrophysics Data System (ADS)

    Lin, Po-Hsien; Chen, Yung-Yu; John Yu, S.-T.

    2014-02-01

    This paper reports a new set of model equations for Computational Hydro Acoustics (CHA). The governing equations include the continuity and the momentum equations. The definition of bulk modulus is used to relate density with pressure. For 3D flow fields, there are four equations with density and velocity components as the unknowns. The inviscid equations are proved to be hyperbolic because an arbitrary linear combination of the three Jacobian matrices is diagonalizable and has a real spectrum. The left and right eigenvector matrices are explicitly derived. Moreover, an analytical form of the Riemann invariants are derived. The model equations are indeed suitable for modeling wave propagation in low-speed, nearly incompressible air and water flows. To demonstrate the capability of the new formulation, we use the CESE method to solve the 2D equations for aeolian tones generated by air flows passing a circular cylinder at Re = 89,000, 46,000, and 22,000. Numerical results compare well with previously published data. By simply changing the value of the bulk modulus, the same code is then used to calculate three cases of water flows passing a cylinder at Re = 89,000, 67,000, and 44,000.

  20. A wideband acoustic energy harvester using a three degree-of-freedom architecture

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this study, an acoustic energy harvester consisting of a perforated brass plate sandwiched between two cavities is designed and fabricated for scavenging energy from wide-spectrum acoustic sources. The multi-mode resonances of the device are adjusted closely spaced over a wide range of frequencies by properly tuned acoustic coupling of the vibrating plate and the two cavities. The experimental results show that the proximity of the multiple peaks enables the harvester operating in the frequency range of 1100-1400 Hz, which provides useful leads for the realization of acoustic energy generators of practical interest.

  1. Acoustic energy relations in Mudejar-Gothic churches.

    PubMed

    Zamarreño, Teófilo; Girón, Sara; Galindo, Miguel

    2007-01-01

    Extensive objective energy-based parameters have been measured in 12 Mudejar-Gothic churches in the south of Spain. Measurements took place in unoccupied churches according to the ISO-3382 standard. Monoaural objective measures in the 125-4000 Hz frequency range and in their spatial distributions were obtained. Acoustic parameters: clarity C80, definition D50, sound strength G and center time Ts have been deduced using impulse response analysis through a maximum length sequence measurement system in each church. These parameters spectrally averaged according to the most extended criteria in auditoria in order to consider acoustic quality were studied as a function of source-receiver distance. The experimental results were compared with predictions given by classical and other existing theoretical models proposed for concert halls and churches. An analytical semi-empirical model based on the measured values of the C80 parameter is proposed in this work for these spaces. The good agreement between predicted values and experimental data for definition, sound strength, and center time in the churches analyzed shows that the model can be used for design predictions and other purposes with reasonable accuracy. PMID:17297779

  2. Kinetic energy density dependent approximations to the exchange energy

    NASA Astrophysics Data System (ADS)

    Ernzerhof, Matthias; Scuseria, Gustavo E.

    1999-07-01

    Two nonempirical kinetic energy density dependent approximations are introduced. First, the local τ approximation (LTA) is proposed in which the exchange energy Ex depends only on a kinetic energy density τ. This LTA scheme appears to be complementary to the local spin density (LSD) approximation in the sense that its exchange contribution to the atomization energy ΔEx=Exatoms-Exmolecule is fairly accurate for systems where LSD fails. On the other hand, in cases where LSD works well LTA results for ΔEx are worse. Secondly, the τPBE approximation to Ex is developed which combines some of the advantages of LTA and of the Perdew-Burke-Ernzerhof (PBE) exchange functional. Like the PBE exchange functional, τPBE is free of empirical parameters. Furthermore, it yields improved atomization energies compared to the PBE approximation.

  3. Nonlocal kinetic-energy-density functionals

    SciTech Connect

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E. |

    1996-04-01

    In this paper we present nonlocal kinetic-energy functionals {ital T}[{ital n}] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. {copyright} {ital 1996 The American Physical Society.}

  4. High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors

    SciTech Connect

    2010-04-01

    Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

  5. Laser Experiments for High Energy Density Science

    SciTech Connect

    Kumar, G. Ravindra

    2010-11-23

    High energy density science probes some of the most basic scientific questions that cut across traditional disciplines. The advent of table top, terawatt, femtosecond lasers promises to revolutionize this area by the use of precise experimental techniques on the one hand and testing of models and computer simulations on the other. In this paper, we present some of our results on hot electron generation, giant magnetic fields and ultrafast plasma dynamics using such experiments and theoretical modeling.

  6. Alternative Approaches to High Energy Density Fusion

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    2016-03-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag . The energy that must be assembled in the imploded state to ignite varies roughly as Pstag -2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed- power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NIF-like drive conditions and reach the energy bound for indirect drive ICF.

  7. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma

    PubMed Central

    Wan, Guoqiang; Gómez-Casati, Maria E; Gigliello, Angelica R; Liberman, M Charles; Corfas, Gabriel

    2014-01-01

    Neurotrophin-3 (Ntf3) and brain derived neurotrophic factor (Bdnf) are critical for sensory neuron survival and establishment of neuronal projections to sensory epithelia in the embryonic inner ear, but their postnatal functions remain poorly understood. Using cell-specific inducible gene recombination in mice we found that, in the postnatal inner ear, Bbnf and Ntf3 are required for the formation and maintenance of hair cell ribbon synapses in the vestibular and cochlear epithelia, respectively. We also show that supporting cells in these epithelia are the key endogenous source of the neurotrophins. Using a new hair cell CreERT line with mosaic expression, we also found that Ntf3's effect on cochlear synaptogenesis is highly localized. Moreover, supporting cell-derived Ntf3, but not Bbnf, promoted recovery of cochlear function and ribbon synapse regeneration after acoustic trauma. These results indicate that glial-derived neurotrophins play critical roles in inner ear synapse density and synaptic regeneration after injury. DOI: http://dx.doi.org/10.7554/eLife.03564.001 PMID:25329343

  8. Ultrasound tomography for simultaneous reconstruction of acoustic density, attenuation, and compressibility profiles.

    PubMed

    Mojabi, Pedram; LoVetri, Joe

    2015-04-01

    A fast and efficient forward scattering solver is developed for use in ultrasound tomography. The solver is formulated so as to enable the calculation of scattering from large and relatively high-contrast objects with inhomogeneous physical properties that vary simultaneously in acoustic attenuation, compressibility, and density. It is based on the method of moments in conjunction with a novel implementation of the conjugate gradient algorithm which requires the use of the adjoints of the scattering operators. The solver takes advantage of the symmetric block Toeplitz matrix with symmetric Toeplitz blocks property of the Green's function matrix to increase efficiency and only stores the first row of this matrix to reduce memory requirements. This row is then used for the matrix-vector multiplication using the fast Fourier transform technique, thus, resulting in the computational complexity of O(n log n). The marching-on-source technique is also used to provide a good initial guess which allows the conjugate gradient technique to converge faster than initializing with an arbitrary guess. This feature is important in tomographic inversion algorithms which require that the object to be imaged be interrogated via several incident fields. Forward scattering and inversion examples, based on the Conjugate Gradient Least Squares regularized Born Iterative Method, are shown, in two-dimensions, for objects varying in all three physical properties. PMID:25920834

  9. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  10. Acoustic Rectification in Dispersive Media

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  11. ACOUSTIC ESTIMATION OF INFESTATIONS AND POPULATION DENSITIES OF WHITE GRUBS (COLEOPTERA: SCARABAEIDAE) IN TURFGRASS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incidental sounds produced by Phyllophaga and Cyclocephala (Coleoptera: Scarabaeidae) grubs were acoustically monitored in turf fields and golf course fairways. A one-sensor acoustic system was used to assess the likelihood of infestation and a four-sensor array was used to facilitate localization ...

  12. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses

    NASA Astrophysics Data System (ADS)

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-12-01

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus.

  13. Inductor Geometry With Improved Energy Density

    SciTech Connect

    Cui, H; Ngo, KDT; Moss, J; Lim, MHF; Rey, E

    2014-10-01

    The "constant-flux" concept is leveraged to achieve high magnetic-energy density, leading to inductor geometries with height significantly lower than that of conventional products. Techniques to shape the core and to distribute the winding turns to shape a desirable field profile are described for the two basic classes of magnetic geometries: those with the winding enclosed by the core and those with the core enclosed by the winding. A relatively constant flux distribution is advantageous not only from the density standpoint, but also from the thermal standpoint via the reduction of hot spots, and from the reliability standpoint via the suppression of flux crowding. In this journal paper on a constant-flux inductor (CFI) with enclosed winding, the foci are operating principle, dc analysis, and basic design procedure. Prototype cores and windings were routed from powder-iron disks and copper sheets, respectively. The design of CFI was validated by the assembled inductor prototype.

  14. Density of States for Warped Energy Bands

    PubMed Central

    Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco

    2016-01-01

    Warping of energy bands can affect the density of states (DOS) in ways that can be large or subtle. Despite their potential for significant practical impacts on materials properties, these effects have not been rigorously demonstrated previously. Here we rectify this using an angular effective mass formalism that we have developed. To clarify the often confusing terminology in this field, “band warping” is precisely defined as pertaining to any multivariate energy function E(k) that does not admit a second-order differential at an isolated critical point in k-space, which we clearly distinguish from band non-parabolicity. We further describe band “corrugation” as a qualitative form of band warping that increasingly deviates from being twice differentiable at an isolated critical point. These features affect the density-of-states and other parameters ascribed to band warping in various ways. We demonstrate these effects, providing explicit calculations of DOS and their effective masses for warped energy dispersions originally derived by Kittel and others. Other physical and mathematical examples are provided to demonstrate fundamental distinctions that must be drawn between DOS contributions that originate from band warping and contributions that derive from band non-parabolicity. For some non-degenerate bands in thermoelectric materials, this may have profound consequences of practical interest. PMID:26905029

  15. Density of States for Warped Energy Bands

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco

    2016-02-01

    Warping of energy bands can affect the density of states (DOS) in ways that can be large or subtle. Despite their potential for significant practical impacts on materials properties, these effects have not been rigorously demonstrated previously. Here we rectify this using an angular effective mass formalism that we have developed. To clarify the often confusing terminology in this field, “band warping” is precisely defined as pertaining to any multivariate energy function E(k) that does not admit a second-order differential at an isolated critical point in k-space, which we clearly distinguish from band non-parabolicity. We further describe band “corrugation” as a qualitative form of band warping that increasingly deviates from being twice differentiable at an isolated critical point. These features affect the density-of-states and other parameters ascribed to band warping in various ways. We demonstrate these effects, providing explicit calculations of DOS and their effective masses for warped energy dispersions originally derived by Kittel and others. Other physical and mathematical examples are provided to demonstrate fundamental distinctions that must be drawn between DOS contributions that originate from band warping and contributions that derive from band non-parabolicity. For some non-degenerate bands in thermoelectric materials, this may have profound consequences of practical interest.

  16. Surprises in High Energy Density Physics

    NASA Astrophysics Data System (ADS)

    Rose, S. J.

    2010-01-01

    Edward Teller's work on what is now called High Energy Density Physics (HEDP) is not so well known as some of his work in other areas of physics. Yet he made substantial contributions since the 1940s and the models that he developed and the problems that he worked on are still relevant today. In this talk we shall look at two major areas in HEDP with the first treated more historically and the second more with a view to recent work that the author and others have undertaken which perhaps indicates future directions.

  17. Tracking Energy Flow Using a Volumetric Acoustic Intensity Imager (VAIM)

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas P.

    2006-01-01

    A new measurement device has been invented at the Naval Research Laboratory which images instantaneously the intensity vector throughout a three-dimensional volume nearly a meter on a side. The measurement device consists of a nearly transparent spherical array of 50 inexpensive microphones optimally positioned on an imaginary spherical surface of radius 0.2m. Front-end signal processing uses coherence analysis to produce multiple, phase-coherent holograms in the frequency domain each related to references located on suspect sound sources in an aircraft cabin. The analysis uses either SVD or Cholesky decomposition methods using ensemble averages of the cross-spectral density with the fixed references. The holograms are mathematically processed using spherical NAH (nearfield acoustical holography) to convert the measured pressure field into a vector intensity field in the volume of maximum radius 0.4 m centered on the sphere origin. The utility of this probe is evaluated in a detailed analysis of a recent in-flight experiment in cooperation with Boeing and NASA on NASA s Aries 757 aircraft. In this experiment the trim panels and insulation were removed over a section of the aircraft and the bare panels and windows were instrumented with accelerometers to use as references for the VAIM. Results show excellent success at locating and identifying the sources of interior noise in-flight in the frequency range of 0 to 1400 Hz. This work was supported by NASA and the Office of Naval Research.

  18. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  19. Research on high energy density capacitor materials

    NASA Technical Reports Server (NTRS)

    Somoano, Robert

    1988-01-01

    The Pulsed Plasma thruster is the simplest of all electric propulsion devices. It is a pulsed device which stores energy in capacitors for each pulse. The lifetimes and energy densities of these capacitors are critical parameters to the continued use of these thrusters. This report presents the result of a research effort conducted by JPL into the materials used in capacitors and the modes of failure. The dominant failure mechanism was determined to be material breakdown precipitated by heat build-up within the capacitors. The presence of unwanted gas was identified as the source of the heat. An aging phenomena was discovered in polycarbonate based capacitors. CO build-up was noted to increase with the number of times the capacitor had been discharged. Improved quality control was cited as being essential for the improvement of capacitor lifetimes.

  20. Diffuse Waves and Energy Densities Near Boundaries

    NASA Astrophysics Data System (ADS)

    Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.

    2007-12-01

    Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of

  1. Ultrasonic acoustic health monitoring of ball bearings using neural network pattern classification of power spectral density

    NASA Astrophysics Data System (ADS)

    Kirchner, William; Southward, Steve; Ahmadian, Mehdi

    2010-03-01

    This paper presents a generic passive non-contact based approach using ultrasonic acoustic emissions (UAE) to facilitate the neural network classification of bearing health, and more specifically the bearing operating condition. The acoustic emission signals used in this study are in the ultrasonic range (20-120 kHz). A direct benefit of microphones capable of measurements in this frequency range is their inherent directionality. Using selected bands from the UAE power spectrum signature, it is possible to pose the health monitoring problem as a multi-class classification problem, and make use of a single neural network to classify the ultrasonic acoustic emission signatures. Artificial training data, based on statistical properties of a significantly smaller experimental data set is used to train the neural network. This specific approach is generic enough to suggest that it is applicable to a variety of systems and components where periodic acoustic emissions exist.

  2. High energy density aluminum-oxygen cell

    NASA Technical Reports Server (NTRS)

    Rudd, E. J.; Gibbons, D. W.

    1993-01-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  3. High energy density aluminum-oxygen cell

    NASA Astrophysics Data System (ADS)

    Rudd, E. J.; Gibbons, D. W.

    1993-11-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  4. High Energy Density aluminum/oxygen cell

    NASA Astrophysics Data System (ADS)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  5. Acoustic metafluid with anisotropic mass density and tunable sound speed: An approach based on suspensions of orientable anisotropic particles

    NASA Astrophysics Data System (ADS)

    Seitel, Mark; Tse, Stephen; Shan, Jerry

    2011-11-01

    We investigate liquid suspensions of micron-scale, anisotropic particles as potential acoustic metafluids having anisotropic and actively controllable acoustic properties. The effective mass density (and hence the sound propagation speed) of these metafluids can vary because the added mass of an anisotropic particle suspended in the fluid changes with the particle's orientation relative to the direction of the wave propagation. A suspension with disc-like particles oriented broadside to the direction of wave propagation is thus expected to have higher effective inertia and lower sound speed than a suspension with particles with end-on alignment. To test these predictions, sound speed is measured with a time-of-flight method in suspensions of micron-size nickel flakes suspended in oil, with and without magnetic-field-induced alignment of the particles. The sound speed, relative to the unaligned case, is found to decrease for particles oriented broadside to the sound wave, and increase for edgewise alignment. We also investigate the frequency dependence of the effective sound speed, since the added mass effect is expected to diminish as the flow becomes steady at low frequencies. The experimental results are compared to the predictions of a model proposed by Ahuja & Hardee (J. Acoust. Soc. Am 1978) for the acoustic properties of aligned oblate-spheroid suspensions.

  6. Liquid density analysis of sucrose and alcoholic beverages using polyimide guided Love-mode acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Turton, Andrew; Bhattacharyya, Debabrata; Wood, David

    2006-02-01

    A liquid density sensor using Love-mode acoustic waves has been developed which is suitable for use in the food and drinks industries. The sensor has an open flat surface allowing immersion into a sample and simple cleaning. A polyimide waveguide layer allows cheap and simple fabrication combined with a robust chemically resistant surface. The low shear modulus of polyimide allows thin guiding layers giving a high sensitivity. A dual structure with a smooth reference device exhibiting viscous coupling with the wave, and a patterned sense area to trap the liquid causing mass loading, allows discrimination of the liquid density from the square root of the density-viscosity product (ρη)0.5. Frequency shift and insertion loss change were proportional to (ρη)0.5 with a non-linear response due to the non-Newtonian nature of viscous liquids at high frequencies. Measurements were made with sucrose solutions up to 50% and different alcoholic drinks. A maximum sensitivity of 0.13 µg cm-3 Hz-1 was achieved, with a linear frequency response to density. This is the highest liquid density sensitivity obtained for acoustic mode sensors to the best of our knowledge.

  7. High Energy Density Matter for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carrick, Patrick G.

    1996-01-01

    The objective of the High Energy Density Matter (HEDM) program is to identify, develop, and exploit high energy atomic and molecular systems as energetic sources for rocket propulsion applications. It is a high risk, high payoff program that incorporates both basic and applied research, experimental and theoretical efforts, and science and engineering efforts. The HEDM program is co-sponsored by the Air Force Office of Scientific Research (AFOSR) and the Phillips Laboratory (PURKS). It includes both in-house and contracted University/Industry efforts. Technology developed by the HEDM program offers the opportunity for significant breakthroughs in propulsion system capabilities over the current state-of-the-art. One area of great interest is the use of cryogenic solids to increase the density of the propellant and to act as a stable matrix for storage of energetic materials. No cryogenic solid propellant has ever been used in a rocket, and there remain engineering challenges to such a propellant. However, these solids would enable a wide class of highly energetic materials by providing an environment that is at very low temperatures and is a physical barrier to recombination or energy loss reactions. Previous to our experiments only hydrogen atoms had been isolated in solid hydrogen. To date we have succeeded in trapping B, Al, Li, N, and Mg atoms in solid H2. Small molecules, such as B2 and LiB, are also of interest. Current efforts involve the search for new energetic small molecules, increasing free radical concentrations up to 5 mole percent, and scale-up for propulsion testing.

  8. Perspectives on High-Energy-Density Physics

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul

    2008-11-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare

  9. LINEAR INVERSION OF TRANSMITTED ACOUSTIC WAVE FIELDS FOR THREE-DIMENSIONAL MODULUS AND DENSITY PERTURBATIONS USING A BORN-TYPE APPROXIMATION.

    USGS Publications Warehouse

    Stauber, Douglas A.

    1985-01-01

    A Born approximation is used to linearize the relationship, in the horizontal-wavenumber and frequency domains, between lateral perturbations of modulus and density in a layered half-space and the acoustic wave field observed at the surface when a plane wave is incident from below. The resulting equations can be used to perform a linear inversion of observed acoustic wave fields to obtain lateral perturbations in modulus and density. Since modulus and density effects are separated, gravity observations can be included in the inversion procedure without any assumptions about the relationship between density and acoustic velocity. Tests with synthetic data sets reveal that the inversion method gives useful results when the spatial scales of the inhomogeneities are smaller than several acoustic wavelengths. Refs.

  10. Effects of nonthermal ions and polarization force on dust-acoustic waves in a density-varying dusty plasma.

    PubMed

    Asaduzzaman, M; Mamun, A A

    2012-07-01

    A rigorous theoretical investigation has been made of the effects of nonthermal ions and polarization force (which arises due to the dust density inhomogeneity) on the propagation of dust-acoustic (DA) waves in a density-varying unmagnetized dusty plasma (consisting of nonthermal ions, Maxwellian electrons, and negatively charged mobile dust) by the normal mode analysis. It has been shown that the dispersion properties of the DA waves are significantly modified by the presence of nonthermal ions and polarization force. It has been also found that the phase speed of the DA waves, as well as the dust density perturbation, increases (decreases) with the increase of nonthermal ions (polarization force), and that the potential associated with the DA waves decreases with the increase of the equilibrium dust number density. The implications of our results in the specific situation of space environments (dust-ion plasma situation) are also briefly discussed. PMID:23005552

  11. Energy density of bloaters in the upper Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Bunnell, David B.; Madenjian, Charles P.; Gorman, Owen T.; Roseman, Edward F.

    2012-01-01

    We evaluated the energy density of bloaters Coregonus hoyi as a function of fish size across Lakes Michigan, Huron, and Superior in 2008–2009 and assessed how differences in energy density are related to factors such as biomass density of bloaters and availability of prey. Additional objectives were to compare energy density between sexes and to compare energy densities of bloaters in Lake Michigan between two time periods (1998–2001 and 2008–2009). For the cross-lake comparisons in 2008, energy density increased with fish total length (TL) only in Lake Michigan. Mean energy density adjusted for fish size was 8% higher in bloaters from Lake Superior than in bloaters from Lake Huron. Relative to fish in these two lakes, small (175 mm TL) bloaters had higher energy density. In 2009, energy density increased with bloater size, and mean energy density adjusted for fish size was about 9% higher in Lake Michigan than in Lake Huron (Lake Superior was not sampled during 2009). Energy density of bloaters in Lake Huron was generally the lowest among lakes, reflecting the relatively low densities of opossum shrimp Mysis diluviana and the relatively high biomass of bloaters reported for that lake. Other factors, such as energy content of prey, growing season, or ontogenetic differences in energy use strategies, may also influence cross-lake variation in energy density. Mean energy density adjusted for length was 7% higher for female bloaters than for male bloaters in Lakes Michigan and Huron. In Lake Superior, energy density did not differ between males and females. Finally, energy density of bloaters in Lake Michigan was similar between the periods 2008–2009 and 1998–2001, possibly due to a low population abundance of bloaters, which could offset food availability changes linked to the loss of prey such as the amphipods Diporeia spp.

  12. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    SciTech Connect

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  13. Simulation of High Energy Density Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce

    2004-05-01

    High Energy Density plasmas are found in astrophysical environments, have been generated in past underground nuclear tests, and can be created in the laboratory by, e.g. laser or pulsed power experiments. These experiments can be used to validate simulation capabilities that are being developed to advance our understanding of plasma physics, and to develop predictive capabilities for HED plasma applications such as fusion energy. In this talk we will briefly introduce the subject of simulating HED plasmas using radiation hydrodynamics codes. We will give examples of simple test problems, showing how a problem is approached, including geometry specifications, simplifying assumptions, zoning, initial and boundary conditions, basic data on opacities and EOS, and illustrate sensitivities of results to variations. We will also show highlights of work at Los Alamos to validate codes, provide basic data, and develop applications, for example: 1) studying phenomena such as Rayleigh-Taylor and Richtmeyer-Meshkov instabilities, ablation, and supersonic jets at the Omega laser in Rochester and the Sandia Z Machine; 2) quantum molecular dynamics simulations which have recently led to a semi-classical, particle-particle particle-mesh code that allows ultra-fast simulations involving tens of thousands of particles to calculate properties of hot dense plasmas; 3) efforts to experimentally demonstrate the physics basis for magnetized target fusion (MTF), a potentially low cost path to fusion, intermediate in plasma regime between magnetic and inertial fusion energy.

  14. Problems in Assessment of Wind Energy Potential and Acoustic Noise Distribution when Designing Wind Power Plants

    NASA Astrophysics Data System (ADS)

    Bezrukovs, Valerijs; Bezrukovs, Vladislavs; Levins, Nikolajs

    2011-01-01

    Interest in the use of renewable energy in Latvia is increasing every year. Government support and availability of large unpopulated areas on the coast makes the use of these lands for the placement of large wind power plants (WPP) attractive. The key factors that determine the choice of the location of WPP are reliable information about distribution of the resource of wind energy in this area and the influence of wind turbines on the environment. The paper presents the results of years-long observations on the density fluctuations of wind energy at heights of 10 to 60 m in the area in the Baltic Sea coast in Ventspils and Ainaži. The velocity observations since 2007 have been gathered by measurements complex of the LOGGER 9200 Symphonie type. The results are presented in the form of tables, bar charts and graphs. Extrapolation results of wind velocity and density mean values on heights up to 150 m for the two areas with different terrain types were shown. The distribution of acoustic noise in the vicinity of the WPP was studied and an assessment of its impact on the environment in accordance with the Latvian government requirements was conducted.

  15. Reverberant acoustic energy in auditoria that comprise systems of coupled rooms

    NASA Astrophysics Data System (ADS)

    Summers, Jason Erik

    A frequency-dependent model for levels and decay rates of reverberant energy in systems of coupled rooms is developed and compared with measurements conducted in a 1:10 scale model and in Bass Hall, Fort Worth, TX. Schroeder frequencies of subrooms, fSch, characteristic size of coupling apertures, a, relative to wavelength lambda, and characteristic size of room surfaces, l, relative to lambda define the frequency regions. At high frequencies [HF (f >> f Sch, a >> lambda, l >> lambda)], this work improves upon prior statistical-acoustics (SA) coupled-ODE models by incorporating geometrical-acoustics (GA) corrections for the model of decay within subrooms and the model of energy transfer between subrooms. Previous researchers developed prediction algorithms based on computational GA. Comparisons of predictions derived from beam-axis tracing with scale-model measurements indicate that systematic errors for coupled rooms result from earlier tail-correction procedures that assume constant quadratic growth of reflection density. A new algorithm is developed that uses ray tracing rather than tail correction in the late part and is shown to correct this error. At midfrequencies [MF (f >> f Sch, a ˜ lambda)], HF models are modified to account for wave effects at coupling apertures by including analytically or heuristically derived power transmission coefficients tau. This work improves upon prior SA models of this type by developing more accurate estimates of random-incidence tau. While the accuracy of the MF models is difficult to verify, scale-model measurements evidence the expected behavior. The Biot-Tolstoy-Medwin-Svensson (BTMS) time-domain edge-diffraction model is newly adapted to study transmission through apertures. Multiple-order BTMS scattering is theoretically and experimentally shown to be inaccurate due to the neglect of slope diffraction. At low frequencies (f ˜ f Sch), scale-model measurements have been qualitatively explained by application of

  16. Energy density fluctuations in early universe

    SciTech Connect

    Guardo, G. L.; Ruggieri, M.; Greco, V.

    2014-05-09

    The primordial nucleosinthesys of the element can be influenced by the transitions of phase that take place after the Big Bang, such as the QCD transition. In order to study the effect of this phase transition, in this work we compute the time evolution of thermodynamical quantities of the early universe, focusing on temperature and energy density fluctuations, by solving the relevant equations of motion using as input the lattice QCD equation of state to describe the strongly interacting matter in the early universe plasma. We also study the effect of a primordial strong magnetic field by means of a phenomenological equation of state. Our results show that small inhomogeneities of strongly interacting matter in the early Universe are moderately damped during the crossover.

  17. Perspectives on high-energy-density physicsa)

    NASA Astrophysics Data System (ADS)

    Drake, R. P.

    2009-05-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very nontraditional plasmas. High-energy-density (HED) plasmas are often examples, variously involving strong Coulomb interactions and ≪1 particles per Debye sphere, dominant radiation effects, and strongly relativistic or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of "plasma." Here the specific ways in which HED plasmas differ from traditional plasmas are discussed. This is first done by comparison of important physical quantities across the parameter regime accessible by existing or contemplated experimental facilities. A specific discussion of some illustrative cases follows, including strongly radiative shocks and the production of relativistic, quasimonoenergetic beams of accelerated electrons.

  18. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2014-01-01

    In this work, energy analysis of an oscillating isolated spherical bubble in water irradiated by an ultrasonic wave has been theoretically studied for various conditions of acoustic amplitude, ultrasound frequency, static pressure and liquid temperature in order to explain the effects of these key parameters on both sonochemistry and sonoluminescence. The Keller-Miksis equation for the temporal variation of the bubble radius in compressible and viscous medium has been employed as a dynamics model. The numerical calculations showed that the rate of energy accumulation, dE/dt, increased linearly with increasing acoustic amplitude in the range of 1.5-3.0 atm and decreased sharply with increasing frequency in the range 200-1000 kHz. There exists an optimal static pressure at which the power w is highest. This optimum shifts toward a higher value as the acoustic amplitude increases. The energy of the bubble slightly increases with the increase in liquid temperature from 10 to 60 °C. The results of this study should be a helpful means to explain a variety of experimental observations conducted in the field of sonochemistry and sonoluminescence concerning the effects of operational parameters. PMID:23683796

  19. Surface energies of semiconductors by the energy density method

    NASA Astrophysics Data System (ADS)

    Yu, Min; Martin, Richard M.

    2008-03-01

    Energy Density formalism within the first-principles pseudopotential density functional theory has been proposed by Chetty and Martin^1 in 1990s. Although the energy density function is non-unique, nevertheless integrals over surface regions provide unique results for surface energies, and calculations have been carried out by several groups^2,3 to study the polar surfaces and interfaces of solid state systems such as GaAs (111) and (111) polar surfaces. In our work, we apply this method to wurtzite CdSe to determine the energy of of various polar surfaces such as (0001),(0001), and non-polar surfaces such as (1010),(1120), from which we can estimate the equilibrium crystal shape for large nanoclusters. 1. N. Chetty and Richard M. Martin, Phys. Rev. B 45, 6074 (1992). 2. K. Rapcewicz, B. Chen, B. Yakobson, and J. Bernholc, Phys. Rev. B 57, 7281 (1998). 3. N. Moll, A. Kley, E. Pehlke, and M. Scheffler, Phys. Rev. B 54, 8844 (1996).

  20. Acoustic Energy: An Innovative Technology for Stimulating Oil Wells

    SciTech Connect

    Edgar, Dorland E.; Peters, Robert W.; Johnson, Donald O.; Paulsen, P. David; Roberts, Wayne

    2006-04-30

    The objective of this investigation was to demonstrate the effectiveness of sonication in reducing the viscosity of heavy crude oils. Sonication is the use of acoustic or sound energy to produce physical and/or chemical changes in materials, usually fluids. The goal of the first project phase was to demonstrate a proof of concept for the project objective. Batch tests of three commercially available, single-weight oils (30-, 90-, and 120-wt) were performed in the laboratory. Several observations and conclusions were made from this series of experiments. These include the following: (1) In general, the lower the acoustic frequency, the greater the efficiency in reducing the viscosity of the oils; (2) Sonication treatment of the three oils resulted in reductions in viscosity that ranged from a low of 31% to a high of 75%; and (3) The results of the first phase of the project successfully demonstrated that sonication could reduce the viscosity of oils of differing viscosity. The goal of the second project phase was to demonstrate the ability of sonication to reduce the viscosity of three crude oils ranging from a light crude to a heavy crude. The experiments also were designed to examine the benefits of two proprietary chemical additives used in conjunction with sonication. Acoustic frequencies ranging from 800 Hz to 1.6 kHz were used in these tests, and a reactor chamber was designed for flow-through operation with a capacity of one gallon (3.8 liters). The three crude oils selected for use in the testing program were: (1) a heavy crude from California with a viscosity of approximately 65,000 cP (API gravity about 12{sup o}), (2) a crude from Alabama with a significant water content and a viscosity of approximately 6,000 cP (API gravity about 22 {sup o}), and (3) a light crude from the Middle East with a viscosity of approximately 700 cP (API gravity about 32{sup o}). The principal conclusions derived from the second project phase include the following: (1) The

  1. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles. PMID:22087995

  2. The economics of obesity: dietary energy density and energy cost.

    PubMed

    Drewnowski, Adam; Darmon, Nicole

    2005-07-01

    Highest rates of obesity and diabetes in the United States are found among the lower-income groups. The observed links between obesity and socioeconomic position may be related to dietary energy density and energy cost. Refined grains, added sugars, and added fats are among the lowest-cost sources of dietary energy. They are inexpensive, good tasting, and convenient. In contrast, the more nutrient-dense lean meats, fish, fresh vegetables, and fruit generally cost more. An inverse relationship between energy density of foods (kilojoules per gram) and their energy cost (dollars per megajoule) means that the more energy-dense diets are associated with lower daily food consumption costs and may be an effective way to save money. However, economic decisions affecting food choice may have physiologic consequences. Laboratory studies suggest that energy-dense foods and energy-dense diets have a lower satiating power and may result in passive overeating and therefore weight gain. Epidemiologic analyses suggest that the low-cost energy-dense diets also tend to be nutrient poor. If the rise in obesity rates is related to the growing price disparity between healthy and unhealthy foods, then the current strategies for obesity prevention may need to be revised. Encouraging low-income families to consume healthier but more costly foods to prevent future disease can be construed as an elitist approach to public health. Limiting access to inexpensive foods through taxes on frowned upon fats and sweets is a regressive measure. The broader problem may lie with growing disparities in incomes and wealth, declining value of the minimum wage, food imports, tariffs, and trade. Evidence is emerging that obesity in America is a largely economic issue. PMID:16002835

  3. An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes

    NASA Astrophysics Data System (ADS)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2015-06-01

    In this paper, we present an experimental investigation on the energy harvesting performance of dynamically tailored structures based on the concept of embedded acoustic black holes (ABHs). Embedded ABHs allow tailoring the wave propagation characteristics of the host structure creating structural areas with extreme levels of energy density. Experiments are conducted on a tapered plate-like aluminum structure with multiple embedded ABH features. The dynamic response of the structure is tested via laser vibrometry in order to confirm the vibration localization and the passive wavelength sweep characteristic of ABH embedded tapers. Vibrational energy is extracted from the host structure and converted into electrical energy by using ceramic piezoelectric discs bonded on the ABHs and shunted on an external electric circuit. The energy harvesting performance is investigated both under steady state and transient excitation. The experimental results confirm that the dynamic tailoring produces a drastic increase in the harvested energy independently from the nature of the excitation input.

  4. Distinguishing interacting dark energy from wCDM with CMB, lensing, and baryon acoustic oscillation data

    NASA Astrophysics Data System (ADS)

    Väliviita, Jussi; Palmgren, Elina

    2015-07-01

    We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological wCDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, ωc, allowing a large interaction rate |Γ| ~ H0. However, as has been known for a while, the BAO data break this degeneracy. Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift z ~ 2 and is very sensitive to the growth of structure, and hence one of the tools for discerning between the ΛCDM model and its alternatives. However, we find that in the non-phantom models (wde>-1), the constraints remain unchanged by the inclusion of the lensing data and consistent with zero interaction, -0.14 < Γ/H0 < 0.02 at 95% CL. On the contrary, in the phantom models (wde<-1), energy transfer from dark energy to dark matter is moderately favoured over the non-interacting model; 0-0.57 < Γ/H0 < -0.1 at 95% CL with CMB+BAO, while addition of the lensing data shifts this to -0.46 < Γ/H0 < -0.01.

  5. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first broad-band acoustic pulse at a first broad-band frequency range having a first central frequency and a first bandwidth spread; generating a second broad-band acoustic pulse at a second broad-band frequency range different than the first frequency range having a second central frequency and a second bandwidth spread, wherein the first acoustic pulse and second acoustic pulse are generated by at least one transducer arranged on a tool located within the borehole; and transmitting the first and the second broad-band acoustic pulses into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated pulse by a non-linear mixing of the first and second acoustic pulses, wherein the collimated pulse has a frequency equal to the difference in frequencies between the first central frequency and the second central frequency and a bandwidth spread equal to the sum of the first bandwidth spread and the second bandwidth spread.

  6. High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-05-01

    A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.

  7. An analysis of the acoustic energy in a flow duct with a vortex sheet

    NASA Astrophysics Data System (ADS)

    Boij, Susann

    2009-03-01

    Modelling the acoustic scattering and absorption at an area expansion in a flow duct requires the incorporation of the flow-acoustic interaction. One way to quantify the interaction is to study the energy in the incident and the scattered field respectively. If the interaction is strong, energy may be transferred between the acoustic and the main flow field. In particular, shear layers, that may be the result of the flow separation, are unstable to low frequency perturbations such as acoustic waves. The vortex sheet model is an analytical linear acoustic model, developed to study scattering of acoustic waves in duct with sharp edges including the interaction with primarily the separated flows that arise at sharp edges and corners. In the model the flow field at an area expansion in a duct is described as a jet issuing into the larger part of the duct. In this paper, the flow-acoustic interaction is described in terms of energy flow. The linear convective wave equation is solved for a two-dimensional, rectangular flow duct geometry. The resulting modes are classified as "hydrodynamic" and "acoustic" when separating the acoustic energy from the part of the energy arising from the steady flow field. In the downstream duct, the set of modes for this complex flow field are not orthogonal. For small Strouhal numbers, the plane wave and the two hydrodynamic waves are all plane, although propagating with different wave speeds. As the Strouhal numbers increases, the hydrodynamic modes changes to get a shape where the amplitude is concentrated near the vortex sheet. In an intermediate Strouhal number region, the mode shape of the first higher order mode is very similar to the damped hydrodynamic mode. A physical interpretation of this is that we have a strong coupling between the flow field and the acoustic field when the modes are non-orthogonal. Energy concepts for this duct configuration and mean flow profile are introduced. The energy is formulated such that the vortex

  8. The Nuclear Energy Density Functional Formalism

    NASA Astrophysics Data System (ADS)

    Duguet, T.

    The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a Hamiltonian-based picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a mathematically meaningful fashion even if E[g',g] does not derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making any reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a physical standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.

  9. Nuclear symmetry energy at subnormal densities from measured nuclear masses

    SciTech Connect

    Liu Min; Wang Ning; Li Zhuxia; Zhang Fengshou

    2010-12-15

    The symmetry energy coefficients for nuclei with mass number A=20-250 are extracted from more than 2000 measured nuclear masses. With the semiempirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of the symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

  10. Building a Universal Nuclear Energy Density Functional

    SciTech Connect

    Carlson, Joe A.; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold:  First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties;  Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data;  Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  11. Superintense ion beam with high energy density

    NASA Astrophysics Data System (ADS)

    Dudnikov, Vadim; Dudnikova, Galina

    2008-04-01

    The energy density of ion beam accumulated in a storage ring can be increased dramatically with using of space charge compensation as was demonstrated in experiments [1]. The intensity of said superintense beam can be far greater than a space charge limit without space charge compensation. The model of secondary plasma build up with secondary ion-electron emission as a source of delayed electrons has been presented and discussed. This model can be used for explanation of bunched beam instability with electron surviving after gap, for prediction of e-cloud generation in coasting and long bunches beam, and can be important for pressure rise in worm and cold sections of storage rings. A fast desorption by ion of physically adsorbed molecules can explain a ``first pulse Instability''. Application of this model for e-p instability selfstabilization and superintense circulating beam accumulation is considered. Importance of secondary plasma for high perveance ion beam stabilization in ion implantation will be considered. Preliminary results of simulation of electron and ion accumulation will be presented. [1]. Belchenko et al., Xth International Particle Accelerator Conference, Protvino, 1977, Vol. 2, p. 287.

  12. Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1974-01-01

    Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.

  13. Dynamical energy analysis for built-up acoustic systems at high frequencies.

    PubMed

    Chappell, D J; Giani, S; Tanner, G

    2011-09-01

    Standard methods for describing the intensity distribution of mechanical and acoustic wave fields in the high frequency asymptotic limit are often based on flow transport equations. Common techniques are statistical energy analysis, employed mostly in the context of vibro-acoustics, and ray tracing, a popular tool in architectural acoustics. Dynamical energy analysis makes it possible to interpolate between standard statistical energy analysis and full ray tracing, containing both of these methods as limiting cases. In this work a version of dynamical energy analysis based on a Chebyshev basis expansion of the Perron-Frobenius operator governing the ray dynamics is introduced. It is shown that the technique can efficiently deal with multi-component systems overcoming typical geometrical limitations present in statistical energy analysis. Results are compared with state-of-the-art hp-adaptive discontinuous Galerkin finite element simulations. PMID:21895083

  14. The mapping of electronic energy distributions using experimental electron density.

    PubMed

    Tsirelson, Vladimir G

    2002-08-01

    It is demonstrated that the approximate kinetic energy density calculated using the second-order gradient expansion with parameters of the multipole model fitted to experimental structure factors reproduces the main features of this quantity in a molecular or crystal position space. The use of the local virial theorem provides an appropriate derivation of approximate potential energy density and electronic energy density from the experimental (model) electron density and its derivatives. Consideration of these functions is not restricted by the critical points in the electron density and provides a comprehensive characterization of bonding in molecules and crystals. PMID:12149553

  15. [Physiological-occupational assessment of acoustic load with equal energy but different time and informational characteristics].

    PubMed

    Suvorov, G A; Shkarinov, L N; Kravchenko, O K; Kur'erov, N N

    1999-01-01

    The article deals with results of experimental study comparing effects of 4 types of acoustic load--noise (constant and impulse) and music (electronic symphonic one and rap)--on hearing sensitivity, processes in nervous system and subjective evaluation. All types of acoustic load were equal in energy (on evaluation according to equivalent level during the experiment). The study included 2 levels of load--90 and 95 dB. The differences revealed demonstrate importance of impulse parameters of noise and musical load for reactions of acoustic analyzer and central nervous system. The experiments show that evaluation of harm caused by temporary and impulse noises should be based not only on assessment of specific (hearing) function, but also on parameters of central nervous system state. The authors found that music of certain acoustic and informational parameters may harm hearing function. PMID:10420710

  16. Seismic-acoustic energy partitioning during a paroxysmal eruptive phase of Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Palacios, Pablo B.; Díez, Mikel; Kendall, J.-Michael; Mader, Heidy M.

    2016-04-01

    Studies of discrete volcanic explosions, that usually last less than two or three minutes, have suggested that the partitioning of seismic-acoustic energy is likely related to a range of physical mechanisms that depend on magma properties and other physical constraints such as the location of the fragmentation surface. In this paper we explore the energy partition of a paroxysmal eruptive phase of Tungurahua volcano that lasted for over four hours, on 2006 July 14 - 15, using seismic-acoustic information recorded by stations on its flanks (near field). We find evidence of a linear scaling between seismic and acoustic energies, with time dependent intensities, during the sustained explosive phase of the eruption. Furthermore, we argue that this scaling can be explained by two different processes: (1) the fragmentation region ultimately acts as the common source of energy producing both direct seismic waves, that travel through the volcanic edifice, and direct acoustic waves coming from a disturbed atmosphere above the summit; (2) the coupling of acoustic waves with the ground to cause seismic waves. Both processes are concurrent, however we have found that the first one is dominant for seismic records below 4 Hz. Here we use the linear scaling of intensities to construct seismic and acoustic indices, which, we argue, could be used to track an ongoing eruption. Thus, especially in strong paroxysms that can produce pyroclastic flows, the index correlation and their levels can be used as quantitative monitoring parameters to assess the volcanic hazard in real time. Additionally, we suggest from the linear scaling that the source type for both cases, seismic and acoustic, is dipolar and dominant in the near field.

  17. Seismic-acoustic energy partitioning during a paroxysmal eruptive phase of Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Palacios, Pablo B.; Díez, Mikel; Kendall, J.-Michael; Mader, Heidy M.

    2016-06-01

    Studies of discrete volcanic explosions, that usually last less than 2 or 3 min, have suggested that the partitioning of seismic-acoustic energy is likely related to a range of physical mechanisms that depend on magma properties and other physical constraints such as the location of the fragmentation surface. In this paper, we explore the energy partition of a paroxysmal eruptive phase of Tungurahua volcano that lasted for over 4 hr, on 2006 July 14-15, using seismic-acoustic information recorded by stations on its flanks (near field). We find evidence of a linear scaling between seismic and acoustic energies, with time-dependent intensities, during the sustained explosive phase of the eruption. Furthermore, we argue that this scaling can be explained by two different processes: (1) the fragmentation region ultimately acts as the common source of energy producing both direct seismic waves, that travel through the volcanic edifice, and direct acoustic waves coming from a disturbed atmosphere above the summit; (2) the coupling of acoustic waves with the ground to cause seismic waves. Both processes are concurrent, however we have found that the first one is dominant for seismic records below 4 Hz. Here we use the linear scaling of intensities to construct seismic and acoustic indices, which, we argue, could be used to track an ongoing eruption. Thus, especially in strong paroxysms that can produce pyroclastic flows, the index correlation and their levels can be used as quantitative monitoring parameters to assess the volcanic hazard in real time. Additionally, we suggest from the linear scaling that the source type for both cases, seismic and acoustic, is dipolar and dominant in the near field.

  18. Acoustical Detection of High-Density Krill Demersal Layers in the Submarine Canyons off Georges Bank.

    PubMed

    Greene, C H; Wiebe, P H; Burczynski, J; Youngbluth, M J

    1988-07-15

    High-density demersal layers of krill have been detected in the submarine canyons off Georges Bank by means of a high-frequency, dual-beam bioacoustical technique. Krill densities in these demersal layers were observed to be two to three orders of magnitude greater than the highest densities observed in water-column scattering layers. Such abundances may help explain the unusually high squid and demersal fish production estimates attributed to the Georges Bank ecosystem. PMID:17734865

  19. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses

    PubMed Central

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-01-01

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus. PMID:26647655

  20. Efficient Structure Resonance Energy Transfer from Microwaves to Confined Acoustic Vibrations in Viruses.

    PubMed

    Yang, Szu-Chi; Lin, Huan-Chun; Liu, Tzu-Ming; Lu, Jen-Tang; Hung, Wan-Ting; Huang, Yu-Ru; Tsai, Yi-Chun; Kao, Chuan-Liang; Chen, Shih-Yuan; Sun, Chi-Kuang

    2015-01-01

    Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus. PMID:26647655

  1. Symmetry Energy as a Function of Density and Mass

    SciTech Connect

    Danielewicz, Pawel; Lee, Jenny

    2007-10-26

    Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a{sub a}{sup V} = (31.5-33.5) MeV for the volume coefficient and a{sub a}{sup S} = (9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L{approx}95 MeV and K{sub sym}{approx}25 MeV.

  2. Theoretical study of lithium ionic conductors by electronic stress tensor density and electronic kinetic energy density.

    PubMed

    Nozaki, Hiroo; Fujii, Yosuke; Ichikawa, Kazuhide; Watanabe, Taku; Aihara, Yuichi; Tachibana, Akitomo

    2016-07-01

    We analyze the electronic structure of lithium ionic conductors, Li3PO4 and Li3PS4, using the electronic stress tensor density and kinetic energy density with special focus on the ionic bonds among them. We find that, as long as we examine the pattern of the eigenvalues of the electronic stress tensor density, we cannot distinguish between the ionic bonds and bonds among metalloid atoms. We then show that they can be distinguished by looking at the morphology of the electronic interface, the zero surface of the electronic kinetic energy density. © 2016 Wiley Periodicals, Inc. PMID:27232445

  3. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  4. Volcanic Lightning, Pyroclastic Density Currents, Ballistic Fall, Vent Tremor, and One Very Loud Blast: Acoustic Analysis of the 14 July 2013 Vulcanian Eruption at Tungurahua, Ecuador.

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J. B.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Hall, M. L.; Ruiz, M. C.

    2014-12-01

    Acoustic recordings reveal a variety of volcanic activities during an exceptionally loud vulcanian eruption at Tungurahua. A period of several months of mild surface activity came to an abrupt end with the emission of a powerful blast wave heard at least 180 km away. Sensors 2080 m from the vent recorded a stepped rise to its maximum overpressure of 1220 Pa (corresponding to a sound pressure level of 156 dB) and its unusually long dominant period of 5.6 s. We discuss source processes that produced the blast wave, considering that wave propagation could be nonlinear near the vent because of high overpressures. More than an hour of acoustic activity was recorded after the blast wave, including sound from falling ballistics, reflections of the blast wave from nearby mountains, pyroclastic density currents, and acoustic tremor at the vent. Glitches in the acoustic records related to plume lightning were also serendipitously observed, although thunder could not be unambiguously identified. We discuss acoustic signatures of falling ballistics and pyroclastic density currents and how array-style deployments and analytic methods can be used to reveal them. Placement of sensors high on the volcano's slopes facilitated resolving these distinct processes. This study demonstrates that near-vent, array-style acoustic installations can be used to monitor various types of volcanic activity.

  5. High energy density propulsion systems and small engine dynamometer

    NASA Astrophysics Data System (ADS)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  6. A review of dietary energy density and obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of dietary energy density (ED) in energy intake regulation and weight management remains controversial. Relationships between ED, energy intake, and body weight were determined in a review of pertinent studies examining the effects of ED on energy intake (EI) and/or body weight in non-elder...

  7. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction.

    PubMed

    Palacios, Vicente; López-Bao, José Vicente; Llaneza, Luis; Fernández, Carlos; Font, Enrique

    2016-01-01

    Population monitoring is crucial for wildlife management and conservation. In the last few decades, wildlife researchers have increasingly applied bioacoustics tools to obtain information on several essential ecological parameters, such as distribution and abundance. One such application involves wolves (Canis lupus). These canids respond to simulated howls by emitting group vocalizations known as chorus howls. These responses to simulated howls reveal the presence of wolf litters during the breeding period and are therefore often used to determine the status of wolf populations. However, the acoustic structure of chorus howls is complex and discriminating the presence of pups in a chorus is sometimes difficult, even for experienced observers. In this study, we evaluate the usefulness of analyses of the acoustic energy distribution in chorus howls to identify the presence of pups in a chorus. We analysed 110 Iberian wolf chorus howls with known pack composition and found that the acoustic energy distribution is concentrated at higher frequencies when there are pups vocalizing. We built predictive models using acoustic energy distribution features to determine the presence of pups in a chorus, concluding that the acoustic energy distribution in chorus howls can be used to determine the presence of wolf pups in a pack. The method we outline here is objective, accurate, easily implemented, and independent of the observer's experience. These advantages are especially relevant in the case of broad scale surveys or when many observers are involved. Furthermore, the analysis of the acoustic energy distribution can be implemented for monitoring other social canids that emit chorus howls such as jackals or coyotes, provides an easy way to obtain information on ecological parameters such as reproductive success, and could be useful to study other group vocalizations. PMID:27144887

  8. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction

    PubMed Central

    López-Bao, José Vicente; Llaneza, Luis; Fernández, Carlos; Font, Enrique

    2016-01-01

    Population monitoring is crucial for wildlife management and conservation. In the last few decades, wildlife researchers have increasingly applied bioacoustics tools to obtain information on several essential ecological parameters, such as distribution and abundance. One such application involves wolves (Canis lupus). These canids respond to simulated howls by emitting group vocalizations known as chorus howls. These responses to simulated howls reveal the presence of wolf litters during the breeding period and are therefore often used to determine the status of wolf populations. However, the acoustic structure of chorus howls is complex and discriminating the presence of pups in a chorus is sometimes difficult, even for experienced observers. In this study, we evaluate the usefulness of analyses of the acoustic energy distribution in chorus howls to identify the presence of pups in a chorus. We analysed 110 Iberian wolf chorus howls with known pack composition and found that the acoustic energy distribution is concentrated at higher frequencies when there are pups vocalizing. We built predictive models using acoustic energy distribution features to determine the presence of pups in a chorus, concluding that the acoustic energy distribution in chorus howls can be used to determine the presence of wolf pups in a pack. The method we outline here is objective, accurate, easily implemented, and independent of the observer's experience. These advantages are especially relevant in the case of broad scale surveys or when many observers are involved. Furthermore, the analysis of the acoustic energy distribution can be implemented for monitoring other social canids that emit chorus howls such as jackals or coyotes, provides an easy way to obtain information on ecological parameters such as reproductive success, and could be useful to study other group vocalizations. PMID:27144887

  9. Theoretical Estimation of the Acoustic Energy Generation and Absorption Caused by Jet Oscillation

    NASA Astrophysics Data System (ADS)

    Takahashi, Kin'ya; Iwagami, Sho; Kobayashi, Taizo; Takami, Toshiya

    2016-04-01

    We investigate the energy transfer between the fluid field and acoustic field caused by a jet driven by an acoustic particle velocity field across it, which is the key to understanding the aerodynamic sound generation of flue instruments, such as the recorder, flute, and organ pipe. Howe's energy corollary allows us to estimate the energy transfer between these two fields. For simplicity, we consider the situation such that a free jet is driven by a uniform acoustic particle velocity field across it. We improve the semi-empirical model of the oscillating jet, i.e., exponentially growing jet model, which has been studied in the field of musical acoustics, and introduce a polynomially growing jet model so as to apply Howe's formula to it. It is found that the relative phase between the acoustic oscillation and jet oscillation, which changes with the distance from the flue exit, determines the quantity of the energy transfer between the two fields. The acoustic energy is mainly generated in the downstream area, but it is consumed in the upstream area near the flue exit in driving the jet. This theoretical examination well explains the numerical calculation of Howe's formula for the two-dimensional flue instrument model in our previous work [Fluid Dyn. Res. 46, 061411 (2014)] as well as the experimental result of Yoshikawa et al. [J. Sound Vib. 331, 2558 (2012)].

  10. Nonlinear coupling of acoustic and shear mode in a strongly coupled dusty plasma with a density dependent viscosity

    NASA Astrophysics Data System (ADS)

    Garai, S.; Janaki, M. S.; Chakrabarti, N.

    2016-09-01

    The nonlinear propagation of low frequency waves, in a collisionless, strongly coupled dusty plasma (SCDP) with a density dependent viscosity, has been studied with a proper Galilean invariant generalized hydrodynamic (GH) model. The well known reductive perturbation technique (RPT) has been employed in obtaining the solutions of the longitudinal and transverse perturbations. It has been found that the nonlinear propagation of the acoustic perturbations govern with the modified Korteweg-de Vries (KdV) equation and are decoupled from the sheared fluctuations. In the regions, where transversal gradients of the flow exists, coupling between the longitudinal and transverse perturbations occurs due to convective nonlinearity which is true for the homogeneous case also. The results, obtained here, can have relative significance to astrophysical context as well as in laboratory plasmas.

  11. The subgrid modeling of propagation of acoustic waves in heterogeneous media with multiscale isotropic random elastic stiffness and density

    NASA Astrophysics Data System (ADS)

    Soboleva, O. N.; Kurochkina, E. P.

    2016-01-01

    The effective coefficients in the problem of the acoustic wave propagation have been calculated for a multiscale 3D isotropic medium using a subgrid modeling approach. The density and the elastic stiffness have been represented mathematically by the Kolmogorov multiplicative cascades, which, to date, appear to be the only mechanisms for generating a stationary multifractal fields with a log-stable probability distribution. The fields with the stable distribution are described with the help of linear combination random values ?, ? and weight coefficients ?, ?, which satisfy certain conditions in the nodes of spatial grid ?. The parameters of the stable distribution of the random values ?, ? are equal: ?, ?, ?, ?. The wavelength is assumed to be large as compared with the scale of heterogeneities of the medium. We consider the regime in which the waves propagate over a distance of the typical wave length in source. The theoretical results obtained in this paper are compared with the results of a direct 3D numerical simulation.

  12. Investigation of the nature of thermal stimulation of acoustic emission

    SciTech Connect

    Muravin, G.B.; Ship, V.V.; Lezvinskaya, L.M.

    1988-12-01

    The nature of thermal stimulation of acoustic emission was investigated. Data are given on the distribution of the density of the energy of deformation at a crack tip and the parameters of acoustic emission with different combinations of mechanical and thermal action. It was established that thermal stimulation of acoustic emission is related to advance and growth of a crack under the action of thermoelastic shear stresses. An increases in heating power causes an increase in the energy of deformation, shear stresses at the crack edges, and acoustic emission energy. The position of the minimum in the density of the energy of deformation and of the maximum in acoustic emission energy coincides with the direction of crack advance, which with the use of the method of thermally stimulated acoustic emission makes it possible to not only reveal crack-like defects but also to determine potentially dangerous directions of their development.

  13. Update of axion CDM energy density

    SciTech Connect

    Huh, Ji-Haeng

    2008-11-23

    We update cosmological bound on axion model. The contribution from the anharmonic effect and the newly introduced initial overshoot correction are considered. We present an explicit formula for the axion relic density in terms of the QCD scale {lambda}{sub QCD}, the current quark masses m{sub q}'s and the Peccei-Quinn scale F{sub a}, including firstly introduced 1.85 factor which is from the initial overshoot.

  14. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  15. Contributed Review: Recent developments in acoustic energy harvesting for autonomous wireless sensor nodes applications

    NASA Astrophysics Data System (ADS)

    Khan, Farid Ullah; Khattak, Muhammad Umair

    2016-02-01

    Rapid developments in micro electronics, micro fabrication, ultra-large scale of integration, ultra-low power sensors, and wireless technology have greatly reduced the power consumption requirements of wireless sensor nodes (WSNs) and make it possible to operate these devices with energy harvesters. Likewise, other energy harvesters, acoustic energy harvesters (AEHs), have been developed and are gaining swift interest in last few years. This paper presents a review of AEHs reported in the literature for the applications of WSNs. Based on transduction mechanism, there are two types of AEHs: piezoelectric acoustic energy harvesters (PEAEHs) and electromagnetic acoustic energy harvesters (EMAEHs). The reported AEHs are mostly characterized under the sound pressure level (SPL) that ranges from 45 to 161 dB. The range for resonant frequency of the produced AEHs is from 146 Hz to 24 kHz and these produced 0.68 × 10-6 μW to 30 mW power. The maximum power (30 mW) is produced by a PEAEH, when the harvester is subjected to a SPL of 161 dB and 2.64 kHz frequency. However, for EMAEHs, the maximum power reported is about 1.96 mW (at 125 dB and 143 Hz). Under the comparable SPLs, the power production by the reported EMAEHs is relatively better than that of PEAEHs, moreover, due to lower resonant frequency, the EMAEHs are more feasible for the low frequency band acoustical environment.

  16. Contributed Review: Recent developments in acoustic energy harvesting for autonomous wireless sensor nodes applications.

    PubMed

    Khan, Farid Ullah; Khattak, Muhammad Umair

    2016-02-01

    Rapid developments in micro electronics, micro fabrication, ultra-large scale of integration, ultra-low power sensors, and wireless technology have greatly reduced the power consumption requirements of wireless sensor nodes (WSNs) and make it possible to operate these devices with energy harvesters. Likewise, other energy harvesters, acoustic energy harvesters (AEHs), have been developed and are gaining swift interest in last few years. This paper presents a review of AEHs reported in the literature for the applications of WSNs. Based on transduction mechanism, there are two types of AEHs: piezoelectric acoustic energy harvesters (PEAEHs) and electromagnetic acoustic energy harvesters (EMAEHs). The reported AEHs are mostly characterized under the sound pressure level (SPL) that ranges from 45 to 161 dB. The range for resonant frequency of the produced AEHs is from 146 Hz to 24 kHz and these produced 0.68 × 10(-6) μW to 30 mW power. The maximum power (30 mW) is produced by a PEAEH, when the harvester is subjected to a SPL of 161 dB and 2.64 kHz frequency. However, for EMAEHs, the maximum power reported is about 1.96 mW (at 125 dB and 143 Hz). Under the comparable SPLs, the power production by the reported EMAEHs is relatively better than that of PEAEHs, moreover, due to lower resonant frequency, the EMAEHs are more feasible for the low frequency band acoustical environment. PMID:26931827

  17. Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars

    NASA Astrophysics Data System (ADS)

    Oudich, Mourad; Djafari-Rouhani, Bahram; Pennec, Yan; Assouar, M. Badreddine; Bonello, Bernard

    2014-11-01

    We investigate the elastic wave dispersion by a phononic metamaterial plate containing low frequency resonator stubs arranged periodically over the plate. We show that this system not only provides stop bands for wavelengths much larger than the periodicity but also displays negative behavior of its effective mass density under the homogenization assumption. A numerical method is used to calculate the plate's effective dynamic mass density as function of the frequency where the metamaterial is considered as homogeneous plate for these large wavelengths. Strong anisotropy of the effective mass density matrix is observed around the resonance frequencies where the gaps are opened. In these regions, we demonstrate that the effective matrix density components take negative values. For each of these components, the negative behavior is studied by taking into account the polarization of the involved resonant modes as well as their associated partial band gaps opened for each specific Lamb symmetry modes. We found that coupling between Lamb waves and resonant modes strongly affects the effective density of the whole plate especially in the coupling frequency regions of the gaps.

  18. Longitudinal Density Modulation and Energy Conversion in Intense Beams

    SciTech Connect

    Harris, J; Neumann, J; Tian, K; O'Shea, P

    2006-02-17

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may under some circumstances be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams, and discusses three recent experiments related to the dynamics of density-modulated electron beams.

  19. Ultra high energy density and fast discharge nanocomposite capacitors

    NASA Astrophysics Data System (ADS)

    Tang, Haixiong; Sodano, Henry A.

    2013-04-01

    Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

  20. Energy Densities in the Strong-Interaction Limit of Density Functional Theory.

    PubMed

    Mirtschink, André; Seidl, Michael; Gori-Giorgi, Paola

    2012-09-11

    We discuss energy densities in the strong-interaction limit of density functional theory, deriving an exact expression within the definition (gauge) of the electrostatic potential of the exchange-correlation hole. Exact results for small atoms and small model quantum dots (Hooke's atoms) are compared with available approximations defined in the same gauge. The idea of a local interpolation along the adiabatic connection is discussed, comparing the energy densities of the Kohn-Sham, the physical, and the strong-interacting systems. We also use our results to analyze the local version of the Lieb-Oxford bound, widely used in the construction of approximate exchange-correlation functionals. PMID:26605721

  1. High-Energy-Density Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.

    1993-01-01

    Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.

  2. Enhanced acoustoelectric coupling in acoustic energy harvester using dual Helmholtz resonators.

    PubMed

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this paper, enhanced acoustoelectric transduction in an acoustic energy harvester using dual Helmholtz resonators has been reported. The harvester uses a pair of cavities mechanically coupled with a compliant perforated plate to enhance the acoustic coupling between the cavity and the plate. The experimental results show that the volume optimization of the second cavity can significantly increase the generated electric voltage up to 400% and raise the output power to 16 times as large as that of a harvester using a single Helmholtz resonator at resonant frequencies primarily related to the plate. PMID:24081260

  3. Postmortem validation of breast density using dual-energy mammography

    SciTech Connect

    Molloi, Sabee Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  4. Spin constraints on nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Robledo, L. M.; Bernard, R. N.; Bertsch, G. F.

    2014-02-01

    The Gallagher-Moszkowski rule in the spectroscopy of odd-odd nuclei imposes a new spin constraint on the energy functionals for self-consistent mean field theory. The commonly used parametrization of the effective three-body interaction in the Gogny and Skyrme families of energy functionals is ill suited to satisfy the spin constraint. In particular, the Gogny parametrization of the three-body interaction has the spin dependence opposite to that required by the observed spectra. The two-body part has a correct sign, but in combination the rule is violated as often as not. We conclude that a new functional form is needed for the effective three-body interaction that can take into better account the different spin-isospin channels of the interaction.

  5. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  6. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    PubMed

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys. PMID:27176512

  7. Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail electron distribution

    SciTech Connect

    Younsi, Smain; Tribeche, Mouloud

    2008-07-15

    Large amplitude as well as weakly nonlinear dust acoustic waves in a mixed nonthermal high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from Boltzmann distribution on the large amplitude dust acoustic soliton are then considered. The dust charge variation leads to an additional enlargement of the dust acoustic soliton, which is more pronounced as the electrons evolve far away from Maxwell-Boltzmann distribution. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. The results complement and provide new insights into our previously published results on this problem [K. Aoutou, M. Tribeche, and T. H. Zerguini, Phys. Plasmas 15, 013702 (2008)].

  8. An exposition on Friedmann cosmology with negative energy densities

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.; Joshi, Ravi; Patla, Bijunath R.

    2015-06-01

    How would negative energy density affect a classic Friedmann cosmology? Although never measured and possibly unphysical, certain realizations of quantum field theories leaves the door open for such a possibility. In this paper we analyze the evolution of a universe comprising varying amounts of negative energy forms. Negative energy components have negative normalized energy densities, Ω < 0. They include negative phantom energy with an equation of state parameter w < -1, negative cosmological constant: w=-1, negative domain walls: w = -2/3, negative cosmic strings: w=-1/3, negative mass: w = 0, negative radiation: w = 1/3 and negative ultralight: w > 1/3. Assuming that such energy forms generate pressure like perfect fluids, the attractive or repulsive nature of negative energy components are reviewed. The Friedmann equation is satisfied only when negative energy forms are coupled to a greater magnitude of positive energy forms or positive curvature. We show that the solutions exhibit cyclic evolution with bounces and turnovers.The future and fate of such universes in terms of curvature, temperature, acceleration, and energy density are reviewed. The end states are dubbed ``big crunch," `` big void," or ``big rip" and further qualified as ``warped",``curved", or ``flat",``hot" versus ``cold", ``accelerating" versus ``decelerating" versus ``coasting". A universe that ends by contracting to zero energy density is termed ``big poof." Which contracting universes ``bounce" in expansion and which expanding universes ``turnover" into contraction are also reviewed.

  9. Design and Implementation of an Acoustic X-ray Detector to Measure the LCLS Beam Energy

    SciTech Connect

    Loos, Jennifer L.; /San Jose State U. /SLAC

    2010-08-25

    On April 11, 2009, first light was seen from LCLS. The present apparatus being used to measure the x-ray beam energy is the Total Energy Sensor which uses a suite of thermal sensors. Another device is needed to cross-check the energy measurements. This new diagnostic tool utilizes radiation acoustic phenomena to determine the x-ray beam energy. A target is hit by the x-rays from the beam, and a voltage is generated in two piezoelectric sensors attached to the target in response to the consequent deformation. Once the voltage is known, the power can be obtained. Thermal sensors will also be attached to the target for calibration purposes. Material selection and design were based on: durability, ultra-high vacuum compatibility, safety and thermal properties. The target material was also chosen for its acoustic properties which were determined from tests using a frequency generator and laser. Initial tests suggest the device will function as anticipated.

  10. Negative vacuum energy densities and the causal diamond measure

    SciTech Connect

    Salem, Michael P.

    2009-07-15

    Arguably a major success of the landscape picture is the prediction of a small, nonzero vacuum energy density. The details of this prediction depend in part on how the diverging spacetime volume of the multiverse is regulated, a question that remains unresolved. One proposal, the causal diamond measure, has demonstrated many phenomenological successes, including predicting a distribution of positive vacuum energy densities in good agreement with observation. In the string landscape, however, the vacuum energy density is expected to take positive and negative values. We find the causal diamond measure gives a poor fit to observation in such a landscape - in particular, 99.6% of observers in galaxies seemingly just like ours measure a vacuum energy density smaller than we do, most of them measuring it to be negative.

  11. Design and Modeling of High Power Density Acoustic Transducer Materials for Autonomous Undersea Vehicles

    NASA Astrophysics Data System (ADS)

    Heitmann, Adam Arthur

    electromechanical properties of ferroelectric solid solutions based on barium titanate and lead titanate. From the computed binary solid solution phase diagrams, the theory is extended to ternary systems. The ternary solid solutions of PMN-PZT and PZN-PZT are explored, electromechanical properties of targeted compositions for use in next generation acoustic transducers are computed, and the predictive capability of the theory is established. In addition, thermal and electromechanical properties are measured for several compositions adjacent to the morphotropic boundary in the ferroelectric solid solution PZN-PT and used to verify the core assumptions of the theory.

  12. Vacuum Casimir energy densities and field divergences at boundaries

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Butera, Salvatore; Lattuca, Margherita; Passante, Roberto; Rizzuto, Lucia; Spagnolo, Salvatore

    2015-06-01

    We consider and review the emergence of singular field fluctuations or energy densities at sharp boundaries or point-like field sources in the vacuum. The presence of singular energy densities of a field may be relevant from a conceptual point of view, because they contribute to the self-energy of the system. They could also generate significant gravitational effects. We first consider the case of the interface between a metallic boundary and the vacuum, and obtain the structure of the singular electric and magnetic energy densities at the interface through an appropriate limit from a dielectric to an ideal conductor. Then, we consider the case of a nondispersive and nondissipative point-like source of the electromagnetic field, described by its polarizability, and show that also in this case the electric and magnetic energy densities show a singular structure at the source position. We discuss how, in both cases, these singularities give an essential contribution to the electromagnetic self-energy of the system; moreover, they solve an apparent inconsistency between the space integral of the field energy density and the average value of the field Hamiltonian. The singular behavior we find is softened, or even eliminated, for boundaries fluctuating in space and for extended field sources. We discuss in detail the case in which a reflecting boundary is not fixed in space but is allowed to move around an equilibrium position, under the effect of quantum fluctuations of its position. Specifically, we consider the simple case of a 1D massless scalar field in a cavity with one fixed and one mobile wall described quantum-mechanically. We investigate how the possible motion of the wall changes the vacuum fluctuations and the energy density of the field, compared with the fixed-wall case. Also, we explicitly show how the fluctuating motion of the wall smears out the singular behaviour of the field energy density at the boundary.

  13. Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas

    SciTech Connect

    Del Sorbo, D.; Feugeas, J.-L.; Nicolaï, Ph.; Olazabal-Loumé, M.; Dubroca, B.; Guisset, S.; Touati, M.; Tikhonchuk, V.

    2015-08-15

    Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we present and test the results of a nonlocal model based on the first angular moments of a simplified Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the Boltzman H-theorem). It provides a better description of the electron distribution function, thus enabling studies of small scale kinetic effects within the hydrodynamic framework. Examples of instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and compared with the classical formula.

  14. Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Del Sorbo, D.; Feugeas, J.-L.; Nicolaï, Ph.; Olazabal-Loumé, M.; Dubroca, B.; Guisset, S.; Touati, M.; Tikhonchuk, V.

    2015-08-01

    Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we present and test the results of a nonlocal model based on the first angular moments of a simplified Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the Boltzman H-theorem). It provides a better description of the electron distribution function, thus enabling studies of small scale kinetic effects within the hydrodynamic framework. Examples of instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and compared with the classical formula.

  15. Neutral temperature and electron-density measurements in the lower E region by vertical HF sounding in the presence of an acoustic wave

    NASA Astrophysics Data System (ADS)

    Blanc, E.

    1982-04-01

    It is noted that an acoustic wave generated at ground level and propagating vertically through the lower ionosphere produces partial reflections of radio waves transmitted by a vertical sounder. The Doppler effect of the radio wave produced by the acoustic wave motion depends on the properties of the atmosphere and ionosphere. It is shown that this permits a determination of both the neutral-temperature and the electron-density profiles of the lower E region. The accuracy and the advantages offered by this method are discussed, and some experimental results are compared with those of other measurement techniques.

  16. Analytical gradients for excitation energies from frozen-density embedding.

    PubMed

    Kovyrshin, Arseny; Neugebauer, Johannes

    2016-08-21

    The formulation of analytical excitation-energy gradients from time-dependent density functional theory within the frozen-density embedding framework is presented. In addition to a comprehensive mathematical derivation, we discuss details of the numerical implementation in the Slater-function based Amsterdam Density Functional (ADF) program. Particular emphasis is put on the consistency in the use of approximations for the evaluation of second- and third-order non-additive kinetic-energy and exchange-correlation functional derivatives appearing in the final expression for the excitation-energy gradient. We test the implementation for different chemical systems in which molecular excited-state potential-energy curves are affected by another subsystem. It is demonstrated that the analytical implementation for the evaluation of excitation-energy gradients yields results in close agreement with data from numerical differentiation. In addition, we show that our analytical results are numerically more stable and thus preferable over the numerical ones. PMID:26996970

  17. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  18. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model.

    PubMed

    Buogo, Silvano; Cannelli, Giovanni B

    2002-06-01

    The growth, collapse, and rebound of a vapor bubble generated by an underwater spark is studied by means of high-speed cinematography, simultaneously acquiring the emitted acoustic signature. Video recordings show that the growth and collapse phases are nearly symmetrical during the first two or three cycles, the bubble shape being approximately spherical. After 2-3 cycles the bubble behavior changes from a collapsing/rebounding regime with sound-emitting implosions to a pulsating regime with no implosions. The motion of the bubble wall during the first collapses was found to be consistent with the Rayleigh model of a cavity in an incompressible liquid, with the inclusion of a vapor pressure term at constant temperature within each bubble cycle. An estimate of the pressure inside the bubble is obtained measuring the collapse time and maximum radius, and the amount of energy converted into acoustical energy upon each implosion is deduced. The resulting value of acoustic efficiency was found to be in agreement with measurements based on the emitted acoustic pulse. PMID:12083190

  19. Hybrid system for rechargeable magnesium battery with high energy density.

    PubMed

    Chang, Zheng; Yang, Yaqiong; Wang, Xiaowei; Li, Minxia; Fu, Zhengwen; Wu, Yuping; Holze, Rudolf

    2015-01-01

    One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent-based electrolyte as the negative electrode, a lithium intercalation compound in aqueous solution as the positive electrode, and a solid electrolyte as a separator. Its average discharge voltage is 2.1 V with stable discharge platform and good cycling life. The calculated energy density based on the two electrodes is high. These findings open another door to rechargeable magnesium batteries. PMID:26173624

  20. Hybrid system for rechargeable magnesium battery with high energy density

    PubMed Central

    Chang, Zheng; Yang, Yaqiong; Wang, Xiaowei; Li, Minxia; Fu, Zhengwen; Wu, Yuping; Holze, Rudolf

    2015-01-01

    One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent-based electrolyte as the negative electrode, a lithium intercalation compound in aqueous solution as the positive electrode, and a solid electrolyte as a separator. Its average discharge voltage is 2.1 V with stable discharge platform and good cycling life. The calculated energy density based on the two electrodes is high. These findings open another door to rechargeable magnesium batteries. PMID:26173624

  1. Effect of wind and temperature gradients on received acoustic energy

    NASA Technical Reports Server (NTRS)

    Brienzo, Richard K.

    1990-01-01

    The effect of refraction due to wind and temperature gradients on energy received from low flying aircraft is examined. A series of helicopter and jet flyby's were recorded with a microphone array on two separate days, each with distinctly different meteorological conditions. Energy in the 100 to 200 Hertz band is shown as a function of aircraft range from the array, and compared with the output of the Fast Field Program.

  2. Internal wave pressure, velocity, and energy flux from density perturbations

    NASA Astrophysics Data System (ADS)

    Allshouse, Michael R.; Lee, Frank M.; Morrison, Philip J.; Swinney, Harry L.

    2016-05-01

    Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field J =p u , which requires simultaneous measurements of the pressure and velocity perturbation fields p and u , respectively. We present a method for obtaining the instantaneous J (x ,z ,t ) from density perturbations alone: A Green's function-based calculation yields p ; u is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: The Green's function method is applied to the density perturbation field from the simulations and the result for J is found to agree typically to within 1% with J computed directly using p and u from the Navier-Stokes simulation. We also apply the Green's function method to density perturbation data from laboratory schlieren measurements of internal waves in a stratified fluid and the result for J agrees to within 6 % with results from Navier-Stokes simulations. Our method for determining the instantaneous velocity, pressure, and energy flux fields applies to any system described by a linear approximation of the density perturbation field, e.g., to small-amplitude lee waves and propagating vertical modes. The method can be applied using our matlab graphical user interface EnergyFlux.

  3. Negative Refraction and Energy Funneling by Hyperbolic Materials: An Experimental Demonstration in Acoustics

    NASA Astrophysics Data System (ADS)

    García-Chocano, Victor M.; Christensen, Johan; Sánchez-Dehesa, José

    2014-04-01

    This Letter reports the design, fabrication, and experimental characterization of hyperbolic materials showing negative refraction and energy funneling of airborne sound. Negative refraction is demonstrated using a stack of five holey Plexiglas plates where their thicknesses, layer separation, hole diameters, and lattice periodicity have been determined to show hyperbolic dispersion around 40 kHz. The resulting hyperbolic material shows a flat band profile in the equifrequency contour allowing the gathering of acoustic energy in a broad range of incident angles and its funneling through the material. Our demonstrations foresee interesting developments based on both phenomena. Acoustic imaging with subwavelength resolution and spot-size converters that harvest and squeeze sound waves irradiating from many directions into a collimated beam are just two possible applications among many.

  4. Acoustic noise and pneumatic wave vortices energy harvesting on highways

    NASA Astrophysics Data System (ADS)

    Pogacian, S.; Bot, A.; Zotoiu, D.

    2012-02-01

    This paper is aimed to present the structure and the principle of a energy harvesting system that uses the air movement emanated from passing traffic to produce and accumulate electrical energy. Each of the system's elements consists of a inertial mass panel which oscillate when driving cars pass. The panel is attached to a linear electromagnetic mini generator (or/and some piezo electric micro generators) and at the time of passing, it produces energy which is store it in a supercapacitor or in a rechargeable battery. The concept can be applied to busy roads, and to high-frequented rail networks and it can work with street and road lighting, information panels and monitoring devices.

  5. High Energy Density Physics on LULI2000 Laser Facility

    NASA Astrophysics Data System (ADS)

    Koenig, M.; Benuzzi-Mounaix, A.; Ozaki, N.; Ravasio, A.; Vinci, T.; Lepape, S.; Tanaka, K.; Riley, D.

    2006-07-01

    We present here a summary of some High Density Energy Physics experiments performed on the new facility LULI 2000. First, different flyer plate targets scheme have been tested loading shock in fused-quartz plate. Temperature data along the Hugoniot curve have been obtained. Second, a strongly coupled and degenerated Aluminium plasma has been probed by X-ray Thomson scattering. Compton shift from electrons has been observed in various density conditions.

  6. Study of low-frequency-acoustic- and seismic-wave energy propagation on the shelf

    NASA Astrophysics Data System (ADS)

    Rutenko, A. N.; Manul'chev, D. S.; Solov'ev, A. A.

    2013-05-01

    The paper presents the results of field and numerical studies on the features of low-frequency-acoustic- and seismic-wave energy propagation on the shelf of the Sea of Japan. Measurements were conducted with the Mollusk-07 autonomous vertical acousto-hydrophysical measurement system, an electromagnetic low-frequency resonance emitter, and a pulsed pneumoemitter lowered from the ship, as well as a shore-based resonance seismoemitter.

  7. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of

  8. Envelope Solitons in Acoustically Dispersive Vitreous Silica

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    2012-01-01

    Acoustic radiation-induced static strains, displacements, and stresses are manifested as rectified or dc waveforms linked to the energy density of an acoustic wave or vibrational mode via the mode nonlinearity parameter of the material. An analytical model is developed for acoustically dispersive media that predicts the evolution of the energy density of an initial waveform into a series of energy solitons that generates a corresponding series of radiation-induced static strains (envelope solitons). The evolutionary characteristics of the envelope solitons are confirmed experimentally in Suprasil W1 vitreous silica. The value (-11.9 plus or minus 1.43) for the nonlinearity parameter, determined from displacement measurements of the envelope solitons via a capacitive transducer, is in good agreement with the value (-11.6 plus or minus 1.16) obtained independently from acoustic harmonic generation measurements. The agreement provides strong, quantitative evidence for the validity of the model.

  9. Molecular partitioning based on the kinetic energy density

    NASA Astrophysics Data System (ADS)

    Noorizadeh, Siamak

    2016-05-01

    Molecular partitioning based on the kinetic energy density is performed to a number of chemical species, which show non-nuclear attractors (NNA) in their gradient maps of the electron density. It is found that NNAs are removed using this molecular partitioning and although the virial theorem is not valid for all of the basins obtained in the being used AIM, all of the atoms obtained using the new approach obey this theorem. A comparison is also made between some atomic topological parameters which are obtained from the new partitioning approach and those calculated based on the electron density partitioning.

  10. Fourth International Conference on High Energy Density Physics

    SciTech Connect

    Beg, Farhat

    2015-01-06

    The Fourth International Conference on High Energy Density Physics (ICHED 2013) was held in Saint Malo, France, at the Palais du Grand Large on 25-28 June 2013 (http://web.luli.polytechnique.fr/ICHED2013/). This meeting was the fourth in a series which was first held in 2008. This conference covered all the important aspects of High Energy Density Physics including fundamental topics from strong-field physics to creating new states of matter (including radiation-dominated, high-pressure quantum and relativistic plasmas) and ultra-fast lattice dynamics on the timescale of atomic transitions.

  11. High-Energy-Density Cost-Effective Graphene Supercapacitors

    NASA Astrophysics Data System (ADS)

    Samuilov, Vladimir; Ying Mu, Ying; Hedayat, Nader; Solovyov, Vyacheslav; Sensor CAT at Stony Brook Team

    We introduce a cost-effective graphene platelet composite material as a replacement of an expensive reduced graphene oxide for electrodes in high energy density supercapacitors. We have tested a low size supercapacitor prototypes with the graphene platelets electrodes and newly developed polymer-gel Li + ion electrolyte. We discuss the ways how to increase the capacitance and the energy densities of the supercapacitor significantly. A working prototype for testing the concept of the high voltage supercapacitor has been developed as well. The first test done up to 10 V showed excellent performance of the multy-cell multi-layer high voltage test assembly.

  12. High Energy Density Sciences with High Power Lasers at SACLA

    NASA Astrophysics Data System (ADS)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  13. Looking for high energy density compounds among polynitraminepurines.

    PubMed

    Yan, Ting; Sun, Guangdong; Chi, Weijie; Li, Butong; Wu, Haishun

    2013-09-01

    A series of purine derivatives with nitramine groups are calculated by using density functional theory (DFT). The molecular theory density, heats of formation, bond dissociation energies and detonation performance are investigated at DFT-B3LYP/6-311G** level. The isodesmic reaction method is employed to calculate the HOFs of the energies obtained from electronic structure calculations. Results show that the position of nitramine groups can influence the values of HOFs. The bond dissociation energies and the impact sensitivity are analyzed to investigate the thermal stability of the purine derivatives. The calculated bond dissociation energies of ring-NHNO2 and NH-NO2 bond show that the NH-NO2 bond should be the trigger bond in pyrolysis processes. The H50 of most compounds are larger than that of CL-20 and RDX. PMID:23708652

  14. Vacuum energy density kicked by the electroweak crossover

    SciTech Connect

    Klinkhamer, F. R.; Volovik, G. E.

    2009-10-15

    Using q-theory, we show that the electroweak crossover can generate a remnant vacuum energy density {lambda}{approx}E{sub ew}{sup 8}/E{sub Planck}{sup 4}, with effective electroweak energy scale E{sub ew}{approx}10{sup 3} GeV and reduced Planck-energy scale E{sub Planck}{approx}10{sup 18} GeV. The obtained expression for the effective cosmological constant {lambda} may be a crucial input for the suggested solution by Arkani-Hamed et al. of the triple cosmic coincidence puzzle (why the orders of magnitude of the energy densities of vacuum, matter, and radiation are approximately the same in the present Universe)

  15. Theoretically predicted Fox-7 based new high energy density molecules

    NASA Astrophysics Data System (ADS)

    Ghanta, Susanta

    2016-08-01

    Computational investigation of CHNO based high energy density molecules (HEDM) are designed with FOX-7 (1, 1-dinitro 2, 2-diamino ethylene) skeleton. We report structures, stability and detonation properties of these new molecules. A systematic analysis is presented for the crystal density, activation energy for nitro to nitrite isomerisation and the C-NO2 bond dissociation energy of these molecules. The Atoms in molecules (AIM) calculations have been performed to interpret the intra-molecular weak H-bonding interactions and the stability of C-NO2 bonds. The structure optimization, frequency and bond dissociation energy calculations have been performed at B3LYP level of theory by using G03 quantum chemistry package. Some of the designed molecules are found to be more promising HEDM than FOX-7 molecule, and are proposed to be candidate for synthetic purpose.

  16. Determination of the nuclear level density at high excitation energy

    SciTech Connect

    Chbihi, A.; Sobotka, L.G.; Nicolis, N.G.; Sarantites, D.G.; Stracener, D.W.; Majka, Z. ); Hensley, D.C.; Beene, J.R.; Halbert, M.L. )

    1991-02-01

    Evaporation simulations are presented to illustrate the problems associated with the determination of the nuclear level density constant at high excitation energy from evaporation spectra. The methods of using either the total (whole chain) spectra or the difference (from two different initial excitation energies) spectra are discussed. Data from the study of the reaction 701 MeV {sup 28}Si+{sup 100}Mo are presented and both methods are used to extract the level density constant. We find that in order to reproduce the slopes of the light particle spectra the level density constant must have a value near 1/10{ital A}-- 1 / 11 {ital A} for excited nuclei with statistical temperatures in the range of 3.5 to 5.5 MeV. This presumes that the only parameter adjustment required to treat the decay of highly exited nuclei is the level density constant. If this is so, the shapes of the evaporation spectra imply a reduction in the level density constant from the value required to explain the decay of less highly excited nuclei, a conclusion reached by others. However, the reduced level density constant leads to an overproduction of deuterons and tritons. This suggests that a more complicated set of parameter adjustments may be required to treat the decay of highly excited nuclei.

  17. Improved DFT Potential Energy Surfaces via Improved Densities.

    PubMed

    Kim, Min-Cheol; Park, Hansol; Son, Suyeon; Sim, Eunji; Burke, Kieron

    2015-10-01

    Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases. PMID:26722874

  18. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    SciTech Connect

    Aslanyan, V.; Tallents, G. J.

    2014-06-15

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.

  19. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Aslanyan, V.; Tallents, G. J.

    2014-06-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.

  20. Collapsing Bubble in Metal for High Energy Density Physics Study

    SciTech Connect

    Ng, S F; Barnard, J J; Leung, P T; Yu, S S

    2011-04-13

    This paper presents a new idea to produce matter in the high energy density physics (HEDP) regime in the laboratory using an intense ion beam. A gas bubble created inside a solid metal may collapse by driving it with an intense ion beam. The melted metal will compress the gas bubble and supply extra energy to it. Simulations show that the spherical implosion ratio can be about 5 and at the stagnation point, the maximum density, temperature and pressure inside the gas bubble can go up to nearly 2 times solid density, 10 eV and a few megabar (Mbar) respectively. The proposed experiment is the first to permit access into the Mbar regime with existing or near-term ion facilities, and opens up possibilities for new physics gained through careful comparisons of simulations with measurements of quantities like stagnation radius, peak temperature and peak pressure at the metal wall.

  1. Effective parameters in beam acoustic metamaterials based on energy band structures

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Hou, Mingming; Kuan, Lu; Shen, Li

    2016-07-01

    We present a method to calculate the effective material parameters of beam acoustic metamaterials. The effective material parameters of a periodic beam are calculated as an example. The dispersion relations and energy band structures of this beam are calculated. Subsequently, the effective material parameters of the beam are investigated by using the energy band structures. Then, the modal analysis and transmission properties of the beams with finite cells are simulated in order to confirm the correctness of effective approximation. The results show that the periodic beam can be equivalent to the homogeneous beam with dynamic effective material parameters in passband.

  2. Design for a High Energy Density Kelvin-Helmholtz Experiment

    SciTech Connect

    Hurricane, O A

    2007-10-29

    While many high energy density physics (HEDP) Rayleigh-Taylor and Richtmyer-Meshkov instability experiments have been fielded as part of basic HEDP and astrophysics studies, not one HEDP Kelvin-Helmholtz (KH) experiment has been successfully performed. Herein, a design for a novel HEDP x-ray driven KH experiment is presented along with supporting radiation-hydrodynamic simulation and theory.

  3. New developments in the multiscale hybrid energy density computational method

    NASA Astrophysics Data System (ADS)

    Min, Sun; Shanying, Wang; Dianwu, Wang; Chongyu, Wang

    2016-01-01

    Further developments in the hybrid multiscale energy density method are proposed on the basis of our previous papers. The key points are as follows. (i) The theoretical method for the determination of the weight parameter in the energy coupling equation of transition region in multiscale model is given via constructing underdetermined equations. (ii) By applying the developed mathematical method, the weight parameters have been given and used to treat some problems in homogeneous charge density systems, which are directly related with multiscale science. (iii) A theoretical algorithm has also been presented for treating non-homogeneous systems of charge density. The key to the theoretical computational methods is the decomposition of the electrostatic energy in the total energy of density functional theory for probing the spanning characteristic at atomic scale, layer by layer, by which the choice of chemical elements and the defect complex effect can be understood deeply. (iv) The numerical computational program and design have also been presented. Project supported by the National Basic Research Program of China (Grant No. 2011CB606402) and the National Natural Science Foundation of China (Grant No. 51071091).

  4. Zinc-oxygen primary cell yields high energy density

    NASA Technical Reports Server (NTRS)

    Graff, C. B.

    1968-01-01

    Zinc-oxygen primary cell yields high energy density for battery used as an auxiliary power source in space vehicle systems. Maximum reliability and minimum battery weight is achieved by using a stacking configuration of 23 series-connected modules with 6 parallel-connected cells per module.

  5. Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density

    SciTech Connect

    Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.

    2005-11-07

    The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.

  6. A novel high energy density rechargeable lithium/air battery.

    PubMed

    Zhang, Tao; Imanishi, Nobuyuki; Shimonishi, Yuta; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    2010-03-14

    A novel rechargeable lithium/air battery was fabricated, which consisted of a water-stable multilayer Li-metal anode, acetic acid-water electrolyte, and a fuel-cell analogous air-diffusion cathode and possessed a high energy density of 779 W h kg(-1), twice that of the conventional graphite/LiCoO(2) cell. PMID:20177608

  7. Quantum inequality restrictions on negative energy densities in curved spacetimes

    NASA Astrophysics Data System (ADS)

    Pfenning, Michael John

    1998-10-01

    In quantum field theory, there exist states in which the expectation value of the energy density for a quantized field is negative. These negative energy densities lead to several problems such as the failure of the classical energy conditions, the production of closed timelike curves and faster than light travel, violations of the second law of thermodynamics, and the possible production of naked singularities. Although quantum field theory introduces negative energies, it also provides constraints in the form of quantum inequalities (QI's). These uncertainty principle- type relations limit the magnitude and duration of any negative energy. We derive a general form of the QI on the energy density for both the quantized scalar and electromagnetic fields in static curved spacetimes. In the case of the scalar field, the QI can be written as the Euclidean wave operator acting on the Euclidean Green's function. Additionally, a small distance expansion on the Green's function is used to derive the QI in the short sampling time limit. It is found that the QI in this limit reduces to the flat space form with subdominant correction terms which depend on the spacetime geometry. Several example spacetimes are studied in which exact forms of the QI's can be found. These include the three- and four-dimensional static Robertson-Walker spacetimes, flat space with perfectly reflecting mirrors, Rindler and static de Sitter space, and the spacetime outside a black hole. In all of the above cases, we find that the quantum inequalities give a lower limit on how much negative energy may be observed relative to the vacuum energy density of the spacetime. For the particular case of the black hole, it is found that the quantum inequality on the energy density is measured relative to the Boulware vacuum. Finally, the application of the quantum inequalities to the Alcubierre warp drive spacetime leads to strict constraints on the thickness of the negative energy region needed to maintain

  8. Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation

    NASA Astrophysics Data System (ADS)

    Xia, Junchao; Carter, Emily A.

    2015-01-01

    We present a comprehensive study of single-point kinetic energy density functionals (KEDFs) to be used in orbital-free density functional theory (DFT) calculations. We first propose a form of KEDFs based on a pointwise Kohn-Sham (KS) kinetic energy density (KED) and electron localization function (ELF) analysis. We find that the ELF and modified enhancement factor have a very strong and transferable correlation with the reduced density in various bulk metals. The non-self-consistent kinetic energy errors predicted by our KEDF models are decreased greatly compared to previously reported generalized gradient approximation (GGA) KEDFs. Second, we perform self-consistent calculations with various single-point KEDFs and investigate their numerical convergence behavior. We find striking numerical instabilities for previous GGA KEDFs; most of the GGA KEDFs fail to converge and show unphysical densities during the optimization. In contrast, our KEDFs demonstrate stable convergence, and their self-consistent results of various bulk properties agree reasonably well with KSDFT. A further detailed KED analysis reveals an interesting bifurcation phenomenon in defective metals and alloys, which may shed light on directions for future KEDF development.

  9. Kinetic-energy density functional: Atoms and shell structure

    SciTech Connect

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E. |

    1996-09-01

    We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. {copyright} {ital 1996 The American Physical Society.}

  10. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density

    PubMed Central

    Hazen, Elliott Lee; Friedlaender, Ari Seth; Goldbogen, Jeremy Arthur

    2015-01-01

    Terrestrial predators can modulate the energy used for prey capture to maximize efficiency, but diving animals face the conflicting metabolic demands of energy intake and the minimization of oxygen depletion during a breath hold. It is thought that diving predators optimize their foraging success when oxygen use and energy gain act as competing currencies, but this hypothesis has not been rigorously tested because it has been difficult to measure the quality of prey that is targeted by free-ranging animals. We used high-resolution multisensor digital tags attached to foraging blue whales (Balaenoptera musculus) with concurrent acoustic prey measurements to quantify foraging performance across depth and prey density gradients. We parameterized two competing physiological models to estimate energy gain and expenditure based on foraging decisions. Our analyses show that at low prey densities, blue whale feeding rates and energy intake were low to minimize oxygen use, but at higher prey densities feeding frequency increased to maximize energy intake. Contrary to previous paradigms, we demonstrate that blue whales are not indiscriminate grazers but instead switch foraging strategies in response to variation in prey density and depth to maximize energetic efficiency. PMID:26601290

  11. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density.

    PubMed

    Hazen, Elliott Lee; Friedlaender, Ari Seth; Goldbogen, Jeremy Arthur

    2015-10-01

    Terrestrial predators can modulate the energy used for prey capture to maximize efficiency, but diving animals face the conflicting metabolic demands of energy intake and the minimization of oxygen depletion during a breath hold. It is thought that diving predators optimize their foraging success when oxygen use and energy gain act as competing currencies, but this hypothesis has not been rigorously tested because it has been difficult to measure the quality of prey that is targeted by free-ranging animals. We used high-resolution multisensor digital tags attached to foraging blue whales (Balaenoptera musculus) with concurrent acoustic prey measurements to quantify foraging performance across depth and prey density gradients. We parameterized two competing physiological models to estimate energy gain and expenditure based on foraging decisions. Our analyses show that at low prey densities, blue whale feeding rates and energy intake were low to minimize oxygen use, but at higher prey densities feeding frequency increased to maximize energy intake. Contrary to previous paradigms, we demonstrate that blue whales are not indiscriminate grazers but instead switch foraging strategies in response to variation in prey density and depth to maximize energetic efficiency. PMID:26601290

  12. Separating the Universe into real and fake energy densities

    NASA Astrophysics Data System (ADS)

    Hu, Wayne; Chiang, Chi-Ting; Li, Yin; LoVerde, Marilena

    2016-07-01

    The separate universe technique provides a means of establishing consistency relations between short-wavelength observables and the long-wavelength matter density fluctuations within which they evolve by absorbing the latter into the cosmological background. We extend it to cases where nongravitational forces introduce a Jeans scale in other species like dynamical dark energy or massive neutrinos. The technique matches the synchronous gauge matter density fluctuations to the local expansion using the acceleration equation and accounts for the temporal nonlocality and scale dependence of the long-wavelength response of small scale matter observables, e.g., the nonlinear power spectrum, halo abundance and the implied halo bias, and N -point correlation functions. Above the Jeans scale, the local Friedmann equation relates the expansion to real energy densities and a curvature that is constant in comoving coordinates. Below the Jeans scale, the curvature evolves and acts like a fake density component. In all cases, the matter evolution on small scales is correctly modeled as we illustrate using scalar field dark energy with adiabatic or isocurvature initial conditions across the Jeans scale set by its finite sound speed.

  13. Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Hou, Hong

    2016-06-01

    This paper investigates ultralow frequency acoustic properties and energy recovery of tetragonal folding beam phononic crystal (TFBPC) and its complementary structure. The dispersion curve relationships, transmission spectra and displacement fields of the eigenmodes are studied with FEA in detail. Compared with the traditional three layer phononic crystal (PC) structure, this structure proposed in this paper not only unfold bandgaps (BGs) in lower frequency range (below 300 Hz), but also has lighter weight because of beam structural cracks. We analyze the relevant physical mechanism behind this phenomenon, and discuss the effects of the tetragonal folding beam geometric parameters on band structure maps. FEM proves that the multi-cell structures with different arrangements have different acoustic BGs when compared with single cell structure. Harmonic frequency response and piezoelectric properties of TFBPC are specifically analyzed. The results confirm that this structure does have the recovery ability for low frequency vibration energy in environment. These conclusions in this paper could be indispensable to PC practical applications such as BG tuning and could be applied in portable devices, wireless sensor, micro-electro mechanical systems which can recycle energy from vibration environment as its own energy supply.

  14. High energy density interpenetrating networks from ionic networks and silicone

    NASA Astrophysics Data System (ADS)

    Yu, Liyun; Madsen, Frederikke B.; Hvilsted, Søren; Skov, Anne L.

    2015-04-01

    The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator mode. One way to increase the energy density is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the development of interpenetrating networks from ionically assembled silicone polymers and covalently crosslinked silicones. The system has many degrees of freedom since the ionic network is formed from two polymers (amine and carboxylic acid functional, respectively) of which the chain lengths can be varied, as well as the covalent silicone elastomer with many degrees of freedom arising from amongst many the varying content of silica particles. A parameter study is performed to elucidate which compositions are most favorable for the use as dielectric elastomers. The elastomers were furthermore shown to be self-repairing upon electrical breakdown.

  15. Enhancing the dynamic range of targeted energy transfer in acoustics using several nonlinear membrane absorbers

    NASA Astrophysics Data System (ADS)

    Bellet, R.; Cochelin, B.; Côte, R.; Mattei, P.-O.

    2012-12-01

    In order to enhance the robustness and the energy range of efficiency of targeted energy transfer (TET) phenomena in acoustics, we discuss in this paper about the use of multiple nonlinear membrane absorbers (called nonlinear energy sinks or NES) placed in parallel. We show this way, mainly thanks to an experimental set-up with two membranes, that the different absorbers have additional effects that extend the efficiency and the possibilities of observation of TET. More precisely, we present the different behavior of the system under sinusoidal forcing and free oscillations, characterizing the phenomena for all input energies. The frequency responses are also presented, showing successive clipping of the original resonance peak of the system, and strongly modulated regimes (SMR). A model is finally used to generalize these results to more than two NES and to simulate the case of several very similar membranes in parallel which shows how to extend the existence zone of TET.

  16. Energy density in cafeteria diet induced hyperphagia in the rat.

    PubMed

    Shafat, Amir; Murray, Brenda; Rumsey, David

    2009-02-01

    Rats that are fed cafeteria diet (CD) are a widely used model of obesity. Presenting a varied and energy-dense diet often leads to hyperphagia and weight gain. However, the exact macronutrient composition of ingested food remains difficult to measure accurately. The current investigation aims to improve the accuracy of food intake calculations using a novel compensation for water evaporation, and to examine the role of energy density in CD-induced hyperphagia. Seven rats were presented daily with four foods, on rotation from a list of 36 different items, for a period of 43 days and compared to chow-fed controls (n=6). Correcting for evaporation corrected an overestimation by 8% of energy intake in rats fed CD. Rats consumed 25% more food by weight when fed CD as compared to controls. Similar to human studies, exposure to CD resulted in a 58% increase in energy intake. Energy density was positively correlated with energy intake in rats fed CD. Body weight gain was significantly elevated from day 20 onwards, suggesting the onset of obesity. This study removes evaporation bias from measurements of food intake in CD and supports the conclusion that a varied, energetically dense diet induces hyperphagia and obesity in the rat. PMID:18680774

  17. Looking for high energy density compounds among polynitraminecubanes.

    PubMed

    Chi, Wei-Jie; Li, Lu-Lin; Li, Bu-Tong; Wu, Hai-Shun

    2013-02-01

    Based on fully optimized geometric structures at DFT-B3LYP/6-311G** level, we calculated electronic structures, heats of formation, strain energies, bond dissociation energies and detonation performance (detonation velocity and detonation pressure) for a series of polynitraminecubanes. Our results have shown that energy gaps of cubane derivatives are much higher than that of triaminotrinitrobenzene (TATB), which means that cubane derivatives may be more sensitive than TATB. Polynitraminecubanes have high and positive heats of formation, and a good linear relationship between heats of formation and nitramine group numbers was presented. As the number of nitramine groups in the molecule increases, the enthalpies of combustion values are increasingly negative, but the specific enthalpy of combustion values decreases. It is found that all cubane derivatives have high strain energies, which are affected by the number and position of nitramine group. The calculated bond dissociation energies of C-NHNO(2) and C-C bond show that the C-C bond should be the trigger bond in the pyrolysis process. It is found that detonation velocity (D), detonation pressure (P) and molecule density (ρ) have good linear relationship with substituented group numbers. Heptanitraminecubane and octanitraminecubane have good detonation performance over 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), and they can be regarded as potential candidates of high energy density compounds (HEDCs). The results have not only shown that these compounds may be used as HEDCs, but also provide some useful information for further investigation. PMID:22961623

  18. Relaxor-ferroelectric superlattices: high energy density capacitors.

    PubMed

    Ortega, N; Kumar, A; Scott, J F; Chrisey, Douglas B; Tomazawa, M; Kumari, Shalini; Diestra, D G B; Katiyar, R S

    2012-11-01

    We report the breakdown electric field and energy density of laser ablated BaTiO(3)/Ba((1-x))Sr(x)TiO(3) (x = 0.7) (BT/BST) relaxor-ferroelectric superlattices (SLs) grown on (100) MgO single crystal substrates. The dielectric constant shows a frequency dispersion below the dielectric maximum temperature (T(m)) with a merger above T(m) behaving similarly to relaxors. It also follows the basic criteria of relaxor ferroelectrics such as low dielectric loss over wide temperature and frequency, and 50 K shift in T(m) with change in probe frequency; the loss peaks follow a similar trend to the dielectric constant except that they increase with increase in frequency (~40 kHz), and satisfy the nonlinear Vogel-Fulcher relation. Well-saturated ferroelectric hysteresis and 50-80% dielectric saturation are observed under high electric field (~1.65 MV cm(-1)). The superlattices demonstrate an 'in-built' field in as grown samples at low probe frequency (<1 kHz), whereas it becomes more symmetric and centered with increase in the probe frequency system (>1 kHz) which rules out the effect of any space charge and interfacial polarization. The P-E loops show around 12.24 J cm(-3) energy density within the experimental limit, but extrapolation of this data suggests that the potential energy density could reach 46 J cm(-3). The current density versus applied electric field indicates an exceptionally high breakdown field (5.8-6.0 MV cm(-1)) and low current density (~10-25 mA cm(-2)) near the breakdown voltage. The current-voltage characteristics reveal that the space charge limited conduction mechanism prevails at very high voltage. PMID:23053172

  19. High energy density capacitors for low cost applications

    NASA Astrophysics Data System (ADS)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  20. Dipole polarizability of 120Sn and nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Krumbholz, A. M.; Reinhard, P.-G.; Tamii, A.; von Neumann-Cosel, P.; Adachi, T.; Aoi, N.; Bertulani, C. A.; Fujita, H.; Fujita, Y.; Ganioǧlu, E.; Hatanaka, K.; Ideguchi, E.; Iwamoto, C.; Kawabata, T.; Khai, N. T.; Krugmann, A.; Martin, D.; Matsubara, H.; Miki, K.; Neveling, R.; Okamura, H.; Ong, H. J.; Poltoratska, I.; Ponomarev, V. Yu.; Richter, A.; Sakaguchi, H.; Shimbara, Y.; Shimizu, Y.; Simonis, J.; Smit, F. D.; Süsoy, G.; Suzuki, T.; Thies, J. H.; Yosoi, M.; Zenihiro, J.

    2015-09-01

    The electric dipole strength distribution in 120Sn between 5 and 22 MeV has been determined at the Research Center for Nuclear Physics, Osaka, from polarization transfer observables measured in proton inelastic scattering at E0=295 MeV and forward angles including 0∘. Combined with photoabsorption data, a highly precise electric dipole polarizability αD(120Sn) =8.93 (36 ) fm3 is extracted. The dipole polarizability as isovector observable par excellence carries direct information on nuclear symmetry energy and its density dependence. The correlation of the new value with the well-established αD(208Pb) serves as a test of its prediction by nuclear energy density functionals. Models based on modern Skyrme interactions describe the data fairly well while most calculations based on relativistic Hamiltonians cannot.

  1. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  2. High energy-density science on the National Ignition Facility

    SciTech Connect

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  3. Present and Future Capabilities of High Energy Density Experiments*

    NASA Astrophysics Data System (ADS)

    Matzen, M. Keith

    2002-04-01

    In recent years, experiments on high energy lasers and pulsed power facilities have successfully reached extreme conditions of temperature and pressure in the laboratory, allowing replication of conditions relevant to areas of high energy density (HED) plasma physics (for example, astrophysics, planetary interiors, stellar physics, and Inertial Confinement Fusion). Experiments in these areas are now routinely providing high quality data in the areas of high energy density hydrodynamics and implosions, radiation transport, and equation-of-state. Current facilities include pulsed-power accelerators, such as the Z facility at Sandia National Laboratories, and high-energy lasers, such as the 60-beam Omega laser at the Laboratory of Laser Energetics at Rochester, as well as other MA-class pulsed-power facilities and kJ-class lasers worldwide. These facilities routinely conduct experiments at radiation temperatures of 200 eV and pressures up to 40 MBar. New facilities, such as the National Ignition Facility (NIF) and the refurbished Z facility, will extend the experimental regimes to higher temperatures and densities. The National Petawatt laser initiative is examining the physics regimes that could be explored by coupling energetic short-pulse lasers (multi-kJ energies at ps pulse widths) to experiments on these large HED facilities. We will review capabilities of the existing HED facilities, highlight examples of recent experimental results in HED plasma physics, discuss new regimes that might be achievable on next-generation facilities (e.g. NIF and refurbished Z), and explore the potential applications resulting from coupling multi-PW laser pulses with HED plasmas produced on these facilities. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  4. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V.

    2016-01-01

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes. PMID:27070605

  5. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks.

    PubMed

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V

    2016-01-01

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes. PMID:27070605

  6. Frontiers for Discovery in High Energy Density Physics

    SciTech Connect

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  7. Radial evolution of the energy density of solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Matthaeus, W. H.; Smith, C. W.

    1995-01-01

    On the basis of transport theories appropriate to a radially expanding solar wind, we describe new results for the radial evolution of the energy density in solar wind fluctuations at MHD scales. These models include the effects of 'mixing' and driving as well as the possibility of non-isotropic MHD turbulence. Implications of these results for solar wind heating, cosmic ray diffusion and interstellar pick-up ions will also be addressed.

  8. Cross-checking the symmetry energy at high densities

    NASA Astrophysics Data System (ADS)

    Yong, Gao-Chan

    2016-04-01

    By considering both the effects of the nucleon-nucleon short-range correlations and the isospin-dependent in-medium inelastic baryon-baryon scattering cross section in the transport model, two unrelated Au + Au experimental measurements at 400 MeV/nucleon beam energy are simultaneously analyzed, and a mildly soft symmetry energy (L (ρ0)=37 MeV) at supra-saturation densities is obtained. This result is compatible with recent result [Phys. Rev. C 92, 064304 (2015), 10.1103/PhysRevC.92.064304] shown by comparing the available data on the electric dipole polarizability with the theoretical predictions.

  9. High Density Thermal Energy Storage with Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  10. High Energy Density Physics and Exotic Acceleration Schemes

    SciTech Connect

    Cowan, T.; Colby, E.; /SLAC

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  11. Highly Compressed Ion Beam for High Energy Density Science

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Briggs, R.J.; Callahan, D.A.; Caporaso, G.J.; Celata, C.M.; Davidson, R.C.; Faltens, A.; Grisham, L.; Grote, D.P.; Henestroza, E.; Kaganovich I.; Lee, E.P.; Lee, R.W.; Leitner, M.; Logan, B.G.; Nelson, S.D.; Olson, C.L.; Penn, G.; Reginato,L.R.; Renk, T.; Rose, D.; Seessler, A.; Staples, J.W.; Tabak, M.; Thoma,C.; Waldron, W.; Welch, D.R.; Wurtele, J.; Yu, S.S.

    2005-05-16

    The Heavy Ion Fusion Virtual National Laboratory is developing the intense ion beams needed to drive matter to the High Energy Density regimes required for Inertial Fusion Energy and other applications. An interim goal is a facility for Warm Dense Matter studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach they are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target ''foils,'' which may in fact be foams with mean densities 1% to 10% of solid. This approach complements that being pursued at GSI Darmstadt, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrically target. They present the beam requirements for Warm Dense Matter experiments. The authors discuss neutralized drift compression and final focus experiments and modeling. They describe suitable accelerator architectures based on Drift-Tube Linac, RF, single-gap, Ionization-Front Accelerator, and Pulse-Line Ion Accelerator concepts. The last of these is being pursued experimentally. Finally, they discuss plans toward a user facility for target experiments.

  12. Density functional theory for protein transfer free energy.

    PubMed

    Mills, Eric A; Plotkin, Steven S

    2013-10-24

    We cast the problem of protein transfer free energy within the formalism of density functional theory (DFT), treating the protein as a source of external potential that acts upon the solvent. Solvent excluded volume, solvent-accessible surface area, and temperature dependence of the transfer free energy all emerge naturally within this formalism, and may be compared with simplified "back of the envelope" models, which are also developed here. Depletion contributions to osmolyte induced stability range from 5 to 10 kBT for typical protein lengths. The general DFT transfer theory developed here may be simplified to reproduce a Langmuir isotherm condensation mechanism on the protein surface in the limits of short-ranged interactions, and dilute solute. Extending the equation of state to higher solute densities results in non-monotonic behavior of the free energy driving protein or polymer collapse. Effective interaction potentials between protein backbone or side chains and TMAO are obtained, assuming a simple backbone/side chain two-bead model for the protein with an effective 6-12 potential with the osmolyte. The transfer free energy δg shows significant entropy: d(δg)/dT ≈ 20 kB for a 100-residue protein. The application of DFT to effective solvent forces for use in implicit-solvent molecular dynamics is also developed. The simplest DFT expressions for implicit-solvent forces contain both depletion interactions and an "impeded-solvation" repulsive force at larger distances. PMID:23944753

  13. Dietary Energy Density is Positively Associated with Breast Density among Young Women

    PubMed Central

    Hartman, Terryl J.; Klifa, Catherine J.; Coffman, Donna L.; Mitchell, Diane C.; Vernarelli, Jacqueline A.; Snetselaar, Linda; Horn, Linda Van; Stevens, Victor J.; Robson, Alan; Himes, John; Shepherd, John; Dorgan, Joanne F.

    2014-01-01

    Background Breast density is an established predictor of breast cancer risk, and there is considerable interest in associations of modifiable lifestyle factors, such as diet, with breast density. Objective To determine if dietary energy density (ED) is associated with percent dense breast volume (%DBV) and absolute dense breast volume (ADBV) in young women. Design A cross-sectional analysis was conducted with women who participated in the Dietary Intervention Study in Children Follow-Up Study (DISC06). %DBV and ADBV were measured by magnetic resonance imaging (MRI). Diet was assessed by three 24-hour recalls. Dietary ED (kcal/g) was calculated using three methods: (1) food only, (2) food and caloric beverages, and (3) food and all beverages. Participants/setting 172 women (25–29 years) who were enrolled in the DISC06 study. Subjects who reported breast augmentation or reduction surgery or were pregnant or lactating within three months before breast density assessment were excluded. Main outcome measures ADBV and %DBV. Statistical analyses performed Multivariable linear mixed effects models were used. Final models were adjusted for race, smoking status, education, parity, duration of sex hormone use, whole body percent fat, childhood BMI z-score, and energy from beverages. Results After adjustment, each 1 kcal/g unit increase in food-only ED was associated with a 25.9% (95% confidence interval = 6.2 to 56.8%) increase in %DBV (p=0.01). Childhood BMI z-score modified the association between food-only ED and %DBV such that a significant positive association was observed only in women who were heavier as children. Food-only ED was not associated with ADBV in all women, but a borderline significant positive association was observed in women who had higher childhood BMI z-scores. Conclusions This is the first report to suggest a potential role for dietary ED in breast density; the effects of long-term exposure to high ED diets on breast cancer risk remain unknown. PMID

  14. Density Functional Theory in High Energy Density Physics: phase-diagram and electrical conductivity of water

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.

    2007-06-01

    Atomistic simulations employing Density Functional Theory (DFT) have recently emerged as a powerful way of increasing our understanding of materials and processes in high energy density physics. Knowledge of the properties of water (equation of state, electrical conductivity, diffusion, low-energy opacity) is essential for correctly describing the physics of giant planets as well as shock waves in water. Although a qualitative picture of water electrical conductivity has emerged, the necessary quantitative information is scarce over a wide range of temperature and density. Since experiments can only access certain areas of phase space, and often require modeling as a part of the analysis, Quantum Molecular Dynamics simulations play a vital role. Using finite-temperature density functional theory (FT-DFT), we have investigated the structure and electronic conductivity of water across three phase transitions (molecular liquid/ ionic liquid/ superionic/ electronic liquid). The ionic contribution to the conduction is calculated from proton diffusion and the electronic contribution is calculated using the Kubo-Greenwood formula. The calculations are performed with VASP, a plane-wave pseudo-potential code. There is a rapid transition to ionic conduction at 2000 K and 2 g/cm^3, whereas electronic conduction dominates at temperatures at and above 6000 K&[tilde;1]. Contrary to earlier results using the Car-Parrinello method&[tilde;2], we predict that the fluid bordering the superionic phase is conducting above 4000 K and 100 GPa. Our comprehensive use of FT-DFT explains the new findings. The calculated conductivity is compared to experimental data. I gratefully acknowledge Mike Desjarlais, my collaborator in this effort. The LDRD office at Sandia supported this work. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL

  15. Lightweight Filter Architecture for Energy Efficient Mobile Vehicle Localization Based on a Distributed Acoustic Sensor Network

    PubMed Central

    Kim, Keonwook

    2013-01-01

    The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably. PMID:23979482

  16. Lightweight filter architecture for energy efficient mobile vehicle localization based on a distributed acoustic sensor network.

    PubMed

    Kim, Keonwook

    2013-01-01

    The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably. PMID:23979482

  17. Towards the island of stability with relativistic energy density functionals

    SciTech Connect

    Prassa, V.; Niksic, T.; Lalazissis, G. A.; Vretenar, D.

    2012-10-20

    Relativistic energy density functionals (REDF) provide a complete and accurate, global description of nuclear structure phenomena. Modern semi-empirical functionals, adjusted to the nuclear matter equation of state and to empirical masses of deformed nuclei, are applied to studies of shapes of superheavy nuclei. The theoretical framework is tested in a comparison to empirical masses, quadrupole deformations, and energy barriers of actinide nuclei. The model is used in a self-consistent mean-field calculation of spherical, axial and triaxial shapes of superheavy nuclei, alpha-decay energies and lifetimes. The effect of explicit treatment of collective correlations is analyzed in calculations that consistently use a collective Hamiltonian model based on REDFs.

  18. New potential high energy density compounds: Oxadiaziridine derivatives

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Chi, Wei-Jie

    2014-10-01

    The -CN, -N3, -NF2, -NH2, -NHNO2, -NO2, and -ONO2 derivatives of oxadiaziridine were studied using B3LYP/6-311G** level of density functional theory. The gas phase heats of formation of oxadiaziridine derivatives were calculated by isodesmic reaction. All these compounds have high and positive heats of formation due to strain energies of small ring. Detonation properties were calculated via Kamlet-Jacobes equations and specific impulse. The effects of substituent groups on detonation performance were discussed. The impact sensitivity was estimated according to the "available free space per molecule in unit cell" and "energy gaps" methods. The similar conclusions were given by two different methods. The effects of substituents on impact sensitivity were discussed. According to the given estimations of detonation performance and sensitivity, some oxadiaziridine derivatives may be considered promising high energies materials.

  19. Energy boost in laser wakefield accelerators using sharp density transitions

    NASA Astrophysics Data System (ADS)

    Döpp, A.; Guillaume, E.; Thaury, C.; Lifschitz, A.; Ta Phuoc, K.; Malka, V.

    2016-05-01

    The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing.

  20. Density dependence of the nuclear symmetry energy: A microscopic perspective

    SciTech Connect

    Vidana, Isaac; Providencia, Constanca; Polls, Artur; Rios, Arnau

    2009-10-15

    We perform a systematic analysis of the density dependence of nuclear symmetry energy within the microscopic Brueckner-Hartree-Fock (BHF) approach using the realistic Argonne V18 nucleon-nucleon potential plus a phenomenological three-body force of Urbana type. Our results are compared thoroughly with those arising from several Skyrme and relativistic effective models. The values of the parameters characterizing the BHF equation of state of isospin asymmetric nuclear matter fall within the trends predicted by those models and are compatible with recent constraints coming from heavy ion collisions, giant monopole resonances, or isobaric analog states. In particular we find a value of the slope parameter L=66.5 MeV, compatible with recent experimental constraints from isospin diffusion, L=88{+-}25 MeV. The correlation between the neutron skin thickness of neutron-rich isotopes and the slope L and curvature K{sub sym} parameters of the symmetry energy is studied. Our BHF results are in very good agreement with the correlations already predicted by other authors using nonrelativistic and relativistic effective models. The correlations of these two parameters and the neutron skin thickness with the transition density from nonuniform to {beta}-stable matter in neutron stars are also analyzed. Our results confirm that there is an inverse correlation between the neutron skin thickness and the transition density.

  1. Rationally designed polyimides for high-energy density capacitor applications.

    PubMed

    Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A

    2014-07-01

    Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (<1%) and high energy density around 15 J/cm(3), which is 3 times that of BOPP, was prepared. Our syntheses were guided by high-throughput density functional theory calculations for rational design in terms of a high dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties. PMID:24911181

  2. Energy balanced strategies for maximizing the lifetime of sparsely deployed underwater acoustic sensor networks.

    PubMed

    Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan

    2009-01-01

    Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery energy consumption will lead to early energy depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, balanced energy dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the energy balance dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced energy consumption in such networks, then we propose two energy balanced strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve balanced energy consumption per node while at the same time prolong the networks lifetime. PMID:22399970

  3. A New Approach to Energy Integral for Investigation of Dust—Ion Acoustic (DIA) Waves in Multi-Component Plasmas with Quantum Effects in Inertia Less Electrons

    NASA Astrophysics Data System (ADS)

    Kalita, B. C.; Kalita, R.

    2015-06-01

    Dust-ion acoustic waves are investigated in this model of plasma consisting of negatively charged dusts, cold ions and inertia less quantum effected electrons with the help of a typical energy integral. In this case, a new technique is applied formulating a differential equation to establish the energy integral in case of multi-component plasmas which is not possible in general. Dust-ion acoustic (DIA) compressive and rarefactive, supersonic and subsonic solitons of various amplitudes are established. The consideration of smaller order nonlinearity in support of the newly established quantum plasma model is observed to generate small amplitude solitons at the decrease of Mach number. The growths of soliton amplitudes and potential depths are found more sensitive to the density of quantum electrons. The small density ratio r(= 1 - f) with a little quantized electrons supplemented by the dust charges Zd and the in-deterministic new quantum parameter C2 are found responsible to finally support the generation of small amplitude solitons admissible for the model.

  4. Electromagnetic potentials basis for energy density and power flux

    NASA Astrophysics Data System (ADS)

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress–energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  5. High energy density capacitor testing for the AFWL SHIVA

    SciTech Connect

    Smith, D.L.; Reinovsky, R.E.

    1981-01-01

    The SHIVA II Prime upgrade consists of replacing the existing 3.3 kJ, 1.85 ..mu..F capacitors with plug-in higher energy density capacitors. Based on capacitor development work by manufacturers it appears that a nominal 6 ..mu..F, 60 kV capacitor in an 11'' x 14'' can is near the limits of current technology. Using the 6 ..mu..F, 10.8 kJ capacitor results in a factor of 3 increase in stored energy at no increase in operational voltage. The equivalent system capacitance will then be 864 ..mu..F at 120 kV (+-60 kV) or 6.22 MJ. The best testing technique is one which duplicates, as nearly as reasonable, the actual parameters the capacitors would see in the full-scale system. Lifetime testing and analysis of small samples of high energy density (HED) discharge capacitors at the AFWL were conducted to find a component suitable for upgrading the SHIVA capacitor bank to a 6 MJ facility. Evaluation was performed with discharge conditions of approximately 250 kA per capacitor at 60 to 70% reversal and < 2 ..mu..s quarter period. Dielectric systems including Kraft paper with caster oil impregnant and Kraft paper, polypropylene with DiOctyl Phthalate (DOP) impregnant were tested.

  6. High-energy density physics at Los Alamos

    NASA Astrophysics Data System (ADS)

    Byrnes, P.

    1993-03-01

    This brochure describes the facilities of the Above Ground Experiments 2 (AGEX 2) and the Inertial Confinement Fusion (ICF) programs at Los Alamo. Combined, these programs represent, an unparalleled capability to address important issues in high-energy density physics that are critical to the future defense, energy, and research needs of the United States. The mission of the AGEX 2 program at Los Alamos is to provide additional experimental opportunities for the nuclear weapons program. For this purpose we have assembled at Los Alamos the broadest array of high-energy density physics facilities of any laboratory in the world. Inertial confinement fusion seeks to achieve thermonuclear burn on a laboratory scale through the implosion of a small quantity of deuterium and tritium fuel to very high pressure and temperature. The Los Alamos ICF program is focused on target physics. With the largest scientific computing center in the world, We can perform calculations of unprecedented sophistication and precision. We field experiments at facilities worldwide--including our own Trident and Mercury lasers--to confirm our understanding and to provide the necessary data base to proceed toward the historic goal of controlled fusion in the laboratory. The ultrahigh magnetic fields produced in our high explosive pulsed-power generators can be used in a wide variety of solid state physics and temperature superconductor studies. The structure and dynamics of planetary atmospheres can be simulated through the compression of gas mixtures.

  7. Adiabatic corrections to density functional theory energies and wave functions.

    PubMed

    Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas

    2008-09-25

    The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT. PMID:18537228

  8. RAPID COMMUNICATION: Traceability of acoustic emission measurements using energy calibration methods

    NASA Astrophysics Data System (ADS)

    Yan, T.; Jones, B. E.

    2000-11-01

    Passive acoustic emission (AE) methods are becoming useful tools for integrity assessment of structures, monitoring of industrial processes and machines, and materials characterization. Unfortunately, there are no measurement standards for estimating the absolute strength of the AE sources. The lack of standardization makes it very difficult to compare the results obtained in different laboratories or on different structures, and to obtain meaningful repeatability of measurements. Therefore, current methods only give a qualitative rather than quantitative indication of the change of state of structure or process. This communication outlines a way of calibrating AE transducer systems in situ using a pulsed-laser-generated thermoelastic AE energy source or a bouncing-ball-generated elastic impact AE energy source. The methods presented here should enable traceable measurement standards to be established for AE.

  9. Discussion of the reliability of electron densities and energies interpreted from data and limits on the proton energy and density

    NASA Technical Reports Server (NTRS)

    Beard, D. B.

    1972-01-01

    Analysis of radio observations of Jupiter were changed to take into account the antenna resolution. A dipole magnetic field with a surface equatorial value of 7 gauss is assumed. The electron temperature is found to increase for r 2.5 Jupiter radii with decreasing r as 1/r cubed, reaching a peak of about 100 MeV at r = 2.5 Jupiter radii. For r 2.5 Jupiter radii, the electron temperature goes as r to the 6th power because of energy lost to radiation. The consequences of making an upper estimate on the proton flux by assuming the magnetic field is loaded with all the energetic protons it can hold are described. The upper limits of proton energy, density, flux, and energy flux are calculated for 1, 2, 2.5, 3, and 6 Jupiter radii. The proton energy and velocity estimates are considered to be fairly reliable; the upper limit to the number density is probably much higher than actuality.

  10. High energy density Z-pinch plasmas using flow stabilization

    SciTech Connect

    Shumlak, U. Golingo, R. P. Nelson, B. A. Bowers, C. A. Doty, S. A. Forbes, E. G. Hughes, M. C. Kim, B. Knecht, S. D. Lambert, K. K. Lowrie, W. Ross, M. P. Weed, J. R.

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  11. High energy density Z-pinch plasmas using flow stabilization

    NASA Astrophysics Data System (ADS)

    Shumlak, U.; Golingo, R. P.; Nelson, B. A.; Bowers, C. A.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Knecht, S. D.; Lambert, K. K.; Lowrie, W.; Ross, M. P.; Weed, J. R.

    2014-12-01

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes - Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling

  12. Density-based Energy Decomposition Analysis for Intermolecular Interactions with Variationally Determined Intermediate State Energies

    SciTech Connect

    Wu, Q.; Ayers, P.W.; Zhang, Y.

    2009-10-28

    The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these two terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.

  13. Laser and acoustic lens for lithotripsy

    DOEpatents

    Visuri, Steven R.; Makarewicz, Anthony J.; London, Richard A.; Benett, William J.; Krulevitch, Peter; Da Silva, Luiz B.

    2002-01-01

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.

  14. Average transverse momentum and energy density in high-energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.

    1986-01-01

    Emulsion chambers were used to measure the transverse momenta of photons or pi(0) mesons produced in high-energy cosmic-ray nucleus-nucleus collisions. A group of events having large average transverse momenta has been found which apparently exceeds the expected limiting values. Analysis of the events at early interaction times, of the order of 1 fm/c, indicates that the observed transverse momentum increases with both rapidity density and energy density.

  15. High energy density capacitors using nano-structure multilayer technology

    SciTech Connect

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1992-08-01

    Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

  16. Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Erturk, A.

    2014-12-01

    There are several applications of wireless electronic components with little or no ambient energy available to harvest, yet wireless battery charging for such systems is still of great interest. Example applications range from biomedical implants to sensors located in hazardous environments. Energy transfer based on the propagation of acoustic waves at ultrasonic frequencies is a recently explored alternative that offers increased transmitter-receiver distance, reduced loss and the elimination of electromagnetic fields. As this research area receives growing attention, there is an increased need for fully coupled model development to quantify the energy transfer characteristics, with a focus on the transmitter, receiver, medium, geometric and material parameters. We present multiphysics modeling and case studies of the contactless ultrasonic energy transfer for wireless electronic components submerged in fluid. The source is a pulsating sphere, and the receiver is a piezoelectric bar operating in the 33-mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Both the analytical and finite element models have been developed for the resulting acoustic-piezoelectric structure interaction problem. Resistive and resistive-inductive electrical loading cases are presented, and optimality conditions are discussed. Broadband power transfer is achieved by optimal resistive-reactive load tuning for performance enhancement and frequency-wise robustness. Significant enhancement of the power output is reported due to the use of a hard piezoelectric receiver (PZT-8) instead of a soft counterpart (PZT-5H) as a result of reduced material damping. The analytical multiphysics modeling approach given in this work can be used to predict and optimize the coupled system dynamics with very good accuracy and dramatically

  17. Finiteness of the vacuum energy density in quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Manoukian, Edward B.

    1983-03-01

    Recent interest in the finiteness problem of the vacuum energy density (VED) in finite QED has motivated us to reexamine this problem in the light of an analysis we have carried out earlier. By a loopwise summation procedure, supplemented by a renormalization-group analysis, we study the finiteness of the VED with α, the renormalized fine-structure constant, fixed in the process as the (infinite order) zero of the eigenvalue condition F[1](x)|x=α=0∞, and with the electron mass totally dynamical of origin. We propose a possible finite solution for the VED in QED which may require only one additional eigenvalue condition for α.

  18. Nuclear clustering in the energy density functional approach

    SciTech Connect

    Ebran, J.-P.; Khan, E.; Nikšić, T.; Vretenar, D.

    2015-10-15

    Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.

  19. Ab initio derivation of model energy density functionals

    NASA Astrophysics Data System (ADS)

    Dobaczewski, Jacek

    2016-08-01

    I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.

  20. Nuclear clustering in the energy density functional approach

    NASA Astrophysics Data System (ADS)

    Ebran, J.-P.; Khan, E.; Nikšić, T.; Vretenar, D.

    2015-10-01

    Nuclear Energy Density Functionals (EDFs) are a microscopic tool of choice extensively used over the whole chart to successfully describe the properties of atomic nuclei ensuing from their quantum liquid nature. In the last decade, they also have proved their ability to deal with the cluster phenomenon, shedding a new light on its fundamental understanding by treating on an equal footing both quantum liquid and cluster aspects of nuclei. Such a unified microscopic description based on nucleonic degrees of freedom enables to tackle the question pertaining to the origin of the cluster phenomenon and emphasizes intrinsic mechanisms leading to the emergence of clusters in nuclei.

  1. Relativistic Energy Density Functionals: Exotic modes of excitation

    SciTech Connect

    Vretenar, D.; Paar, N.; Marketin, T.

    2008-11-11

    The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of {beta}-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.

  2. High-Energy Density science with an ultra-bright x-ray laser

    NASA Astrophysics Data System (ADS)

    Glenzer, Siegfried

    2015-11-01

    This talk will review recent progress in high-energy density physics using the world's brightest x-ray source, the Linac Coherent Light Source, SLAC's free electron x-ray laser. These experiments investigate laser-driven matter in extreme conditions where powerful x-ray scattering and imaging techniques have been applied to resolve ionic interactions at atomic (Ångstrom) scale lengths and to visualize the formation of dense plasma states. Major research areas include dynamic compression experiments of solid targets to determine structural properties and to discover and characterize phase transitions at mega-bar pressures. A second area studies extreme fields produced by high-intensity radiation where fundamental questions of laboratory plasmas can be related to cosmological phenomena. Each of these areas takes advantage of the unique properties of the LCLS x-ray beam. They include small foci for achieving high intensity or high spatial resolution, high photon flux for dynamic structure factor measurements in single shots, and high spectral bandwidth to resolve plasmon (Langmuir) waves or ion acoustic waves in dense plasmas. We will further describe new developments of ultrafast pump-probe technique at high repetition rates. These include studies on dense cryogenic hydrogen that have begun providing fundamental insights into the physical properties of matter in extreme conditions that are important for astrophysics, fusion experiments and generation of radiation sources. This work was supported by DOE Office of Science, Fusion Energy Science under FWP 100182.

  3. Alternative definitions of the frozen energy in energy decomposition analysis of density functional theory calculations.

    PubMed

    Horn, Paul R; Head-Gordon, Martin

    2016-02-28

    In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint. PMID:26931692

  4. Alternative definitions of the frozen energy in energy decomposition analysis of density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Horn, Paul R.; Head-Gordon, Martin

    2016-02-01

    In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.

  5. Probing mechanical properties of liposomes using acoustic sensors.

    PubMed

    Melzak, Kathryn A; Bender, Florian; Tsortos, Achilleas; Gizeli, Electra

    2008-08-19

    Acoustic devices were employed to characterize variations in the mechanical properties (density and viscoelasticity) of liposomes composed of 1-oleoyl-2-palmitoyl- sn-glycero-3-phosphocholine (POPC) and cholesterol. Liposome properties were modified in three ways. In some experiments, the POPC/cholesterol ratio was varied prior to deposition on the device surface. Alternatively, the ratio was changed in situ via either insertion of cholesterol or removal of cholesterol with beta-cyclodextrin. This was done for liposomes adsorbed directly on the device surface and for liposomes attached via a biotin-terminated poly(ethylene glycol) linker. The acoustic measurements make use of two simultaneous time-resolved signals: one signal is related to the velocity of the acoustic wave, while the second is related to dissipation of acoustic energy. Together, they provide information not only about the mass (or density) of the probed medium but also about its viscoelastic properties. The cholesterol-induced increase in the surface density of the lipid bilayer was indeed observed in the acoustic data, but the resulting change in signal was larger than expected from the change in surface density. In addition, increasing the bilayer resistance to stretching was found to lead to a greater dissipation of the acoustic energy. The acoustic response is assessed in terms of the possible distortions of the liposomes and the known effects of cholesterol on the mechanical properties of the lipid bilayer that encloses the aqueous core of the liposome. To aid the interpretation of the acoustic response, it is discussed how the above changes in the lipid bilayer will affect the effective viscoelastic properties of the entire liposome/solvent film on the scale of the acoustic wavelength. It was found that the acoustic device is very sensitive to the mechanical properties of lipid vesicles; the response of the acoustic device is explained, and the basic underlying mechanisms of interaction are

  6. Investigation of acoustic cavitation energy in a large-scale sonoreactor.

    PubMed

    Son, Younggyu; Lim, Myunghee; Khim, Jeehyeong

    2009-04-01

    Acoustic cavitation energy distributions were investigated for various frequencies such as 35, 72, 110 and 170 kHz in a large-scale sonoreactor. The energy analyses were conducted in three-dimensions and the highest and most stable cavitation energy distribution was obtained not in 35 kHz but in 72 kHz. However, the half-cavitation-energy distance was larger in the case of 35 kHz ultrasound than in the case of 72 kHz, demonstrating that cavitation energy for one cycle was higher for a lower frequency. This discrepancy was due to the large surface area of the cavitation-energy-meter probe. In addition, 110 and 170 kHz ultrasound showed a very low and poor cavitation energy distribution. Therefore larger input power was required to optimize the use of higher frequency ultrasound in the sonoreactor with long-irradiation distance. The relationship between cavitation energy and sonochemical efficiency using potassium iodide (KI) dosimetry was best fitted quadratically. From 7.77 x 10(-10) to 4.42 x 10(-9)mol/J of sonochemical efficiency was evaluated for the cavitation energy from 31.76 to 103. 67 W. In addition, the cavitation energy attenuation was estimated under the assumption that cavitation energy measured in this study would be equivalent to sound intensity, resulting in 0.10, 0.18 and 2.44 m(-1) of the attenuation coefficient (alpha) for 35, 72 and 110 kHz, respectively. Furthermore, alpha/(frequency)(2) was not constant, as some previous studies have suggested. PMID:19144557

  7. Equatorial electron energy and number densities in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Luthey, J. L.

    1972-01-01

    A synchrotron model with a Maxwellian energy distribution of the form e to the (-E/E sub 0) power is used in a comparison with spatially resolved radio interferometric measurements of the Jovian emission. The observations of the decimeter radiation as a function of equatorial distance at 10.4 and 21 cm wavelength were reduced to source emission/cc of source electrons in each of 16 concentric rings. The peak energies for isotropically distributed electrons exceeded the maximum energy for flat orbiting electrons, and the peaks were generally located from 2.25 to 3 Jupiter radii. Beyond 3 radii, the order of magnitude on number density became a sensitive function of pitch angle distribution. The total equatorial intensities at 75 cm wavelength were computed for (E sub 0)(r) and n(r) at different values of B sub 0. The radiative half life for electrons of initial energy E sub 0 in a dipole field was calculated and found to be nearly constant at one year or less for altitudes at and below the position in peak energy.

  8. Energy density of standing sound waves at the radiation-dominated phase of the universe expansion (hydrodynamic derivation)

    NASA Astrophysics Data System (ADS)

    Inogamov, N. A.; Sunyaev, R. A.

    2015-12-01

    In the early Universe up to hydrogen recombination in the Universe, the radiation pressure was much greater than the pressure of baryons and electrons. Moreover, the energy density of cosmic microwave background (CMB) photons was greater than or close to the energy density contained in the rest mass of baryonic matter, i.e., the primordial plasma was a radiated-dominated one and the adiabatic index was close to 4/3. The small density perturbations from which the observed galaxies have grown grew as long as the characteristic perturbation scales exceeded the horizon of the Universe сt at that time. On smaller scales, the density perturbations were standing sound waves. Radiative viscosity and heat conduction must have led to the damping of sound waves on very small scales. After the discovery of the cosmic microwave background, J. Silk calculated the scales of this damping, which is now called Silk damping, knowing the CMBtemperature and assuming the density of baryons and electrons. Observations with the South Pole Telescope, the Atacama Cosmology Telescope, and the Planck satellite have revealed the predicted damping of acoustic peaks in the CMB power spectrum and confirmed one important prediction of the theory. In 1970, R.A. Sunyaev and Ya.B. Zeldovich showed that such energy release in the early Universe should lead to characteristic deviations of the CMB spectrum from the Planck one. The development of the technology of cryogenic detectors of submillimeter and millimeter wavelength radiation has made it possible to measure the CMB spectral distortions at 10-8 of its total intensity (PIXIE). This has sharply increased the interest of theoretical cosmologists in the problem of energy release when smallscale sound waves are damped. We have derived a relativistic formula for the energy of a standing sound wave in a photon-baryon-electron plasma from simple hydrodynamic and thermodynamic relations. This formula is applicable for an arbitrary relation between the

  9. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  10. Evolution of the energy density in the static universe

    NASA Astrophysics Data System (ADS)

    Khokhlov, D. L.

    2011-10-01

    The Einstein static model of the universe as a whole is considered. The Hubble law is explained by the Doppler effect due to the downward inertial acceleration along a certain radius experienced by an observer in the center of the universe, with the total acceleration over all radii being equal zero. Evolution of the universe is introduced through the wave function of the universe dependent on time. This yields the energy density of the universe hence the temperature of the universe dependent on time. On the contrary, the energy, forth and intensity of radiation are fixed with time that allows to develop the Newtonian physics in the whole universe. The time-temperature relation of the universe in the model considered is the same as in the radiation dominated universe in the Friedmann model that allows to explain primordial nucleosynthesis as it is in the standard scenario. The modern parameters of the universe in the model considered are consistent with the observations.

  11. Causes of irregular energy density in f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bamba, Kazuharu; Bhatti, M. Zaeem-ul-Haq

    2016-06-01

    We investigate irregularity factors for a self-gravitating spherical star evolving in the presence of an imperfect fluid. We explore the gravitational field equations and the dynamical equations with the systematic construction in f (R ,T ) gravity, where T is the trace of the energy-momentum tensor. Furthermore, we analyze two well-known differential equations (which occupy principal importance in the exploration of causes of energy density inhomogeneities) with the help of the Weyl tensor and the conservation laws. The irregularity factors for a spherical star are examined for particular cases of dust and isotropic and anisotropic fluids in dissipative and nondissipative regimes in the framework of f (R ,T ) gravity. It is found that, as the complexity of the matter with the anisotropic stresses increases, the inhomogeneity factor corresponds more closely to one of the structure scalars.

  12. Descriptions of carbon isotopes within the energy density functional theory

    SciTech Connect

    Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.

    2014-10-24

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.

  13. An experimentally validated contactless acoustic energy transfer model with resistive-reactive electrical loading

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-04-01

    This paper investigates analytical modeling and experimental validation of Ultrasonic Acoustic Energy Transfer (UAET) for low-power electricity transfer to exploit in wireless applications ranging from medical implants to underwater sensor systems. A piezoelectric receiver bar is excited by incident acoustic waves originating from a source of known strength located at a specific distance from the receiver. The receiver is a free-free piezoelectric cylinder operating in the 33- mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. In order to extract the electrical power output, the piezoelectric receiver bar is shunted to a generalized resistive-reactive circuit. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Experimental validations are presented along with parameter optimization studies. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the receiver's underwater resonance frequency, source-to-receiver distance, and source-strength level are reported. Resistive and resistive-reactive electrical loading cases are discussed for performance enhancement and frequency-wise robustness. Simulations and experiments reveal that the presented multiphysics analytical model for UAET can be used to predict the coupled system dynamics with very good accuracy.

  14. Curvature and Frontier Orbital Energies in Density Functional Theory

    SciTech Connect

    Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi

    2012-12-20

    Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties that exact Kohn-Sham density functional theory (DFT) must obey: (i) The exact total energy versus particle number must be a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump’’ by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of density functional theory. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.

  15. Characterizing high-energy-density propellants for space propulsion applications

    NASA Astrophysics Data System (ADS)

    Kokan, Timothy S.; Olds, John R.; Seitzman, Jerry M.; Ludovice, Peter J.

    2009-10-01

    A technique for computationally determining the thermophysical properties of high-energy-density matter (HEDM) propellants is presented. HEDM compounds are of interest in the liquid rocket engine industry due to their high density and high energy content relative to existing industry-standard propellants. In order to accurately model rocket engine performance, cost and weight in a conceptual design environment, several thermodynamic and physical properties are required over a range of temperatures and pressures. The approach presented here combines quantum mechanical and molecular dynamic (MD) calculations and group additivity methods. A method for improving the force field model coefficients used in the MD is included. This approach is used to determine thermophysical properties for two HEDM compounds of interest: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). The modified force field approach provides results that more accurately match experimental data than the unmodified approach. Launch vehicle and Lunar lander case studies are presented to quantify the system level impact of employing quadricyclane and DMAZ rather than industry standard propellants. In both cases, the use of HEDM propellants provides reductions in vehicle mass compared to industry standard propellants. The results demonstrate that HEDM propellants can be an attractive technology for future launch vehicle and Lunar lander applications.

  16. Vacuum energy density and pressure near a soft wall

    NASA Astrophysics Data System (ADS)

    Murray, S. W.; Whisler, C. M.; Fulling, S. A.; Wagner, Jef; Carter, H. B.; Lujan, David; Mera, F. D.; Settlemyre, T. E.

    2016-05-01

    Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or edged boundary (the "pressure anomaly"). A still more realistic, but still easily calculable, model replaces the hard wall by a power-law potential; because it involves no a posteriori modification of the formulas calculated from the theory, this model should be anomaly free. Here we first set up the formalism and notation for the quantization of a scalar field in the background of a planar soft wall, and we approximate the reduced Green function in perturbative and WKB limits (the latter being appropriate when either the mode frequency or the depth into the wall is sufficiently large). Then we display numerical calculations of the energy density and pressure for the region outside the wall, which show that the pressure anomaly does not occur there. Calculations inside the wall are postponed to later papers, which must tackle the regularization and renormalization of divergences induced by the potential in the bulk region.

  17. Strongly Interacting Matter at Very High Energy Density

    SciTech Connect

    McLerran, L.

    2011-06-05

    The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.

  18. Vacuum energy density and pressure of a massive scalar field

    NASA Astrophysics Data System (ADS)

    Mera, Fernando Daniel; Fulling, S. A.

    2015-06-01

    With a view toward application of the Pauli-Villars regularization method to the Casimir energy of boundaries, we calculate the expectation values of the components of the stress tensor of a confined massive field in 1+1 space-time dimensions. Previous papers by Hays and Fulling are bridged and generalized. The Green function for the time-independent Schrödinger equation is constructed from the Green function for the whole line by the method of images; equivalently, the one-dimensional system is solved exactly in terms of closed classical paths and periodic orbits. Terms in the energy density and in the eigenvalue density attributable to the two boundaries individually and those attributable to the confinement of the field to a finite interval are distinguished so that their physical origins are clear. Then the pressure is found similarly from the cylinder kernel, the Green function associated most directly with an exponential frequency cutoff of the Fourier mode expansion. Finally, we discuss how the theory could be rendered finite by the Pauli-Villars method.

  19. Creating High Energy Density Jets in Laboratory Environments

    NASA Astrophysics Data System (ADS)

    Coker, Robert

    2005-04-01

    A new experimental platform for the investigation of high Mach-number, high energy-density jets has been developed at the University of Rochester's Omega laser facility. Assuming the scalability of the Euler equations, the resulting mm-sized jets should scale to astrophysical objects such as Herbig-Haro objects and jet-driven supernovae that may involve jets with similar internal Mach numbers. This scalability still holds in the presence of radiation as long as the relative importance of radiative cooling is similar. In these experiments, either direct or indirect laser drive is used to launch a strong shock into a 125 micron thick titanium foil target that caps a 700 micron thick titanium washer. After the shock breaks out into the 300 micron diameter cylindrical hole in the washer, a dense, well-collimated jet with an energy density of more than 0.1 MJ per cc is formed. The jet is then imaged as it propagates for 100s of ns down a cylinder of low-density polymer foam. The experiments are diagnosed by point-projection with a micro-dot vanadium backligher. The field of view is several mm and the resolution is 15 microns. The X-ray radiographs show the hydrodynamically unstable jet and the bow shock driving into the surrounding foam. Such complex experimental data provide a challenge to hydrocodes and so are being used to test the hydrodynamic simulations of these types of flows. Initial comparisons between the data and LANL and AWE simulations will be shown. However, the high Reynolds numbers of both the laboratory and astrophysical jets suggest that, given sufficient time and shear, turbulence should develop; this cannot be reliably modeled by present, resolution-limited simulations. Future work concerning the applicability of the Omega experiments to astrophysical objects and the quantitative study of turbulent mixing via subgrid-scale models will be discussed.

  20. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  1. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  2. Energy density matrix formalism for interacting quantum systems: a quantum Monte Carlo study

    SciTech Connect

    Krogel, Jaron T; Kim, Jeongnim; Reboredo, Fernando A

    2014-01-01

    We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground state quantum Monte Carlo techniques imple- mented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences demonstrates a quantita- tive connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides a new avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.

  3. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.

    1998-01-01

    A slashing process for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.

  4. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.; Kupperman, D.S.

    1998-05-19

    A slashing process is disclosed for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns. 2 figs.

  5. Reductions in entree energy density increase children's vegetable intake and reduce energy intake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The energy density (ED; kcal/g) of an entrée influences children's energy intake (EI), but the effect of simultaneously changing both ED and portion size of an entrée on preschool children's EI is unknown. In this within-subject crossover study, 3- to 5-year-old children (30 boys, 31 girls) in a day...

  6. High Energy Density Science at the Linac Coherent Light Source

    SciTech Connect

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a

  7. Observations of shear flows in high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, Eric C.

    The research discussed in this thesis represents work toward the demonstration of experimental designs for creating a Kelvin-Helmholtz (KH) unstable shear layer in a high-energy-density (HED) plasma. Such plasmas are formed by irradiating materials with several kilo-Joules of laser light over a few nanoseconds, and are defined as having an internal pressure greater than one-million atmospheres. Similar plasmas exist in laboratory fusion experiments and in the astrophysical environment. The KH instability is a fundamental fluid instability that arises when strong velocity gradients exist at the interface between two fluids. The KH instability is important because it drives the mixing of fluids and initiates the transition to turbulence in the flow. Until now, the evolution of the KH instability has remained relatively unexplored in the HED regime This thesis presents the observations and analysis of two novel experiments carried out using two separate laser facilities. The first experiment used 1.4 kJ from the Nike laser to generate a supersonic flow of Al plasma over a low-density, rippled foam surface. The Al flow interacted with the foam and created distinct features that resulted from compressible effects. In this experiment there is little evidence of the KH instability. Nevertheless, this experimental design has perhaps pioneered a new method for generating a supersonic shear flow that has the potential to produce the KH instability if more laser energy is applied. The second experiment was performed on the Omega laser. In this case 4.3 kJ of laser energy drove a blast wave along a rippled foam/plastic interface. In response to the vorticity deposited and the shear flow established by the blast wave, the interface rolls up into large vorticies characteristic of the KH instability. The Omega experiment was the first HED experiment to capture the evolution of the KH instability.

  8. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage.

    PubMed

    Khanchaitit, Paisan; Han, Kuo; Gadinski, Matthew R; Li, Qi; Wang, Qing

    2013-01-01

    Ferroelectric polymers are being actively explored as dielectric materials for electrical energy storage applications. However, their high dielectric constants and outstanding energy densities are accompanied by large dielectric loss due to ferroelectric hysteresis and electrical conduction, resulting in poor charge-discharge efficiencies under high electric fields. To address this long-standing problem, here we report the ferroelectric polymer networks exhibiting significantly reduced dielectric loss, superior polarization and greatly improved breakdown strength and reliability, while maintaining their fast discharge capability at a rate of microseconds. These concurrent improvements lead to unprecedented charge-discharge efficiencies and large values of the discharged energy density and also enable the operation of the ferroelectric polymers at elevated temperatures, which clearly outperforms the melt-extruded ferroelectric polymer films that represents the state of the art in dielectric polymers. The simplicity and scalability of the described method further suggest their potential for high energy density capacitors. PMID:24276519

  9. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    NASA Astrophysics Data System (ADS)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  10. Pulsed power drivers for ICF and high energy density physics

    SciTech Connect

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-12-31

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates {approximately}500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed {approximately}15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

  11. A density functional for core-valence correlation energy

    NASA Astrophysics Data System (ADS)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.

    2015-12-01

    A density functional, ɛCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of ɛLY Pcorr(ρc), ɛV WN5corr(ρc, ρv), ɛPBEcorr(ρc, ρv), ɛSlaterex(ρc, ρv), ɛHCTHex(ρc, ρv), ɛHFex(ρc, ρv), and F CV -DFT (" separators=" N i , Z i ) , a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from ɛCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the ɛCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory.

  12. A density functional for core-valence correlation energy.

    PubMed

    Ranasinghe, Duminda S; Frisch, Michael J; Petersson, George A

    2015-12-01

    A density functional, εCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of εLY P (corr)(ρc), εV WN5 (corr)(ρc, ρv), εPBE (corr)(ρc, ρv), εSlater (ex)(ρc, ρv), εHCTH (ex)(ρc, ρv), εHF (ex)(ρc, ρv), and FCV-DFTNi,Zi, a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from εCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the εCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory. PMID:26646873

  13. Stability of Magnetically Implode Liners for High Energy Density Experiments

    SciTech Connect

    Reinovsky, R.E.; Anderson, W.E.; Atchison, W.L.; Bartsch, R.R.; Clark, D.A.; Ekdahl, C.E.; Faehl, R.J.; Goforth, J.H.; Keinigs, R.K.; Lindemuth, I.R.; Morgan, D.; Rodriguez, G.; Tasker, D.G.; Trainor, R.J.; Shlachter, J.S.

    1998-10-18

    Magnetically imploded cylindrical metal shells (z-pinch liners) are attractive drivers for a wide variety of hydrodynamics and material properties experiments. The ultimate utility of liners depends on the acceleration of near-solid density shells to velocities exceeding 20 km/sec with good azimuthal symmetry and axial uniformity. Two pulse power systems (Ranchero and Atlas) currently operational or under development at Los Alamos provide electrical energy adequate to accelerate {approximately}50 gr. liners to 1-2 MJ/cm kinetic energy. As in all z-pinches, the outer surface of a magnetically imploded liner is unstable to magneto-Rayleigh-Taylor (RT) modes during acceleration. Large-scale distortion in the liners from RT modes growing from glide plane interactions or initial imperfections could make liners unusable for man experiments. On the other hand, material strength in the liner should, from first principles, reduce the growth rate of RT modes - and can render some combinations of wavelength and amplitude analytically stable. The growth of instabilities in both soft aluminum liners and in high strength aluminum alloy liners has been studied analytically, computationally and experimentally at liner kinetic energies up to 100 KJ/cm on the Pegasus capacitor bank using driving currents up to 12 MA.

  14. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - a response surface approach.

    PubMed

    González-Centeno, María Reyes; Knoerzer, Kai; Sabarez, Henry; Simal, Susana; Rosselló, Carmen; Femenia, Antoni

    2014-11-01

    Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120kHz), ultrasonic power density (50, 100, 150W/L) and extraction time (5, 15, 25min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (p<0.05). The Box-Behnken Design (BBD) generated satisfactory mathematical models which accurately explain the behavior of the system; allowing to predict both the extraction yield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40kHz, a power density of 150W/L and 25min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31mg GA/100g fw for total phenolics and 2.04mg quercetin/100g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66mg Trolox/100g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors' knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published. PMID:24548543

  15. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Hunt, Ron

    2013-01-01

    Fluid structural interaction problems that estimate panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. Even when the analyst elects to use a fitted function for the spatial correlation an error may be introduced if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Both qualitative and quantitative illustrations evaluating the adequacy of different patch density assumptions to approximate the fitted spatial correlation function are provided. The actual response of a typical vehicle panel system is then evaluated in a convergence study where the patch density assumptions are varied over the same finite element model. The convergence study results are presented illustrating the impact resulting from a poor choice of patch density. The fitted correlation function used in this study represents a Diffuse Acoustic Field (DAF) excitation of the panel to produce vibration response.

  16. A Patch Density Recommendation based on Convergence Studies for Vehicle Panel Vibration Response resulting from Excitation by a Diffuse Acoustic Field

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron

    2013-01-01

    Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.

  17. THE IRON OPACITY PROJECT: High-Energy-Density Plasma Opacities

    NASA Astrophysics Data System (ADS)

    Palay, E.; Orban, C.; Nahar, S.; Pradhan, A.; Pinnsonoault, M.; Bailey, J.

    2013-05-01

    Opacity governs radiation flow in plasma sources. Accurate opacities are needed to model unobservable laboratory and astrophysical conditions. High-energy-density (HED) plasma conditions prevalent in stellar interiors can now be recreated in the laboratory. The Z-pinch fusion device at the Sandia National Lab can reproduce temperatures and densities near the boundary where radiation transport changes from diffusion to convection inside the Sun. To benchmark theoretical opacities experiments are essential to resolve the outstanding discrepancy in solar abundances. The most common volatile elements C, N, O, Ne, etc. have been spectroscopically measured to be up to 50% lower than the standard abundances. This introduces conflict in the derived values of basic solar parameters such as the radiation/convection boundary, sound speed, and the primordial He abundance with precisely measured oscillations of the Sun through Helioseismology. A potential solution is increment of stellar opacities, which has inverse but complex relation with abundacnes, at least 30%. New iron opacity calculations include hitherto neglected atomic physics of fine structure and resonances which are largely treated as lines in existing opacities calculations. Preliminary results on radiative transitions in Ne Partial support: DOE,NSF.

  18. Sodium pentazolate: A nitrogen rich high energy density material

    NASA Astrophysics Data System (ADS)

    Steele, Brad A.; Oleynik, Ivan I.

    2016-01-01

    Sodium pentazolates NaN5 and Na2N5, new high energy density materials, are discovered during first principles crystal structure search for the compounds of varying amounts of elemental sodium and nitrogen. The pentazole anion (N5-) is stabilized in the condensed phase by sodium Na+ cations at pressures exceeding 20 GPa, and becomes metastable upon release of pressure. The sodium azide (NaN3) precursor is predicted to undergo a chemical transformation above 50 GPa into sodium pentazolates NaN5 and Na2N5. The calculated Raman spectrum of NaN5 is in agreement with the experimental Raman spectrum of a previously unidentified substance appearing upon compression and heating of NaN3.

  19. Computational predictions of energy materials using density functional theory

    NASA Astrophysics Data System (ADS)

    Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.

    2016-01-01

    In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.

  20. Aromatic Polyurea Possessing High Electrical Energy Density and Low Loss

    NASA Astrophysics Data System (ADS)

    Thakur, Yash; Lin, Minren; Wu, Shan; Zhang, Q. M.

    2016-07-01

    We report the development of a dielectric polymer, poly (ether methyl ether urea) (PEMEU), which possesses a dielectric constant of 4 and is thermally stable up to 150°C. The experimental results show that the ether units are effective in softening the rigid polymer and making it thermally processable, while the high dipole moment of urea units and glass structure of the polymer leads to a low dielectric loss and low conduction loss. As a result, PEMEU high quality thin films can be fabricated which exhibit exceptionally high breakdown field of >1.5 GV/m, and a low conduction loss at fields up to the breakdown. Consequently, the PEMEU films exhibit a high charge-discharge efficiency of 90% and a high discharged energy density of 36 J/cm3.

  1. High Energy Density Physics:. the Laser Field of Tomorrow

    NASA Astrophysics Data System (ADS)

    Freeman, Richard R.

    2013-03-01

    Ever since its invention, the laser has become an increasingly important tool for physics research. Indeed, the laser has made it possible to not only study many extant physical phenomena, but also to actually produce matter in conditions that don't exist in nature, or more precisely, don't exist on the earth. In this lecture, I discuss how the development of lasers that produce ultra-short (˜fsec) and ultra-intense (≥1020 W/cm2) laser pulses actually produce plasmas that are at a density and temperature that exist only in stars. In doing so I discuss some of the basics of these extreme pulses interacting with electrons, yielding surprisingly intriguing physical phenomena. Finally, I argue that this field is an essential element in any comprehensive physical research endeavor, explicitly citing its fundamental relationship with the development of clean, unlimited fusion energy power.

  2. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    SciTech Connect

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  3. BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)

    SciTech Connect

    Nazarewicz, Witold

    2012-07-01

    The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  4. Ammonia-(Dinitramido)boranes: High-Energy-Density Materials.

    PubMed

    Bélanger-Chabot, Guillaume; Rahm, Martin; Haiges, Ralf; Christe, Karl O

    2015-09-28

    Two ammonia-(dinitramido)boranes were synthesized by the reaction of dinitroamine with ammonia-borane. These compounds are the first reported examples of (dinitramido)boranes. Ammonia-mono(dinitramido)borane is a perfectly oxygen-balanced high-energy-density material (HEDM) composed of an ammonia-BH2 fuel group and a strongly oxidizing dinitramido ligand. Although it is thermally not stable enough for practical applications, its predicted specific impulse as a solid rocket propellant would be 333 s. Its predicted performance as an explosive matches that of pentaerythtritol tetranitrate (PETN) and significantly exceeds that of trinitrotoluene (TNT). Its structure was established by X-ray crystallography and vibrational and multinuclear NMR spectroscopy. Additionally, the over-oxidized ammoniabis(dinitramido)borane was detected by NMR spectroscopy. PMID:26276906

  5. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  6. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  7. Fabrication and demonstration of high energy density lithium ion microbatteries

    NASA Astrophysics Data System (ADS)

    Sun, Ke

    density on a limited footprint area. In chapter 4, Li-ion batteries based on the LiMn2O4-TiP 2O7 couple are manufactured on flexible paper substrates; where the use of light-weight paper substrates significantly increase the gravimetric energy density of this electrode couple as compared to traditional metal current collectors. In chapter 5, a novel nanowire growth mechanism will be explored to grow interdigitated metal oxide nanowire micro battery electrodes. The growth kinetics of this mechanism is systematically studied to understand how to optimize the growth process to produce electrodes with improved electrochemical properties.

  8. Model-independent dark energy equation of state from unanchored baryon acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Evslin, Jarah

    2016-09-01

    Ratios of line of sight baryon acoustic oscillation (BAO) peaks at two redshifts only depend upon the average dark energy equation of states between those redshifts, as the dependence on anchors such as the BAO scale or the Hubble constant is canceled in a ratio. As a result, BAO ratios provide a probe of dark energy which is independent of both the cosmic distance ladder and the early evolution of universe. In this note, we use ratios to demonstrate that the known tension between the Lyman alpha forest BAO measurement and other probes arises entirely from recent (0.57 < z < 2.34) cosmological expansion. Using ratios of the line of sight Lyman alpha forest and BOSS CMASS BAO scales, we show that there is already more than 3 σ tension with the standard ΛCDM cosmological model which implies that either (i) The BOSS Lyman alpha forest measurement of the Hubble parameter was too low as a result of a statistical fluctuation or systematic error or else (ii) the dark energy equation of state falls steeply at high redshift.

  9. Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound

    SciTech Connect

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.

    2012-04-04

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array from three different cruises during high tidal period in February, May, and June 2011. The ambient noise level decreases approximately 25 dB re 1 μPa per octave from frequency ranges of 1 kHz to 70 kHz, and increases approximately 20 dB re 1 μPa per octave for the frequency from 70 kHz to 200 kHz. The difference of noise pressure levels in different months varies from 10 to 30 dB re 1 μPa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range from 100 Hz to 70 kHz, and the variation could be as high as 30 dB re 1 μPa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deploying and operating for tidal power generation alert system.

  10. Frontiers in plasma science: a high energy density perspective

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2015-11-01

    The potential for ground-breaking research in plasma physics in high energy density (HED) regimes is compelling. The combination of HED facilities around the world spanning microjoules to megajoules, with time scales ranging from femtoseconds to microseconds enables new regimes of plasma science to be experimentally probed. The ability to shock and ramp compress samples and simultaneously probe them allows dense, strongly coupled, Fermi degenerate plasmas relevant to planetary interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars are being probed. The physics and dynamics of magnetized plasmas relevant to astrophysics and inertial confinement fusion are also starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation. Turbulent, high magnetic Reynolds number flows are being experimentally generated to look for evidence of the turbulent magnetic dynamo effect. And new results from thermonuclear reactions in dense hot plasmas relevant to stellar interiors are starting to emerge. A selection of examples providing a compelling vision for frontier plasma science in the coming decade will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Metrology Challenges for High Energy Density Science Target Manufacture

    SciTech Connect

    Seugling, R M; Bono, M J; Davis, P

    2009-02-19

    Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

  12. Thermal transport measurements in high-energy-density matter

    NASA Astrophysics Data System (ADS)

    Ping, Yuan

    2015-11-01

    Thermal conductivity is one of the most fundamental physical properties of matter. It determines the heat transport rate and has an enormous impact on a variety of mechanical, electrical, chemical, and nuclear systems. Thermal conduction is important in high energy density (HED) matter such as laboratory fusion plasmas, planetary cores, compact stars, and other celestial objects. Examples are in the ablation and instability growth in inertial confinement fusion (ICF) capsules, in energy loss from ICF hot spot, and in the evolution of Earth's core-mantle boundary. Despite the importance of thermal conductivity in HED systems, experimental measurements under relevant conditions are scarce and challenging. We have developed a method of differential heating for thermal conductivity measurements. In this talk, experimental designs will be described for four different platforms: optical laser heating, proton heating, laser-generated x-ray heating and XFEL heating. Data from various facilities will be presented and comparison with models will be discussed. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  13. Effect of the Vacuum Energy Density on Graviton Propagation

    NASA Astrophysics Data System (ADS)

    Modanese, Giovanni; Fontana, Giorgio

    2004-02-01

    It has been known for some time that the value Λ of the vacuum energy density affects the propagation equation for gravitons - the analogue of photons for the gravitational field. (For historical reasons, Λ is also called ``cosmological constant''.) More precisely, if Λ is not zero, then a mass term appears in the propagation equation, such that m2=-Λ. As a consequence, the polarization states of gravitons also change, because a massless particle has only two polarization states while a massive particle has more. This effect of the Λ-term has been confirmed by recent calculations in a curved background, which is actually the only proper setting, since solutions of the classical Einstein equations in the presence of a Λ-term represent a space with constant curvature. A real value for the mass (when Λ<0) will show up as a slight exponential damping in the gravitational potential, which is however strongly constrained by astronomical data. The consequences of an imaginary mass (for Λ>0) are still unclear; on general grounds, one can expect the onset of instabilities in this case. This is also confirmed by numerical simulations of quantum gravity which became recently available. These properties gain a special interest in consideration of the following. (1) The most recent cosmological data indicate that Λ is positive and of the order of 0.1 J/m3. Is this value compatible with a stable propagation of gravitons? (2) The answer to the previous question lies perhaps in the scale dependence of the effective value of Λ. It could then happen that Λ is actually negative at the small distance/large energy scale at which the quantum behavior of gravitational fields and waves becomes relevant. Applications for an advanced propulsion scheme is that local contributions to the vacuum energy density (remarkably in superconductors in certain states, and in very strong static electromagnetic fields) can change locally the sign of Λ, and so affect locally the propagation

  14. Energy-density field approach for low- and medium-frequency vibroacoustic analysis of complex structures using a statistical computational model

    NASA Astrophysics Data System (ADS)

    Kassem, M.; Soize, C.; Gagliardini, L.

    2009-06-01

    In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.

  15. Comment on "Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation"

    NASA Astrophysics Data System (ADS)

    Trickey, S. B.; Karasiev, Valentin V.; Chakraborty, Debajit

    2015-09-01

    We suggest a more nuanced view of the merit and utility of generalized gradient approximations (GGAs) for the noninteracting kinetic energy (KE) than the critique of Xia and Carter (XC) [Phys. Rev. B 91, 045124 (2015), 10.1103/PhysRevB.91.045124]. Specifically, the multiple valuedness of the Pauli term enhancement factor (denoted G [n ] by XC) with respect to the inhomogeneity variable s can be excluded by enforcement of a bound on the Kohn-Sham KE to achieve universality of the functional along with enforcement of proper large-s behavior. This is physically sensible in that the excluded G values occur for s values that correspond to low densities. The behavior is exacerbated by peculiarities of pseudodensities. The VT84F KE GGA, constructed with these constraints, does not have the numerical instability in our older PBE2 functional analyzed by XC.

  16. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  17. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect

    Worthington, Monty

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the

  18. Search for acoustic signals from ultrahigh energy neutrinos in 1500 km{sup 3} of sea water

    SciTech Connect

    Kurahashi, Naoko; Gratta, Giorgio; Vandenbroucke, Justin

    2010-10-01

    An underwater acoustic sensor array spanning {approx}1500 km{sup 3} is used to search for cosmic-ray neutrinos of ultrahigh energies ( E{sub {nu}>}10{sup 18} eV). Approximately 328 million triggers accumulated over an integrated 130 days of data taking are analyzed. The sensitivity of the experiment is determined from a Monte Carlo simulation of the array using recorded noise conditions and expected waveforms. Two events are found to have properties compatible with showers in the energy range 10{sup 24} eVenergy neutrinos using the acoustic technique.

  19. Characterizing high-energy-density propellants for space propulsion applications

    NASA Astrophysics Data System (ADS)

    Kokan, Timothy

    There exists wide ranging research interest in high-energy-density matter (HEDM) propellants as a potential replacement for existing industry standard fuels for liquid rocket engines. The U.S. Air Force Research Laboratory, the U.S. Army Research Lab, the NASA Marshall Space Flight Center, and the NASA Glenn Research Center each either recently concluded or currently has ongoing programs in the synthesis and development of these potential new propellants. In order to perform conceptual designs using these new propellants, most conceptual rocket engine powerhead design tools (e.g. NPSS, ROCETS, and REDTOP-2) require several thermophysical properties of a given propellant over a wide range of temperature and pressure. These properties include enthalpy, entropy, density, viscosity, and thermal conductivity. Very little thermophysical property data exists for most of these potential new HEDM propellants. Experimental testing of these properties is both expensive and time consuming and is impractical in a conceptual vehicle design environment. A new technique for determining these thermophysical properties of potential new rocket engine propellants is presented. The technique uses a combination of three different computational methods to determine these properties. Quantum mechanics and molecular dynamics are used to model new propellants at a molecular level in order to calculate density, enthalpy, and entropy. Additivity methods are used to calculate the kinematic viscosity and thermal conductivity of new propellants. This new technique is validated via a series of verification experiments of HEDM compounds. Results are provided for two HEDM propellants: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). In each case, the new technique does a better job than the best current computational methods at accurately matching the experimental data of the HEDM compounds of interest. A case study is provided to help quantify the vehicle level impacts of using HEDM

  20. High-Efficiency Photovoltaic Energy Conversion using Surface Acoustic Waves in Piezoelectric Semiconductors

    NASA Astrophysics Data System (ADS)

    Yakovenko, Victor

    2010-03-01

    We propose a radically new design for photovoltaic energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. The periodically modulated electric field from SAW spatially separates photogenerated electrons and holes to the maxima and minima of SAW, thus preventing their recombination. The segregated electrons and holes are transported by the moving SAW to the collecting electrodes of two types, which produce dc electric output. Recent experiments [1] using SAWs in GaAs have demonstrated the photon to current conversion efficiency of 85%. These experiments were designed for photon counting, but we propose to adapt these techniques for highly efficient photovoltaic energy conversion. The advantages are that the electron-hole segregation takes place in the whole volume where SAW is present, and the electrons and holes are transported in the organized, collective manner at high speed, as opposed to random diffusion in conventional devices.[4pt] [1] S. J. Jiao, P. D. Batista, K. Biermann, R. Hey, and P. V. Santos, J. Appl. Phys. 106, 053708 (2009).

  1. Phenomenological calculation of nuclear binding energy and density with Yukawa-potentials

    NASA Astrophysics Data System (ADS)

    Scheid, W.

    2016-01-01

    In this paper, we study a phenomenological collective model for the calculation of the nuclear density and ground state binding energy of nuclei. The proton density is assumed proportional to the nuclear density. The total binding energy of the nuclear matter consists of the binding energy of infinite nuclear matter, of two Yukawa-potentials, of the Coulomb-energy and of the symmetry-energy. The parameters of the Yukawa-potential are fitted with the Bethe-Weizsäcker (BW) mass formula. The resulting binding energies and nuclear densities agree quite satisfying with known nuclear values.

  2. Tensor part of the Skyrme energy density functional: Spherical nuclei

    NASA Astrophysics Data System (ADS)

    Lesinski, T.; Bender, M.; Bennaceur, K.; Duguet, T.; Meyer, J.

    2007-07-01

    the single-particle spectra in doubly-magic nuclei is deteriorated, which can be traced back to features of the single-particle spectra that are not related to the tensor terms. We conclude that the currently used central and spin-orbit parts of the Skyrme energy density functional are not flexible enough to allow for the presence of large tensor terms.

  3. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  4. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    SciTech Connect

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-06-07

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-{micro}s risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001.

  5. High Energy Density Studies at the OMEGA laser facility

    NASA Astrophysics Data System (ADS)

    Boehly, Thomas

    2015-06-01

    The primary emphasis of the scientific program at the Laboratory for Laser Energetics is laser-driven inertial confinement fusion. We report on high-energy-density (HED) experiments that use the OMEGA laser to produce multi-megabar shocks in materials of interest to the national fusion effort and the associated HED sciences. We present measurements of the behavior of shocked diamond, in both the single-crystal and ultranano-crystalline forms used as an ablator material in fusion capsules. Using the impedance-matching technique both the Hugoniot and release behaviors are measured with respect to multiple reference materials. The release of shocked diamond into liquid deuterium is also measured. We present the results of sound-speed measurements in shocked quartz which is also used as a reference for sound speed measurements in CH and fused silica. This is done using an unsteady wave analysis that tracks the propagation of small perturbations in shock pressure as they traverse the shocked material from `piston' to shock front. The arrival times of these perturbations, as compared to the same in a reference material, provides the sound speed in the shock material. We also present results of optical and x-ray probing of shock waves in foam targets and solid targets, as well as the release plumes of shock material after shock breakout. The import of these measurements to the fusion program and basic HED science will be discussed and plans for future work presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  6. Upgrading of biorenewables to high energy density fuels

    SciTech Connect

    Gordon, John C; Batista, Enrique R; Chen, Weizhong; Currier, Robert P; Dirmyer, Matthew R; John, Kevin D; Kim, Jin K; Keith, Jason; Martin, Richard L; Pierpont, Aaron W; Silks Ill, L. A. "" Pete; Smythe, Mathan C; Sutton, Andrew D; Taw, Felicia L; Trovitch, Ryan J; Vasudevan, Kalyan V; Waidmann, Christopher R; Wu, Ruilian; Baker, R. Thomas; Schlaf, Marcel

    2010-12-07

    According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

  7. Replacing critical rare earth materials in high energy density magnets

    NASA Astrophysics Data System (ADS)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  8. Plasma polymerized high energy density dielectric films for capacitors

    NASA Technical Reports Server (NTRS)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  9. Building A Universal Nuclear Energy Density Functional (UNEDF)

    SciTech Connect

    Joe Carlson; Dick Furnstahl; Mihai Horoi; Rusty Lusk; Witek Nazarewicz; Esmond Ng; Ian Thompson; James Vary

    2012-09-30

    During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.

  10. Experimental measurement of energy density in a vibrating plate and comparison with energy finite element analysis

    NASA Astrophysics Data System (ADS)

    Navazi, H. M.; Nokhbatolfoghahaei, A.; Ghobad, Y.; Haddadpour, H.

    2016-08-01

    In this paper, a new method and formulation is presented for experimental measurement of energy density of high frequency vibrations of a plate. By use of the new proposed method and eight accelerometers, both kinetic and potential energy densities are measured. Also, a computer program is developed based on energy finite element method to evaluate the proposed method. For several points, the results of the developed experimental formulation are compared with those of the energy finite element analysis results. It is observed that, there is a good agreement between experimental results and analyses. Finally, another test setup with reduced accelerometer spacing was prepared and based on the comparison between kinetic and potential results, it is concluded that, the kinetic and potential counterparts of the energy density are equal in high frequency bands. Based on this conclusion, the measurement procedure was upgraded to an efficient and very simple one for high frequency ranges. According to the new test procedure, another experimental measurement was performed and the results had a good agreement with the EFEA results.

  11. High-energy-density electron jet generation from an opening gold cone filled with near-critical-density plasma

    SciTech Connect

    Yu, T. P. Shao, F. Q.; Zou, D. B.; Ge, Z. Y.; Zhang, G. B.; Wang, W. Q.; Li, X. H.; Liu, J. X.; Ouyang, J. M.; Yu, W.; Luan, S. X.; Wang, J. W.; Wong, A. Y.

    2015-01-14

    By using two-dimensional particle-in-cell simulations, we propose a scheme for strong coupling of a petawatt laser with an opening gold cone filled with near-critical-density plasmas. When relevant parameters are properly chosen, most laser energy can be fully deposited inside the cone with only 10% leaving the tip opening. Due to the asymmetric ponderomotive acceleration by the strongly decayed laser pulse, high-energy-density electrons with net laser energy gain are accumulated inside the cone, which then stream out of the tip opening continuously, like a jet. The jet electrons are fully relativistic, with speeds around 0.98−0.998 c and densities at 10{sup 20}/cm{sup 3} level. The jet can keep for a long time over 200 fs, which may have diverse applications in practice.

  12. Model-independent Evidence for Dark Energy Evolution from Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Sahni, V.; Shafieloo, A.; Starobinsky, A. A.

    2014-10-01

    Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s-1 Mpc-1 at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh 2 from SDSS DR9 and DR11 data, namely, Omh 2 ≈ 0.122 ± 0.01, which is equivalent to Ω0m h 2 for the spatially flat ΛCDM model, is in tension with the value Ω0m h 2 = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.

  13. MODEL-INDEPENDENT EVIDENCE FOR DARK ENERGY EVOLUTION FROM BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Sahni, V.; Shafieloo, A.; Starobinsky, A. A. E-mail: arman@apctp.org

    2014-10-01

    Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s{sup –1} Mpc{sup –1} at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh {sup 2} from SDSS DR9 and DR11 data, namely, Omh {sup 2} ≈ 0.122 ± 0.01, which is equivalent to Ω{sub 0m} h {sup 2} for the spatially flat ΛCDM model, is in tension with the value Ω{sub 0m} h {sup 2} = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.

  14. Energy density analysis (EDA) of cis, trans-enol isomerization in malonaldehyde, tropolone and 9-hydroxyphenalenone

    NASA Astrophysics Data System (ADS)

    Nakai, Hiromi; Sodeyama, Keitaro

    2002-10-01

    We have recently proposed an energy density analysis (EDA) that partitions the total energy of a molecular system into atomic energy densities. In this study, the EDA is applied to cis, trans-enol isomerization reactions of malonaldehyde, tropolone and 9-hydroxyphenalenone. Energy density changes in the reactions are shown to be closely related to the formation and breaking of the chemical bonds. By analyzing the energy density changes, we can find the reason why the hydrogen atom moves through the out-of-plane pathway instead of the in-plane pathway.

  15. Symmetry energy at subnuclear densities and nuclei in neutron star crusts

    SciTech Connect

    Oyamatsu, Kazuhiro; Iida, Kei

    2007-01-15

    We examine how the properties of inhomogeneous nuclear matter at subnuclear densities depend on the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate the size and shape of nuclei in neutron star matter at zero temperature in a way dependent on the density dependence of the symmetry energy. We find that for smaller symmetry energy at subnuclear densities, corresponding to the larger density symmetry coefficient L, the charge number of nuclei is smaller and the critical density at which matter with nuclei or bubbles becomes uniform is lower. The decrease in the charge number is associated with the dependence of the surface tension on the nuclear density and the density of a sea of neutrons, whereas the decrease in the critical density can be generally understood in terms of proton clustering instability in uniform matter.

  16. Transverse energy scaling and energy density estimates from sup 16 O- and sup 32 S-induced reactions

    SciTech Connect

    Not Available

    1989-01-01

    We discuss the dependence of transverse energy production on projectile mass, target mass, and on the impact parameter of the heavy ion reaction. The transverse energy is shown to scale with the number of participating nucleons. Various methods to estimate the attained energy density from the observed transverse energy are discussed. It is shown that the systematics of the energy density estimates suggest averages of 2--3 GeV/fm{sup 3} rather than the much higher values attained by assuming Landau-stopping initial conditions. Based on the observed scaling of the transverse energy, an initial energy density profile may be estimated. 14 refs., 4 figs.

  17. Transverse energy scaling and energy density estimates from /sup 16/O- and /sup 32/S-induced reactions

    SciTech Connect

    Awes, T.C.; Albrecht, R.; Baktash, C.; Beckmann, P.; Berger, F.; Bock, R.; Claesson, G.; Clewing, G.; Dragon, L.; Eklund, A.

    1989-01-01

    We discuss the dependence of transverse energy production on projectile mass, target mass, and on the impact parameter of the heavy ion reaction. The transverse energy is shown to scale with the number of participating nucleons. Various methods to estimate the attained energy density from the observed transverse energy are discussed. It is shown that the systematics of the energy density estimates suggest average of 2-3 GeV/fm/sup 3/ rather than the much higher values attained by assuming Landau-stopping initial conditions. Based on the observed scaling of the transverse energy, an initial energy density profile may be estimated. 11 refs., 4 figs.

  18. First cosmological constraints on dark energy from the radial baryon acoustic scale.

    PubMed

    Gaztañaga, Enrique; Miquel, Ramon; Sánchez, Eusebio

    2009-08-28

    We present cosmological constraints arising from the first measurement of the radial (line-of-sight) baryon acoustic oscillations (BAO) scale in the large scale structure traced by the galaxy distribution. Here we use these radial BAO measurements at z = 0.24 and z = 0.43 to derive new constraints on dark energy and its equation of state for a flat universe, without any other assumptions on the cosmological model: w = -1.14 + or - 0.39 (assumed constant), Omega(m) = 0.24(-0.05);(+0.06). If we drop the assumption of flatness and include previous cosmic microwave background and supernova data, we find w = -0.974 + or - 0.058, Omega(m) = 0.271 + or - 0.015, and Omega(k) = -0.002 + or - 0.006, in good agreement with a flat cold dark matter cosmology with a cosmological constant. To our knowledge, these are the most stringent constraints on these parameters to date under our stated assumptions. PMID:19792779

  19. Monitoring acoustic emission (AE) energy in slurry impingement using a new model for particle impact

    NASA Astrophysics Data System (ADS)

    Droubi, M. G.; Reuben, R. L.; White, G.

    2015-10-01

    A series of systematic impact tests have been carried out to investigate the influence of particle size, free stream velocity, particle impact angle, and nominal particle concentration on the amount of energy dissipated in a carbon steel target using a slurry impingement erosion test rig, as indicated by the acoustic emission (AE) recorded by a sensor mounted on the back of the target. Silica sand particles of mean particle size 152.5, 231, and 362.5 μm were used for impingement on the target at angles varying between 30° and 90° while the free stream velocity was changed between 4.2 and 12.7 m/s. In previous work by the authors, it was demonstrated that the AE time series associated with particle-laden air striking a carbon steel target could be described as the cumulation of individual particle arrival events each drawn from a statistical distribution model. The high arrival rate involved in a slurry jet poses challenges in resolving individual particle impact signatures in the AE record, and so the model has been extended in this paper to account for different particle carrier-fluids and to situations where arrivals cannot necessarily be resolved.

  20. Throughput and Energy Efficiency of a Cooperative Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Ghosh, Arindam; Lee, Jae-Won; Cho, Ho-Shin

    2013-01-01

    Due to its efficiency, reliability and better channel and resource utilization, cooperative transmission technologies have been attractive options in underwater as well as terrestrial sensor networks. Their performance can be further improved if merged with forward error correction (FEC) techniques. In this paper, we propose and analyze a retransmission protocol named Cooperative-Hybrid Automatic Repeat reQuest (C-HARQ) for underwater acoustic sensor networks, which exploits both the reliability of cooperative ARQ (CARQ) and the efficiency of incremental redundancy-hybrid ARQ (IR-HARQ) using rate-compatible punctured convolution (RCPC) codes. Extensive Monte Carlo simulations are performed to investigate the performance of the protocol, in terms of both throughput and energy efficiency. The results clearly reveal the enhancement in performance achieved by the C-HARQ protocol, which outperforms both CARQ and conventional stop and wait ARQ (S&W ARQ). Further, using computer simulations, optimum values of various network parameters are estimated so as to extract the best performance out of the C-HARQ protocol. PMID:24217359

  1. Throughput and energy efficiency of a cooperative hybrid ARQ protocol for underwater acoustic sensor networks.

    PubMed

    Ghosh, Arindam; Lee, Jae-Won; Cho, Ho-Shin

    2013-01-01

    Due to its efficiency, reliability and better channel and resource utilization, cooperative transmission technologies have been attractive options in underwater as well as terrestrial sensor networks. Their performance can be further improved if merged with forward error correction (FEC) techniques. In this paper, we propose and analyze a retransmission protocol named Cooperative-Hybrid Automatic Repeat reQuest (C-HARQ) for underwater acoustic sensor networks, which exploits both the reliability of cooperative ARQ (CARQ) and the efficiency of incremental redundancy-hybrid ARQ (IR-HARQ) using rate-compatible punctured convolution (RCPC) codes. Extensive Monte Carlo simulations are performed to investigate the performance of the protocol, in terms of both throughput and energy efficiency. The results clearly reveal the enhancement in performance achieved by the C-HARQ protocol, which outperforms both CARQ and conventional stop and wait ARQ (S&W ARQ). Further, using computer simulations, optimum values of various network parameters are estimated so as to extract the best performance out of the C-HARQ protocol. PMID:24217359

  2. Health sensor for human body by using infrared, acoustic energy and magnetic signature

    NASA Astrophysics Data System (ADS)

    Wu, Jerry

    2013-05-01

    There is a general chain of events that applies to infections. Human body infection could causes by many different types of bacteria and virus in different areas or organ systems. In general, doctor can't find out the right solution/treatment for infections unless some certain types of bacteria or virus are detected. These detecting processes, usually, take few days to one week to accomplish. However, some infections of the body may not be able to detect at first round and the patient may lose the timing to receive the proper treatment. In this works, we base on Chi's theory which is an invisible circulation system existed inside the body and propose a novel health sensor which summarizes human's infrared, acoustic energy and magnetic signature and find out, in minutes, the most possible area or organ system that cause the infection just like what Chi-Kung master can accomplish. Therefore, the detection process by doctor will be shortened and it raises the possibility to give the proper treatment to the patient in the earliest timing.

  3. A generalized model for estimating the energy density of invertebrates

    USGS Publications Warehouse

    James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.

    2012-01-01

    Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2  =  0.96, p < 0.0001), where ED (as J/g wet mass) was estimated from pDM as ED  =  22,960pDM − 174.2. Model evaluation showed that nearly all (98.8%) of the variability between observed and predicted values for invertebrate ED could be attributed to residual error in the model. Regression of observed on predicted values revealed that the 97.5% joint confidence region included the intercept of 0 (−103.0 ± 707.9) and slope of 1 (1.01 ± 0.12). Use of this model requires that only dry and wet mass measurements be obtained, resulting in significant time, sample size, and cost savings compared to traditional bomb calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.

  4. Covariant energy density functionals: The assessment of global performance across the nuclear landscape

    SciTech Connect

    Afanasjev, A. V.

    2015-10-15

    The assessment of the global performance of the state-of-the-art covariant energy density functionals and related theoretical uncertainties in the description of ground state observables has recently been performed. Based on these results, the correlations between global description of binding energies and nuclear matter properties of covariant energy density functionals have been studied in this contribution.

  5. Change in dietary energy density after implementation of the Texas Public School Nutrition Policy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of energy-dense foods has been associated with rising obesity rates and the metabolic syndrome. Reducing dietary energy density is an important strategy to address obesity, but few studies have examined the effect of nutrition policies on children's energy density. The study's objective ...

  6. Stimulated scattering in laser driven fusion and high energy density physics experiments

    SciTech Connect

    Yin, L. Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J.; Kirkwood, R. K.; Milovich, J.

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a kλ{sub D} range of 0.15 < kλ{sub D} < 0.5, where stimulated Raman scattering (SRS) is active (k is the initial electron plasma wave number and λ{sub D} is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ∼ (kλ{sub D}){sup −4} for kλ{sub D} ≳ 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for kλ{sub D} < 0.3 when Langmuir decay instability (LDI) is present. The SRS risk is shown to be highest for kλ{sub D} between 0.2 and 0.3. SRS re-scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600 nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.

  7. Method and system for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Johnson Paul A.; Ten Cate, James A.; Guyer, Robert; Le Bas, Pierre-Yves; Vu, Cung; Nihei, Kurt; Schmitt, Denis P.; Skelt, Christopher

    2012-02-14

    A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.

  8. Talbot-Lau X-ray Deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments

    DOE PAGESBeta

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Mileham, C.; Begishev, I.; Theobald, W.; Bromage, J.; Regan, S. P.; Klein, S. R.; Munoz-Cordoves, G.; et al

    2016-04-21

    Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  9. High-energy-density electron beam from interaction of two successive laser pulses with subcritical-density plasma

    NASA Astrophysics Data System (ADS)

    Wang, J. W.; Yu, W.; Yu, M. Y.; Xu, H.; Ju, J. J.; Luan, S. X.; Murakami, M.; Zepf, M.; Rykovanov, S.

    2016-02-01

    It is shown by particle-in-cell simulations that a narrow electron beam with high energy and charge density can be generated in a subcritical-density plasma by two consecutive laser pulses. Although the first laser pulse dissipates rapidly, the second pulse can propagate for a long distance in the thin wake channel created by the first pulse and can further accelerate the preaccelerated electrons therein. Given that the second pulse also self-focuses, the resulting electron beam has a narrow waist and high charge and energy densities. Such beams are useful for enhancing the target-back space-charge field in target normal sheath acceleration of ions and bremsstrahlung sources, among others.

  10. Can seismic (destructive) energy be stored after conversion into useful electrical or acoustic energy?

    NASA Astrophysics Data System (ADS)

    Verma, Umesh P.; Sinha, Madhurendra N.

    2014-06-01

    Since the dawn of precursory revolution in the seismology and electromagnetic radiation platform., F.T. Freund (2010) et.al, have used piezoelectric effect on the crustal geo-materials and emanation of seismic pre signals frequently. Their effect in form of ULF and VHF are commonly detected (by Greece and American seismologists)in the upper ionosphere from surface of globe. TEC, OLR. MMC are the consequent instrumentation in acquiring data to these pre-earthquake signals. Our attempt is to detect the signals prior to earthquake due to impending stress in the area and store the spreading destructive energy to electrical voltage applying the mathematics of piezoelectric equations and algebra. Energy released during seismic eruption is in the range of 10 13 to 1018 Joule for each event of 6 to 8 Mw. Spread and propagation of energy follows the Maxwell theory of wave equation and fundamental law of electricity and electromagnetism. Stress accumulated within the crustal block is triggered into bringing about geophysical and geochemical changes within the reservoir rocks interacting stress. Study made by pioneers in the seismic precursory development states generation of charge and coronal discharge prior seismicity within the rocks under stress. This is consequence to admixing of positive charge developed at unstressed volume and negative at stressed sub volume of rocks1 [F.T.Freidemann2010]. Ionosphere proturbance in form of ULF, ELF, ELS and EQL, EQS are the projected consequence of electromagnetic wave propagation 2 [10,11,15 ] Harnessing of electrical components from the energy propagated due to stress inducing EM waves is the aim of paper. Electrical discharge prior to seismicity within geo-materials is established phenomena which can be calibrated with the piezoelectric sensors application implanted for detection and harnessing the signals. These prior signals induced in form of electromagnetic response are felicitated into being converted into electrical energy

  11. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  12. Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere.

    PubMed

    Banakh, V A; Smalikho, I N

    2014-09-22

    Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere have been studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It has been shown that under conditions of strong optical turbulence, the relative variance of energy density fluctuations of pulsed radiation of femtosecond duration becomes much less than the relative variance of intensity fluctuations of continuous-wave radiation. The spatial structure of fluctuations of the energy density with a decrease of the pulse duration becomes more large-scale and homogeneous. For shorter pulses the maximal value of the probability density distribution of energy density fluctuations tends to the mean value of the energy density. PMID:25321700

  13. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.

    PubMed

    Ozeri, Shaul; Shmilovitz, Doron

    2014-09-01

    The advancement and miniaturization of body implanted medical devices pose several challenges to Ultrasonic Transcutaneous Energy Transfer (UTET), such as the need to reduce the size of the piezoelectric resonator, and the need to maximize the UTET link power-transfer efficiency. Accordingly, the same piezoelectric resonator that is used for energy harvesting at the body implant, may also be used for ultrasonic backward data transfer, for instance, through impedance modulation. This paper presents physical considerations and design guidelines of the body implanted transducer of a UTET link with impedance modulation for a backward data transfer. The acoustic matching design procedure was based on the 2×2 transfer matrix chain analysis, in addition to the Krimholtz Leedom and Matthaei KLM transmission line model. The UTET power transfer was carried out at a frequency of 765 kHz, continuous wave (CW) mode. The backward data transfer was attained by inserting a 9% load resistance variation around its matched value (550 Ohm), resulting in a 12% increase in the acoustic reflection coefficient. A backward data transmission rate of 1200 bits/s was experimentally demonstrated using amplitude shift keying, simultaneously with an acoustic power transfer of 20 mW to the implant. PMID:24861424

  14. An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements

    SciTech Connect

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Lake, Joe E

    2012-01-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  15. An energy signature scheme for steam trap assessment and flow rate estimation using pipe-induced acoustic measurements

    NASA Astrophysics Data System (ADS)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Lake, Joe E.

    2012-06-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  16. Prediction of interior noise due to random acoustic or turbulent boundary layer excitation using statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1990-01-01

    The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.

  17. Challenge of Using Passive Acoustic Monitoring in High-Energy Environments: UK Tidal Environments and Other Case Studies.

    PubMed

    Booth, Cormac G

    2016-01-01

    The use of passive acoustic monitoring (PAM) around marine developments is commonplace. A buffer-based PAM system (e.g., C-POD) is a cost-effective method for assessing cetacean acoustic presence. Devices have been deployed by Sea Mammal Research Unit (SMRU) Marine around the United Kingdom, allowing an examination of the performance of C-PODs with respect to background noise, tilt angle, and environmental factors. C-PODs were found to often only monitor for a few seconds of each minute, resulting in significant loss of monitoring time. Issues were likely driven by environmental and deployment factors. The practical limitations of buffer-based PAM systems in high-energy/noisy environments are indicated here. PMID:26610949

  18. The National Ignition Facility: A New Era in High Energy Density Science

    SciTech Connect

    Moses, E

    2009-06-10

    The National Ignition Facility, the world's most energetic laser system, is now operational. This talk will describe NIF, the ignition campaign, and new opportunities in fusion energy and high energy density science enabled by NIF.

  19. 3D printed elastic honeycombs with graded density for tailorable energy absorption

    NASA Astrophysics Data System (ADS)

    Bates, Simon R. G.; Farrow, Ian R.; Trask, Richard S.

    2016-04-01

    This work describes the development and experimental analysis of hyperelastic honeycombs with graded densities, for the purpose of energy absorption. Hexagonal arrays are manufactured from thermoplastic polyurethane (TPU) via fused filament fabrication (FFF) 3D printing and the density graded by varying cell wall thickness though the structures. Manufactured samples are subject to static compression tests and their energy absorbing potential analysed via the formation of energy absorption diagrams. It is shown that by grading the density through the structure, the energy absorption profile of these structures can be manipulated such that a wide range of compression energies can be efficiently absorbed.

  20. Physics of thermo-acoustic sound generation

    NASA Astrophysics Data System (ADS)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  1. Improvement of Shape Factor and Loss of Surface Acoustic Wave Resonator Filter Composed of SiO2/High-Density-Electrode/LiTaO3

    NASA Astrophysics Data System (ADS)

    Murata, Takaki; Kadota, Michio; Nakao, Takeshi; Matsuda, Kenji; Hashimoto, Ken-ya

    2009-07-01

    Radio frequency (RF) filters in high frequencies using surface acoustic waves (SAWs), such as MediaFLOTM, time division synchronous code division multiple access (TD-SCDMA) in China's handy phone system, and the global positioning system (GPS) in cars, require a narrow bandwidth. Thus, the SAW substrates for their RF filters also require an excellent temperature coefficient of frequency (TCF) and an optimum electromechanical coupling factor. The authors reported an RF SAW filter for MediaFLOTM using a shear horizontal (SH) leaky SAW (LSAW) on a flattened SiO2 film/high-density metal electrode/36-48°Y·X-LiTaO3 substrate. Although it had a good TCF and a large attenuation out of the pass band, it had a slightly large loss at the pass band only at room temperature compared with that of the conventional Al-electrode/42°Y·X-LiTaO3 in the previous report. In this study, calculation using the coupling-of-modes (COM) theory showed the effect of a new phase inverse method of obtaining a steep slope at the right side of the filter frequency characteristic, although the previous paper showed only the measured frequency characteristics. In addition, an RF SAW filter with a lower loss at the pass band and a better TCF than that of the previous report has been realized.

  2. High energy-density liquid rocket fuel performance

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse and propellant density specific impulse.

  3. High energy-density liquid rocket fuel performance

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse, and propellant density specific impulse.

  4. Quantitative simulation and density reconstruction in high-energy X-ray radiograph

    NASA Astrophysics Data System (ADS)

    Tang, Li; Xu, Haibo

    2014-03-01

    Numerical radiograph using Monte Carlo method is used to study fidelity of density reconstruction in high-energy X-ray radiography. A density reconstruction method for a polyenergetic X-ray source and an object composed of different materials is proposed. The method includes energy spectrum, angular spectrum and spot size of photon source. And it includes mass absorption coefficients explicitly in density reconstruction as well. A constrained conjugate gradient algorithm and variation regularization are applied to determine material edges and density reconstruction of a French test object. It shows that the method is valid for density reconstruction and energy spectrum of imaging photons is important in obtaining accurate material densities in high-energy X-ray radiograph.

  5. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    USGS Publications Warehouse

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  6. Constraints on the density dependence of the symmetry energy from heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Tsang, M. B.; Chajecki, Z.; Coupland, D.; Danielewicz, P.; Famiano, F.; Hodges, R.; Kilburn, M.; Lu, F.; Lynch, W. G.; Winkelbauer, J.; Youngs, M.; Zhang, Y. X.

    2011-04-01

    Constraints on the equation of state (EoS) for symmetric matter (equal neutron and proton numbers) have been extracted from energetic collisions of heavy ions over a range of energies. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the EoS of neutron-rich matter at subsaturation densities from isospin diffusions and neutron proton ratios. This article reviews the experimental constraints on the density dependence of symmetry energy at subsaturation density.

  7. Bubbles trapped at the coupling surface of the treatment head significantly reduce acoustic energy delivered in shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Beard, Spencer; Williams, James C.; Bailey, Michael R.

    2006-05-01

    The coupling efficiency of a "dry head" electromagnetic lithotripter (Dornier Compact Delta) was studied in vitro. A fiber-optic probe hydrophone (FOPH-500) was positioned in a test tank filled with degassed water. The tank was coupled through a semi-transparent latex membrane to the water-filled cushion of the lithotripter head, so that bubbles (air pockets) trapped between the two coupling surfaces could be easily observed and photographed. When gel was applied to both the latex membrane and the water cushion, numerous bubbles (some several millimeters in diameter) could be seen at the coupling interface. Hydrophone measurements in the geometric focus of the lithotripter showed that the acoustic pressure could be two times lower when bubbles were present than when they were manually removed. In our in vitro design, trapped bubbles could be easily observed and therefore removed from the acoustic path. However, during patient treatment with a dry-head lithotripter one cannot see whether bubbles are trapped against the skin. This study provides a demonstration of the dramatic effect that trapped bubbles can have on the amount of acoustic energy actually delivered for treatment.

  8. Synthesis and characterization of novel high energy density capacitors for green energy

    NASA Astrophysics Data System (ADS)

    Puli, Venkata S.; Kumar, Ashok; Katiyar, Ram S.

    2011-03-01

    We have developed lead free high energy density capacitor materials, Ba(Zr 0.2 Ti 0.8) O3 (1 - x) (Ba 0.7 Ca 0.3) Ti O3 x [x = 0.10,0.15,0.20 (B ZT(1 - x) B CTx ] with high dielectric constant and moderate breakdown voltage. The ceramic materials were prepared using high energy ball milling for 4 hours at 400 rpm. The ball milled powders were calcined at 1250o C for 10hrs. Ceramic pellets having 13mm diameter were prepared using hydraulic press (2 ton) and sintered at 1400o C-1500o C for 4 hrs. X-ray diffraction studies of the sintered pellets revealed the rhombohedral/pseudo cubic crystal structure. The crystal structure was further confirmed by Raman spectra and TEM analysis. High dielectric constant and moderate polarization (~ Ps ~ 15-25 μ C/cm2) were obtained in the sintered pellets. The SEM images revealed monolithic grain growth in samples sintered at 1500o C. Preliminary data show moderate breakdown field ~ 15-20 kV/cm and energy density of 0.12-0.3 J/cm3 for all compositions. Details of the results will be presented.

  9. Chemical bonding in view of electron charge density and kinetic energy density descriptors.

    PubMed

    Jacobsen, Heiko

    2009-05-01

    Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well-defined reference geometry. The localized-orbital-locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. PMID:19090572

  10. Initial energy density and gluon distribution from the glasma in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Fujii, Hirotsugu; Fukushima, Kenji; Hidaka, Yoshimasa

    2009-02-01

    We estimate the energy density and the gluon distribution associated with the classical fields describing the early-time dynamics of heavy-ion collisions. In the McLerran-Venugopalan model, we first decompose the energy density into the momentum components exactly, with the use of the Wilson line correlators. Then we evolve the energy density with the free-field equation, which is justified by the dominance of the ultraviolet modes near the collision point. We also discuss the improvement that occurs with the inclusion of nonlinear terms into the time evolution. Our numerical results at RHIC energy are fairly consistent with the empirical values.

  11. Initial energy density and gluon distribution from the glasma in heavy-ion collisions

    SciTech Connect

    Fujii, Hirotsugu; Fukushima, Kenji; Hidaka, Yoshimasa

    2009-02-15

    We estimate the energy density and the gluon distribution associated with the classical fields describing the early-time dynamics of heavy-ion collisions. In the McLerran-Venugopalan model, we first decompose the energy density into the momentum components exactly, with the use of the Wilson line correlators. Then we evolve the energy density with the free-field equation, which is justified by the dominance of the ultraviolet modes near the collision point. We also discuss the improvement that occurs with the inclusion of nonlinear terms into the time evolution. Our numerical results at RHIC energy are fairly consistent with the empirical values.

  12. Plasma (Accretion) Disks with High Magnetic Energy Densities

    NASA Astrophysics Data System (ADS)

    Rousseau, F.; Coppi, B.

    2006-04-01

    ``Corrugated'' plasma disks can form in the dominant gravity of a central object when the peak plasma pressure in the disk is of the same order as that of the pressure of the ``external'' magnetic field, while the magnetic field resulting from internal plasma currents is of the same order as the external field. The corrugation refers to a periodic variation of the plasma density in a region around the equatorial plane. The considered structure represents a transition between a ``classical'' accretion disk and a ``rings sequence'' configuration^2. The common feature of the ``corrugated'' and the ``rings sequence'' configurations is the ``crystal'' structure of the magnetic surfaces that consist of a sequence of pairs of oppositely directed toroidal current density filaments. The connection between the characteristics of these configurations and those of the marginally stable ballooning modes that can be found in a model accretion disk is pointed out and analyzed.

  13. Note: Energy convexity and density matrices in molecular systems

    NASA Astrophysics Data System (ADS)

    Bochicchio, Roberto C.; Rial, Diego

    2012-12-01

    A novel appropriate definition for the density matrix for an interacting Coulombic driven atomic or molecular system with non-integer number of particles is given. Our approach leads to a direct derivation of the proposal reported by Perdew et al. [Phys. Rev. Lett. 49, 1691 (1982)], 10.1103/PhysRevLett.49.1691 and points out its suitability and perspective advances.

  14. Hierarchy of equations for the energy functional of the density-functional theory

    NASA Astrophysics Data System (ADS)

    Nagy, Á.

    1993-04-01

    A hierarchy of equations has been derived for the energy functionals of the density-functional theory using the virial theorem and the Levy-Perdew relation. In the local-density approximation, the solution of the equations of hierarchy for the kinetic and exchange energies provides the well-known Thomas-Fermi expression for the kinetic energy and the Slater-Gáspár-Kohn-Sham expression for the exchange. The truncation of the hierarchies of the kinetic and exchange energies results in rigorous lower bounds to the kinetic energy and upper bounds to the exchange energy in the plane-wave approximation.

  15. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  16. Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries.

    PubMed

    Gao, Jie; Abruña, Héctor D

    2014-03-01

    Rechargeable lithium-sulfur batteries have high theoretical capacity and energy density. However, their volumetric energy density has been believed to be lower than that of conventional lithium ion batteries employing metal oxide cathodes like LiCoO2. Here, we study the effects of sulfur loading percentage, develop a simple model and calculate the gravimetric and volumetric energy densities based on the total composition of electrodes in a lithium-sulfur cell, and compare those results with a typical graphite/LiCoO2 cell. From the model output, we have identified and established key parameters governing the energy density of rechargeable Li/S batteries. We find that the sulfur loading percentage has a much higher impact on the volumetric energy density than on the gravimetric energy density. A lithium-sulfur cell can exceed a lithium ion cell's volumetric energy density but only at high sulfur loading percentages (ca. 70%). We believe that these findings may attract more attention of lithium-sulfur system studies to high sulfur loading levels. PMID:26274082

  17. Estimation of energy density of Li-S batteries with liquid and solid electrolytes

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Zhang, Heng; Otaegui, Laida; Singh, Gurpreet; Armand, Michel; Rodriguez-Martinez, Lide M.

    2016-09-01

    With the exponential growth of technology in mobile devices and the rapid expansion of electric vehicles into the market, it appears that the energy density of the state-of-the-art Li-ion batteries (LIBs) cannot satisfy the practical requirements. Sulfur has been one of the best cathode material choices due to its high charge storage (1675 mAh g-1), natural abundance and easy accessibility. In this paper, calculations are performed for different cell design parameters such as the active material loading, the amount/thickness of electrolyte, the sulfur utilization, etc. to predict the energy density of Li-S cells based on liquid, polymeric and ceramic electrolytes. It demonstrates that Li-S battery is most likely to be competitive in gravimetric energy density, but not volumetric energy density, with current technology, when comparing with LIBs. Furthermore, the cells with polymer and thin ceramic electrolytes show promising potential in terms of high gravimetric energy density, especially the cells with the polymer electrolyte. This estimation study of Li-S energy density can be used as a good guidance for controlling the key design parameters in order to get desirable energy density at cell-level.

  18. Energy Density, Energy Intake, and Body Weight Regulation in Adults12345

    PubMed Central

    Karl, J. Philip; Roberts, Susan B.

    2014-01-01

    The role of dietary energy density (ED) in the regulation of energy intake (EI) is controversial. Methodologically, there is also debate about whether beverages should be included in dietary ED calculations. To address these issues, studies examining the effects of ED on EI or body weight in nonelderly adults were reviewed. Different approaches to calculating dietary ED do not appear to alter the direction of reported relations between ED and body weight. Evidence that lowering dietary ED reduces EI in short-term studies is convincing, but there are currently insufficient data to determine long-term effectiveness for weight loss. The review also identified key barriers to progress in understanding the role of ED in energy regulation, in particular the absence of a standard definition of ED, and the lack of data from multiple long-term clinical trials examining the effectiveness of low-ED diet recommendations for preventing both primary weight gain and weight regain in nonobese individuals. Long-term clinical trials designed to examine the impact of dietary ED on energy regulation, and including multiple ED calculation methods within the same study, are still needed to determine the importance of ED in the regulation of EI and body weight. PMID:25398750

  19. Self-Energy Correction to Momentum-Density Distribution of Positron-Electron Pairs

    NASA Astrophysics Data System (ADS)

    Tang, Z.; Nagai, Y.; Inoue, K.; Toyama, T.; Chiba, T.; Saito, M.; Hasegawa, M.

    2005-03-01

    Positron two-dimensional angular correlation of annihilation radiation (2D ACAR), i.e., the 2D projection of the electron momentum densities sampled by positron, in Si is employed to verify the prediction of the density functional theory within the local-density approximation (LDA). Carefully conducted test shows that the LDA introduces small but definite discrepancies to the 2D-ACAR anisotropies. Self-energy calculation using the GW method indicates that density-fluctuation contributes anisotropic momentum-density correction and thus improves the agreement between theory and experiment. These results provide valuable annotations to the arguments concerning the accuracy and validity of the LDA and GW schemes.

  20. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  1. Acoustic Aspects of Photoacoustic Signal Generation and Detection in Gases

    NASA Astrophysics Data System (ADS)

    Miklós, A.

    2015-09-01

    In this paper photoacoustic signal generation and detection in gases is investigated and discussed from the standpoint of acoustics. Four topics are considered: the effect of the absorption-desorption process of modulated and pulsed light on the heat power density released in the gas; the generation of the primary sound by the released heat in an unbounded medium; the excitation of an acoustic resonator by the primary sound; and finally, the generation of the measurable PA signal by a microphone. When light is absorbed by a molecule and the excess energy is relaxed by collisions with the surrounding molecules, the average kinetic energy, thus also the temperature of an ensemble of molecules (called "particle" in acoustics) will increase. In other words heat energy is added to the energy of the particle. The rate of the energy transfer is characterized by the heat power density. A simple two-level model of absorption-desorption is applied for describing the heat power generation process for modulated and pulsed illumination. Sound generation by a laser beam in an unbounded medium is discussed by means of the Green's function technique. It is shown that the duration of the generated sound pulse depends mostly on beam geometry. A photoacoustic signal is mostly detected in a photoacoustic cell composed of acoustic resonators, buffers, filters, etc. It is not easy to interpret the measured PA signal in such a complicated acoustic system. The acoustic response of a PA detector to different kinds of excitations (modulated cw, pulsed, periodic pulse train) is discussed. It is shown that acoustic resonators respond very differently to modulated cw excitation and to excitation by a pulse train. The microphone for detecting the PA signal is also a part of the acoustic system; its properties have to be taken into account by the design of a PA detector. The moving membrane of the microphone absorbs acoustic energy; thus, it may influence the resonance frequency and

  2. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    NASA Astrophysics Data System (ADS)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.

  3. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    DOE PAGESBeta

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm₋3 in amore » low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.« less

  4. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography. PMID:26931847

  5. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  6. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    DOE PAGESBeta

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge andmore » discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.« less

  7. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  8. Microphysical derivation of the Canham–Helfrich free-energy density

    PubMed Central

    Seguin, Brian; Fried, Eliot

    2013-01-01

    The Canham–Helfrich free-energy density for a lipid bilayer has drawn considerable attention. Aside from the mean and Gaussian curvatures, this free-energy density involves a spontaneous mean-curvature that encompasses information regarding the preferred, natural shape of the lipid bilayer. We use a straightforward microphysical argument to derive the Canham–Helfrich free-energy density. Our derivation (i) provides a justification for the common assertion that spontaneous curvature originates primarily from asymmetry between the leaflets comprising a bilayer and (ii) furnishes expressions for the splay and saddle-splay moduli in terms of derivatives of the underlying potential. PMID:23389779

  9. Level densities of iron isotopes and low-energy enhancement of {gamma}-strength function

    SciTech Connect

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Hornish, M. J.; Massey, T. N.; Agvaanluvsan, U.; Algin, E.; Belgya, T.; Guttormsen, M.; Rekstad, J.; Siem, S.; Mitchell, G. E.; Schiller, A.

    2006-03-13

    The neutron spectrum from the 55Mn(d, n)56Fe reaction has been measured at Ed = 7 MeV. The level density of 56Fe obtained from neutron evaporation spectrum has been compared to the level density obtained from Oslo-type 57Fe(3He, {alpha}{gamma})56Fe experiment. The good agreement supports the recent results including the low-energy enhancement in the {gamma}-strength function for iron isotopes. The new level density function allowed us to investigate an excitation energy dependence of this enhancement, which is shown to increase with increasing excitation energy.

  10. Dietary Energy Density Is Positively Associated with Risk of Pancreatic Cancer in Urban Shanghai Chinese12

    PubMed Central

    Wang, Jing; Zhang, Wei; Sun, Lu; Yu, Herbert; Ni, Quan-Xing; Risch, Harvey A.; Gao, Yu-Tang

    2013-01-01

    Regular consumption of energy-dense foods predisposes to obesity and type 2 diabetes, both of which are suggested risk factors for pancreatic cancer. The aim of this study was to investigate whether energy density of foods is an independent risk factor for pancreatic cancer. In this population-based case-control study in urban Shanghai, 908 patients with pancreatic cancer and 1067 normal controls, aged 35–79 y, were recruited. The energy density for overall diet was calculated from food-frequency questionnaire data. Energy density (adjusted for age, sex, and total energy intake) was significantly higher in cases (6.08 ± 0.04 kJ/g) than in controls (5.91 ± 0.04 kJ/g) (P = 0.003). Energy density was positively associated with pancreatic cancer risk (OR: 1.16 per unit increase; 95% CI: 1.07, 1.27; P < 0.001). In adjusted analysis, the risk of pancreatic cancer was 72% greater (OR: 1.72; 95% CI: 1.25, 2.35; P = 0.001) in the highest quintile of energy density compared with the lowest quintile. In this case-control study, dietary energy density is positively associated with risk of pancreatic cancer. This association should be further investigated in prospective studies. PMID:23902959

  11. Effects of portion size and energy density on young children's intake at a meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large portions of energy-dense foods are one feature of obesity-promoting dietary environments. Entrée portion size has been shown to influence energy intake at meals by young children. The role of energy density (ED) in children’s response to portion size, however, is unknown. We aimed to test th...

  12. Asymptotic modal analysis and statistical energy analysis of an acoustic cavity

    NASA Technical Reports Server (NTRS)

    Kubota, Y.; Dionne, H. D.; Dowell, E. H.

    1988-01-01

    A basic asymptotic theory for structural wall/acoustic cavity interaction is presented, and the analysis is illustrated with examples of the acoustic cavity response to a prescribed wall motion. Although, when spatially averaged, the classical modal analysis (CMA) response approaches the asymptotic modal analysis (AMA) response more rapidly as the number of modes increases, it is shown that information about local response intensification is lost in the averaging process. A larger bandwidth at a given center frequency is found to contain more excited modes than a smaller bandwidth; however, the AMA is slightly more accurate in the smaller bandwidth. All AMA asymptotes were shown to be approached from below by a CMA with fixed bandwidth and increasing center frequency.

  13. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher

    2012-07-31

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  14. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher

    2012-09-04

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  15. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt; Schmitt, Denis P.; Skelt, Christopher

    2010-11-23

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  16. Influencing and modifying children's energy intake: the role of portion size and energy density.

    PubMed

    Pourshahidi, L Kirsty; Kerr, Maeve A; McCaffrey, Tracy A; Livingstone, M Barbara E

    2014-08-01

    Childhood obesity is of concern worldwide. The portion size (PS) and energy density (ED) of food are two major determinants of children's energy intake (EI). Trends towards increasing PS are most apparent and best documented in the USA, where PS of numerous food products have increased in the marketplace over the past three decades, particularly high-energy dense foods. Analyses of population-level dietary surveys have confirmed this trend in children for both in- and out-of-home eating, and a plethora of observational evidence positively associates PS, ED and adiposity in children. A limited number of intervention studies provide clear evidence that children, even as young as 2 years, respond acutely to increasing PS, with some studies also demonstrating the additive effects of increased ED in promoting excessive EI. However, most of the evidence is based on children aged 3-6 years and there is a paucity of data in older children and adolescents. It is unclear whether decreasing PS can have the opposite effect on children's EI but recent acute studies have demonstrated that the incorporation of lower energy dense foods, such as fruit and vegetables, into children's meals down-regulates EI. Although a direct causal link between PS and obesity remains to be established, the regular consumption of larger PS of energy dense foods do favour obesity-promoting eating behaviours in children. Further research is required to establish the most feasible and effective interventions and policies to counteract the deleterious impact of PS and ED on children's EI. PMID:24886909

  17. Achieving tunable sensitivity in composite high-energy density materials

    NASA Astrophysics Data System (ADS)

    Rashkeev, Sergey; Tsyshevsky, Roman; Kuklja, Maija

    2015-06-01

    Laser irradiation provides a unique opportunity for selective, predictive, and controlled initiation of energetic materials. We propose a consistent micro-scale mechanism of photoexcitation at the interface, formed by a molecular energetic material and a metal oxide. A specific PETN-MgO model composite is used to illustrate and explain seemingly puzzling experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by an unusually low energy. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. The proposed model suggests ways to tune sensitivity of energetic molecular materials to photoinitiation. Our quantum-chemical calculations suggest that the structural defects (e.g., oxygen vacancies) strongly interact with the molecular material (e.g., adsorbed energetic molecules) by inducing a charge transfer at the interface and hence play an imperative role in governing both energy absorption and energy release in the system. Our approach and conclusions provide a solid basis for novel design of energetic interfaces with desired properties and offers a new perspective in the field of explosive materials and devices.

  18. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  19. The National Ignition Facility - Applications for Inertial Fusion Energy and High Energy Density Science

    SciTech Connect

    Campbell, E.M.; Hogan, W.J.

    1999-08-12

    Over the past several decades, significant and steady progress has been made in the development of fusion energy and its associated technology and in the understanding of the physics of high-temperature plasmas. While the demonstration of net fusion energy (fusion energy production exceeding that required to heat and confine the plasma) remains a task for the next millennia and while challenges remain, this progress has significantly increased confidence that the ultimate goal of societally acceptable (e.g. cost, safety, environmental considerations including waste disposal) central power production can be achieved. This progress has been shared by the two principal approaches to controlled thermonuclear fusion--magnetic confinement (MFE) and inertial confinement (ICF). ICF, the focus of this article, is complementary and symbiotic to MFE. As shown, ICF invokes spherical implosion of the fuel to achieve high density, pressures, and temperatures, inertially confining the plasma for times sufficient long (t {approx} 10{sup -10} sec) that {approx} 30% of the fuel undergoes thermonuclear fusion.

  20. Determination of energy density threshold for laser ablation of bacteria. An in vitro study.

    PubMed

    Coffelt, D W; Cobb, C M; MacNeill, S; Rapley, J W; Killoy, W J

    1997-01-01

    The Nd:YAG and CO2 lasers have been shown to be bactericidal at relative low energy densities. However, at energy densities exceeding 120 J/cm2 (CO2) and 200 J/cm2 (Nd:YAG), laser irradiation also causes irreparable root surface damage. The purpose of this study was to determine, in vitro, the energy density threshold at which microbial ablation could be achieved while inflicting the least amount of damage to the root surfaces of human teeth. Pairs of Escherichia coli colonies cultured on broth agar were treated with a CO2 laser using a pulsed waveform at approximate energy densities ranging from 3 to 110 J/cm2. One of each colony-pair was then examined by scanning electron microscopy (SEM) and the other subcultured for viable microbes. Roots of extracted teeth were lightly scaled and treated by CO2 laser, again with pulsed beam using approximate energy densities of 3 to 110 J/cm2: and examined by SEM. Regardless of the level of energy density, residual bacteria could be subcultured from all laser treated microbial colonies. The inability of the laser to completely obliterate microbial colonies was likely due to: depth of energy penetration, difficulty in precisely overlapping beam focal spots, irregular beam profile, and presence of microbes at the periphery of the beam focal spot. The threshold energy density for bacterial obliteration was determined to be 11 J/cm2 and that for root damage was 41 J/cm2. Root damage was evident by charring, crater formation, melt-down and resolidification surface mineral, and increasing surface porosity. The results of this in vitro study indicate that when used at an energy density between 11 and 41 J/cm2 the CO2 laser may destroy microbial colonies without inflicting undue damage to the tooth root surface. PMID:9049791

  1. Dietary energy density was associated with diet quality in Brazilian adults and older adults.

    PubMed

    Mendes, Aline; Pereira, Jaqueline Lopes; Fisberg, Regina Mara; Marchioni, Dirce Maria Lobo

    2016-02-01

    Cross-sectional and longitudinal studies present association of low dietary energy density with higher intake of vitamins, minerals and dietary fiber, lower intake of fat, and better balance of macronutrients. The objective of this study was to verify the relationship between dietary energy density and diet quality measured by an index of diet quality. This study used data from 496 adults and 445 older adults of cross-sectional population-based survey from São Paulo conducted in 2008-2009, Brazil. Dietary intake data was assessed by two 24-h dietary recalls. Dietary energy density values were calculated based on foods only method. Dietary energy density and revised Brazilian Health Eating Index and its components, were estimated by usual intake using Multiple Source Method. The relationship between dietary energy density and the total revised Brazilian Health Eating Index and its components were assessed by Gaussian family log-link model for each age group. The analyses showed an inverse association between dietary energy density and total revised Brazilian Health Eating Index in adults (T2:β = 0.96, p < 0.001; T2:β = 0.86, p < 0.001) and older adults (T2:β = 0.96, p < 0.001; T2:β = 0.90, p < 0.001), and an inverse association between dietary energy density and nine of twelve revised Brazilian Health Eating Index components in adult and/or older adults groups. Dietary energy density was associated with diet quality in Brazilian adults and older adults regardless of sex, per capita household income, body mass index, physical activity level, current smoking habits status, alcohol beverage drinking status and usual energy intake (kilocalories) from beverages. PMID:26626824

  2. Energy Confinement of High-Density Pellet-Fueled Plasmas in the Alcator C Tokamak

    NASA Astrophysics Data System (ADS)

    Greenwald, M.; Gwinn, D.; Milora, S.; Parker, J.; Parker, R.; Wolfe, S.; Besen, M.; Camacho, F.; Fairfax, S.; Fiore, C.; Foord, M.; Gandy, R.; Gomez, C.; Granetz, R.; Labombard, B.; Lipschultz, B.; Lloyd, B.; Marmar, E.; McCool, S.; Pappas, D.; Petrasso, R.; Pribyl, P.; Rice, J.; Schuresko, D.; Takase, Y.; Terry, J.; Watterson, R.

    1984-07-01

    A series of pellet-fueling experiments has been carried out on the Alcator C tokamak. High-speed hydrogen pellets penetrate to within a few centimeters of the magnetic axis, raise the plasma density, and produce peaked density profiles. Energy confinement is observed to increase over similar discharges fueled only by gas puffing. In this manner record values of electron density, plasma pressure, and Lawson number (n τ) have been achieved.

  3. The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Leslie, T. M.; Shvydkoy, R.

    2016-09-01

    We consider the incompressible inhomogeneous Navier-Stokes equations with constant viscosity coefficient and density which is bounded and bounded away from zero. We show that the energy balance relation for this system holds for weak solutions if the velocity, density, and pressure belong to a range of Besov spaces of smoothness 1/3. A density-dependent version of the classical Kármán-Howarth-Monin relation is derived.

  4. Quantification of breast density with dual energy mammography: An experimental feasibility study

    SciTech Connect

    Ducote, Justin L.; Molloi, Sabee

    2010-02-15

    Purpose: Breast density, the percentage of glandular breast tissue, has been shown to be a strong indicator of breast cancer risk. A quantitative method to measure breast density with dual energy mammography was investigated using physical phantoms. Methods: The dual energy mammography system used a tungsten anode x-ray tube with a 50 {mu}m rhodium beam filter for low energy images and a 300 {mu}m copper beam filter for high energy images. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Four different phantom studies were used to evaluate the technique. The first study consisted of phantoms with thicknesses of 2.5-8.5 cm in 0.5 cm steps with variable densities centered at a mean of 28%. The second study consisted of phantoms at a fixed thickness of 4.0 cm, which ranged in densities from 0% to 100% in increments of 12.5%. The third study consisted of 4.0 cm thick phantoms at densities of 25%, 50% and 75% each imaged at three areal sizes, approximately 62.5, 125, and 250 cm{sup 2}, in order to assess the effect of breast size on density measurement. The fourth study consisted of step phantoms designed to more closely mimic the shape of a female breast with maximal thicknesses from 3.0 to 7.0 cm at a fixed density of 50%. All images were corrected for x-ray scatter. Results: The RMS errors in breast density measurements were 0.44% for the variable thickness phantoms, 0.64% for the variable density phantoms, 2.87% for the phantoms of different areal sizes, and 4.63% for step phantoms designed to closely resemble the shape of a breast. Conclusions: The results of the phantom studies indicate that dual energy mammography can be used to measure breast density with an RMS error of approximately 5%.

  5. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  6. First principles prediction of an insensitive high energy density material.

    PubMed

    Hirshberg, Barak; Denekamp, Chagit

    2013-10-28

    A new high performance yet insensitive explosive is proposed, based on an extensive computational study of tris(tetrazolyl)amine in the solid state and in the gas phase. The calculations for the solid state employ the PBE density functional with empirical dispersion correction while the gas phase calculations use the higher level of B3LYP and MP2. Two stable crystalline structures of tris(tertrazolyl)amine were located belonging to P1 and P21 space groups. The crystal structures obtained reveal that solid tris(tertrazolyl)amine is organized in layers with a very small interlayer spacing, due to π stacking, as well as significant inter and intra-molecular hydrogen bonding. Application of these results to the calculation of the detonation velocity and pressure indicate high performance for both phases, especially the P21 phase. At the same time the small value found for the interlayer spacing and the significant hydrogen bonding suggest relatively high stability. These results point to a promising new explosive material with a balance between high performance and insensitivity. PMID:24042364

  7. Laser Driven Radiative Shocks in High Energy Density

    NASA Astrophysics Data System (ADS)

    Manka, C.; Lunsford, R.; Nikitin, S.; Laming, M.; Zabatakis, D.; Grun, J.

    2008-03-01

    The long time over which oscillations associated with radiative shocks within the interstellar medium occur makes direct observation of these instabilities highly problematic. A velocity dependant cooling instability is thought to cause fluctuations in the propagation velocity of such shocks. An experiment at NRL investigates and perhaps validates the applicability of present analytic models to various multidimensional radiative shock instabilities. The PHAROS laser at NRL is used to create the relevant shock front by ablative acceleration of an aluminized Mylar foil that covers a small gas filled tunnel in a PMMA block. As this shock propagates along the tunnel, a secondary shock is launched into the walls of the tunnel and the progress of this shock into the PMMA block preserves a continuous record of the primary shock's velocity as it travels the length of the tunnel. The density gradient associated with the shock in the PMMA is recorded using dark field shadowgraphy on a SIM-8 multi-channel high speed framing camera. The tunnel shock velocity is determined from the shape of the shock launched into the PMMA block for any time prior to the instant at which the image frame was taken, providing documentation of any oscillations in the velocity of the shock.

  8. Plasma guns for controlled fusion at megagauss energy-densities

    SciTech Connect

    Turchi, Peter J; Roderick, Norman F; Degnan, James H; Frese, Michael H

    2008-01-01

    Electron cyclotron current drive (ECCD) at a low power level has been used on Tore Supra to induce local perturbations of the current density profile. Regimes with strong MHD activity have been analysed, and compared with similar stable discharges, in order to investigate the possible causes of their instability and relate the evolution of the discharge to the localization of EC power deposition. Both co- and counter-current drive pulses have been applied to dominantly or fully non-inductive discharges, sustained by a lower hybrid current drive. Detailed reconstructions by current diffusion calculations have been performed and the error bars evaluated. This method has proved valuable for shedding light on the complex interplay between the evolutions of temperature and safety factor profiles in steady-state tokamak plasmas. The crucial role of the dynamic evolution of rational surfaces has been identified. Moreover, we demonstrate that the operational domain in which ECCD can be employed must cope with the overall current profile characteristics, in particular the position where the safety factor has a minimum.

  9. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  10. Report of the Interagency Task Force on High Energy Density Physics

    SciTech Connect

    2007-08-01

    Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.

  11. METHODOLOGICAL NOTES: Energy density calculations for ball-lightning-like luminous silicon balls

    NASA Astrophysics Data System (ADS)

    Paiva, Gerson S.; Ferreira, Joacy V.; Bastos, Cristiano C.; dos Santos, Marcus V.; Pavão, Antonio C.

    2010-05-01

    The energy density of a luminous silicon ball [Phys. Rev. Lett. 98 048501 (2007)] is calculated for a model with a metal core surrounded by an atmosphere of silicon oxides. Experimental data combined with the molecular orbital calculations of the oxidation enthalpy lead to a mean energy density of 3.9 MJ m-3, which is within the range of estimates from other ball lightning models. This result provides good evidence to support the silicon-based model.

  12. Equation of state for tungsten over a wide range of densities and internal energies

    NASA Astrophysics Data System (ADS)

    Khishchenko, K. V.

    2015-11-01

    A caloric model, which describes the pressure-density-internal-energy relationship in a broad region of condensed-phase states, is applied for tungsten. As distinct from previously known caloric equations of state for this material, a new form of the cold-compression curve at T = 0 K is used. Thermodynamic characteristics along the cold curve and shock Hugoniots are calculated for the metal and compared with some theoretical results and experimental data available at high energy densities.

  13. Excitation energies of molecules within time-independent density functional theory

    SciTech Connect

    Hemanadhan, M. Harbola, Manoj K.

    2014-04-24

    Recently proposed exchange energy functional for excited-states is tested for obtaining excitation energies of diatomic molecules. The functional is the ground-state counterpart of the local-density approximation, the modified local spin density (MLSD). The MLSD functional is tested for the N{sub 2} and CO diatomic molecules. The excitation energy obtained with the MLSD functional for the N{sub 2} molecule is in close vicinity to that obtained from the exact exchange orbital functional, Krieger, Li and Iafrate (KLI). For the CO molecule, the departure in excitation energy is observed and is due to the overcorrection of self-interaction.

  14. Effects of the density dependence of the nuclear symmetry energy on the properties of superheavy nuclei

    SciTech Connect

    Jiang Weizhou

    2010-04-15

    Effects of the density dependence of the nuclear symmetry energy on ground-state properties of superheavy nuclei are studied in the relativistic mean-field theory. It is found that the softening of the symmetry energy plays an important role in the empirical shift [Phys. Rev. C 67, 024309 (2003)] of spherical orbitals in superheavy nuclei. The calculation based on the relativistic mean-field models NL3 and FSUGold supports the double shell closure in {sup 292}120 with the softening of the symmetry energy. In addition, the significant effect of the density dependence of the symmetry energy on the neutron skin thickness in superheavy nuclei is investigated.

  15. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  16. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  17. Dietary energy density and body weight in adults and children: a systematic review.

    PubMed

    Pérez-Escamilla, Rafael; Obbagy, Julie E; Altman, Jean M; Essery, Eve V; McGrane, Mary M; Wong, Yat Ping; Spahn, Joanne M; Williams, Christine L

    2012-05-01

    Energy density is a relatively new concept that has been identified as an important factor in body weight control in adults and in children and adolescents. The Dietary Guidelines for Americans 2010 encourages consumption of an eating pattern low in energy density to manage body weight. This article describes the systematic evidence-based review conducted by the 2010 Dietary Guidelines Advisory Committee (DGAC), with support from the US Department of Agriculture's Nutrition Evidence Library, which resulted in this recommendation. An update to the committee's review was prepared for this article. PubMed was searched for English-language publications from January 1980 to May 2011. The literature review included 17 studies (seven randomized controlled trials, one nonrandomized controlled trial, and nine cohort studies) in adults and six cohort studies in children and adolescents. Based on this evidence, the 2010 Dietary Guidelines Advisory Committee concluded that strong and consistent evidence in adults indicates that dietary patterns relatively low in energy density improve weight loss and weight maintenance. In addition, the committee concluded that there was moderately strong evidence from methodologically rigorous longitudinal cohort studies in children and adolescents to suggest that there is a positive association between dietary energy density and increased adiposity. This review supports a relationship between energy density and body weight in adults and in children and adolescents such that consuming diets lower in energy density may be an effective strategy for managing body weight. PMID:22480489

  18. Densities and energies of nuclei in dilute matter at zero temperature

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, P.; Margueron, J.; Gulminelli, F.; Raduta, Ad. R.

    2013-10-01

    We explore the properties of medium-mass and heavy nuclear clusters embedded in a gas of nucleons with the help of Skyrme-Hartree-Fock microscopic calculations at zero temperature. Two alternative representations of clusters are introduced, namely coordinate-space and energy-space clusters. We parametrize their density profiles in spherical symmetry in terms of basic properties of the energy density functionals used and propose an analytical, Woods-Saxon density profile whose parameters depend, not only on the composition of the cluster, but also on that of the nucleon gas. We study the clusters' energies with the help of the local-density approximation, validated through our microscopic results. We find that the volume energies of coordinate-space clusters are determined by the saturation properties of matter, while the surface energies are strongly affected by the presence of the gas. We conclude that both the density profiles and the cluster energies are strongly affected by the gas and discuss implications for the nuclear equation of state and related perspectives. Our study provides a simple but microscopically motivated modeling of the energetics of clusterized matter at subsaturation densities for applications of astrophysical interest.

  19. Spectroscopic properties of nuclear skyrme energy density functionals.

    PubMed

    Tarpanov, D; Dobaczewski, J; Toivanen, J; Carlsson, B G

    2014-12-19

    We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections. PMID:25554877

  20. Collaborative Comparison of High-Energy-Density Physics Codes

    NASA Astrophysics Data System (ADS)

    Fatenejad, M.; Fryer, C.; Fryxell, B.; Lamb, D.; Myra, E.; Wohlbier, J.

    2011-10-01

    We will describe a collaborative effort involving the Flash Center for Computational Science, The Center for Radiative Shock Hydrodynamics (CRASH), LANL, and LLNL to compare several sophisticated radiation-hydrodynamics codes on a variety of HEDP test problems and experiments. Currently we are comparing efforts to simulate ongoing radiative shock experiments being conducted by CRASH at the OMEGA laser facility that are relevant to a wide range of astrophysical problems. The experiments drive a collapsed planar radiative shock through a Xenon-filled shock tube. Attempts to simulate these experiments have uncovered various challenges to obtaining agreement with experimental results. We will present the results of code-to-code comparisons that have enabled us to understand the impact of differences in numerical methods, physical approximations, microphysical parameters, etc. This work was supported in part by the US Department of Energy.

  1. Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Koch, Stephan L.; Morgan, Benjamin J.; Passerini, Stefano; Teobaldi, Gilberto

    2015-11-01

    To explore the potential of molecular gas treatment of freshly cut lithium foils in non-electrolyte-based passivation of high-energy-density Li anodes, density functional theory (DFT) has been used to study the decomposition of molecular gases on metallic lithium surfaces. By combining DFT geometry optimization and Molecular Dynamics, the effects of atmospheric (N2, O2, CO2) and hazardous (F2, SO2) gas decomposition on Li(bcc) (100), (110), and (111) surfaces on relative surface energies, work functions, and emerging electronic and elastic properties are investigated. The simulations suggest that exposure to different molecular gases can be used to induce and control reconstructions of the metal Li surface and substantial changes (up to over 1 eV) in the work function of the passivated system. Contrary to the other considered gases, which form metallic adlayers, SO2 treatment emerges as the most effective in creating an insulating passivation layer for dosages ≤1 mono-layer. The substantial Li → adsorbate charge transfer and adlayer relaxation produce marked elastic stiffening of the interface, with the smallest change shown by nitrogen-treated adlayers.

  2. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    PubMed

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  3. High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane

    PubMed Central

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-01-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  4. Energy density inhomogeneities in charged radiating stars with generalized CDTT model

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Yousaf, Z.

    2014-12-01

    In this paper, we analyze the role of electromagnetic field and generalized Carrol-Duvvuri-Trodden-Turner (CDTT) model on the existence of homogeneous energy density. For this purpose, we model spherical star with anisotropic matter distribution dissipating in the mode of heat and radiation density. To develop a relationship between the Weyl tensor and matter parameters, we construct two evolution equations. We explore inhomogeneity parameters for particular cases of non-dissipative and dissipative matter distributions. It is concluded that in addition to other fluid variables higher order f( R) corrections, relaxation processes and electromagnetic field affect the energy density inhomogeneity of spherical stars.

  5. High-Energy Ions from Near-Critical Density Plasmas via Magnetic Vortex Acceleration

    SciTech Connect

    Nakamura, Tatsufumi; Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki

    2010-09-24

    Ultraintense laser pulses propagating in near-critical density plasmas generate magnetic dipole vortex structures. In the region of decreasing plasma density, the vortex expands both in forward and lateral directions. The magnetic field pressure pushes electrons and ions to form a density jump along the vortex axis and induces a longitudinal electric field. This structure moves together with the expanding dipole vortex. The background ions located ahead of the electric field are accelerated to high energies. The energy scaling of ions generated by this magnetic vortex acceleration mechanism is derived and corroborated using particle-in-cell simulations.

  6. The performance of density functional approximations for the structures and relative energies of minimum energy crossing points

    NASA Astrophysics Data System (ADS)

    Abate, Bayileyegn A.; Peralta, Juan E.

    2013-12-01

    The structural parameters and relative energies of the minimum-energy crossing points (MECPs) of eight small molecules are calculated using five different representative density functional theory approximations as well as MP2, MP4, and CCSD(T) as a reference. Compared to high-level wavefunction methods, the main structural features of the MECPs of the systems included in this Letter are reproduced reasonably well by density functional approximations, in agreement with previous works. Our results show that when high-level wavefunction methods are computationally prohibitive, density functional approximations offer a good alternative for locating and characterizing the MECP in spin-forbidden chemical reactions.

  7. Towards a Microscopic Reaction Description Based on Energy Density Functionals

    SciTech Connect

    Nobre, G A; DIetrich, F S; Escher, J E; Thompson, I J; Dupuis, M; Terasaki, J; Engel, J

    2011-09-26

    A microscopic calculation of reaction cross sections for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all particle-hole excitations in the target and one-nucleon pickup channels. The particle-hole states may be regarded as doorway states through which the flux flows to more complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for {sup 40,48}Ca, {sup 58}Ni, {sup 90}Zr and {sup 144}Sm were described in a random-phase framework using a Skyrme functional. Reaction cross sections obtained agree very well with experimental data and predictions of a state-of-the-art fitted optical potential. Couplings between inelastic states were found to be negligible, while the pickup channels contribute significantly. The effect of resonances from higher-order channels was assessed. Elastic angular distributions were also calculated within the same method, achieving good agreement with experimental data. For the first time observed absorptions are completely accounted for by explicit channel coupling, for incident energies between 10 and 70 MeV, with consistent angular distribution results.

  8. Encircling the dark: constraining dark energy via cosmic density in spheres

    NASA Astrophysics Data System (ADS)

    Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.

    2016-05-01

    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few percent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical collapse dynamics is made available online so as to provide straightforward means of testing the effect of alternative dark energy models and initial power-spectra on the low-redshift matter distribution.

  9. Encircling the dark: constraining dark energy via cosmic density in spheres

    NASA Astrophysics Data System (ADS)

    Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.

    2016-08-01

    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.

  10. Giant strain-sensitivity of acoustic energy dissipation in solids containing dry and saturated cracks with wavy interfaces.

    PubMed

    Zaitsev, V Yu; Matveev, L A

    2012-01-01

    Mechanisms of acoustic energy dissipation in heterogeneous solids attract much attention in view of their importance for material characterization, nondestructive testing, and geophysics. Due to the progress in measurement techniques in recent years, it has been revealed that rocks can demonstrate extremely high strain sensitivity of seismoacoustic loss. In particular, it has been found that strains of order 10(-8) produced by lunar and solar tides are capable of causing variations in the seismoacoustic decrement on the order of several percent. Some laboratory data (although obtained for higher frequencies) also indicate the presence of very high dissipative nonlinearity. Conventionally discussed dissipation mechanisms (thermoelastic loss in dry solids, Biot and squirt-type loss in fluid-saturated ones) do not suffice to interpret such data. Here the dissipation at individual cracks is revised taking into account the influence of wavy asperities of their surfaces quite typical of real cracks, which can drastically change the values of the relaxation frequencies and can result in giant strain sensitivity of the dissipation without the necessity of assuming the presence of unrealistically thin (and, therefore, unrealistically soft) cracks. In particular, these mechanisms suggest interpretation for observations of pronounced amplitude modulation of seismo-acoustic waves by tidal strains. PMID:22280566

  11. Acoustic waves from mechanical impulses due to fluorescence resonant energy (Förster) transfer: Blowing a whistle with light

    NASA Astrophysics Data System (ADS)

    Zurita-Sánchez, J. R.; Henkel, C.

    2012-02-01

    We present a momentum transfer mechanism mediated by electromagnetic fields that originates in a system of two nearby molecules: one excited (donor D*) and the other in ground state (acceptor A). An intermolecular force related to fluorescence resonant energy or Förster transfer (FRET) arises in the unstable D*A molecular system, which differs from the equilibrium van der Waals interaction. Due to the its finite lifetime, a mechanical impulse is imparted to the relative motion in the system. We analyze the FRET impulse when the molecules are embedded in free space and find that its magnitude can be much greater than the single recoil photon momentum, getting comparable with the thermal momentum (Maxwell-Boltzmann distribution) at room temperature. In addition, we propose that this FRET impulse can be exploited in the generation of acoustic waves inside a film containing layers of donor and acceptor molecules, when a picosecond laser pulse excites the donors. This acoustic transient is distinguishable from that produced by thermal stress due to laser absorption, and may therefore play a role in photoacoustic spectroscopy. The effect can be seen as exciting a vibrating system like a string or organ pipe with light; it may be used as an opto-mechanical transducer.

  12. High Energy Density Science with Ultrarelativistic Electron Beams

    NASA Astrophysics Data System (ADS)

    Joshi, Chan

    2001-10-01

    An intense, high-energy electron or positron beam can have focused intensities rivaling those of today's most powerful lasers. For example, the 5 ps (FWHM), 50 GeV beam at the Stanford Linear Accelerator Center at 1 kA and focused to a 3 micron rms spot size gives intensities of > 10^20 W/cm^2 at a repetition rate of 10 Hz. Unlike a ps or fs laser pulse, the particle beam can readily bore through several mm of steel due to the rigidity of its flux component. However, the same particle beam can be manipulated quite strongly by a plasma that is a million times less dense than air! This is because of the incredibly strong collective fields induced in the plasma by the Coulomb force of the beam. The collective fields in turn react back onto the beam leading to many clearly-observable phenomena. The beam can be: (1) deflected leading focusing, defocusing, or even steering of the beam; (2) undulated causing the emission of spontaneous betatron x-ray radiation and; (3) accelerated or de-accelerated by the plasma fields. Using the 28.5 GeV electron and positron beams from the SLAC linac we have carried out a series of experiments that demonstrate clearly the above mentioned effects. The results are compared with theoretical predictions and 3D, one-to-one PIC code simulations using the code OSIRIS. These phenomena may have practical application in future technologies including optical elements in particle beam lines, synchrotron light sources, and ultra-high gradient accelerators.

  13. High energy density plasma science with an ultrarelativistic electron beam

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Blue, B.; Clayton, C. E.; Dodd, E.; Huang, C.; Marsh, K. A.; Mori, W. B.; Wang, S.; Hogan, M. J.; O'Connell, C.; Siemann, R.; Watz, D.; Muggli, P.; Katsouleas, T.; Lee, S.

    2002-05-01

    An intense, high-energy electron or positron beam can have focused intensities rivaling those of today's most powerful laser beams. For example, the 5 ps (full-width, half-maximum), 50 GeV beam at the Stanford Linear Accelerator Center (SLAC) at 1 kA and focused to a 3 micron rms spot size gives intensities of >1020 W/cm-2 at a repetition rate of >10 Hz. Unlike a ps or fs laser pulse which interacts with the surface of a solid target, the particle beam can readily tunnel through tens of cm of steel. However, the same particle beam can be manipulated quite effectively by a plasma that is a million times less dense than air! This is because of the incredibly strong collective fields induced in the plasma by the Coulomb force of the beam. The collective fields in turn react back onto the beam leading to many clearly observable phenomena. The beam paraticles can be: (1) Deflected leading to focusing, defocusing, or even steering of the beam; (2) undulated causing the emission of spontaneous betatron x-ray radiation and; (3) accelerated or decelerated by the plasma fields. Using the 28.5 GeV electron beam from the SLAC linac a series of experiments have been carried out that demonstrate clearly many of the above mentioned effects. The results can be compared with theoretical predictions and with two-dimensional and three-dimensional, one-to-one, particle-in-cell code simulations. These phenomena may have practical applications in future technologies including optical elements in particle beam lines, synchrotron light sources, and ultrahigh gradient accelerators.

  14. Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals

    SciTech Connect

    Moustakidis, Ch. C.; Lalazissis, G. A.; Niksic, T.; Vretenar, D.; Ring, P.

    2010-06-15

    The transition density n{sub t} and pressure P{sub t} at the inner edge between the liquid core and the solid crust of a neutron star are analyzed using the thermodynamical method and the framework of relativistic nuclear energy density functionals. Starting from a functional that has been carefully adjusted to experimental binding energies of finite nuclei, and varying the density dependence of the corresponding symmetry energy within the limits determined by isovector properties of finite nuclei, we estimate the constraints on the core-crust transition density and pressure of neutron stars: 0.086 fm{sup -3}<=n{sub t}<0.090 fm{sup -3} and 0.3 MeV fm{sup -3}

  15. A coarse-grain force field for RDX: Density dependent and energy conserving

    NASA Astrophysics Data System (ADS)

    Moore, Joshua D.; Barnes, Brian C.; Izvekov, Sergei; Lísal, Martin; Sellers, Michael S.; Taylor, DeCarlos E.; Brennan, John K.

    2016-03-01

    We describe the development of a density-dependent transferable coarse-grain model of crystalline hexahydro-1,3,5-trinitro-s-triazine (RDX) that can be used with the energy conserving dissipative particle dynamics method. The model is an extension of a recently reported one-site model of RDX that was developed by using a force-matching method. The density-dependent forces in that original model are provided through an interpolation scheme that poorly conserves energy. The development of the new model presented in this work first involved a multi-objective procedure to improve the structural and thermodynamic properties of the previous model, followed by the inclusion of the density dependency via a conservative form of the force field that conserves energy. The new model accurately predicts the density, structure, pressure-volume isotherm, bulk modulus, and elastic constants of the RDX crystal at ambient pressure and exhibits transferability to a liquid phase at melt conditions.

  16. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Levy, Mel; Painter, G. S.; Wei, Siqing; Lagowski, Jolanta B.

    1988-01-01

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al.and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N2 and F2, which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules.

  17. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    SciTech Connect

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-15

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N/sub 2/ and F/sub 2/, which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules.

  18. The Impact of Neighbourhood Density on the Energy Demand of Passive Houses and on Potential Energy Sources from the Waste Flows and Solar Energy

    NASA Astrophysics Data System (ADS)

    Stupka, Robert

    This study demonstrates how the density of a neighbourhood affects its energy demand, metabolism (energy and material flows) and its ability to produce its own energy. Single-family detached houses and row townhouses were each modeled using passive solar housing guidelines with the DesignBuilder building energy simulation software. Energy demand is then modeled within neighbourhoods at two densities based on south facing windows fully un-shaded at 9:00 am, and 12:00 pm solar time on Dec. 21. The neighbourhood metabolisms were then calculated based on location and density. The potential energy supply was evaluated from the spatial characteristics of the neighbourhood (for solar) and the metabolism (municipal solid waste and wastewater flows.) The potential energy demand and supply are then compared for the varying building types and densities to determine the sensitivity of the energy supply and demand relationships.

  19. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-06-01

    It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.

  20. Unbiased Estimate of Dark Energy Density from Type Ia Supernova Data

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Lovelace, Geoffrey

    2001-12-01

    Type Ia supernovae (SNe Ia) are currently the best probes of the dark energy in the universe. To constrain the nature of dark energy, we assume a flat universe and that the weak energy condition is satisfied, and we allow the density of dark energy, ρX(z), to be an arbitrary function of redshift. Using simulated data from a space-based SN pencil-beam survey, we find that by optimizing the number of parameters used to parameterize the dimensionless dark energy density, f(z)=ρX(z)/ρX(z=0), we can obtain an unbiased estimate of both f(z) and the fractional matter density of the universe, Ωm. A plausible SN pencil-beam survey (with a square degree field of view and for an observational duration of 1 yr) can yield about 2000 SNe Ia with 0<=z<=2. Such a survey in space would yield SN peak luminosities with a combined intrinsic and observational dispersion of σ(mint)=0.16 mag. We find that for such an idealized survey, Ωm can be measured to 10% accuracy, and the dark energy density can be estimated to ~20% to z~1.5, and ~20%-40% to z~2, depending on the time dependence of the true dark energy density. Dark energy densities that vary more slowly can be more accurately measured. For the anticipated Supernova/Acceleration Probe (SNAP) mission, Ωm can be measured to 14% accuracy, and the dark energy density can be estimated to ~20% to z~1.2. Our results suggest that SNAP may gain much sensitivity to the time dependence of the dark energy density and Ωm by devoting more observational time to the central pencil-beam fields to obtain more SNe Ia at z>1.2. We use both a maximum likelihood analysis and a Monte Carlo analysis (when appropriate) to determine the errors of estimated parameters. We find that the Monte Carlo analysis gives a more accurate estimate of the dark energy density than the maximum likelihood analysis.

  1. Assessment of satiety depends on the energy density and portion size of the test meal

    PubMed Central

    Williams, Rachel A.; Roe, Liane S.; Rolls, Barbara J.

    2013-01-01

    Objective Foods that enhance satiety can reduce overconsumption, but the availability of large portions of energy-dense foods may counter their benefits. We tested the influence on meal energy intake of varying the energy density and portion size of food consumed after a preload shown to promote satiety. Design and Methods In a crossover design, 46 women were served lunch on six days. On four days they ate a compulsory salad (300 g, 0.33 kcal/g). Unlike previous studies, instead of varying the preload, the subsequent test meal of pasta was varied between standard and increased levels of both energy density (1.25 or 1.66 kcal/g) and portion size (450 or 600 g). On two control days a salad was not served. Results Following the salad, the energy density and portion size of the test meal independently affected meal energy intake (both p<0.02). Serving the higher-energy-dense pasta increased test meal intake by 153±19 kcal and serving the larger portion of pasta increased test meal intake by 40±16 kcal. Compared to having no salad, consuming the salad decreased test meal intake by 123±18 kcal. Conclusions The effect of satiety-enhancing foods can be influenced by the energy density and portion size of other foods at the meal. PMID:23929544

  2. Dietary energy density is associated with obesity and the metabolic syndrome in U.S. adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising obesity rates have been linked to the consumption of energy-dense diets. We examined whether dietary energy density was associated with obesity and related disorders, including insulin resistance and the metabolic syndrome. We conducted a cross-sectional study using nationally representative ...

  3. Impact of a School Nutrition Policy to Middle School Students Dietary Energy Density

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The consumption of energy-dense foods has been associated with rising obesity rates and linked to the metabolic syndrome. Reducing dietary energy density (DED) is an important strategy to address obesity, but few studies have examined the effect of nutrition policies on children's DED. The Texas Pub...

  4. The effect of cell size and channel density on neuronal information encoding and energy efficiency

    PubMed Central

    Sengupta, Biswa; Faisal, A Aldo; Laughlin, Simon B; Niven, Jeremy E

    2013-01-01

    Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na+ and K+ channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike−1) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology. PMID:23778164

  5. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    PubMed

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083

  6. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    PubMed Central

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from −20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083

  7. Evaluation of discharge energy density of antiferroelectric ceramics for pulse capacitors

    NASA Astrophysics Data System (ADS)

    Xu, Ran; Xu, Zhuo; Feng, Yujun; Wei, Xiaoyong; Tian, Jingjing; Huang, Dong

    2016-07-01

    The energy in pulse capacitors need to discharge rapidly to obtain high peak power. However, the discharge energy density of antiferroelectric (AFE) dielectrics for pulse capacitors is traditionally evaluated by hysteresis loop (defined as quasi-static method). To verify whether the quasi-static method is suitable for pulse applications, AFE ceramics Pb0.94La0.04[(Zr0.70Sn0.30)0.86Ti0.14]O3 were prepared, and their discharge energy density was calculated by hysteresis loop and pulse current (defined as dynamic method), respectively. A significant difference was found between these two kinds of results. Under 36 kV/cm, the discharge energy density calculated by 1 Hz hysteresis loop was 0.35 J/cm3 while that by pulse discharge current was only 0.18 J/cm3. It was found that the discharge energy density declined with increasing test frequency (0.1 Hz-100 Hz) and decreased further via dynamic hysteresis loop in microseconds scale. This declination can be explained by the viscous force during the motion of the domain wall. Thus, for pulse capacitors, it is more reasonable and practical to evaluate discharge energy density of AFE by pulse current than by quasi-static hysteresis loop.

  8. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect

    Bake, Muhammad Ali; Xie Baisong; Shan Zhang; Hong Xueren; Wang Hongyu

    2012-08-15

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  9. Reverse energy partitioning-An efficient algorithm for computing the density of states, partition functions, and free energy of solids.

    PubMed

    Do, Hainam; Wheatley, Richard J

    2016-08-28

    A robust and model free Monte Carlo simulation method is proposed to address the challenge in computing the classical density of states and partition function of solids. Starting from the minimum configurational energy, the algorithm partitions the entire energy range in the increasing energy direction ("upward") into subdivisions whose integrated density of states is known. When combined with the density of states computed from the "downward" energy partitioning approach [H. Do, J. D. Hirst, and R. J. Wheatley, J. Chem. Phys. 135, 174105 (2011)], the equilibrium thermodynamic properties can be evaluated at any temperature and in any phase. The method is illustrated in the context of the Lennard-Jones system and can readily be extended to other molecular systems and clusters for which the structures are known. PMID:27586913

  10. High Energy-Density Plasma Production from Plasma-Filled Rod-Pinch Diodes

    NASA Astrophysics Data System (ADS)

    Schumer, J. W.; Weber, B. V.; Mosher, D.; Apruzese, J. P.

    2008-04-01

    The Plasma-Filled Rod-Pinch diode (PFRP) concentrates a 100-ns, 500-kA, >MeV electron-beam onto the tip of a tapered tungsten rod, generating a High Energy Density Plasma (HEDP). The HEDP (warm dense plasma) is created by deposition of a high-power-density (40 TW/cm^2) electron-beam into solid-density tungsten. The diode current and voltage has been shown to be controllably modified between 260 kA and 1.8 MV to 770 kA and 0.45 MV by increasing the initial plasma-fill density. At the time of peak energy density, analytic estimates using a 0-d self-similar MHD model predict a solid-density (20 g/cm^3) tungsten plasma with 25 eV temperature, 16 Mbar pressure, and 2.4 MJ/cm^3 thermal energy density prior to rapid plasma expansion (after about 10 ns). Temperature and ionization state increase after this time as the rod-tip rapidly expands. This PFRP approach may have advantages for HEDP research. Various applications include high-fluence flash radiography and the study of equation-of-state of materials. Current research results will be presented.

  11. Interpolating moving least-squares methods for fitting potential energy surfaces : computing high-density potential energy surface data from low-density ab initio data points.

    SciTech Connect

    Dawes, R.; Thompson, D. L.; Guo, Y.; Wagner, A. F.; Minkoff, M.; Chemistry; Univ. of Missouri-Columbia; Oklahoma State Univ.

    2007-05-11

    A highly accurate and efficient method for molecular global potential energy surface (PES) construction and fitting is demonstrated. An interpolating-moving-least-squares (IMLS)-based method is developed using low-density ab initio Hessian values to compute high-density PES parameters suitable for accurate and efficient PES representation. The method is automated and flexible so that a PES can be optimally generated for classical trajectories, spectroscopy, or other applications. Two important bottlenecks for fitting PESs are addressed. First, high accuracy is obtained using a minimal density of ab initio points, thus overcoming the bottleneck of ab initio point generation faced in applications of modified-Shepard-based methods. Second, high efficiency is also possible (suitable when a huge number of potential energy and gradient evaluations are required during a trajectory calculation). This overcomes the bottleneck in high-order IMLS-based methods, i.e., the high cost/accuracy ratio for potential energy evaluations. The result is a set of hybrid IMLS methods in which high-order IMLS is used with low-density ab initio Hessian data to compute a dense grid of points at which the energy, Hessian, or even high-order IMLS fitting parameters are stored. A series of hybrid methods is then possible as these data can be used for neural network fitting, modified-Shepard interpolation, or approximate IMLS. Results that are indicative of the accuracy, efficiency, and scalability are presented for one-dimensional model potentials as well as for three-dimensional (HCN) and six-dimensional (HOOH) molecular PESs

  12. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

    PubMed

    Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang

    2011-10-21

    We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles. PMID:21887427

  13. Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect

    Roadman, Jason; Huskey, Arlinda

    2015-07-01

    A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented in this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.

  14. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean

    2014-01-01

    Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.

  15. The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature

    NASA Astrophysics Data System (ADS)

    Kazin, Eyal A.; Koda, Jun; Blake, Chris; Padmanabhan, Nikhil; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Croton, Darren J.; Davis, Tamara M.; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J.; Li, I.-hui; Madore, Barry; Martin, D. Christopher; Pimbblet, Kevin; Poole, Gregory B.; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, H. K. C.

    2014-07-01

    We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2 < z < 1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model-independent distance measures DV(rsfid/rs) of 1716 ± 83, 2221 ± 101, 2516 ± 86 Mpc (68 per cent CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where DV is the volume-averaged distance, and rs is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 per cent accuracy measurements are equivalent to those expected from surveys with up to 2.5 times the volume of WiggleZ without reconstruction applied. These measurements are fully consistent with cosmologies allowed by the analyses of the Planck Collaboration and the Sloan Digital Sky Survey. We provide the DV(rsfid/rs) posterior probability distributions and their covariances. When combining these measurements with temperature fluctuations measurements of Planck, the polarization of Wilkinson Microwave Anisotropy Probe 9, and the 6dF Galaxy Survey baryonic acoustic feature, we do not detect deviations from a flat Λ cold dark matter (ΛCDM) model. Assuming this model, we constrain the current expansion rate to H0 = 67.15 ± 0.98 km s-1Mpc-1. Allowing the equation of state of dark energy to vary, we obtain wDE = -1.080 ± 0.135. When assuming a curved ΛCDM model we obtain a curvature value of ΩK = -0.0043 ± 0.0047.

  16. Link between Food Energy Density and Body Weight Changes in Obese Adults

    PubMed Central

    Stelmach-Mardas, Marta; Rodacki, Tomasz; Dobrowolska-Iwanek, Justyna; Brzozowska, Anna; Walkowiak, Jarosław; Wojtanowska-Krosniak, Agnieszka; Zagrodzki, Paweł; Bechthold, Angela; Mardas, Marcin; Boeing, Heiner

    2016-01-01

    Regulating the energy density of food could be used as a novel approach for successful body weight reduction in clinical practice. The aim of this study was to conduct a systemic review of the literature on the relationship between food energy density and body weight changes in obese adults to obtain solid evidence supporting this approach. The search process was based on the selection of publications in the English language listed in public databases. A meta-analysis was performed to combine individual study results. Thirteen experimental and observational studies were identified and included in the final analysis. The analyzed populations consist of 3628 individuals aged 18 to 66 years. The studies varied greatly in terms of study populations, study design and applied dietary approaches. The meta-analysis revealed a significant association between low energy density foods and body weight reduction, i.e., −0.53 kg when low energy density foods were eaten (95% CI: −0.88, −0.19). In conclusions, this study adds evidence which supports the energy density of food as a simple but effective measure to manage weight in the obese with the aim of weight reduction. PMID:27104562

  17. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries

    PubMed Central

    Dash, Ranjan; Pannala, Sreekanth

    2016-01-01

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si–carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs. PMID:27311811

  18. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries.

    PubMed

    Dash, Ranjan; Pannala, Sreekanth

    2016-01-01

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si-carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs. PMID:27311811

  19. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Dash, Ranjan; Pannala, Sreekanth

    2016-06-01

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si–carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs.

  20. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    SciTech Connect

    Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.

    2015-08-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.