Sample records for acoustic feature extraction

  1. Deep Learning Methods for Underwater Target Feature Extraction and Recognition

    PubMed Central

    Peng, Yuan; Qiu, Mengran; Shi, Jianfei; Liu, Liangliang

    2018-01-01

    The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved. PMID:29780407

  2. Adaptive fault feature extraction from wayside acoustic signals from train bearings

    NASA Astrophysics Data System (ADS)

    Zhang, Dingcheng; Entezami, Mani; Stewart, Edward; Roberts, Clive; Yu, Dejie

    2018-07-01

    Wayside acoustic detection of train bearing faults plays a significant role in maintaining safety in the railway transport system. However, the bearing fault information is normally masked by strong background noises and harmonic interferences generated by other components (e.g. axles and gears). In order to extract the bearing fault feature information effectively, a novel method called improved singular value decomposition (ISVD) with resonance-based signal sparse decomposition (RSSD), namely the ISVD-RSSD method, is proposed in this paper. A Savitzky-Golay (S-G) smoothing filter is used to filter singular vectors (SVs) in the ISVD method as an extension of the singular value decomposition (SVD) theorem. Hilbert spectrum entropy and a stepwise optimisation strategy are used to optimize the S-G filter's parameters. The RSSD method is able to nonlinearly decompose the wayside acoustic signal of a faulty train bearing into high and low resonance components, the latter of which contains bearing fault information. However, the high level of noise usually results in poor decomposition results from the RSSD method. Hence, the collected wayside acoustic signal must first be de-noised using the ISVD component of the ISVD-RSSD method. Next, the de-noised signal is decomposed by using the RSSD method. The obtained low resonance component is then demodulated with a Hilbert transform such that the bearing fault can be detected by observing Hilbert envelope spectra. The effectiveness of the ISVD-RSSD method is verified through both laboratory field-based experiments as described in the paper. The results indicate that the proposed method is superior to conventional spectrum analysis and ensemble empirical mode decomposition methods.

  3. Major depressive disorder discrimination using vocal acoustic features.

    PubMed

    Taguchi, Takaya; Tachikawa, Hirokazu; Nemoto, Kiyotaka; Suzuki, Masayuki; Nagano, Toru; Tachibana, Ryuki; Nishimura, Masafumi; Arai, Tetsuaki

    2018-01-01

    The voice carries various information produced by vibrations of the vocal cords and the vocal tract. Though many studies have reported a relationship between vocal acoustic features and depression, including mel-frequency cepstrum coefficients (MFCCs) which applied to speech recognition, there have been few studies in which acoustic features allowed discrimination of patients with depressive disorder. Vocal acoustic features as biomarker of depression could make differential diagnosis of patients with depressive state. In order to achieve differential diagnosis of depression, in this preliminary study, we examined whether vocal acoustic features could allow discrimination between depressive patients and healthy controls. Subjects were 36 patients who met the criteria for major depressive disorder and 36 healthy controls with no current or past psychiatric disorders. Voices of reading out digits before and after verbal fluency task were recorded. Voices were analyzed using OpenSMILE. The extracted acoustic features, including MFCCs, were used for group comparison and discriminant analysis between patients and controls. The second dimension of MFCC (MFCC 2) was significantly different between groups and allowed the discrimination between patients and controls with a sensitivity of 77.8% and a specificity of 86.1%. The difference in MFCC 2 between the two groups reflected an energy difference of frequency around 2000-3000Hz. The MFCC 2 was significantly different between depressive patients and controls. This feature could be a useful biomarker to detect major depressive disorder. Sample size was relatively small. Psychotropics could have a confounding effect on voice. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood?

    PubMed Central

    Rosner, Sabine; Klein, Andrea; Wimmer, Rupert; Karlsson, Bo

    2011-01-01

    Summary • The aim of this study was to assess the hydraulic vulnerability of Norway spruce (Picea abies) trunkwood by extraction of selected features of acoustic emissions (AEs) detected during dehydration of standard size samples. • The hydraulic method was used as the reference method to assess the hydraulic vulnerability of trunkwood of different cambial ages. Vulnerability curves were constructed by plotting the percentage loss of conductivity vs an overpressure of compressed air. • Differences in hydraulic vulnerability were very pronounced between juvenile and mature wood samples; therefore, useful AE features, such as peak amplitude, duration and relative energy, could be filtered out. The AE rates of signals clustered by amplitude and duration ranges and the AE energies differed greatly between juvenile and mature wood at identical relative water losses. • Vulnerability curves could be constructed by relating the cumulated amount of relative AE energy to the relative loss of water and to xylem tension. AE testing in combination with feature extraction offers a readily automated and easy to use alternative to the hydraulic method. PMID:16771986

  5. Acoustic⁻Seismic Mixed Feature Extraction Based on Wavelet Transform for Vehicle Classification in Wireless Sensor Networks.

    PubMed

    Zhang, Heng; Pan, Zhongming; Zhang, Wenna

    2018-06-07

    An acoustic⁻seismic mixed feature extraction method based on the wavelet coefficient energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à trous algorithm, which is a concise method used to implement the wavelet transform of a discrete signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained, the energy ratio of each layer coefficient was calculated as the feature vector of the target signals. Subsequently, the acoustic and seismic features were merged into an acoustic⁻seismic mixed feature to improve the target classification accuracy after the acoustic and seismic WCER features of the target signal were simplified using the hierarchical clustering method. We selected the support vector machine method for classification and utilized the data acquired from a real-world experiment to validate the proposed method. The calculated results show that the WCER feature extraction method can effectively extract the target features from target signals. Feature simplification can reduce the time consumption of feature extraction and classification, with no effect on the target classification accuracy. The use of acoustic⁻seismic mixed features effectively improved target classification accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.

  6. Human listening studies reveal insights into object features extracted by echolocating dolphins

    NASA Astrophysics Data System (ADS)

    Delong, Caroline M.; Au, Whitlow W. L.; Roitblat, Herbert L.

    2004-05-01

    Echolocating dolphins extract object feature information from the acoustic parameters of object echoes. However, little is known about which object features are salient to dolphins or how they extract those features. To gain insight into how dolphins might be extracting feature information, human listeners were presented with echoes from objects used in a dolphin echoic-visual cross-modal matching task. Human participants performed a task similar to the one the dolphin had performed; however, echoic samples consisting of 23-echo trains were presented via headphones. The participants listened to the echoic sample and then visually selected the correct object from among three alternatives. The participants performed as well as or better than the dolphin (M=88.0% correct), and reported using a combination of acoustic cues to extract object features (e.g., loudness, pitch, timbre). Participants frequently reported using the pattern of aural changes in the echoes across the echo train to identify the shape and structure of the objects (e.g., peaks in loudness or pitch). It is likely that dolphins also attend to the pattern of changes across echoes as objects are echolocated from different angles.

  7. Toward a model for lexical access based on acoustic landmarks and distinctive features

    NASA Astrophysics Data System (ADS)

    Stevens, Kenneth N.

    2002-04-01

    This article describes a model in which the acoustic speech signal is processed to yield a discrete representation of the speech stream in terms of a sequence of segments, each of which is described by a set (or bundle) of binary distinctive features. These distinctive features specify the phonemic contrasts that are used in the language, such that a change in the value of a feature can potentially generate a new word. This model is a part of a more general model that derives a word sequence from this feature representation, the words being represented in a lexicon by sequences of feature bundles. The processing of the signal proceeds in three steps: (1) Detection of peaks, valleys, and discontinuities in particular frequency ranges of the signal leads to identification of acoustic landmarks. The type of landmark provides evidence for a subset of distinctive features called articulator-free features (e.g., [vowel], [consonant], [continuant]). (2) Acoustic parameters are derived from the signal near the landmarks to provide evidence for the actions of particular articulators, and acoustic cues are extracted by sampling selected attributes of these parameters in these regions. The selection of cues that are extracted depends on the type of landmark and on the environment in which it occurs. (3) The cues obtained in step (2) are combined, taking context into account, to provide estimates of ``articulator-bound'' features associated with each landmark (e.g., [lips], [high], [nasal]). These articulator-bound features, combined with the articulator-free features in (1), constitute the sequence of feature bundles that forms the output of the model. Examples of cues that are used, and justification for this selection, are given, as well as examples of the process of inferring the underlying features for a segment when there is variability in the signal due to enhancement gestures (recruited by a speaker to make a contrast more salient) or due to overlap of gestures from

  8. Identification of four class emotion from Indonesian spoken language using acoustic and lexical features

    NASA Astrophysics Data System (ADS)

    Kasyidi, Fatan; Puji Lestari, Dessi

    2018-03-01

    One of the important aspects in human to human communication is to understand emotion of each party. Recently, interactions between human and computer continues to develop, especially affective interaction where emotion recognition is one of its important components. This paper presents our extended works on emotion recognition of Indonesian spoken language to identify four main class of emotions: Happy, Sad, Angry, and Contentment using combination of acoustic/prosodic features and lexical features. We construct emotion speech corpus from Indonesia television talk show where the situations are as close as possible to the natural situation. After constructing the emotion speech corpus, the acoustic/prosodic and lexical features are extracted to train the emotion model. We employ some machine learning algorithms such as Support Vector Machine (SVM), Naive Bayes, and Random Forest to get the best model. The experiment result of testing data shows that the best model has an F-measure score of 0.447 by using only the acoustic/prosodic feature and F-measure score of 0.488 by using both acoustic/prosodic and lexical features to recognize four class emotion using the SVM RBF Kernel.

  9. Low complexity feature extraction for classification of harmonic signals

    NASA Astrophysics Data System (ADS)

    William, Peter E.

    In this dissertation, feature extraction algorithms have been developed for extraction of characteristic features from harmonic signals. The common theme for all developed algorithms is the simplicity in generating a significant set of features directly from the time domain harmonic signal. The features are a time domain representation of the composite, yet sparse, harmonic signature in the spectral domain. The algorithms are adequate for low-power unattended sensors which perform sensing, feature extraction, and classification in a standalone scenario. The first algorithm generates the characteristic features using only the duration between successive zero-crossing intervals. The second algorithm estimates the harmonics' amplitudes of the harmonic structure employing a simplified least squares method without the need to estimate the true harmonic parameters of the source signal. The third algorithm, resulting from a collaborative effort with Daniel White at the DSP Lab, University of Nebraska-Lincoln, presents an analog front end approach that utilizes a multichannel analog projection and integration to extract the sparse spectral features from the analog time domain signal. Classification is performed using a multilayer feedforward neural network. Evaluation of the proposed feature extraction algorithms for classification through the processing of several acoustic and vibration data sets (including military vehicles and rotating electric machines) with comparison to spectral features shows that, for harmonic signals, time domain features are simpler to extract and provide equivalent or improved reliability over the spectral features in both the detection probabilities and false alarm rate.

  10. Acoustic Features Influence Musical Choices Across Multiple Genres.

    PubMed

    Barone, Michael D; Bansal, Jotthi; Woolhouse, Matthew H

    2017-01-01

    Based on a large behavioral dataset of music downloads, two analyses investigate whether the acoustic features of listeners' preferred musical genres influence their choice of tracks within non-preferred, secondary musical styles. Analysis 1 identifies feature distributions for pairs of genre-defined subgroups that are distinct. Using correlation analysis, these distributions are used to test the degree of similarity between subgroups' main genres and the other music within their download collections. Analysis 2 explores the issue of main-to-secondary genre influence through the production of 10 feature-influence matrices, one per acoustic feature, in which cell values indicate the percentage change in features for genres and subgroups compared to overall population averages. In total, 10 acoustic features and 10 genre-defined subgroups are explored within the two analyses. Results strongly indicate that the acoustic features of people's main genres influence the tracks they download within non-preferred, secondary musical styles. The nature of this influence and its possible actuating mechanisms are discussed with respect to research on musical preference, personality, and statistical learning.

  11. Acoustic Features Influence Musical Choices Across Multiple Genres

    PubMed Central

    Barone, Michael D.; Bansal, Jotthi; Woolhouse, Matthew H.

    2017-01-01

    Based on a large behavioral dataset of music downloads, two analyses investigate whether the acoustic features of listeners' preferred musical genres influence their choice of tracks within non-preferred, secondary musical styles. Analysis 1 identifies feature distributions for pairs of genre-defined subgroups that are distinct. Using correlation analysis, these distributions are used to test the degree of similarity between subgroups' main genres and the other music within their download collections. Analysis 2 explores the issue of main-to-secondary genre influence through the production of 10 feature-influence matrices, one per acoustic feature, in which cell values indicate the percentage change in features for genres and subgroups compared to overall population averages. In total, 10 acoustic features and 10 genre-defined subgroups are explored within the two analyses. Results strongly indicate that the acoustic features of people's main genres influence the tracks they download within non-preferred, secondary musical styles. The nature of this influence and its possible actuating mechanisms are discussed with respect to research on musical preference, personality, and statistical learning. PMID:28725200

  12. A novel murmur-based heart sound feature extraction technique using envelope-morphological analysis

    NASA Astrophysics Data System (ADS)

    Yao, Hao-Dong; Ma, Jia-Li; Fu, Bin-Bin; Wang, Hai-Yang; Dong, Ming-Chui

    2015-07-01

    Auscultation of heart sound (HS) signals serves as an important primary approach to diagnose cardiovascular diseases (CVDs) for centuries. Confronting the intrinsic drawbacks of traditional HS auscultation, computer-aided automatic HS auscultation based on feature extraction technique has witnessed explosive development. Yet, most existing HS feature extraction methods adopt acoustic or time-frequency features which exhibit poor relationship with diagnostic information, thus restricting the performance of further interpretation and analysis. Tackling such a bottleneck problem, this paper innovatively proposes a novel murmur-based HS feature extraction method since murmurs contain massive pathological information and are regarded as the first indications of pathological occurrences of heart valves. Adapting discrete wavelet transform (DWT) and Shannon envelope, the envelope-morphological characteristics of murmurs are obtained and three features are extracted accordingly. Validated by discriminating normal HS and 5 various abnormal HS signals with extracted features, the proposed method provides an attractive candidate in automatic HS auscultation.

  13. Acoustic features of objects matched by an echolocating bottlenose dolphin.

    PubMed

    Delong, Caroline M; Au, Whitlow W L; Lemonds, David W; Harley, Heidi E; Roitblat, Herbert L

    2006-03-01

    The focus of this study was to investigate how dolphins use acoustic features in returning echolocation signals to discriminate among objects. An echolocating dolphin performed a match-to-sample task with objects that varied in size, shape, material, and texture. After the task was completed, the features of the object echoes were measured (e.g., target strength, peak frequency). The dolphin's error patterns were examined in conjunction with the between-object variation in acoustic features to identify the acoustic features that the dolphin used to discriminate among the objects. The present study explored two hypotheses regarding the way dolphins use acoustic information in echoes: (1) use of a single feature, or (2) use of a linear combination of multiple features. The results suggested that dolphins do not use a single feature across all object sets or a linear combination of six echo features. Five features appeared to be important to the dolphin on four or more sets: the echo spectrum shape, the pattern of changes in target strength and number of highlights as a function of object orientation, and peak and center frequency. These data suggest that dolphins use multiple features and integrate information across echoes from a range of object orientations.

  14. Prediction of acoustic feature parameters using myoelectric signals.

    PubMed

    Lee, Ki-Seung

    2010-07-01

    It is well-known that a clear relationship exists between human voices and myoelectric signals (MESs) from the area of the speaker's mouth. In this study, we utilized this information to implement a speech synthesis scheme in which MES alone was used to predict the parameters characterizing the vocal-tract transfer function of specific speech signals. Several feature parameters derived from MES were investigated to find the optimal feature for maximization of the mutual information between the acoustic and the MES features. After the optimal feature was determined, an estimation rule for the acoustic parameters was proposed, based on a minimum mean square error (MMSE) criterion. In a preliminary study, 60 isolated words were used for both objective and subjective evaluations. The results showed that the average Euclidean distance between the original and predicted acoustic parameters was reduced by about 30% compared with the average Euclidean distance of the original parameters. The intelligibility of the synthesized speech signals using the predicted features was also evaluated. A word-level identification ratio of 65.5% and a syllable-level identification ratio of 73% were obtained through a listening test.

  15. Vertical Feature Mask Feature Classification Flag Extraction

    Atmospheric Science Data Center

    2013-03-28

      Vertical Feature Mask Feature Classification Flag Extraction This routine demonstrates extraction of the ... in a CALIPSO Lidar Level 2 Vertical Feature Mask feature classification flag value. It is written in Interactive Data Language (IDL) ...

  16. Acoustic sensor array extracts physiology during movement

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2001-08-01

    An acoustic sensor attached to a person's neck can extract heart and breath sounds, as well as voice and other physiology related to their health and performance. Soldiers, firefighters, law enforcement, and rescue personnel, as well as people at home or in health care facilities, can benefit form being remotely monitored. ARLs acoustic sensor, when worn around a person's neck, picks up the carotid artery and breath sounds very well by matching the sensor's acoustic impedance to that of the body via a gel pad, while airborne noise is minimized by an impedance mismatch. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that obscure the meaningful physiology. To exacerbate signal extraction, these interfering signals are usually covariant with the heart sounds, in that as a person walks faster the heart tends to beat faster, and motion noises tend to contain low frequency component similar to the heart sounds. A noise-canceling configuration developed by ARL uses two acoustic sensor on the front sides of the neck as physiology sensors, and two additional acoustic sensor on the back sides of the neck as noise references. Breath and heart sounds, which occur with near symmetry and simultaneously at the two front sensor, will correlate well. The motion noise present on all four sensor will be used to cancel the noise on the two physiology sensors. This report will compare heart rate variability derived from both the acoustic array and from ECG data taken simultaneously on a treadmill test. Acoustically derived breath rate and volume approximations will be introduced as well. A miniature 3- axis accelerometer on the same neckband provides additional noise references to validate footfall and motion activity.

  17. Acoustic Green's function extraction in the ocean

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoqin

    The acoustic Green's function (GF) is the key to understanding the acoustic properties of ocean environments. With knowledge of the acoustic GF, the physics of sound propagation, such as dispersion, can be analyzed; underwater communication over thousands of miles can be understood; physical properties of the ocean, including ocean temperature, ocean current speed, as well as seafloor bathymetry, can be investigated. Experimental methods of acoustic GF extraction can be categorized as active methods and passive methods. Active methods are based on employment of man-made sound sources. These active methods require less computational complexity and time, but may cause harm to marine mammals. Passive methods cost much less and do not harm marine mammals, but require more theoretical and computational work. Both methods have advantages and disadvantages that should be carefully tailored to fit the need of each specific environment and application. In this dissertation, we study one passive method, the noise interferometry method, and one active method, the inverse filter processing method, to achieve acoustic GF extraction in the ocean. The passive method of noise interferometry makes use of ambient noise to extract an approximation to the acoustic GF. In an environment with a diffusive distribution of sound sources, sound waves that pass through two hydrophones at two locations carry the information of the acoustic GF between these two locations; by listening to the long-term ambient noise signals and cross-correlating the noise data recorded at two locations, the acoustic GF emerges from the noise cross-correlation function (NCF); a coherent stack of many realizations of NCFs yields a good approximation to the acoustic GF between these two locations, with all the deterministic structures clearly exhibited in the waveform. To test the performance of noise interferometry in different types of ocean environments, two field experiments were performed and ambient noise

  18. The acoustic features of human laughter

    NASA Astrophysics Data System (ADS)

    Bachorowski, Jo-Anne; Owren, Michael J.

    2002-05-01

    Remarkably little is known about the acoustic features of laughter, despite laughter's ubiquitous role in human vocal communication. Outcomes are described for 1024 naturally produced laugh bouts recorded from 97 young adults. Acoustic analysis focused on temporal characteristics, production modes, source- and filter-related effects, and indexical cues to laugher sex and individual identity. The results indicate that laughter is a remarkably complex vocal signal, with evident diversity in both production modes and fundamental frequency characteristics. Also of interest was finding a consistent lack of articulation effects in supralaryngeal filtering. Outcomes are compared to previously advanced hypotheses and conjectures about this species-typical vocal signal.

  19. Data Exploration using Unsupervised Feature Extraction for Mixed Micro-Seismic Signals

    NASA Astrophysics Data System (ADS)

    Meyer, Matthias; Weber, Samuel; Beutel, Jan

    2017-04-01

    We present a system for the analysis of data originating in a multi-sensor and multi-year experiment focusing on slope stability and its underlying processes in fractured permafrost rock walls undertaken at 3500m a.s.l. on the Matterhorn Hörnligrat, (Zermatt, Switzerland). This system incorporates facilities for the transmission, management and storage of large-scales of data ( 7 GB/day), preprocessing and aggregation of multiple sensor types, machine-learning based automatic feature extraction for micro-seismic and acoustic emission data and interactive web-based visualization of the data. Specifically, a combination of three types of sensors are used to profile the frequency spectrum from 1 Hz to 80 kHz with the goal to identify the relevant destructive processes (e.g. micro-cracking and fracture propagation) leading to the eventual destabilization of large rock masses. The sensors installed for this profiling experiment (2 geophones, 1 accelerometers and 2 piezo-electric sensors for detecting acoustic emission), are further augmented with sensors originating from a previous activity focusing on long-term monitoring of temperature evolution and rock kinematics with the help of wireless sensor networks (crackmeters, cameras, weather station, rock temperature profiles, differential GPS) [Hasler2012]. In raw format, the data generated by the different types of sensors, specifically the micro-seismic and acoustic emission sensors, is strongly heterogeneous, in part unsynchronized and the storage and processing demand is large. Therefore, a purpose-built signal preprocessing and event-detection system is used. While the analysis of data from each individual sensor follows established methods, the application of all these sensor types in combination within a field experiment is unique. Furthermore, experience and methods from using such sensors in laboratory settings cannot be readily transferred to the mountain field site setting with its scale and full exposure to

  20. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    NASA Astrophysics Data System (ADS)

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system

  1. Experience improves feature extraction in Drosophila.

    PubMed

    Peng, Yueqing; Xi, Wang; Zhang, Wei; Zhang, Ke; Guo, Aike

    2007-05-09

    Previous exposure to a pattern in the visual scene can enhance subsequent recognition of that pattern in many species from honeybees to humans. However, whether previous experience with a visual feature of an object, such as color or shape, can also facilitate later recognition of that particular feature from multiple visual features is largely unknown. Visual feature extraction is the ability to select the key component from multiple visual features. Using a visual flight simulator, we designed a novel protocol for visual feature extraction to investigate the effects of previous experience on visual reinforcement learning in Drosophila. We found that, after conditioning with a visual feature of objects among combinatorial shape-color features, wild-type flies exhibited poor ability to extract the correct visual feature. However, the ability for visual feature extraction was greatly enhanced in flies trained previously with that visual feature alone. Moreover, we demonstrated that flies might possess the ability to extract the abstract category of "shape" but not a particular shape. Finally, this experience-dependent feature extraction is absent in flies with defective MBs, one of the central brain structures in Drosophila. Our results indicate that previous experience can enhance visual feature extraction in Drosophila and that MBs are required for this experience-dependent visual cognition.

  2. Automatic extraction of planetary image features

    NASA Technical Reports Server (NTRS)

    LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)

    2013-01-01

    A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.

  3. Intelligibility Evaluation of Pathological Speech through Multigranularity Feature Extraction and Optimization.

    PubMed

    Fang, Chunying; Li, Haifeng; Ma, Lin; Zhang, Mancai

    2017-01-01

    Pathological speech usually refers to speech distortion resulting from illness or other biological insults. The assessment of pathological speech plays an important role in assisting the experts, while automatic evaluation of speech intelligibility is difficult because it is usually nonstationary and mutational. In this paper, we carry out an independent innovation of feature extraction and reduction, and we describe a multigranularity combined feature scheme which is optimized by the hierarchical visual method. A novel method of generating feature set based on S -transform and chaotic analysis is proposed. There are BAFS (430, basic acoustics feature), local spectral characteristics MSCC (84, Mel S -transform cepstrum coefficients), and chaotic features (12). Finally, radar chart and F -score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96 dimensions based on NKI-CCRT corpus and 104 dimensions based on SVD corpus. The experimental results denote that new features by support vector machine (SVM) have the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus and 78.7% on SVD corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.

  4. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    PubMed

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Changes in acoustic features and their conjunctions are processed by separate neuronal populations.

    PubMed

    Takegata, R; Huotilainen, M; Rinne, T; Näätänen, R; Winkler, I

    2001-03-05

    We investigated the relationship between the neuronal populations involved in detecting change in two acoustic features and their conjunction. Equivalent current dipole (ECD) models of the magnetic mismatch negativity (MMNm) generators were calculated for infrequent changes in pitch, perceived sound source location, and the conjunction of these two features. All of these three changes elicited MMNms that were generated in the vicinity of auditory cortex. The location of the ECD best describing the MMNm to the conjunction deviant was anterior to those for the MMNm responses elicited by either one of the constituent features. The present data thus suggest that at least partially separate neuronal populations are involved in detecting change in acoustic features and feature conjunctions.

  6. Robust Sensing of Approaching Vehicles Relying on Acoustic Cues

    PubMed Central

    Mizumachi, Mitsunori; Kaminuma, Atsunobu; Ono, Nobutaka; Ando, Shigeru

    2014-01-01

    The latest developments in automobile design have allowed them to be equipped with various sensing devices. Multiple sensors such as cameras and radar systems can be simultaneously used for active safety systems in order to overcome blind spots of individual sensors. This paper proposes a novel sensing technique for catching up and tracking an approaching vehicle relying on an acoustic cue. First, it is necessary to extract a robust spatial feature from noisy acoustical observations. In this paper, the spatio-temporal gradient method is employed for the feature extraction. Then, the spatial feature is filtered out through sequential state estimation. A particle filter is employed to cope with a highly non-linear problem. Feasibility of the proposed method has been confirmed with real acoustical observations, which are obtained by microphones outside a cruising vehicle. PMID:24887038

  7. Towards a social functional account of laughter: Acoustic features convey reward, affiliation, and dominance.

    PubMed

    Wood, Adrienne; Martin, Jared; Niedenthal, Paula

    2017-01-01

    Recent work has identified the physical features of smiles that accomplish three tasks fundamental to human social living: rewarding behavior, establishing and managing affiliative bonds, and negotiating social status. The current work extends the social functional account to laughter. Participants (N = 762) rated the degree to which reward, affiliation, or dominance (between-subjects) was conveyed by 400 laughter samples acquired from a commercial sound effects website. Inclusion of a fourth rating dimension, spontaneity, allowed us to situate the current approach in the context of existing laughter research, which emphasizes the distinction between spontaneous and volitional laughter. We used 11 acoustic properties extracted from the laugh samples to predict participants' ratings. Actor sex moderated, and sometimes even reversed, the relation between acoustics and participants' judgments. Spontaneous laughter appears to serve the reward function in the current framework, as similar acoustic properties guided perceiver judgments of spontaneity and reward: reduced voicing and increased pitch, increased duration for female actors, and increased pitch slope, center of gravity, first formant, and noisiness for male actors. Affiliation ratings diverged from reward in their sex-dependent relationship to intensity and, for females, reduced pitch range and raised second formant. Dominance displayed the most distinct pattern of acoustic predictors, including increased pitch range, reduced second formant in females, and decreased pitch variability in males. We relate the current findings to existing findings on laughter and human and non-human vocalizations, concluding laughter can signal much more that felt or faked amusement.

  8. Towards a social functional account of laughter: Acoustic features convey reward, affiliation, and dominance

    PubMed Central

    Martin, Jared; Niedenthal, Paula

    2017-01-01

    Recent work has identified the physical features of smiles that accomplish three tasks fundamental to human social living: rewarding behavior, establishing and managing affiliative bonds, and negotiating social status. The current work extends the social functional account to laughter. Participants (N = 762) rated the degree to which reward, affiliation, or dominance (between-subjects) was conveyed by 400 laughter samples acquired from a commercial sound effects website. Inclusion of a fourth rating dimension, spontaneity, allowed us to situate the current approach in the context of existing laughter research, which emphasizes the distinction between spontaneous and volitional laughter. We used 11 acoustic properties extracted from the laugh samples to predict participants’ ratings. Actor sex moderated, and sometimes even reversed, the relation between acoustics and participants’ judgments. Spontaneous laughter appears to serve the reward function in the current framework, as similar acoustic properties guided perceiver judgments of spontaneity and reward: reduced voicing and increased pitch, increased duration for female actors, and increased pitch slope, center of gravity, first formant, and noisiness for male actors. Affiliation ratings diverged from reward in their sex-dependent relationship to intensity and, for females, reduced pitch range and raised second formant. Dominance displayed the most distinct pattern of acoustic predictors, including increased pitch range, reduced second formant in females, and decreased pitch variability in males. We relate the current findings to existing findings on laughter and human and non-human vocalizations, concluding laughter can signal much more that felt or faked amusement. PMID:28850589

  9. Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response.

    PubMed

    Fazenda, Bruno; Scarre, Chris; Till, Rupert; Pasalodos, Raquel Jiménez; Guerra, Manuel Rojo; Tejedor, Cristina; Peredo, Roberto Ontañón; Watson, Aaron; Wyatt, Simon; Benito, Carlos García; Drinkall, Helen; Foulds, Frederick

    2017-09-01

    During the 1980 s, acoustic studies of Upper Palaeolithic imagery in French caves-using the technology then available-suggested a relationship between acoustic response and the location of visual motifs. This paper presents an investigation, using modern acoustic measurement techniques, into such relationships within the caves of La Garma, Las Chimeneas, La Pasiega, El Castillo, and Tito Bustillo in Northern Spain. It addresses methodological issues concerning acoustic measurement at enclosed archaeological sites and outlines a general framework for extraction of acoustic features that may be used to support archaeological hypotheses. The analysis explores possible associations between the position of visual motifs (which may be up to 40 000 yrs old) and localized acoustic responses. Results suggest that motifs, in general, and lines and dots, in particular, are statistically more likely to be found in places where reverberation is moderate and where the low frequency acoustic response has evidence of resonant behavior. The work presented suggests that an association of the location of Palaeolithic motifs with acoustic features is a statistically weak but tenable hypothesis, and that an appreciation of sound could have influenced behavior among Palaeolithic societies of this region.

  10. Information based universal feature extraction

    NASA Astrophysics Data System (ADS)

    Amiri, Mohammad; Brause, Rüdiger

    2015-02-01

    In many real world image based pattern recognition tasks, the extraction and usage of task-relevant features are the most crucial part of the diagnosis. In the standard approach, they mostly remain task-specific, although humans who perform such a task always use the same image features, trained in early childhood. It seems that universal feature sets exist, but they are not yet systematically found. In our contribution, we tried to find those universal image feature sets that are valuable for most image related tasks. In our approach, we trained a neural network by natural and non-natural images of objects and background, using a Shannon information-based algorithm and learning constraints. The goal was to extract those features that give the most valuable information for classification of visual objects hand-written digits. This will give a good start and performance increase for all other image learning tasks, implementing a transfer learning approach. As result, in our case we found that we could indeed extract features which are valid in all three kinds of tasks.

  11. Acoustical features of two Mayan monuments at Chichen Itza: Accident or design?

    NASA Astrophysics Data System (ADS)

    Lubman, David

    2002-11-01

    Chichen Itza dominated the early postclassic Maya world, ca. 900-1200 C.E. Two of its colossal monuments, the Great Ball Court and the temple of Kukulkan, reflect the sophisticated, hybrid culture of a Mexicanized Maya civilization. The architecture seems intended for ceremony and ritual drama. Deducing ritual practices will advance the understanding of a lost civilization, but what took place there is largely unknown. Perhaps acoustical science can add value. Unexpected and unusual acoustical features can be interpreted as intriguing clues or irrelevant accidents. Acoustical advocates believe that, when combined with an understanding of the Maya worldview, acoustical features can provide unique insights into how the Maya designed and used theater spaces. At Chichen Itza's monuments, sound reinforcement features improve rulers and priests ability to address large crowds, and Ball Court whispering galleries permit speech communication over unexpectedly large distances. Handclaps at Kukulkan stimulate chirps that mimic a revered bird (''Kukul''), thus reinforcing cultic beliefs. A ball striking playing field wall stimulates flutter echoes at the Great Ball Court; their strength and duration arguably had dramatic, mythic, and practical significance. Interpretations of the possible mythic, magic, and political significance of sound phenomena at these Maya monuments strongly suggests intentional design.

  12. Predicting couple therapy outcomes based on speech acoustic features

    PubMed Central

    Nasir, Md; Baucom, Brian Robert; Narayanan, Shrikanth

    2017-01-01

    Automated assessment and prediction of marital outcome in couples therapy is a challenging task but promises to be a potentially useful tool for clinical psychologists. Computational approaches for inferring therapy outcomes using observable behavioral information obtained from conversations between spouses offer objective means for understanding relationship dynamics. In this work, we explore whether the acoustics of the spoken interactions of clinically distressed spouses provide information towards assessment of therapy outcomes. The therapy outcome prediction task in this work includes detecting whether there was a relationship improvement or not (posed as a binary classification) as well as discerning varying levels of improvement or decline in the relationship status (posed as a multiclass recognition task). We use each interlocutor’s acoustic speech signal characteristics such as vocal intonation and intensity, both independently and in relation to one another, as cues for predicting the therapy outcome. We also compare prediction performance with one obtained via standardized behavioral codes characterizing the relationship dynamics provided by human experts as features for automated classification. Our experiments, using data from a longitudinal clinical study of couples in distressed relations, showed that predictions of relationship outcomes obtained directly from vocal acoustics are comparable or superior to those obtained using human-rated behavioral codes as prediction features. In addition, combining direct signal-derived features with manually coded behavioral features improved the prediction performance in most cases, indicating the complementarity of relevant information captured by humans and machine algorithms. Additionally, considering the vocal properties of the interlocutors in relation to one another, rather than in isolation, showed to be important for improving the automatic prediction. This finding supports the notion that behavioral

  13. A Comparison of Signal Enhancement Methods for Extracting Tonal Acoustic Signals

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.

    1998-01-01

    The measurement of pure tone acoustic pressure signals in the presence of masking noise, often generated by mean flow, is a continual problem in the field of passive liner duct acoustics research. In support of the Advanced Subsonic Technology Noise Reduction Program, methods were investigated for conducting measurements of advanced duct liner concepts in harsh, aeroacoustic environments. This report presents the results of a comparison study of three signal extraction methods for acquiring quality acoustic pressure measurements in the presence of broadband noise (used to simulate the effects of mean flow). The performance of each method was compared to a baseline measurement of a pure tone acoustic pressure 3 dB above a uniform, broadband noise background.

  14. Extraction of fault component from abnormal sound in diesel engines using acoustic signals

    NASA Astrophysics Data System (ADS)

    Dayong, Ning; Changle, Sun; Yongjun, Gong; Zengmeng, Zhang; Jiaoyi, Hou

    2016-06-01

    In this paper a method for extracting fault components from abnormal acoustic signals and automatically diagnosing diesel engine faults is presented. The method named dislocation superimposed method (DSM) is based on the improved random decrement technique (IRDT), differential function (DF) and correlation analysis (CA). The aim of DSM is to linearly superpose multiple segments of abnormal acoustic signals because of the waveform similarity of faulty components. The method uses sample points at the beginning of time when abnormal sound appears as the starting position for each segment. In this study, the abnormal sound belonged to shocking faulty type; thus, the starting position searching method based on gradient variance was adopted. The coefficient of similar degree between two same sized signals is presented. By comparing with a similar degree, the extracted fault component could be judged automatically. The results show that this method is capable of accurately extracting the fault component from abnormal acoustic signals induced by faulty shocking type and the extracted component can be used to identify the fault type.

  15. FEX: A Knowledge-Based System For Planimetric Feature Extraction

    NASA Astrophysics Data System (ADS)

    Zelek, John S.

    1988-10-01

    Topographical planimetric features include natural surfaces (rivers, lakes) and man-made surfaces (roads, railways, bridges). In conventional planimetric feature extraction, a photointerpreter manually interprets and extracts features from imagery on a stereoplotter. Visual planimetric feature extraction is a very labour intensive operation. The advantages of automating feature extraction include: time and labour savings; accuracy improvements; and planimetric data consistency. FEX (Feature EXtraction) combines techniques from image processing, remote sensing and artificial intelligence for automatic feature extraction. The feature extraction process co-ordinates the information and knowledge in a hierarchical data structure. The system simulates the reasoning of a photointerpreter in determining the planimetric features. Present efforts have concentrated on the extraction of road-like features in SPOT imagery. Keywords: Remote Sensing, Artificial Intelligence (AI), SPOT, image understanding, knowledge base, apars.

  16. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    NASA Astrophysics Data System (ADS)

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-07-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process.

  17. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    PubMed Central

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-01-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process. PMID:26223474

  18. Artillery/mortar type classification based on detected acoustic transients

    NASA Astrophysics Data System (ADS)

    Morcos, Amir; Grasing, David; Desai, Sachi

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  19. Iris recognition based on key image feature extraction.

    PubMed

    Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y

    2008-01-01

    In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.

  20. Integrated feature extraction and selection for neuroimage classification

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shen, Dinggang

    2009-02-01

    Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.

  1. Audio feature extraction using probability distribution function

    NASA Astrophysics Data System (ADS)

    Suhaib, A.; Wan, Khairunizam; Aziz, Azri A.; Hazry, D.; Razlan, Zuradzman M.; Shahriman A., B.

    2015-05-01

    Voice recognition has been one of the popular applications in robotic field. It is also known to be recently used for biometric and multimedia information retrieval system. This technology is attained from successive research on audio feature extraction analysis. Probability Distribution Function (PDF) is a statistical method which is usually used as one of the processes in complex feature extraction methods such as GMM and PCA. In this paper, a new method for audio feature extraction is proposed which is by using only PDF as a feature extraction method itself for speech analysis purpose. Certain pre-processing techniques are performed in prior to the proposed feature extraction method. Subsequently, the PDF result values for each frame of sampled voice signals obtained from certain numbers of individuals are plotted. From the experimental results obtained, it can be seen visually from the plotted data that each individuals' voice has comparable PDF values and shapes.

  2. Recursive Feature Extraction in Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-08-14

    ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.

  3. Artificial neural networks for acoustic target recognition

    NASA Astrophysics Data System (ADS)

    Robertson, James A.; Mossing, John C.; Weber, Bruce A.

    1995-04-01

    Acoustic sensors can be used to detect, track and identify non-line-of-sight targets passively. Attempts to alter acoustic emissions often result in an undesirable performance degradation. This research project investigates the use of neural networks for differentiating between features extracted from the acoustic signatures of sources. Acoustic data were filtered and digitized using a commercially available analog-digital convertor. The digital data was transformed to the frequency domain for additional processing using the FFT. Narrowband peak detection algorithms were incorporated to select peaks above a user defined SNR. These peaks were then used to generate a set of robust features which relate specifically to target components in varying background conditions. The features were then used as input into a backpropagation neural network. A K-means unsupervised clustering algorithm was used to determine the natural clustering of the observations. Comparisons between a feature set consisting of the normalized amplitudes of the first 250 frequency bins of the power spectrum and a set of 11 harmonically related features were made. Initial results indicate that even though some different target types had a tendency to group in the same clusters, the neural network was able to differentiate the targets. Successful identification of acoustic sources under varying operational conditions with high confidence levels was achieved.

  4. Graph-based sensor fusion for classification of transient acoustic signals.

    PubMed

    Srinivas, Umamahesh; Nasrabadi, Nasser M; Monga, Vishal

    2015-03-01

    Advances in acoustic sensing have enabled the simultaneous acquisition of multiple measurements of the same physical event via co-located acoustic sensors. We exploit the inherent correlation among such multiple measurements for acoustic signal classification, to identify the launch/impact of munition (i.e., rockets, mortars). Specifically, we propose a probabilistic graphical model framework that can explicitly learn the class conditional correlations between the cepstral features extracted from these different measurements. Additionally, we employ symbolic dynamic filtering-based features, which offer improvements over the traditional cepstral features in terms of robustness to signal distortions. Experiments on real acoustic data sets show that our proposed algorithm outperforms conventional classifiers as well as the recently proposed joint sparsity models for multisensor acoustic classification. Additionally our proposed algorithm is less sensitive to insufficiency in training samples compared to competing approaches.

  5. Automatic Extraction of Planetary Image Features

    NASA Technical Reports Server (NTRS)

    Troglio, G.; LeMoigne, J.; Moser, G.; Serpico, S. B.; Benediktsson, J. A.

    2009-01-01

    With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration.

  6. DARHT Multi-intelligence Seismic and Acoustic Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Garrison Nicole; Van Buren, Kendra Lu; Hemez, Francois M.

    The purpose of this report is to document the analysis of seismic and acoustic data collected at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory for robust, multi-intelligence decision making. The data utilized herein is obtained from two tri-axial seismic sensors and three acoustic sensors, resulting in a total of nine data channels. The goal of this analysis is to develop a generalized, automated framework to determine internal operations at DARHT using informative features extracted from measurements collected external of the facility. Our framework involves four components: (1) feature extraction, (2) data fusion, (3) classification, andmore » finally (4) robustness analysis. Two approaches are taken for extracting features from the data. The first of these, generic feature extraction, involves extraction of statistical features from the nine data channels. The second approach, event detection, identifies specific events relevant to traffic entering and leaving the facility as well as explosive activities at DARHT and nearby explosive testing sites. Event detection is completed using a two stage method, first utilizing signatures in the frequency domain to identify outliers and second extracting short duration events of interest among these outliers by evaluating residuals of an autoregressive exogenous time series model. Features extracted from each data set are then fused to perform analysis with a multi-intelligence paradigm, where information from multiple data sets are combined to generate more information than available through analysis of each independently. The fused feature set is used to train a statistical classifier and predict the state of operations to inform a decision maker. We demonstrate this classification using both generic statistical features and event detection and provide a comparison of the two methods. Finally, the concept of decision robustness is presented through a preliminary

  7. Text feature extraction based on deep learning: a review.

    PubMed

    Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan

    2017-01-01

    Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.

  8. Analysis of Acoustic Features in Speakers with Cognitive Disorders and Speech Impairments

    NASA Astrophysics Data System (ADS)

    Saz, Oscar; Simón, Javier; Rodríguez, W. Ricardo; Lleida, Eduardo; Vaquero, Carlos

    2009-12-01

    This work presents the results in the analysis of the acoustic features (formants and the three suprasegmental features: tone, intensity and duration) of the vowel production in a group of 14 young speakers suffering different kinds of speech impairments due to physical and cognitive disorders. A corpus with unimpaired children's speech is used to determine the reference values for these features in speakers without any kind of speech impairment within the same domain of the impaired speakers; this is 57 isolated words. The signal processing to extract the formant and pitch values is based on a Linear Prediction Coefficients (LPCs) analysis of the segments considered as vowels in a Hidden Markov Model (HMM) based Viterbi forced alignment. Intensity and duration are also based in the outcome of the automated segmentation. As main conclusion of the work, it is shown that intelligibility of the vowel production is lowered in impaired speakers even when the vowel is perceived as correct by human labelers. The decrease in intelligibility is due to a 30% of increase in confusability in the formants map, a reduction of 50% in the discriminative power in energy between stressed and unstressed vowels and to a 50% increase of the standard deviation in the length of the vowels. On the other hand, impaired speakers keep good control of tone in the production of stressed and unstressed vowels.

  9. Comparative analysis of feature extraction methods in satellite imagery

    NASA Astrophysics Data System (ADS)

    Karim, Shahid; Zhang, Ye; Asif, Muhammad Rizwan; Ali, Saad

    2017-10-01

    Feature extraction techniques are extensively being used in satellite imagery and getting impressive attention for remote sensing applications. The state-of-the-art feature extraction methods are appropriate according to the categories and structures of the objects to be detected. Based on distinctive computations of each feature extraction method, different types of images are selected to evaluate the performance of the methods, such as binary robust invariant scalable keypoints (BRISK), scale-invariant feature transform, speeded-up robust features (SURF), features from accelerated segment test (FAST), histogram of oriented gradients, and local binary patterns. Total computational time is calculated to evaluate the speed of each feature extraction method. The extracted features are counted under shadow regions and preprocessed shadow regions to compare the functioning of each method. We have studied the combination of SURF with FAST and BRISK individually and found very promising results with an increased number of features and less computational time. Finally, feature matching is conferred for all methods.

  10. Feature extraction for document text using Latent Dirichlet Allocation

    NASA Astrophysics Data System (ADS)

    Prihatini, P. M.; Suryawan, I. K.; Mandia, IN

    2018-01-01

    Feature extraction is one of stages in the information retrieval system that used to extract the unique feature values of a text document. The process of feature extraction can be done by several methods, one of which is Latent Dirichlet Allocation. However, researches related to text feature extraction using Latent Dirichlet Allocation method are rarely found for Indonesian text. Therefore, through this research, a text feature extraction will be implemented for Indonesian text. The research method consists of data acquisition, text pre-processing, initialization, topic sampling and evaluation. The evaluation is done by comparing Precision, Recall and F-Measure value between Latent Dirichlet Allocation and Term Frequency Inverse Document Frequency KMeans which commonly used for feature extraction. The evaluation results show that Precision, Recall and F-Measure value of Latent Dirichlet Allocation method is higher than Term Frequency Inverse Document Frequency KMeans method. This shows that Latent Dirichlet Allocation method is able to extract features and cluster Indonesian text better than Term Frequency Inverse Document Frequency KMeans method.

  11. Software for objective comparison of vocal acoustic features over weeks of audio recording: KLFromRecordingDays

    NASA Astrophysics Data System (ADS)

    Soderstrom, Ken; Alalawi, Ali

    KLFromRecordingDays allows measurement of Kullback-Leibler (KL) distances between 2D probability distributions of vocal acoustic features. Greater KL distance measures reflect increased phonological divergence across the vocalizations compared. The software has been used to compare *.wav file recordings made by Sound Analysis Recorder 2011 of songbird vocalizations pre- and post-drug and surgical manipulations. Recordings from individual animals in *.wav format are first organized into subdirectories by recording day and then segmented into individual syllables uttered and acoustic features of these syllables using Sound Analysis Pro 2011 (SAP). KLFromRecordingDays uses syllable acoustic feature data output by SAP to a MySQL table to generate and compare "template" (typically pre-treatment) and "target" (typically post-treatment) probability distributions. These distributions are a series of virtual 2D plots of the duration of each syllable (as x-axis) to each of 13 other acoustic features measured by SAP for that syllable (as y-axes). Differences between "template" and "target" probability distributions for each acoustic feature are determined by calculating KL distance, a measure of divergence of the target 2D distribution pattern from that of the template. KL distances and the mean KL distance across all acoustic features are calculated for each recording day and output to an Excel spreadsheet. Resulting data for individual subjects may then be pooled across treatment groups and graphically summarized and used for statistical comparisons. Because SAP-generated MySQL files are accessed directly, data limits associated with spreadsheet output are avoided, and the totality of vocal output over weeks may be objectively analyzed all at once. The software has been useful for measuring drug effects on songbird vocalizations and assessing recovery from damage to regions of vocal motor cortex. It may be useful in studies employing other species, and as part of speech

  12. Fatigue level estimation of monetary bills based on frequency band acoustic signals with feature selection by supervised SOM

    NASA Astrophysics Data System (ADS)

    Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa

    Fatigued monetary bills adversely affect the daily operation of automated teller machines (ATMs). In order to make the classification of fatigued bills more efficient, the development of an automatic fatigued monetary bill classification method is desirable. We propose a new method by which to estimate the fatigue level of monetary bills from the feature-selected frequency band acoustic energy pattern of banking machines. By using a supervised self-organizing map (SOM), we effectively estimate the fatigue level using only the feature-selected frequency band acoustic energy pattern. Furthermore, the feature-selected frequency band acoustic energy pattern improves the estimation accuracy of the fatigue level of monetary bills by adding frequency domain information to the acoustic energy pattern. The experimental results with real monetary bill samples reveal the effectiveness of the proposed method.

  13. Automatic detection of wheezes by evaluation of multiple acoustic feature extraction methods and C-weighted SVM

    NASA Astrophysics Data System (ADS)

    Sosa, Germán. D.; Cruz-Roa, Angel; González, Fabio A.

    2015-01-01

    This work addresses the problem of lung sound classification, in particular, the problem of distinguishing between wheeze and normal sounds. Wheezing sound detection is an important step to associate lung sounds with an abnormal state of the respiratory system, usually associated with tuberculosis or another chronic obstructive pulmonary diseases (COPD). The paper presents an approach for automatic lung sound classification, which uses different state-of-the-art sound features in combination with a C-weighted support vector machine (SVM) classifier that works better for unbalanced data. Feature extraction methods used here are commonly applied in speech recognition and related problems thanks to the fact that they capture the most informative spectral content from the original signals. The evaluated methods were: Fourier transform (FT), wavelet decomposition using Wavelet Packet Transform bank of filters (WPT) and Mel Frequency Cepstral Coefficients (MFCC). For comparison, we evaluated and contrasted the proposed approach against previous works using different combination of features and/or classifiers. The different methods were evaluated on a set of lung sounds including normal and wheezing sounds. A leave-two-out per-case cross-validation approach was used, which, in each fold, chooses as validation set a couple of cases, one including normal sounds and the other including wheezing sounds. Experimental results were reported in terms of traditional classification performance measures: sensitivity, specificity and balanced accuracy. Our best results using the suggested approach, C-weighted SVM and MFCC, achieve a 82.1% of balanced accuracy obtaining the best result for this problem until now. These results suggest that supervised classifiers based on kernel methods are able to learn better models for this challenging classification problem even using the same feature extraction methods.

  14. Time-frequency feature representation using multi-resolution texture analysis and acoustic activity detector for real-life speech emotion recognition.

    PubMed

    Wang, Kun-Ching

    2015-01-14

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech.

  15. Time-Frequency Feature Representation Using Multi-Resolution Texture Analysis and Acoustic Activity Detector for Real-Life Speech Emotion Recognition

    PubMed Central

    Wang, Kun-Ching

    2015-01-01

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech. PMID:25594590

  16. Extraction of linear features on SAR imagery

    NASA Astrophysics Data System (ADS)

    Liu, Junyi; Li, Deren; Mei, Xin

    2006-10-01

    Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.

  17. Wavelet feature extraction for reliable discrimination between high explosive and chemical/biological artillery

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Desai, Sachi V.; Bass, Henry E.; Chambers, Jim

    2005-03-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation. Distinct characteristics arise within the different airburst signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km. Highly reliable discrimination is achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition.

  18. Automatic Feature Extraction from Planetary Images

    NASA Technical Reports Server (NTRS)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  19. Morphological Feature Extraction for Automatic Registration of Multispectral Images

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2007-01-01

    The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.

  20. Histogram of gradient and binarized statistical image features of wavelet subband-based palmprint features extraction

    NASA Astrophysics Data System (ADS)

    Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab

    2017-11-01

    Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.

  1. Exploration of Acoustic Features for Automatic Vowel Discrimination in Spontaneous Speech

    ERIC Educational Resources Information Center

    Tyson, Na'im R.

    2012-01-01

    In an attempt to understand what acoustic/auditory feature sets motivated transcribers towards certain labeling decisions, I built machine learning models that were capable of discriminating between canonical and non-canonical vowels excised from the Buckeye Corpus. Specifically, I wanted to model when the dictionary form and the transcribed-form…

  2. Speech Music Discrimination Using Class-Specific Features

    DTIC Science & Technology

    2004-08-01

    Speech Music Discrimination Using Class-Specific Features Thomas Beierholm...between speech and music . Feature extraction is class-specific and can therefore be tailored to each class meaning that segment size, model orders...interest. Some of the applications of audio signal classification are speech/ music classification [1], acoustical environmental classification [2][3

  3. Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity.

    PubMed

    Buxton, Rachel; McKenna, Megan F; Clapp, Mary; Meyer, Erik; Stabenau, Erik; Angeloni, Lisa M; Crooks, Kevin; Wittemyer, George

    2018-04-20

    Passive acoustic monitoring has the potential to be a powerful approach for assessing biodiversity across large spatial and temporal scales. However, extracting meaningful information from recordings can be prohibitively time consuming. Acoustic indices offer a relatively rapid method for processing acoustic data and are increasingly used to characterize biological communities. We examine the ability of acoustic indices to predict the diversity and abundance of biological sounds within recordings. First we reviewed the acoustic index literature and found that over 60 indices have been applied to a range of objectives with varying success. We then implemented a subset of the most successful indices on acoustic data collected at 43 sites in temperate terrestrial and tropical marine habitats across the continental U.S., developing a predictive model of the diversity of animal sounds observed in recordings. For terrestrial recordings, random forest models using a suite of acoustic indices as covariates predicted Shannon diversity, richness, and total number of biological sounds with high accuracy (R 2 > = 0.94, mean squared error MSE < = 170.2). Among the indices assessed, roughness, acoustic activity, and acoustic richness contributed most to the predictive ability of models. Performance of index models was negatively impacted by insect, weather, and anthropogenic sounds. For marine recordings, random forest models predicted Shannon diversity, richness, and total number of biological sounds with low accuracy (R 2 < = 0.40, MSE > = 195), indicating that alternative methods are necessary in marine habitats. Our results suggest that using a combination of relevant indices in a flexible model can accurately predict the diversity of biological sounds in temperate terrestrial acoustic recordings. Thus, acoustic approaches could be an important contribution to biodiversity monitoring in some habitats in the face of accelerating human-caused ecological change. This article is

  4. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.

    PubMed

    Khalighinejad, Bahar; Cruzatto da Silva, Guilherme; Mesgarani, Nima

    2017-02-22

    Humans are unique in their ability to communicate using spoken language. However, it remains unclear how the speech signal is transformed and represented in the brain at different stages of the auditory pathway. In this study, we characterized electroencephalography responses to continuous speech by obtaining the time-locked responses to phoneme instances (phoneme-related potential). We showed that responses to different phoneme categories are organized by phonetic features. We found that each instance of a phoneme in continuous speech produces multiple distinguishable neural responses occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Comparing the patterns of phoneme similarity in the neural responses and the acoustic signals confirms a repetitive appearance of acoustic distinctions of phonemes in the neural data. Analysis of the phonetic and speaker information in neural activations revealed that different time intervals jointly encode the acoustic similarity of both phonetic and speaker categories. These findings provide evidence for a dynamic neural transformation of low-level speech features as they propagate along the auditory pathway, and form an empirical framework to study the representational changes in learning, attention, and speech disorders. SIGNIFICANCE STATEMENT We characterized the properties of evoked neural responses to phoneme instances in continuous speech. We show that each instance of a phoneme in continuous speech produces several observable neural responses at different times occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Each temporal event explicitly encodes the acoustic similarity of phonemes, and linguistic and nonlinguistic information are best represented at different time intervals. Finally, we show a joint encoding of phonetic and speaker information, where the neural representation of speakers is dependent on phoneme category. These findings provide compelling new evidence for

  5. An investigation of sex differences in acoustic features in black-capped chickadee (Poecile atricapillus) chick-a-dee calls.

    PubMed

    Campbell, Kimberley A; Hahn, Allison H; Congdon, Jenna V; Sturdy, Christopher B

    2016-09-01

    Sex differences have been identified in a number of black-capped chickadee vocalizations and in the chick-a-dee calls of other chickadee species [i.e., Carolina chickadees (Poecile carolinensis)]. In the current study, 12 acoustic features in black-capped chickadee chick-a-dee calls were investigated, including both frequency and duration measurements. Using permuted discriminant function analyses, these features were examined to determine if any features could be used to identify the sex of the caller. Only one note type (A notes) classified male and female calls at levels approaching significance. In particular, a permuted discriminant function analysis revealed that the start frequency of A notes best allowed for categorization between the sexes compared to any other acoustic parameter. This finding is consistent with previous research on Carolina chickadee chick-a-dee calls that found that the starting frequency differed between male- and female-produced A notes [Freeberg, Lucas, and Clucas (2003). J. Acoust. Soc. Am. 113, 2127-2136]. Taken together, these results and the results of studies with other chickadee species suggest that sex differences likely exist in the chick-a-dee call, specifically acoustic features in A notes, but that more complex features than those addressed here may be associated with the sex of the caller.

  6. Classifiers utilized to enhance acoustic based sensors to identify round types of artillery/mortar

    NASA Astrophysics Data System (ADS)

    Grasing, David; Desai, Sachi; Morcos, Amir

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  7. Linguistic feature analysis for protein interaction extraction

    PubMed Central

    2009-01-01

    Background The rapid growth of the amount of publicly available reports on biomedical experimental results has recently caused a boost of text mining approaches for protein interaction extraction. Most approaches rely implicitly or explicitly on linguistic, i.e., lexical and syntactic, data extracted from text. However, only few attempts have been made to evaluate the contribution of the different feature types. In this work, we contribute to this evaluation by studying the relative importance of deep syntactic features, i.e., grammatical relations, shallow syntactic features (part-of-speech information) and lexical features. For this purpose, we use a recently proposed approach that uses support vector machines with structured kernels. Results Our results reveal that the contribution of the different feature types varies for the different data sets on which the experiments were conducted. The smaller the training corpus compared to the test data, the more important the role of grammatical relations becomes. Moreover, deep syntactic information based classifiers prove to be more robust on heterogeneous texts where no or only limited common vocabulary is shared. Conclusion Our findings suggest that grammatical relations play an important role in the interaction extraction task. Moreover, the net advantage of adding lexical and shallow syntactic features is small related to the number of added features. This implies that efficient classifiers can be built by using only a small fraction of the features that are typically being used in recent approaches. PMID:19909518

  8. Line fitting based feature extraction for object recognition

    NASA Astrophysics Data System (ADS)

    Li, Bing

    2014-06-01

    Image feature extraction plays a significant role in image based pattern applications. In this paper, we propose a new approach to generate hierarchical features. This new approach applies line fitting to adaptively divide regions based upon the amount of information and creates line fitting features for each subsequent region. It overcomes the feature wasting drawback of the wavelet based approach and demonstrates high performance in real applications. For gray scale images, we propose a diffusion equation approach to map information-rich pixels (pixels near edges and ridge pixels) into high values, and pixels in homogeneous regions into small values near zero that form energy map images. After the energy map images are generated, we propose a line fitting approach to divide regions recursively and create features for each region simultaneously. This new feature extraction approach is similar to wavelet based hierarchical feature extraction in which high layer features represent global characteristics and low layer features represent local characteristics. However, the new approach uses line fitting to adaptively focus on information-rich regions so that we avoid the feature waste problems of the wavelet approach in homogeneous regions. Finally, the experiments for handwriting word recognition show that the new method provides higher performance than the regular handwriting word recognition approach.

  9. Uniform competency-based local feature extraction for remote sensing images

    NASA Astrophysics Data System (ADS)

    Sedaghat, Amin; Mohammadi, Nazila

    2018-01-01

    Local feature detectors are widely used in many photogrammetry and remote sensing applications. The quantity and distribution of the local features play a critical role in the quality of the image matching process, particularly for multi-sensor high resolution remote sensing image registration. However, conventional local feature detectors cannot extract desirable matched features either in terms of the number of correct matches or the spatial and scale distribution in multi-sensor remote sensing images. To address this problem, this paper proposes a novel method for uniform and robust local feature extraction for remote sensing images, which is based on a novel competency criterion and scale and location distribution constraints. The proposed method, called uniform competency (UC) local feature extraction, can be easily applied to any local feature detector for various kinds of applications. The proposed competency criterion is based on a weighted ranking process using three quality measures, including robustness, spatial saliency and scale parameters, which is performed in a multi-layer gridding schema. For evaluation, five state-of-the-art local feature detector approaches, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), scale-invariant feature operator (SFOP), maximally stable extremal region (MSER) and hessian-affine, are used. The proposed UC-based feature extraction algorithms were successfully applied to match various synthetic and real satellite image pairs, and the results demonstrate its capability to increase matching performance and to improve the spatial distribution. The code to carry out the UC feature extraction is available from href="https://www.researchgate.net/publication/317956777_UC-Feature_Extraction.

  10. A judicious multiple hypothesis tracker with interacting feature extraction

    NASA Astrophysics Data System (ADS)

    McAnanama, James G.; Kirubarajan, T.

    2009-05-01

    The multiple hypotheses tracker (mht) is recognized as an optimal tracking method due to the enumeration of all possible measurement-to-track associations, which does not involve any approximation in its original formulation. However, its practical implementation is limited by the NP-hard nature of this enumeration. As a result, a number of maintenance techniques such as pruning and merging have been proposed to bound the computational complexity. It is possible to improve the performance of a tracker, mht or not, using feature information (e.g., signal strength, size, type) in addition to kinematic data. However, in most tracking systems, the extraction of features from the raw sensor data is typically independent of the subsequent association and filtering stages. In this paper, a new approach, called the Judicious Multi Hypotheses Tracker (jmht), whereby there is an interaction between feature extraction and the mht, is presented. The measure of the quality of feature extraction is input into measurement-to-track association while the prediction step feeds back the parameters to be used in the next round of feature extraction. The motivation for this forward and backward interaction between feature extraction and tracking is to improve the performance in both steps. This approach allows for a more rational partitioning of the feature space and removes unlikely features from the assignment problem. Simulation results demonstrate the benefits of the proposed approach.

  11. Research of facial feature extraction based on MMC

    NASA Astrophysics Data System (ADS)

    Xue, Donglin; Zhao, Jiufen; Tang, Qinhong; Shi, Shaokun

    2017-07-01

    Based on the maximum margin criterion (MMC), a new algorithm of statistically uncorrelated optimal discriminant vectors and a new algorithm of orthogonal optimal discriminant vectors for feature extraction were proposed. The purpose of the maximum margin criterion is to maximize the inter-class scatter while simultaneously minimizing the intra-class scatter after the projection. Compared with original MMC method and principal component analysis (PCA) method, the proposed methods are better in terms of reducing or eliminating the statistically correlation between features and improving recognition rate. The experiment results on Olivetti Research Laboratory (ORL) face database shows that the new feature extraction method of statistically uncorrelated maximum margin criterion (SUMMC) are better in terms of recognition rate and stability. Besides, the relations between maximum margin criterion and Fisher criterion for feature extraction were revealed.

  12. Image segmentation-based robust feature extraction for color image watermarking

    NASA Astrophysics Data System (ADS)

    Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen

    2018-04-01

    This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.

  13. Comparison of spatial frequency domain features for the detection of side attack explosive ballistics in synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Dowdy, Josh; Anderson, Derek T.; Luke, Robert H.; Ball, John E.; Keller, James M.; Havens, Timothy C.

    2016-05-01

    Explosive hazards in current and former conflict zones are a threat to both military and civilian personnel. As a result, much effort has been dedicated to identifying automated algorithms and systems to detect these threats. However, robust detection is complicated due to factors like the varied composition and anatomy of such hazards. In order to solve this challenge, a number of platforms (vehicle-based, handheld, etc.) and sensors (infrared, ground penetrating radar, acoustics, etc.) are being explored. In this article, we investigate the detection of side attack explosive ballistics via a vehicle-mounted acoustic sensor. In particular, we explore three acoustic features, one in the time domain and two on synthetic aperture acoustic (SAA) beamformed imagery. The idea is to exploit the varying acoustic frequency profile of a target due to its unique geometry and material composition with respect to different viewing angles. The first two features build their angle specific frequency information using a highly constrained subset of the signal data and the last feature builds its frequency profile using all available signal data for a given region of interest (centered on the candidate target location). Performance is assessed in the context of receiver operating characteristic (ROC) curves on cross-validation experiments for data collected at a U.S. Army test site on different days with multiple target types and clutter. Our preliminary results are encouraging and indicate that the top performing feature is the unrolled two dimensional discrete Fourier transform (DFT) of SAA beamformed imagery.

  14. Interactions Among Behavioral Responses of Baleen Whales to Acoustic Stimuli, Oceanographic Features, and Prey Availability

    DTIC Science & Technology

    2014-09-30

    partitioning between humpback and minke whales around the western Antarctic Peninsula. Marine Mammal Science. 25: 402-415. 11 Friedlaender, A. S., J. A... Humpback whales (Megaptera novaengliae). Marine Ecology Progress Series 395: 75-89. Watkins, J.L., and A.S. Brierley. 2002. Verification of acoustic... Whales to Acoustic Stimuli, Oceanographic Features, and Prey Availability Ari S. Friedlaender, PhD & Brandon L. Southall, PhD Southall Environmental

  15. Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.

    PubMed

    Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu

    2016-01-01

    The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.

  16. Effect of train type on annoyance and acoustic features of the rolling noise.

    PubMed

    Kasess, Christian H; Noll, Anton; Majdak, Piotr; Waubke, Holger

    2013-08-01

    This study investigated the annoyance associated with the rolling noise of different railway stock. Passbys of nine train types (passenger and freight trains) equipped with different braking systems were recorded. Acoustic features showed a clear distinction of the braking system with the A-weighted energy equivalent sound level (LAeq) showing a difference in the range of 10 dB between cast-iron braked trains and trains with disk or K-block brakes. Further, annoyance was evaluated in a psychoacoustic experiment where listeners rated the relative annoyance of the rolling noise for the different train types. Stimuli with and without the original LAeq differences were tested. For the original LAeq differences, the braking system significantly affected the annoyance with cast-iron brakes being most annoying, most likely as a consequence of the increased wheel roughness causing an increased LAeq. Contribution of the acoustic features to the annoyance was investigated revealing that the LAeq explained up to 94% of the variance. For the stimuli without differences in the LAeq, cast-iron braked train types were significantly less annoying and the spectral features explained up to 60% of the variance in the annoyance. The effect of these spectral features on the annoyance of the rolling noise is discussed.

  17. A novel feature extraction approach for microarray data based on multi-algorithm fusion

    PubMed Central

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions. PMID:25780277

  18. A novel feature extraction approach for microarray data based on multi-algorithm fusion.

    PubMed

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.

  19. Fatigue Level Estimation of Bill Based on Acoustic Signal Feature by Supervised SOM

    NASA Astrophysics Data System (ADS)

    Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa

    Fatigued bills have harmful influence on daily operation of Automated Teller Machine(ATM). To make the fatigued bills classification more efficient, development of an automatic fatigued bill classification method is desired. We propose a new method to estimate bending rigidity of bill from acoustic signal feature of banking machines. The estimated bending rigidities are used as continuous fatigue level for classification of fatigued bill. By using the supervised Self-Organizing Map(supervised SOM), we estimate the bending rigidity from only the acoustic energy pattern effectively. The experimental result with real bill samples shows the effectiveness of the proposed method.

  20. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

    PubMed

    Li, Jing; Hong, Wenxue

    2014-12-01

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

  1. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    DOEpatents

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  2. Automated feature extraction and classification from image sources

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Department of the Interior, U.S. Geological Survey (USGS), and Unisys Corporation have completed a cooperative research and development agreement (CRADA) to explore automated feature extraction and classification from image sources. The CRADA helped the USGS define the spectral and spatial resolution characteristics of airborne and satellite imaging sensors necessary to meet base cartographic and land use and land cover feature classification requirements and help develop future automated geographic and cartographic data production capabilities. The USGS is seeking a new commercial partner to continue automated feature extraction and classification research and development.

  3. Acoustic emission monitoring of damage in ceramic matrix composites: Effects of weaves and feature

    NASA Astrophysics Data System (ADS)

    Ojard, Greg; Mordasky, Matt; Kumar, Rajesh

    2018-04-01

    Ceramic matrix composites (CMCs) are a class of high temperature materials with better damage tolerance properties compared to monolithic ceramics. The improved toughness is attributed to weak interface coating between the fiber and the matrix that allows for crack deflection and fiber pull-out. Thus, CMCs have gained consideration over monolithic materials for high temperature applications such as in gas turbines. The current standard fiber architecture for CMCs is a harness satin (HS) balanced weave (5HS and 8HS); however, other architectures such as uni-weave materials (tape layup) are now being considered due to fiber placement control and higher fiber volume fraction in the tensile loading direction. Engineering components require additional features in the CMC laminates, such as holes for attachments. Past work has shown that acoustic emission could differentiate the effect of changing interface conditions due to heat treatment effects. The focus of the present work is to investigate the effects of different weaves and the presence of a feature on damage behavior of CMCs as observed via acoustic emission technique. The results of the tensile testing with acoustic emission monitoring will be presented and discussed.

  4. Influence of Architectural Features and Styles on Various Acoustical Measures in Churches

    NASA Astrophysics Data System (ADS)

    Carvalho, Antonio Pedro Oliveira De.

    This work reports on acoustical field measurements made in a major survey of 41 Catholic churches in Portugal that were built in the last 14 centuries. A series of monaural and binaural acoustical measurements was taken at multiple source/receiver positions in each church using the impulse response with noise burst method. The acoustical measures were Reverberation Time (RT), Early Decay Time (EDT), Clarity (C80), Definition (D), Center Time (TS), Loudness (L), Bass Ratios based on the Reverberation Time and Loudness rm (BR_-RT and rm BR_-L), Rapid Speech Transmission Index (RASTI), and the binaural Coherence (COH). The scope of this research is to investigate how the acoustical performance of Catholic churches relates to their architectural features and to determine simple formulas to predict acoustical measures by the use of elementary architectural parameters. Prediction equations were defined among the acoustical measures to estimate values at individual locations within each room as well as the mean values in each church. Best fits with rm R^2~0.9 were not uncommon among many of the measures. Within and interchurch differences in the data for the acoustical measures were also analyzed. The variations of RT and EDT were identified as much smaller than the variations of the other measures. The churches tested were grouped in eight architectural styles, and the effect of their evolution through time on these acoustical measures was investigated. Statistically significant differences were found regarding some architectural styles that can be traced to historical changes in Church history, especially to the Reformation period. Prediction equations were defined to estimate mean acoustical measures by the use of fifteen simple architectural parameters. The use of the Sabine and Eyring reverberation time equations was tested. The effect of coupled spaces was analyzed, and a new algorithm for the application of the Sabine equation was developed, achieving an average of

  5. The formation method of the feature space for the identification of fatigued bills

    NASA Astrophysics Data System (ADS)

    Kang, Dongshik; Oshiro, Ayumu; Ozawa, Kenji; Mitsui, Ikugo

    2014-10-01

    Fatigued bills make a trouble such as the paper jam in a bill handling machine. In the discrimination of fatigued bills using an acoustic signal, the variation of an observed bill sound is considered to be one of causes in misclassification. Therefore a technique has demanded in order to make the classification of fatigued bills more efficient. In this paper, we proposed the algorithm that extracted feature quantity of bill sound from acoustic signal using the frequency difference, and carried out discrimination experiment of fatigued bill money by Support Vector Machine(SVM). The feature quantity of frequency difference can represent the frequency components of an acoustic signal is varied by the fatigued degree of bill money. The generalization performance of SVM does not depend on the size of dimensions of the feature space, even in a high dimensional feature space such as bill-acoustic signals. Furthermore, SVM can induce an optimal classifier which considers the combination of features by the virtue of polynomial kernel functions.

  6. Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: influence of acoustic energy density and temperature.

    PubMed

    Tao, Yang; Zhang, Zhihang; Sun, Da-Wen

    2014-07-01

    The effects of acoustic energy density (6.8-47.4 W/L) and temperature (20-50 °C) on the extraction yields of total phenolics and tartaric esters during ultrasound-assisted extraction from grape marc were investigated in this study. The ultrasound treatment was performed in a 25-kHz ultrasound bath system and the 50% aqueous ethanol was used as the solvent. The initial extraction rate and final extraction yield increased with the increase of acoustic energy density and temperature. The two site kinetic model was used to simulate the kinetics of extraction process and the diffusion model based on the Fick's second law was employed to determine the effective diffusion coefficient of phenolics in grape marc. Both models gave satisfactory quality of data fit. The diffusion process was divided into one fast stage and one slow stage and the diffusion coefficients in both stages were calculated. Within the current experimental range, the diffusion coefficients of total phenolics and tartaric esters for both diffusion stages increased with acoustic energy density. Meanwhile, the rise of temperature also resulted in the increase of diffusion coefficients of phenolics except the diffusion coefficient of total phenolics in the fast stage, the value of which being the highest at 40 °C. Moreover, an empirical equation was suggested to correlate the effective diffusion coefficient of phenolics in grape marc with acoustic energy density and temperature. In addition, the performance comparison of ultrasound-assisted extraction and convention methods demonstrates that ultrasound is an effective and promising technology to extract bioactive substances from grape marc. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Prominent feature extraction for review analysis: an empirical study

    NASA Astrophysics Data System (ADS)

    Agarwal, Basant; Mittal, Namita

    2016-05-01

    Sentiment analysis (SA) research has increased tremendously in recent times. SA aims to determine the sentiment orientation of a given text into positive or negative polarity. Motivation for SA research is the need for the industry to know the opinion of the users about their product from online portals, blogs, discussion boards and reviews and so on. Efficient features need to be extracted for machine-learning algorithm for better sentiment classification. In this paper, initially various features are extracted such as unigrams, bi-grams and dependency features from the text. In addition, new bi-tagged features are also extracted that conform to predefined part-of-speech patterns. Furthermore, various composite features are created using these features. Information gain (IG) and minimum redundancy maximum relevancy (mRMR) feature selection methods are used to eliminate the noisy and irrelevant features from the feature vector. Finally, machine-learning algorithms are used for classifying the review document into positive or negative class. Effects of different categories of features are investigated on four standard data-sets, namely, movie review and product (book, DVD and electronics) review data-sets. Experimental results show that composite features created from prominent features of unigram and bi-tagged features perform better than other features for sentiment classification. mRMR is a better feature selection method as compared with IG for sentiment classification. Boolean Multinomial Naïve Bayes) algorithm performs better than support vector machine classifier for SA in terms of accuracy and execution time.

  8. Alexnet Feature Extraction and Multi-Kernel Learning for Objectoriented Classification

    NASA Astrophysics Data System (ADS)

    Ding, L.; Li, H.; Hu, C.; Zhang, W.; Wang, S.

    2018-04-01

    In view of the fact that the deep convolutional neural network has stronger ability of feature learning and feature expression, an exploratory research is done on feature extraction and classification for high resolution remote sensing images. Taking the Google image with 0.3 meter spatial resolution in Ludian area of Yunnan Province as an example, the image segmentation object was taken as the basic unit, and the pre-trained AlexNet deep convolution neural network model was used for feature extraction. And the spectral features, AlexNet features and GLCM texture features are combined with multi-kernel learning and SVM classifier, finally the classification results were compared and analyzed. The results show that the deep convolution neural network can extract more accurate remote sensing image features, and significantly improve the overall accuracy of classification, and provide a reference value for earthquake disaster investigation and remote sensing disaster evaluation.

  9. Effect of ultrasound transducer design on the acoustically-assisted supercritical fluid extraction of antioxidants from oregano.

    PubMed

    Santos-Zea, Liliana; Antunes-Ricardo, Marilena; Gutierrez-Uribe, Janet A; García-Pérez, Jose V; Benedito, Jose

    2018-10-01

    Power ultrasound is applied in food technology to intensify extraction processes, due to the phenomena ultrasonic energy induces in the medium, enhancing mass transfer. The purpose of this work was the acoustic characterization of four transducers of different geometries and the evaluation of their performance in the ultrasonically assisted supercritical fluid extraction of antioxidants from oregano. The transducers differed in the amount of energy transmitted into the medium. Designs varied from the base model (T1), a larger cylindrical headmass (T2), a stepped circular section sonotrode (T3) and a multiplate configuration (T4). The highest nominal power density provided according to the calorimetric method was for T4 (151.6 ± 7.1 W/L). The T2 produced a more uniform acoustic field and a higher acoustic pressure (150.6 ± 20.5 kPa). Both parameters had an impact on total phenolics and antioxidants extraction with CO 2 under supercritical conditions (35 MPa, 35 °C, 2.3% ethanol as co-solvent). T4 and T2 were equally efficient (4.0 ± 0.2 and 4.2 ± 0.2 mg GA/g) for phenolic extraction, and with respect to antioxidant capacity, the best performance was that of T4 (26.4 ± 1.1 μmol TE/g). Of the antioxidant compounds extracted, flavones and flavanones were identified. Therefore, transducer geometry influenced the amount and distribution of energy transmitted into the medium, thus determining the efficiency of the extraction process. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A comparative study of the SVM and K-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals.

    PubMed

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian

    2014-06-27

    Pulmonary acoustic parameters extracted from recorded respiratory sounds provide valuable information for the detection of respiratory pathologies. The automated analysis of pulmonary acoustic signals can serve as a differential diagnosis tool for medical professionals, a learning tool for medical students, and a self-management tool for patients. In this context, we intend to evaluate and compare the performance of the support vector machine (SVM) and K-nearest neighbour (K-nn) classifiers in diagnosis respiratory pathologies using respiratory sounds from R.A.L.E database. The pulmonary acoustic signals used in this study were obtained from the R.A.L.E lung sound database. The pulmonary acoustic signals were manually categorised into three different groups, namely normal, airway obstruction pathology, and parenchymal pathology. The mel-frequency cepstral coefficient (MFCC) features were extracted from the pre-processed pulmonary acoustic signals. The MFCC features were analysed by one-way ANOVA and then fed separately into the SVM and K-nn classifiers. The performances of the classifiers were analysed using the confusion matrix technique. The statistical analysis of the MFCC features using one-way ANOVA showed that the extracted MFCC features are significantly different (p < 0.001). The classification accuracies of the SVM and K-nn classifiers were found to be 92.19% and 98.26%, respectively. Although the data used to train and test the classifiers are limited, the classification accuracies found are satisfactory. The K-nn classifier was better than the SVM classifier for the discrimination of pulmonary acoustic signals from pathological and normal subjects obtained from the RALE database.

  11. A comparative study of the svm and k-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals

    PubMed Central

    2014-01-01

    Background Pulmonary acoustic parameters extracted from recorded respiratory sounds provide valuable information for the detection of respiratory pathologies. The automated analysis of pulmonary acoustic signals can serve as a differential diagnosis tool for medical professionals, a learning tool for medical students, and a self-management tool for patients. In this context, we intend to evaluate and compare the performance of the support vector machine (SVM) and K-nearest neighbour (K-nn) classifiers in diagnosis respiratory pathologies using respiratory sounds from R.A.L.E database. Results The pulmonary acoustic signals used in this study were obtained from the R.A.L.E lung sound database. The pulmonary acoustic signals were manually categorised into three different groups, namely normal, airway obstruction pathology, and parenchymal pathology. The mel-frequency cepstral coefficient (MFCC) features were extracted from the pre-processed pulmonary acoustic signals. The MFCC features were analysed by one-way ANOVA and then fed separately into the SVM and K-nn classifiers. The performances of the classifiers were analysed using the confusion matrix technique. The statistical analysis of the MFCC features using one-way ANOVA showed that the extracted MFCC features are significantly different (p < 0.001). The classification accuracies of the SVM and K-nn classifiers were found to be 92.19% and 98.26%, respectively. Conclusion Although the data used to train and test the classifiers are limited, the classification accuracies found are satisfactory. The K-nn classifier was better than the SVM classifier for the discrimination of pulmonary acoustic signals from pathological and normal subjects obtained from the RALE database. PMID:24970564

  12. Feature extraction and selection strategies for automated target recognition

    NASA Astrophysics Data System (ADS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-04-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory regionof- interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  13. The Vocal Repertoire of the Domesticated Zebra Finch: a Data Driven Approach to Decipher the Information-bearing Acoustic Features of Communication Signals

    PubMed Central

    Elie, Julie E.; Theunissen, Frédéric E.

    2018-01-01

    Although a universal code for the acoustic features of animal vocal communication calls may not exist, the thorough analysis of the distinctive acoustical features of vocalization categories is important not only to decipher the acoustical code for a specific species but also to understand the evolution of communication signals and the mechanisms used to produce and understand them. Here, we recorded more than 8,000 examples of almost all the vocalizations of the domesticated zebra finch, Taeniopygia guttata: vocalizations produced to establish contact, to form and maintain pair bonds, to sound an alarm, to communicate distress or to advertise hunger or aggressive intents. We characterized each vocalization type using complete representations that avoided any a priori assumptions on the acoustic code, as well as classical bioacoustics measures that could provide more intuitive interpretations. We then used these acoustical features to rigorously determine the potential information-bearing acoustical features for each vocalization type using both a novel regularized classifier and an unsupervised clustering algorithm. Vocalization categories are discriminated by the shape of their frequency spectrum and by their pitch saliency (noisy to tonal vocalizations) but not particularly by their fundamental frequency. Notably, the spectral shape of zebra finch vocalizations contains peaks or formants that vary systematically across categories and that would be generated by active control of both the vocal organ (source) and the upper vocal tract (filter). PMID:26581377

  14. Modified kernel-based nonlinear feature extraction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J.; Perkins, S. J.; Theiler, J. P.

    2002-01-01

    Feature Extraction (FE) techniques are widely used in many applications to pre-process data in order to reduce the complexity of subsequent processes. A group of Kernel-based nonlinear FE ( H E ) algorithms has attracted much attention due to their high performance. However, a serious limitation that is inherent in these algorithms -- the maximal number of features extracted by them is limited by the number of classes involved -- dramatically degrades their flexibility. Here we propose a modified version of those KFE algorithms (MKFE), This algorithm is developed from a special form of scatter-matrix, whose rank is not determinedmore » by the number of classes involved, and thus breaks the inherent limitation in those KFE algorithms. Experimental results suggest that MKFE algorithm is .especially useful when the training set is small.« less

  15. Deep feature extraction and combination for synthetic aperture radar target classification

    NASA Astrophysics Data System (ADS)

    Amrani, Moussa; Jiang, Feng

    2017-10-01

    Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.

  16. Texture Analysis and Cartographic Feature Extraction.

    DTIC Science & Technology

    1985-01-01

    Investigations into using various image descriptors as well as developing interactive feature extraction software on the Digital Image Analysis Laboratory...system. Originator-supplied keywords: Ad-Hoc image descriptor; Bayes classifier; Bhattachryya distance; Clustering; Digital Image Analysis Laboratory

  17. Algorithm for heart rate extraction in a novel wearable acoustic sensor

    PubMed Central

    Imtiaz, Syed Anas; Aguilar–Pelaez, Eduardo; Rodriguez–Villegas, Esther

    2015-01-01

    Phonocardiography is a widely used method of listening to the heart sounds and indicating the presence of cardiac abnormalities. Each heart cycle consists of two major sounds – S1 and S2 – that can be used to determine the heart rate. The conventional method of acoustic signal acquisition involves placing the sound sensor at the chest where this sound is most audible. Presented is a novel algorithm for the detection of S1 and S2 heart sounds and the use of them to extract the heart rate from signals acquired by a small sensor placed at the neck. This algorithm achieves an accuracy of 90.73 and 90.69%, with respect to heart rate value provided by two commercial devices, evaluated on more than 38 h of data acquired from ten different subjects during sleep in a pilot clinical study. This is the largest dataset for acoustic heart sound classification and heart rate extraction in the literature to date. The algorithm in this study used signals from a sensor designed to monitor breathing. This shows that the same sensor and signal can be used to monitor both breathing and heart rate, making it highly useful for long-term wearable vital signs monitoring. PMID:26609401

  18. Feature Extraction and Selection Strategies for Automated Target Recognition

    NASA Technical Reports Server (NTRS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  19. Automated Image Registration Using Morphological Region of Interest Feature Extraction

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2005-01-01

    With the recent explosion in the amount of remotely sensed imagery and the corresponding interest in temporal change detection and modeling, image registration has become increasingly important as a necessary first step in the integration of multi-temporal and multi-sensor data for applications such as the analysis of seasonal and annual global climate changes, as well as land use/cover changes. The task of image registration can be divided into two major components: (1) the extraction of control points or features from images; and (2) the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual control feature extraction can be subjective and extremely time consuming, and often results in few usable points. Automated feature extraction is a solution to this problem, where desired target features are invariant, and represent evenly distributed landmarks such as edges, corners and line intersections. In this paper, we develop a novel automated registration approach based on the following steps. First, a mathematical morphology (MM)-based method is used to obtain a scale-orientation morphological profile at each image pixel. Next, a spectral dissimilarity metric such as the spectral information divergence is applied for automated extraction of landmark chips, followed by an initial approximate matching. This initial condition is then refined using a hierarchical robust feature matching (RFM) procedure. Experimental results reveal that the proposed registration technique offers a robust solution in the presence of seasonal changes and other interfering factors. Keywords-Automated image registration, multi-temporal imagery, mathematical morphology, robust feature matching.

  20. Fault diagnosis of helical gearbox using acoustic signal and wavelets

    NASA Astrophysics Data System (ADS)

    Pranesh, SK; Abraham, Siju; Sugumaran, V.; Amarnath, M.

    2017-05-01

    The efficient transmission of power in machines is needed and gears are an appropriate choice. Faults in gears result in loss of energy and money. The monitoring and fault diagnosis are done by analysis of the acoustic and vibrational signals which are generally considered to be unwanted by products. This study proposes the usage of machine learning algorithm for condition monitoring of a helical gearbox by using the sound signals produced by the gearbox. Artificial faults were created and subsequently signals were captured by a microphone. An extensive study using different wavelet transformations for feature extraction from the acoustic signals was done, followed by waveletselection and feature selection using J48 decision tree and feature classification was performed using K star algorithm. Classification accuracy of 100% was obtained in the study

  1. Feature extraction from multiple data sources using genetic programming

    NASA Astrophysics Data System (ADS)

    Szymanski, John J.; Brumby, Steven P.; Pope, Paul A.; Eads, Damian R.; Esch-Mosher, Diana M.; Galassi, Mark C.; Harvey, Neal R.; McCulloch, Hersey D.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Bloch, Jeffrey J.; David, Nancy A.

    2002-08-01

    Feature extraction from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. We use the GENetic Imagery Exploitation (GENIE) software for this purpose, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniques to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land cover features including towns, wildfire burnscars, and forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.

  2. Robust image features: concentric contrasting circles and their image extraction

    NASA Astrophysics Data System (ADS)

    Gatrell, Lance B.; Hoff, William A.; Sklair, Cheryl W.

    1992-03-01

    Many computer vision tasks can be simplified if special image features are placed on the objects to be recognized. A review of special image features that have been used in the past is given and then a new image feature, the concentric contrasting circle, is presented. The concentric contrasting circle image feature has the advantages of being easily manufactured, easily extracted from the image, robust extraction (true targets are found, while few false targets are found), it is a passive feature, and its centroid is completely invariant to the three translational and one rotational degrees of freedom and nearly invariant to the remaining two rotational degrees of freedom. There are several examples of existing parallel implementations which perform most of the extraction work. Extraction robustness was measured by recording the probability of correct detection and the false alarm rate in a set of images of scenes containing mockups of satellites, fluid couplings, and electrical components. A typical application of concentric contrasting circle features is to place them on modeled objects for monocular pose estimation or object identification. This feature is demonstrated on a visually challenging background of a specular but wrinkled surface similar to a multilayered insulation spacecraft thermal blanket.

  3. A method for real-time implementation of HOG feature extraction

    NASA Astrophysics Data System (ADS)

    Luo, Hai-bo; Yu, Xin-rong; Liu, Hong-mei; Ding, Qing-hai

    2011-08-01

    Histogram of oriented gradient (HOG) is an efficient feature extraction scheme, and HOG descriptors are feature descriptors which is widely used in computer vision and image processing for the purpose of biometrics, target tracking, automatic target detection(ATD) and automatic target recognition(ATR) etc. However, computation of HOG feature extraction is unsuitable for hardware implementation since it includes complicated operations. In this paper, the optimal design method and theory frame for real-time HOG feature extraction based on FPGA were proposed. The main principle is as follows: firstly, the parallel gradient computing unit circuit based on parallel pipeline structure was designed. Secondly, the calculation of arctangent and square root operation was simplified. Finally, a histogram generator based on parallel pipeline structure was designed to calculate the histogram of each sub-region. Experimental results showed that the HOG extraction can be implemented in a pixel period by these computing units.

  4. Automated Fluid Feature Extraction from Transient Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Lovely, David

    1999-01-01

    In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.

  5. Distinctive Feature Extraction for Indian Sign Language (ISL) Gesture using Scale Invariant Feature Transform (SIFT)

    NASA Astrophysics Data System (ADS)

    Patil, Sandeep Baburao; Sinha, G. R.

    2017-02-01

    India, having less awareness towards the deaf and dumb peoples leads to increase the communication gap between deaf and hard hearing community. Sign language is commonly developed for deaf and hard hearing peoples to convey their message by generating the different sign pattern. The scale invariant feature transform was introduced by David Lowe to perform reliable matching between different images of the same object. This paper implements the various phases of scale invariant feature transform to extract the distinctive features from Indian sign language gestures. The experimental result shows the time constraint for each phase and the number of features extracted for 26 ISL gestures.

  6. Acoustic features of male baboon loud calls: Influences of context, age, and individuality

    NASA Astrophysics Data System (ADS)

    Fischer, Julia; Hammerschmidt, Kurt; Cheney, Dorothy L.; Seyfarth, Robert M.

    2002-03-01

    The acoustic structure of loud calls (``wahoos'') recorded from free-ranging male baboons (Papio cynocephalus ursinus) in the Moremi Game Reserve, Botswana, was examined for differences between and within contexts, using calls given in response to predators (alarm wahoos), during male contests (contest wahoos), and when a male had become separated from the group (contact wahoos). Calls were recorded from adolescent, subadult, and adult males. In addition, male alarm calls were compared with those recorded from females. Despite their superficial acoustic similarity, the analysis revealed a number of significant differences between alarm, contest, and contact wahoos. Contest wahoos are given at a much higher rate, exhibit lower frequency characteristics, have a longer ``hoo'' duration, and a relatively louder ``hoo'' portion than alarm wahoos. Contact wahoos are acoustically similar to contest wahoos, but are given at a much lower rate. Both alarm and contest wahoos also exhibit significant differences among individuals. Some of the acoustic features that vary in relation to age and sex presumably reflect differences in body size, whereas others are possibly related to male stamina and endurance. The finding that calls serving markedly different functions constitute variants of the same general call type suggests that the vocal production in nonhuman primates is evolutionarily constrained.

  7. A harmonic linear dynamical system for prominent ECG feature extraction.

    PubMed

    Thi, Ngoc Anh Nguyen; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc

    2014-01-01

    Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.

  8. Mortar and artillery variants classification by exploiting characteristics of the acoustic signature

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Grasing, David; Desai, Sachi; Morcos, Amir

    2007-10-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis facilitate the development of a robust classification algorithm that reliably discriminates mortar and artillery variants via acoustic signals produced during the launch/impact events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants. Distinct characteristics arise within the different mortar variants because varying HE mortar payloads and related charges emphasize concussive and shrapnel effects upon impact employing varying magnitude explosions. The different mortar variants are characterized by variations in the resulting waveform of the event. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing techniques can employed to classify a given set. The DWT and other readily available signal processing techniques will be used to extract the predominant components of these characteristics from the acoustic signatures at ranges exceeding 2km. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients, frequency spectrum, and higher frequency details found within different levels of the multiresolution decomposition. The process that will be described herein extends current technologies, which emphasis multi modal sensor fusion suites to provide such situational awareness. A two fold problem of energy consumption and line of sight arise with the multi modal sensor suites. The process described within will exploit the acoustic properties of the event to provide variant classification as added situational awareness to the solider.

  9. Efficient feature extraction from wide-area motion imagery by MapReduce in Hadoop

    NASA Astrophysics Data System (ADS)

    Cheng, Erkang; Ma, Liya; Blaisse, Adam; Blasch, Erik; Sheaff, Carolyn; Chen, Genshe; Wu, Jie; Ling, Haibin

    2014-06-01

    Wide-Area Motion Imagery (WAMI) feature extraction is important for applications such as target tracking, traffic management and accident discovery. With the increasing amount of WAMI collections and feature extraction from the data, a scalable framework is needed to handle the large amount of information. Cloud computing is one of the approaches recently applied in large scale or big data. In this paper, MapReduce in Hadoop is investigated for large scale feature extraction tasks for WAMI. Specifically, a large dataset of WAMI images is divided into several splits. Each split has a small subset of WAMI images. The feature extractions of WAMI images in each split are distributed to slave nodes in the Hadoop system. Feature extraction of each image is performed individually in the assigned slave node. Finally, the feature extraction results are sent to the Hadoop File System (HDFS) to aggregate the feature information over the collected imagery. Experiments of feature extraction with and without MapReduce are conducted to illustrate the effectiveness of our proposed Cloud-Enabled WAMI Exploitation (CAWE) approach.

  10. Microfluidic device for acoustic cell lysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  11. Feature-extracted joint transform correlation.

    PubMed

    Alam, M S

    1995-12-10

    A new technique for real-time optical character recognition that uses a joint transform correlator is proposed. This technique employs feature-extracted patterns for the reference image to detect a wide range of characters in one step. The proposed technique significantly enhances the processing speed when compared with the presently available joint transform correlator architectures and shows feasibility for multichannel joint transform correlation.

  12. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen

    2018-01-01

    Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.

  13. Feature extraction inspired by V1 in visual cortex

    NASA Astrophysics Data System (ADS)

    Lv, Chao; Xu, Yuelei; Zhang, Xulei; Ma, Shiping; Li, Shuai; Xin, Peng; Zhu, Mingning; Ma, Hongqiang

    2018-04-01

    Target feature extraction plays an important role in pattern recognition. It is the most complicated activity in the brain mechanism of biological vision. Inspired by high properties of primary visual cortex (V1) in extracting dynamic and static features, a visual perception model was raised. Firstly, 28 spatial-temporal filters with different orientations, half-squaring operation and divisive normalization were adopted to obtain the responses of V1 simple cells; then, an adjustable parameter was added to the output weight so that the response of complex cells was got. Experimental results indicate that the proposed V1 model can perceive motion information well. Besides, it has a good edge detection capability. The model inspired by V1 has good performance in feature extraction and effectively combines brain-inspired intelligence with computer vision.

  14. Feature extraction and classification algorithms for high dimensional data

    NASA Technical Reports Server (NTRS)

    Lee, Chulhee; Landgrebe, David

    1993-01-01

    Feature extraction and classification algorithms for high dimensional data are investigated. Developments with regard to sensors for Earth observation are moving in the direction of providing much higher dimensional multispectral imagery than is now possible. In analyzing such high dimensional data, processing time becomes an important factor. With large increases in dimensionality and the number of classes, processing time will increase significantly. To address this problem, a multistage classification scheme is proposed which reduces the processing time substantially by eliminating unlikely classes from further consideration at each stage. Several truncation criteria are developed and the relationship between thresholds and the error caused by the truncation is investigated. Next an approach to feature extraction for classification is proposed based directly on the decision boundaries. It is shown that all the features needed for classification can be extracted from decision boundaries. A characteristic of the proposed method arises by noting that only a portion of the decision boundary is effective in discriminating between classes, and the concept of the effective decision boundary is introduced. The proposed feature extraction algorithm has several desirable properties: it predicts the minimum number of features necessary to achieve the same classification accuracy as in the original space for a given pattern recognition problem; and it finds the necessary feature vectors. The proposed algorithm does not deteriorate under the circumstances of equal means or equal covariances as some previous algorithms do. In addition, the decision boundary feature extraction algorithm can be used both for parametric and non-parametric classifiers. Finally, some problems encountered in analyzing high dimensional data are studied and possible solutions are proposed. First, the increased importance of the second order statistics in analyzing high dimensional data is recognized

  15. Acousto-Optic Technology for Topographic Feature Extraction and Image Analysis.

    DTIC Science & Technology

    1981-03-01

    This report contains all findings of the acousto - optic technology study for feature extraction conducted by Deft Laboratories Inc. for the U.S. Army...topographic feature extraction and image analysis using acousto - optic (A-O) technology. A conclusion of this study was that A-O devices are potentially

  16. ECG feature extraction and disease diagnosis.

    PubMed

    Bhyri, Channappa; Hamde, S T; Waghmare, L M

    2011-01-01

    An important factor to consider when using findings on electrocardiograms for clinical decision making is that the waveforms are influenced by normal physiological and technical factors as well as by pathophysiological factors. In this paper, we propose a method for the feature extraction and heart disease diagnosis using wavelet transform (WT) technique and LabVIEW (Laboratory Virtual Instrument Engineering workbench). LabVIEW signal processing tools are used to denoise the signal before applying the developed algorithm for feature extraction. First, we have developed an algorithm for R-peak detection using Haar wavelet. After 4th level decomposition of the ECG signal, the detailed coefficient is squared and the standard deviation of the squared detailed coefficient is used as the threshold for detection of R-peaks. Second, we have used daubechies (db6) wavelet for the low resolution signals. After cross checking the R-peak location in 4th level, low resolution signal of daubechies wavelet P waves and T waves are detected. Other features of diagnostic importance, mainly heart rate, R-wave width, Q-wave width, T-wave amplitude and duration, ST segment and frontal plane axis are also extracted and scoring pattern is applied for the purpose of heart disease diagnosis. In this study, detection of tachycardia, bradycardia, left ventricular hypertrophy, right ventricular hypertrophy and myocardial infarction have been considered. In this work, CSE ECG data base which contains 5000 samples recorded at a sampling frequency of 500 Hz and the ECG data base created by the S.G.G.S. Institute of Engineering and Technology, Nanded (Maharashtra) have been used.

  17. Chinese character recognition based on Gabor feature extraction and CNN

    NASA Astrophysics Data System (ADS)

    Xiong, Yudian; Lu, Tongwei; Jiang, Yongyuan

    2018-03-01

    As an important application in the field of text line recognition and office automation, Chinese character recognition has become an important subject of pattern recognition. However, due to the large number of Chinese characters and the complexity of its structure, there is a great difficulty in the Chinese character recognition. In order to solve this problem, this paper proposes a method of printed Chinese character recognition based on Gabor feature extraction and Convolution Neural Network(CNN). The main steps are preprocessing, feature extraction, training classification. First, the gray-scale Chinese character image is binarized and normalized to reduce the redundancy of the image data. Second, each image is convoluted with Gabor filter with different orientations, and the feature map of the eight orientations of Chinese characters is extracted. Third, the feature map through Gabor filters and the original image are convoluted with learning kernels, and the results of the convolution is the input of pooling layer. Finally, the feature vector is used to classify and recognition. In addition, the generalization capacity of the network is improved by Dropout technology. The experimental results show that this method can effectively extract the characteristics of Chinese characters and recognize Chinese characters.

  18. Features extraction in anterior and posterior cruciate ligaments analysis.

    PubMed

    Zarychta, P

    2015-12-01

    The main aim of this research is finding the feature vectors of the anterior and posterior cruciate ligaments (ACL and PCL). These feature vectors have to clearly define the ligaments structure and make it easier to diagnose them. Extraction of feature vectors is obtained by analysis of both anterior and posterior cruciate ligaments. This procedure is performed after the extraction process of both ligaments. In the first stage in order to reduce the area of analysis a region of interest including cruciate ligaments (CL) is outlined in order to reduce the area of analysis. In this case, the fuzzy C-means algorithm with median modification helping to reduce blurred edges has been implemented. After finding the region of interest (ROI), the fuzzy connectedness procedure is performed. This procedure permits to extract the anterior and posterior cruciate ligament structures. In the last stage, on the basis of the extracted anterior and posterior cruciate ligament structures, 3-dimensional models of the anterior and posterior cruciate ligament are built and the feature vectors created. This methodology has been implemented in MATLAB and tested on clinical T1-weighted magnetic resonance imaging (MRI) slices of the knee joint. The 3D display is based on the Visualization Toolkit (VTK). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Automated Extraction of Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne (Technical Monitor); Haimes, Robert

    2005-01-01

    Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.

  20. Automated Extraction of Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne (Technical Monitor); Haimes, Robert

    2004-01-01

    Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.

  1. Tool Wear Feature Extraction Based on Hilbert Marginal Spectrum

    NASA Astrophysics Data System (ADS)

    Guan, Shan; Song, Weijie; Pang, Hongyang

    2017-09-01

    In the metal cutting process, the signal contains a wealth of tool wear state information. A tool wear signal’s analysis and feature extraction method based on Hilbert marginal spectrum is proposed. Firstly, the tool wear signal was decomposed by empirical mode decomposition algorithm and the intrinsic mode functions including the main information were screened out by the correlation coefficient and the variance contribution rate. Secondly, Hilbert transform was performed on the main intrinsic mode functions. Hilbert time-frequency spectrum and Hilbert marginal spectrum were obtained by Hilbert transform. Finally, Amplitude domain indexes were extracted on the basis of the Hilbert marginal spectrum and they structured recognition feature vector of tool wear state. The research results show that the extracted features can effectively characterize the different wear state of the tool, which provides a basis for monitoring tool wear condition.

  2. Combined rule extraction and feature elimination in supervised classification.

    PubMed

    Liu, Sheng; Patel, Ronak Y; Daga, Pankaj R; Liu, Haining; Fu, Gang; Doerksen, Robert J; Chen, Yixin; Wilkins, Dawn E

    2012-09-01

    There are a vast number of biology related research problems involving a combination of multiple sources of data to achieve a better understanding of the underlying problems. It is important to select and interpret the most important information from these sources. Thus it will be beneficial to have a good algorithm to simultaneously extract rules and select features for better interpretation of the predictive model. We propose an efficient algorithm, Combined Rule Extraction and Feature Elimination (CRF), based on 1-norm regularized random forests. CRF simultaneously extracts a small number of rules generated by random forests and selects important features. We applied CRF to several drug activity prediction and microarray data sets. CRF is capable of producing performance comparable with state-of-the-art prediction algorithms using a small number of decision rules. Some of the decision rules are biologically significant.

  3. Efficient sensor network vehicle classification using peak harmonics of acoustic emissions

    NASA Astrophysics Data System (ADS)

    William, Peter E.; Hoffman, Michael W.

    2008-04-01

    An application is proposed for detection and classification of battlefield ground vehicles using the emitted acoustic signal captured at individual sensor nodes of an ad hoc Wireless Sensor Network (WSN). We make use of the harmonic characteristics of the acoustic emissions of battlefield vehicles, in reducing both the computations carried on the sensor node and the transmitted data to the fusion center for reliable and effcient classification of targets. Previous approaches focus on the lower frequency band of the acoustic emissions up to 500Hz; however, we show in the proposed application how effcient discrimination between battlefield vehicles is performed using features extracted from higher frequency bands (50 - 1500Hz). The application shows that selective time domain acoustic features surpass equivalent spectral features. Collaborative signal processing is utilized, such that estimation of certain signal model parameters is carried by the sensor node, in order to reduce the communication between the sensor node and the fusion center, while the remaining model parameters are estimated at the fusion center. The transmitted data from the sensor node to the fusion center ranges from 1 ~ 5% of the sampled acoustic signal at the node. A variety of classification schemes were examined, such as maximum likelihood, vector quantization and artificial neural networks. Evaluation of the proposed application, through processing of an acoustic data set with comparison to previous results, shows that the improvement is not only in the number of computations but also in the detection and false alarm rate as well.

  4. Music-induced emotions can be predicted from a combination of brain activity and acoustic features.

    PubMed

    Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J

    2015-12-01

    It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,p<0.001. This regression fit suggests that over 20% of the variance of the participant's music induced emotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01). Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Automated Extraction of Secondary Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne M.; Haimes, Robert

    2005-01-01

    The use of Computational Fluid Dynamics (CFD) has become standard practice in the design and development of the major components used for air and space propulsion. To aid in the post-processing and analysis phase of CFD many researchers now use automated feature extraction utilities. These tools can be used to detect the existence of such features as shocks, vortex cores and separation and re-attachment lines. The existence of secondary flow is another feature of significant importance to CFD engineers. Although the concept of secondary flow is relatively understood there is no commonly accepted mathematical definition for secondary flow. This paper will present a definition for secondary flow and one approach for automatically detecting and visualizing secondary flow.

  6. Multiple feature extraction by using simultaneous wavelet transforms

    NASA Astrophysics Data System (ADS)

    Mazzaferri, Javier; Ledesma, Silvia; Iemmi, Claudio

    2003-07-01

    We propose here a method to optically perform multiple feature extraction by using wavelet transforms. The method is based on obtaining the optical correlation by means of a Vander Lugt architecture, where the scene and the filter are displayed on spatial light modulators (SLMs). Multiple phase filters containing the information about the features that we are interested in extracting are designed and then displayed on an SLM working in phase mostly mode. We have designed filters to simultaneously detect edges and corners or different characteristic frequencies contained in the input scene. Simulated and experimental results are shown.

  7. Spectral Regression Based Fault Feature Extraction for Bearing Accelerometer Sensor Signals

    PubMed Central

    Xia, Zhanguo; Xia, Shixiong; Wan, Ling; Cai, Shiyu

    2012-01-01

    Bearings are not only the most important element but also a common source of failures in rotary machinery. Bearing fault prognosis technology has been receiving more and more attention recently, in particular because it plays an increasingly important role in avoiding the occurrence of accidents. Therein, fault feature extraction (FFE) of bearing accelerometer sensor signals is essential to highlight representative features of bearing conditions for machinery fault diagnosis and prognosis. This paper proposes a spectral regression (SR)-based approach for fault feature extraction from original features including time, frequency and time-frequency domain features of bearing accelerometer sensor signals. SR is a novel regression framework for efficient regularized subspace learning and feature extraction technology, and it uses the least squares method to obtain the best projection direction, rather than computing the density matrix of features, so it also has the advantage in dimensionality reduction. The effectiveness of the SR-based method is validated experimentally by applying the acquired vibration signals data to bearings. The experimental results indicate that SR can reduce the computation cost and preserve more structure information about different bearing faults and severities, and it is demonstrated that the proposed feature extraction scheme has an advantage over other similar approaches. PMID:23202017

  8. PyEEG: an open source Python module for EEG/MEG feature extraction.

    PubMed

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.

  9. PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction

    PubMed Central

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction. PMID:21512582

  10. A Review of Feature Extraction Software for Microarray Gene Expression Data

    PubMed Central

    Tan, Ching Siang; Ting, Wai Soon; Mohamad, Mohd Saberi; Chan, Weng Howe; Deris, Safaai; Ali Shah, Zuraini

    2014-01-01

    When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method. PMID:25250315

  11. Automation of lidar-based hydrologic feature extraction workflows using GIS

    NASA Astrophysics Data System (ADS)

    Borlongan, Noel Jerome B.; de la Cruz, Roel M.; Olfindo, Nestor T.; Perez, Anjillyn Mae C.

    2016-10-01

    With the advent of LiDAR technology, higher resolution datasets become available for use in different remote sensing and GIS applications. One significant application of LiDAR datasets in the Philippines is in resource features extraction. Feature extraction using LiDAR datasets require complex and repetitive workflows which can take a lot of time for researchers through manual execution and supervision. The Development of the Philippine Hydrologic Dataset for Watersheds from LiDAR Surveys (PHD), a project under the Nationwide Detailed Resources Assessment Using LiDAR (Phil-LiDAR 2) program, created a set of scripts, the PHD Toolkit, to automate its processes and workflows necessary for hydrologic features extraction specifically Streams and Drainages, Irrigation Network, and Inland Wetlands, using LiDAR Datasets. These scripts are created in Python and can be added in the ArcGIS® environment as a toolbox. The toolkit is currently being used as an aid for the researchers in hydrologic feature extraction by simplifying the workflows, eliminating human errors when providing the inputs, and providing quick and easy-to-use tools for repetitive tasks. This paper discusses the actual implementation of different workflows developed by Phil-LiDAR 2 Project 4 in Streams, Irrigation Network and Inland Wetlands extraction.

  12. Spectral identification of sperm whales from Littoral Acoustic Demonstration Center passive acoustic recordings

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia A.; Richard, Blake; Ioup, George E.; Ioup, Juliette W.

    2005-09-01

    The Littoral Acoustic Demonstration Center (LADC) made a series of passive broadband acoustic recordings in the Gulf of Mexico and Ligurian Sea to study noise and marine mammal phonations. The collected data contain a large amount of various types of sperm whale phonations, such as isolated clicks and communication codas. It was previously reported that the spectrograms of the extracted clicks and codas contain well-defined null patterns that seem to be unique for individuals. The null pattern is formed due to individual features of the sound production organs of an animal. These observations motivated the present studies of adapting human speech identification techniques for deep-diving marine mammal phonations. A three-state trained hidden Markov model (HMM) was used with the phonation spectra of sperm whales. The HHM-algorithm gave 75% accuracy in identifying individuals when it had been initially tested for the acoustic data set correlated with visual observations of sperm whales. A comparison of the identification accuracy based on null-pattern similarity analysis and the HMM-algorithm is presented. The results can establish the foundation for developing an acoustic identification database for sperm whales and possibly other deep-diving marine mammals that would be difficult to observe visually. [Research supported by ONR.

  13. iFeature: a python package and web server for features extraction and selection from protein and peptide sequences.

    PubMed

    Chen, Zhen; Zhao, Pei; Li, Fuyi; Leier, André; Marquez-Lago, Tatiana T; Wang, Yanan; Webb, Geoffrey I; Smith, A Ian; Daly, Roger J; Chou, Kuo-Chen; Song, Jiangning

    2018-03-08

    Structural and physiochemical descriptors extracted from sequence data have been widely used to represent sequences and predict structural, functional, expression and interaction profiles of proteins and peptides as well as DNAs/RNAs. Here, we present iFeature, a versatile Python-based toolkit for generating various numerical feature representation schemes for both protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature descriptors. It also allows users to extract specific amino acid properties from the AAindex database. Furthermore, iFeature integrates 12 different types of commonly used feature clustering, selection, and dimensionality reduction algorithms, greatly facilitating training, analysis, and benchmarking of machine-learning models. The functionality of iFeature is made freely available via an online web server and a stand-alone toolkit. http://iFeature.erc.monash.edu/; https://github.com/Superzchen/iFeature/. jiangning.song@monash.edu; kcchou@gordonlifescience.org; roger.daly@monash.edu. Supplementary data are available at Bioinformatics online.

  14. Unconscious automatic brain activation of acoustic and action-related conceptual features during masked repetition priming.

    PubMed

    Trumpp, Natalie M; Traub, Felix; Pulvermüller, Friedemann; Kiefer, Markus

    2014-02-01

    Classical theories of semantic memory assume that concepts are represented in a unitary amodal memory system. In challenging this classical view, pure or hybrid modality-specific theories propose that conceptual representations are grounded in the sensory-motor brain areas, which typically process sensory and action-related information. Although neuroimaging studies provided evidence for a functional-anatomical link between conceptual processing of sensory or action-related features and the sensory-motor brain systems, it has been argued that aspects of such sensory-motor activation may not directly reflect conceptual processing but rather strategic imagery or postconceptual elaboration. In the present ERP study, we investigated masked effects of acoustic and action-related conceptual features to probe unconscious automatic conceptual processing in isolation. Subliminal feature-specific ERP effects at frontocentral electrodes were observed, which differed with regard to polarity, topography, and underlying brain electrical sources in congruency with earlier findings under conscious viewing conditions. These findings suggest that conceptual acoustic and action representations can also be unconsciously accessed, thereby excluding any postconceptual strategic processes. This study therefore further substantiates a grounding of conceptual and semantic processing in action and perception.

  15. Single-trial laser-evoked potentials feature extraction for prediction of pain perception.

    PubMed

    Huang, Gan; Xiao, Ping; Hu, Li; Hung, Yeung Sam; Zhang, Zhiguo

    2013-01-01

    Pain is a highly subjective experience, and the availability of an objective assessment of pain perception would be of great importance for both basic and clinical applications. The objective of the present study is to develop a novel approach to extract pain-related features from single-trial laser-evoked potentials (LEPs) for classification of pain perception. The single-trial LEP feature extraction approach combines a spatial filtering using common spatial pattern (CSP) and a multiple linear regression (MLR). The CSP method is effective in separating laser-evoked EEG response from ongoing EEG activity, while MLR is capable of automatically estimating the amplitudes and latencies of N2 and P2 from single-trial LEP waveforms. The extracted single-trial LEP features are used in a Naïve Bayes classifier to classify different levels of pain perceived by the subjects. The experimental results show that the proposed single-trial LEP feature extraction approach can effectively extract pain-related LEP features for achieving high classification accuracy.

  16. Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images

    PubMed Central

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-01-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801

  17. Shape adaptive, robust iris feature extraction from noisy iris images.

    PubMed

    Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah

    2013-10-01

    In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.

  18. A graph-Laplacian-based feature extraction algorithm for neural spike sorting.

    PubMed

    Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos

    2009-01-01

    Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.

  19. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification

    PubMed Central

    Wen, Tingxi; Zhang, Zhongnan

    2017-01-01

    Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789

  20. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan

    2017-05-01

    In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.

  1. Feature extraction via KPCA for classification of gait patterns.

    PubMed

    Wu, Jianning; Wang, Jue; Liu, Li

    2007-06-01

    Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait's kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young-elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young-elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.

  2. Investigation of automated feature extraction using multiple data sources

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Perkins, Simon J.; Pope, Paul A.; Theiler, James P.; David, Nancy A.; Porter, Reid B.

    2003-04-01

    An increasing number and variety of platforms are now capable of collecting remote sensing data over a particular scene. For many applications, the information available from any individual sensor may be incomplete, inconsistent or imprecise. However, other sources may provide complementary and/or additional data. Thus, for an application such as image feature extraction or classification, it may be that fusing the mulitple data sources can lead to more consistent and reliable results. Unfortunately, with the increased complexity of the fused data, the search space of feature-extraction or classification algorithms also greatly increases. With a single data source, the determination of a suitable algorithm may be a significant challenge for an image analyst. With the fused data, the search for suitable algorithms can go far beyond the capabilities of a human in a realistic time frame, and becomes the realm of machine learning, where the computational power of modern computers can be harnessed to the task at hand. We describe experiments in which we investigate the ability of a suite of automated feature extraction tools developed at Los Alamos National Laboratory to make use of multiple data sources for various feature extraction tasks. We compare and contrast this software's capabilities on 1) individual data sets from different data sources 2) fused data sets from multiple data sources and 3) fusion of results from multiple individual data sources.

  3. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  4. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  5. A multiple maximum scatter difference discriminant criterion for facial feature extraction.

    PubMed

    Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei

    2007-12-01

    Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.

  6. PCA feature extraction for change detection in multidimensional unlabeled data.

    PubMed

    Kuncheva, Ludmila I; Faithfull, William J

    2014-01-01

    When classifiers are deployed in real-world applications, it is assumed that the distribution of the incoming data matches the distribution of the data used to train the classifier. This assumption is often incorrect, which necessitates some form of change detection or adaptive classification. While there has been a lot of work on change detection based on the classification error monitored over the course of the operation of the classifier, finding changes in multidimensional unlabeled data is still a challenge. Here, we propose to apply principal component analysis (PCA) for feature extraction prior to the change detection. Supported by a theoretical example, we argue that the components with the lowest variance should be retained as the extracted features because they are more likely to be affected by a change. We chose a recently proposed semiparametric log-likelihood change detection criterion that is sensitive to changes in both mean and variance of the multidimensional distribution. An experiment with 35 datasets and an illustration with a simple video segmentation demonstrate the advantage of using extracted features compared to raw data. Further analysis shows that feature extraction through PCA is beneficial, specifically for data with multiple balanced classes.

  7. Compact and Hybrid Feature Description for Building Extraction

    NASA Astrophysics Data System (ADS)

    Li, Z.; Liu, Y.; Hu, Y.; Li, P.; Ding, Y.

    2017-05-01

    Building extraction in aerial orthophotos is crucial for various applications. Currently, deep learning has been shown to be successful in addressing building extraction with high accuracy and high robustness. However, quite a large number of samples is required in training a classifier when using deep learning model. In order to realize accurate and semi-interactive labelling, the performance of feature description is crucial, as it has significant effect on the accuracy of classification. In this paper, we bring forward a compact and hybrid feature description method, in order to guarantees desirable classification accuracy of the corners on the building roof contours. The proposed descriptor is a hybrid description of an image patch constructed from 4 sets of binary intensity tests. Experiments show that benefiting from binary description and making full use of color channels, this descriptor is not only computationally frugal, but also accurate than SURF for building extraction.

  8. A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification

    PubMed Central

    Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.

    2015-01-01

    In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898

  9. A framework for feature extraction from hospital medical data with applications in risk prediction.

    PubMed

    Tran, Truyen; Luo, Wei; Phung, Dinh; Gupta, Sunil; Rana, Santu; Kennedy, Richard Lee; Larkins, Ann; Venkatesh, Svetha

    2014-12-30

    Feature engineering is a time consuming component of predictive modeling. We propose a versatile platform to automatically extract features for risk prediction, based on a pre-defined and extensible entity schema. The extraction is independent of disease type or risk prediction task. We contrast auto-extracted features to baselines generated from the Elixhauser comorbidities. Hospital medical records was transformed to event sequences, to which filters were applied to extract feature sets capturing diversity in temporal scales and data types. The features were evaluated on a readmission prediction task, comparing with baseline feature sets generated from the Elixhauser comorbidities. The prediction model was through logistic regression with elastic net regularization. Predictions horizons of 1, 2, 3, 6, 12 months were considered for four diverse diseases: diabetes, COPD, mental disorders and pneumonia, with derivation and validation cohorts defined on non-overlapping data-collection periods. For unplanned readmissions, auto-extracted feature set using socio-demographic information and medical records, outperformed baselines derived from the socio-demographic information and Elixhauser comorbidities, over 20 settings (5 prediction horizons over 4 diseases). In particular over 30-day prediction, the AUCs are: COPD-baseline: 0.60 (95% CI: 0.57, 0.63), auto-extracted: 0.67 (0.64, 0.70); diabetes-baseline: 0.60 (0.58, 0.63), auto-extracted: 0.67 (0.64, 0.69); mental disorders-baseline: 0.57 (0.54, 0.60), auto-extracted: 0.69 (0.64,0.70); pneumonia-baseline: 0.61 (0.59, 0.63), auto-extracted: 0.70 (0.67, 0.72). The advantages of auto-extracted standard features from complex medical records, in a disease and task agnostic manner were demonstrated. Auto-extracted features have good predictive power over multiple time horizons. Such feature sets have potential to form the foundation of complex automated analytic tasks.

  10. Sample-space-based feature extraction and class preserving projection for gene expression data.

    PubMed

    Wang, Wenjun

    2013-01-01

    In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.

  11. Extracting features from protein sequences to improve deep extreme learning machine for protein fold recognition.

    PubMed

    Ibrahim, Wisam; Abadeh, Mohammad Saniee

    2017-05-21

    Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Waveform fitting and geometry analysis for full-waveform lidar feature extraction

    NASA Astrophysics Data System (ADS)

    Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu

    2016-10-01

    This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.

  13. Feature extraction applied to agricultural crops as seen by LANDSAT

    NASA Technical Reports Server (NTRS)

    Kauth, R. J.; Lambeck, P. F.; Richardson, W.; Thomas, G. S.; Pentland, A. P. (Principal Investigator)

    1979-01-01

    The physical interpretation of the spectral-temporal structure of LANDSAT data can be conveniently described in terms of a graphic descriptive model called the Tassled Cap. This model has been a source of development not only in crop-related feature extraction, but also for data screening and for haze effects correction. Following its qualitative description and an indication of its applications, the model is used to analyze several feature extraction algorithms.

  14. Opinion mining feature-level using Naive Bayes and feature extraction based analysis dependencies

    NASA Astrophysics Data System (ADS)

    Sanda, Regi; Baizal, Z. K. Abdurahman; Nhita, Fhira

    2015-12-01

    Development of internet and technology, has major impact and providing new business called e-commerce. Many e-commerce sites that provide convenience in transaction, and consumers can also provide reviews or opinions on products that purchased. These opinions can be used by consumers and producers. Consumers to know the advantages and disadvantages of particular feature of the product. Procuders can analyse own strengths and weaknesses as well as it's competitors products. Many opinions need a method that the reader can know the point of whole opinion. The idea emerged from review summarization that summarizes the overall opinion based on sentiment and features contain. In this study, the domain that become the main focus is about the digital camera. This research consisted of four steps 1) giving the knowledge to the system to recognize the semantic orientation of an opinion 2) indentify the features of product 3) indentify whether the opinion gives a positive or negative 4) summarizing the result. In this research discussed the methods such as Naï;ve Bayes for sentiment classification, and feature extraction algorithm based on Dependencies Analysis, which is one of the tools in Natural Language Processing (NLP) and knowledge based dictionary which is useful for handling implicit features. The end result of research is a summary that contains a bunch of reviews from consumers on the features and sentiment. With proposed method, accuration for sentiment classification giving 81.2 % for positive test data, 80.2 % for negative test data, and accuration for feature extraction reach 90.3 %.

  15. Acoustic emission signal processing for rolling bearing running state assessment using compressive sensing

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Wu, Xing; Mao, Jianlin; Liu, Xiaoqin

    2017-07-01

    In the signal processing domain, there has been growing interest in using acoustic emission (AE) signals for the fault diagnosis and condition assessment instead of vibration signals, which has been advocated as an effective technique for identifying fracture, crack or damage. The AE signal has high frequencies up to several MHz which can avoid some signals interference, such as the parts of bearing (i.e. rolling elements, ring and so on) and other rotating parts of machine. However, acoustic emission signal necessitates advanced signal sampling capabilities and requests ability to deal with large amounts of sampling data. In this paper, compressive sensing (CS) is introduced as a processing framework, and then a compressive features extraction method is proposed. We use it for extracting the compressive features from compressively-sensed data directly, and also prove the energy preservation properties. First, we study the AE signals under the CS framework. The sparsity of AE signal of the rolling bearing is checked. The observation and reconstruction of signal is also studied. Second, we present a method of extraction AE compressive feature (AECF) from compressively-sensed data directly. We demonstrate the energy preservation properties and the processing of the extracted AECF feature. We assess the running state of the bearing using the AECF trend. The AECF trend of the running state of rolling bearings is consistent with the trend of traditional features. Thus, the method is an effective way to evaluate the running trend of rolling bearings. The results of the experiments have verified that the signal processing and the condition assessment based on AECF is simpler, the amount of data required is smaller, and the amount of computation is greatly reduced.

  16. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  17. Nonredundant sparse feature extraction using autoencoders with receptive fields clustering.

    PubMed

    Ayinde, Babajide O; Zurada, Jacek M

    2017-09-01

    This paper proposes new techniques for data representation in the context of deep learning using agglomerative clustering. Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereby leading to extraction of similar features, thus resulting in filtering redundancy. We propose a way to address this problem and show that such redundancy can be eliminated. This yields smaller networks and produces unique receptive fields that extract distinct features. It is also shown that autoencoders with nonnegativity constraints on weights are capable of extracting fewer redundant features than conventional sparse autoencoders. The concept is illustrated using conventional sparse autoencoder and nonnegativity-constrained autoencoders with MNIST digits recognition, NORB normalized-uniform object data and Yale face dataset. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A window-based time series feature extraction method.

    PubMed

    Katircioglu-Öztürk, Deniz; Güvenir, H Altay; Ravens, Ursula; Baykal, Nazife

    2017-10-01

    This study proposes a robust similarity score-based time series feature extraction method that is termed as Window-based Time series Feature ExtraCtion (WTC). Specifically, WTC generates domain-interpretable results and involves significantly low computational complexity thereby rendering itself useful for densely sampled and populated time series datasets. In this study, WTC is applied to a proprietary action potential (AP) time series dataset on human cardiomyocytes and three precordial leads from a publicly available electrocardiogram (ECG) dataset. This is followed by comparing WTC in terms of predictive accuracy and computational complexity with shapelet transform and fast shapelet transform (which constitutes an accelerated variant of the shapelet transform). The results indicate that WTC achieves a slightly higher classification performance with significantly lower execution time when compared to its shapelet-based alternatives. With respect to its interpretable features, WTC has a potential to enable medical experts to explore definitive common trends in novel datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Optical character recognition with feature extraction and associative memory matrix

    NASA Astrophysics Data System (ADS)

    Sasaki, Osami; Shibahara, Akihito; Suzuki, Takamasa

    1998-06-01

    A method is proposed in which handwritten characters are recognized using feature extraction and an associative memory matrix. In feature extraction, simple processes such as shifting and superimposing patterns are executed. A memory matrix is generated with singular value decomposition and by modifying small singular values. The method is optically implemented with two liquid crystal displays. Experimental results for the recognition of 25 handwritten alphabet characters clearly shows the effectiveness of the method.

  20. Coding visual features extracted from video sequences.

    PubMed

    Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2014-05-01

    Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.

  1. Simulation of Acoustics for Ares I Scale Model Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Putnam, Gabriel; Strutzenberg, Louise L.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.

  2. Stimulus encoding and feature extraction by multiple sensory neurons.

    PubMed

    Krahe, Rüdiger; Kreiman, Gabriel; Gabbiani, Fabrizio; Koch, Christof; Metzner, Walter

    2002-03-15

    Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly electric fish. These cells constitute the output neurons of the first central nervous stage of electrosensory processing. Using random amplitude modulations (RAMs) of a mimic of the fish's own electric field within behaviorally relevant frequency bands, we found that pyramidal cells with overlapping receptive fields exhibit strong stimulus-induced correlations. To quantify the encoding of the RAM time course, we estimated the stimuli from simultaneously recorded spike trains and found significant improvements over single spike trains. The quality of stimulus reconstruction, however, was still inferior to the one measured for single primary sensory afferents. In an analysis of feature extraction, we found that spikes of pyramidal cell pairs coinciding within a time window of a few milliseconds performed significantly better at detecting upstrokes and downstrokes of the stimulus compared with isolated spikes and even spike bursts of single cells. Coincident spikes can thus be considered "distributed bursts." Our results suggest that stimulus encoding by primary sensory afferents is transformed into feature extraction at the next processing stage. There, stimulus-induced coincident activity can improve the extraction of behaviorally relevant features from the stimulus.

  3. Extraction of Overt Verbal Response from the Acoustic Noise in a Functional Magnetic Resonance Imaging Scan by Use of Segmented Active Noise Cancellation

    PubMed Central

    Jung, Kwan-Jin; Prasad, Parikshit; Qin, Yulin; Anderson, John R.

    2013-01-01

    A method to extract the subject's overt verbal response from the obscuring acoustic noise in an fMRI scan is developed by applying active noise cancellation with a conventional MRI microphone. Since the EPI scanning and its accompanying acoustic noise in fMRI are repetitive, the acoustic noise in one time segment was used as a reference noise in suppressing the acoustic noise in subsequent segments. However, the acoustic noise from the scanner was affected by the subject's movements, so the reference noise was adaptively adjusted as the scanner's acoustic properties varied in time. This method was successfully applied to a cognitive fMRI experiment with overt verbal responses. PMID:15723385

  4. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  5. Supervised non-negative tensor factorization for automatic hyperspectral feature extraction and target discrimination

    NASA Astrophysics Data System (ADS)

    Anderson, Dylan; Bapst, Aleksander; Coon, Joshua; Pung, Aaron; Kudenov, Michael

    2017-05-01

    Hyperspectral imaging provides a highly discriminative and powerful signature for target detection and discrimination. Recent literature has shown that considering additional target characteristics, such as spatial or temporal profiles, simultaneously with spectral content can greatly increase classifier performance. Considering these additional characteristics in a traditional discriminative algorithm requires a feature extraction step be performed first. An example of such a pipeline is computing a filter bank response to extract spatial features followed by a support vector machine (SVM) to discriminate between targets. This decoupling between feature extraction and target discrimination yields features that are suboptimal for discrimination, reducing performance. This performance reduction is especially pronounced when the number of features or available data is limited. In this paper, we propose the use of Supervised Nonnegative Tensor Factorization (SNTF) to jointly perform feature extraction and target discrimination over hyperspectral data products. SNTF learns a tensor factorization and a classification boundary from labeled training data simultaneously. This ensures that the features learned via tensor factorization are optimal for both summarizing the input data and separating the targets of interest. Practical considerations for applying SNTF to hyperspectral data are presented, and results from this framework are compared to decoupled feature extraction/target discrimination pipelines.

  6. Extraction and representation of common feature from uncertain facial expressions with cloud model.

    PubMed

    Wang, Shuliang; Chi, Hehua; Yuan, Hanning; Geng, Jing

    2017-12-01

    Human facial expressions are key ingredient to convert an individual's innate emotion in communication. However, the variation of facial expressions affects the reliable identification of human emotions. In this paper, we present a cloud model to extract facial features for representing human emotion. First, the uncertainties in facial expression are analyzed in the context of cloud model. The feature extraction and representation algorithm is established under cloud generators. With forward cloud generator, facial expression images can be re-generated as many as we like for visually representing the extracted three features, and each feature shows different roles. The effectiveness of the computing model is tested on Japanese Female Facial Expression database. Three common features are extracted from seven facial expression images. Finally, the paper is concluded and remarked.

  7. New feature extraction method for classification of agricultural products from x-ray images

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.; Lee, Ha-Woon; Keagy, Pamela M.; Schatzki, Thomas F.

    1999-01-01

    Classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non- invasive detection of defective product items on a conveyor belt. We discuss the extraction of new features that allow better discrimination between damaged and clean items. This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discrimination between damaged and clean items. This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discriminating feature (MRDF) extraction method computes nonlinear features that are used as inputs to a new modified k nearest neighbor classifier. In this work the MRDF is applied to standard features. The MRDF is robust to various probability distributions of the input class and is shown to provide good classification and new ROC data.

  8. a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, H.; Chen, Q.; Liu, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.

  9. On-line object feature extraction for multispectral scene representation

    NASA Technical Reports Server (NTRS)

    Ghassemian, Hassan; Landgrebe, David

    1988-01-01

    A new on-line unsupervised object-feature extraction method is presented that reduces the complexity and costs associated with the analysis of the multispectral image data and data transmission, storage, archival and distribution. The ambiguity in the object detection process can be reduced if the spatial dependencies, which exist among the adjacent pixels, are intelligently incorporated into the decision making process. The unity relation was defined that must exist among the pixels of an object. Automatic Multispectral Image Compaction Algorithm (AMICA) uses the within object pixel-feature gradient vector as a valuable contextual information to construct the object's features, which preserve the class separability information within the data. For on-line object extraction the path-hypothesis and the basic mathematical tools for its realization are introduced in terms of a specific similarity measure and adjacency relation. AMICA is applied to several sets of real image data, and the performance and reliability of features is evaluated.

  10. Combining Feature Extraction Methods to Assist the Diagnosis of Alzheimer's Disease.

    PubMed

    Segovia, F; Górriz, J M; Ramírez, J; Phillips, C

    2016-01-01

    Neuroimaging data as (18)F-FDG PET is widely used to assist the diagnosis of Alzheimer's disease (AD). Looking for regions with hypoperfusion/ hypometabolism, clinicians may predict or corroborate the diagnosis of the patients. Modern computer aided diagnosis (CAD) systems based on the statistical analysis of whole neuroimages are more accurate than classical systems based on quantifying the uptake of some predefined regions of interests (ROIs). In addition, these new systems allow determining new ROIs and take advantage of the huge amount of information comprised in neuroimaging data. A major branch of modern CAD systems for AD is based on multivariate techniques, which analyse a neuroimage as a whole, considering not only the voxel intensities but also the relations among them. In order to deal with the vast dimensionality of the data, a number of feature extraction methods have been successfully applied. In this work, we propose a CAD system based on the combination of several feature extraction techniques. First, some commonly used feature extraction methods based on the analysis of the variance (as principal component analysis), on the factorization of the data (as non-negative matrix factorization) and on classical magnitudes (as Haralick features) were simultaneously applied to the original data. These feature sets were then combined by means of two different combination approaches: i) using a single classifier and a multiple kernel learning approach and ii) using an ensemble of classifier and selecting the final decision by majority voting. The proposed approach was evaluated using a labelled neuroimaging database along with a cross validation scheme. As conclusion, the proposed CAD system performed better than approaches using only one feature extraction technique. We also provide a fair comparison (using the same database) of the selected feature extraction methods.

  11. Low-power coprocessor for Haar-like feature extraction with pixel-based pipelined architecture

    NASA Astrophysics Data System (ADS)

    Luo, Aiwen; An, Fengwei; Fujita, Yuki; Zhang, Xiangyu; Chen, Lei; Jürgen Mattausch, Hans

    2017-04-01

    Intelligent analysis of image and video data requires image-feature extraction as an important processing capability for machine-vision realization. A coprocessor with pixel-based pipeline (CFEPP) architecture is developed for real-time Haar-like cell-based feature extraction. Synchronization with the image sensor’s pixel frequency and immediate usage of each input pixel for the feature-construction process avoids the dependence on memory-intensive conventional strategies like integral-image construction or frame buffers. One 180 nm CMOS prototype can extract the 1680-dimensional Haar-like feature vectors, applied in the speeded up robust features (SURF) scheme, using an on-chip memory of only 96 kb (kilobit). Additionally, a low power dissipation of only 43.45 mW at 1.8 V supply voltage is achieved during VGA video procession at 120 MHz frequency with more than 325 fps. The Haar-like feature-extraction coprocessor is further evaluated by the practical application of vehicle recognition, achieving the expected high accuracy which is comparable to previous work.

  12. Acoustic Emission of Deformation Twinning in Magnesium.

    PubMed

    Mo, Chengyang; Wisner, Brian; Cabal, Mike; Hazeli, Kavan; Ramesh, K T; El Kadiri, Haitham; Al-Samman, Talal; Molodov, Konstantin D; Molodov, Dmitri A; Kontsos, Antonios

    2016-08-06

    The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach.

  13. Feature extraction with deep neural networks by a generalized discriminant analysis.

    PubMed

    Stuhlsatz, André; Lippel, Jens; Zielke, Thomas

    2012-04-01

    We present an approach to feature extraction that is a generalization of the classical linear discriminant analysis (LDA) on the basis of deep neural networks (DNNs). As for LDA, discriminative features generated from independent Gaussian class conditionals are assumed. This modeling has the advantages that the intrinsic dimensionality of the feature space is bounded by the number of classes and that the optimal discriminant function is linear. Unfortunately, linear transformations are insufficient to extract optimal discriminative features from arbitrarily distributed raw measurements. The generalized discriminant analysis (GerDA) proposed in this paper uses nonlinear transformations that are learnt by DNNs in a semisupervised fashion. We show that the feature extraction based on our approach displays excellent performance on real-world recognition and detection tasks, such as handwritten digit recognition and face detection. In a series of experiments, we evaluate GerDA features with respect to dimensionality reduction, visualization, classification, and detection. Moreover, we show that GerDA DNNs can preprocess truly high-dimensional input data to low-dimensional representations that facilitate accurate predictions even if simple linear predictors or measures of similarity are used.

  14. Facial Expression Recognition with Fusion Features Extracted from Salient Facial Areas.

    PubMed

    Liu, Yanpeng; Li, Yibin; Ma, Xin; Song, Rui

    2017-03-29

    In the pattern recognition domain, deep architectures are currently widely used and they have achieved fine results. However, these deep architectures make particular demands, especially in terms of their requirement for big datasets and GPU. Aiming to gain better results without deep networks, we propose a simplified algorithm framework using fusion features extracted from the salient areas of faces. Furthermore, the proposed algorithm has achieved a better result than some deep architectures. For extracting more effective features, this paper firstly defines the salient areas on the faces. This paper normalizes the salient areas of the same location in the faces to the same size; therefore, it can extracts more similar features from different subjects. LBP and HOG features are extracted from the salient areas, fusion features' dimensions are reduced by Principal Component Analysis (PCA) and we apply several classifiers to classify the six basic expressions at once. This paper proposes a salient areas definitude method which uses peak expressions frames compared with neutral faces. This paper also proposes and applies the idea of normalizing the salient areas to align the specific areas which express the different expressions. As a result, the salient areas found from different subjects are the same size. In addition, the gamma correction method is firstly applied on LBP features in our algorithm framework which improves our recognition rates significantly. By applying this algorithm framework, our research has gained state-of-the-art performances on CK+ database and JAFFE database.

  15. Kernel-based discriminant feature extraction using a representative dataset

    NASA Astrophysics Data System (ADS)

    Li, Honglin; Sancho Gomez, Jose-Luis; Ahalt, Stanley C.

    2002-07-01

    Discriminant Feature Extraction (DFE) is widely recognized as an important pre-processing step in classification applications. Most DFE algorithms are linear and thus can only explore the linear discriminant information among the different classes. Recently, there has been several promising attempts to develop nonlinear DFE algorithms, among which is Kernel-based Feature Extraction (KFE). The efficacy of KFE has been experimentally verified by both synthetic data and real problems. However, KFE has some known limitations. First, KFE does not work well for strongly overlapped data. Second, KFE employs all of the training set samples during the feature extraction phase, which can result in significant computation when applied to very large datasets. Finally, KFE can result in overfitting. In this paper, we propose a substantial improvement to KFE that overcomes the above limitations by using a representative dataset, which consists of critical points that are generated from data-editing techniques and centroid points that are determined by using the Frequency Sensitive Competitive Learning (FSCL) algorithm. Experiments show that this new KFE algorithm performs well on significantly overlapped datasets, and it also reduces computational complexity. Further, by controlling the number of centroids, the overfitting problem can be effectively alleviated.

  16. Dynamics of acoustic-convective drying of sunflower cake

    NASA Astrophysics Data System (ADS)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  17. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    NASA Astrophysics Data System (ADS)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However

  18. Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm.

    PubMed

    Khushaba, Rami N; Kodagoda, Sarath; Lal, Sara; Dissanayake, Gamini

    2011-01-01

    Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-- 97% on an average across all subjects.

  19. Hierarchical Feature Extraction With Local Neural Response for Image Recognition.

    PubMed

    Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P

    2013-04-01

    In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.

  20. Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram.

    PubMed

    Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi

    2016-09-13

    Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features.

  1. Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram

    PubMed Central

    Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi

    2016-01-01

    Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features. PMID:27649171

  2. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.

    PubMed

    Zarei, Roozbeh; He, Jing; Siuly, Siuly; Zhang, Yanchun

    2017-07-01

    Feature extraction of EEG signals plays a significant role in Brain-computer interface (BCI) as it can significantly affect the performance and the computational time of the system. The main aim of the current work is to introduce an innovative algorithm for acquiring reliable discriminating features from EEG signals to improve classification performances and to reduce the time complexity. This study develops a robust feature extraction method combining the principal component analysis (PCA) and the cross-covariance technique (CCOV) for the extraction of discriminatory information from the mental states based on EEG signals in BCI applications. We apply the correlation based variable selection method with the best first search on the extracted features to identify the best feature set for characterizing the distribution of mental state signals. To verify the robustness of the proposed feature extraction method, three machine learning techniques: multilayer perceptron neural networks (MLP), least square support vector machine (LS-SVM), and logistic regression (LR) are employed on the obtained features. The proposed methods are evaluated on two publicly available datasets. Furthermore, we evaluate the performance of the proposed methods by comparing it with some recently reported algorithms. The experimental results show that all three classifiers achieve high performance (above 99% overall classification accuracy) for the proposed feature set. Among these classifiers, the MLP and LS-SVM methods yield the best performance for the obtained feature. The average sensitivity, specificity and classification accuracy for these two classifiers are same, which are 99.32%, 100%, and 99.66%, respectively for the BCI competition dataset IVa and 100%, 100%, and 100%, for the BCI competition dataset IVb. The results also indicate the proposed methods outperform the most recently reported methods by at least 0.25% average accuracy improvement in dataset IVa. The execution time

  3. Feature Extraction Using an Unsupervised Neural Network

    DTIC Science & Technology

    1991-05-03

    with this neural netowrk is given and its connection to exploratory projection pursuit methods is established. DD I 2 P JA d 73 EDITIONj Of I NOV 6s...IS OBSOLETE $IN 0102- LF- 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (When Daoes Enlered) Feature Extraction using an Unsupervised Neural Network

  4. A multi-approach feature extractions for iris recognition

    NASA Astrophysics Data System (ADS)

    Sanpachai, H.; Settapong, M.

    2014-04-01

    Biometrics is a promising technique that is used to identify individual traits and characteristics. Iris recognition is one of the most reliable biometric methods. As iris texture and color is fully developed within a year of birth, it remains unchanged throughout a person's life. Contrary to fingerprint, which can be altered due to several aspects including accidental damage, dry or oily skin and dust. Although iris recognition has been studied for more than a decade, there are limited commercial products available due to its arduous requirement such as camera resolution, hardware size, expensive equipment and computational complexity. However, at the present time, technology has overcome these obstacles. Iris recognition can be done through several sequential steps which include pre-processing, features extractions, post-processing, and matching stage. In this paper, we adopted the directional high-low pass filter for feature extraction. A box-counting fractal dimension and Iris code have been proposed as feature representations. Our approach has been tested on CASIA Iris Image database and the results are considered successful.

  5. Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Eken, S.; Aydın, E.; Sayar, A.

    2017-11-01

    In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  6. A Study of Feature Extraction Using Divergence Analysis of Texture Features

    NASA Technical Reports Server (NTRS)

    Hallada, W. A.; Bly, B. G.; Boyd, R. K.; Cox, S.

    1982-01-01

    An empirical study of texture analysis for feature extraction and classification of high spatial resolution remotely sensed imagery (10 meters) is presented in terms of specific land cover types. The principal method examined is the use of spatial gray tone dependence (SGTD). The SGTD method reduces the gray levels within a moving window into a two-dimensional spatial gray tone dependence matrix which can be interpreted as a probability matrix of gray tone pairs. Haralick et al (1973) used a number of information theory measures to extract texture features from these matrices, including angular second moment (inertia), correlation, entropy, homogeneity, and energy. The derivation of the SGTD matrix is a function of: (1) the number of gray tones in an image; (2) the angle along which the frequency of SGTD is calculated; (3) the size of the moving window; and (4) the distance between gray tone pairs. The first three parameters were varied and tested on a 10 meter resolution panchromatic image of Maryville, Tennessee using the five SGTD measures. A transformed divergence measure was used to determine the statistical separability between four land cover categories forest, new residential, old residential, and industrial for each variation in texture parameters.

  7. Acoustics of snoring and automatic snore sound detection in children.

    PubMed

    Çavuşoğlu, M; Poets, C F; Urschitz, M S

    2017-10-31

    Acoustic analyses of snoring sounds have been used to objectively assess snoring and applied in various clinical problems for adult patients. Such studies require highly automatized tools to analyze the sound recordings of the whole night's sleep, in order to extract clinically relevant snore- related statistics. The existing techniques and software used for adults are not efficiently applicable to snoring sounds in children, basically because of different acoustic signal properties. In this paper, we present a broad range of acoustic characteristics of snoring sounds in children (N  =  38) in comparison to adult (N  =  30) patients. Acoustic characteristics of the signals were calculated, including frequency domain representations, spectrogram-based characteristics, spectral envelope analysis, formant structures and loudness of the snoring sounds. We observed significant differences in spectral features, formant structures and loudness of the snoring signals of children compared to adults that may arise from the diversity of the upper airway anatomy as the principal determinant of the snore sound generation mechanism. Furthermore, based on the specific audio features of snoring children, we proposed a novel algorithm for the automatic detection of snoring sounds from ambient acoustic data specifically in a pediatric population. The respiratory sounds were recorded using a pair of microphones and a multi-channel data acquisition system simultaneously with full-night polysomnography during sleep. Brief sound chunks of 0.5 s were classified as either belonging to a snoring event or not with a multi-layer perceptron, which was trained in a supervised fashion using stochastic gradient descent on a large hand-labeled dataset using frequency domain features. The method proposed here has been used to extract snore-related statistics that can be calculated from the detected snore episodes for the whole night's sleep, including number of snore episodes

  8. Optical generation and detection of gigahertz-frequency longitudinal and shear acoustic waves in liquids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Klieber, Christoph; Pezeril, Thomas; Andrieu, Stéphane; Nelson, Keith A.

    2012-07-01

    We describe an adaptation of picosecond laser ultrasonics tailored for study of GHz-frequency longitudinal and shear acoustic waves in liquids. Time-domain coherent Brillouin scattering is used to detect multicycle acoustic waves after their propagation through variable thickness liquid layers into a solid substrate. A specialized optical pulse shaping method is used to generate sequences of pulses whose repetition rate determines the acoustic frequency. The measurements reveal the viscoelastic liquid properties and also include signatures of the optical and acoustic cavities formed by the multilayer sample assembly. Modeling of the signals allows their features to be distinguished so that liquid properties can be extracted reliably. Longitudinal and shear acoustic wave data from glycerol and from the silicon oil DC704 are presented.

  9. Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav

    2014-03-01

    Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.

  10. On application of kernel PCA for generating stimulus features for fMRI during continuous music listening.

    PubMed

    Tsatsishvili, Valeri; Burunat, Iballa; Cong, Fengyu; Toiviainen, Petri; Alluri, Vinoo; Ristaniemi, Tapani

    2018-06-01

    There has been growing interest towards naturalistic neuroimaging experiments, which deepen our understanding of how human brain processes and integrates incoming streams of multifaceted sensory information, as commonly occurs in real world. Music is a good example of such complex continuous phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the linear combination of the acoustic descriptors computationally extracted from the stimulus audio. NEW METHOD: fMRI data from naturalistic music listening experiment were employed here. Kernel principal component analysis (KPCA) was applied to acoustic descriptors extracted from the stimulus audio to generate a set of nonlinear stimulus features. Subsequently, perceptual and neural correlates of the generated high-level features were examined. The generated features captured musical percepts that were hidden from the linear PCA features, namely Rhythmic Complexity and Event Synchronicity. Neural correlates of the new features revealed activations associated to processing of complex rhythms, including auditory, motor, and frontal areas. Results were compared with the findings in the previously published study, which analyzed the same fMRI data but applied linear PCA for generating stimulus features. To enable comparison of the results, methodology for finding stimulus-driven functional maps was adopted from the previous study. Exploiting nonlinear relationships among acoustic descriptors can lead to the novel high-level stimulus features, which can in turn reveal new brain structures involved in music processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Accurate facade feature extraction method for buildings from three-dimensional point cloud data considering structural information

    NASA Astrophysics Data System (ADS)

    Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia

    2018-05-01

    Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.

  12. Extraction of edge-based and region-based features for object recognition

    NASA Astrophysics Data System (ADS)

    Coutts, Benjamin; Ravi, Srinivas; Hu, Gongzhu; Shrikhande, Neelima

    1993-08-01

    One of the central problems of computer vision is object recognition. A catalogue of model objects is described as a set of features such as edges and surfaces. The same features are extracted from the scene and matched against the models for object recognition. Edges and surfaces extracted from the scenes are often noisy and imperfect. In this paper algorithms are described for improving low level edge and surface features. Existing edge extraction algorithms are applied to the intensity image to obtain edge features. Initial edges are traced by following directions of the current contour. These are improved by using corresponding depth and intensity information for decision making at branch points. Surface fitting routines are applied to the range image to obtain planar surface patches. An algorithm of region growing is developed that starts with a coarse segmentation and uses quadric surface fitting to iteratively merge adjacent regions into quadric surfaces based on approximate orthogonal distance regression. Surface information obtained is returned to the edge extraction routine to detect and remove fake edges. This process repeats until no more merging or edge improvement can take place. Both synthetic (with Gaussian noise) and real images containing multiple object scenes have been tested using the merging criteria. Results appeared quite encouraging.

  13. The algorithm of fast image stitching based on multi-feature extraction

    NASA Astrophysics Data System (ADS)

    Yang, Chunde; Wu, Ge; Shi, Jing

    2018-05-01

    This paper proposed an improved image registration method combining Hu-based invariant moment contour information and feature points detection, aiming to solve the problems in traditional image stitching algorithm, such as time-consuming feature points extraction process, redundant invalid information overload and inefficiency. First, use the neighborhood of pixels to extract the contour information, employing the Hu invariant moment as similarity measure to extract SIFT feature points in those similar regions. Then replace the Euclidean distance with Hellinger kernel function to improve the initial matching efficiency and get less mismatching points, further, estimate affine transformation matrix between the images. Finally, local color mapping method is adopted to solve uneven exposure, using the improved multiresolution fusion algorithm to fuse the mosaic images and realize seamless stitching. Experimental results confirm high accuracy and efficiency of method proposed in this paper.

  14. Acoustic constituents of prosodic typology

    NASA Astrophysics Data System (ADS)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The

  15. A Hybrid Neural Network and Feature Extraction Technique for Target Recognition.

    DTIC Science & Technology

    target features are extracted, the extracted data being evaluated in an artificial neural network to identify a target at a location within the image scene from which the different viewing angles extend.

  16. A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data

    PubMed Central

    Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina

    2016-01-01

    The Golgi Apparatus (GA) is a major collection and dispatch station for numerous proteins destined for secretion, plasma membranes and lysosomes. The dysfunction of GA proteins can result in neurodegenerative diseases. Therefore, accurate identification of protein subGolgi localizations may assist in drug development and understanding the mechanisms of the GA involved in various cellular processes. In this paper, a new computational method is proposed for identifying cis-Golgi proteins from trans-Golgi proteins. Based on the concept of Common Spatial Patterns (CSP), a novel feature extraction technique is developed to extract evolutionary information from protein sequences. To deal with the imbalanced benchmark dataset, the Synthetic Minority Over-sampling Technique (SMOTE) is adopted. A feature selection method called Random Forest-Recursive Feature Elimination (RF-RFE) is employed to search the optimal features from the CSP based features and g-gap dipeptide composition. Based on the optimal features, a Random Forest (RF) module is used to distinguish cis-Golgi proteins from trans-Golgi proteins. Through the jackknife cross-validation, the proposed method achieves a promising performance with a sensitivity of 0.889, a specificity of 0.880, an accuracy of 0.885, and a Matthew’s Correlation Coefficient (MCC) of 0.765, which remarkably outperforms previous methods. Moreover, when tested on a common independent dataset, our method also achieves a significantly improved performance. These results highlight the promising performance of the proposed method to identify Golgi-resident protein types. Furthermore, the CSP based feature extraction method may provide guidelines for protein function predictions. PMID:26861308

  17. Research on feature extraction techniques of Hainan Li brocade pattern

    NASA Astrophysics Data System (ADS)

    Zhou, Yuping; Chen, Fuqiang; Zhou, Yuhua

    2016-03-01

    Hainan Li brocade skills has been listed as world non-material cultural heritage preservation, therefore, the research on Hainan Li brocade patterns plays an important role in Li brocade culture inheritance. The meaning of Li brocade patterns was analyzed and the shape feature extraction techniques to original Li brocade patterns were advanced in this paper, based on the contour tracking algorithm. First, edge detection was made on the design patterns, and then the morphological closing operation was used to smooth the image, and finally contour tracking was used to extract the outer contours of Li brocade patterns. The extracted contour features were processed by means of morphology, and digital characteristics of contours are obtained by invariant moments. At last, different patterns of Li brocade design are briefly analyzed according to the digital characteristics. The results showed that the pattern extraction method to Li brocade pattern shapes is feasible and effective according to above method.

  18. True-Triaxial Experimental Study of the Evolutionary Features of the Acoustic Emissions and Sounds of Rockburst Processes

    NASA Astrophysics Data System (ADS)

    Su, Guoshao; Shi, Yanjiong; Feng, Xiating; Jiang, Jianqing; Zhang, Jie; Jiang, Quan

    2018-02-01

    Rockbursts are markedly characterized by the ejection of rock fragments from host rocks at certain speeds. The rockburst process is always accompanied by acoustic signals that include acoustic emissions (AE) and sounds. A deep insight into the evolutionary features of AE and sound signals is important to improve the accuracy of rockburst prediction. To investigate the evolutionary features of AE and sound signals, rockburst tests on granite rock specimens under true-triaxial loading conditions were performed using an improved rockburst testing system, and the AE and sounds during rockburst development were recorded and analyzed. The results show that the evolutionary features of the AE and sound signals were obvious and similar. On the eve of a rockburst, a `quiescent period' could be observed in both the evolutionary process of the AE hits and the sound waveform. Furthermore, the time-dependent fractal dimensions of the AE hits and sound amplitude both showed a tendency to continuously decrease on the eve of the rockbursts. In addition, on the eve of the rockbursts, the main frequency of the AE and sound signals both showed decreasing trends, and the frequency spectrum distributions were both characterized by low amplitudes, wide frequency bands and multiple peak shapes. Thus, the evolutionary features of sound signals on the eve of rockbursts, as well as that of AE signals, can be used as beneficial information for rockburst prediction.

  19. A flexible data-driven comorbidity feature extraction framework.

    PubMed

    Sideris, Costas; Pourhomayoun, Mohammad; Kalantarian, Haik; Sarrafzadeh, Majid

    2016-06-01

    Disease and symptom diagnostic codes are a valuable resource for classifying and predicting patient outcomes. In this paper, we propose a novel methodology for utilizing disease diagnostic information in a predictive machine learning framework. Our methodology relies on a novel, clustering-based feature extraction framework using disease diagnostic information. To reduce the data dimensionality, we identify disease clusters using co-occurrence statistics. We optimize the number of generated clusters in the training set and then utilize these clusters as features to predict patient severity of condition and patient readmission risk. We build our clustering and feature extraction algorithm using the 2012 National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP) which contains 7 million hospital discharge records and ICD-9-CM codes. The proposed framework is tested on Ronald Reagan UCLA Medical Center Electronic Health Records (EHR) from 3041 Congestive Heart Failure (CHF) patients and the UCI 130-US diabetes dataset that includes admissions from 69,980 diabetic patients. We compare our cluster-based feature set with the commonly used comorbidity frameworks including Charlson's index, Elixhauser's comorbidities and their variations. The proposed approach was shown to have significant gains between 10.7-22.1% in predictive accuracy for CHF severity of condition prediction and 4.65-5.75% in diabetes readmission prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Image feature extraction based on the camouflage effectiveness evaluation

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Lv, Xuliang; Li, Ling; Wang, Xinzhu; Zhang, Zhi

    2018-04-01

    The key step of camouflage effectiveness evaluation is how to combine the human visual physiological features, psychological features to select effectively evaluation indexes. Based on the predecessors' camo comprehensive evaluation method, this paper chooses the suitable indexes combining with the image quality awareness, and optimizes those indexes combining with human subjective perception. Thus, it perfects the theory of index extraction.

  1. Acoustic Emission of Deformation Twinning in Magnesium

    PubMed Central

    Mo, Chengyang; Wisner, Brian; Cabal, Mike; Hazeli, Kavan; Ramesh, K. T.; El Kadiri, Haitham; Al-Samman, Talal; Molodov, Konstantin D.; Molodov, Dmitri A.; Kontsos, Antonios

    2016-01-01

    The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach. PMID:28773786

  2. Agonistic sounds in the skunk clownfish Amphiprion akallopisos: size-related variation in acoustic features.

    PubMed

    Colleye, O; Frederich, B; Vandewalle, P; Casadevall, M; Parmentier, E

    2009-09-01

    Fourteen individuals of the skunk clownfish Amphiprion akallopisos of different sizes and of different sexual status (non-breeder, male or female) were analysed for four acoustic features. Dominant frequency and pulse duration were highly correlated with standard length (r = 0.97), and were not related to sex. Both the dominant frequency and pulse duration were signals conveying information related to the size of the emitter, which implies that these sound characteristics could be useful in assessing size of conspecifics.

  3. Joint Feature Extraction and Classifier Design for ECG-Based Biometric Recognition.

    PubMed

    Gutta, Sandeep; Cheng, Qi

    2016-03-01

    Traditional biometric recognition systems often utilize physiological traits such as fingerprint, face, iris, etc. Recent years have seen a growing interest in electrocardiogram (ECG)-based biometric recognition techniques, especially in the field of clinical medicine. In existing ECG-based biometric recognition methods, feature extraction and classifier design are usually performed separately. In this paper, a multitask learning approach is proposed, in which feature extraction and classifier design are carried out simultaneously. Weights are assigned to the features within the kernel of each task. We decompose the matrix consisting of all the feature weights into sparse and low-rank components. The sparse component determines the features that are relevant to identify each individual, and the low-rank component determines the common feature subspace that is relevant to identify all the subjects. A fast optimization algorithm is developed, which requires only the first-order information. The performance of the proposed approach is demonstrated through experiments using the MIT-BIH Normal Sinus Rhythm database.

  4. Is dust acoustic wave a new plasma acoustic mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, C.B.

    1997-09-01

    In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi {ital et al.} [J. Plasma Phys. {bold 41}, 219 (1989)]. It is suggested that both correct and more usable nomenclature of themore » ALM should be the so-called acoustic mode. {copyright} {ital 1997 American Institute of Physics.}« less

  5. Time series analysis of tool wear in sheet metal stamping using acoustic emission

    NASA Astrophysics Data System (ADS)

    Vignesh Shanbhag, V.; Pereira, P. Michael; Rolfe, F. Bernard; Arunachalam, N.

    2017-09-01

    Galling is an adhesive wear mode that often affects the lifespan of stamping tools. Since stamping tools represent significant economic cost, even a slight improvement in maintenance cost is of high importance for the stamping industry. In other manufacturing industries, online tool condition monitoring has been used to prevent tool wear-related failure. However, monitoring the acoustic emission signal from a stamping process is a non-trivial task since the acoustic emission signal is non-stationary and non-transient. There have been numerous studies examining acoustic emissions in sheet metal stamping. However, very few have focused in detail on how the signals change as wear on the tool surface progresses prior to failure. In this study, time domain analysis was applied to the acoustic emission signals to extract features related to tool wear. To understand the wear progression, accelerated stamping tests were performed using a semi-industrial stamping setup which can perform clamping, piercing, stamping in a single cycle. The time domain features related to stamping were computed for the acoustic emissions signal of each part. The sidewalls of the stamped parts were scanned using an optical profilometer to obtain profiles of the worn part, and they were qualitatively correlated to that of the acoustic emissions signal. Based on the wear behaviour, the wear data can be divided into three stages: - In the first stage, no wear is observed, in the second stage, adhesive wear is likely to occur, and in the third stage severe abrasive plus adhesive wear is likely to occur. Scanning electron microscopy showed the formation of lumps on the stamping tool, which represents galling behavior. Correlation between the time domain features of the acoustic emissions signal and the wear progression identified in this study lays the basis for tool diagnostics in stamping industry.

  6. Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.

    PubMed

    Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong

    2018-05-11

    Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.

  7. A Generic multi-dimensional feature extraction method using multiobjective genetic programming.

    PubMed

    Zhang, Yang; Rockett, Peter I

    2009-01-01

    In this paper, we present a generic feature extraction method for pattern classification using multiobjective genetic programming. This not only evolves the (near-)optimal set of mappings from a pattern space to a multi-dimensional decision space, but also simultaneously optimizes the dimensionality of that decision space. The presented framework evolves vector-to-vector feature extractors that maximize class separability. We demonstrate the efficacy of our approach by making statistically-founded comparisons with a wide variety of established classifier paradigms over a range of datasets and find that for most of the pairwise comparisons, our evolutionary method delivers statistically smaller misclassification errors. At very worst, our method displays no statistical difference in a few pairwise comparisons with established classifier/dataset combinations; crucially, none of the misclassification results produced by our method is worse than any comparator classifier. Although principally focused on feature extraction, feature selection is also performed as an implicit side effect; we show that both feature extraction and selection are important to the success of our technique. The presented method has the practical consequence of obviating the need to exhaustively evaluate a large family of conventional classifiers when faced with a new pattern recognition problem in order to attain a good classification accuracy.

  8. Variogram-based feature extraction for neural network recognition of logos

    NASA Astrophysics Data System (ADS)

    Pham, Tuan D.

    2003-03-01

    This paper presents a new approach for extracting spatial features of images based on the theory of regionalized variables. These features can be effectively used for automatic recognition of logo images using neural networks. Experimental results on a public-domain logo database show the effectiveness of the proposed approach.

  9. Impact of postharvest dehydration process of winegrapes on mechanical and acoustic properties of the seeds and their relationship with flavanol extraction during simulated maceration.

    PubMed

    Río Segade, Susana; Torchio, Fabrizio; Gerbi, Vincenzo; Quijada-Morín, Natalia; García-Estévez, Ignacio; Giacosa, Simone; Escribano-Bailón, M Teresa; Rolle, Luca

    2016-05-15

    This study represents the first time that the extraction of phenolic compounds from the seeds is assessed from instrumental texture properties for dehydrated grapes. Nebbiolo winegrapes were postharvest dehydrated at 20°C and 41% relative humidity. During the dehydration process, sampling was performed at 15%, 30%, 45% and 60% weight loss. The extractable fraction and extractability of phenolic compounds from the seeds were determined after simulated maceration. The evolution of mechanical and acoustic attributes of intact seeds was also determined during grape dehydration to evaluate how these changes affected the extraction of phenolic compounds. The extractable content and extractability of monomeric flavanols and proanthocyanidins, as well as the galloylation percentage of flavanols, might be predicted easily and quickly from the mechanical and acoustic properties of intact seeds. This would help in decision-making on the optimal dehydration level of winegrapes and the best management of winemaking of dehydrated grapes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Accelerating Biomedical Signal Processing Using GPU: A Case Study of Snore Sound Feature Extraction.

    PubMed

    Guo, Jian; Qian, Kun; Zhang, Gongxuan; Xu, Huijie; Schuller, Björn

    2017-12-01

    The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.

  11. Thermal feature extraction of servers in a datacenter using thermal image registration

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Ran, Jian; Xie, Ting; Gao, Shan

    2017-09-01

    Thermal cameras provide fine-grained thermal information that enhances monitoring and enables automatic thermal management in large datacenters. Recent approaches employing mobile robots or thermal camera networks can already identify the physical locations of hot spots. Other distribution information used to optimize datacenter management can also be obtained automatically using pattern recognition technology. However, most of the features extracted from thermal images, such as shape and gradient, may be affected by changes in the position and direction of the thermal camera. This paper presents a method for extracting the thermal features of a hot spot or a server in a container datacenter. First, thermal and visual images are registered based on textural characteristics extracted from images acquired in datacenters. Then, the thermal distribution of each server is standardized. The features of a hot spot or server extracted from the standard distribution can reduce the impact of camera position and direction. The results of experiments show that image registration is efficient for aligning the corresponding visual and thermal images in the datacenter, and the standardization procedure reduces the impacts of camera position and direction on hot spot or server features.

  12. Acoustic Full Waveform Inversion to Characterize Near-surface Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A. J.

    2015-12-01

    Recent high-quality, atmospheric overpressure data from chemical high-explosive experiments provide a unique opportunity to characterize near-surface explosions, specifically estimating yield and source time function. Typically, yield is estimated from measured signal features, such as peak pressure, impulse, duration and/or arrival time of acoustic signals. However, the application of full waveform inversion to acoustic signals for yield estimation has not been fully explored. In this study, we apply a full waveform inversion method to local overpressure data to extract accurate pressure-time histories of acoustics sources during chemical explosions. A robust and accurate inversion technique for acoustic source is investigated using numerical Green's functions that take into account atmospheric and topographic propagation effects. The inverted pressure-time history represents the pressure fluctuation at the source region associated with the explosion, and thus, provides a valuable information about acoustic source mechanisms and characteristics in greater detail. We compare acoustic source properties (i.e., peak overpressure, duration, and non-isotropic shape) of a series of explosions having different emplacement conditions and investigate the relationship of the acoustic sources to the yields of explosions. The time histories of acoustic sources may refine our knowledge of sound-generation mechanisms of shallow explosions, and thereby allow for accurate yield estimation based on acoustic measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. A method for automatic feature points extraction of human vertebrae three-dimensional model

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Wu, Junsheng

    2017-05-01

    A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.

  14. Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review

    NASA Astrophysics Data System (ADS)

    Setiyoko, A.; Dharma, I. G. W. S.; Haryanto, T.

    2017-01-01

    Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction or classification process. Applying the most suited model for this data mining is still challenging because there are issues regarding accuracy and computational cost. This research aim is to develop a better understanding regarding object feature extraction and classification applied for satellite image by systematically reviewing related recent research projects. A method used in this research is based on PRISMA statement. After deriving important points from trusted sources, pixel based and texture-based feature extraction techniques are promising technique to be analyzed more in recent development of feature extraction and classification.

  15. A Neuro-Fuzzy System for Extracting Environment Features Based on Ultrasonic Sensors

    PubMed Central

    Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José

    2009-01-01

    In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case. PMID:22303160

  16. Reducing the dimensions of acoustic devices using anti-acoustic-null media

    NASA Astrophysics Data System (ADS)

    Li, Borui; Sun, Fei; He, Sailing

    2018-02-01

    An anti-acoustic-null medium (anti-ANM), a special homogeneous medium with anisotropic mass density, is designed by transformation acoustics (TA). Anti-ANM can greatly compress acoustic space along the direction of its main axis, where the size compression ratio is extremely large. This special feature can be utilized to reduce the geometric dimensions of classic acoustic devices. For example, the height of a parabolic acoustic reflector can be greatly reduced. We also design a brass-air structure on the basis of the effective medium theory to materialize the anti-ANM in a broadband frequency range. Numerical simulations verify the performance of the proposed anti-ANM.

  17. Extracted facial feature of racial closely related faces

    NASA Astrophysics Data System (ADS)

    Liewchavalit, Chalothorn; Akiba, Masakazu; Kanno, Tsuneo; Nagao, Tomoharu

    2010-02-01

    Human faces contain a lot of demographic information such as identity, gender, age, race and emotion. Human being can perceive these pieces of information and use it as an important clue in social interaction with other people. Race perception is considered the most delicacy and sensitive parts of face perception. There are many research concerning image-base race recognition, but most of them are focus on major race group such as Caucasoid, Negroid and Mongoloid. This paper focuses on how people classify race of the racial closely related group. As a sample of racial closely related group, we choose Japanese and Thai face to represents difference between Northern and Southern Mongoloid. Three psychological experiment was performed to study the strategies of face perception on race classification. As a result of psychological experiment, it can be suggested that race perception is an ability that can be learn. Eyes and eyebrows are the most attention point and eyes is a significant factor in race perception. The Principal Component Analysis (PCA) was performed to extract facial features of sample race group. Extracted race features of texture and shape were used to synthesize faces. As the result, it can be suggested that racial feature is rely on detailed texture rather than shape feature. This research is a indispensable important fundamental research on the race perception which are essential in the establishment of human-like race recognition system.

  18. Feature extraction using convolutional neural network for classifying breast density in mammographic images

    NASA Astrophysics Data System (ADS)

    Thomaz, Ricardo L.; Carneiro, Pedro C.; Patrocinio, Ana C.

    2017-03-01

    Breast cancer is the leading cause of death for women in most countries. The high levels of mortality relate mostly to late diagnosis and to the direct proportionally relationship between breast density and breast cancer development. Therefore, the correct assessment of breast density is important to provide better screening for higher risk patients. However, in modern digital mammography the discrimination among breast densities is highly complex due to increased contrast and visual information for all densities. Thus, a computational system for classifying breast density might be a useful tool for aiding medical staff. Several machine-learning algorithms are already capable of classifying small number of classes with good accuracy. However, machinelearning algorithms main constraint relates to the set of features extracted and used for classification. Although well-known feature extraction techniques might provide a good set of features, it is a complex task to select an initial set during design of a classifier. Thus, we propose feature extraction using a Convolutional Neural Network (CNN) for classifying breast density by a usual machine-learning classifier. We used 307 mammographic images downsampled to 260x200 pixels to train a CNN and extract features from a deep layer. After training, the activation of 8 neurons from a deep fully connected layer are extracted and used as features. Then, these features are feedforward to a single hidden layer neural network that is cross-validated using 10-folds to classify among four classes of breast density. The global accuracy of this method is 98.4%, presenting only 1.6% of misclassification. However, the small set of samples and memory constraints required the reuse of data in both CNN and MLP-NN, therefore overfitting might have influenced the results even though we cross-validated the network. Thus, although we presented a promising method for extracting features and classifying breast density, a greater database is

  19. Extracting foreground ensemble features to detect abnormal crowd behavior in intelligent video-surveillance systems

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien

    2017-09-01

    Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.

  20. Exploiting Acoustic and Syntactic Features for Automatic Prosody Labeling in a Maximum Entropy Framework

    PubMed Central

    Sridhar, Vivek Kumar Rangarajan; Bangalore, Srinivas; Narayanan, Shrikanth S.

    2009-01-01

    In this paper, we describe a maximum entropy-based automatic prosody labeling framework that exploits both language and speech information. We apply the proposed framework to both prominence and phrase structure detection within the Tones and Break Indices (ToBI) annotation scheme. Our framework utilizes novel syntactic features in the form of supertags and a quantized acoustic–prosodic feature representation that is similar to linear parameterizations of the prosodic contour. The proposed model is trained discriminatively and is robust in the selection of appropriate features for the task of prosody detection. The proposed maximum entropy acoustic–syntactic model achieves pitch accent and boundary tone detection accuracies of 86.0% and 93.1% on the Boston University Radio News corpus, and, 79.8% and 90.3% on the Boston Directions corpus. The phrase structure detection through prosodic break index labeling provides accuracies of 84% and 87% on the two corpora, respectively. The reported results are significantly better than previously reported results and demonstrate the strength of maximum entropy model in jointly modeling simple lexical, syntactic, and acoustic features for automatic prosody labeling. PMID:19603083

  1. Linearly Supporting Feature Extraction for Automated Estimation of Stellar Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Li, Xiangru; Lu, Yu; Comte, Georges; Luo, Ali; Zhao, Yongheng; Wang, Yongjun

    2015-05-01

    We describe a scheme to extract linearly supporting (LSU) features from stellar spectra to automatically estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H]. “Linearly supporting” means that the atmospheric parameters can be accurately estimated from the extracted features through a linear model. The successive steps of the process are as follow: first, decompose the spectrum using a wavelet packet (WP) and represent it by the derived decomposition coefficients; second, detect representative spectral features from the decomposition coefficients using the proposed method Least Absolute Shrinkage and Selection Operator (LARS)bs; third, estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H] from the detected features using a linear regression method. One prominent characteristic of this scheme is its ability to evaluate quantitatively the contribution of each detected feature to the atmospheric parameter estimate and also to trace back the physical significance of that feature. This work also shows that the usefulness of a component depends on both the wavelength and frequency. The proposed scheme has been evaluated on both real spectra from the Sloan Digital Sky Survey (SDSS)/SEGUE and synthetic spectra calculated from Kurucz's NEWODF models. On real spectra, we extracted 23 features to estimate {{T}{\\tt{eff} }}, 62 features for log g, and 68 features for [Fe/H]. Test consistencies between our estimates and those provided by the Spectroscopic Parameter Pipeline of SDSS show that the mean absolute errors (MAEs) are 0.0062 dex for log {{T}{\\tt{eff} }} (83 K for {{T}{\\tt{eff} }}), 0.2345 dex for log g, and 0.1564 dex for [Fe/H]. For the synthetic spectra, the MAE test accuracies are 0.0022 dex for log {{T}{\\tt{eff} }} (32 K for {{T}{\\tt{eff} }}), 0.0337 dex for log g, and 0.0268 dex for [Fe/H].

  2. Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN

    PubMed Central

    Cheng, Gang; Chen, Xihui

    2018-01-01

    Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671

  3. Features extraction algorithm about typical railway perimeter intrusion event

    NASA Astrophysics Data System (ADS)

    Zhou, Jieyun; Wang, Chaodong; Liu, Lihai

    2017-10-01

    Research purposes: Optical fiber vibration sensing system has been widely used in the oil, gas, frontier defence, prison and power industries. But, there are few reports about the application in railway defence. That is because the surrounding environment is complicated and there are many challenges to be overcomed in the optical fiber vibration sensing system application. For example, how to eliminate the effects of vibration caused by train, the natural environments such as wind and rain and how to identify and classify the intrusion events. In order to solve these problems, the feature signals of these events should be extracted firstly. Research conclusions: (1) In optical fiber vibration sensing system based on Sagnac interferometer, the peak-to-peak value, peak-to-average ratio, standard deviation, zero-crossing rate, short-term energy and kurtosis may serve as feature signals. (2) The feature signals of resting state, climbing concrete fence, breaking barbed wire, knocking concrete fence and rainstorm have been extracted, which shows significant difference among each other. (3) The research conclusions can be used in the identification and classification of intrusion events.

  4. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.

    PubMed

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2013-02-01

    This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments.

  5. Interpreting the Acoustic Characteristics of Rpw Towards Its Detection- A Review

    NASA Astrophysics Data System (ADS)

    Leena Nangai, V.; Martin, Betty, Dr.

    2017-08-01

    Red palm weevil (Rhynchophorus ferrugineus) is also known as Asian palm weevil or Sago weevil. This is a lethal pest of palms which can attack about 17 varieties of palm trees. The growth rate of the weevil depends upon the type of palm tree it feeds on. It attacks the palm trees which is less than 20 years. The presence of the weevil in the palm tree is not evident when seen by the naked eye. Hence palm tree cultivation is affected very badly by the red palm weevil larvae. The larva bores the trunk of the palm trees by feeding on the soft tissues which is present at the centre. The chewing activity produces a kind of sound. Other movements like crawling, emission also produces very feeble sound. The sound produced by the larvae lies between specific ranges of frequency and has its own spectral features. The spectral features extracted from the acoustic movement of the RPW larvae helps the early detection and protect the palm tree from further infestation. Here a survey on acoustic detection and development of instrument or sensors based on acoustic characteristic of RPW larvae is conducted.

  6. Prediction of occult invasive disease in ductal carcinoma in situ using computer-extracted mammographic features

    NASA Astrophysics Data System (ADS)

    Shi, Bibo; Grimm, Lars J.; Mazurowski, Maciej A.; Marks, Jeffrey R.; King, Lorraine M.; Maley, Carlo C.; Hwang, E. Shelley; Lo, Joseph Y.

    2017-03-01

    Predicting the risk of occult invasive disease in ductal carcinoma in situ (DCIS) is an important task to help address the overdiagnosis and overtreatment problems associated with breast cancer. In this work, we investigated the feasibility of using computer-extracted mammographic features to predict occult invasive disease in patients with biopsy proven DCIS. We proposed a computer-vision algorithm based approach to extract mammographic features from magnification views of full field digital mammography (FFDM) for patients with DCIS. After an expert breast radiologist provided a region of interest (ROI) mask for the DCIS lesion, the proposed approach is able to segment individual microcalcifications (MCs), detect the boundary of the MC cluster (MCC), and extract 113 mammographic features from MCs and MCC within the ROI. In this study, we extracted mammographic features from 99 patients with DCIS (74 pure DCIS; 25 DCIS plus invasive disease). The predictive power of the mammographic features was demonstrated through binary classifications between pure DCIS and DCIS with invasive disease using linear discriminant analysis (LDA). Before classification, the minimum redundancy Maximum Relevance (mRMR) feature selection method was first applied to choose subsets of useful features. The generalization performance was assessed using Leave-One-Out Cross-Validation and Receiver Operating Characteristic (ROC) curve analysis. Using the computer-extracted mammographic features, the proposed model was able to distinguish DCIS with invasive disease from pure DCIS, with an average classification performance of AUC = 0.61 +/- 0.05. Overall, the proposed computer-extracted mammographic features are promising for predicting occult invasive disease in DCIS.

  7. Chemical-induced disease relation extraction with various linguistic features.

    PubMed

    Gu, Jinghang; Qian, Longhua; Zhou, Guodong

    2016-01-01

    Understanding the relations between chemicals and diseases is crucial in various biomedical tasks such as new drug discoveries and new therapy developments. While manually mining these relations from the biomedical literature is costly and time-consuming, such a procedure is often difficult to keep up-to-date. To address these issues, the BioCreative-V community proposed a challenging task of automatic extraction of chemical-induced disease (CID) relations in order to benefit biocuration. This article describes our work on the CID relation extraction task on the BioCreative-V tasks. We built a machine learning based system that utilized simple yet effective linguistic features to extract relations with maximum entropy models. In addition to leveraging various features, the hypernym relations between entity concepts derived from the Medical Subject Headings (MeSH)-controlled vocabulary were also employed during both training and testing stages to obtain more accurate classification models and better extraction performance, respectively. We demoted relation extraction between entities in documents to relation extraction between entity mentions. In our system, pairs of chemical and disease mentions at both intra- and inter-sentence levels were first constructed as relation instances for training and testing, then two classification models at both levels were trained from the training examples and applied to the testing examples. Finally, we merged the classification results from mention level to document level to acquire final relations between chemicals and diseases. Our system achieved promisingF-scores of 60.4% on the development dataset and 58.3% on the test dataset using gold-standard entity annotations, respectively. Database URL:https://github.com/JHnlp/BC5CIDTask. © The Author(s) 2016. Published by Oxford University Press.

  8. SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.

    PubMed

    Xu, Wenxuan; Zhang, Li; Lu, Yaping

    2016-06-01

    The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.

    PubMed

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-10-20

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.

  10. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System

    PubMed Central

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-01-01

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596

  11. Effects of melody and technique on acoustical and musical features of western operatic singing voices.

    PubMed

    Larrouy-Maestri, Pauline; Magis, David; Morsomme, Dominique

    2014-05-01

    The operatic singing technique is frequently used in classical music. Several acoustical parameters of this specific technique have been studied but how these parameters combine remains unclear. This study aims to further characterize the Western operatic singing technique by observing the effects of melody and technique on acoustical and musical parameters of the singing voice. Fifty professional singers performed two contrasting melodies (popular song and romantic melody) with two vocal techniques (with and without operatic singing technique). The common quality parameters (energy distribution, vibrato rate, and extent), perturbation parameters (standard deviation of the fundamental frequency, signal-to-noise ratio, jitter, and shimmer), and musical features (fundamental frequency of the starting note, average tempo, and sound pressure level) of the 200 sung performances were analyzed. The results regarding the effect of melody and technique on the acoustical and musical parameters show that the choice of melody had a limited impact on the parameters observed, whereas a particular vocal profile appeared depending on the vocal technique used. This study confirms that vocal technique affects most of the parameters examined. In addition, the observation of quality, perturbation, and musical parameters contributes to a better understanding of the Western operatic singing technique. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  12. Cascade Classification with Adaptive Feature Extraction for Arrhythmia Detection.

    PubMed

    Park, Juyoung; Kang, Mingon; Gao, Jean; Kim, Younghoon; Kang, Kyungtae

    2017-01-01

    Detecting arrhythmia from ECG data is now feasible on mobile devices, but in this environment it is necessary to trade computational efficiency against accuracy. We propose an adaptive strategy for feature extraction that only considers normalized beat morphology features when running in a resource-constrained environment; but in a high-performance environment it takes account of a wider range of ECG features. This process is augmented by a cascaded random forest classifier. Experiments on data from the MIT-BIH Arrhythmia Database showed classification accuracies from 96.59% to 98.51%, which are comparable to state-of-the art methods.

  13. Terrain-driven unstructured mesh development through semi-automatic vertical feature extraction

    NASA Astrophysics Data System (ADS)

    Bilskie, Matthew V.; Coggin, David; Hagen, Scott C.; Medeiros, Stephen C.

    2015-12-01

    A semi-automated vertical feature terrain extraction algorithm is described and applied to a two-dimensional, depth-integrated, shallow water equation inundation model. The extracted features describe what are commonly sub-mesh scale elevation details (ridge and valleys), which may be ignored in standard practice because adequate mesh resolution cannot be afforded. The extraction algorithm is semi-automated, requires minimal human intervention, and is reproducible. A lidar-derived digital elevation model (DEM) of coastal Mississippi and Alabama serves as the source data for the vertical feature extraction. Unstructured mesh nodes and element edges are aligned to the vertical features and an interpolation algorithm aimed at minimizing topographic elevation error assigns elevations to mesh nodes via the DEM. The end result is a mesh that accurately represents the bare earth surface as derived from lidar with element resolution in the floodplain ranging from 15 m to 200 m. To examine the influence of the inclusion of vertical features on overland flooding, two additional meshes were developed, one without crest elevations of the features and another with vertical features withheld. All three meshes were incorporated into a SWAN+ADCIRC model simulation of Hurricane Katrina. Each of the three models resulted in similar validation statistics when compared to observed time-series water levels at gages and post-storm collected high water marks. Simulated water level peaks yielded an R2 of 0.97 and upper and lower 95% confidence interval of ∼ ± 0.60 m. From the validation at the gages and HWM locations, it was not clear which of the three model experiments performed best in terms of accuracy. Examination of inundation extent among the three model results were compared to debris lines derived from NOAA post-event aerial imagery, and the mesh including vertical features showed higher accuracy. The comparison of model results to debris lines demonstrates that additional

  14. Biomorphic networks: approach to invariant feature extraction and segmentation for ATR

    NASA Astrophysics Data System (ADS)

    Baek, Andrew; Farhat, Nabil H.

    1998-10-01

    Invariant features in two dimensional binary images are extracted in a single layer network of locally coupled spiking (pulsating) model neurons with prescribed synapto-dendritic response. The feature vector for an image is represented as invariant structure in the aggregate histogram of interspike intervals obtained by computing time intervals between successive spikes produced from each neuron over a given period of time and combining such intervals from all neurons in the network into a histogram. Simulation results show that the feature vectors are more pattern-specific and invariant under translation, rotation, and change in scale or intensity than achieved in earlier work. We also describe an application of such networks to segmentation of line (edge-enhanced or silhouette) images. The biomorphic spiking network's capabilities in segmentation and invariant feature extraction may prove to be, when they are combined, valuable in Automated Target Recognition (ATR) and other automated object recognition systems.

  15. Extraction of texture features with a multiresolution neural network

    NASA Astrophysics Data System (ADS)

    Lepage, Richard; Laurendeau, Denis; Gagnon, Roger A.

    1992-09-01

    Texture is an important surface characteristic. Many industrial materials such as wood, textile, or paper are best characterized by their texture. Detection of defaults occurring on such materials or classification for quality control anD matching can be carried out through careful texture analysis. A system for the classification of pieces of wood used in the furniture industry is proposed. This paper is concerned with a neural network implementation of the features extraction and classification components of the proposed system. Texture appears differently depending at which spatial scale it is observed. A complete description of a texture thus implies an analysis at several spatial scales. We propose a compact pyramidal representation of the input image for multiresolution analysis. The feature extraction system is implemented on a multilayer artificial neural network. Each level of the pyramid, which is a representation of the input image at a given spatial resolution scale, is mapped into a layer of the neural network. A full resolution texture image is input at the base of the pyramid and a representation of the texture image at multiple resolutions is generated by the feedforward pyramid structure of the neural network. The receptive field of each neuron at a given pyramid level is preprogrammed as a discrete Gaussian low-pass filter. Meaningful characteristics of the textured image must be extracted if a good resolving power of the classifier must be achieved. Local dominant orientation is the principal feature which is extracted from the textured image. Local edge orientation is computed with a Sobel mask at four orientation angles (multiple of (pi) /4). The resulting intrinsic image, that is, the local dominant orientation image, is fed to the texture classification neural network. The classification network is a three-layer feedforward back-propagation neural network.

  16. The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization.

    PubMed

    Qi, Aisha; Yeo, Leslie; Friend, James; Ho, Jenny

    2010-02-21

    Paper has been proposed as an inexpensive and versatile carrier for microfluidics devices with abilities well beyond simple capillary action for pregnancy tests and the like. Unlike standard microfluidics devices, extracting a fluid from the paper is a challenge and a drawback to its broader use. Here, we extract fluid from narrow paper strips using surface acoustic wave (SAW) irradiation that subsequently atomizes the extracted fluid into a monodisperse aerosol for use in mass spectroscopy, medical diagnostics, and drug delivery applications. Two protein molecules, ovalbumin and bovine serum albumin (BSA), have been preserved in paper and then extracted using atomized mist through SAW excitation; protein electrophoresis shows there is less than 1% degradation of either protein molecule in this process. Finally, a solution of live yeast cells was infused into paper, which was subsequently dried for preservation then remoistened to extract the cells via SAW atomization, yielding live cells at the completion of the process. The successful preservation and extraction of fluids, proteins and yeast cells significantly expands the usefulness of paper in microfluidics.

  17. Prostate cancer detection using machine learning techniques by employing combination of features extracting strategies.

    PubMed

    Hussain, Lal; Ahmed, Adeel; Saeed, Sharjil; Rathore, Saima; Awan, Imtiaz Ahmed; Shah, Saeed Arif; Majid, Abdul; Idris, Adnan; Awan, Anees Ahmed

    2018-02-06

    Prostate is a second leading causes of cancer deaths among men. Early detection of cancer can effectively reduce the rate of mortality caused by Prostate cancer. Due to high and multiresolution of MRIs from prostate cancer require a proper diagnostic systems and tools. In the past researchers developed Computer aided diagnosis (CAD) systems that help the radiologist to detect the abnormalities. In this research paper, we have employed novel Machine learning techniques such as Bayesian approach, Support vector machine (SVM) kernels: polynomial, radial base function (RBF) and Gaussian and Decision Tree for detecting prostate cancer. Moreover, different features extracting strategies are proposed to improve the detection performance. The features extracting strategies are based on texture, morphological, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) features. The performance was evaluated based on single as well as combination of features using Machine Learning Classification techniques. The Cross validation (Jack-knife k-fold) was performed and performance was evaluated in term of receiver operating curve (ROC) and specificity, sensitivity, Positive predictive value (PPV), negative predictive value (NPV), false positive rate (FPR). Based on single features extracting strategies, SVM Gaussian Kernel gives the highest accuracy of 98.34% with AUC of 0.999. While, using combination of features extracting strategies, SVM Gaussian kernel with texture + morphological, and EFDs + morphological features give the highest accuracy of 99.71% and AUC of 1.00.

  18. Detection and Classification of Whale Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  19. Sensor-based auto-focusing system using multi-scale feature extraction and phase correlation matching.

    PubMed

    Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki

    2015-03-10

    This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.

  20. Sensor-Based Auto-Focusing System Using Multi-Scale Feature Extraction and Phase Correlation Matching

    PubMed Central

    Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki

    2015-01-01

    This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems. PMID:25763645

  1. Auditory emotion recognition impairments in Schizophrenia: Relationship to acoustic features and cognition

    PubMed Central

    Gold, Rinat; Butler, Pamela; Revheim, Nadine; Leitman, David; Hansen, John A.; Gur, Ruben; Kantrowitz, Joshua T.; Laukka, Petri; Juslin, Patrik N.; Silipo, Gail S.; Javitt, Daniel C.

    2013-01-01

    Objective Schizophrenia is associated with deficits in ability to perceive emotion based upon tone of voice. The basis for this deficit, however, remains unclear and assessment batteries remain limited. We evaluated performance in schizophrenia on a novel voice emotion recognition battery with well characterized physical features, relative to impairments in more general emotional and cognitive function. Methods We studied in a primary sample of 92 patients relative to 73 controls. Stimuli were characterized according to both intended emotion and physical features (e.g., pitch, intensity) that contributed to the emotional percept. Parallel measures of visual emotion recognition, pitch perception, general cognition, and overall outcome were obtained. More limited measures were obtained in an independent replication sample of 36 patients, 31 age-matched controls, and 188 general comparison subjects. Results Patients showed significant, large effect size deficits in voice emotion recognition (F=25.4, p<.00001, d=1.1), and were preferentially impaired in recognition of emotion based upon pitch-, but not intensity-features (group X feature interaction: F=7.79, p=.006). Emotion recognition deficits were significantly correlated with pitch perception impairments both across (r=56, p<.0001) and within (r=.47, p<.0001) group. Path analysis showed both sensory-specific and general cognitive contributions to auditory emotion recognition deficits in schizophrenia. Similar patterns of results were observed in the replication sample. Conclusions The present study demonstrates impairments in auditory emotion recognition in schizophrenia relative to acoustic features of underlying stimuli. Furthermore, it provides tools and highlights the need for greater attention to physical features of stimuli used for study of social cognition in neuropsychiatric disorders. PMID:22362394

  2. Evanescent acoustic waves: Production and scattering by resonant targets

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.

    Small targets with acoustic resonances which may be excited by incident acoustic planewaves are shown to possess high-Q modes ("organ-pipe" modes) which may be suitable for ocean-based calibration and ranging purposes. The modes are modeled using a double point-source model; this, along with acoustic reciprocity and inversion symmetry, is shown to adequately model the backscattering form functions of the modes at low frequencies. The backscattering form-functions are extended to apply to any bistatic acoustic experiment using the targets when the target response is dominated by the modes in question. An interface between two fluids which each approximate an unbounded half-space has been produced in the laboratory. The fluids have different sound speeds. When sound is incident on this interface at beyond the critical angle from within the first fluid, the second fluid is made to evince a region dominated by evanescent acoustic energy. Such a system is shown to be an possible laboratory-based proxy for a flat sediment bottom in the ocean, or sloped (unrippled) bottom in littoral environments. The evanescent sound field is characterized and shown to have complicated features despite the simplicity of its production. Notable among these features is the presence of dips in the soundfield amplitude, or "quasi-nulls". These are proposed to be extremely important when considering the return from ocean-based experiments. The soundfield features are also shown to be accurately predicted and characterized by wavenumber-integration software. The targets which exhibit organ-pipe modes in the free-field are shown to also be excited by the evanescent waves, and may be used as soundfield probes when the target returns are well characterized. Alternately, if the soundfield is well-known, the target parameters may be extracted from back- or bistatic-scattering experiments in evanescent fields. It is shown that the spatial decay rate as measured by a probe directly in the evanescent

  3. Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.

    2008-01-01

    Safe-life and damage-tolerant design philosophies of high performance structures have driven the development of various methods to evaluate nondestructively the accumulation of damage in such structures resulting from cyclic loading. Although many techniques have proven useful, none has been able to provide an unambiguous, quantitative assessment of damage accumulation at each stage of fatigue from the virgin state to fracture. A method based on nonlinear acoustics is shown to provide such a means to assess the state of metal fatigue. The salient features of an analytical model are presented of the microelastic-plastic nonlinearities resulting from the interaction of an acoustic wave with fatigue-generated dislocation substructures and cracks that predictably evolve during the metal fatigue process. The interaction is quantified by the material (acoustic) nonlinearity parameter extracted from acoustic harmonic generation measurements. The parameters typically increase monotonically by several hundred percent over the fatigue life of the metal, thus providing a unique measure of the state of fatigue. Application of the model to aluminum alloy 2024-T4, 410Cb stainless steel, and IN100 nickel-base superalloy specimens fatigued using different loading conditions yields good agreement between theory and experiment. Application of the model and measurement technique to the on-site inspection of steam turbine blades is discussed.

  4. Acoustic monitoring of first responder's physiology for health and performance surveillance

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2002-08-01

    Acoustic sensors have been used to monitor firefighter and soldier physiology to assess health and performance. The Army Research Laboratory has developed a unique body-contacting acoustic sensor that can monitor the health and performance of firefighters and soldiers while they are doing their mission. A gel-coupled sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. This technology can monitor heartbeats, breaths, blood pressure, motion, voice, and other indicators that can provide vital feedback to the medics and unit commanders. Diverse physiological parameters can be continuously monitored with acoustic sensors and transmitted for remote surveillance of personnel status. Body-worn acoustic sensors located at the neck, breathing mask, and wrist do an excellent job at detecting heartbeats and activity. However, they have difficulty extracting physiology during rigorous exercise or movements due to the motion artifacts sensed. Rigorous activity often indicates that the person is healthy by virtue of being active, and injury often causes the subject to become less active or incapacitated making the detection of physiology easier. One important measure of performance, heart rate variability, is the measure of beat-to-beat timing fluctuations derived from the interval between two adjacent beats. The Lomb periodogram is optimized for non-uniformly sampled data, and can be applied to non-stationary acoustic heart rate features (such as 1st and 2nd heart sounds) to derive heart rate variability and help eliminate errors created by motion artifacts. Simple peak-detection above or below a certain threshold or waveform derivative parameters can produce the timing and amplitude features necessary for the Lomb periodogram and cross-correlation techniques. High-amplitude motion artifacts may contribute to a different

  5. A nonlinear discriminant algorithm for feature extraction and data classification.

    PubMed

    Santa Cruz, C; Dorronsoro, J R

    1998-01-01

    This paper presents a nonlinear supervised feature extraction algorithm that combines Fisher's criterion function with a preliminary perceptron-like nonlinear projection of vectors in pattern space. Its main motivation is to combine the approximation properties of multilayer perceptrons (MLP's) with the target free nature of Fisher's classical discriminant analysis. In fact, although MLP's provide good classifiers for many problems, there may be some situations, such as unequal class sizes with a high degree of pattern mixing among them, that may make difficult the construction of good MLP classifiers. In these instances, the features extracted by our procedure could be more effective. After the description of its construction and the analysis of its complexity, we will illustrate its use over a synthetic problem with the above characteristics.

  6. Tensor-driven extraction of developmental features from varying paediatric EEG datasets.

    PubMed

    Kinney-Lang, Eli; Spyrou, Loukianos; Ebied, Ahmed; Chin, Richard Fm; Escudero, Javier

    2018-05-21

    Constant changes in developing children's brains can pose a challenge in EEG dependant technologies. Advancing signal processing methods to identify developmental differences in paediatric populations could help improve function and usability of such technologies. Taking advantage of the multi-dimensional structure of EEG data through tensor analysis may offer a framework for extracting relevant developmental features of paediatric datasets. A proof of concept is demonstrated through identifying latent developmental features in resting-state EEG. Approach. Three paediatric datasets (n = 50, 17, 44) were analyzed using a two-step constrained parallel factor (PARAFAC) tensor decomposition. Subject age was used as a proxy measure of development. Classification used support vector machines (SVM) to test if PARAFAC identified features could predict subject age. The results were cross-validated within each dataset. Classification analysis was complemented by visualization of the high-dimensional feature structures using t-distributed Stochastic Neighbour Embedding (t-SNE) maps. Main Results. Development-related features were successfully identified for the developmental conditions of each dataset. SVM classification showed the identified features could accurately predict subject at a significant level above chance for both healthy and impaired populations. t-SNE maps revealed suitable tensor factorization was key in extracting the developmental features. Significance. The described methods are a promising tool for identifying latent developmental features occurring throughout childhood EEG. © 2018 IOP Publishing Ltd.

  7. [Image Feature Extraction and Discriminant Analysis of Xinjiang Uygur Medicine Based on Color Histogram].

    PubMed

    Hamit, Murat; Yun, Weikang; Yan, Chuanbo; Kutluk, Abdugheni; Fang, Yang; Alip, Elzat

    2015-06-01

    Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.

  8. Neural Correlates of Sound Localization in Complex Acoustic Environments

    PubMed Central

    Zündorf, Ida C.; Lewald, Jörg; Karnath, Hans-Otto

    2013-01-01

    Listening to and understanding people in a “cocktail-party situation” is a remarkable feature of the human auditory system. Here we investigated the neural correlates of the ability to localize a particular sound among others in an acoustically cluttered environment with healthy subjects. In a sound localization task, five different natural sounds were presented from five virtual spatial locations during functional magnetic resonance imaging (fMRI). Activity related to auditory stream segregation was revealed in posterior superior temporal gyrus bilaterally, anterior insula, supplementary motor area, and frontoparietal network. Moreover, the results indicated critical roles of left planum temporale in extracting the sound of interest among acoustical distracters and the precuneus in orienting spatial attention to the target sound. We hypothesized that the left-sided lateralization of the planum temporale activation is related to the higher specialization of the left hemisphere for analysis of spectrotemporal sound features. Furthermore, the precuneus − a brain area known to be involved in the computation of spatial coordinates across diverse frames of reference for reaching to objects − seems to be also a crucial area for accurately determining locations of auditory targets in an acoustically complex scene of multiple sound sources. The precuneus thus may not only be involved in visuo-motor processes, but may also subserve related functions in the auditory modality. PMID:23691185

  9. [Lithology feature extraction of CASI hyperspectral data based on fractal signal algorithm].

    PubMed

    Tang, Chao; Chen, Jian-Ping; Cui, Jing; Wen, Bo-Tao

    2014-05-01

    Hyperspectral data is characterized by combination of image and spectrum and large data volume dimension reduction is the main research direction. Band selection and feature extraction is the primary method used for this objective. In the present article, the authors tested methods applied for the lithology feature extraction from hyperspectral data. Based on the self-similarity of hyperspectral data, the authors explored the application of fractal algorithm to lithology feature extraction from CASI hyperspectral data. The "carpet method" was corrected and then applied to calculate the fractal value of every pixel in the hyperspectral data. The results show that fractal information highlights the exposed bedrock lithology better than the original hyperspectral data The fractal signal and characterized scale are influenced by the spectral curve shape, the initial scale selection and iteration step. At present, research on the fractal signal of spectral curve is rare, implying the necessity of further quantitative analysis and investigation of its physical implications.

  10. Trackside acoustic diagnosis of axle box bearing based on kurtosis-optimization wavelet denoising

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai

    2018-04-01

    As one of the key components of railway vehicles, the operation condition of the axle box bearing has a significant effect on traffic safety. The acoustic diagnosis is more suitable than vibration diagnosis for trackside monitoring. The acoustic signal generated by the train axle box bearing is an amplitude modulation and frequency modulation signal with complex train running noise. Although empirical mode decomposition (EMD) and some improved time-frequency algorithms have proved to be useful in bearing vibration signal processing, it is hard to extract the bearing fault signal from serious trackside acoustic background noises by using those algorithms. Therefore, a kurtosis-optimization-based wavelet packet (KWP) denoising algorithm is proposed, as the kurtosis is the key indicator of bearing fault signal in time domain. Firstly, the geometry based Doppler correction is applied to signals of each sensor, and with the signal superposition of multiple sensors, random noises and impulse noises, which are the interference of the kurtosis indicator, are suppressed. Then, the KWP is conducted. At last, the EMD and Hilbert transform is applied to extract the fault feature. Experiment results indicate that the proposed method consisting of KWP and EMD is superior to the EMD.

  11. Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.

    PubMed

    Yang, Banghua; Li, Huarong; Wang, Qian; Zhang, Yunyuan

    2016-06-01

    Feature extraction of electroencephalogram (EEG) plays a vital role in brain-computer interfaces (BCIs). In recent years, common spatial pattern (CSP) has been proven to be an effective feature extraction method. However, the traditional CSP has disadvantages of requiring a lot of input channels and the lack of frequency information. In order to remedy the defects of CSP, wavelet packet decomposition (WPD) and CSP are combined to extract effective features. But WPD-CSP method considers less about extracting specific features that are fitted for the specific subject. So a subject-based feature extraction method using fisher WPD-CSP is proposed in this paper. The idea of proposed method is to adapt fisher WPD-CSP to each subject separately. It mainly includes the following six steps: (1) original EEG signals from all channels are decomposed into a series of sub-bands using WPD; (2) average power values of obtained sub-bands are computed; (3) the specified sub-bands with larger values of fisher distance according to average power are selected for that particular subject; (4) each selected sub-band is reconstructed to be regarded as a new EEG channel; (5) all new EEG channels are used as input of the CSP and a six-dimensional feature vector is obtained by the CSP. The subject-based feature extraction model is so formed; (6) the probabilistic neural network (PNN) is used as the classifier and the classification accuracy is obtained. Data from six subjects are processed by the subject-based fisher WPD-CSP, the non-subject-based fisher WPD-CSP and WPD-CSP, respectively. Compared with non-subject-based fisher WPD-CSP and WPD-CSP, the results show that the proposed method yields better performance (sensitivity: 88.7±0.9%, and specificity: 91±1%) and the classification accuracy from subject-based fisher WPD-CSP is increased by 6-12% and 14%, respectively. The proposed subject-based fisher WPD-CSP method can not only remedy disadvantages of CSP by WPD but also discriminate

  12. Machinery running state identification based on discriminant semi-supervised local tangent space alignment for feature fusion and extraction

    NASA Astrophysics Data System (ADS)

    Su, Zuqiang; Xiao, Hong; Zhang, Yi; Tang, Baoping; Jiang, Yonghua

    2017-04-01

    Extraction of sensitive features is a challenging but key task in data-driven machinery running state identification. Aimed at solving this problem, a method for machinery running state identification that applies discriminant semi-supervised local tangent space alignment (DSS-LTSA) for feature fusion and extraction is proposed. Firstly, in order to extract more distinct features, the vibration signals are decomposed by wavelet packet decomposition WPD, and a mixed-domain feature set consisted of statistical features, autoregressive (AR) model coefficients, instantaneous amplitude Shannon entropy and WPD energy spectrum is extracted to comprehensively characterize the properties of machinery running state(s). Then, the mixed-dimension feature set is inputted into DSS-LTSA for feature fusion and extraction to eliminate redundant information and interference noise. The proposed DSS-LTSA can extract intrinsic structure information of both labeled and unlabeled state samples, and as a result the over-fitting problem of supervised manifold learning and blindness problem of unsupervised manifold learning are overcome. Simultaneously, class discrimination information is integrated within the dimension reduction process in a semi-supervised manner to improve sensitivity of the extracted fusion features. Lastly, the extracted fusion features are inputted into a pattern recognition algorithm to achieve the running state identification. The effectiveness of the proposed method is verified by a running state identification case in a gearbox, and the results confirm the improved accuracy of the running state identification.

  13. Breast cancer mitosis detection in histopathological images with spatial feature extraction

    NASA Astrophysics Data System (ADS)

    Albayrak, Abdülkadir; Bilgin, Gökhan

    2013-12-01

    In this work, cellular mitosis detection in histopathological images has been investigated. Mitosis detection is very expensive and time consuming process. Development of digital imaging in pathology has enabled reasonable and effective solution to this problem. Segmentation of digital images provides easier analysis of cell structures in histopathological data. To differentiate normal and mitotic cells in histopathological images, feature extraction step is very crucial step for the system accuracy. A mitotic cell has more distinctive textural dissimilarities than the other normal cells. Hence, it is important to incorporate spatial information in feature extraction or in post-processing steps. As a main part of this study, Haralick texture descriptor has been proposed with different spatial window sizes in RGB and La*b* color spaces. So, spatial dependencies of normal and mitotic cellular pixels can be evaluated within different pixel neighborhoods. Extracted features are compared with various sample sizes by Support Vector Machines using k-fold cross validation method. According to the represented results, it has been shown that separation accuracy on mitotic and non-mitotic cellular pixels gets better with the increasing size of spatial window.

  14. Feature extraction through parallel Probabilistic Principal Component Analysis for heart disease diagnosis

    NASA Astrophysics Data System (ADS)

    Shah, Syed Muhammad Saqlain; Batool, Safeera; Khan, Imran; Ashraf, Muhammad Usman; Abbas, Syed Hussnain; Hussain, Syed Adnan

    2017-09-01

    Automatic diagnosis of human diseases are mostly achieved through decision support systems. The performance of these systems is mainly dependent on the selection of the most relevant features. This becomes harder when the dataset contains missing values for the different features. Probabilistic Principal Component Analysis (PPCA) has reputation to deal with the problem of missing values of attributes. This research presents a methodology which uses the results of medical tests as input, extracts a reduced dimensional feature subset and provides diagnosis of heart disease. The proposed methodology extracts high impact features in new projection by using Probabilistic Principal Component Analysis (PPCA). PPCA extracts projection vectors which contribute in highest covariance and these projection vectors are used to reduce feature dimension. The selection of projection vectors is done through Parallel Analysis (PA). The feature subset with the reduced dimension is provided to radial basis function (RBF) kernel based Support Vector Machines (SVM). The RBF based SVM serves the purpose of classification into two categories i.e., Heart Patient (HP) and Normal Subject (NS). The proposed methodology is evaluated through accuracy, specificity and sensitivity over the three datasets of UCI i.e., Cleveland, Switzerland and Hungarian. The statistical results achieved through the proposed technique are presented in comparison to the existing research showing its impact. The proposed technique achieved an accuracy of 82.18%, 85.82% and 91.30% for Cleveland, Hungarian and Switzerland dataset respectively.

  15. Extracting physicochemical features to predict protein secondary structure.

    PubMed

    Huang, Yin-Fu; Chen, Shu-Ying

    2013-01-01

    We propose a protein secondary structure prediction method based on position-specific scoring matrix (PSSM) profiles and four physicochemical features including conformation parameters, net charges, hydrophobic, and side chain mass. First, the SVM with the optimal window size and the optimal parameters of the kernel function is found. Then, we train the SVM using the PSSM profiles generated from PSI-BLAST and the physicochemical features extracted from the CB513 data set. Finally, we use the filter to refine the predicted results from the trained SVM. For all the performance measures of our method, Q 3 reaches 79.52, SOV94 reaches 86.10, and SOV99 reaches 74.60; all the measures are higher than those of the SVMpsi method and the SVMfreq method. This validates that considering these physicochemical features in predicting protein secondary structure would exhibit better performances.

  16. Extracting Physicochemical Features to Predict Protein Secondary Structure

    PubMed Central

    Chen, Shu-Ying

    2013-01-01

    We propose a protein secondary structure prediction method based on position-specific scoring matrix (PSSM) profiles and four physicochemical features including conformation parameters, net charges, hydrophobic, and side chain mass. First, the SVM with the optimal window size and the optimal parameters of the kernel function is found. Then, we train the SVM using the PSSM profiles generated from PSI-BLAST and the physicochemical features extracted from the CB513 data set. Finally, we use the filter to refine the predicted results from the trained SVM. For all the performance measures of our method, Q 3 reaches 79.52, SOV94 reaches 86.10, and SOV99 reaches 74.60; all the measures are higher than those of the SVMpsi method and the SVMfreq method. This validates that considering these physicochemical features in predicting protein secondary structure would exhibit better performances. PMID:23766688

  17. Extracting elastic properties of an atomically thin interfacial layer by time-domain analysis of femtosecond acoustics

    NASA Astrophysics Data System (ADS)

    Chen, H.-Y.; Huang, Y.-R.; Shih, H.-Y.; Chen, M.-J.; Sheu, J.-K.; Sun, C.-K.

    2017-11-01

    Modern devices adopting denser designs and complex 3D structures have created much more interfaces than before, where atomically thin interfacial layers could form. However, fundamental information such as the elastic property of the interfacial layers is hard to measure. The elastic property of the interfacial layer is of great importance in both thermal management and nano-engineering of modern devices. Appropriate techniques to probe the elastic properties of interfacial layers as thin as only several atoms are thus critically needed. In this work, we demonstrated the feasibility of utilizing the time-resolved femtosecond acoustics technique to extract the elastic properties and mass density of a 1.85-nm-thick interfacial layer, with the aid of transmission electron microscopy. We believe that this femtosecond acoustics approach will provide a strategy to measure the absolute elastic properties of atomically thin interfacial layers.

  18. Synthetic aperture radar target detection, feature extraction, and image formation techniques

    NASA Technical Reports Server (NTRS)

    Li, Jian

    1994-01-01

    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.

  19. Automated Feature Extraction of Foredune Morphology from Terrestrial Lidar Data

    NASA Astrophysics Data System (ADS)

    Spore, N.; Brodie, K. L.; Swann, C.

    2014-12-01

    Foredune morphology is often described in storm impact prediction models using the elevation of the dune crest and dune toe and compared with maximum runup elevations to categorize the storm impact and predicted responses. However, these parameters do not account for other foredune features that may make them more or less erodible, such as alongshore variations in morphology, vegetation coverage, or compaction. The goal of this work is to identify other descriptive features that can be extracted from terrestrial lidar data that may affect the rate of dune erosion under wave attack. Daily, mobile-terrestrial lidar surveys were conducted during a 6-day nor'easter (Hs = 4 m in 6 m water depth) along 20km of coastline near Duck, North Carolina which encompassed a variety of foredune forms in close proximity to each other. This abstract will focus on the tools developed for the automated extraction of the morphological features from terrestrial lidar data, while the response of the dune will be presented by Brodie and Spore as an accompanying abstract. Raw point cloud data can be dense and is often under-utilized due to time and personnel constraints required for analysis, since many algorithms are not fully automated. In our approach, the point cloud is first projected into a local coordinate system aligned with the coastline, and then bare earth points are interpolated onto a rectilinear 0.5 m grid creating a high resolution digital elevation model. The surface is analyzed by identifying features along each cross-shore transect. Surface curvature is used to identify the position of the dune toe, and then beach and berm morphology is extracted shoreward of the dune toe, and foredune morphology is extracted landward of the dune toe. Changes in, and magnitudes of, cross-shore slope, curvature, and surface roughness are used to describe the foredune face and each cross-shore transect is then classified using its pre-storm morphology for storm-response analysis.

  20. Synchronized imaging and acoustic analysis of the upper airway in patients with sleep-disordered breathing.

    PubMed

    Chang, Yi-Chung; Huon, Leh-Kiong; Pham, Van-Truong; Chen, Yunn-Jy; Jiang, Sun-Fen; Shih, Tiffany Ting-Fang; Tran, Thi-Thao; Wang, Yung-Hung; Lin, Chen; Tsao, Jenho; Lo, Men-Tzung; Wang, Pa-Chun

    2014-12-01

    Progressive narrowing of the upper airway increases airflow resistance and can produce snoring sounds and apnea/hypopnea events associated with sleep-disordered breathing due to airway collapse. Recent studies have shown that acoustic properties during snoring can be altered with anatomic changes at the site of obstruction. To evaluate the instantaneous association between acoustic features of snoring and the anatomic sites of obstruction, a novel method was developed and applied in nine patients to extract the snoring sounds during sleep while performing dynamic magnetic resonance imaging (MRI). The degree of airway narrowing during the snoring events was then quantified by the collapse index (ratio of airway diameter preceding and during the events) and correlated with the synchronized acoustic features. A total of 201 snoring events (102 pure retropalatal and 99 combined retropalatal and retroglossal events) were recorded, and the collapse index as well as the soft tissue vibration time were significantly different between pure retropalatal (collapse index, 2 ± 11%; vibration time, 0.2 ± 0.3 s) and combined (retropalatal and retroglossal) snores (collapse index, 13 ± 7% [P ≤ 0.0001]; vibration time, 1.2 ± 0.7 s [P ≤ 0.0001]). The synchronized dynamic MRI and acoustic recordings successfully characterized the sites of obstruction and established the dynamic relationship between the anatomic site of obstruction and snoring acoustics.

  1. Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen

    2016-06-01

    High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.

  2. A Spiking Neural Network in sEMG Feature Extraction.

    PubMed

    Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor

    2015-11-03

    We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control.

  3. Homomorphic encryption-based secure SIFT for privacy-preserving feature extraction

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Yung; Lu, Chun-Shien; Pei, Soo-Chang

    2011-02-01

    Privacy has received much attention but is still largely ignored in the multimedia community. Consider a cloud computing scenario, where the server is resource-abundant and is capable of finishing the designated tasks, it is envisioned that secure media retrieval and search with privacy-preserving will be seriously treated. In view of the fact that scale-invariant feature transform (SIFT) has been widely adopted in various fields, this paper is the first to address the problem of secure SIFT feature extraction and representation in the encrypted domain. Since all the operations in SIFT must be moved to the encrypted domain, we propose a homomorphic encryption-based secure SIFT method for privacy-preserving feature extraction and representation based on Paillier cryptosystem. In particular, homomorphic comparison is a must for SIFT feature detection but is still a challenging issue for homomorphic encryption methods. To conquer this problem, we investigate a quantization-like secure comparison strategy in this paper. Experimental results demonstrate that the proposed homomorphic encryption-based SIFT performs comparably to original SIFT on image benchmarks, while preserving privacy additionally. We believe that this work is an important step toward privacy-preserving multimedia retrieval in an environment, where privacy is a major concern.

  4. A DFT-Based Method of Feature Extraction for Palmprint Recognition

    NASA Astrophysics Data System (ADS)

    Choge, H. Kipsang; Karungaru, Stephen G.; Tsuge, Satoru; Fukumi, Minoru

    Over the last quarter century, research in biometric systems has developed at a breathtaking pace and what started with the focus on the fingerprint has now expanded to include face, voice, iris, and behavioral characteristics such as gait. Palmprint is one of the most recent additions, and is currently the subject of great research interest due to its inherent uniqueness, stability, user-friendliness and ease of acquisition. This paper describes an effective and procedurally simple method of palmprint feature extraction specifically for palmprint recognition, although verification experiments are also conducted. This method takes advantage of the correspondences that exist between prominent palmprint features or objects in the spatial domain with those in the frequency or Fourier domain. Multi-dimensional feature vectors are formed by extracting a GA-optimized set of points from the 2-D Fourier spectrum of the palmprint images. The feature vectors are then used for palmprint recognition, before and after dimensionality reduction via the Karhunen-Loeve Transform (KLT). Experiments performed using palmprint images from the ‘PolyU Palmprint Database’ indicate that using a compact set of DFT coefficients, combined with KLT and data preprocessing, produces a recognition accuracy of more than 98% and can provide a fast and effective technique for personal identification.

  5. Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Ponnaluru, Gopi Krishna

    2006-01-01

    The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.

  6. Segmentation, feature extraction, and multiclass brain tumor classification.

    PubMed

    Sachdeva, Jainy; Kumar, Vinod; Gupta, Indra; Khandelwal, Niranjan; Ahuja, Chirag Kamal

    2013-12-01

    Multiclass brain tumor classification is performed by using a diversified dataset of 428 post-contrast T1-weighted MR images from 55 patients. These images are of primary brain tumors namely astrocytoma (AS), glioblastoma multiforme (GBM), childhood tumor-medulloblastoma (MED), meningioma (MEN), secondary tumor-metastatic (MET), and normal regions (NR). Eight hundred fifty-six regions of interest (SROIs) are extracted by a content-based active contour model. Two hundred eighteen intensity and texture features are extracted from these SROIs. In this study, principal component analysis (PCA) is used for reduction of dimensionality of the feature space. These six classes are then classified by artificial neural network (ANN). Hence, this approach is named as PCA-ANN approach. Three sets of experiments have been performed. In the first experiment, classification accuracy by ANN approach is performed. In the second experiment, PCA-ANN approach with random sub-sampling has been used in which the SROIs from the same patient may get repeated during testing. It is observed that the classification accuracy has increased from 77 to 91 %. PCA-ANN has delivered high accuracy for each class: AS-90.74 %, GBM-88.46 %, MED-85 %, MEN-90.70 %, MET-96.67 %, and NR-93.78 %. In the third experiment, to remove bias and to test the robustness of the proposed system, data is partitioned in a manner such that the SROIs from the same patient are not common for training and testing sets. In this case also, the proposed system has performed well by delivering an overall accuracy of 85.23 %. The individual class accuracy for each class is: AS-86.15 %, GBM-65.1 %, MED-63.36 %, MEN-91.5 %, MET-65.21 %, and NR-93.3 %. A computer-aided diagnostic system comprising of developed methods for segmentation, feature extraction, and classification of brain tumors can be beneficial to radiologists for precise localization, diagnosis, and interpretation of brain tumors on MR images.

  7. Feature Extraction from Subband Brain Signals and Its Classification

    NASA Astrophysics Data System (ADS)

    Mukul, Manoj Kumar; Matsuno, Fumitoshi

    This paper considers both the non-stationarity as well as independence/uncorrelated criteria along with the asymmetry ratio over the electroencephalogram (EEG) signals and proposes a hybrid approach of the signal preprocessing methods before the feature extraction. A filter bank approach of the discrete wavelet transform (DWT) is used to exploit the non-stationary characteristics of the EEG signals and it decomposes the raw EEG signals into the subbands of different center frequencies called as rhythm. A post processing of the selected subband by the AMUSE algorithm (a second order statistics based ICA/BSS algorithm) provides the separating matrix for each class of the movement imagery. In the subband domain the orthogonality as well as orthonormality criteria over the whitening matrix and separating matrix do not come respectively. The human brain has an asymmetrical structure. It has been observed that the ratio between the norms of the left and right class separating matrices should be different for better discrimination between these two classes. The alpha/beta band asymmetry ratio between the separating matrices of the left and right classes will provide the condition to select an appropriate multiplier. So we modify the estimated separating matrix by an appropriate multiplier in order to get the required asymmetry and extend the AMUSE algorithm in the subband domain. The desired subband is further subjected to the updated separating matrix to extract subband sub-components from each class. The extracted subband sub-components sources are further subjected to the feature extraction (power spectral density) step followed by the linear discriminant analysis (LDA).

  8. A novel automated spike sorting algorithm with adaptable feature extraction.

    PubMed

    Bestel, Robert; Daus, Andreas W; Thielemann, Christiane

    2012-10-15

    To study the electrophysiological properties of neuronal networks, in vitro studies based on microelectrode arrays have become a viable tool for analysis. Although in constant progress, a challenging task still remains in this area: the development of an efficient spike sorting algorithm that allows an accurate signal analysis at the single-cell level. Most sorting algorithms currently available only extract a specific feature type, such as the principal components or Wavelet coefficients of the measured spike signals in order to separate different spike shapes generated by different neurons. However, due to the great variety in the obtained spike shapes, the derivation of an optimal feature set is still a very complex issue that current algorithms struggle with. To address this problem, we propose a novel algorithm that (i) extracts a variety of geometric, Wavelet and principal component-based features and (ii) automatically derives a feature subset, most suitable for sorting an individual set of spike signals. Thus, there is a new approach that evaluates the probability distribution of the obtained spike features and consequently determines the candidates most suitable for the actual spike sorting. These candidates can be formed into an individually adjusted set of spike features, allowing a separation of the various shapes present in the obtained neuronal signal by a subsequent expectation maximisation clustering algorithm. Test results with simulated data files and data obtained from chick embryonic neurons cultured on microelectrode arrays showed an excellent classification result, indicating the superior performance of the described algorithm approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing

    PubMed Central

    Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi

    2018-01-01

    The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146

  10. Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.

    PubMed

    Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi

    2018-01-29

    The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.

  11. Diagnostic features of Alzheimer's disease extracted from PET sinograms

    NASA Astrophysics Data System (ADS)

    Sayeed, A.; Petrou, M.; Spyrou, N.; Kadyrov, A.; Spinks, T.

    2002-01-01

    Texture analysis of positron emission tomography (PET) images of the brain is a very difficult task, due to the poor signal to noise ratio. As a consequence, very few techniques can be implemented successfully. We use a new global analysis technique known as the Trace transform triple features. This technique can be applied directly to the raw sinograms to distinguish patients with Alzheimer's disease (AD) from normal volunteers. FDG-PET images of 18 AD and 10 normal controls obtained from the same CTI ECAT-953 scanner were used in this study. The Trace transform triple feature technique was used to extract features that were invariant to scaling, translation and rotation, referred to as invariant features, as well as features that were sensitive to rotation but invariant to scaling and translation, referred to as sensitive features in this study. The features were used to classify the groups using discriminant function analysis. Cross-validation tests using stepwise discriminant function analysis showed that combining both sensitive and invariant features produced the best results, when compared with the clinical diagnosis. Selecting the five best features produces an overall accuracy of 93% with sensitivity of 94% and specificity of 90%. This is comparable with the classification accuracy achieved by Kippenhan et al (1992), using regional metabolic activity.

  12. Extracting Product Features and Opinion Words Using Pattern Knowledge in Customer Reviews

    PubMed Central

    Lynn, Khin Thidar

    2013-01-01

    Due to the development of e-commerce and web technology, most of online Merchant sites are able to write comments about purchasing products for customer. Customer reviews expressed opinion about products or services which are collectively referred to as customer feedback data. Opinion extraction about products from customer reviews is becoming an interesting area of research and it is motivated to develop an automatic opinion mining application for users. Therefore, efficient method and techniques are needed to extract opinions from reviews. In this paper, we proposed a novel idea to find opinion words or phrases for each feature from customer reviews in an efficient way. Our focus in this paper is to get the patterns of opinion words/phrases about the feature of product from the review text through adjective, adverb, verb, and noun. The extracted features and opinions are useful for generating a meaningful summary that can provide significant informative resource to help the user as well as merchants to track the most suitable choice of product. PMID:24459430

  13. Extracting product features and opinion words using pattern knowledge in customer reviews.

    PubMed

    Htay, Su Su; Lynn, Khin Thidar

    2013-01-01

    Due to the development of e-commerce and web technology, most of online Merchant sites are able to write comments about purchasing products for customer. Customer reviews expressed opinion about products or services which are collectively referred to as customer feedback data. Opinion extraction about products from customer reviews is becoming an interesting area of research and it is motivated to develop an automatic opinion mining application for users. Therefore, efficient method and techniques are needed to extract opinions from reviews. In this paper, we proposed a novel idea to find opinion words or phrases for each feature from customer reviews in an efficient way. Our focus in this paper is to get the patterns of opinion words/phrases about the feature of product from the review text through adjective, adverb, verb, and noun. The extracted features and opinions are useful for generating a meaningful summary that can provide significant informative resource to help the user as well as merchants to track the most suitable choice of product.

  14. Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.

    PubMed

    Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine

    2016-05-01

    Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis

  15. Separable spectro-temporal Gabor filter bank features: Reducing the complexity of robust features for automatic speech recognition.

    PubMed

    Schädler, Marc René; Kollmeier, Birger

    2015-04-01

    To test if simultaneous spectral and temporal processing is required to extract robust features for automatic speech recognition (ASR), the robust spectro-temporal two-dimensional-Gabor filter bank (GBFB) front-end from Schädler, Meyer, and Kollmeier [J. Acoust. Soc. Am. 131, 4134-4151 (2012)] was de-composed into a spectral one-dimensional-Gabor filter bank and a temporal one-dimensional-Gabor filter bank. A feature set that is extracted with these separate spectral and temporal modulation filter banks was introduced, the separate Gabor filter bank (SGBFB) features, and evaluated on the CHiME (Computational Hearing in Multisource Environments) keywords-in-noise recognition task. From the perspective of robust ASR, the results showed that spectral and temporal processing can be performed independently and are not required to interact with each other. Using SGBFB features permitted the signal-to-noise ratio (SNR) to be lowered by 1.2 dB while still performing as well as the GBFB-based reference system, which corresponds to a relative improvement of the word error rate by 12.8%. Additionally, the real time factor of the spectro-temporal processing could be reduced by more than an order of magnitude. Compared to human listeners, the SNR needed to be 13 dB higher when using Mel-frequency cepstral coefficient features, 11 dB higher when using GBFB features, and 9 dB higher when using SGBFB features to achieve the same recognition performance.

  16. Multi-Feature Based Information Extraction of Urban Green Space Along Road

    NASA Astrophysics Data System (ADS)

    Zhao, H. H.; Guan, H. Y.

    2018-04-01

    Green space along road of QuickBird image was studied in this paper based on multi-feature-marks in frequency domain. The magnitude spectrum of green along road was analysed, and the recognition marks of the tonal feature, contour feature and the road were built up by the distribution of frequency channels. Gabor filters in frequency domain were used to detect the features based on the recognition marks built up. The detected features were combined as the multi-feature-marks, and watershed based image segmentation were conducted to complete the extraction of green space along roads. The segmentation results were evaluated by Fmeasure with P = 0.7605, R = 0.7639, F = 0.7622.

  17. Broadband acoustic focusing by Airy-like beams based on acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Chen, Di-Chao; Zhu, Xing-Feng; Wei, Qi; Wu, Da-Jian; Liu, Xiao-Jun

    2018-01-01

    An acoustic metasurface (AM) composed of space-coiling subunits is proposed to generate acoustic Airy-like beams (ALBs) by manipulating the transmitted acoustic phase. The self-accelerating, self-healing, and non-diffracting features of ALBs are demonstrated using finite element simulations. We further employ two symmetrical AMs to realize two symmetrical ALBs, resulting in highly efficient acoustic focusing. At the working frequency, the focal intensity can reach roughly 20 times that of the incident wave. It is found that the highly efficient acoustic focusing can circumvent obstacles in the propagating path and can be maintained in a broad frequency bandwidth. In addition, simply changing the separation between the two AMs can modulate the focal length of the proposed AM lens. ALBs generated by AMs and the corresponding AM lens may benefit applications in medical ultrasound imaging, biomedical therapy, and particle trapping and manipulation.

  18. Scale-invariant feature extraction of neural network and renormalization group flow

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Shiba, Shotaro; Yokoo, Sumito

    2018-05-01

    Theoretical understanding of how a deep neural network (DNN) extracts features from input images is still unclear, but it is widely believed that the extraction is performed hierarchically through a process of coarse graining. It reminds us of the basic renormalization group (RG) concept in statistical physics. In order to explore possible relations between DNN and RG, we use the restricted Boltzmann machine (RBM) applied to an Ising model and construct a flow of model parameters (in particular, temperature) generated by the RBM. We show that the unsupervised RBM trained by spin configurations at various temperatures from T =0 to T =6 generates a flow along which the temperature approaches the critical value Tc=2.2 7 . This behavior is the opposite of the typical RG flow of the Ising model. By analyzing various properties of the weight matrices of the trained RBM, we discuss why it flows towards Tc and how the RBM learns to extract features of spin configurations.

  19. Extraction of multi-scale landslide morphological features based on local Gi* using airborne LiDAR-derived DEM

    NASA Astrophysics Data System (ADS)

    Shi, Wenzhong; Deng, Susu; Xu, Wenbing

    2018-02-01

    For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (< 5 years) landslides and approximately 35% of historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell

  20. Improved classification accuracy by feature extraction using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.

    2003-05-01

    A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.

  1. Acoustic Differences between Humorous and Sincere Communicative Intentions

    ERIC Educational Resources Information Center

    Hoicka, Elena; Gattis, Merideth

    2012-01-01

    Previous studies indicate that the acoustic features of speech discriminate between positive and negative communicative intentions, such as approval and prohibition. Two studies investigated whether acoustic features of speech can discriminate between two positive communicative intentions: humour and sweet-sincerity, where sweet-sincerity involved…

  2. Features of the energy structure of acoustic fields in the ocean with two-dimensional random inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gulin, O. E.; Yaroshchuk, I. O.

    2017-03-01

    The paper is devoted to the analytic study and numerical simulation of mid-frequency acoustic signal propagation in a two-dimensional inhomogeneous random shallow-water medium. The study was carried out by the cross section method (local modes). We present original theoretical estimates for the behavior of the average acoustic field intensity and show that at different distances, the features of propagation loss behavior are determined by the intensity of fluctuations and their horizontal scale and depend on the initial regular parameters, such as the emission frequency and size of sound losses in the bottom. We establish analytically that for the considered waveguide and sound frequency parameters, mode coupling effect has a local character and weakly influences the statistics. We establish that the specific form of the spatial spectrum of sound velocity inhomogeneities for the statistical patterns of the field intensity is insignificant during observations in the range of shallow-water distances of practical interest.

  3. A study of VHI scores and acoustic features in street vendors as occupational voice users.

    PubMed

    Natour, Yaser S; Darawsheh, Wesam B; Bashiti, Sara; Wari, Majd; Taha, Juhayna; Odeh, Thair

    to investigate acoustic features of phonation and perception of voice handicap in street vendors. Eighty-eight participants (44 street vendors, 44 controls) were recruited. The mean age of the group was 38.9±16.0 years (range: 20-78 years). Scores of the Arabic version of the Voice Handicap Index (VHI-Arab) were used for analysis. Acoustic measures of fundamental frequency (F 0 ), jitter, shimmer, and signal-to-noise ratio (SNR) were also analyzed. Analysis showed a significant difference between street vendors and controls in the total score of the VHI-Arab (p<0.001) as well as scores of all three VHI-Arab subsections: functional (p<0.001), physical (p<0.001), and emotional (p=0.025). Weak correlations were found among all of the VHI scores and acoustic measures (-0.219≤ r≤0.355), except for SNR where a moderate negative correlations were found (r=-0.555; -0.4) between the VHI (physical and total) scores and SNR values. Significant differences also were found in F 0 , jitter, and SNR among specific subgroups of street vendors when stratified by weekly hours worked (p<0.05), and in jitter (p=0.39) when stratified by educational level. Perception of voice handicap and a possible effect on vocal quality in street vendors were noted. The effect of factors, namely work hours and educational level, on voice quality should be further studied. Copyright © 2017. Published by Elsevier Inc.

  4. A face and palmprint recognition approach based on discriminant DCT feature extraction.

    PubMed

    Jing, Xiao-Yuan; Zhang, David

    2004-12-01

    In the field of image processing and recognition, discrete cosine transform (DCT) and linear discrimination are two widely used techniques. Based on them, we present a new face and palmprint recognition approach in this paper. It first uses a two-dimensional separability judgment to select the DCT frequency bands with favorable linear separability. Then from the selected bands, it extracts the linear discriminative features by an improved Fisherface method and performs the classification by the nearest neighbor classifier. We detailedly analyze theoretical advantages of our approach in feature extraction. The experiments on face databases and palmprint database demonstrate that compared to the state-of-the-art linear discrimination methods, our approach obtains better classification performance. It can significantly improve the recognition rates for face and palmprint data and effectively reduce the dimension of feature space.

  5. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  6. A Fusion Model of Seismic and Hydro-Acoustic Propagation for Treaty Monitoring

    NASA Astrophysics Data System (ADS)

    Arora, Nimar; Prior, Mark

    2014-05-01

    We present an extension to NET-VISA (Network Processing Vertically Integrated Seismic Analysis), which is a probabilistic generative model of the propagation of seismic waves and their detection on a global scale, to incorporate hydro-acoustic data from the IMS (International Monitoring System) network. The new model includes the coupling of seismic waves into the ocean's SOFAR channel, as well as the propagation of hydro-acoustic waves from underwater explosions. The generative model is described in terms of multiple possible hypotheses -- seismic-to-hydro-acoustic, under-water explosion, other noise sources such as whales singing or icebergs breaking up -- that could lead to signal detections. We decompose each hypothesis into conditional probability distributions that are carefully analyzed and calibrated. These distributions include ones for detection probabilities, blockage in the SOFAR channel (including diffraction, refraction, and reflection around obstacles), energy attenuation, and other features of the resulting waveforms. We present a study of the various features that are extracted from the hydro-acoustic waveforms, and their correlations with each other as well the source of the energy. Additionally, an inference algorithm is presented that concurrently infers the seismic and under-water events, and associates all arrivals (aka triggers), both from seismic and hydro-acoustic stations, to the appropriate event, and labels the path taken by the wave. Finally, our results demonstrate that this fusion of seismic and hydro-acoustic data leads to very good performance. A majority of the under-water events that IDC (International Data Center) analysts built in 2010 are correctly located, and the arrivals that correspond to seismic-to-hydroacoustic coupling, the T phases, are mostly correctly identified. There is no loss in the accuracy of seismic events, in fact, there is a slight overall improvement.

  7. Incoherent optical generalized Hough transform: pattern recognition and feature extraction applications

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Ferrari, José A.

    2017-05-01

    Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.

  8. Radiomics: Extracting more information from medical images using advanced feature analysis

    PubMed Central

    Lambin, Philippe; Rios-Velazquez, Emmanuel; Leijenaar, Ralph; Carvalho, Sara; van Stiphout, Ruud G.P.M.; Granton, Patrick; Zegers, Catharina M.L.; Gillies, Robert; Boellard, Ronald; Dekker, André; Aerts, Hugo J.W.L.

    2015-01-01

    Solid cancers are spatially and temporally heterogeneous. This limits the use of invasive biopsy based molecular assays but gives huge potential for medical imaging, which has the ability to capture intra-tumoural heterogeneity in a non-invasive way. During the past decades, medical imaging innovations with new hardware, new imaging agents and standardised protocols, allows the field to move towards quantitative imaging. Therefore, also the development of automated and reproducible analysis methodologies to extract more information from image-based features is a requirement. Radiomics – the high-throughput extraction of large amounts of image features from radiographic images – addresses this problem and is one of the approaches that hold great promises but need further validation in multi-centric settings and in the laboratory. PMID:22257792

  9. Hidden discriminative features extraction for supervised high-order time series modeling.

    PubMed

    Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee

    2016-11-01

    In this paper, an orthogonal Tucker-decomposition-based extraction of high-order discriminative subspaces from a tensor-based time series data structure is presented, named as Tensor Discriminative Feature Extraction (TDFE). TDFE relies on the employment of category information for the maximization of the between-class scatter and the minimization of the within-class scatter to extract optimal hidden discriminative feature subspaces that are simultaneously spanned by every modality for supervised tensor modeling. In this context, the proposed tensor-decomposition method provides the following benefits: i) reduces dimensionality while robustly mining the underlying discriminative features, ii) results in effective interpretable features that lead to an improved classification and visualization, and iii) reduces the processing time during the training stage and the filtering of the projection by solving the generalized eigenvalue issue at each alternation step. Two real third-order tensor-structures of time series datasets (an epilepsy electroencephalogram (EEG) that is modeled as channel×frequency bin×time frame and a microarray data that is modeled as gene×sample×time) were used for the evaluation of the TDFE. The experiment results corroborate the advantages of the proposed method with averages of 98.26% and 89.63% for the classification accuracies of the epilepsy dataset and the microarray dataset, respectively. These performance averages represent an improvement on those of the matrix-based algorithms and recent tensor-based, discriminant-decomposition approaches; this is especially the case considering the small number of samples that are used in practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Present status, future prospects of domestic acoustical instruments

    NASA Astrophysics Data System (ADS)

    Guibin, L.

    1984-01-01

    The product lines, specifications, and special features of China's main acoustical instrument products are described. The methods of operation nd the main problems associated with these products are discussed. Examples of the application of acoustical instruments are given. The main features of a digital signal analyzer are enumerated.

  11. Extracting BI-RADS Features from Portuguese Clinical Texts.

    PubMed

    Nassif, Houssam; Cunha, Filipe; Moreira, Inês C; Cruz-Correia, Ricardo; Sousa, Eliana; Page, David; Burnside, Elizabeth; Dutra, Inês

    2012-01-01

    In this work we build the first BI-RADS parser for Portuguese free texts, modeled after existing approaches to extract BI-RADS features from English medical records. Our concept finder uses a semantic grammar based on the BIRADS lexicon and on iterative transferred expert knowledge. We compare the performance of our algorithm to manual annotation by a specialist in mammography. Our results show that our parser's performance is comparable to the manual method.

  12. Defect-Repairable Latent Feature Extraction of Driving Behavior via a Deep Sparse Autoencoder

    PubMed Central

    Taniguchi, Tadahiro; Takenaka, Kazuhito; Bando, Takashi

    2018-01-01

    Data representing driving behavior, as measured by various sensors installed in a vehicle, are collected as multi-dimensional sensor time-series data. These data often include redundant information, e.g., both the speed of wheels and the engine speed represent the velocity of the vehicle. Redundant information can be expected to complicate the data analysis, e.g., more factors need to be analyzed; even varying the levels of redundancy can influence the results of the analysis. We assume that the measured multi-dimensional sensor time-series data of driving behavior are generated from low-dimensional data shared by the many types of one-dimensional data of which multi-dimensional time-series data are composed. Meanwhile, sensor time-series data may be defective because of sensor failure. Therefore, another important function is to reduce the negative effect of defective data when extracting low-dimensional time-series data. This study proposes a defect-repairable feature extraction method based on a deep sparse autoencoder (DSAE) to extract low-dimensional time-series data. In the experiments, we show that DSAE provides high-performance latent feature extraction for driving behavior, even for defective sensor time-series data. In addition, we show that the negative effect of defects on the driving behavior segmentation task could be reduced using the latent features extracted by DSAE. PMID:29462931

  13. Automated Fluid Feature Extraction from Transient Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    2000-01-01

    In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one 'snap-shot' of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense.

  14. The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.

    PubMed

    Ma, Teng; Li, Hui; Yang, Hao; Lv, Xulin; Li, Peiyang; Liu, Tiejun; Yao, Dezhong; Xu, Peng

    2017-01-01

    Motion-onset visual evoked potentials (mVEP) can provide a softer stimulus with reduced fatigue, and it has potential applications for brain computer interface(BCI)systems. However, the mVEP waveform is seriously masked in the strong background EEG activities, and an effective approach is needed to extract the corresponding mVEP features to perform task recognition for BCI control. In the current study, we combine deep learning with compressed sensing to mine discriminative mVEP information to improve the mVEP BCI performance. The deep learning and compressed sensing approach can generate the multi-modality features which can effectively improve the BCI performance with approximately 3.5% accuracy incensement over all 11 subjects and is more effective for those subjects with relatively poor performance when using the conventional features. Compared with the conventional amplitude-based mVEP feature extraction approach, the deep learning and compressed sensing approach has a higher classification accuracy and is more effective for subjects with relatively poor performance. According to the results, the deep learning and compressed sensing approach is more effective for extracting the mVEP feature to construct the corresponding BCI system, and the proposed feature extraction framework is easy to extend to other types of BCIs, such as motor imagery (MI), steady-state visual evoked potential (SSVEP)and P300. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  16. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.

    PubMed

    Zhu, Jianwei; Zhang, Haicang; Li, Shuai Cheng; Wang, Chao; Kong, Lupeng; Sun, Shiwei; Zheng, Wei-Mou; Bu, Dongbo

    2017-12-01

    Accurate recognition of protein fold types is a key step for template-based prediction of protein structures. The existing approaches to fold recognition mainly exploit the features derived from alignments of query protein against templates. These approaches have been shown to be successful for fold recognition at family level, but usually failed at superfamily/fold levels. To overcome this limitation, one of the key points is to explore more structurally informative features of proteins. Although residue-residue contacts carry abundant structural information, how to thoroughly exploit these information for fold recognition still remains a challenge. In this study, we present an approach (called DeepFR) to improve fold recognition at superfamily/fold levels. The basic idea of our approach is to extract fold-specific features from predicted residue-residue contacts of proteins using deep convolutional neural network (DCNN) technique. Based on these fold-specific features, we calculated similarity between query protein and templates, and then assigned query protein with fold type of the most similar template. DCNN has showed excellent performance in image feature extraction and image recognition; the rational underlying the application of DCNN for fold recognition is that contact likelihood maps are essentially analogy to images, as they both display compositional hierarchy. Experimental results on the LINDAHL dataset suggest that even using the extracted fold-specific features alone, our approach achieved success rate comparable to the state-of-the-art approaches. When further combining these features with traditional alignment-related features, the success rate of our approach increased to 92.3%, 82.5% and 78.8% at family, superfamily and fold levels, respectively, which is about 18% higher than the state-of-the-art approach at fold level, 6% higher at superfamily level and 1% higher at family level. An independent assessment on SCOP_TEST dataset showed consistent

  17. An Optimal Mean Based Block Robust Feature Extraction Method to Identify Colorectal Cancer Genes with Integrated Data.

    PubMed

    Liu, Jian; Cheng, Yuhu; Wang, Xuesong; Zhang, Lin; Liu, Hui

    2017-08-17

    It is urgent to diagnose colorectal cancer in the early stage. Some feature genes which are important to colorectal cancer development have been identified. However, for the early stage of colorectal cancer, less is known about the identity of specific cancer genes that are associated with advanced clinical stage. In this paper, we conducted a feature extraction method named Optimal Mean based Block Robust Feature Extraction method (OMBRFE) to identify feature genes associated with advanced colorectal cancer in clinical stage by using the integrated colorectal cancer data. Firstly, based on the optimal mean and L 2,1 -norm, a novel feature extraction method called Optimal Mean based Robust Feature Extraction method (OMRFE) is proposed to identify feature genes. Then the OMBRFE method which introduces the block ideology into OMRFE method is put forward to process the colorectal cancer integrated data which includes multiple genomic data: copy number alterations, somatic mutations, methylation expression alteration, as well as gene expression changes. Experimental results demonstrate that the OMBRFE is more effective than previous methods in identifying the feature genes. Moreover, genes identified by OMBRFE are verified to be closely associated with advanced colorectal cancer in clinical stage.

  18. Acoustic design of the QCSEE propulsion systems

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Smith, E. B.; Sowers, H. D.

    1976-01-01

    Acoustic design features and techniques employed in the Quiet Clean Short-Haul Experimental Engine (QCSEE) Program are described. The role of jet/flap noise in selecting the engine fan pressure ratio for powered lift propulsion systems is discussed. The QCSEE acoustic design features include a hybrid inlet (near-sonic throat velocity with acoustic treatment); low fan and core pressure ratios; low fan tip speeds; gear-driven fans; high and low frequency stacked core noise treatment; multiple-thickness treatment; bulk absorber treatment; and treatment on the stator vanes. The QCSEE designs represent and anticipated acoustic technology improvement of 12 to 16 PNdb relative to the noise levels of the low-noise engines used on current wide-body commercial jet transport aircraft.

  19. A novel framework for feature extraction in multi-sensor action potential sorting.

    PubMed

    Wu, Shun-Chi; Swindlehurst, A Lee; Nenadic, Zoran

    2015-09-30

    Extracellular recordings of multi-unit neural activity have become indispensable in neuroscience research. The analysis of the recordings begins with the detection of the action potentials (APs), followed by a classification step where each AP is associated with a given neural source. A feature extraction step is required prior to classification in order to reduce the dimensionality of the data and the impact of noise, allowing source clustering algorithms to work more efficiently. In this paper, we propose a novel framework for multi-sensor AP feature extraction based on the so-called Matched Subspace Detector (MSD), which is shown to be a natural generalization of standard single-sensor algorithms. Clustering using both simulated data and real AP recordings taken in the locust antennal lobe demonstrates that the proposed approach yields features that are discriminatory and lead to promising results. Unlike existing methods, the proposed algorithm finds joint spatio-temporal feature vectors that match the dominant subspace observed in the two-dimensional data without needs for a forward propagation model and AP templates. The proposed MSD approach provides more discriminatory features for unsupervised AP sorting applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Information Theory Filters for Wavelet Packet Coefficient Selection with Application to Corrosion Type Identification from Acoustic Emission Signals

    PubMed Central

    Van Dijck, Gert; Van Hulle, Marc M.

    2011-01-01

    The damage caused by corrosion in chemical process installations can lead to unexpected plant shutdowns and the leakage of potentially toxic chemicals into the environment. When subjected to corrosion, structural changes in the material occur, leading to energy releases as acoustic waves. This acoustic activity can in turn be used for corrosion monitoring, and even for predicting the type of corrosion. Here we apply wavelet packet decomposition to extract features from acoustic emission signals. We then use the extracted wavelet packet coefficients for distinguishing between the most important types of corrosion processes in the chemical process industry: uniform corrosion, pitting and stress corrosion cracking. The local discriminant basis selection algorithm can be considered as a standard for the selection of the most discriminative wavelet coefficients. However, it does not take the statistical dependencies between wavelet coefficients into account. We show that, when these dependencies are ignored, a lower accuracy is obtained in predicting the corrosion type. We compare several mutual information filters to take these dependencies into account in order to arrive at a more accurate prediction. PMID:22163921

  1. Approximation-based common principal component for feature extraction in multi-class brain-computer interfaces.

    PubMed

    Hoang, Tuan; Tran, Dat; Huang, Xu

    2013-01-01

    Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.

  2. a Landmark Extraction Method Associated with Geometric Features and Location Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, J.; Wang, Y.; Xiao, Y.; Liu, P.; Zhang, S.

    2018-04-01

    Landmark plays an important role in spatial cognition and spatial knowledge organization. Significance measuring model is the main method of landmark extraction. It is difficult to take account of the spatial distribution pattern of landmarks because that the significance of landmark is built in one-dimensional space. In this paper, we start with the geometric features of the ground object, an extraction method based on the target height, target gap and field of view is proposed. According to the influence region of Voronoi Diagram, the description of target gap is established to the geometric representation of the distribution of adjacent targets. Then, segmentation process of the visual domain of Voronoi K order adjacent is given to set up target view under the multi view; finally, through three kinds of weighted geometric features, the landmarks are identified. Comparative experiments show that this method has a certain coincidence degree with the results of traditional significance measuring model, which verifies the effectiveness and reliability of the method and reduces the complexity of landmark extraction process without losing the reference value of landmark.

  3. Reliable classification of high explosive and chemical/biological artillery using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Desai, Sachi V.; Hohil, Myron E.; Bass, Henry E.; Chambers, Jim

    2005-05-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation utilizing a generic acoustic sensor. Based on the transient properties of the signature blast distinct characteristics arise within the different acoustic signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. The algorithm enables robust classification of various airburst signatures using acoustics. It is capable of being integrated within an existing chemical/biological sensor, a stand-alone generic sensor, or a part of a disparate sensor suite. When emplaced in high-threat areas, this added capability would further provide field personal with advanced battlefield knowledge without the aide of so-called "sniffer" sensors that rely upon air particle information based on direct contact with possible contaminated air. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km while maintaining temporal sequence of the data to keep relevance to the transient differences of the airburst signatures. Highly reliable

  4. Extracting BI-RADS Features from Portuguese Clinical Texts

    PubMed Central

    Nassif, Houssam; Cunha, Filipe; Moreira, Inês C.; Cruz-Correia, Ricardo; Sousa, Eliana; Page, David; Burnside, Elizabeth; Dutra, Inês

    2013-01-01

    In this work we build the first BI-RADS parser for Portuguese free texts, modeled after existing approaches to extract BI-RADS features from English medical records. Our concept finder uses a semantic grammar based on the BIRADS lexicon and on iterative transferred expert knowledge. We compare the performance of our algorithm to manual annotation by a specialist in mammography. Our results show that our parser’s performance is comparable to the manual method. PMID:23797461

  5. Texture Feature Extraction and Classification for Iris Diagnosis

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Li, Naimin

    Appling computer aided techniques in iris image processing, and combining occidental iridology with the traditional Chinese medicine is a challenging research area in digital image processing and artificial intelligence. This paper proposes an iridology model that consists the iris image pre-processing, texture feature analysis and disease classification. To the pre-processing, a 2-step iris localization approach is proposed; a 2-D Gabor filter based texture analysis and a texture fractal dimension estimation method are proposed for pathological feature extraction; and at last support vector machines are constructed to recognize 2 typical diseases such as the alimentary canal disease and the nerve system disease. Experimental results show that the proposed iridology diagnosis model is quite effective and promising for medical diagnosis and health surveillance for both hospital and public use.

  6. Automated video feature extraction : workshop summary report October 10-11 2012.

    DOT National Transportation Integrated Search

    2012-12-01

    This report summarizes a 2-day workshop on automated video feature extraction. Discussion focused on the Naturalistic Driving : Study, funded by the second Strategic Highway Research Program, and also involved the companion roadway inventory dataset....

  7. Graph theory for feature extraction and classification: a migraine pathology case study.

    PubMed

    Jorge-Hernandez, Fernando; Garcia Chimeno, Yolanda; Garcia-Zapirain, Begonya; Cabrera Zubizarreta, Alberto; Gomez Beldarrain, Maria Angeles; Fernandez-Ruanova, Begonya

    2014-01-01

    Graph theory is also widely used as a representational form and characterization of brain connectivity network, as is machine learning for classifying groups depending on the features extracted from images. Many of these studies use different techniques, such as preprocessing, correlations, features or algorithms. This paper proposes an automatic tool to perform a standard process using images of the Magnetic Resonance Imaging (MRI) machine. The process includes pre-processing, building the graph per subject with different correlations, atlas, relevant feature extraction according to the literature, and finally providing a set of machine learning algorithms which can produce analyzable results for physicians or specialists. In order to verify the process, a set of images from prescription drug abusers and patients with migraine have been used. In this way, the proper functioning of the tool has been proved, providing results of 87% and 92% of success depending on the classifier used.

  8. Age group estimation in free-ranging African elephants based on acoustic cues of low-frequency rumbles

    PubMed Central

    Stoeger, Angela S.; Zeppelzauer, Matthias; Baotic, Anton

    2015-01-01

    Animal vocal signals are increasingly used to monitor wildlife populations and to obtain estimates of species occurrence and abundance. In the future, acoustic monitoring should function not only to detect animals, but also to extract detailed information about populations by discriminating sexes, age groups, social or kin groups, and potentially individuals. Here we show that it is possible to estimate age groups of African elephants (Loxodonta africana) based on acoustic parameters extracted from rumbles recorded under field conditions in a National Park in South Africa. Statistical models reached up to 70 % correct classification to four age groups (infants, calves, juveniles, adults) and 95 % correct classification when categorising into two groups (infants/calves lumped into one group versus adults). The models revealed that parameters representing absolute frequency values have the most discriminative power. Comparable classification results were obtained by fully automated classification of rumbles by high-dimensional features that represent the entire spectral envelope, such as MFCC (75 % correct classification) and GFCC (74 % correct classification). The reported results and methods provide the scientific foundation for a future system that could potentially automatically estimate the demography of an acoustically monitored elephant group or population. PMID:25821348

  9. Machine fault feature extraction based on intrinsic mode functions

    NASA Astrophysics Data System (ADS)

    Fan, Xianfeng; Zuo, Ming J.

    2008-04-01

    This work employs empirical mode decomposition (EMD) to decompose raw vibration signals into intrinsic mode functions (IMFs) that represent the oscillatory modes generated by the components that make up the mechanical systems generating the vibration signals. The motivation here is to develop vibration signal analysis programs that are self-adaptive and that can detect machine faults at the earliest onset of deterioration. The change in velocity of the amplitude of some IMFs over a particular unit time will increase when the vibration is stimulated by a component fault. Therefore, the amplitude acceleration energy in the intrinsic mode functions is proposed as an indicator of the impulsive features that are often associated with mechanical component faults. The periodicity of the amplitude acceleration energy for each IMF is extracted by spectrum analysis. A spectrum amplitude index is introduced as a method to select the optimal result. A comparison study of the method proposed here and some well-established techniques for detecting machinery faults is conducted through the analysis of both gear and bearing vibration signals. The results indicate that the proposed method has superior capability to extract machine fault features from vibration signals.

  10. Fractal Complexity-Based Feature Extraction Algorithm of Communication Signals

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Jingchao; Guo, Lili; Dou, Zheng; Lin, Yun; Zhou, Ruolin

    How to analyze and identify the characteristics of radiation sources and estimate the threat level by means of detecting, intercepting and locating has been the central issue of electronic support in the electronic warfare, and communication signal recognition is one of the key points to solve this issue. Aiming at accurately extracting the individual characteristics of the radiation source for the increasingly complex communication electromagnetic environment, a novel feature extraction algorithm for individual characteristics of the communication radiation source based on the fractal complexity of the signal is proposed. According to the complexity of the received signal and the situation of environmental noise, use the fractal dimension characteristics of different complexity to depict the subtle characteristics of the signal to establish the characteristic database, and then identify different broadcasting station by gray relation theory system. The simulation results demonstrate that the algorithm can achieve recognition rate of 94% even in the environment with SNR of -10dB, and this provides an important theoretical basis for the accurate identification of the subtle features of the signal at low SNR in the field of information confrontation.

  11. Line drawing extraction from gray level images by feature integration

    NASA Astrophysics Data System (ADS)

    Yoo, Hoi J.; Crevier, Daniel; Lepage, Richard; Myler, Harley R.

    1994-10-01

    We describe procedures that extract line drawings from digitized gray level images, without use of domain knowledge, by modeling preattentive and perceptual organization functions of the human visual system. First, edge points are identified by standard low-level processing, based on the Canny edge operator. Edge points are then linked into single-pixel thick straight- line segments and circular arcs: this operation serves to both filter out isolated and highly irregular segments, and to lump the remaining points into a smaller number of structures for manipulation by later stages of processing. The next stages consist in linking the segments into a set of closed boundaries, which is the system's definition of a line drawing. According to the principles of Gestalt psychology, closure allows us to organize the world by filling in the gaps in a visual stimulation so as to perceive whole objects instead of disjoint parts. To achieve such closure, the system selects particular features or combinations of features by methods akin to those of preattentive processing in humans: features include gaps, pairs of straight or curved parallel lines, L- and T-junctions, pairs of symmetrical lines, and the orientation and length of single lines. These preattentive features are grouped into higher-level structures according to the principles of proximity, similarity, closure, symmetry, and feature conjunction. Achieving closure may require supplying missing segments linking contour concavities. Choices are made between competing structures on the basis of their overall compliance with the principles of closure and symmetry. Results include clean line drawings of curvilinear manufactured objects. The procedures described are part of a system called VITREO (viewpoint-independent 3-D recognition and extraction of objects).

  12. Skipping the real world: Classification of PolSAR images without explicit feature extraction

    NASA Astrophysics Data System (ADS)

    Hänsch, Ronny; Hellwich, Olaf

    2018-06-01

    The typical processing chain for pixel-wise classification from PolSAR images starts with an optional preprocessing step (e.g. speckle reduction), continues with extracting features projecting the complex-valued data into the real domain (e.g. by polarimetric decompositions) which are then used as input for a machine-learning based classifier, and ends in an optional postprocessing (e.g. label smoothing). The extracted features are usually hand-crafted as well as preselected and represent (a somewhat arbitrary) projection from the complex to the real domain in order to fit the requirements of standard machine-learning approaches such as Support Vector Machines or Artificial Neural Networks. This paper proposes to adapt the internal node tests of Random Forests to work directly on the complex-valued PolSAR data, which makes any explicit feature extraction obsolete. This approach leads to a classification framework with a significantly decreased computation time and memory footprint since no image features have to be computed and stored beforehand. The experimental results on one fully-polarimetric and one dual-polarimetric dataset show that, despite the simpler approach, accuracy can be maintained (decreased by only less than 2 % for the fully-polarimetric dataset) or even improved (increased by roughly 9 % for the dual-polarimetric dataset).

  13. Quantitative 3-D Imaging, Segmentation and Feature Extraction of the Respiratory System in Small Mammals for Computational Biophysics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trease, Lynn L.; Trease, Harold E.; Fowler, John

    2007-03-15

    One of the critical steps toward performing computational biology simulations, using mesh based integration methods, is in using topologically faithful geometry derived from experimental digital image data as the basis for generating the computational meshes. Digital image data representations contain both the topology of the geometric features and experimental field data distributions. The geometric features that need to be captured from the digital image data are three-dimensional, therefore the process and tools we have developed work with volumetric image data represented as data-cubes. This allows us to take advantage of 2D curvature information during the segmentation and feature extraction process.more » The process is basically: 1) segmenting to isolate and enhance the contrast of the features that we wish to extract and reconstruct, 2) extracting the geometry of the features in an isosurfacing technique, and 3) building the computational mesh using the extracted feature geometry. “Quantitative” image reconstruction and feature extraction is done for the purpose of generating computational meshes, not just for producing graphics "screen" quality images. For example, the surface geometry that we extract must represent a closed water-tight surface.« less

  14. An effective hand vein feature extraction method.

    PubMed

    Li, Haigang; Zhang, Qian; Li, Chengdong

    2015-01-01

    As a new authentication method developed years ago, vein recognition technology features the unique advantage of bioassay. This paper studies the specific procedure for the extraction of hand back vein characteristics. There are different positions used in the collecting process, so that a suitable intravenous regional orientation method is put forward, allowing the positioning area to be the same for all hand positions. In addition, to eliminate the pseudo vein area, the valley regional shape extraction operator can be improved and combined with multiple segmentation algorithms. The images should be segmented step by step, making the vein texture to appear clear and accurate. Lastly, the segmented images should be filtered, eroded, and refined. This process helps to filter the most of the pseudo vein information. Finally, a clear vein skeleton diagram is obtained, demonstrating the effectiveness of the algorithm. This paper presents a hand back vein region location method. This makes it possible to rotate and correct the image by working out the inclination degree of contour at the side of hand back.

  15. Features extraction of EMG signal using time domain analysis for arm rehabilitation device

    NASA Astrophysics Data System (ADS)

    Jali, Mohd Hafiz; Ibrahim, Iffah Masturah; Sulaima, Mohamad Fani; Bukhari, W. M.; Izzuddin, Tarmizi Ahmad; Nasir, Mohamad Na'im

    2015-05-01

    Rehabilitation device is used as an exoskeleton for people who had failure of their limb. Arm rehabilitation device may help the rehab program whom suffers from arm disability. The device that is used to facilitate the tasks of the program should improve the electrical activity in the motor unit and minimize the mental effort of the user. Electromyography (EMG) is the techniques to analyze the presence of electrical activity in musculoskeletal systems. The electrical activity in muscles of disable person is failed to contract the muscle for movements. In order to prevent the muscles from paralysis becomes spasticity, the force of movements should minimize the mental efforts. Therefore, the rehabilitation device should analyze the surface EMG signal of normal people that can be implemented to the device. The signal is collected according to procedure of surface electromyography for non-invasive assessment of muscles (SENIAM). The EMG signal is implemented to set the movements' pattern of the arm rehabilitation device. The filtered EMG signal was extracted for features of Standard Deviation (STD), Mean Absolute Value (MAV) and Root Mean Square (RMS) in time-domain. The extraction of EMG data is important to have the reduced vector in the signal features with less of error. In order to determine the best features for any movements, several trials of extraction methods are used by determining the features with less of errors. The accurate features can be use for future works of rehabilitation control in real-time.

  16. Acoustic measurement and morphological features of organic sediment deposits in combined sewer networks.

    PubMed

    Carnacina, Iacopo; Larrarte, Frédérique; Leonardi, Nicoletta

    2017-04-01

    The performance of sewer networks has important consequences from an environmental and social point of view. Poor functioning can result in flood risk and pollution at a large scale. Sediment deposits forming in sewer trunks might severely compromise the sewer line by affecting the flow field, reducing cross-sectional areas, and increasing roughness coefficients. In spite of numerous efforts, the morphological features of these depositional environments remain poorly understood. The interface between water and sediment remains inefficiently identified and the estimation of the stock of deposit is frequently inaccurate. In part, this is due to technical issues connected to difficulties in collecting accurate field measurements without disrupting existing morphologies. In this paper, results from an extensive field campaign are presented; during the campaign a new survey methodology based on acoustic techniques has been tested. Furthermore, a new algorithm for the detection of the soil-water interface, and therefore for the correct esteem of sediment stocks is proposed. Finally, results in regard to bed topography, and morphological features at two different field sites are presented and reveal that a large variability in bed forms is present along sewer networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Hybrid Feature Extraction-based Approach for Facial Parts Representation and Recognition

    NASA Astrophysics Data System (ADS)

    Rouabhia, C.; Tebbikh, H.

    2008-06-01

    Face recognition is a specialized image processing which has attracted a considerable attention in computer vision. In this article, we develop a new facial recognition system from video sequences images dedicated to person identification whose face is partly occulted. This system is based on a hybrid image feature extraction technique called ACPDL2D (Rouabhia et al. 2007), it combines two-dimensional principal component analysis and two-dimensional linear discriminant analysis with neural network. We performed the feature extraction task on the eyes and the nose images separately then a Multi-Layers Perceptron classifier is used. Compared to the whole face, the results of simulation are in favor of the facial parts in terms of memory capacity and recognition (99.41% for the eyes part, 98.16% for the nose part and 97.25 % for the whole face).

  18. An image-processing methodology for extracting bloodstain pattern features.

    PubMed

    Arthur, Ravishka M; Humburg, Philomena J; Hoogenboom, Jerry; Baiker, Martin; Taylor, Michael C; de Bruin, Karla G

    2017-08-01

    There is a growing trend in forensic science to develop methods to make forensic pattern comparison tasks more objective. This has generally involved the application of suitable image-processing methods to provide numerical data for identification or comparison. This paper outlines a unique image-processing methodology that can be utilised by analysts to generate reliable pattern data that will assist them in forming objective conclusions about a pattern. A range of features were defined and extracted from a laboratory-generated impact spatter pattern. These features were based in part on bloodstain properties commonly used in the analysis of spatter bloodstain patterns. The values of these features were consistent with properties reported qualitatively for such patterns. The image-processing method developed shows considerable promise as a way to establish measurable discriminating pattern criteria that are lacking in current bloodstain pattern taxonomies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Road marking features extraction using the VIAPIX® system

    NASA Astrophysics Data System (ADS)

    Kaddah, W.; Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.; Gutierrez, C.

    2016-07-01

    Precise extraction of road marking features is a critical task for autonomous urban driving, augmented driver assistance, and robotics technologies. In this study, we consider an autonomous system allowing us lane detection for marked urban roads and analysis of their features. The task is to relate the georeferencing of road markings from images obtained using the VIAPIX® system. Based on inverse perspective mapping and color segmentation to detect all white objects existing on this road, the present algorithm enables us to examine these images automatically and rapidly and also to get information on road marks, their surface conditions, and their georeferencing. This algorithm allows detecting all road markings and identifying some of them by making use of a phase-only correlation filter (POF). We illustrate this algorithm and its robustness by applying it to a variety of relevant scenarios.

  20. The extraction and use of facial features in low bit-rate visual communication.

    PubMed

    Pearson, D

    1992-01-29

    A review is given of experimental investigations by the author and his collaborators into methods of extracting binary features from images of the face and hands. The aim of the research has been to enable deaf people to communicate by sign language over the telephone network. Other applications include model-based image coding and facial-recognition systems. The paper deals with the theoretical postulates underlying the successful experimental extraction of facial features. The basic philosophy has been to treat the face as an illuminated three-dimensional object and to identify features from characteristics of their Gaussian maps. It can be shown that in general a composite image operator linked to a directional-illumination estimator is required to accomplish this, although the latter can often be omitted in practice.

  1. Average combination difference morphological filters for fault feature extraction of bearing

    NASA Astrophysics Data System (ADS)

    Lv, Jingxiang; Yu, Jianbo

    2018-02-01

    In order to extract impulse components from vibration signals with much noise and harmonics, a new morphological filter called average combination difference morphological filter (ACDIF) is proposed in this paper. ACDIF constructs firstly several new combination difference (CDIF) operators, and then integrates the best two CDIFs as the final morphological filter. This design scheme enables ACIDF to extract positive and negative impacts existing in vibration signals to enhance accuracy of bearing fault diagnosis. The length of structure element (SE) that affects the performance of ACDIF is determined adaptively by a new indicator called Teager energy kurtosis (TEK). TEK further improves the effectiveness of ACDIF for fault feature extraction. Experimental results on the simulation and bearing vibration signals demonstrate that ACDIF can effectively suppress noise and extract periodic impulses from bearing vibration signals.

  2. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, John F.; Ng, Lawrence C.

    1998-01-01

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching.

  3. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, J.F.; Ng, L.C.

    1998-03-17

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.

  4. Evaluation of Voice Acoustics as Predictors of Clinical Depression Scores.

    PubMed

    Hashim, Nik Wahidah; Wilkes, Mitch; Salomon, Ronald; Meggs, Jared; France, Daniel J

    2017-03-01

    The aim of the present study was to determine if acoustic measures of voice, characterizing specific spectral and timing properties, predict clinical ratings of depression severity measured in a sample of patients using the Hamilton Depression Rating Scale (HAMD) and Beck Depression Inventory (BDI-II). This is a prospective study. Voice samples and clinical depression scores were collected prospectively from consenting adult patients who were referred to psychiatry from the adult emergency department or primary care clinics. The patients were audio-recorded as they read a standardized passage in a nearly closed-room environment. Mean Absolute Error (MAE) between actual and predicted depression scores was used as the primary outcome measure. The average MAE between predicted and actual HAMD scores was approximately two scores for both men and women, and the MAE for the BDI-II scores was approximately one score for men and eight scores for women. Timing features were predictive of HAMD scores in female patients while a combination of timing features and spectral features was predictive of scores in male patients. Timing features were predictive of BDI-II scores in male patients. Voice acoustic features extracted from read speech demonstrated variable effectiveness in predicting clinical depression scores in men and women. Voice features were highly predictive of HAMD scores in men and women, and BDI-II scores in men, respectively. The methodology is feasible for diagnostic applications in diverse clinical settings as it can be implemented during a standard clinical interview in a normal closed room and without strict control on the recording environment. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Study on Impact Acoustic-Visual Sensor-Based Sorting of ELV Plastic Materials.

    PubMed

    Huang, Jiu; Tian, Chuyuan; Ren, Jingwei; Bian, Zhengfu

    2017-06-08

    This paper concentrates on a study of a novel multi-sensor aided method by using acoustic and visual sensors for detection, recognition and separation of End-of Life vehicles' (ELVs) plastic materials, in order to optimize the recycling rate of automotive shredder residues (ASRs). Sensor-based sorting technologies have been utilized for material recycling for the last two decades. One of the problems still remaining results from black and dark dyed plastics which are very difficult to recognize using visual sensors. In this paper a new multi-sensor technology for black plastic recognition and sorting by using impact resonant acoustic emissions (AEs) and laser triangulation scanning was introduced. A pilot sorting system which consists of a 3-dimensional visual sensor and an acoustic sensor was also established; two kinds commonly used vehicle plastics, polypropylene (PP) and acrylonitrile-butadiene-styrene (ABS) and two kinds of modified vehicle plastics, polypropylene/ethylene-propylene-diene-monomer (PP-EPDM) and acrylonitrile-butadiene-styrene/polycarbonate (ABS-PC) were tested. In this study the geometrical features of tested plastic scraps were measured by the visual sensor, and their corresponding impact acoustic emission (AE) signals were acquired by the acoustic sensor. The signal processing and feature extraction of visual data as well as acoustic signals were realized by virtual instruments. Impact acoustic features were recognized by using FFT based power spectral density analysis. The results shows that the characteristics of the tested PP and ABS plastics were totally different, but similar to their respective modified materials. The probability of scrap material recognition rate, i.e., the theoretical sorting efficiency between PP and PP-EPDM, could reach about 50%, and between ABS and ABS-PC it could reach about 75% with diameters ranging from 14 mm to 23 mm, and with exclusion of abnormal impacts, the actual separation rates were 39.2% for PP, 41

  6. [A Feature Extraction Method for Brain Computer Interface Based on Multivariate Empirical Mode Decomposition].

    PubMed

    Wang, Jinjia; Liu, Yuan

    2015-04-01

    This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.

  7. Automated Fluid Feature Extraction from Transient Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1998-01-01

    In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one 'snap-shot' of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: Shocks; Vortex ores; Regions of Recirculation; Boundary Layers; Wakes.

  8. Pattern recognition and feature extraction with an optical Hough transform

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    2016-09-01

    Pattern recognition and localization along with feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for the recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital- only methods. Starting from the integral representation of the GHT, it is possible to device an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a rotating pupil mask for orientation variation, implemented on a high-contrast spatial light modulator (SLM). Real-time (as limited by the frame rate of the device used to capture the GHT) can also be achieved, allowing for the processing of video sequences. Besides, by thresholding of the GHT (with the aid of another SLM) and inverse transforming (which is optically achieved in the incoherent system under appropriate focusing setting), the previously detected features of interest can be extracted.

  9. Rotation, scale, and translation invariant pattern recognition using feature extraction

    NASA Astrophysics Data System (ADS)

    Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.

    1997-03-01

    A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.

  10. Detection of Delamination in Concrete Bridge Decks Using Mfcc of Acoustic Impact Signals

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Harichandran, R. S.; Ramuhalli, P.

    2010-02-01

    Delamination of the concrete cover is a commonly observed damage in concrete bridge decks. The delamination is typically initiated by corrosion of the upper reinforcing bars and promoted by freeze-thaw cycling and traffic loading. The detection of delamination is important for bridge maintenance and acoustic non-destructive evaluation (NDE) is widely used due to its low cost, speed, and easy implementation. In traditional acoustic approaches, the inspector sounds the surface of the deck by impacting it with a hammer or bar, or by dragging a chain, and assesses delamination by the "hollowness" of the sound. The detection of the delamination is subjective and requires extensive training. To improve performance, this paper proposes an objective method for delamination detection. In this method, mel-frequency cepstral coefficients (MFCC) of the signal are extracted. Some MFCC are then selected as features for detection purposes using a mutual information criterion. Finally, the selected features are used to train a classifier which is subsequently used for detection. In this work, a simple quadratic Bayesian classifier is used. Different numbers of features are used to compare the performance of the detection method. The results show that the performance first increases with the number of features, but then decreases after an optimal value. The optimal number of features based on the recorded signals is four, and the mean error rate is only 3.3% when four features are used. Therefore, the proposed algorithm has sufficient accuracy to be used in field detection.

  11. A stable biologically motivated learning mechanism for visual feature extraction to handle facial categorization.

    PubMed

    Rajaei, Karim; Khaligh-Razavi, Seyed-Mahdi; Ghodrati, Masoud; Ebrahimpour, Reza; Shiri Ahmad Abadi, Mohammad Ebrahim

    2012-01-01

    The brain mechanism of extracting visual features for recognizing various objects has consistently been a controversial issue in computational models of object recognition. To extract visual features, we introduce a new, biologically motivated model for facial categorization, which is an extension of the Hubel and Wiesel simple-to-complex cell hierarchy. To address the synaptic stability versus plasticity dilemma, we apply the Adaptive Resonance Theory (ART) for extracting informative intermediate level visual features during the learning process, which also makes this model stable against the destruction of previously learned information while learning new information. Such a mechanism has been suggested to be embedded within known laminar microcircuits of the cerebral cortex. To reveal the strength of the proposed visual feature learning mechanism, we show that when we use this mechanism in the training process of a well-known biologically motivated object recognition model (the HMAX model), it performs better than the HMAX model in face/non-face classification tasks. Furthermore, we demonstrate that our proposed mechanism is capable of following similar trends in performance as humans in a psychophysical experiment using a face versus non-face rapid categorization task.

  12. A Low Cost VLSI Architecture for Spike Sorting Based on Feature Extraction with Peak Search.

    PubMed

    Chang, Yuan-Jyun; Hwang, Wen-Jyi; Chen, Chih-Chang

    2016-12-07

    The goal of this paper is to present a novel VLSI architecture for spike sorting with high classification accuracy, low area costs and low power consumption. A novel feature extraction algorithm with low computational complexities is proposed for the design of the architecture. In the feature extraction algorithm, a spike is separated into two portions based on its peak value. The area of each portion is then used as a feature. The algorithm is simple to implement and less susceptible to noise interference. Based on the algorithm, a novel architecture capable of identifying peak values and computing spike areas concurrently is proposed. To further accelerate the computation, a spike can be divided into a number of segments for the local feature computation. The local features are subsequently merged with the global ones by a simple hardware circuit. The architecture can also be easily operated in conjunction with the circuits for commonly-used spike detection algorithms, such as the Non-linear Energy Operator (NEO). The architecture has been implemented by an Application-Specific Integrated Circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture is well suited for real-time multi-channel spike detection and feature extraction requiring low hardware area costs, low power consumption and high classification accuracy.

  13. A new automated spectral feature extraction method and its application in spectral classification and defective spectra recovery

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Guo, Ping; Luo, A.-Li

    2017-03-01

    Spectral feature extraction is a crucial procedure in automated spectral analysis. This procedure starts from the spectral data and produces informative and non-redundant features, facilitating the subsequent automated processing and analysis with machine-learning and data-mining techniques. In this paper, we present a new automated feature extraction method for astronomical spectra, with application in spectral classification and defective spectra recovery. The basic idea of our approach is to train a deep neural network to extract features of spectra with different levels of abstraction in different layers. The deep neural network is trained with a fast layer-wise learning algorithm in an analytical way without any iterative optimization procedure. We evaluate the performance of the proposed scheme on real-world spectral data. The results demonstrate that our method is superior regarding its comprehensive performance, and the computational cost is significantly lower than that for other methods. The proposed method can be regarded as a new valid alternative general-purpose feature extraction method for various tasks in spectral data analysis.

  14. An energy ratio feature extraction method for optical fiber vibration signal

    NASA Astrophysics Data System (ADS)

    Sheng, Zhiyong; Zhang, Xinyan; Wang, Yanping; Hou, Weiming; Yang, Dan

    2018-03-01

    The intrusion events in the optical fiber pre-warning system (OFPS) are divided into two types which are harmful intrusion event and harmless interference event. At present, the signal feature extraction methods of these two types of events are usually designed from the view of the time domain. However, the differences of time-domain characteristics for different harmful intrusion events are not obvious, which cannot reflect the diversity of them in detail. We find that the spectrum distribution of different intrusion signals has obvious differences. For this reason, the intrusion signal is transformed into the frequency domain. In this paper, an energy ratio feature extraction method of harmful intrusion event is drawn on. Firstly, the intrusion signals are pre-processed and the power spectral density (PSD) is calculated. Then, the energy ratio of different frequency bands is calculated, and the corresponding feature vector of each type of intrusion event is further formed. The linear discriminant analysis (LDA) classifier is used to identify the harmful intrusion events in the paper. Experimental results show that the algorithm improves the recognition rate of the intrusion signal, and further verifies the feasibility and validity of the algorithm.

  15. Object-Based Arctic Sea Ice Feature Extraction through High Spatial Resolution Aerial photos

    NASA Astrophysics Data System (ADS)

    Miao, X.; Xie, H.

    2015-12-01

    High resolution aerial photographs used to detect and classify sea ice features can provide accurate physical parameters to refine, validate, and improve climate models. However, manually delineating sea ice features, such as melt ponds, submerged ice, water, ice/snow, and pressure ridges, is time-consuming and labor-intensive. An object-based classification algorithm is developed to automatically extract sea ice features efficiently from aerial photographs taken during the Chinese National Arctic Research Expedition in summer 2010 (CHINARE 2010) in the MIZ near the Alaska coast. The algorithm includes four steps: (1) the image segmentation groups the neighboring pixels into objects based on the similarity of spectral and textural information; (2) the random forest classifier distinguishes four general classes: water, general submerged ice (GSI, including melt ponds and submerged ice), shadow, and ice/snow; (3) the polygon neighbor analysis separates melt ponds and submerged ice based on spatial relationship; and (4) pressure ridge features are extracted from shadow based on local illumination geometry. The producer's accuracy of 90.8% and user's accuracy of 91.8% are achieved for melt pond detection, and shadow shows a user's accuracy of 88.9% and producer's accuracies of 91.4%. Finally, pond density, pond fraction, ice floes, mean ice concentration, average ridge height, ridge profile, and ridge frequency are extracted from batch processing of aerial photos, and their uncertainties are estimated.

  16. Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.

    PubMed

    Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng

    2018-01-01

    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.

  17. Vaccine adverse event text mining system for extracting features from vaccine safety reports.

    PubMed

    Botsis, Taxiarchis; Buttolph, Thomas; Nguyen, Michael D; Winiecki, Scott; Woo, Emily Jane; Ball, Robert

    2012-01-01

    To develop and evaluate a text mining system for extracting key clinical features from vaccine adverse event reporting system (VAERS) narratives to aid in the automated review of adverse event reports. Based upon clinical significance to VAERS reviewing physicians, we defined the primary (diagnosis and cause of death) and secondary features (eg, symptoms) for extraction. We built a novel vaccine adverse event text mining (VaeTM) system based on a semantic text mining strategy. The performance of VaeTM was evaluated using a total of 300 VAERS reports in three sequential evaluations of 100 reports each. Moreover, we evaluated the VaeTM contribution to case classification; an information retrieval-based approach was used for the identification of anaphylaxis cases in a set of reports and was compared with two other methods: a dedicated text classifier and an online tool. The performance metrics of VaeTM were text mining metrics: recall, precision and F-measure. We also conducted a qualitative difference analysis and calculated sensitivity and specificity for classification of anaphylaxis cases based on the above three approaches. VaeTM performed best in extracting diagnosis, second level diagnosis, drug, vaccine, and lot number features (lenient F-measure in the third evaluation: 0.897, 0.817, 0.858, 0.874, and 0.914, respectively). In terms of case classification, high sensitivity was achieved (83.1%); this was equal and better compared to the text classifier (83.1%) and the online tool (40.7%), respectively. Our VaeTM implementation of a semantic text mining strategy shows promise in providing accurate and efficient extraction of key features from VAERS narratives.

  18. Effects of Ultrasound on Extraction of Saponin from Ginseng

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ohdaira, Etsuzo; Ide, Masao

    1994-05-01

    We performed a study of the effects of ultrasound on the extraction of saponin from Panax ginseng C. A. Meyer. In this study, the extraction of saponin was examined as functions of irradiation time (0.5 to 6 h) and acoustic pressure (0 to 90 kPa). It has been observed that the yields of both total extract and saponin are larger with ultrasonic irradiation than those without ultrasonic irradiation; the increase in yield of total extract is approximately 15 wt%, and that of saponin is approximately 30 wt% at an acoustic pressure 67 kPa. In addition, the yield increases with the acoustic pressure. It is also demonstrated that saponin was not resolved in the acoustic intensity range of this experiment. The enhancement in liquid-solid extraction caused by ultrasound can be attributed to the phenomenon of cavitation.

  19. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J.F.; Ng, L.C.

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used formore » purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.« less

  20. Feature extraction based on semi-supervised kernel Marginal Fisher analysis and its application in bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Xuan, Jianping; Shi, Tielin

    2013-12-01

    Generally, the vibration signals of faulty machinery are non-stationary and nonlinear under complicated operating conditions. Therefore, it is a big challenge for machinery fault diagnosis to extract optimal features for improving classification accuracy. This paper proposes semi-supervised kernel Marginal Fisher analysis (SSKMFA) for feature extraction, which can discover the intrinsic manifold structure of dataset, and simultaneously consider the intra-class compactness and the inter-class separability. Based on SSKMFA, a novel approach to fault diagnosis is put forward and applied to fault recognition of rolling bearings. SSKMFA directly extracts the low-dimensional characteristics from the raw high-dimensional vibration signals, by exploiting the inherent manifold structure of both labeled and unlabeled samples. Subsequently, the optimal low-dimensional features are fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories and severities of bearings. The experimental results demonstrate that the proposed approach improves the fault recognition performance and outperforms the other four feature extraction methods.

  1. [A novel method of multi-channel feature extraction combining multivariate autoregression and multiple-linear principal component analysis].

    PubMed

    Wang, Jinjia; Zhang, Yanna

    2015-02-01

    Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.

  2. Magnetic field feature extraction and selection for indoor location estimation.

    PubMed

    Galván-Tejada, Carlos E; García-Vázquez, Juan Pablo; Brena, Ramon F

    2014-06-20

    User indoor positioning has been under constant improvement especially with the availability of new sensors integrated into the modern mobile devices, which allows us to exploit not only infrastructures made for everyday use, such as WiFi, but also natural infrastructure, as is the case of natural magnetic field. In this paper we present an extension and improvement of our current indoor localization model based on the feature extraction of 46 magnetic field signal features. The extension adds a feature selection phase to our methodology, which is performed through Genetic Algorithm (GA) with the aim of optimizing the fitness of our current model. In addition, we present an evaluation of the final model in two different scenarios: home and office building. The results indicate that performing a feature selection process allows us to reduce the number of signal features of the model from 46 to 5 regardless the scenario and room location distribution. Further, we verified that reducing the number of features increases the probability of our estimator correctly detecting the user's location (sensitivity) and its capacity to detect false positives (specificity) in both scenarios.

  3. Sparse Coding for N-Gram Feature Extraction and Training for File Fragment Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Felix; Quach, Tu-Thach; Wheeler, Jason

    File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used tomore » reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers such as support vector machines (SVMs) over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.« less

  4. Sparse Coding for N-Gram Feature Extraction and Training for File Fragment Classification

    DOE PAGES

    Wang, Felix; Quach, Tu-Thach; Wheeler, Jason; ...

    2018-04-05

    File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used tomore » reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers such as support vector machines (SVMs) over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.« less

  5. Non-destructive spatial characterization of buried interfaces in multilayer stacks via two color picosecond acoustics

    NASA Astrophysics Data System (ADS)

    Faria, Jorge C. D.; Garnier, Philippe; Devos, Arnaud

    2017-12-01

    We demonstrate the ability to construct wide-area spatial mappings of buried interfaces in thin film stacks in a non-destructive manner using two color picosecond acoustics. Along with the extraction of layer thicknesses and sound velocities from acoustic signals, the morphological information presented is a powerful demonstration of phonon imaging as a metrological tool. For a series of heterogeneous (polymer, metal, and semiconductor) thin film stacks that have been treated with a chemical procedure known to alter layer properties, the spatial mappings reveal changes to interior thicknesses and chemically modified surface features without the need to remove uppermost layers. These results compare well to atomic force microscopy scans showing that the technique provides a significant advantage to current characterization methods for industrially important device stacks.

  6. Extraction of sandy bedforms features through geodesic morphometry

    NASA Astrophysics Data System (ADS)

    Debese, Nathalie; Jacq, Jean-José; Garlan, Thierry

    2016-09-01

    State-of-art echosounders reveal fine-scale details of mobile sandy bedforms, which are commonly found on continental shelfs. At present, their dynamics are still far from being completely understood. These bedforms are a serious threat to navigation security, anthropic structures and activities, placing emphasis on research breakthroughs. Bedform geometries and their dynamics are closely linked; therefore, one approach is to develop semi-automatic tools aiming at extracting their structural features from bathymetric datasets. Current approaches mimic manual processes or rely on morphological simplification of bedforms. The 1D and 2D approaches cannot address the wide ranges of both types and complexities of bedforms. In contrast, this work attempts to follow a 3D global semi-automatic approach based on a bathymetric TIN. The currently extracted primitives are the salient ridge and valley lines of the sand structures, i.e., waves and mega-ripples. The main difficulty is eliminating the ripples that are found to heavily overprint any observations. To this end, an anisotropic filter that is able to discard these structures while still enhancing the wave ridges is proposed. The second part of the work addresses the semi-automatic interactive extraction and 3D augmented display of the main lines structures. The proposed protocol also allows geoscientists to interactively insert topological constraints.

  7. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - a response surface approach.

    PubMed

    González-Centeno, María Reyes; Knoerzer, Kai; Sabarez, Henry; Simal, Susana; Rosselló, Carmen; Femenia, Antoni

    2014-11-01

    Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120kHz), ultrasonic power density (50, 100, 150W/L) and extraction time (5, 15, 25min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (p<0.05). The Box-Behnken Design (BBD) generated satisfactory mathematical models which accurately explain the behavior of the system; allowing to predict both the extraction yield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40kHz, a power density of 150W/L and 25min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31mg GA/100g fw for total phenolics and 2.04mg quercetin/100g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66mg Trolox/100g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors' knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A new breast cancer risk analysis approach using features extracted from multiple sub-regions on bilateral mammograms

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Tseng, Tzu-Liang B.; Zheng, Bin; Zhang, Jianying; Qian, Wei

    2015-03-01

    A novel breast cancer risk analysis approach is proposed for enhancing performance of computerized breast cancer risk analysis using bilateral mammograms. Based on the intensity of breast area, five different sub-regions were acquired from one mammogram, and bilateral features were extracted from every sub-region. Our dataset includes 180 bilateral mammograms from 180 women who underwent routine screening examinations, all interpreted as negative and not recalled by the radiologists during the original screening procedures. A computerized breast cancer risk analysis scheme using four image processing modules, including sub-region segmentation, bilateral feature extraction, feature selection, and classification was designed to detect and compute image feature asymmetry between the left and right breasts imaged on the mammograms. The highest computed area under the curve (AUC) is 0.763 ± 0.021 when applying the multiple sub-region features to our testing dataset. The positive predictive value and the negative predictive value were 0.60 and 0.73, respectively. The study demonstrates that (1) features extracted from multiple sub-regions can improve the performance of our scheme compared to using features from whole breast area only; (2) a classifier using asymmetry bilateral features can effectively predict breast cancer risk; (3) incorporating texture and morphological features with density features can boost the classification accuracy.

  9. A Flexible Analysis Tool for the Quantitative Acoustic Assessment of Infant Cry

    PubMed Central

    Reggiannini, Brian; Sheinkopf, Stephen J.; Silverman, Harvey F.; Li, Xiaoxue; Lester, Barry M.

    2015-01-01

    Purpose In this article, the authors describe and validate the performance of a modern acoustic analyzer specifically designed for infant cry analysis. Method Utilizing known algorithms, the authors developed a method to extract acoustic parameters describing infant cries from standard digital audio files. They used a frame rate of 25 ms with a frame advance of 12.5 ms. Cepstral-based acoustic analysis proceeded in 2 phases, computing frame-level data and then organizing and summarizing this information within cry utterances. Using signal detection methods, the authors evaluated the accuracy of the automated system to determine voicing and to detect fundamental frequency (F0) as compared to voiced segments and pitch periods manually coded from spectrogram displays. Results The system detected F0 with 88% to 95% accuracy, depending on tolerances set at 10 to 20 Hz. Receiver operating characteristic analyses demonstrated very high accuracy at detecting voicing characteristics in the cry samples. Conclusions This article describes an automated infant cry analyzer with high accuracy to detect important acoustic features of cry. A unique and important aspect of this work is the rigorous testing of the system’s accuracy as compared to ground-truth manual coding. The resulting system has implications for basic and applied research on infant cry development. PMID:23785178

  10. Generalized Feature Extraction for Wrist Pulse Analysis: From 1-D Time Series to 2-D Matrix.

    PubMed

    Dimin Wang; Zhang, David; Guangming Lu

    2017-07-01

    Traditional Chinese pulse diagnosis, known as an empirical science, depends on the subjective experience. Inconsistent diagnostic results may be obtained among different practitioners. A scientific way of studying the pulse should be to analyze the objectified wrist pulse waveforms. In recent years, many pulse acquisition platforms have been developed with the advances in sensor and computer technology. And the pulse diagnosis using pattern recognition theories is also increasingly attracting attentions. Though many literatures on pulse feature extraction have been published, they just handle the pulse signals as simple 1-D time series and ignore the information within the class. This paper presents a generalized method of pulse feature extraction, extending the feature dimension from 1-D time series to 2-D matrix. The conventional wrist pulse features correspond to a particular case of the generalized models. The proposed method is validated through pattern classification on actual pulse records. Both quantitative and qualitative results relative to the 1-D pulse features are given through diabetes diagnosis. The experimental results show that the generalized 2-D matrix feature is effective in extracting both the periodic and nonperiodic information. And it is practical for wrist pulse analysis.

  11. Image feature detection and extraction techniques performance evaluation for development of panorama under different light conditions

    NASA Astrophysics Data System (ADS)

    Patil, Venkat P.; Gohatre, Umakant B.

    2018-04-01

    The technique of obtaining a wider field-of-view of an image to get high resolution integrated image is normally required for development of panorama of a photographic images or scene from a sequence of part of multiple views. There are various image stitching methods developed recently. For image stitching five basic steps are adopted stitching which are Feature detection and extraction, Image registration, computing homography, image warping and Blending. This paper provides review of some of the existing available image feature detection and extraction techniques and image stitching algorithms by categorizing them into several methods. For each category, the basic concepts are first described and later on the necessary modifications made to the fundamental concepts by different researchers are elaborated. This paper also highlights about the some of the fundamental techniques for the process of photographic image feature detection and extraction methods under various illumination conditions. The Importance of Image stitching is applicable in the various fields such as medical imaging, astrophotography and computer vision. For comparing performance evaluation of the techniques used for image features detection three methods are considered i.e. ORB, SURF, HESSIAN and time required for input images feature detection is measured. Results obtained finally concludes that for daylight condition, ORB algorithm found better due to the fact that less tome is required for more features extracted where as for images under night light condition it shows that SURF detector performs better than ORB/HESSIAN detectors.

  12. Singular value decomposition based feature extraction technique for physiological signal analysis.

    PubMed

    Chang, Cheng-Ding; Wang, Chien-Chih; Jiang, Bernard C

    2012-06-01

    Multiscale entropy (MSE) is one of the popular techniques to calculate and describe the complexity of the physiological signal. Many studies use this approach to detect changes in the physiological conditions in the human body. However, MSE results are easily affected by noise and trends, leading to incorrect estimation of MSE values. In this paper, singular value decomposition (SVD) is adopted to replace MSE to extract the features of physiological signals, and adopt the support vector machine (SVM) to classify the different physiological states. A test data set based on the PhysioNet website was used, and the classification results showed that using SVD to extract features of the physiological signal could attain a classification accuracy rate of 89.157%, which is higher than that using the MSE value (71.084%). The results show the proposed analysis procedure is effective and appropriate for distinguishing different physiological states. This promising result could be used as a reference for doctors in diagnosis of congestive heart failure (CHF) disease.

  13. Feature extraction across individual time series observations with spikes using wavelet principal component analysis.

    PubMed

    Røislien, Jo; Winje, Brita

    2013-09-20

    Clinical studies frequently include repeated measurements of individuals, often for long periods. We present a methodology for extracting common temporal features across a set of individual time series observations. In particular, the methodology explores extreme observations within the time series, such as spikes, as a possible common temporal phenomenon. Wavelet basis functions are attractive in this sense, as they are localized in both time and frequency domains simultaneously, allowing for localized feature extraction from a time-varying signal. We apply wavelet basis function decomposition of individual time series, with corresponding wavelet shrinkage to remove noise. We then extract common temporal features using linear principal component analysis on the wavelet coefficients, before inverse transformation back to the time domain for clinical interpretation. We demonstrate the methodology on a subset of a large fetal activity study aiming to identify temporal patterns in fetal movement (FM) count data in order to explore formal FM counting as a screening tool for identifying fetal compromise and thus preventing adverse birth outcomes. Copyright © 2013 John Wiley & Sons, Ltd.

  14. The feature extraction of "cat-eye" targets based on bi-spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghua; Fan, Guihua; Sun, Huayan

    2016-10-01

    In order to resolve the difficult problem of detection and identification of optical targets in complex background or in long-distance transmission, this paper mainly study the range profiles of "cat-eye" targets using bi-spectrum. For the problems of laser echo signal attenuation serious and low Signal-Noise Ratio (SNR), the multi-pulse laser signal echo signal detection algorithm which is based on high-order cumulant, filter processing and the accumulation of multi-pulse is proposed. This could improve the detection range effectively. In order to extract the stable characteristics of the one-dimensional range profile coming from the cat-eye targets, a method is proposed which extracts the bi-spectrum feature, and uses the singular value decomposition to simplify the calculation. Then, by extracting data samples of different distance, type and incidence angle, verify the stability of the eigenvector and effectiveness extracted by bi-spectrum.

  15. Maximum entropy methods for extracting the learned features of deep neural networks.

    PubMed

    Finnegan, Alex; Song, Jun S

    2017-10-01

    New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful features a network is actually learning. We present a general method for interpreting deep neural networks and extracting network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences, anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome maps. Imposing a further constraint on the maximum entropy distribution also allows us to probe whether a network is learning global sequence features, such as the high GC content in nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features from feed-forward neural networks.

  16. Statistical Methods for Proteomic Biomarker Discovery based on Feature Extraction or Functional Modeling Approaches.

    PubMed

    Morris, Jeffrey S

    2012-01-01

    In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational aspects of comparative proteomic studies, and summarizes contributions I along with numerous collaborators have made. First, there is an overview of comparative proteomics technologies, followed by a discussion of important experimental design and preprocessing issues that must be considered before statistical analysis can be done. Next, the two key approaches to analyzing proteomics data, feature extraction and functional modeling, are described. Feature extraction involves detection and quantification of discrete features like peaks or spots that theoretically correspond to different proteins in the sample. After an overview of the feature extraction approach, specific methods for mass spectrometry ( Cromwell ) and 2D gel electrophoresis ( Pinnacle ) are described. The functional modeling approach involves modeling the proteomic data in their entirety as functions or images. A general discussion of the approach is followed by the presentation of a specific method that can be applied, wavelet-based functional mixed models, and its extensions. All methods are illustrated by application to two example proteomic data sets, one from mass spectrometry and one from 2D gel electrophoresis. While the specific methods

  17. [Identification of special quality eggs with NIR spectroscopy technology based on symbol entropy feature extraction method].

    PubMed

    Zhao, Yong; Hong, Wen-Xue

    2011-11-01

    Fast, nondestructive and accurate identification of special quality eggs is an urgent problem. The present paper proposed a new feature extraction method based on symbol entropy to identify near infrared spectroscopy of special quality eggs. The authors selected normal eggs, free range eggs, selenium-enriched eggs and zinc-enriched eggs as research objects and measured the near-infrared diffuse reflectance spectra in the range of 12 000-4 000 cm(-1). Raw spectra were symbolically represented with aggregation approximation algorithm and symbolic entropy was extracted as feature vector. An error-correcting output codes multiclass support vector machine classifier was designed to identify the spectrum. Symbolic entropy feature is robust when parameter changed and the highest recognition rate reaches up to 100%. The results show that the identification method of special quality eggs using near-infrared is feasible and the symbol entropy can be used as a new feature extraction method of near-infrared spectra.

  18. Acoustic classification of zooplankton

    NASA Astrophysics Data System (ADS)

    Martin Traykovski, Linda V.

    1998-11-01

    Work on the forward problem in zooplankton bioacoustics has resulted in the identification of three categories of acoustic scatterers: elastic-shelled (e.g. pteropods), fluid-like (e.g. euphausiids), and gas-bearing (e.g. siphonophores). The relationship between backscattered energy and animal biomass has been shown to vary by a factor of ~19,000 across these categories, so that to make accurate estimates of zooplankton biomass from acoustic backscatter measurements of the ocean, the acoustic characteristics of the species of interest must be well-understood. This thesis describes the development of both feature based and model based classification techniques to invert broadband acoustic echoes from individual zooplankton for scatterer type, as well as for particular parameters such as animal orientation. The feature based Empirical Orthogonal Function Classifier (EOFC) discriminates scatterer types by identifying characteristic modes of variability in the echo spectra, exploiting only the inherent characteristic structure of the acoustic signatures. The model based Model Parameterisation Classifier (MPC) classifies based on correlation of observed echo spectra with simplified parameterisations of theoretical scattering models for the three classes. The Covariance Mean Variance Classifiers (CMVC) are a set of advanced model based techniques which exploit the full complexity of the theoretical models by searching the entire physical model parameter space without employing simplifying parameterisations. Three different CMVC algorithms were developed: the Integrated Score Classifier (ISC), the Pairwise Score Classifier (PSC) and the Bayesian Probability Classifier (BPC); these classifiers assign observations to a class based on similarities in covariance, mean, and variance, while accounting for model ambiguity and validity. These feature based and model based inversion techniques were successfully applied to several thousand echoes acquired from broadband (~350 k

  19. Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun

    2014-01-01

    We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.

  20. Rapid extraction of auditory feature contingencies.

    PubMed

    Bendixen, Alexandra; Prinz, Wolfgang; Horváth, János; Trujillo-Barreto, Nelson J; Schröger, Erich

    2008-07-01

    Contingent relations between sensory events render the environment predictable and thus facilitate adaptive behavior. The human capacity to detect such relations has been comprehensively demonstrated in paradigms in which contingency rules were task-relevant or in which they applied to motor behavior. The extent to which contingencies can also be extracted from events that are unrelated to the current goals of the organism has remained largely unclear. The present study addressed the emergence of contingency-related effects for behaviorally irrelevant auditory stimuli and the cortical areas involved in the processing of such contingency rules. Contingent relations between different features of temporally separate events were embedded in a new dynamic protocol. Participants were presented with the auditory stimulus sequences while their attention was captured by a video. The mismatch negativity (MMN) component of the event-related brain potential (ERP) was employed as an electrophysiological correlate of contingency detection. MMN generators were localized by means of scalp current density (SCD) and primary current density (PCD) analyses with variable resolution electromagnetic tomography (VARETA). Results show that task-irrelevant contingencies can be extracted from about fifteen to twenty successive events conforming to the contingent relation. Topographic and tomographic analyses reveal the involvement of the auditory cortex in the processing of contingency violations. The present data provide evidence for the rapid encoding of complex extrapolative relations in sensory areas. This capacity is of fundamental importance for the organism in its attempt to model the sensory environment outside the focus of attention.

  1. Built-up Areas Extraction in High Resolution SAR Imagery based on the method of Multiple Feature Weighted Fusion

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.

    2015-06-01

    Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.

  2. Reaction Decoder Tool (RDT): extracting features from chemical reactions.

    PubMed

    Rahman, Syed Asad; Torrance, Gilliean; Baldacci, Lorenzo; Martínez Cuesta, Sergio; Fenninger, Franz; Gopal, Nimish; Choudhary, Saket; May, John W; Holliday, Gemma L; Steinbeck, Christoph; Thornton, Janet M

    2016-07-01

    Extracting chemical features like Atom-Atom Mapping (AAM), Bond Changes (BCs) and Reaction Centres from biochemical reactions helps us understand the chemical composition of enzymatic reactions. Reaction Decoder is a robust command line tool, which performs this task with high accuracy. It supports standard chemical input/output exchange formats i.e. RXN/SMILES, computes AAM, highlights BCs and creates images of the mapped reaction. This aids in the analysis of metabolic pathways and the ability to perform comparative studies of chemical reactions based on these features. This software is implemented in Java, supported on Windows, Linux and Mac OSX, and freely available at https://github.com/asad/ReactionDecoder : asad@ebi.ac.uk or s9asad@gmail.com. © The Author 2016. Published by Oxford University Press.

  3. Modeling for Visual Feature Extraction Using Spiking Neural Networks

    NASA Astrophysics Data System (ADS)

    Kimura, Ichiro; Kuroe, Yasuaki; Kotera, Hiromichi; Murata, Tomoya

    This paper develops models for “visual feature extraction” in biological systems by using “spiking neural network (SNN)”. The SNN is promising for developing the models because the information is encoded and processed by spike trains similar to biological neural networks. Two architectures of SNN are proposed for modeling the directionally selective and the motion parallax cell in neuro-sensory systems and they are trained so as to possess actual biological responses of each cell. To validate the developed models, their representation ability is investigated and their visual feature extraction mechanisms are discussed from the neurophysiological viewpoint. It is expected that this study can be the first step to developing a sensor system similar to the biological systems and also a complementary approach to investigating the function of the brain.

  4. On Feature Extraction from Large Scale Linear LiDAR Data

    NASA Astrophysics Data System (ADS)

    Acharjee, Partha Pratim

    Airborne light detection and ranging (LiDAR) can generate co-registered elevation and intensity map over large terrain. The co-registered 3D map and intensity information can be used efficiently for different feature extraction application. In this dissertation, we developed two algorithms for feature extraction, and usages of features for practical applications. One of the developed algorithms can map still and flowing waterbody features, and another one can extract building feature and estimate solar potential on rooftops and facades. Remote sensing capabilities, distinguishing characteristics of laser returns from water surface and specific data collection procedures provide LiDAR data an edge in this application domain. Furthermore, water surface mapping solutions must work on extremely large datasets, from a thousand square miles, to hundreds of thousands of square miles. National and state-wide map generation/upgradation and hydro-flattening of LiDAR data for many other applications are two leading needs of water surface mapping. These call for as much automation as possible. Researchers have developed many semi-automated algorithms using multiple semi-automated tools and human interventions. This reported work describes a consolidated algorithm and toolbox developed for large scale, automated water surface mapping. Geometric features such as flatness of water surface, higher elevation change in water-land interface and, optical properties such as dropouts caused by specular reflection, bimodal intensity distributions were some of the linear LiDAR features exploited for water surface mapping. Large-scale data handling capabilities are incorporated by automated and intelligent windowing, by resolving boundary issues and integrating all results to a single output. This whole algorithm is developed as an ArcGIS toolbox using Python libraries. Testing and validation are performed on a large datasets to determine the effectiveness of the toolbox and results are

  5. System and method for investigating sub-surface features of a rock formation using compressional acoustic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt

    A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to themore » borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.« less

  6. The accidental (acoustical) tourist

    NASA Astrophysics Data System (ADS)

    Van Kirk, Wayne

    2002-11-01

    The acoustical phenomenon observed at an ancient temple in the Great Ball Court at Chichen Itza was described as ''little short of amazing--an ancient whispering gallery'' by Silvanus G. Morley, leader of the Carnegie Institute's archaeological team that excavated and restored these structures in the 1920s. Since then, many others have experienced the extraordinary acoustics at Chichen Itza and other Maya sites. Despite these reports, archaeologists and acousticians have until recently shown little interest in understanding these phenomena. After experiencing Chichen Itza's remarkable acoustics as a tourist in 1994, the author commenced collecting and disseminating information about acoustical phenomena there and at other Mayan sites, hoping to stimulate interest among archaeologists and acousticians. Were these designs accidental or intentional? If intentional, how was the knowledge obtained? How were acoustical features used? This paper highlights the author's collection of anecdotal reports of mysterious Mayan acoustics (http://http://www.ianlawton.com/pa1.htm<\\/A>), recommended reading for scientists and engineers who wish to pursue this fascinating study. Also recounted are some of the reactions of archaeologists-ranging from curious, helpful, and insightful to humorous and appalling--to outsiders' efforts to bring serious scientific attention to the new field of acoustical archaeology.

  7. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Extracting intrinsic functional networks with feature-based group independent component analysis.

    PubMed

    Calhoun, Vince D; Allen, Elena

    2013-04-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro

  9. Four-Channel Biosignal Analysis and Feature Extraction for Automatic Emotion Recognition

    NASA Astrophysics Data System (ADS)

    Kim, Jonghwa; André, Elisabeth

    This paper investigates the potential of physiological signals as a reliable channel for automatic recognition of user's emotial state. For the emotion recognition, little attention has been paid so far to physiological signals compared to audio-visual emotion channels such as facial expression or speech. All essential stages of automatic recognition system using biosignals are discussed, from recording physiological dataset up to feature-based multiclass classification. Four-channel biosensors are used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to search the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by emotion recognition results.

  10. Lexical and Acoustic Features of Maternal Utterances Addressing Preverbal Infants in Picture Book Reading Link to 5-Year-Old Children's Language Development

    ERIC Educational Resources Information Center

    Liu, Huei-Mei

    2014-01-01

    Research Findings: I examined the long-term association between the lexical and acoustic features of maternal utterances during book reading and the language skills of infants and children. Maternal utterances were collected from 22 mother-child dyads in picture book-reading episodes when children were ages 6-12 months and 5 years. Two aspects of…

  11. Bird sound spectrogram decomposition through Non-Negative Matrix Factorization for the acoustic classification of bird species.

    PubMed

    Ludeña-Choez, Jimmy; Quispe-Soncco, Raisa; Gallardo-Antolín, Ascensión

    2017-01-01

    Feature extraction for Acoustic Bird Species Classification (ABSC) tasks has traditionally been based on parametric representations that were specifically developed for speech signals, such as Mel Frequency Cepstral Coefficients (MFCC). However, the discrimination capabilities of these features for ABSC could be enhanced by accounting for the vocal production mechanisms of birds, and, in particular, the spectro-temporal structure of bird sounds. In this paper, a new front-end for ABSC is proposed that incorporates this specific information through the non-negative decomposition of bird sound spectrograms. It consists of the following two different stages: short-time feature extraction and temporal feature integration. In the first stage, which aims at providing a better spectral representation of bird sounds on a frame-by-frame basis, two methods are evaluated. In the first method, cepstral-like features (NMF_CC) are extracted by using a filter bank that is automatically learned by means of the application of Non-Negative Matrix Factorization (NMF) on bird audio spectrograms. In the second method, the features are directly derived from the activation coefficients of the spectrogram decomposition as performed through NMF (H_CC). The second stage summarizes the most relevant information contained in the short-time features by computing several statistical measures over long segments. The experiments show that the use of NMF_CC and H_CC in conjunction with temporal integration significantly improves the performance of a Support Vector Machine (SVM)-based ABSC system with respect to conventional MFCC.

  12. Bird sound spectrogram decomposition through Non-Negative Matrix Factorization for the acoustic classification of bird species

    PubMed Central

    Quispe-Soncco, Raisa

    2017-01-01

    Feature extraction for Acoustic Bird Species Classification (ABSC) tasks has traditionally been based on parametric representations that were specifically developed for speech signals, such as Mel Frequency Cepstral Coefficients (MFCC). However, the discrimination capabilities of these features for ABSC could be enhanced by accounting for the vocal production mechanisms of birds, and, in particular, the spectro-temporal structure of bird sounds. In this paper, a new front-end for ABSC is proposed that incorporates this specific information through the non-negative decomposition of bird sound spectrograms. It consists of the following two different stages: short-time feature extraction and temporal feature integration. In the first stage, which aims at providing a better spectral representation of bird sounds on a frame-by-frame basis, two methods are evaluated. In the first method, cepstral-like features (NMF_CC) are extracted by using a filter bank that is automatically learned by means of the application of Non-Negative Matrix Factorization (NMF) on bird audio spectrograms. In the second method, the features are directly derived from the activation coefficients of the spectrogram decomposition as performed through NMF (H_CC). The second stage summarizes the most relevant information contained in the short-time features by computing several statistical measures over long segments. The experiments show that the use of NMF_CC and H_CC in conjunction with temporal integration significantly improves the performance of a Support Vector Machine (SVM)-based ABSC system with respect to conventional MFCC. PMID:28628630

  13. Concrete Slump Classification using GLCM Feature Extraction

    NASA Astrophysics Data System (ADS)

    Andayani, Relly; Madenda, Syarifudin

    2016-05-01

    Digital image processing technologies have been widely applies in analyzing concrete structure because the accuracy and real time result. The aim of this study is to classify concrete slump by using image processing technique. For this purpose, concrete mix design of 30 MPa compression strength designed with slump of 0-10 mm, 10-30 mm, 30-60 mm, and 60-180 mm were analysed. Image acquired by Nikon Camera D-7000 using high resolution was set up. In the first step RGB converted to greyimage than cropped to 1024 x 1024 pixel. With open-source program, cropped images to be analysed to extract GLCM feature. The result shows for the higher slump contrast getting lower, but higher correlation, energy, and homogeneity.

  14. Differences in acoustic features of vocalizations produced by killer whales cross-socialized with bottlenose dolphins.

    PubMed

    Musser, Whitney B; Bowles, Ann E; Grebner, Dawn M; Crance, Jessica L

    2014-10-01

    Limited previous evidence suggests that killer whales (Orcinus orca) are capable of vocal production learning. However, vocal contextual learning has not been studied, nor the factors promoting learning. Vocalizations were collected from three killer whales with a history of exposure to bottlenose dolphins (Tursiops truncatus) and compared with data from seven killer whales held with conspecifics and nine bottlenose dolphins. The three whales' repertoires were distinguishable by a higher proportion of click trains and whistles. Time-domain features of click trains were intermediate between those of whales held with conspecifics and dolphins. These differences provided evidence for contextual learning. One killer whale spontaneously learned to produce artificial chirps taught to dolphins; acoustic features fell within the range of inter-individual differences among the dolphins. This whale also produced whistles similar to a stereotyped whistle produced by one dolphin. Thus, results provide further support for vocal production learning and show that killer whales are capable of contextual learning. That killer whales produce similar repertoires when associated with another species suggests substantial vocal plasticity and motivation for vocal conformity with social associates.

  15. Wearable Sensor-Based Human Activity Recognition Method with Multi-Features Extracted from Hilbert-Huang Transform.

    PubMed

    Xu, Huile; Liu, Jinyi; Hu, Haibo; Zhang, Yi

    2016-12-02

    Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features extracted from Fourier transform (FT) or wavelet transform (WT). However, these signal processing approaches are suitable for a linear signal but not for a nonlinear signal. In this paper, we investigate the characteristics of the Hilbert-Huang transform (HHT) for dealing with activity data with properties such as nonlinearity and non-stationarity. A multi-features extraction method based on HHT is then proposed to improve the effect of activity recognition. The extracted multi-features include instantaneous amplitude (IA) and instantaneous frequency (IF) by means of empirical mode decomposition (EMD), as well as instantaneous energy density (IE) and marginal spectrum (MS) derived from Hilbert spectral analysis. Experimental studies are performed to verify the proposed approach by using the PAMAP2 dataset from the University of California, Irvine for wearable sensors-based activity recognition. Moreover, the effect of combining multi-features vs. a single-feature are investigated and discussed in the scenario of a dependent subject. The experimental results show that multi-features combination can further improve the performance measures. Finally, we test the effect of multi-features combination in the scenario of an independent subject. Our experimental results show that we achieve four performance indexes: recall, precision, F-measure, and accuracy to 0.9337, 0.9417, 0.9353, and 0.9377 respectively, which are all better than the achievements of related works.

  16. Wearable Sensor-Based Human Activity Recognition Method with Multi-Features Extracted from Hilbert-Huang Transform

    PubMed Central

    Xu, Huile; Liu, Jinyi; Hu, Haibo; Zhang, Yi

    2016-01-01

    Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features extracted from Fourier transform (FT) or wavelet transform (WT). However, these signal processing approaches are suitable for a linear signal but not for a nonlinear signal. In this paper, we investigate the characteristics of the Hilbert-Huang transform (HHT) for dealing with activity data with properties such as nonlinearity and non-stationarity. A multi-features extraction method based on HHT is then proposed to improve the effect of activity recognition. The extracted multi-features include instantaneous amplitude (IA) and instantaneous frequency (IF) by means of empirical mode decomposition (EMD), as well as instantaneous energy density (IE) and marginal spectrum (MS) derived from Hilbert spectral analysis. Experimental studies are performed to verify the proposed approach by using the PAMAP2 dataset from the University of California, Irvine for wearable sensors-based activity recognition. Moreover, the effect of combining multi-features vs. a single-feature are investigated and discussed in the scenario of a dependent subject. The experimental results show that multi-features combination can further improve the performance measures. Finally, we test the effect of multi-features combination in the scenario of an independent subject. Our experimental results show that we achieve four performance indexes: recall, precision, F-measure, and accuracy to 0.9337, 0.9417, 0.9353, and 0.9377 respectively, which are all better than the achievements of related works. PMID:27918414

  17. Road and Roadside Feature Extraction Using Imagery and LIDAR Data for Transportation Operation

    NASA Astrophysics Data System (ADS)

    Ural, S.; Shan, J.; Romero, M. A.; Tarko, A.

    2015-03-01

    Transportation agencies require up-to-date, reliable, and feasibly acquired information on road geometry and features within proximity to the roads as input for evaluating and prioritizing new or improvement road projects. The information needed for a robust evaluation of road projects includes road centerline, width, and extent together with the average grade, cross-sections, and obstructions near the travelled way. Remote sensing is equipped with a large collection of data and well-established tools for acquiring the information and extracting aforementioned various road features at various levels and scopes. Even with many remote sensing data and methods available for road extraction, transportation operation requires more than the centerlines. Acquiring information that is spatially coherent at the operational level for the entire road system is challenging and needs multiple data sources to be integrated. In the presented study, we established a framework that used data from multiple sources, including one-foot resolution color infrared orthophotos, airborne LiDAR point clouds, and existing spatially non-accurate ancillary road networks. We were able to extract 90.25% of a total of 23.6 miles of road networks together with estimated road width, average grade along the road, and cross sections at specified intervals. Also, we have extracted buildings and vegetation within a predetermined proximity to the extracted road extent. 90.6% of 107 existing buildings were correctly identified with 31% false detection rate.

  18. Deep SOMs for automated feature extraction and classification from big data streaming

    NASA Astrophysics Data System (ADS)

    Sakkari, Mohamed; Ejbali, Ridha; Zaied, Mourad

    2017-03-01

    In this paper, we proposed a deep self-organizing map model (Deep-SOMs) for automated features extracting and learning from big data streaming which we benefit from the framework Spark for real time streams and highly parallel data processing. The SOMs deep architecture is based on the notion of abstraction (patterns automatically extract from the raw data, from the less to more abstract). The proposed model consists of three hidden self-organizing layers, an input and an output layer. Each layer is made up of a multitude of SOMs, each map only focusing at local headmistress sub-region from the input image. Then, each layer trains the local information to generate more overall information in the higher layer. The proposed Deep-SOMs model is unique in terms of the layers architecture, the SOMs sampling method and learning. During the learning stage we use a set of unsupervised SOMs for feature extraction. We validate the effectiveness of our approach on large data sets such as Leukemia dataset and SRBCT. Results of comparison have shown that the Deep-SOMs model performs better than many existing algorithms for images classification.

  19. A method of evolving novel feature extraction algorithms for detecting buried objects in FLIR imagery using genetic programming

    NASA Astrophysics Data System (ADS)

    Paino, A.; Keller, J.; Popescu, M.; Stone, K.

    2014-06-01

    In this paper we present an approach that uses Genetic Programming (GP) to evolve novel feature extraction algorithms for greyscale images. Our motivation is to create an automated method of building new feature extraction algorithms for images that are competitive with commonly used human-engineered features, such as Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG). The evolved feature extraction algorithms are functions defined over the image space, and each produces a real-valued feature vector of variable length. Each evolved feature extractor breaks up the given image into a set of cells centered on every pixel, performs evolved operations on each cell, and then combines the results of those operations for every cell using an evolved operator. Using this method, the algorithm is flexible enough to reproduce both LBP and HOG features. The dataset we use to train and test our approach consists of a large number of pre-segmented image "chips" taken from a Forward Looking Infrared Imagery (FLIR) camera mounted on the hood of a moving vehicle. The goal is to classify each image chip as either containing or not containing a buried object. To this end, we define the fitness of a candidate solution as the cross-fold validation accuracy of the features generated by said candidate solution when used in conjunction with a Support Vector Machine (SVM) classifier. In order to validate our approach, we compare the classification accuracy of an SVM trained using our evolved features with the accuracy of an SVM trained using mainstream feature extraction algorithms, including LBP and HOG.

  20. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.

    PubMed

    Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2015-09-01

    Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All

  1. Perceptual structure of adductor spasmodic dysphonia and its acoustic correlates.

    PubMed

    Cannito, Michael P; Doiuchi, Maki; Murry, Thomas; Woodson, Gayle E

    2012-11-01

    To examine the perceptual structure of voice attributes in adductor spasmodic dysphonia (ADSD) before and after botulinum toxin treatment and identify acoustic correlates of underlying perceptual factors. Reliability of perceptual judgments is considered in detail. Pre- and posttreatment trial with comparison to healthy controls, using single-blind randomized listener judgments of voice qualities, as well as retrospective comparison with acoustic measurements. Oral readings were recorded from 42 ADSD speakers before and after treatment as well as from their age- and sex-matched controls. Experienced judges listened to speech samples and rated attributes of overall voice quality, breathiness, roughness, and brokenness, using computer-implemented visual analog scaling. Data were adjusted for regression to the mean and submitted to principal components factor analysis. Acoustic waveforms, extracted from the reading samples, were analyzed and measurements correlated with perceptual factor scores. Four reliable perceptual variables of ADSD voice were effectively reduced to two underlying factors that corresponded to hyperadduction, most strongly associated with roughness, and hypoadduction, most strongly associated with breathiness. After treatment, the hyperadduction factor improved, whereas the hypoadduction factor worsened. Statistically significant (P<0.01) correlations were observed between perceived roughness and four acoustic measures, whereas breathiness correlated with aperiodicity and cepstral peak prominence (CPPs). This study supported a two-factor model of ADSD, suggesting perceptual characterization by both hyperadduction and hypoadduction before and after treatment. Responses of the factors to treatment were consistent with previous research. Correlations among perceptual and acoustic variables suggested that multiple acoustic features contributed to the overall impression of roughness. Although CPPs appears to be a partial correlate of perceived

  2. Multi range spectral feature fitting for hyperspectral imagery in extracting oilseed rape planting area

    NASA Astrophysics Data System (ADS)

    Pan, Zhuokun; Huang, Jingfeng; Wang, Fumin

    2013-12-01

    Spectral feature fitting (SFF) is a commonly used strategy for hyperspectral imagery analysis to discriminate ground targets. Compared to other image analysis techniques, SFF does not secure higher accuracy in extracting image information in all circumstances. Multi range spectral feature fitting (MRSFF) from ENVI software allows user to focus on those interesting spectral features to yield better performance. Thus spectral wavelength ranges and their corresponding weights must be determined. The purpose of this article is to demonstrate the performance of MRSFF in oilseed rape planting area extraction. A practical method for defining the weighted values, the variance coefficient weight method, was proposed to set up criterion. Oilseed rape field canopy spectra from the whole growth stage were collected prior to investigating its phenological varieties; oilseed rape endmember spectra were extracted from the Hyperion image as identifying samples to be used in analyzing the oilseed rape field. Wavelength range divisions were determined by the difference between field-measured spectra and image spectra, and image spectral variance coefficient weights for each wavelength range were calculated corresponding to field-measured spectra from the closest date. By using MRSFF, wavelength ranges were classified to characterize the target's spectral features without compromising spectral profile's entirety. The analysis was substantially successful in extracting oilseed rape planting areas (RMSE ≤ 0.06), and the RMSE histogram indicated a superior result compared to a conventional SFF. Accuracy assessment was based on the mapping result compared with spectral angle mapping (SAM) and the normalized difference vegetation index (NDVI). The MRSFF yielded a robust, convincible result and, therefore, may further the use of hyperspectral imagery in precision agriculture.

  3. An improved feature extraction algorithm based on KAZE for multi-spectral image

    NASA Astrophysics Data System (ADS)

    Yang, Jianping; Li, Jun

    2018-02-01

    Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.

  4. Methods and apparatus for non-acoustic speech characterization and recognition

    DOEpatents

    Holzrichter, John F.

    1999-01-01

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  5. Methods and apparatus for non-acoustic speech characterization and recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, J.F.

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  6. The method of micro-motion cycle feature extraction based on confidence coefficient evaluation criteria

    NASA Astrophysics Data System (ADS)

    Tang, Chuanzi; Ren, Hongmei; Bo, Li; Jing, Huang

    2017-11-01

    In radar target recognition, the micro motion characteristics of target is one of the characteristics that researchers pay attention to at home and abroad, in which the characteristics of target precession cycle is one of the important characteristics of target movement characteristics. Periodic feature extraction methods have been studied for years, the complex shape of the target and the scattering center stack lead to random fluctuations of the RCS. These random fluctuations also exist certain periodicity, which has a great influence on the target recognition result. In order to solve the problem, this paper proposes a extraction method of micro-motion cycle feature based on confidence coefficient evaluation criteria.

  7. Extracting the driving force from ozone data using slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, Geli; Yang, Peicai; Zhou, Xiuji

    2016-05-01

    Slow feature analysis (SFA) is a recommended technique for extracting slowly varying features from a quickly varying signal. In this work, we apply SFA to total ozone data from Arosa, Switzerland. The results show that the signal of volcanic eruptions can be found in the driving force, and wavelet analysis of this driving force shows that there are two main dominant scales, which may be connected with the effect of climate mode such as North Atlantic Oscillation (NAO) and solar activity. The findings of this study represent a contribution to our understanding of the causality from observed climate data.

  8. REGARDING THE LINE-OF-SIGHT BARYONIC ACOUSTIC FEATURE IN THE SLOAN DIGITAL SKY SURVEY AND BARYON OSCILLATION SPECTROSCOPIC SURVEY LUMINOUS RED GALAXY SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazin, Eyal A.; Blanton, Michael R.; Scoccimarro, Roman

    2010-08-20

    We analyze the line-of-sight baryonic acoustic feature in the two-point correlation function {xi} of the Sloan Digital Sky Survey luminous red galaxy (LRG) sample (0.16 < z < 0.47). By defining a narrow line-of-sight region, r{sub p} < 5.5 h {sup -1} Mpc, where r{sub p} is the transverse separation component, we measure a strong excess of clustering at {approx}110 h {sup -1} Mpc, as previously reported in the literature. We also test these results in an alternative coordinate system, by defining the line of sight as {theta} < 3{sup 0}, where {theta} is the opening angle. This clustering excessmore » appears much stronger than the feature in the better-measured monopole. A fiducial {Lambda}CDM nonlinear model in redshift space predicts a much weaker signature. We use realistic mock catalogs to model the expected signal and noise. We find that the line-of-sight measurements can be explained well by our mocks as well as by a featureless {xi} = 0. We conclude that there is no convincing evidence that the strong clustering measurement is the line-of-sight baryonic acoustic feature. We also evaluate how detectable such a signal would be in the upcoming Baryon Oscillation Spectroscopic Survey (BOSS) LRG volume. Mock LRG catalogs (z < 0.6) suggest that (1) the narrow line-of-sight cylinder and cone defined above probably will not reveal a detectable acoustic feature in BOSS; (2) a clustering measurement as high as that in the current sample can be ruled out (or confirmed) at a high confidence level using a BOSS-sized data set; (3) an analysis with wider angular cuts, which provide better signal-to-noise ratios, can nevertheless be used to compare line-of-sight and transverse distances, and thereby constrain the expansion rate H(z) and diameter distance D{sub A}(z).« less

  9. Special object extraction from medieval books using superpixels and bag-of-features

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Rushmeier, Holly

    2017-01-01

    We propose a method to extract special objects in images of medieval books, which generally represent, for example, figures and capital letters. Instead of working on the single-pixel level, we consider superpixels as the basic classification units for improved time efficiency. More specifically, we classify superpixels into different categories/objects by using a bag-of-features approach, where a superpixel category classifier is trained with the local features of the superpixels of the training images. With the trained classifier, we are able to assign the category labels to the superpixels of a historical document image under test. Finally, special objects can easily be identified and extracted after analyzing the categorization results. Experimental results demonstrate that, as compared to the state-of-the-art algorithms, our method provides comparable performance for some historical books but greatly outperforms them in terms of generality and computational time.

  10. Topology reduction in deep convolutional feature extraction networks

    NASA Astrophysics Data System (ADS)

    Wiatowski, Thomas; Grohs, Philipp; Bölcskei, Helmut

    2017-08-01

    Deep convolutional neural networks (CNNs) used in practice employ potentially hundreds of layers and 10,000s of nodes. Such network sizes entail significant computational complexity due to the large number of convolutions that need to be carried out; in addition, a large number of parameters needs to be learned and stored. Very deep and wide CNNs may therefore not be well suited to applications operating under severe resource constraints as is the case, e.g., in low-power embedded and mobile platforms. This paper aims at understanding the impact of CNN topology, specifically depth and width, on the network's feature extraction capabilities. We address this question for the class of scattering networks that employ either Weyl-Heisenberg filters or wavelets, the modulus non-linearity, and no pooling. The exponential feature map energy decay results in Wiatowski et al., 2017, are generalized to O(a-N), where an arbitrary decay factor a > 1 can be realized through suitable choice of the Weyl-Heisenberg prototype function or the mother wavelet. We then show how networks of fixed (possibly small) depth N can be designed to guarantee that ((1 - ɛ) · 100)% of the input signal's energy are contained in the feature vector. Based on the notion of operationally significant nodes, we characterize, partly rigorously and partly heuristically, the topology-reducing effects of (effectively) band-limited input signals, band-limited filters, and feature map symmetries. Finally, for networks based on Weyl-Heisenberg filters, we determine the prototype function bandwidth that minimizes - for fixed network depth N - the average number of operationally significant nodes per layer.

  11. Using Long-Term Passive Acoustic Observations to Identify Ecological Stresses: A Gulf of Mexico Sperm Whale Case Study

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, N.; Li, K.; Drouant, G. J.; Ioup, J. W.

    2017-12-01

    The Gulf of Mexico marine mammal habitat is strongly impacted by anthropogenic industrial activities. By analyzing unique acoustic signals produced by different species of marine mammals, scientists can identify long-term population changes and their underlying causes. This study presents the results of the analysis of sperm whale acoustic clicks collected in the vicinity of the Deep Water Horizon accident site collected before and after the spill since 2001. The processing approach to regional acoustic data is two-leveled. First, sperm whale acoustic activity is analyzed from the standpoint of deriving annual abundance data using statistical methodology to compare with trends reported from NOAA visual surveys. Second, the features of individual clicks are extracted and analyzed to determine population structure: the animal's size, gender, and age group when possible. Proposed two-level processing workflow may provide useful data input for population forecasting models and may inform mitigation and recovery efforts not only for whales themselves but also for associated food-web constitutes. [This research was made possible in part by a grant from The Gulf of Mexico Research Initiative.

  12. [The research on separating and extracting overlapping spectral feature lines in LIBS using damped least squares method].

    PubMed

    Wang, Yin; Zhao, Nan-jing; Liu, Wen-qing; Yu, Yang; Fang, Li; Meng, De-shuo; Hu, Li; Zhang, Da-hai; Ma, Min-jun; Xiao, Xue; Wang, Yu; Liu, Jian-guo

    2015-02-01

    In recent years, the technology of laser induced breakdown spectroscopy has been developed rapidly. As one kind of new material composition detection technology, laser induced breakdown spectroscopy can simultaneously detect multi elements fast and simply without any complex sample preparation and realize field, in-situ material composition detection of the sample to be tested. This kind of technology is very promising in many fields. It is very important to separate, fit and extract spectral feature lines in laser induced breakdown spectroscopy, which is the cornerstone of spectral feature recognition and subsequent elements concentrations inversion research. In order to realize effective separation, fitting and extraction of spectral feature lines in laser induced breakdown spectroscopy, the original parameters for spectral lines fitting before iteration were analyzed and determined. The spectral feature line of' chromium (Cr I : 427.480 nm) in fly ash gathered from a coal-fired power station, which was overlapped with another line(FeI: 427.176 nm), was separated from the other one and extracted by using damped least squares method. Based on Gauss-Newton iteration, damped least squares method adds damping factor to step and adjust step length dynamically according to the feedback information after each iteration, in order to prevent the iteration from diverging and make sure that the iteration could converge fast. Damped least squares method helps to obtain better results of separating, fitting and extracting spectral feature lines and give more accurate intensity values of these spectral feature lines: The spectral feature lines of chromium in samples which contain different concentrations of chromium were separated and extracted. And then, the intensity values of corresponding spectral lines were given by using damped least squares method and least squares method separately. The calibration curves were plotted, which showed the relationship between spectral

  13. Cepstrum based feature extraction method for fungus detection

    NASA Astrophysics Data System (ADS)

    Yorulmaz, Onur; Pearson, Tom C.; Çetin, A. Enis

    2011-06-01

    In this paper, a method for detection of popcorn kernels infected by a fungus is developed using image processing. The method is based on two dimensional (2D) mel and Mellin-cepstrum computation from popcorn kernel images. Cepstral features that were extracted from popcorn images are classified using Support Vector Machines (SVM). Experimental results show that high recognition rates of up to 93.93% can be achieved for both damaged and healthy popcorn kernels using 2D mel-cepstrum. The success rate for healthy popcorn kernels was found to be 97.41% and the recognition rate for damaged kernels was found to be 89.43%.

  14. Distributed acoustic cues for caller identity in macaque vocalization.

    PubMed

    Fukushima, Makoto; Doyle, Alex M; Mullarkey, Matthew P; Mishkin, Mortimer; Averbeck, Bruno B

    2015-12-01

    Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured 'coo' call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral-temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call's fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized.

  15. Distributed acoustic cues for caller identity in macaque vocalization

    PubMed Central

    Doyle, Alex M.; Mullarkey, Matthew P.; Mishkin, Mortimer; Averbeck, Bruno B.

    2015-01-01

    Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured ‘coo’ call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral–temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call’s fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized. PMID:27019727

  16. [Influence of human personal features on acoustic correlates of speech emotional intonation characteristics].

    PubMed

    Dmitrieva, E S; Gel'man, V Ia; Zaĭtseva, K A; Orlov, A M

    2009-01-01

    Comparative study of acoustic correlates of emotional intonation was conducted on two types of speech material: sensible speech utterances and short meaningless words. The corpus of speech signals of different emotional intonations (happy, angry, frightened, sad and neutral) was created using the actor's method of simulation of emotions. Native Russian 20-70-year-old speakers (both professional actors and non-actors) participated in the study. In the corpus, the following characteristics were analyzed: mean values and standard deviations of the power, fundamental frequency, frequencies of the first and second formants, and utterance duration. Comparison of each emotional intonation with "neutral" utterances showed the greatest deviations of the fundamental frequency and frequencies of the first formant. The direction of these deviations was independent of the semantic content of speech utterance and its duration, age, gender, and being actor or non-actor, though the personal features of the speakers affected the absolute values of these frequencies.

  17. Motorcyclists safety system to avoid rear end collisions based on acoustic signatures

    NASA Astrophysics Data System (ADS)

    Muzammel, M.; Yusoff, M. Zuki; Malik, A. Saeed; Mohamad Saad, M. Naufal; Meriaudeau, F.

    2017-03-01

    In many Asian countries, motorcyclists have a higher fatality rate as compared to other vehicles. Among many other factors, rear end collisions are also contributing for these fatalities. Collision detection systems can be useful to minimize these accidents. However, the designing of efficient and cost effective collision detection system for motorcyclist is still a major challenge. In this paper, an acoustic information based, cost effective and efficient collision detection system is proposed for motorcycle applications. The proposed technique uses the Short time Fourier Transform (STFT) to extract the features from the audio signal and Principal component analysis (PCA) has been used to reduce the feature vector length. The reduction of feature length, further increases the performance of this technique. The proposed technique has been tested on self recorded dataset and gives accuracy of 97.87%. We believe that this method can help to reduce a significant number of motorcycle accidents.

  18. Acoustic Facies Analysis of Side-Scan Sonar Data

    NASA Astrophysics Data System (ADS)

    Dwan, Fa Shu

    Acoustic facies analysis methods have allowed the generation of system-independent values for the quantitative seafloor acoustic parameter, backscattering strength, from GLORIA and (TAMU) ^2 side-scan sonar data. The resulting acoustic facies parameters enable quantitative comparisons of data collected by different sonar systems, data from different environments, and measurements made with survey geometries. Backscattering strength values were extracted from the sonar amplitude data by inversion based on the sonar equation. Image processing products reveal seafloor features and patterns of relative intensity. To quantitatively compare data collected at different times or by different systems, and to ground truth-measurements and geoacoustic models, quantitative corrections must be made on any given data set for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area contribution, and grazing angle effects. In the sonar equation, backscattering strength is the sonar parameter which is directly related to seafloor properties. The GLORIA data used in this study are from the edge of a distal lobe of the Monterey Fan. An interfingered region of strong and weak seafloor signal returns from a flat seafloor region provides an ideal data set for this study. Inversion of imagery data from the region allows the quantitative definition of different acoustic facies. The (TAMU) ^2 data used are from a calibration site near the Green Canyon area of the Gulf of Mexico. Acoustic facies analysis techniques were implemented to generate statistical information for acoustic facies based on the estimates of backscattering strength. The backscattering strength values have been compared with Lambert's Law and other functions to parameterize the description of the acoustic facies. The resulting Lambertian constant values range from -26 dB to -36 dB. A modified Lambert relationship, which consists of both intercept and slope

  19. Acoustics of Italian Historical Opera Houses.

    PubMed

    Prodi, Nicola; Pompoli, Roberto; Martellotta, Francesco; Sato, Shin-ichi

    2015-08-01

    Opera houses represent a large group of performance spaces characterized by great complexity and, at the same time, versatility with respect to different usage (from opera to symphonic music and ballet). This kind of building originated in Italy during the 17th century and later spread across the country and then Europe and the rest of the world, slowly evolving into modern theatre shapes. As a consequence of the changes undergone by the interior space, the original acoustic features, which likely influenced many composers, experienced important variations. Thanks to acoustic measurement campaigns inside Italian Historical Opera Houses, promoted by National and Regional Projects, the distinctive features of these spaces were investigated in comparison to modern spaces. In this work, the newly acquired data are merged with data in the literature in order to present and discuss some of the distinctive acoustic features of historical spaces as regards their original function. Moreover, specific issues such as listening in stalls and boxes and the criteria governing the preference judgment of listeners are considered. The concept and the crucial role of the balance between stage and pit sources are also discussed by means of previous literature studies.

  20. Automated acoustic matrix deposition for MALDI sample preparation.

    PubMed

    Aerni, Hans-Rudolf; Cornett, Dale S; Caprioli, Richard M

    2006-02-01

    Novel high-throughput sample preparation strategies for MALDI imaging mass spectrometry (IMS) and profiling are presented. An acoustic reagent multispotter was developed to provide improved reproducibility for depositing matrix onto a sample surface, for example, such as a tissue section. The unique design of the acoustic droplet ejector and its optimization for depositing matrix solution are discussed. Since it does not contain a capillary or nozzle for fluid ejection, issues with clogging of these orifices are avoided. Automated matrix deposition provides better control of conditions affecting protein extraction and matrix crystallization with the ability to deposit matrix accurately onto small surface features. For tissue sections, matrix spots of 180-200 microm in diameter were obtained and a procedure is described for generating coordinate files readable by a mass spectrometer to permit automated profile acquisition. Mass spectral quality and reproducibility was found to be better than that obtained with manual pipet spotting. The instrument can also deposit matrix spots in a dense array pattern so that, after analysis in a mass spectrometer, two-dimensional ion images may be constructed. Example ion images from a mouse brain are presented.

  1. Investigations of High Pressure Acoustic Waves in Resonators with Seal-Like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh

    2004-01-01

    1) Standing waves with maximum pressures of 188 kPa have been produced in resonators containing ambient pressure air; 2) Addition of structures inside the resonator shifts the fundamental frequency and decreases the amplitude of the generated pressure waves; 3) Addition of holes to the resonator does reduce the magnitude of the acoustic waves produced, but their addition does not prohibit the generation of large magnitude non-linear standing waves; 4) The feasibility of reducing leakage using non-linear acoustics has been confirmed.

  2. A Local DCT-II Feature Extraction Approach for Personal Identification Based on Palmprint

    NASA Astrophysics Data System (ADS)

    Choge, H. Kipsang; Oyama, Tadahiro; Karungaru, Stephen; Tsuge, Satoru; Fukumi, Minoru

    Biometric applications based on the palmprint have recently attracted increased attention from various researchers. In this paper, a method is presented that differs from the commonly used global statistical and structural techniques by extracting and using local features instead. The middle palm area is extracted after preprocessing for rotation, position and illumination normalization. The segmented region of interest is then divided into blocks of either 8×8 or 16×16 pixels in size. The type-II Discrete Cosine Transform (DCT) is applied to transform the blocks into DCT space. A subset of coefficients that encode the low to medium frequency components is selected using the JPEG-style zigzag scanning method. Features from each block are subsequently concatenated into a compact feature vector and used in palmprint verification experiments with palmprints from the PolyU Palmprint Database. Results indicate that this approach achieves better results than many conventional transform-based methods, with an excellent recognition accuracy above 99% and an Equal Error Rate (EER) of less than 1.2% in palmprint verification.

  3. Effect of body position on vocal tract acoustics: Acoustic pharyngometry and vowel formants.

    PubMed

    Vorperian, Houri K; Kurtzweil, Sara L; Fourakis, Marios; Kent, Ray D; Tillman, Katelyn K; Austin, Diane

    2015-08-01

    The anatomic basis and articulatory features of speech production are often studied with imaging studies that are typically acquired in the supine body position. It is important to determine if changes in body orientation to the gravitational field alter vocal tract dimensions and speech acoustics. The purpose of this study was to assess the effect of body position (upright versus supine) on (1) oral and pharyngeal measurements derived from acoustic pharyngometry and (2) acoustic measurements of fundamental frequency (F0) and the first four formant frequencies (F1-F4) for the quadrilateral point vowels. Data were obtained for 27 male and female participants, aged 17 to 35 yrs. Acoustic pharyngometry showed a statistically significant effect of body position on volumetric measurements, with smaller values in the supine than upright position, but no changes in length measurements. Acoustic analyses of vowels showed significantly larger values in the supine than upright position for the variables of F0, F3, and the Euclidean distance from the centroid to each corner vowel in the F1-F2-F3 space. Changes in body position affected measurements of vocal tract volume but not length. Body position also affected the aforementioned acoustic variables, but the main vowel formants were preserved.

  4. Acoustic tests of augmentor wing model

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.

    1977-01-01

    Acoustic and aerodynamic data were obtained for a full-scale section of an augmentor wing. Features of the design included a single-row, multielement nozzle array and acoustically tuned panels placed on the interior surfaces of the augmentor. When the data were extrapolated to a 91,000-kilogram aircraft, the calculated sideline perceived noise levels were approximately the same for either the takeoff or approach condition.

  5. A programmable nonlinear acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Yang, Tianzhi; Song, Zhi-Guang; Clerkin, Eoin; Zhang, Ye-Wei; Sun, Jia-He; Su, Yi-Shu; Chen, Li-Qun; Hagedorn, Peter

    2017-09-01

    Acoustic metamaterials with specifically designed lattices can manipulate acoustic/elastic waves in unprecedented ways. Whereas there are many studies that focus on passive linear lattice, with non-reconfigurable structures. In this letter, we present the design, theory and experimental demonstration of an active nonlinear acoustic metamaterial, the dynamic properties of which can be modified instantaneously with reversibility. By incorporating active and nonlinear elements in a single unit cell, a real-time tunability and switchability of the band gap is achieved. In addition, we demonstrate a dynamic "editing" capability for shaping transmission spectra, which can be used to create the desired band gap and resonance. This feature is impossible to achieve in passive metamaterials. These advantages demonstrate the versatility of the proposed device, paving the way toward smart acoustic devices, such as logic elements, diode and transistor.

  6. How many rumbles are there? Acoustic variation and individual identity in the rumble vocalizations of African elephants (Loxodonta africana)

    NASA Astrophysics Data System (ADS)

    Soltis, Joseph M.; Savage, Anne; Leong, Kirsten M.

    2004-05-01

    The most commonly occurring elephant vocalization is the rumble, a frequency-modulated call with infrasonic components. Upwards of ten distinct rumble subtypes have been proposed, but little quantitative work on the acoustic properties of rumbles has been conducted. Rumble vocalizations (N=269) from six females housed at Disney's Animal Kingdom were analyzed. Vocalizations were recorded from microphones in collars around subject necks, and rumbles were digitized and measured using SIGNAL software. Sixteen acoustic variables were measured for each call, extracting both source and filter features. Multidimensional scaling analysis indicates that there are no acoustically distinct rumble subtypes, but that there is quantitative variation across rumbles. Discriminant function analysis showed that the acoustic characteristics of rumbles differ across females. A classification success rate of 65% was achieved when assigning unselected rumbles to one of the six females (test set =64 calls) according to the functions derived from the originally selected calls (training set =205 calls). The rumble is best viewed as a single call type with graded variation, but information regarding individual identity is encoded in female rumbles.

  7. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.

    PubMed

    Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana

    2014-01-01

    Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.

  8. Feature extraction algorithm for space targets based on fractal theory

    NASA Astrophysics Data System (ADS)

    Tian, Balin; Yuan, Jianping; Yue, Xiaokui; Ning, Xin

    2007-11-01

    In order to offer a potential for extending the life of satellites and reducing the launch and operating costs, satellite servicing including conducting repairs, upgrading and refueling spacecraft on-orbit become much more frequently. Future space operations can be more economically and reliably executed using machine vision systems, which can meet real time and tracking reliability requirements for image tracking of space surveillance system. Machine vision was applied to the research of relative pose for spacecrafts, the feature extraction algorithm was the basis of relative pose. In this paper fractal geometry based edge extraction algorithm which can be used in determining and tracking the relative pose of an observed satellite during proximity operations in machine vision system was presented. The method gets the gray-level image distributed by fractal dimension used the Differential Box-Counting (DBC) approach of the fractal theory to restrain the noise. After this, we detect the consecutive edge using Mathematical Morphology. The validity of the proposed method is examined by processing and analyzing images of space targets. The edge extraction method not only extracts the outline of the target, but also keeps the inner details. Meanwhile, edge extraction is only processed in moving area to reduce computation greatly. Simulation results compared edge detection using the method which presented by us with other detection methods. The results indicate that the presented algorithm is a valid method to solve the problems of relative pose for spacecrafts.

  9. Feature extraction and classification of clouds in high resolution panchromatic satellite imagery

    NASA Astrophysics Data System (ADS)

    Sharghi, Elan

    The development of sophisticated remote sensing sensors is rapidly increasing, and the vast amount of satellite imagery collected is too much to be analyzed manually by a human image analyst. It has become necessary for a tool to be developed to automate the job of an image analyst. This tool would need to intelligently detect and classify objects of interest through computer vision algorithms. Existing software called the Rapid Image Exploitation Resource (RAPIER®) was designed by engineers at Space and Naval Warfare Systems Center Pacific (SSC PAC) to perform exactly this function. This software automatically searches for anomalies in the ocean and reports the detections as a possible ship object. However, if the image contains a high percentage of cloud coverage, a high number of false positives are triggered by the clouds. The focus of this thesis is to explore various feature extraction and classification methods to accurately distinguish clouds from ship objects. An examination of a texture analysis method, line detection using the Hough transform, and edge detection using wavelets are explored as possible feature extraction methods. The features are then supplied to a K-Nearest Neighbors (KNN) or Support Vector Machine (SVM) classifier. Parameter options for these classifiers are explored and the optimal parameters are determined.

  10. Automatic building extraction from LiDAR data fusion of point and grid-based features

    NASA Astrophysics Data System (ADS)

    Du, Shouji; Zhang, Yunsheng; Zou, Zhengrong; Xu, Shenghua; He, Xue; Chen, Siyang

    2017-08-01

    This paper proposes a method for extracting buildings from LiDAR point cloud data by combining point-based and grid-based features. To accurately discriminate buildings from vegetation, a point feature based on the variance of normal vectors is proposed. For a robust building extraction, a graph cuts algorithm is employed to combine the used features and consider the neighbor contexture information. As grid feature computing and a graph cuts algorithm are performed on a grid structure, a feature-retained DSM interpolation method is proposed in this paper. The proposed method is validated by the benchmark ISPRS Test Project on Urban Classification and 3D Building Reconstruction and compared to the state-art-of-the methods. The evaluation shows that the proposed method can obtain a promising result both at area-level and at object-level. The method is further applied to the entire ISPRS dataset and to a real dataset of the Wuhan City. The results show a completeness of 94.9% and a correctness of 92.2% at the per-area level for the former dataset and a completeness of 94.4% and a correctness of 95.8% for the latter one. The proposed method has a good potential for large-size LiDAR data.

  11. Extraction and Classification of Human Gait Features

    NASA Astrophysics Data System (ADS)

    Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee; Abdullah, Junaidi; Komiya, Ryoichi

    In this paper, a new approach is proposed for extracting human gait features from a walking human based on the silhouette images. The approach consists of six stages: clearing the background noise of image by morphological opening; measuring of the width and height of the human silhouette; dividing the enhanced human silhouette into six body segments based on anatomical knowledge; applying morphological skeleton to obtain the body skeleton; applying Hough transform to obtain the joint angles from the body segment skeletons; and measuring the distance between the bottom of right leg and left leg from the body segment skeletons. The angles of joints, step-size together with the height and width of the human silhouette are collected and used for gait analysis. The experimental results have demonstrated that the proposed system is feasible and achieved satisfactory results.

  12. Harnessing Satellite Imageries in Feature Extraction Using Google Earth Pro

    NASA Astrophysics Data System (ADS)

    Fernandez, Sim Joseph; Milano, Alan

    2016-07-01

    Climate change has been a long-time concern worldwide. Impending flooding, for one, is among its unwanted consequences. The Phil-LiDAR 1 project of the Department of Science and Technology (DOST), Republic of the Philippines, has developed an early warning system in regards to flood hazards. The project utilizes the use of remote sensing technologies in determining the lives in probable dire danger by mapping and attributing building features using LiDAR dataset and satellite imageries. A free mapping software named Google Earth Pro (GEP) is used to load these satellite imageries as base maps. Geotagging of building features has been done so far with the use of handheld Global Positioning System (GPS). Alternatively, mapping and attribution of building features using GEP saves a substantial amount of resources such as manpower, time and budget. Accuracy-wise, geotagging by GEP is dependent on either the satellite imageries or orthophotograph images of half-meter resolution obtained during LiDAR acquisition and not on the GPS of three-meter accuracy. The attributed building features are overlain to the flood hazard map of Phil-LiDAR 1 in order to determine the exposed population. The building features as obtained from satellite imageries may not only be used in flood exposure assessment but may also be used in assessing other hazards and a number of other uses. Several other features may also be extracted from the satellite imageries.

  13. Scaling and dimensional analysis of acoustic streaming jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moudjed, B.; Botton, V.; Henry, D.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with amore » review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.« less

  14. Chinese License Plates Recognition Method Based on A Robust and Efficient Feature Extraction and BPNN Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue

    2018-04-01

    The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.

  15. Feature extraction for change analysis in SAR time series

    NASA Astrophysics Data System (ADS)

    Boldt, Markus; Thiele, Antje; Schulz, Karsten; Hinz, Stefan

    2015-10-01

    In remote sensing, the change detection topic represents a broad field of research. If time series data is available, change detection can be used for monitoring applications. These applications require regular image acquisitions at identical time of day along a defined period. Focusing on remote sensing sensors, radar is especially well-capable for applications requiring regularity, since it is independent from most weather and atmospheric influences. Furthermore, regarding the image acquisitions, the time of day plays no role due to the independence from daylight. Since 2007, the German SAR (Synthetic Aperture Radar) satellite TerraSAR-X (TSX) permits the acquisition of high resolution radar images capable for the analysis of dense built-up areas. In a former study, we presented the change analysis of the Stuttgart (Germany) airport. The aim of this study is the categorization of detected changes in the time series. This categorization is motivated by the fact that it is a poor statement only to describe where and when a specific area has changed. At least as important is the statement about what has caused the change. The focus is set on the analysis of so-called high activity areas (HAA) representing areas changing at least four times along the investigated period. As first step for categorizing these HAAs, the matching HAA changes (blobs) have to be identified. Afterwards, operating in this object-based blob level, several features are extracted which comprise shape-based, radiometric, statistic, morphological values and one context feature basing on a segmentation of the HAAs. This segmentation builds on the morphological differential attribute profiles (DAPs). Seven context classes are established: Urban, infrastructure, rural stable, rural unstable, natural, water and unclassified. A specific HA blob is assigned to one of these classes analyzing the CovAmCoh time series signature of the surrounding segments. In combination, also surrounding GIS information

  16. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2004-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  17. Feature extraction using first and second derivative extrema (FSDE) for real-time and hardware-efficient spike sorting.

    PubMed

    Paraskevopoulou, Sivylla E; Barsakcioglu, Deren Y; Saberi, Mohammed R; Eftekhar, Amir; Constandinou, Timothy G

    2013-04-30

    Next generation neural interfaces aspire to achieve real-time multi-channel systems by integrating spike sorting on chip to overcome limitations in communication channel capacity. The feasibility of this approach relies on developing highly efficient algorithms for feature extraction and clustering with the potential of low-power hardware implementation. We are proposing a feature extraction method, not requiring any calibration, based on first and second derivative features of the spike waveform. The accuracy and computational complexity of the proposed method are quantified and compared against commonly used feature extraction methods, through simulation across four datasets (with different single units) at multiple noise levels (ranging from 5 to 20% of the signal amplitude). The average classification error is shown to be below 7% with a computational complexity of 2N-3, where N is the number of sample points of each spike. Overall, this method presents a good trade-off between accuracy and computational complexity and is thus particularly well-suited for hardware-efficient implementation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. DBSCAN-based ROI extracted from SAR images and the discrimination of multi-feature ROI

    NASA Astrophysics Data System (ADS)

    He, Xin Yi; Zhao, Bo; Tan, Shu Run; Zhou, Xiao Yang; Jiang, Zhong Jin; Cui, Tie Jun

    2009-10-01

    The purpose of the paper is to extract the region of interest (ROI) from the coarse detected synthetic aperture radar (SAR) images and discriminate if the ROI contains a target or not, so as to eliminate the false alarm, and prepare for the target recognition. The automatic target clustering is one of the most difficult tasks in the SAR-image automatic target recognition system. The density-based spatial clustering of applications with noise (DBSCAN) relies on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN was first used in the SAR image processing, which has many excellent features: only two insensitivity parameters (radius of neighborhood and minimum number of points) are needed; clusters of arbitrary shapes which fit in with the coarse detected SAR images can be discovered; and the calculation time and memory can be reduced. In the multi-feature ROI discrimination scheme, we extract several target features which contain the geometry features such as the area discriminator and Radon-transform based target profile discriminator, the distribution characteristics such as the EFF discriminator, and the EM scattering property such as the PPR discriminator. The synthesized judgment effectively eliminates the false alarms.

  19. Chemical name extraction based on automatic training data generation and rich feature set.

    PubMed

    Yan, Su; Spangler, W Scott; Chen, Ying

    2013-01-01

    The automation of extracting chemical names from text has significant value to biomedical and life science research. A major barrier in this task is the difficulty of getting a sizable and good quality data to train a reliable entity extraction model. Another difficulty is the selection of informative features of chemical names, since comprehensive domain knowledge on chemistry nomenclature is required. Leveraging random text generation techniques, we explore the idea of automatically creating training sets for the task of chemical name extraction. Assuming the availability of an incomplete list of chemical names, called a dictionary, we are able to generate well-controlled, random, yet realistic chemical-like training documents. We statistically analyze the construction of chemical names based on the incomplete dictionary, and propose a series of new features, without relying on any domain knowledge. Compared to state-of-the-art models learned from manually labeled data and domain knowledge, our solution shows better or comparable results in annotating real-world data with less human effort. Moreover, we report an interesting observation about the language for chemical names. That is, both the structural and semantic components of chemical names follow a Zipfian distribution, which resembles many natural languages.

  20. Improving the signal subtle feature extraction performance based on dual improved fractal box dimension eigenvectors

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Li, Jingchao; Han, Hui; Ying, Yulong

    2018-05-01

    Because of the limitations of the traditional fractal box-counting dimension algorithm in subtle feature extraction of radiation source signals, a dual improved generalized fractal box-counting dimension eigenvector algorithm is proposed. First, the radiation source signal was preprocessed, and a Hilbert transform was performed to obtain the instantaneous amplitude of the signal. Then, the improved fractal box-counting dimension of the signal instantaneous amplitude was extracted as the first eigenvector. At the same time, the improved fractal box-counting dimension of the signal without the Hilbert transform was extracted as the second eigenvector. Finally, the dual improved fractal box-counting dimension eigenvectors formed the multi-dimensional eigenvectors as signal subtle features, which were used for radiation source signal recognition by the grey relation algorithm. The experimental results show that, compared with the traditional fractal box-counting dimension algorithm and the single improved fractal box-counting dimension algorithm, the proposed dual improved fractal box-counting dimension algorithm can better extract the signal subtle distribution characteristics under different reconstruction phase space, and has a better recognition effect with good real-time performance.

  1. Hybrid Discrete Wavelet Transform and Gabor Filter Banks Processing for Features Extraction from Biomedical Images

    PubMed Central

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    A new methodology for automatic feature extraction from biomedical images and subsequent classification is presented. The approach exploits the spatial orientation of high-frequency textural features of the processed image as determined by a two-step process. First, the two-dimensional discrete wavelet transform (DWT) is applied to obtain the HH high-frequency subband image. Then, a Gabor filter bank is applied to the latter at different frequencies and spatial orientations to obtain new Gabor-filtered image whose entropy and uniformity are computed. Finally, the obtained statistics are fed to a support vector machine (SVM) binary classifier. The approach was validated on mammograms, retina, and brain magnetic resonance (MR) images. The obtained classification accuracies show better performance in comparison to common approaches that use only the DWT or Gabor filter banks for feature extraction. PMID:27006906

  2. Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danny L. Anderson

    Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates amore » new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE.« less

  3. Mining hidden data to predict patient prognosis: texture feature extraction and machine learning in mammography

    NASA Astrophysics Data System (ADS)

    Leighs, J. A.; Halling-Brown, M. D.; Patel, M. N.

    2018-03-01

    The UK currently has a national breast cancer-screening program and images are routinely collected from a number of screening sites, representing a wealth of invaluable data that is currently under-used. Radiologists evaluate screening images manually and recall suspicious cases for further analysis such as biopsy. Histological testing of biopsy samples confirms the malignancy of the tumour, along with other diagnostic and prognostic characteristics such as disease grade. Machine learning is becoming increasingly popular for clinical image classification problems, as it is capable of discovering patterns in data otherwise invisible. This is particularly true when applied to medical imaging features; however clinical datasets are often relatively small. A texture feature extraction toolkit has been developed to mine a wide range of features from medical images such as mammograms. This study analysed a dataset of 1,366 radiologist-marked, biopsy-proven malignant lesions obtained from the OPTIMAM Medical Image Database (OMI-DB). Exploratory data analysis methods were employed to better understand extracted features. Machine learning techniques including Classification and Regression Trees (CART), ensemble methods (e.g. random forests), and logistic regression were applied to the data to predict the disease grade of the analysed lesions. Prediction scores of up to 83% were achieved; sensitivity and specificity of the models trained have been discussed to put the results into a clinical context. The results show promise in the ability to predict prognostic indicators from the texture features extracted and thus enable prioritisation of care for patients at greatest risk.

  4. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research), phase 2, option 2

    NASA Astrophysics Data System (ADS)

    Milgram, David L.; Kahn, Philip; Conner, Gary D.; Lawton, Daryl T.

    1988-12-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze features from Synthetic Aperture Radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of and technology issues involved in the development of an automated linear feature extraction system. This final report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  5. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal

    NASA Astrophysics Data System (ADS)

    Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le

    2016-08-01

    The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.

  6. Acoustic and Lexical Representations for Affect Prediction in Spontaneous Conversations.

    PubMed

    Cao, Houwei; Savran, Arman; Verma, Ragini; Nenkova, Ani

    2015-01-01

    In this article we investigate what representations of acoustics and word usage are most suitable for predicting dimensions of affect|AROUSAL, VALANCE, POWER and EXPECTANCY|in spontaneous interactions. Our experiments are based on the AVEC 2012 challenge dataset. For lexical representations, we compare corpus-independent features based on psychological word norms of emotional dimensions, as well as corpus-dependent representations. We find that corpus-dependent bag of words approach with mutual information between word and emotion dimensions is by far the best representation. For the analysis of acoustics, we zero in on the question of granularity. We confirm on our corpus that utterance-level features are more predictive than word-level features. Further, we study more detailed representations in which the utterance is divided into regions of interest (ROI), each with separate representation. We introduce two ROI representations, which significantly outperform less informed approaches. In addition we show that acoustic models of emotion can be improved considerably by taking into account annotator agreement and training the model on smaller but reliable dataset. Finally we discuss the potential for improving prediction by combining the lexical and acoustic modalities. Simple fusion methods do not lead to consistent improvements over lexical classifiers alone but improve over acoustic models.

  7. Acoustic Transmitters for Underwater Neutrino Telescopes

    PubMed Central

    Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  8. System and method for sonic wave measurements using an acoustic beam source

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  9. EEG artifact elimination by extraction of ICA-component features using image processing algorithms.

    PubMed

    Radüntz, T; Scouten, J; Hochmuth, O; Meffert, B

    2015-03-30

    Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.

    PubMed

    Matsubara, Takamitsu; Morimoto, Jun

    2013-08-01

    In this study, we propose a multiuser myoelectric interface that can easily adapt to novel users. When a user performs different motions (e.g., grasping and pinching), different electromyography (EMG) signals are measured. When different users perform the same motion (e.g., grasping), different EMG signals are also measured. Therefore, designing a myoelectric interface that can be used by multiple users to perform multiple motions is difficult. To cope with this problem, we propose for EMG signals a bilinear model that is composed of two linear factors: 1) user dependent and 2) motion dependent. By decomposing the EMG signals into these two factors, the extracted motion-dependent factors can be used as user-independent features. We can construct a motion classifier on the extracted feature space to develop the multiuser interface. For novel users, the proposed adaptation method estimates the user-dependent factor through only a few interactions. The bilinear EMG model with the estimated user-dependent factor can extract the user-independent features from the novel user data. We applied our proposed method to a recognition task of five hand gestures for robotic hand control using four-channel EMG signals measured from subject forearms. Our method resulted in 73% accuracy, which was statistically significantly different from the accuracy of standard nonmultiuser interfaces, as the result of a two-sample t -test at a significance level of 1%.

  11. Uncovering Spatial Variation in Acoustic Environments Using Sound Mapping.

    PubMed

    Job, Jacob R; Myers, Kyle; Naghshineh, Koorosh; Gill, Sharon A

    2016-01-01

    Animals select and use habitats based on environmental features relevant to their ecology and behavior. For animals that use acoustic communication, the sound environment itself may be a critical feature, yet acoustic characteristics are not commonly measured when describing habitats and as a result, how habitats vary acoustically over space and time is poorly known. Such considerations are timely, given worldwide increases in anthropogenic noise combined with rapidly accumulating evidence that noise hampers the ability of animals to detect and interpret natural sounds. Here, we used microphone arrays to record the sound environment in three terrestrial habitats (forest, prairie, and urban) under ambient conditions and during experimental noise introductions. We mapped sound pressure levels (SPLs) over spatial scales relevant to diverse taxa to explore spatial variation in acoustic habitats and to evaluate the number of microphones needed within arrays to capture this variation under both ambient and noisy conditions. Even at small spatial scales and over relatively short time spans, SPLs varied considerably, especially in forest and urban habitats, suggesting that quantifying and mapping acoustic features could improve habitat descriptions. Subset maps based on input from 4, 8, 12 and 16 microphones differed slightly (< 2 dBA/pixel) from those based on full arrays of 24 microphones under ambient conditions across habitats. Map differences were more pronounced with noise introductions, particularly in forests; maps made from only 4-microphones differed more (> 4 dBA/pixel) from full maps than the remaining subset maps, but maps with input from eight microphones resulted in smaller differences. Thus, acoustic environments varied over small spatial scales and variation could be mapped with input from 4-8 microphones. Mapping sound in different environments will improve understanding of acoustic environments and allow us to explore the influence of spatial variation

  12. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.

  13. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, A.M.; Osbourn, G.C.

    1998-07-28

    The present invention teaches systems and methods for verifying or recognizing a person`s identity based on measurements of the acoustic response of the individual`s ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications. 5 figs.

  14. New Acoustic Arena Qualified at NASA Glenn's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P.

    2004-01-01

    A new acoustic arena has been qualified in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. This arena is outfitted specifically for conducting fan noise research with the Advanced Noise Control Fan (ANCF) test rig. It features moveable walls with large acoustic wedges (2 by 2 by 1 ft) that create an acoustic environment usable at frequencies as low as 250 Hz. The arena currently uses two dedicated microphone arrays to acquire fan inlet and exhaust far-field acoustic data. It was used successfully in fiscal year 2003 to complete three ANCF tests. It also allowed Glenn to improve the operational efficiency of the four test rigs at AAPL and provided greater flexibility to schedule testing. There were a number of technical challenges to overcome in bringing the new arena to fruition. The foremost challenge was conflicting acoustic requirements of four different rigs. It was simply impossible to construct a static arena anywhere in the facility without intolerably compromising the acoustic test environment of at least one of the test rigs. This problem was overcome by making the wall sections of the new arena movable. Thus, the arena can be reconfigured to meet the operational requirements of any particular rig under test. Other design challenges that were encountered and overcome included structural loads of the large wedges, personnel access requirements, equipment maintenance requirements, and typical time and budget constraints. The new acoustic arena improves operations at the AAPL facility in several significant ways. First, it improves productivity by allowing multiple rigs to operate simultaneously. Second, it improves research data quality by providing a unique test area within the facility that is optimal for conducting fan noise research. Lastly, it reduces labor and equipment costs by eliminating the periodic need to transport the ANCF into and out of the primary AAPL acoustic arena. The investment to design, fabricate, and

  15. Diesel Engine Valve Clearance Fault Diagnosis Based on Features Extraction Techniques and FastICA-SVM

    NASA Astrophysics Data System (ADS)

    Jing, Ya-Bing; Liu, Chang-Wen; Bi, Feng-Rong; Bi, Xiao-Yang; Wang, Xia; Shao, Kang

    2017-07-01

    Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying features. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastICA-SVM achieves higher classification accuracy and makes better generalization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastICA-SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of feature extraction and the fault diagnosis of diesel engines.

  16. A data-driven feature extraction framework for predicting the severity of condition of congestive heart failure patients.

    PubMed

    Sideris, Costas; Alshurafa, Nabil; Pourhomayoun, Mohammad; Shahmohammadi, Farhad; Samy, Lauren; Sarrafzadeh, Majid

    2015-01-01

    In this paper, we propose a novel methodology for utilizing disease diagnostic information to predict severity of condition for Congestive Heart Failure (CHF) patients. Our methodology relies on a novel, clustering-based, feature extraction framework using disease diagnostic information. To reduce the dimensionality we identify disease clusters using cooccurence frequencies. We then utilize these clusters as features to predict patient severity of condition. We build our clustering and feature extraction algorithm using the 2012 National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP) which contains 7 million discharge records and ICD-9-CM codes. The proposed framework is tested on Ronald Reagan UCLA Medical Center Electronic Health Records (EHR) from 3041 patients. We compare our cluster-based feature set with another that incorporates the Charlson comorbidity score as a feature and demonstrate an accuracy improvement of up to 14% in the predictability of the severity of condition.

  17. An Efficient Method for Automatic Road Extraction Based on Multiple Features from LiDAR Data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Hu, X.; Guan, H.; Liu, P.

    2016-06-01

    The road extraction in urban areas is difficult task due to the complicated patterns and many contextual objects. LiDAR data directly provides three dimensional (3D) points with less occlusions and smaller shadows. The elevation information and surface roughness are distinguishing features to separate roads. However, LiDAR data has some disadvantages are not beneficial to object extraction, such as the irregular distribution of point clouds and lack of clear edges of roads. For these problems, this paper proposes an automatic road centerlines extraction method which has three major steps: (1) road center point detection based on multiple feature spatial clustering for separating road points from ground points, (2) local principal component analysis with least squares fitting for extracting the primitives of road centerlines, and (3) hierarchical grouping for connecting primitives into complete roads network. Compared with MTH (consist of Mean shift algorithm, Tensor voting, and Hough transform) proposed in our previous article, this method greatly reduced the computational cost. To evaluate the proposed method, the Vaihingen data set, a benchmark testing data provided by ISPRS for "Urban Classification and 3D Building Reconstruction" project, was selected. The experimental results show that our method achieve the same performance by less time in road extraction using LiDAR data.

  18. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    NASA Astrophysics Data System (ADS)

    Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew

    2013-05-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

  19. Small-scale structure and the Lyman-α forest baryon acoustic oscillation feature

    NASA Astrophysics Data System (ADS)

    Hirata, Christopher M.

    2018-02-01

    The baryon-acoustic oscillation (BAO) feature in the Lyman-α forest is a key probe of the cosmic expansion rate at redshifts z ˜ 2.5, well before dark energy is believed to have become significant. A key advantage of the BAO as a standard ruler is that it is a sharp feature and hence is more robust against broad-band systematic effects than other cosmological probes. However, if the Lyman-α forest transmission is sensitive to the initial streaming velocity of the baryons relative to the dark matter, then the BAO peak position can be shifted. Here we investigate this sensitivity using a suite of hydrodynamic simulations of small regions of the intergalactic medium with a range of box sizes and physics assumptions; each simulation starts from initial conditions at the kinematic decoupling era (z ˜ 1059), undergoes a discrete change from neutral gas to ionized gas thermal evolution at reionization (z ˜ 8), and is finally processed into a Lyman-α forest transmitted flux cube. Streaming velocities suppress small-scale structure, leading to less violent relaxation after reionization. The changes in the gas distribution and temperature-density relation at low redshift are more subtle, due to the convergent temperature evolution in the ionized phase. The change in the BAO scale is estimated to be of the order of 0.12 per cent at z = 2.5; some of the major uncertainties and avenues for future improvement are discussed. The predicted streaming velocity shift would be a subdominant but not negligible effect (of order 0.26σ) for the upcoming DESI Lyman-α forest survey, and exceeds the cosmic variance floor.

  20. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    PubMed Central

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-01-01

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510

  1. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction.

    PubMed

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-03-20

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  2. Feature extraction based on extended multi-attribute profiles and sparse autoencoder for remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman

    2018-02-01

    The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.

  3. Model parameter extraction of lateral propagating surface acoustic waves with coupling on SiO2/grating/LiNbO3 structure

    NASA Astrophysics Data System (ADS)

    Zhang, Benfeng; Han, Tao; Li, Xinyi; Huang, Yulin; Omori, Tatsuya; Hashimoto, Ken-ya

    2018-07-01

    This paper investigates how lateral propagation of Rayleigh and shear horizontal (SH) surface acoustic waves (SAWs) changes with rotation angle θ and SiO2 and electrode thicknesses, h SiO2 and h Cu, respectively. The extended thin plate model is used for purpose. First, the extraction method is presented for determining parameters appearing in the extended thin plate model. Then, the model parameters are expressed in polynomials in terms of h SiO2, h Cu, and θ. Finally, a piston mode structure without phase shifters is designed using the extracted parameters. The possible piston mode structures can be searched automatically by use of the polynomial expression. The resonance characteristics are analyzed by both the extended thin plate model and three-dimensional (3D) finite element method (FEM). Agreement between the results of both methods confirms validity and effectiveness of the parameter extraction process and the design technique.

  4. Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN).

    PubMed

    Paavilainen, P; Simola, J; Jaramillo, M; Näätänen, R; Winkler, I

    2001-03-01

    Brain mechanisms extracting invariant information from varying auditory inputs were studied using the mismatch-negativity (MMN) brain response. We wished to determine whether the preattentive sound-analysis mechanisms, reflected by MMN, are capable of extracting invariant relationships based on abstract conjunctions between two sound features. The standard stimuli varied over a large range in frequency and intensity dimensions following the rule that the higher the frequency, the louder the intensity. The occasional deviant stimuli violated this frequency-intensity relationship and elicited an MMN. The results demonstrate that preattentive processing of auditory stimuli extends to unexpectedly complex relationships between the stimulus features.

  5. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research) phase 2, option 1

    NASA Astrophysics Data System (ADS)

    Conner, Gary D.; Milgram, David L.; Lawton, Daryl T.; McConnell, Christopher C.

    1988-04-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze linear features from synthetic aperture radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of the technology issues involved in the development of an automatedlinear feature extraction system. This Option 1 Final Report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  6. Acoustic changes in voice after tonsillectomy.

    PubMed

    Saida, H; Hirose, H

    1996-01-01

    The vocal tract from the glottis to the lips is considered to he a resonator and the voice is changeable depending upon the shape of the vocal tract. In this report, we examined the change in pharyngeal size and acoustic feature of voice after tonsillectomy. Subjects were 20 patients. The distance between both anterior pillars (glossopalatine arches), and between both posterior pillars (pharyngopalatine arches) was measured weekly. For acoustic measurements, the five Japanese vowels and Japanese conversational sentences were recorded and analyzed. The distance between both anterior pillars became wider 2 weeks postoperatively, and tended to become narrower thereafter. The distance between both posterior pillars became wider even after 4 weeks postoperatively. No consistent changes in F0, F1 and F2 were found after surgery. Although there was a tendency for a decrease in F3, tonsillectomy did not appear to change the acoustical features of the Japanese vowels remarkably. It was assumed that the subject may adjust the shape of the vocal tract to produce consistent speech sounds after the surgery using auditory feedback.

  7. An expert botanical feature extraction technique based on phenetic features for identifying plant species.

    PubMed

    Kolivand, Hoshang; Fern, Bong Mei; Rahim, Mohd Shafry Mohd; Sulong, Ghazali; Baker, Thar; Tully, David

    2018-01-01

    In this paper, we present a new method to recognise the leaf type and identify plant species using phenetic parts of the leaf; lobes, apex and base detection. Most of the research in this area focuses on the popular features such as the shape, colour, vein, and texture, which consumes large amounts of computational processing and are not efficient, especially in the Acer database with a high complexity structure of the leaves. This paper is focused on phenetic parts of the leaf which increases accuracy. Detecting the local maxima and local minima are done based on Centroid Contour Distance for Every Boundary Point, using north and south region to recognise the apex and base. Digital morphology is used to measure the leaf shape and the leaf margin. Centroid Contour Gradient is presented to extract the curvature of leaf apex and base. We analyse 32 leaf images of tropical plants and evaluated with two different datasets, Flavia, and Acer. The best accuracy obtained is 94.76% and 82.6% respectively. Experimental results show the effectiveness of the proposed technique without considering the commonly used features with high computational cost.

  8. An expert botanical feature extraction technique based on phenetic features for identifying plant species

    PubMed Central

    Fern, Bong Mei; Rahim, Mohd Shafry Mohd; Sulong, Ghazali; Baker, Thar; Tully, David

    2018-01-01

    In this paper, we present a new method to recognise the leaf type and identify plant species using phenetic parts of the leaf; lobes, apex and base detection. Most of the research in this area focuses on the popular features such as the shape, colour, vein, and texture, which consumes large amounts of computational processing and are not efficient, especially in the Acer database with a high complexity structure of the leaves. This paper is focused on phenetic parts of the leaf which increases accuracy. Detecting the local maxima and local minima are done based on Centroid Contour Distance for Every Boundary Point, using north and south region to recognise the apex and base. Digital morphology is used to measure the leaf shape and the leaf margin. Centroid Contour Gradient is presented to extract the curvature of leaf apex and base. We analyse 32 leaf images of tropical plants and evaluated with two different datasets, Flavia, and Acer. The best accuracy obtained is 94.76% and 82.6% respectively. Experimental results show the effectiveness of the proposed technique without considering the commonly used features with high computational cost. PMID:29420568

  9. Achieving Accurate Automatic Sleep Staging on Manually Pre-processed EEG Data Through Synchronization Feature Extraction and Graph Metrics.

    PubMed

    Chriskos, Panteleimon; Frantzidis, Christos A; Gkivogkli, Polyxeni T; Bamidis, Panagiotis D; Kourtidou-Papadeli, Chrysoula

    2018-01-01

    Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the "ENVIHAB" facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging.

  10. Achieving Accurate Automatic Sleep Staging on Manually Pre-processed EEG Data Through Synchronization Feature Extraction and Graph Metrics

    PubMed Central

    Chriskos, Panteleimon; Frantzidis, Christos A.; Gkivogkli, Polyxeni T.; Bamidis, Panagiotis D.; Kourtidou-Papadeli, Chrysoula

    2018-01-01

    Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the “ENVIHAB” facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging. PMID:29628883

  11. Feature extraction for face recognition via Active Shape Model (ASM) and Active Appearance Model (AAM)

    NASA Astrophysics Data System (ADS)

    Iqtait, M.; Mohamad, F. S.; Mamat, M.

    2018-03-01

    Biometric is a pattern recognition system which is used for automatic recognition of persons based on characteristics and features of an individual. Face recognition with high recognition rate is still a challenging task and usually accomplished in three phases consisting of face detection, feature extraction, and expression classification. Precise and strong location of trait point is a complicated and difficult issue in face recognition. Cootes proposed a Multi Resolution Active Shape Models (ASM) algorithm, which could extract specified shape accurately and efficiently. Furthermore, as the improvement of ASM, Active Appearance Models algorithm (AAM) is proposed to extracts both shape and texture of specified object simultaneously. In this paper we give more details about the two algorithms and give the results of experiments, testing their performance on one dataset of faces. We found that the ASM is faster and gains more accurate trait point location than the AAM, but the AAM gains a better match to the texture.

  12. Event identification by acoustic signature recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dress, W.B.; Kercel, S.W.

    1995-07-01

    Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and futuremore » applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.« less

  13. Performance Comparison of Feature Extraction Algorithms for Target Detection and Classification

    DTIC Science & Technology

    2013-01-01

    Detection and Classification⋆ Soheil Bahrampour1 Asok Ray2 Soumalya Sarkar2 Thyagaraju Damarla3 Nasser M. Nasrabadi3 Keywords: Feature Extraction...USA email:soheil@psu.edu 2A. Ray and S. Sarkar are with the Department of Mechanical Engineering, Pennsylvania State University, University Park, PA...no. 1, pp. 22–29, 2001. [5] G. Mallapragada, A. Ray , and X. Jin, “Symbolic dynamic filtering and language measure for behavior identification of mobile

  14. Iris Recognition Using Feature Extraction of Box Counting Fractal Dimension

    NASA Astrophysics Data System (ADS)

    Khotimah, C.; Juniati, D.

    2018-01-01

    Biometrics is a science that is now growing rapidly. Iris recognition is a biometric modality which captures a photo of the eye pattern. The markings of the iris are distinctive that it has been proposed to use as a means of identification, instead of fingerprints. Iris recognition was chosen for identification in this research because every human has a special feature that each individual is different and the iris is protected by the cornea so that it will have a fixed shape. This iris recognition consists of three step: pre-processing of data, feature extraction, and feature matching. Hough transformation is used in the process of pre-processing to locate the iris area and Daugman’s rubber sheet model to normalize the iris data set into rectangular blocks. To find the characteristics of the iris, it was used box counting method to get the fractal dimension value of the iris. Tests carried out by used k-fold cross method with k = 5. In each test used 10 different grade K of K-Nearest Neighbor (KNN). The result of iris recognition was obtained with the best accuracy was 92,63 % for K = 3 value on K-Nearest Neighbor (KNN) method.

  15. Feature Extraction for Track Section Status Classification Based on UGW Signals

    PubMed Central

    Yang, Yuan; Shi, Lin

    2018-01-01

    Track status classification is essential for the stability and safety of railway operations nowadays, when railway networks are becoming more and more complex and broad. In this situation, monitoring systems are already a key element in applications dedicated to evaluating the status of a certain track section, often determining whether it is free or occupied by a train. Different technologies have already been involved in the design of monitoring systems, including ultrasonic guided waves (UGW). This work proposes the use of the UGW signals captured by a track monitoring system to extract the features that are relevant for determining the corresponding track section status. For that purpose, three features of UGW signals have been considered: the root mean square value, the energy, and the main frequency components. Experimental results successfully validated how these features can be used to classify the track section status into free, occupied and broken. Furthermore, spatial and temporal dependencies among these features were analysed in order to show how they can improve the final classification performance. Finally, a preliminary high-level classification system based on deep learning networks has been envisaged for future works. PMID:29673156

  16. Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator.

    PubMed

    Ma, Jun; Wu, Jiande; Wang, Xiaodong

    2018-06-04

    Aiming at the problems that the incipient fault of rolling bearings is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, taking full advantages of the adaptive segmentation of scale spectrum and Teager energy operator (TEO) demodulation, a new method for early fault feature extraction of rolling bearings based on the modified VMD and Teager energy operator (MVMD-TEO) is proposed. Firstly, the vibration signal of rolling bearings is analyzed by adaptive scale space spectrum segmentation to obtain the spectrum segmentation support boundary, and then the number K of IMFs decomposed by VMD is adaptively determined. Secondly, the original vibration signal is adaptively decomposed into K IMFs, and the effective IMF components are extracted based on the correlation coefficient criterion. Finally, the Teager energy spectrum of the reconstructed signal of the effective IMF components is calculated by the TEO, and then the early fault features of rolling bearings are extracted to realize the fault identification and location. Comparative experiments of the proposed method and the existing fault feature extraction method based on Local Mean Decomposition and Teager energy operator (LMD-TEO) have been implemented using experimental data-sets and a measured data-set. The results of comparative experiments in three application cases show that the presented method can achieve a fairly or slightly better performance than LMD-TEO method, and the validity and feasibility of the proposed method are proved. Copyright © 2018. Published by Elsevier Ltd.

  17. Raft cultivation area extraction from high resolution remote sensing imagery by fusing multi-scale region-line primitive association features

    NASA Astrophysics Data System (ADS)

    Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian

    2017-01-01

    In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.

  18. Active acoustic classification via transient resonance scattering

    NASA Astrophysics Data System (ADS)

    Gaunaurd, Guillermo C.

    1992-12-01

    The echoes reflected by a sound ping emerging from active sonar when it interacts with a target in its path can be remotely sensed by a receiver. The presented approach capitalizes on an air inverse scattering method that exploits the presence of certain resonance features in these echoes returned by targets to classify them. Classifying underwater objects is important to naval programs such as mine countermeasures (MC) and anti-submarine warfare (ASW) to preclude wasting of ordnance on false targets. Although the classification of complex shapes is still a formidable task, considerable progress has been made in classifying simple shapes such as spheroidal or cylindrical shells. The briefly overviewed methodology has emphasized the extraction, isolation, and labeling of resonance features hidden within the echo, but little has been said about how these could be used to classify a target. A couple of simple examples illustrate exactly how these resonances can be linked to the physical characteristics of the target, allowing for its unambiguous characterization. The procedure, although illustrated with active acoustics (i.e., sonar), can be extended to any active return from any sensor, including radar.

  19. On Computations of Duct Acoustics with Near Cut-Off Frequency

    NASA Technical Reports Server (NTRS)

    Dong, Thomas Z.; Povinelli, Louis A.

    1997-01-01

    The cut-off is a unique feature associated with duct acoustics due to the presence of duct walls. A study of this cut-off effect on the computations of duct acoustics is performed in the present work. The results show that the computation of duct acoustic modes near cut-off requires higher numerical resolutions than others to avoid being numerically cut off. Duct acoustic problems in Category 2 are solved by the DRP finite difference scheme with the selective artificial damping method and results are presented and compared to reference solutions.

  20. Neural network-based brain tissue segmentation in MR images using extracted features from intraframe coding in H.264

    NASA Astrophysics Data System (ADS)

    Jafari, Mehdi; Kasaei, Shohreh

    2012-01-01

    Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.

  1. Neural network-based brain tissue segmentation in MR images using extracted features from intraframe coding in H.264

    NASA Astrophysics Data System (ADS)

    Jafari, Mehdi; Kasaei, Shohreh

    2011-12-01

    Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.

  2. Time-frequency analysis of acoustic scattering from elastic objects

    NASA Astrophysics Data System (ADS)

    Yen, Nai-Chyuan; Dragonette, Louis R.; Numrich, Susan K.

    1990-06-01

    A time-frequency analysis of acoustic scattering from elastic objects was carried out using the time-frequency representation based on a modified version of the Wigner distribution function (WDF) algorithm. A simple and efficient processing algorithm was developed, which provides meaningful interpretation of the scattering physics. The time and frequency representation derived from the WDF algorithm was further reduced to a display which is a skeleton plot, called a vein diagram, that depicts the essential features of the form function. The physical parameters of the scatterer are then extracted from this diagram with the proper interpretation of the scattering phenomena. Several examples, based on data obtained from numerically simulated models and laboratory measurements for elastic spheres and shells, are used to illustrate the capability and proficiency of the algorithm.

  3. Distant supervision for neural relation extraction integrated with word attention and property features.

    PubMed

    Qu, Jianfeng; Ouyang, Dantong; Hua, Wen; Ye, Yuxin; Li, Ximing

    2018-04-01

    Distant supervision for neural relation extraction is an efficient approach to extracting massive relations with reference to plain texts. However, the existing neural methods fail to capture the critical words in sentence encoding and meanwhile lack useful sentence information for some positive training instances. To address the above issues, we propose a novel neural relation extraction model. First, we develop a word-level attention mechanism to distinguish the importance of each individual word in a sentence, increasing the attention weights for those critical words. Second, we investigate the semantic information from word embeddings of target entities, which can be developed as a supplementary feature for the extractor. Experimental results show that our model outperforms previous state-of-the-art baselines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Feature Extraction Assessment Study.

    DTIC Science & Technology

    1984-11-01

    base in the form of orthophotos , control manuscripts, . or maps or charts; aids to feature identification such as im- agery (rectified and unrectified...manually delineated (i.e. , drawn by * hand) on a feature manuscript which may be a mylar overlay on an orthophoto or other control base. Once delineated...partition of tiled constant gray level regions, with addi- tive noise in each, it is not clear that any segmentation tech- nique would identify each

  5. Acoustic wayfinding: A method to measure the acoustic contrast of different paving materials for blind people.

    PubMed

    Secchi, Simone; Lauria, Antonio; Cellai, Gianfranco

    2017-01-01

    Acoustic wayfinding involves using a variety of auditory cues to create a mental map of the surrounding environment. For blind people, these auditory cues become the primary substitute for visual information in order to understand the features of the spatial context and orient themselves. This can include creating sound waves, such as tapping a cane. This paper reports the results of a research about the "acoustic contrast" parameter between paving materials functioning as a cue and the surrounding or adjacent surface functioning as a background. A number of different materials was selected in order to create a test path and a procedure was defined for the verification of the ability of blind people to distinguish different acoustic contrasts. A method is proposed for measuring acoustic contrast generated by the impact of a cane tip on the ground to provide blind people with environmental information on spatial orientation and wayfinding in urban places. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Texture feature extraction based on a uniformity estimation method for local brightness and structure in chest CT images.

    PubMed

    Peng, Shao-Hu; Kim, Deok-Hwan; Lee, Seok-Lyong; Lim, Myung-Kwan

    2010-01-01

    Texture feature is one of most important feature analysis methods in the computer-aided diagnosis (CAD) systems for disease diagnosis. In this paper, we propose a Uniformity Estimation Method (UEM) for local brightness and structure to detect the pathological change in the chest CT images. Based on the characteristics of the chest CT images, we extract texture features by proposing an extension of rotation invariant LBP (ELBP(riu4)) and the gradient orientation difference so as to represent a uniform pattern of the brightness and structure in the image. The utilization of the ELBP(riu4) and the gradient orientation difference allows us to extract rotation invariant texture features in multiple directions. Beyond this, we propose to employ the integral image technique to speed up the texture feature computation of the spatial gray level dependent method (SGLDM). Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Airy acoustical-sheet spinner tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  8. Multi-source feature extraction and target recognition in wireless sensor networks based on adaptive distributed wavelet compression algorithms

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at

  9. Deep PDF parsing to extract features for detecting embedded malware.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munson, Miles Arthur; Cross, Jesse S.

    2011-09-01

    The number of PDF files with embedded malicious code has risen significantly in the past few years. This is due to the portability of the file format, the ways Adobe Reader recovers from corrupt PDF files, the addition of many multimedia and scripting extensions to the file format, and many format properties the malware author may use to disguise the presence of malware. Current research focuses on executable, MS Office, and HTML formats. In this paper, several features and properties of PDF Files are identified. Features are extracted using an instrumented open source PDF viewer. The feature descriptions of benignmore » and malicious PDFs can be used to construct a machine learning model for detecting possible malware in future PDF files. The detection rate of PDF malware by current antivirus software is very low. A PDF file is easy to edit and manipulate because it is a text format, providing a low barrier to malware authors. Analyzing PDF files for malware is nonetheless difficult because of (a) the complexity of the formatting language, (b) the parsing idiosyncrasies in Adobe Reader, and (c) undocumented correction techniques employed in Adobe Reader. In May 2011, Esparza demonstrated that PDF malware could be hidden from 42 of 43 antivirus packages by combining multiple obfuscation techniques [4]. One reason current antivirus software fails is the ease of varying byte sequences in PDF malware, thereby rendering conventional signature-based virus detection useless. The compression and encryption functions produce sequences of bytes that are each functions of multiple input bytes. As a result, padding the malware payload with some whitespace before compression/encryption can change many of the bytes in the final payload. In this study we analyzed a corpus of 2591 benign and 87 malicious PDF files. While this corpus is admittedly small, it allowed us to test a system for collecting indicators of embedded PDF malware. We will call these indicators features

  10. Waveform Based Acoustic Emission Detection and Location of Matrix Cracking in Composites

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    1995-01-01

    The operation of damage mechanisms in a material or structure under load produces transient acoustic waves. These acoustic waves are known as acoustic emission (AE). In composites they can be caused by a variety of sources including matrix cracking, fiber breakage, and delamination. AE signals can be detected and analyzed to determine the location of the acoustic source by triangulation. Attempts are also made to analyze the signals to determine the type and severity of the damage mechanism. AE monitoring has been widely used for both laboratory studies of materials, and for testing the integrity of structures in the field. In this work, an advanced, waveform based AE system was used in a study of transverse matrix cracking in cross-ply graphite/epoxy laminates. This AE system featured broad band, high fidelity sensors, and high capture rate digital acquisition and storage of acoustic signals. In addition, analysis techniques based on plate wave propagation models were employed. These features provided superior source location and noise rejection capabilities.

  11. 3D local feature BKD to extract road information from mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Liu, Yuan; Dong, Zhen; Liang, Fuxun; Li, Bijun; Peng, Xiangyang

    2017-08-01

    Extracting road information from point clouds obtained through mobile laser scanning (MLS) is essential for autonomous vehicle navigation, and has hence garnered a growing amount of research interest in recent years. However, the performance of such systems is seriously affected due to varying point density and noise. This paper proposes a novel three-dimensional (3D) local feature called the binary kernel descriptor (BKD) to extract road information from MLS point clouds. The BKD consists of Gaussian kernel density estimation and binarization components to encode the shape and intensity information of the 3D point clouds that are fed to a random forest classifier to extract curbs and markings on the road. These are then used to derive road information, such as the number of lanes, the lane width, and intersections. In experiments, the precision and recall of the proposed feature for the detection of curbs and road markings on an urban dataset and a highway dataset were as high as 90%, thus showing that the BKD is accurate and robust against varying point density and noise.

  12. Investigations of High Pressure Acoustic Waves in Resonators with Seal-like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher; Steinetz, Bruce; Finkbeiner, Joshua

    2003-01-01

    A conical resonator (having a dissonant acoustic design) was tested in four configurations: (1) baseline resonator with closed ends and no blockage, (2) closed resonator with internal blockage, (3) ventilated resonator with no blockage, and (4) ventilated resonator with an applied pressure differential. These tests were conducted to investigate the effects of blockage and ventilation holes on dynamic pressurization. Additionally, the investigation was to determine the ability of acoustic pressurization to impede flow through the resonator. In each of the configurations studied, the entire resonator was oscillated at the gas resonant frequency while dynamic pressure, static pressure, and temperature of the fluid were measured. In the final configuration, flow through the resonator was recorded for three oscillation conditions. Ambient condition air was used as the working fluid.

  13. Improve threshold segmentation using features extraction to automatic lung delimitation.

    PubMed

    França, Cleunio; Vasconcelos, Germano; Diniz, Paula; Melo, Pedro; Diniz, Jéssica; Novaes, Magdala

    2013-01-01

    With the consolidation of PACS and RIS systems, the development of algorithms for tissue segmentation and diseases detection have intensely evolved in recent years. These algorithms have advanced to improve its accuracy and specificity, however, there is still some way until these algorithms achieved satisfactory error rates and reduced processing time to be used in daily diagnosis. The objective of this study is to propose a algorithm for lung segmentation in x-ray computed tomography images using features extraction, as Centroid and orientation measures, to improve the basic threshold segmentation. As result we found a accuracy of 85.5%.

  14. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures. © 2011 Acoustical Society of America

  15. Computer extracted texture features on T2w MRI to predict biochemical recurrence following radiation therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Ginsburg, Shoshana B.; Rusu, Mirabela; Kurhanewicz, John; Madabhushi, Anant

    2014-03-01

    In this study we explore the ability of a novel machine learning approach, in conjunction with computer-extracted features describing prostate cancer morphology on pre-treatment MRI, to predict whether a patient will develop biochemical recurrence within ten years of radiation therapy. Biochemical recurrence, which is characterized by a rise in serum prostate-specific antigen (PSA) of at least 2 ng/mL above the nadir PSA, is associated with increased risk of metastasis and prostate cancer-related mortality. Currently, risk of biochemical recurrence is predicted by the Kattan nomogram, which incorporates several clinical factors to predict the probability of recurrence-free survival following radiation therapy (but has limited prediction accuracy). Semantic attributes on T2w MRI, such as the presence of extracapsular extension and seminal vesicle invasion and surrogate measure- ments of tumor size, have also been shown to be predictive of biochemical recurrence risk. While the correlation between biochemical recurrence and factors like tumor stage, Gleason grade, and extracapsular spread are well- documented, it is less clear how to predict biochemical recurrence in the absence of extracapsular spread and for small tumors fully contained in the capsule. Computer{extracted texture features, which quantitatively de- scribe tumor micro-architecture and morphology on MRI, have been shown to provide clues about a tumor's aggressiveness. However, while computer{extracted features have been employed for predicting cancer presence and grade, they have not been evaluated in the context of predicting risk of biochemical recurrence. This work seeks to evaluate the role of computer-extracted texture features in predicting risk of biochemical recurrence on a cohort of sixteen patients who underwent pre{treatment 1.5 Tesla (T) T2w MRI. We extract a combination of first-order statistical, gradient, co-occurrence, and Gabor wavelet features from T2w MRI. To identify which of these

  16. Visual feature extraction and establishment of visual tags in the intelligent visual internet of things

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqun; Wang, Zhihui

    2015-12-01

    The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.

  17. Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development

    NASA Technical Reports Server (NTRS)

    Putnam, G. C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.

  18. Extraction of Molecular Features through Exome to Transcriptome Alignment

    PubMed Central

    Mudvari, Prakriti; Kowsari, Kamran; Cole, Charles; Mazumder, Raja; Horvath, Anelia

    2014-01-01

    Integrative Next Generation Sequencing (NGS) DNA and RNA analyses have very recently become feasible, and the published to date studies have discovered critical disease implicated pathways, and diagnostic and therapeutic targets. A growing number of exomes, genomes and transcriptomes from the same individual are quickly accumulating, providing unique venues for mechanistic and regulatory features analysis, and, at the same time, requiring new exploration strategies. In this study, we have integrated variation and expression information of four NGS datasets from the same individual: normal and tumor breast exomes and transcriptomes. Focusing on SNPcentered variant allelic prevalence, we illustrate analytical algorithms that can be applied to extract or validate potential regulatory elements, such as expression or growth advantage, imprinting, loss of heterozygosity (LOH), somatic changes, and RNA editing. In addition, we point to some critical elements that might bias the output and recommend alternative measures to maximize the confidence of findings. The need for such strategies is especially recognized within the growing appreciation of the concept of systems biology: integrative exploration of genome and transcriptome features reveal mechanistic and regulatory insights that reach far beyond linear addition of the individual datasets. PMID:24791251

  19. A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition.

    PubMed

    Khushaba, Rami N; Al-Timemy, Ali H; Al-Ani, Ahmed; Al-Jumaily, Adel

    2017-10-01

    The extraction of the accurate and efficient descriptors of muscular activity plays an important role in tackling the challenging problem of myoelectric control of powered prostheses. In this paper, we present a new feature extraction framework that aims to give an enhanced representation of muscular activities through increasing the amount of information that can be extracted from individual and combined electromyogram (EMG) channels. We propose to use time-domain descriptors (TDDs) in estimating the EMG signal power spectrum characteristics; a step that preserves the computational power required for the construction of spectral features. Subsequently, TDD is used in a process that involves: 1) representing the temporal evolution of the EMG signals by progressively tracking the correlation between the TDD extracted from each analysis time window and a nonlinearly mapped version of it across the same EMG channel and 2) representing the spatial coherence between the different EMG channels, which is achieved by calculating the correlation between the TDD extracted from the differences of all possible combinations of pairs of channels and their nonlinearly mapped versions. The proposed temporal-spatial descriptors (TSDs) are validated on multiple sparse and high-density (HD) EMG data sets collected from a number of intact-limbed and amputees performing a large number of hand and finger movements. Classification results showed significant reductions in the achieved error rates in comparison to other methods, with the improvement of at least 8% on average across all subjects. Additionally, the proposed TSDs achieved significantly well in problems with HD-EMG with average classification errors of <5% across all subjects using windows lengths of 50 ms only.

  20. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model.

    PubMed

    Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao

    2016-02-01

    This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period.

  1. Development of feature extraction analysis for a multi-functional optical profiling device applied to field engineering applications

    NASA Astrophysics Data System (ADS)

    Han, Xu; Xie, Guangping; Laflen, Brandon; Jia, Ming; Song, Guiju; Harding, Kevin G.

    2015-05-01

    In the real application environment of field engineering, a large variety of metrology tools are required by the technician to inspect part profile features. However, some of these tools are burdensome and only address a sole application or measurement. In other cases, standard tools lack the capability of accessing irregular profile features. Customers of field engineering want the next generation metrology devices to have the ability to replace the many current tools with one single device. This paper will describe a method based on the ring optical gage concept to the measurement of numerous kinds of profile features useful for the field technician. The ring optical system is composed of a collimated laser, a conical mirror and a CCD camera. To be useful for a wide range of applications, the ring optical system requires profile feature extraction algorithms and data manipulation directed toward real world applications in field operation. The paper will discuss such practical applications as measuring the non-ideal round hole with both off-centered and oblique axes. The algorithms needed to analyze other features such as measuring the width of gaps, radius of transition fillets, fall of step surfaces, and surface parallelism will also be discussed in this paper. With the assistance of image processing and geometric algorithms, these features can be extracted with a reasonable performance. Tailoring the feature extraction analysis to this specific gage offers the potential for a wider application base beyond simple inner diameter measurements. The paper will present experimental results that are compared with standard gages to prove the performance and feasibility of the analysis in real world field engineering. Potential accuracy improvement methods, a new dual ring design and future work will be discussed at the end of this paper.

  2. Acoustic Profiling of Bottom Sediments in Large Oil Storage Tanks

    NASA Astrophysics Data System (ADS)

    Svet, V. D.; Tsysar', S. A.

    2018-01-01

    Characteristic features of acoustic profiling of bottom sediments in large oil storage tanks are considered. Basic acoustic parameters of crude oil and bottom sediments are presented. It is shown that, because of the presence of both transition layers in crude oil and strong reverberation effects in oil tanks, the volume of bottom sediments that is calculated from an acoustic surface image is generally overestimated. To reduce the error, additional post-processing of acoustic profilometry data is proposed in combination with additional measurements of viscosity and tank density distributions in vertical at several points of the tank.

  3. Non-linear feature extraction from HRV signal for mortality prediction of ICU cardiovascular patient.

    PubMed

    Karimi Moridani, Mohammad; Setarehdan, Seyed Kamaledin; Motie Nasrabadi, Ali; Hajinasrollah, Esmaeil

    2016-01-01

    Intensive care unit (ICU) patients are at risk of in-ICU morbidities and mortality, making specific systems for identifying at-risk patients a necessity for improving clinical care. This study presents a new method for predicting in-hospital mortality using heart rate variability (HRV) collected from the times of a patient's ICU stay. In this paper, a HRV time series processing based method is proposed for mortality prediction of ICU cardiovascular patients. HRV signals were obtained measuring R-R time intervals. A novel method, named return map, is then developed that reveals useful information from the HRV time series. This study also proposed several features that can be extracted from the return map, including the angle between two vectors, the area of triangles formed by successive points, shortest distance to 45° line and their various combinations. Finally, a thresholding technique is proposed to extract the risk period and to predict mortality. The data used to evaluate the proposed algorithm obtained from 80 cardiovascular ICU patients, from the first 48 h of the first ICU stay of 40 males and 40 females. This study showed that the angle feature has on average a sensitivity of 87.5% (with 12 false alarms), the area feature has on average a sensitivity of 89.58% (with 10 false alarms), the shortest distance feature has on average a sensitivity of 85.42% (with 14 false alarms) and, finally, the combined feature has on average a sensitivity of 92.71% (with seven false alarms). The results showed that the last half an hour before the patient's death is very informative for diagnosing the patient's condition and to save his/her life. These results confirm that it is possible to predict mortality based on the features introduced in this paper, relying on the variations of the HRV dynamic characteristics.

  4. 3D space positioning and image feature extraction for workpiece

    NASA Astrophysics Data System (ADS)

    Ye, Bing; Hu, Yi

    2008-03-01

    An optical system of 3D parameters measurement for specific area of a workpiece has been presented and discussed in this paper. A number of the CCD image sensors are employed to construct the 3D coordinate system for the measured area. The CCD image sensor of the monitoring target is used to lock the measured workpiece when it enters the field of view. The other sensors, which are placed symmetrically beam scanners, measure the appearance of the workpiece and the characteristic parameters. The paper established target image segmentation and the image feature extraction algorithm to lock the target, based on the geometric similarity of objective characteristics, rapid locking the goal can be realized. When line laser beam scan the tested workpiece, a number of images are extracted equal time interval and the overlapping images are processed to complete image reconstruction, and achieve the 3D image information. From the 3D coordinate reconstruction model, the 3D characteristic parameters of the tested workpiece are gained. The experimental results are provided in the paper.

  5. Autonomous celestial navigation based on Earth ultraviolet radiance and fast gradient statistic feature extraction

    NASA Astrophysics Data System (ADS)

    Lu, Shan; Zhang, Hanmo

    2016-01-01

    To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.

  6. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  7. Publications on acoustics research at the Langley Research Center during 1980-1986

    NASA Technical Reports Server (NTRS)

    Sutherland, Linda W. (Compiler)

    1988-01-01

    This report is a compilation of publications from acoustics research at the Langley Research Center. The reports are listed in chronological order and summarize the written output of the Acoustics Division and its predecessor, The Acoustics and Noise Reduction Division, for the period 1980 through 1986. The information assembled has been extracted from the 1980 through 1986 issues for the Technical Memorandum entitled, Scientific and Technical Information Output of the Langley Research Center for the Calendar Year.

  8. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors.

    PubMed

    Phinyomark, Angkoon; N Khushaba, Rami; Scheme, Erik

    2018-05-18

    Specialized myoelectric sensors have been used in prosthetics for decades, but, with recent advancements in wearable sensors, wireless communication and embedded technologies, wearable electromyographic (EMG) armbands are now commercially available for the general public. Due to physical, processing, and cost constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g., 200 Hz for the Myo armband) than their clinical counterparts. It remains unclear whether existing EMG feature extraction methods, which largely evolved based on EMG signals sampled at 1000 Hz or above, are still effective for use with these emerging lower-bandwidth systems. In this study, the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on the classification of hand and finger movements were evaluated for twenty-six different individual features and eight sets of multiple features using a variety of datasets comprised of both able-bodied and amputee subjects. The results show that, on average, classification accuracies drop significantly ( p.

  9. Interpreting Underwater Acoustic Images of the Upper Ocean Boundary Layer

    ERIC Educational Resources Information Center

    Ulloa, Marco J.

    2007-01-01

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of…

  10. High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings

    NASA Astrophysics Data System (ADS)

    Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.

  11. Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk Hα Images

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Tian, Yu; Liu, Yangyi; Rao, Changhui

    2018-05-01

    In this article, an automated solar flare detection method applied to both full-disk and local high-resolution Hα images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of Hα solar flares.

  12. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition.

    PubMed

    Caggiano, Alessandra

    2018-03-09

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features ( k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear ( VB max ) was achieved, with predicted values very close to the measured tool wear values.

  13. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition

    PubMed Central

    2018-01-01

    Machining of titanium alloys is characterised by extremely rapid tool wear due to the high cutting temperature and the strong adhesion at the tool-chip and tool-workpiece interface, caused by the low thermal conductivity and high chemical reactivity of Ti alloys. With the aim to monitor the tool conditions during dry turning of Ti-6Al-4V alloy, a machine learning procedure based on the acquisition and processing of cutting force, acoustic emission and vibration sensor signals during turning is implemented. A number of sensorial features are extracted from the acquired sensor signals in order to feed machine learning paradigms based on artificial neural networks. To reduce the large dimensionality of the sensorial features, an advanced feature extraction methodology based on Principal Component Analysis (PCA) is proposed. PCA allowed to identify a smaller number of features (k = 2 features), the principal component scores, obtained through linear projection of the original d features into a new space with reduced dimensionality k = 2, sufficient to describe the variance of the data. By feeding artificial neural networks with the PCA features, an accurate diagnosis of tool flank wear (VBmax) was achieved, with predicted values very close to the measured tool wear values. PMID:29522443

  14. Dimensions Underlying the Perceived Similarity of Acoustic Environments

    PubMed Central

    Aletta, Francesco; Axelsson, Östen; Kang, Jian

    2017-01-01

    Scientific research on how people perceive or experience and/or understand the acoustic environment as a whole (i.e., soundscape) is still in development. In order to predict how people would perceive an acoustic environment, it is central to identify its underlying acoustic properties. This was the purpose of the present study. Three successive experiments were conducted. With the aid of 30 university students, the first experiment mapped the underlying dimensions of perceived similarity among 50 acoustic environments, using a visual sorting task of their spectrograms. Three dimensions were identified: (1) Distinguishable–Indistinguishable sound sources, (2) Background–Foreground sounds, and (3) Intrusive–Smooth sound sources. The second experiment was aimed to validate the results from Experiment 1 by a listening experiment. However, a majority of the 10 expert listeners involved in Experiment 2 used a qualitatively different approach than the 30 university students in Experiment 1. A third experiment was conducted in which 10 more expert listeners performed the same task as per Experiment 2, with spliced audio signals. Nevertheless, Experiment 3 provided a statistically significantly worse result than Experiment 2. These results suggest that information about the meaning of the recorded sounds could be retrieved in the spectrograms, and that the meaning of the sounds may be captured with the aid of holistic features of the acoustic environment, but such features are still unexplored and further in-depth research is needed in this field. PMID:28747894

  15. Developments in Acoustic Metamaterials for Acoustic Ground Cloaks

    NASA Astrophysics Data System (ADS)

    Kerrian, Peter Adam

    inclusions. Non-destructive acoustic excitation techniques were used to extract the material parameters of different grades of foam to identify the ideal grade for use in a multi-inclusion unit cell. Single inclusion and multi-inclusion bulk metamaterial samples were constructed and tested to characterize the effective material properties to determine if they exhibited the desired homogeneous anisotropic behavior. The single steel inclusion metamaterial behaved as expected, demonstrating anisotropic mass density and isotropic bulk modulus. Almost no sound energy was transmitted through the multi-inclusion metamaterial, contrary to expectation, because of the presence of air bubbles, both on the surface of the foam as well as potentially in between the inclusions. Finally, an underwater acoustic ground cloak was constructed from perforated steel plates and experimentally tested to conceal an object on a pressure release surface. The perforated plate acoustic ground cloak successfully cloaked the scattered object over a broad frequency range of 7 [kHz] to 12 [kHz]. There was excellent agreement between the phase of the surface reflection and the cloak reflection with a small amplitude difference attributed to the difference between a water - air and a water - mylar - air boundary. Above 15 [kHz], the cloaking performance decreased as the effective material parameters of the perforated plate metamaterial deviated from the required material parameters.

  16. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    PubMed Central

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  17. A new feature extraction method and classification of early stage Parkinsonian rats with and without DBS treatment.

    PubMed

    Iravani, B; Towhidkhah, F; Roghani, M

    2014-12-01

    Parkinson Disease (PD) is one of the most common neural disorders worldwide. Different treatments such as medication and deep brain stimulation (DBS) have been proposed to minimize and control Parkinson's symptoms. DBS has been recognized as an effective approach to decrease most movement disorders of PD. In this study, a new method is proposed for feature extraction and separation of treated and untreated Parkinsonan rats. For this purpose, unilateral intrastriatal 6-hydroxydopamine (6-OHDA, 12.5 μg/5 μl of saline-ascorbate)-lesioned rats were treated with DBS. We performed a behavioral experiment and video tracked traveled trajectories of rats. Then, we investigated the effect of deep brain stimulation of subthalamus nucleus on their behavioral movements. Time, frequency and chaotic features of traveled trajectories were extracted. These features provide the ability to quantify the behavioral movements of Parkinsonian rats. The results showed that the traveled trajectories of untreated were more convoluted with the different time/frequency response. Compared to the traditional features used before to quantify the animals' behavior, the new features improved classification accuracy up to 80 % for untreated and treated rats.

  18. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.

    PubMed

    Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie

    2016-12-07

    A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can

  19. A combination of feature extraction methods with an ensemble of different classifiers for protein structural class prediction problem.

    PubMed

    Dehzangi, Abdollah; Paliwal, Kuldip; Sharma, Alok; Dehzangi, Omid; Sattar, Abdul

    2013-01-01

    Better understanding of structural class of a given protein reveals important information about its overall folding type and its domain. It can also be directly used to provide critical information on general tertiary structure of a protein which has a profound impact on protein function determination and drug design. Despite tremendous enhancements made by pattern recognition-based approaches to solve this problem, it still remains as an unsolved issue for bioinformatics that demands more attention and exploration. In this study, we propose a novel feature extraction model that incorporates physicochemical and evolutionary-based information simultaneously. We also propose overlapped segmented distribution and autocorrelation-based feature extraction methods to provide more local and global discriminatory information. The proposed feature extraction methods are explored for 15 most promising attributes that are selected from a wide range of physicochemical-based attributes. Finally, by applying an ensemble of different classifiers namely, Adaboost.M1, LogitBoost, naive Bayes, multilayer perceptron (MLP), and support vector machine (SVM) we show enhancement of the protein structural class prediction accuracy for four popular benchmarks.

  20. Coding Local and Global Binary Visual Features Extracted From Video Sequences

    NASA Astrophysics Data System (ADS)

    Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2015-11-01

    Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.