Science.gov

Sample records for acoustic field due

  1. Aerodynamic sound generation due to vortex-aerofoil interaction. Part 2: Analysis of the acoustic field

    NASA Technical Reports Server (NTRS)

    Parasarathy, R.; Karamcheti, K.

    1972-01-01

    The Lighthill method was the basic procedure used to analyze the sound field associated with a vortex of modified strength interacting with an airfoil. A free vortex interacting with an airfoil in uniform motion was modeled in order to determine the sound field due to all the acoustic sources, not only on the airfoil surfaces (dipoles), but also the ones distributed on the perturbed flow field (quadrupoles) due to the vortex-airfoil interaction. Because inviscid flow is assumed in the study of the interaction, the quadrupoles considered in the perturbed flow field are entirely due to an unsteady flow field. The effects of airfoil thickness on the second radiation are examined by using a symmetric Joukowski airfoil for the vortex-airfoil interaction. Sound radiation in a plane, far field simplification, and computation of the sound field are discussed.

  2. Acoustic radiation force in tissue-like solids due to modulated sound field

    NASA Astrophysics Data System (ADS)

    Dontsov, Egor V.; Guzina, Bojan B.

    2012-10-01

    The focus of this study is the sustained body force (the so-called acoustic radiation force) in homogeneous tissue-like solids generated by an elevated-intensity, focused ultrasound field (Mach number=O(10-3)) in situations when the latter is modulated by a low-frequency signal. This intermediate-asymptotics problem, which bears relevance to a number of emerging biomedical applications, is characterized by a number of small (but non-vanishing) parameters including the Mach number, the ratio between the modulation and ultrasound frequency, the ratio of the shear to bulk modulus, and the dimensionless attenuation coefficient. On approximating the response of soft tissues as that of a nonlinear viscoelastic solid with heat conduction, the featured second-order problem is tackled via a scaling paradigm wherein the transverse coordinates are scaled by the width of the focal region, while the axial and temporal coordinate are each split into a "fast" and "slow" component with the twin aim of: (i) canceling the linear terms from the field equations governing the propagation of elevated-intensity ultrasound, and (ii) accounting for the effect of ultrasound modulation. In the context of the focused ultrasound analyses, the key feature of the proposed study revolves around the dual-time-scale treatment of the temporal variable, which allows one to parse out the contribution of ultrasound and its modulation in the nonlinear solution. In this way the acoustic radiation force (ARF), giving rise to the mean tissue motion, is exacted by computing the "fast" time average of the germane field equations. A comparison with the existing theory reveals a number of key features that are brought to light by the new formulation, including the contributions to the ARF of ultrasound modulation and thermal expansion, as well as the precise role of constitutive nonlinearities in generating the sustained body force in tissue-like solids by a focused ultrasound beam.

  3. Mean force on a finite-sized spherical particle due to an acoustic field in a viscous compressible medium

    NASA Astrophysics Data System (ADS)

    Annamalai, Subramanian; Balachandar, S.; Parmar, Manoj K.

    2014-05-01

    An analytical expression to evaluate the second-order mean force (acoustic radiation force) on a finite-sized, rigid, spherical particle due to an acoustic wave is presented. The medium in which the particle is situated is taken to be both viscous and compressible. A far-field derivation approach has been used in determining the force, which is a function of the particle size, acoustic wavelength, and viscous boundary-layer thickness. It is assumed that the viscous length scale is negligibly small compared to the acoustic wavelength. The force expression presented here (i) reduces to the correct inviscid behavior (for both small- and finite-sized particles) and (ii) is identical to recent viscous results [M. Settnes and H. Bruus, Phys. Rev. E 85, 016327 (2012), 10.1103/PhysRevE.85.016327] for small-sized particles. Further, the computed force qualitatively matches the computational fluid dynamics (finite-element) results [D. Foresti, M. Nabavi, and D. Poulikakos, J. Fluid Mech. 709, 581 (2012), 10.1017/jfm.2012.350] for finite-sized particles. Additionally, the mean force is interpreted in terms of a multipole expansion. Subsequently, considering the fact that the force expansion is an infinite series, the number of terms that are required or adequate to capture the force to a specified accuracy is also provided as a function of the particle size to acoustic wavelength ratio. The dependence of the force on particle density, kinematic viscosity, and bulk viscosity of the fluid is also investigated. Here, both traveling and standing waves are considered.

  4. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    SciTech Connect

    Treweek, Benjamin C. Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  5. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    NASA Astrophysics Data System (ADS)

    Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  6. Vibro-Acoustic Response of Buildings Due to Sonic Boom Exposure: July 2007 Field Test

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2008-01-01

    During the month of July 2007, a series of structural response measurements were made on a house on Edwards Air Force Base (EAFB) property that was exposed to sonic booms of various amplitudes. The purpose of this report is to document the measurements that were made, the structure on which they were made, the conditions under which they were made, the sensors and other hardware that were used, and the data that were collected. To that end, Chapter 2 documents the house, its location, the physical layout of the house, the surrounding area, and summarizes the transducers placed in and around the house. Chapter 3 details the sensors and other hardware that were placed in the house during the experiment. In addition, day-to-day variations of hardware configurations and transducer calibrations are documented in Chapter 3. Chapter 4 documents the boom generation process, flight conditions, and ambient weather conditions during the test days. Chapter 5 includes information about sub-experiments that were performed to characterize the vibro-acoustic response of the structure, the acoustic environment inside the house, and the acoustic environment outside the house. Chapter 6 documents the data format and presents examples of reduced data that were collected during the test days.

  7. Transmitted sound field due to an impulsive line acoustic source bounded by a plate followed by a vortex sheet

    NASA Technical Reports Server (NTRS)

    Miura, T.; Chao, C. C.

    1980-01-01

    The propagation of sound due to a line acoustic source in the moving stream across a semiinfinite vortex sheet which trails from a rigid plate is examined in a linear theory for the subsonic case. A solution for the transmitted sound field is obtained with the aid of multiple integral transforms and the Wiener-Hopf technique for both the steady state (time harmonic) and initial value (impulsive source) situations. The contour of inverse transform and hence the decomposition of the functions are determined through causality and radiation conditions. The solution obtained satisfies causality and the full Kutta conditions. The transmitted sound field is composed of two waves in both the stady state and initial value problems. One is the wave scattered from the edge of the plate which is associated with the bow wave and the instability wave. These waves exist in the downstream sectors. The other is the wave transmitted through the vortex sheet which is also associated with the instability wave. Regional divisions of the transmitted sound field are identified.

  8. Direct Field Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Larkin, Paul; Goldstein, Bob

    2008-01-01

    This paper presents an update to the methods and procedures used in Direct Field Acoustic Testing (DFAT). The paper will discuss some of the recent techniques and developments that are currently being used and the future publication of a reference standard. Acoustic testing using commercial sound system components is becoming a popular and cost effective way of generating a required acoustic test environment both in and out of a reverberant chamber. This paper will present the DFAT test method, the usual setup and procedure and the development and use of a closed-loop, narrow-band control system. Narrow-band control of the acoustic PSD allows all standard techniques and procedures currently used in random control to be applied to acoustics and some examples are given. The paper will conclude with a summary of the development of a standard practice guideline that is hoped to be available in the first quarter of next year.

  9. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas T.; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  10. Acoustic field modulation in regenerators

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  11. O the Spatial Structure of the Acoustic Signal Field Near the Deep Ocean Bottom due to a Near-Surface CW Source.

    NASA Astrophysics Data System (ADS)

    Grant, David Edward

    The spatial structure of the acoustic signal field near the ocean bottom was investigated experimentally. A source near the ocean surface projected a cw tone as it moved along a radial path from a range of 40 km to within 2 km of a near-bottom vertical array of receiving hydrophones in a 2643 m deep ocean. The signal level at each hydrophone and the signal phase difference between consecutive pairs of phones were measured as a function of source-receiver range. A technique for modelling the signal field spatial structure was developed that demonstrated those physical mechanisms that influence the signal field. It was found that, for short ranges, signal phase difference was dominated by a few eigenrays and that coherent interference among these rays was an important factor in describing certain aspects of the signal field. An application to receiving array beamforming was made in which it was shown that inhomogeneities in the spatial structure of the signal field led to degradation of array signal gain when standard delay-and-sum beamforming was done.

  12. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  13. Monte Carlo applications to acoustical field solutions

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.; Thanedar, B. D.

    1973-01-01

    The Monte Carlo technique is proposed for the determination of the acoustical pressure-time history at chosen points in a partial enclosure, the central idea of this technique being the tracing of acoustical rays. A statistical model is formulated and an algorithm for pressure is developed, the conformity of which is examined by two approaches and is shown to give the known results. The concepts that are developed are applied to the determination of the transient field due to a sound source in a homogeneous medium in a rectangular enclosure with perfect reflecting walls, and the results are compared with those presented by Mintzer based on the Laplace transform approach, as well as with a normal mode solution.

  14. Frustrated total internal reflection acoustic field sensor

    DOEpatents

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  15. Near-field acoustic streaming jet

    NASA Astrophysics Data System (ADS)

    Moudjed, B.; Botton, V.; Henry, D.; Millet, S.; Garandet, J. P.; Ben Hadid, H.

    2015-03-01

    A numerical and experimental investigation of the acoustic streaming flow in the near field of a circular plane ultrasonic transducer in water is performed. The experimental domain is a parallelepipedic cavity delimited by absorbing walls to avoid acoustic reflection, with a top free surface. The flow velocities are measured by particle image velocimetry, leading to well-resolved velocity profiles. The theoretical model is based on a linear acoustic propagation model, which correctly reproduces the acoustic field mapped experimentally using a hydrophone, and an acoustic force term introduced in the Navier-Stokes equations under the plane-wave assumption. Despite the complexity of the acoustic field in the near field, in particular in the vicinity of the acoustic source, a good agreement between the experimental measurements and the numerical results for the velocity field is obtained, validating our numerical approach and justifying the planar wave assumption in conditions where it is a priori far from obvious. The flow structure is found to be correlated with the acoustic field shape. Indeed, the longitudinal profiles of the velocity present a wavering linked to the variations in acoustic intensity along the beam axis and transverse profiles exhibit a complex shape strongly influenced by the transverse variations of the acoustic intensity in the beam. Finally, the velocity in the jet is found to increase as the square root of the acoustic force times the distance from the origin of the jet over a major part of the cavity, after a strong short initial increase, where the velocity scales with the square of the distance from the upstream wall.

  16. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  17. Rock softening due to ultrasonic acoustical energy

    NASA Astrophysics Data System (ADS)

    Freund, F. T.; Freund, M. M.; Hedberg, C. M.; Haller, K. C.; Dahlgren, R.; Williams, C.; Agrawal, P.

    2011-12-01

    When igneous or high-grade metamorphic rocks are subjected to deviatoric stresses, dormant defects existing in the matrix of common rock-forming minerals become activated releasing mobile positive hole charge carriers. These defects consist of pairs of oxygen anions in the 1- valence state, e.g. peroxy links such as O3Si-OO-SiO3. When the peroxy bond breaks, O3Si-O:O-SiO3, an electron is transferred from a neighboring O2- creating a trapped electron defect, O3Si-O.O-SiO3, while the donor oxygen, now O-, turns into a defect electron or hole that can propagate as a highly mobile positive charge traveling along the upper edge of the valence band. There is evidence that the wave function associated with these positive hole charge carriers is highly delocalized. The delocalization lowers the electron density at the surrounding O2-, hence the bond energy, thereby affecting fundamental properties including the mechanical strength. To demonstrate the rock softening effect we mounted a rectangular bar of fine-grained gabbro about 30 cm long in a horizontal position clamping it at one end. A piezoelectric transducer (PZT) was epoxied to the fixed end of the rock bar to send ultrasonic energy at 57 KHz toward the cantilevered end. The downward deflection of the free end of the beam was measured with an interferometer to a high degree of precision. With ultrasonic energy present, the free end of the beam sagged near-instantaneously by about 0.2 μm and continued to sag slowly by about 0.4 μm over 120 sec. Upon turning off the PZT the rock bar returned slowly to the baseline deflection value. The ultrasound waves generated by the PZT activate positive holes, changing the apparent stiffness of the beam and causing its cantilevered end to bend downward. We also conducted experiments using an Instron 5569 Dual Column Testing System to subject rectangular plates (15.2 x 3.8 x 0.5 cm) of the same gabbro to dynamic three-point flexural tests. Using electrostatic fields of different

  18. Relation between near field and far field acoustic measurements

    NASA Technical Reports Server (NTRS)

    Bies, D. A.; Scharton, T. D.

    1974-01-01

    Several approaches to the problem of determining the far field directivity of an acoustic source located in a reverberant environment, such as a wind tunnel, are investigated analytically and experimentally. The decrease of sound pressure level with distance is illustrated; and the spatial extent of the hydrodynamic and geometric near fields, the far field, and the reverberant field are described. A previously-prosposed analytical technique for predicting the far field directivity of the acoustic source on the basis of near field data is investigated. Experiments are conducted with small acoustic sources and an analysis is performed to determine the variation with distance from the source of the directionality of the sound field. A novel experiment is conducted in which the sound pressure measured at various distances from an acoustic driver located in the NASA Ames 40 x 80 ft wind tunnel is crosscorrelated with the driver excitation voltage.

  19. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.

    PubMed

    Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric

    2006-07-01

    In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.

  20. Application of Gauge Theory to Acoustic Fields -- Revolutionizing and Rewriting the Whole Field of Acoustics

    NASA Astrophysics Data System (ADS)

    Gan, W. S.

    2008-12-01

    This paper is to be dedicated to Prof C N Yang's 85th birthday celebration because the idea here was inspired by Prof Yang's public lecture in Singapore in 2006. There are many similarities between electromagnetic waves and acoustic waves. Maxwell's equations for em waves is the oldest gauge theory. We discover symmetries in the pair of wave equations in the acoustic stress field and the velocity field. We also derive a new equation in terms of the stress field for sound propagation in solids. This is different from the Christoffel's equation which is in term of the velocity field. We feel that stress field can better characterize the elastic properties of the sound waves. We also derive the acoustic gauge field condition and gauge invariance and symmetries for the acoustic fields. We also apply symmetries to study negative refraction. Note from Publisher: This article contains the abstract only.

  1. Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Johnson, Spencer Joseph

    nonlinear scattering of sound by sound as the acoustic waves propagate into the far-field. With improvements in the sensitivity of radio frequency (RF) receivers, spectral content previously below the measurable noise floor, such as the nonlinear content produced by acousto-EM scattering, can now be examined and analyzed. Through the use of a high dynamic range nonlinear measurement system based on analog cancellation, the ability to experimentally investigate the effects of nonlinear interaction between acoustic and EM waves previously unattainable is enabled. To further the understanding of the effects of acousto-EM scattering and verify experimental results, a mathematical description of the periodic change in the medium characteristics due to the propagation of a high powered acoustic wave through a medium that modulates an EM signal proportional to the acoustic frequency is developed.

  2. Microparticle column geometry in acoustic stationary fields.

    PubMed

    Hancock, Andrew; Insana, Michael F; Allen, John S

    2003-01-01

    Particles suspended in a fluid will experience forces from stationary acoustic fields. The magnitude of the force depends on the time-averaged energy density of the field and the material properties of the particles and fluid. Forces acting on known particles smaller than 20 microm were studied. Within a 500 kHz acoustic beam generated by a plane-piston circular source, observations were made of the geometry of the particle column that is formed. Varying the acoustic energy altered the column width in a manner predicted by equations for the primary acoustic radiation force from scattering of particles in the long-wavelength limit. The minimum pressures required to trap gas, solid, and liquid particles in a water medium at room temperature were also estimated to within 12%. These results highlight the ability of stationary acoustic fields from a plane-piston radiator to impose nano-Newton-scale forces onto fluid particles with properties similar to biological cells, and suggest that it is possible to accurately quantify these forces.

  3. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements

    PubMed Central

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-01-01

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface. PMID:28327510

  4. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements.

    PubMed

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-03-22

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.

  5. Fourth-order acoustic torque in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  6. Asymptotic Analysis of Ocean Bottom Reflected Acoustic Fields.

    DTIC Science & Technology

    1984-05-01

    dependence(e-i’t), the reflected spatial part of the acoustic pressure field P in a homogeneous medium due to a point source placed in that medium...reasonable to assume that the water colunm is homogeneous , especially for experiments which involve small source and receiver heights. In many abyssal plain...configuration, a homogeneous layer between two homo- eneous halfspaces. Using a modified uniform asymptotic method, Stickler and Ahluwalia[12] obtained

  7. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  8. Droplet Vaporization In A Levitating Acoustic Field

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and

  9. Transition in a Supersonic Boundary-Layer Due to Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2003-01-01

    The transition process induced by the interaction of an isolated roughness with acoustic disturbances in the free stream is numerically investigated for a boundary layer over a flat plate with a blunted leading edge at a free stream Mach number of 3.5. The roughness is assumed to be of Gaussian shape and the acoustic disturbances are introduced as boundary condition at the outer field. The governing equations are solved using the 5'h-rder accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third- order total-variation-diminishing (TVD) Runge- Kutta scheme for time integration. The steady field induced by the two and three-dimensional roughness is also computed. The flow field induced by two-dimensional roughness exhibits different characteristics depending on the roughness heights. At small roughness heights the flow passes smoothly over the roughness, at moderate heights the flow separates downstream of the roughness and at larger roughness heights the flow separates upstream and downstream of the roughness. Computations also show that disturbances inside the boundary layer is due to the direct interaction of the acoustic waves and isolated roughness plays a minor role in generating instability waves.

  10. Acoustic Wood anomaly in transmitted diffraction field

    NASA Astrophysics Data System (ADS)

    Liu, Jingfei; Declercq, Nico F.

    2017-03-01

    In acoustics, the term Wood anomaly, in analogy to the Wood anomaly in optics, has so far referred to the anomalies observed in the specular reflection spectra of acoustic waves perpendicularly incident on periodic surfaces. Inspired by the pioneering work of Jungman et al. on the study of the transmission field of a solid-fluid periodic interface, this work attempts to provide a complete experimental investigation of the transmission fields of a broadband sound pulse transmitted through a periodic liquid-solid interface as well as a periodic solid-liquid interface. At different frequencies, two types of anomalies are observed: a spectral tip and a spectral dip, which correspond, respectively, to the brighter band and the darker band in optical Wood anomalies. The search for their physical origin suggests that the type and location of the observed spectral anomalies are strongly related to the generation and the diffraction of pseudosurface waves on the interface having superimposed periodic corrugations and time-domain windowing in spectral analysis. To compare with the surface waves on a plane surface, the properties of the pseudosurface waves are also investigated through examining their phase and by comparing their amplitudes.

  11. Imaging of acoustic fields using optical feedback interferometry.

    PubMed

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry

    2014-12-01

    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.

  12. Field tests of acoustic telemetry for a portable coastal observatory

    USGS Publications Warehouse

    Martini, M.; Butman, B.; Ware, J.; Frye, D.

    2006-01-01

    Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.

  13. Effect of the spatial structure of an acoustic field on Bragg's acoustooptic diffraction under strong acoustic anisotropy conditions

    NASA Astrophysics Data System (ADS)

    Antonov, S. N.; Vainer, A. V.; Proklov, V. V.; Rezvov, Yu. G.

    2010-03-01

    Bragg’s acoustooptic diffraction in an acoustically anisotropic medium is considered taking into account the two-dimensional spatial diffraction structure of the acoustic beam. The conditions are determined under which reverse transfer of optical power from the diffracted to the transmitted beam in the regime of 100% efficiency of diffraction is considerably suppressed. It is shown that this effect is due to diffraction bending of wave fronts of the acoustic beam in the acoustooptic diffraction plane. The problem of optimization of the piezoelectric transducer size and the spatial position of the input light beam is solved using the criterion of the minimal required power of the acoustic field. The results of simulation in a wide range of the acoustooptic interaction parameters for a Gaussian light beam are reported. The correctness of the model is confirmed experimentally. Recommendations for designers of acoustooptic devices are formulated.

  14. Acoustic Tweezing and Patterning of Concentration Fields in Microfluidics

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas T.; Bruus, Henrik

    2017-03-01

    We demonstrate theoretically that acoustic forces acting on inhomogeneous fluids can be used to pattern and manipulate solute concentration fields into spatiotemporally controllable configurations stabilized against gravity. A theoretical framework describing the dynamics of concentration fields that weakly perturb the fluid density and speed of sound is presented and applied to study manipulation of concentration fields in rectangular-channel acoustic eigenmodes and in Bessel-function acoustic vortices. In the first example, methods to obtain horizontal and vertical multilayer stratification of the concentration field at the end of a flow-through channel are presented. In the second example, we demonstrate acoustic tweezing and spatiotemporal manipulation of a local high-concentration region in a lower-concentration medium, thereby extending the realm of acoustic tweezing to include concentration fields.

  15. Acoustic field effects on a negative corona discharge

    NASA Astrophysics Data System (ADS)

    Bálek, R.; Červenka, M.; Pekárek, S.

    2014-06-01

    For a negative corona discharge under atmospheric pressure in different regimes, we investigated the effects of an acoustic field both on its electrical parameters and on the change in its visual appearance. We found that the application of an acoustic field on the true corona discharge, for particular currents, decreases the discharge voltage. The application of an acoustic field on the discharge in the filamentary streamer regime substantially extends the range of currents for which the discharge voltage remains more or less constant, i.e. it allows a substantial increase in the power delivered to the discharge. The application of an acoustic field on the discharge causes the discharge to spread within the discharge chamber and consequently, a highly reactive non-equilibrium plasma is created throughout the inter-electrode space. Finally, our experimental apparatus radiates almost no acoustic energy from the discharge chamber.

  16. Structural and acoustic responses of a submarine hull due to propeller forces

    NASA Astrophysics Data System (ADS)

    Merz, Sascha; Kinns, Roger; Kessissoglou, Nicole

    2009-08-01

    The low frequency structural and acoustic responses of a simplified axisymmetric submarine model to fluctuating propeller forces along the submarine axis are investigated. The forces arise from a hydrodynamic mechanism and are transmitted from the propeller to the submarine hull through both the shaft and the fluid. Numerical models have been developed to simulate the strongly coupled structure-fluid interaction of a submerged vessel in the frequency domain. The structure is modelled using the finite element method, so that more complex features such as ring-stiffeners, bulkheads and the propulsion system can be taken into account. A simple, passive vibration attenuation system known as a resonance changer is included in the model of the propeller/shafting system. The surrounding fluid is modelled using the boundary element method. The influence and importance of model parameters such as structural stiffness and fluid loading effects are investigated. Due to the fluctuating propeller forces, the hull is excited by axial structural forces transmitted through the propeller/shafting system as well as by acoustic dipoles, where the dipoles are correlated to the structural forces in strength and direction. The acoustic dipole at the propeller also radiates sound directly to the far field of the surrounding fluid. It is demonstrated that the performance of the RC is negatively influenced at frequencies above the fundamental axial resonance of the hull by the effect of forces transmitted through the fluid. Another problem arises due to increased axial movement of the propeller, when the RC is optimised to minimise excitation of the hull via the propeller shaft. This results in an additional sound field that excites the submarine hull in a similar manner to the fluid forces that arise directly from the hydrodynamic mechanism.

  17. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  18. Diversity of acoustic streaming in a rectangular acoustofluidic field.

    PubMed

    Tang, Qiang; Hu, Junhui

    2015-04-01

    Diversity of acoustic streaming field in a 2D rectangular chamber with a traveling wave and using water as the acoustic medium is numerically investigated by the finite element method. It is found that the working frequency, the vibration excitation source length, and the distance and phase difference between two separated symmetric vibration excitation sources can cause the diversity in the acoustic streaming pattern. It is also found that a small object in the acoustic field results in an additional eddy, and affects the eddy size in the acoustic streaming field. In addition, the computation results show that with an increase of the acoustic medium's temperature, the speed of the main acoustic streaming decreases first and then increases, and the angular velocity of the corner eddies increases monotonously, which can be clearly explained by the change of the acoustic dissipation factor and shearing viscosity of the acoustic medium with temperature. Commercialized FEM software COMSOL Multiphysics is used to implement the computation tasks, which makes our method very easy to use. And the computation method is partially verified by an established analytical solution.

  19. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  20. Nondestructive acoustic electric field probe apparatus and method

    DOEpatents

    Migliori, Albert

    1982-01-01

    The disclosure relates to a nondestructive acoustic electric field probe and its method of use. A source of acoustic pulses of arbitrary but selected shape is placed in an oil bath along with material to be tested across which a voltage is disposed and means for receiving acoustic pulses after they have passed through the material. The received pulses are compared with voltage changes across the material occurring while acoustic pulses pass through it and analysis is made thereof to determine preselected characteristics of the material.

  1. Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields

    DTIC Science & Technology

    2014-01-01

    Kirchhoff’s theorem, typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in...two noncollinear ultrasonic baffled piston sources. The theory is extended to the modeling of the sound beams generated by parametric transducer arrays ...typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in the near-field by

  2. Field Measurement of the Acoustic Nonlinearity Parameter in Turbine Blades

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.; Na, Jeong K.; Yost, William T.; Kessel, Gregory L.

    2000-01-01

    Nonlinear acoustics techniques were used to measure fatigue in turbine blades in a power generation plant. The measurements were made in the field using a reference based measurement technique, and a reference sample previously measured in the laboratory. The acoustic nonlinearity parameter showed significant increase with fatigue in the blades, as indicated by service age and areas of increased stress. The technique shows promise for effectively measuring fatigue in field applications and predicting subsequent failures.

  3. Direct-field acoustic testing of a flight system : logistics, challenges, and results.

    SciTech Connect

    Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit; Skousen, Troy J.

    2010-10-01

    Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, the test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.

  4. Modeling the near acoustic field of a rocket during launch

    NASA Technical Reports Server (NTRS)

    Mauritzen, David W.

    1989-01-01

    The design of launch pad structures is critically dependent upon the stresses imposed by the acoustical pressure field generated by the rocket engines during launch. The purpose of this effort is to better describe the acoustical field in the immediate launch area. Since the problem is not analytically tractable, empirical modeling will be employed so that useful results may be obtained for structural design purposes. The plume of the rocket is considered to be a volumetric acoustic source, and is broken down into incremental contributing volumes. A computer program has been written to sum all the contributions to find the total sound pressure level at an arbitrary point. A constant density source is initially assumed and the acoustic field evaluated for several cases to verify the correct operation of the program.

  5. Particle Cloud Flames in Acoustic Fields

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.; Tangirala, V.; Ross, H.; Facca, L.

    1990-01-01

    Results are presented on a study of flames supported by clouds of particles suspended in air, at pressures about 100 times lower than normal. In the experiment, an acoustic driver (4-in speaker) placed at one end of a closed tube, 0.75-m long and 0.05 m in diameter, disperses a cloud of lycopodium particles during a 0.5-sec powerful acoustic burst. Properties of the particle cloud and the flame were recorded by high-speed motion pictures and optical transmission detectors. Novel flame structures were observed, which owe their features to partial confinement, which encourages flame-acoustic interactions, segregation of particle clouds into laminae, and penetration of the flame's radiative flux density into the unburned particle-cloud regimes. Results of these experiments imply that, for particles in confined spaces, uncontrolled fire and explosion may be a threat even if the Phi(0) values are below some apparent lean limit.

  6. Thermo acoustic study of carbon nanotubes in near and far field: Theory, simulation, and experiment

    NASA Astrophysics Data System (ADS)

    Asadzadeh, S. S.; Moosavi, A.; Huynh, C.; Saleki, O.

    2015-03-01

    Carbon nanotube webs exhibit interesting properties when used as thermo-acoustic projectors. This work studies thermo-acoustic effect of these sound sources both in near and far field regions. Based on two alternative forms of the energy equation, we have developed a straightforward formula for calculation of pressure field, which is consistent with experimental data in far field. Also we have solved full 3-D governing equations using numerical methods. Our three-dimensional simulation and experimental data show pressure waves are highly affected by dimensions of sound sources in near field due to interference effects. However, generation of sound waves in far field is independent of projectors area surface. Energy analysis for free standing Thermo-Acoustic (TA) sound sources show that aerogel TA sound sources like CNT based projectors could act more efficiently compared to the other sources in delivering more than 75% of alternative input energy to the medium gas up to a frequency of 1 MHz.

  7. Reconstruction of the Acoustic Field Using a Conformal Array

    NASA Technical Reports Server (NTRS)

    Valdivia, Nichlas P.; Williams, Earl G.; Klos, Jacob

    2006-01-01

    Near-field acoustical holography (NAH) requires the measurement of the near-field pressure field over a conformal and closed surface in order to recover the acoustic field on a nearby surface. We are interested in the reconstruction of the acoustic field over the fuselage of a Boeing 757 airplane when pressure data is available over an array of microphones that are conformal to the fuselage surface. In this case the strict NAH theory does not hold, but still there are techniques used to overcome this difficulty. The best known is patch NAH, which has been used for planar surfaces. In this work we will discuss two new techniques used for surfaces with an arbitrarily shape: patch inverse boundary element methods (IBEM) and patch equivalent sources method (ESM). We will discuss the theoretical justification of the method and show reconstructions for in-flight data taken inside a Boeing 757 airplane.

  8. Absorption of intense microwaves and ion acoustic turbulence due to heat transport

    SciTech Connect

    De Groot, J.S.; Liu, J.M.; Matte, J.P.

    1994-02-04

    Measurements and calculations of the inverse bremsstrahlung absorption of intense microwaves are presented. The isotropic component of the electron distribution becomes flat-topped in agreement with detailed Fokker-Planck calculations. The plasma heating is reduced due to the flat-topped distributions in agreement with calculations. The calculations show that the heat flux at high microwave powers is very large, q{sub max} {approx} 0.3 n{sub e}v{sub e}T{sub e}. A new particle model to, calculate the heat transport inhibition due to ion acoustic turbulence in ICF plasmas is also presented. One-dimensional PIC calculations of ion acoustic turbulence excited due to heat transport are presented. The 2-D PIC code is presently being used to perform calculations of heat flux inhibition due to ion acoustic turbulence.

  9. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    SciTech Connect

    Liu, Xiaozhou Zhang, Lue; Wang, Xiangda; Gong, Xiufen

    2015-10-28

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.

  10. Nonlinear acoustic fields in acoustic metamaterial based on a cylindrical pipe with periodically arranged side holes.

    PubMed

    Fan, Li; Ge, Huan; Zhang, Shu-yi; Gao, Hai-fei; Liu, Yong-hui; Zhang, Hui

    2013-06-01

    Nonlinear acoustic fields in transmission-line acoustic metamaterials based on a cylindrical pipe with periodically arranged side holes are studied, in which the dispersions and characteristic parameters of the nonlinear acoustic waves are obtained with the Bloch theory, and meanwhile the distributions of the fundamental wave (FW) and second harmonic wave (SHW) in the metamaterial are simulated. Three characteristic frequency bands are defined according to the relations between the frequencies of the FW, SHW, and the low-frequency forbidden band (LFB) in the metamaterial. Especially, when the FW is in the LFB while the SHW is outside the LFB, the SHW can transmit through the metamaterial although the FW is blocked, which exhibits the possibility to extract the information from the SHW instead of the FW. In addition, experiments are carried out to measure the distributions of the acoustic pressures for the FW and SHW along the metamaterial and the experimental results are in agreement with the theory.

  11. Behavior of cylindrical liquid jets evolving in a transverse acoustic field

    NASA Astrophysics Data System (ADS)

    Carpentier, Jean-Baptiste; Baillot, Françoise; Blaisot, Jean-Bernard; Dumouchel, Christophe

    2009-02-01

    This paper presents a theoretical and an experimental investigation of low-velocity cylindrical liquid jets submitted to transverse planar acoustic waves. For this purpose, the behavior of a liquid jet traversing the section of a Kundt tube was examined. Experiments reported that the liquid jet could be either deviated from its trajectory or deformed as a succession of lobes oriented in space and whose length and width depend on the jet acoustic environment. Furthermore, for a sufficient acoustic velocity, the jet deformation increases in such proportion that a premature and vivid atomization mechanism disintegrates the liquid flow. Theoretical models are proposed to understand these behaviors. The first one calls out for acoustic radiation pressure to explain the jet deviation. The second one consists in a modal analysis of the vibrations of a jet when submitted to a transverse stationary acoustic field. As a first approach, a simplified two-dimensional model is proposed. This model reports that a sudden exposition of the jet to an acoustic field triggers two jet eigenmodes. One of them induces jet deformations that were not experimentally observed. This part of the solution emerges due to theoretical deficiencies. However, the second mode reproduces the lobe formation and leads to atomization criteria in good agreement with the experimental results. The paper ends with an extension of the mathematical development in three dimensions in order to provide a basis to a more consistent model.

  12. On noninvasive assessment of acoustic fields acting on the fetus

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Kazakov, V. V.

    2014-05-01

    The aim of this study is to verify a noninvasive technique for assessing the characteristics of acoustic fields in the audible range arising in the uterus under the action of maternal voice, external sounds, and vibrations. This problem is very important in view of actively developed methods for delivery of external sounds to the uterus: music, maternal voice recordings, sounds from outside the mother's body, etc., that supposedly support development of the fetus at the prenatal stage psychologically and cognitively. However, the parameters of acoustic signals have been neither measured nor normalized, which may be dangerous for the fetus and hinder actual assessment of their impact on fetal development. The authors show that at frequencies below 1 kHz, acoustic pressure in the uterus may be measured noninvasively using a hydrophone placed in a soft capsule filled with liquid. It was found that the acoustic field at frequencies up to 1 kHz arising in the uterus under the action of an external sound field has amplitude-frequency parameters close to those of the external field; i.e., the external field penetrates the uterus with hardly any difficulty.

  13. Regularization methods for near-field acoustical holography.

    PubMed

    Williams, E G

    2001-10-01

    The reconstruction of the pressure and normal surface velocity provided by near-field acoustical holography (NAH) from pressure measurements made near a vibrating structure is a linear, ill-posed inverse problem due to the existence of strongly decaying, evanescentlike waves. Regularization provides a technique of overcoming the ill-posedness and generates a solution to the linear problem in an automated way. We present four robust methods for regularization; the standard Tikhonov procedure along with a novel improved version, Landweber iteration, and the conjugate gradient approach. Each of these approaches can be applied to all forms of interior or exterior NAH problems; planar, cylindrical, spherical, and conformal. We also study two parameter selection procedures, the Morozov discrepancy principle and the generalized cross validation, which are crucial to any regularization theory. In particular, we concentrate here on planar and cylindrical holography. These forms of NAH which rely on the discrete Fourier transform are important due to their popularity and to their tremendous computational speed. In order to use regularization theory for the separable geometry problems we reformulate the equations of planar, cylindrical, and spherical NAH into an eigenvalue problem. The resulting eigenvalues and eigenvectors couple easily to regularization theory, which can be incorporated into the NAH software with little sacrifice in computational speed. The resulting complete automation of the NAH algorithm for both separable and nonseparable geometries overcomes the last significant hurdle for NAH.

  14. Contactless Acoustic Manipulation and Sorting of Particles by Dynamic Acoustic Fields.

    PubMed

    Andrade, Marco Aurelio; Skotis, George D; Ritchie, Scott; Cumming, David R S; Riehle, Mathis O; Bernassau, Anne L

    2016-09-12

    This paper presents a contactless, acoustic technique to manipulate and sort particles of varying size in both liquid and air media. An acoustic standing wave is generated by the superposition of counter-propagating waves emitted by two opposing emitters. The acoustic radiation force traps the smallest particles at the pressure nodes of the acoustic standing wave. The position of the particles can be manipulated by dynamically changing the phase difference between the two emitters. By applying a dynamic acoustic field (DAF), it is demonstrated that particles can be manipulated spatially and sorted according to size. The discrimination (sorting dynamic range) capability is initially demonstrated in liquid media by separating three different sets of polystyrene particles, ranging in size from 5 to 45 μm in diameter. The separation between particles was performed up to a ratio of 5/6 in diameter (20 % diameter difference). Finally, the scalability of the DAF method is demonstrated by sorting expanded polystyrene particles of 2 and 5 mm diameter in air.

  15. Quantifying Acoustic Uncertainty Due to Marine Mammals and Fish Near the Shelfbreak Front off Cape Hatteras

    DTIC Science & Technology

    2013-09-30

    5) a three-AUV fish-field mapping effort (employing sidescan sonar plus optics) and 6) ScanFish, ADCP, and moored sensor oceanographic field...as “false targets” for sonars , 2) improved methods for mapping fish populations and schools, which is important in that the “biological field” is...Being able to model the acoustics of fish schools will allow them to be discriminated against as false targets ion sonar systems. Also, in the

  16. Teachers and Teaching: Speech Production Accommodations Due to Changes in the Acoustic Environment

    PubMed Central

    Hunter, Eric J.; Bottalico, Pasquale; Graetzer, Simone; Leishman, Timothy W.; Berardi, Mark L.; Eyring, Nathan G.; Jensen, Zachary R.; Rolins, Michael K.; Whiting, Jennifer K.

    2016-01-01

    School teachers have an elevated risk of voice problems due to the vocal demands in the workplace. This manuscript presents the results of three studies investigating teachers’ voice use at work. In the first study, 57 teachers were observed for 2 weeks (waking hours) to compare how they used their voice in the school environment and in non-school environments. In a second study, 45 participants performed a short vocal task in two different rooms: a variable acoustic room and an anechoic chamber. Subjects were taken back and forth between the two rooms. Each time they entered the variable acoustics room, the reverberation time and/or the background noise condition had been modified. In this latter study, subjects responded to questions about their vocal comfort and their perception of changes in the acoustic environment. In a third study, 20 untrained vocalists performed a simple vocal task in the following conditions: with and without background babble and with and without transparent plexiglass shields to increase the first reflection. Relationships were examined between [1] the results for the room acoustic parameters; [2] the subjects’ perception of the room; and [3] the recorded speech acoustic. Several differences between male and female subjects were found; some of those differences held for each room condition (at school vs. not at school, reverberation level, noise level, and early reflection). PMID:26949426

  17. Modeling Steady Acoustic Fields Bounded in Cavities with Geometrical Imperfections

    NASA Astrophysics Data System (ADS)

    Albo, P. A. Giuliano; Gavioso, R. M.; Benedetto, G.

    2010-07-01

    A mathematical method is derived within the framework of classical Lagrangian field theory, which is suitable for the determination of the eigenstates of acoustic resonators of nearly spherical shape. The method is based on the expansion of the Helmholtz differential operator and the boundary condition in a power series of a small geometrical perturbation parameter {ɛ} . The method extends to orders higher than {ɛ^2} the calculation of the perturbed acoustic eigenvalues, which was previously limited by the use of variational formalism and the methods of Morse and Ingard. A specific example is worked out for radial modes of a prolate spheroid, with the frequency perturbation calculated to order {ɛ^3} . A possible strategy to tackle the problem of calculating the acoustic eigenvalues for cavities presenting non-smooth geometrical imperfections is also described.

  18. Acoustic spectroscopy: A powerful analytical method for the pharmaceutical field?

    PubMed

    Bonacucina, Giulia; Perinelli, Diego R; Cespi, Marco; Casettari, Luca; Cossi, Riccardo; Blasi, Paolo; Palmieri, Giovanni F

    2016-04-30

    Acoustics is one of the emerging technologies developed to minimize processing, maximize quality and ensure the safety of pharmaceutical, food and chemical products. The operating principle of acoustic spectroscopy is the measurement of the ultrasound pulse intensity and phase after its propagation through a sample. The main goal of this technique is to characterise concentrated colloidal dispersions without dilution, in such a way as to be able to analyse non-transparent and even highly structured systems. This review presents the state of the art of ultrasound-based techniques in pharmaceutical pre-formulation and formulation steps, showing their potential, applicability and limits. It reports in a simplified version the theory behind acoustic spectroscopy, describes the most common equipment on the market, and finally overviews different studies performed on systems and materials used in the pharmaceutical or related fields.

  19. Sound field simulation and acoustic animation in urban squares

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  20. Quantifying Acoustic Uncertainty Due to Marine Mammals and Fish Near the Shelfbreak Front off Cape Hatteras

    DTIC Science & Technology

    2014-09-30

    with other seafloor features consistently observed by both AUVs (see Figure 1). With the improved source position estimates, numerical acoustic...broadband PE model agree with the data very well in terms of the arrival time and pulse spread durations (see Figure 3). Because the numerical model...Soundspeed profile and eigenrays for a typical source to receiver range and azimuth. 5 Figure 3. Arrival pattern, showing spread due to

  1. Quantifying Acoustic Uncertainty Due to Marine Mammals and Fish Near the Shelfbreak Front Off Cape Hatteras

    DTIC Science & Technology

    2012-09-30

    devices (FAD’s), 5) a three-AUV fish-field mapping effort (employing sidescan sonar plus optics) and 6) ScanFish, ADCP, and moored sensor...the REMUS vehicles. (A camera was attached to each AUV, so that we would have both optical and sidescan sonar imaging of the fish and larger animals...our Snoopy AUV in the experimental volume. [Based on both the visual and sidescan sonar imagery, we should have adequate targets for our acoustic scattering studies.

  2. Quantifying Acoustic Uncertainty Due to Marine Mammals and Fish Near the Shelfbreak Front off Cape Hatteras

    DTIC Science & Technology

    2015-09-30

    sound speed profiles measured in the experiment area. The eigenray tracing shows some, but not significant, scattering from the scour (see Figure 2...of the scattering of sound through fish schools, which can help discriminate fish schools as “false targets” for sonars, 2) improved methods for...through the fish, and perhaps more importantly, through the ocean temperature field. TRANSITIONS Being able to model the acoustics of fish schools

  3. Receptivity of Hypersonic Boundary Layers Due to Acoustic Disturbances over Blunt Cone

    NASA Technical Reports Server (NTRS)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2007-01-01

    The transition process induced by the interaction of acoustic disturbances in the free-stream with boundary layers over a 5-degree straight cone and a wedge with blunt tips is numerically investigated at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves the Navier-Stokes equations are solved in axisymmetric coordinates. The governing equations are solved using the 5th -order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, acoustic disturbances are introduced at the outer boundary of the computational domain and unsteady simulations are performed. Generation and evolution of instability waves and the receptivity of boundary layer to slow and fast acoustic waves are investigated. The mean flow data are compared with the experimental results. The results show that the instability waves are generated near the leading edge and the non-parallel effects are stronger near the nose region for the flow over the cone than that over a wedge. It is also found that the boundary layer is much more receptive to slow acoustic wave (by almost a factor of 67) as compared to the fast wave.

  4. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    PubMed

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  5. Enhancement of gas phase heat transfer by acoustic field application.

    PubMed

    Komarov, Sergey; Hirasawa, Masahiro

    2003-06-01

    This study discusses a possibility for enhancement of heat transfer between solids and ambient gas by application of powerful acoustic fields. Experiments are carried out by using preheated Pt wires (length 0.1-0.15 m, diameter 50 and 100 micro m) positioned at the velocity antinode of a standing wave (frequency range 216-1031 Hz) or in the path of a travelling wave (frequency range 6.9-17.2 kHz). A number of experiments were conducted under conditions of gas flowing across the wire surface. Effects of sound frequency, sound strength, gas flow velocity and wire preheating temperature on the Nusselt number are examined with and without sound application. The gas phase heat transfer rate is enhanced with acoustic field strength. Higher temperatures result in a vigorous radiation from the wire surface and attenuate the effect of sound. The larger the gas flow velocity, the smaller is the effect of sound wave on heat transfer enhancement.

  6. Scanning Michelson interferometer for imaging surface acoustic wave fields.

    PubMed

    Knuuttila, J V; Tikka, P T; Salomaa, M M

    2000-05-01

    A scanning homodyne Michelson interferometer is constructed for two-dimensional imaging of high-frequency surface acoustic wave (SAW) fields in SAW devices. The interferometer possesses a sensitivity of ~10(-5)nm/ radicalHz , and it is capable of directly measuring SAW's with frequencies ranging from 0.5 MHz up to 1 GHz. The fast scheme used for locating the optimum operation point of the interferometer facilitates high measuring speeds, up to 50,000 points/h. The measured field image has a lateral resolution of better than 1 mu;m . The fully optical noninvasive scanning system can be applied to SAW device development and research, providing information on acoustic wave distribution that cannot be obtained by merely electrical measurements.

  7. Characterization of the Acoustic Field in Marine Environments with Anthropogenic Noise

    NASA Astrophysics Data System (ADS)

    Guan, Shane

    Most animals inhabit the aquatic environment are acoustical-oriented, due to the physical characteristics of water that favors sound transmission. Many aquatic animals depend on underwater sound to navigate, communicate, find prey, and avoid predators. The degradation of underwater acoustic environment due to human activities is expected to affected these animals' well-being and survival at the population level. This dissertation presents three original studies on the characteristics and behavior of underwater sound fields in three unique marine environments with anthropogenic noises. The first study examines the soundscape of the Chinese white dolphin habitat in Taiwan. Acoustic recordings were made at two coastal shallow water locations, Yunlin and Waisanding, in 2012. Results show that croaker choruses are dominant sound sources in the 1.2--2.4 kHz frequency band for both locations at night, and noises from container ships in the 150--300 Hz frequency band define the relative higher broadband sound levels at Yunlin. Results also illustrate interrelationships among different biotic, abiotic, and anthropogenic elements that shape the fine-scale soundscape in a coastal environment. The second study investigates the inter-pulse sound field during an open-water seismic survey in coastal shallow waters of the Arctic. The research uses continuous acoustic recordings collected from one bottom-mounted hydrophone deployed in the Beaufort Sea in summer 2012. Two quantitative methods were developed to examine the inter-pulse sound field characteristics and its dependence on source distances. Results show that inter-pulse sound field could raise the ambient noise floor by as much as 9 dB, depending on ambient condition and source distance. The third study examines the inter-ping sound field of simulated mid-frequency active sonar in deep waters off southern California in 2013 and 2014. The study used drifting acoustic recorder buoys to collect acoustic data during sonar

  8. Integrating Acoustic Imaging of Flow Regimes With Bathymetry: A Case Study, Main Endeavor Field

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Rona, P. A.; Jackson, D. R.; Jones, C. D.

    2003-12-01

    A unified view of the seafloor and the hydrothermal flow regimes (plumes and diffuse flow) is constructed for three major vent clusters in the Main Endeavour Field (e.g., Grotto, S&M, and Salut) of the Endeavour Segment, Juan de Fuca Ridge. The Main Endeavour Field is one of RIDGE 2000's Integrated Study Sites. A variety of visualization techniques are used to reconstruct the plumes (3D) and the diffuse flow field (2D) based on our acoustic imaging data set (July 2000 cruise). Plumes are identified as volumes of high backscatter intensity (indicating high particulate content or sharp density contrasts due to temperature variations) that remained high intensity when successive acoustic pings were subtracted (indicating that the acoustic targets producing the backscatter were in motion). Areas of diffuse flow are detected using our acoustic scintillation technique (AST). For the Grotto vent region (where a new Doppler technique was used to estimate vertical velocities in the plume), we estimate the areal partitioning between black smoker and diffuse flow in terms of volume fluxes. The volumetric and areal regions, where plume and diffuse flow were imaged, are registered over the bathymetry and compared to geologic maps of each region. The resulting images provide a unified view of the seafloor by integrating hydrothermal flow with geology.

  9. Direct Field and Reverberant Chamber Acoustic Test Comparisons

    NASA Technical Reports Server (NTRS)

    OConnell, Michael

    2007-01-01

    Reverberant and direct acoustic test comparisons were analyzed in this viewgraph presentation. The acoustic test data set includes: 1) CloudSat antenna subjected to PF reverberant chamber acoustic test; 2) CloudSat subjected to a PF direct speaker acoustic test; and 3) DAWN flight spacecraft subjected to PF direct speaker and a workmanship reverberant chamber acoustic test.

  10. Acoustic source localization in mixed field using spherical microphone arrays

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua; Wang, Tong

    2014-12-01

    Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.

  11. The near-field acoustic levitation of high-mass rotors.

    PubMed

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  12. The near-field acoustic levitation of high-mass rotors

    SciTech Connect

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  13. Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments

    DTIC Science & Technology

    2016-12-06

    Water Acoustic Field Experiments NOOO 14-15-1-2893 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Ying Tsong-Lin 132893SP Se. TASK...testing. 1S. SUBJECT TERMS acoustics, shallow water , Arctic Ocean , 3-D acoustic propagation, shelfbreak 16. SECURITY CLASSIFICATION OF: R b...Approved f or public release; distribution is unlimited. Array Receivers and Sound Sources for Three-Dimensional Shallow- Water Acoustic Field

  14. Nano concentration by acoustically generated complex spiral vortex field

    NASA Astrophysics Data System (ADS)

    Tang, Qiang; Wang, Xiaofei; Hu, Junhui

    2017-03-01

    A strategy to concentrate nanoscale materials on the boundary between a nano suspension droplet and non-vibration substrate is demonstrated and analyzed. It employs the spiral vortex of acoustic streaming, generated by an ultrasonically vibrating needle parallel to and above the non-vibration substrate. The vortex drags nanoscale materials to the center of itself, forming a concentration spot. For 250 nm-diameter SiO2 nano particle suspension with an initial concentration of 0.09 mg/ml, the diameter of the concentration spot can be up to several hundred microns. The dependency of the spiral vortex field on the vibration distribution of the acoustic needle in the droplet is also clarified by experiments and computation, and the concentration conditions are obtained by analyzing the nano particle dynamics in the spiral vortex.

  15. The acoustic field scattered from some approximate pressure release materials

    NASA Astrophysics Data System (ADS)

    Caille, Gary W.

    1988-03-01

    The objective was to determine if a pressure release boundary condition can be achieved by coating an elastic shell with a visco-elastic material. One necessary condition is that the coating must acoustically decouple the shell from the scattering problem. Two closed cell rubbers and two cork-rubber composites (nitrile and neoprene based) were investigated. The dynamic viscoelastic constants of the materials were determined by wave propagation techniques. The far field scattering form functions for an infinite cylindrical shell coated with the viscoelastic material were calculated using the complete elastic equations of motion. The form functions were experimentally measured for the different materials at different thicknesses as verification of the theory. A thick finite right cylindrical shell was coated with .25 inches of closed cell neoprene and the normalized scattered pressure measured. The pressure release normalized scattered pressure was determined for the end on incident plane wave case using the acoustic radiation Simplified Helmholtz Integral Program (SHIP).

  16. Acoustic field of a ballistic shock wave therapy device.

    PubMed

    Cleveland, Robin O; Chitnis, Parag V; McClure, Scott R

    2007-08-01

    Shock wave therapy (SWT) refers to the use of focused shock waves for treatment of musculoskeletal indications including plantar fascitis and dystrophic mineralization of tendons and joint capsules. Measurements were made of a SWT device that uses a ballistic source. The ballistic source consists of a handpiece within which compressed air (1-4 bar) is used to fire a projectile that strikes a metal applicator placed on the skin. The projectile generates stress waves in the applicator that transmit as pressure waves into tissue. The acoustic fields from two applicators were measured: one applicator was 15 mm in diameter and the surface slightly convex and the second was 12 mm in diameter the surface was concave. Measurements were made in a water tank and both applicators generated a similar pressure pulse consisting of a rectangular positive phase (4 micros duration and up to 8 MPa peak pressure) followed by a predominantly negative tail (duration of 20 micros and peak negative pressure of -6 MPa), with many oscillations. The rise times of the waveforms were around 1 micros and were shown to be too long for the pulses to be considered shock waves. Measurements of the field indicated that region of high pressure was restricted to the near-field (20-40 mm) of the source and was consistent with the Rayleigh distance. The measured acoustic field did not display focusing supported by calculations, which demonstrated that the radius of curvature of the concave surface was too large to effect a focusing gain. Other SWT devices use electrohydraulic, electromagnetic and piezoelectric sources that do result in focused shock waves. This difference in the acoustic fields means there is potentially a significant mechanistic difference between a ballistic source and other SWT devices.

  17. Changes in cell morphology due to plasma membrane wounding by acoustic cavitation

    PubMed Central

    Schlicher, Robyn K.; Hutcheson, Joshua D.; Radhakrishna, Harish; Apkarian, Robert P.; Prausnitz, Mark R.

    2010-01-01

    Acoustic cavitation-mediated wounding (i.e., sonoporation) has great potential to improve medical and laboratory applications requiring intracellular uptake of exogenous molecules; however, the field lacks detailed understanding of cavitation-induced morphological changes in cells and their relative importance. Here, we present an in-depth study of the effects of acoustic cavitation on cells using electron and confocal microscopy coupled with quantitative flow cytometry. High resolution images of treated cells show that morphologically different types of blebs can occur after wounding conditions caused by ultrasound exposure as well as by mechanical shear and strong laser ablation. In addition, these treatments caused wound-induced non-lytic necrotic death resulting in cell bodies we call wound-derived perikarya (WD-P). However, only cells exposed to acoustic cavitation experienced ejection of intact nuclei and nearly instant lytic necrosis. Quantitative analysis by flow cytometry indicates that wound-derived perikarya are the dominant morphology of nonviable cells, except at the strongest wounding conditions, where nuclear ejection accounts for a significant portion of cell death after ultrasound exposure. PMID:20350691

  18. Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field

    NASA Technical Reports Server (NTRS)

    Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)

    2001-01-01

    Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.

  19. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  20. Sound field reproduction as an equivalent acoustical scattering problem.

    PubMed

    Fazi, Filippo Maria; Nelson, Philip A

    2013-11-01

    Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.

  1. Acoustic waves from mechanical impulses due to fluorescence resonant energy (Förster) transfer: Blowing a whistle with light

    NASA Astrophysics Data System (ADS)

    Zurita-Sánchez, J. R.; Henkel, C.

    2012-02-01

    We present a momentum transfer mechanism mediated by electromagnetic fields that originates in a system of two nearby molecules: one excited (donor D*) and the other in ground state (acceptor A). An intermolecular force related to fluorescence resonant energy or Förster transfer (FRET) arises in the unstable D*A molecular system, which differs from the equilibrium van der Waals interaction. Due to the its finite lifetime, a mechanical impulse is imparted to the relative motion in the system. We analyze the FRET impulse when the molecules are embedded in free space and find that its magnitude can be much greater than the single recoil photon momentum, getting comparable with the thermal momentum (Maxwell-Boltzmann distribution) at room temperature. In addition, we propose that this FRET impulse can be exploited in the generation of acoustic waves inside a film containing layers of donor and acceptor molecules, when a picosecond laser pulse excites the donors. This acoustic transient is distinguishable from that produced by thermal stress due to laser absorption, and may therefore play a role in photoacoustic spectroscopy. The effect can be seen as exciting a vibrating system like a string or organ pipe with light; it may be used as an opto-mechanical transducer.

  2. Prediction of the Acoustic Field Associated with Instability Wave Source Model for a Compressible Jet

    NASA Technical Reports Server (NTRS)

    Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.

  3. Near-field acoustical holography of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Wall, Alan T.; Gee, Kent L.; Neilsen, Tracianne; Krueger, David W.; Sommerfeldt, Scott D.; James, Michael M.

    2010-10-01

    Noise radiated from high-performance military jet aircraft poses a hearing-loss risk to personnel. Accurate characterization of jet noise can assist in noise prediction and noise reduction techniques. In this work, sound pressure measurements were made in the near field of an F-22 Raptor. With more than 6000 measurement points, this is the most extensive near-field measurement of a high-performance jet to date. A technique called near-field acoustical holography has been used to propagate the complex pressure from a two- dimensional plane to a three-dimensional region in the jet vicinity. Results will be shown and what they reveal about jet noise characteristics will be discussed.

  4. Angular Spectrum Method for the Focused Acoustic Field of a Linear Transducer

    NASA Astrophysics Data System (ADS)

    Belgroune, D.; de Belleval, J. F.; Djelouah, H.

    Applications involving non-destructive testing or acoustical imaging are more and more sophisticated. In this context, a model based on the angular spectrum approach is tackled in view to calculate the focused impulse field radiated by a linear transducer through a plane fluid-solid interface. It is well known that electronic focusing, based on a cylindrical delay law, like for the classical cases (lenses, curved transducer), leads to an inaccurate focusing in the solid due to geometric aberrations errors affecting refraction. Generally, there is a significant difference between the acoustic focal distance and the geometrical focal due to refraction. In our work, an optimized delay law, based on the Fermat's principle is established, particularly at an oblique incidence where the geometrical considerations, relatively simple in normal incidence, become quickly laborious. Numerical simulations of impulse field are judiciously carried out. Subsequently, the input parameters are optimally selected in order to achieve good computation accuracy and a high focusing. The overall results, involving compression and shear waves, have highlighted the focusing improvement in the solid when compared to the currently available approaches. Indeed, the acoustic focal distance is very close to geometrical focal distance and then, allows better control of the refracted angular beam profile (refraction angle, focusing depth and focal size).

  5. Acoustic attenuation due to transformation twins in CaCl2: Analogue behaviour for stishovite

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying; Schranz, Wilfried; Carpenter, Michael A.

    2012-09-01

    CaCl2 undergoes a tetragonal (P42/mnm) to orthorhombic (Pnnm) transition as a function of temperature which is essentially the same as occurs in stishovite at high pressures. It can therefore be used as a convenient analogue material for experimental studies. In order to investigate variations in elastic properties associated with the transition and possible anelastic loss behaviour related to the mobility of ferroelastic twin walls in the orthorhombic phase, the transition in polycrystalline CaCl2 has been examined using resonant ultrasound spectroscopy (RUS) at high frequencies (0.1-1.5 MHz) in the temperature interval 7-626 K, and dynamic mechanical analysis (DMA) at low frequencies (0.1-50 Hz) in the temperature interval 378-771 K. RUS data show steep softening of the shear modulus as the transition temperature is approached from above and substantial acoustic dissipation in the stability field of the orthorhombic structure. DMA data show softening of the storage modulus, which continues through to a minimum ˜20 K below the transition point and is followed by stiffening with further lowering of temperature. There is no obvious acoustic dissipation associated with the transition, as measured by tan δ, however. The elastic softening and stiffening matches the pattern expected for a pseudoproper ferroelastic transition as predicted elsewhere. Acoustic loss behaviour at high frequencies fits with the pattern of behaviour expected for a twin wall loss mechanism but with relaxation times in the vicinity of ˜10-6 s. With such short relaxation times, the shear modulus of CaCl2 at frequencies corresponding to seismic frequencies would include relaxations of the twin walls and is therefore likely to be significantly lower than the intrinsic shear modulus. If these characteristics apply also to twin wall mobility in stishovite, the seismic signature of the orthorhombic phase should be an unusually soft shear modulus but with no increase in attenuation.

  6. On the instability of time-domain acoustic boundary element method due to the static mode in interior problems

    NASA Astrophysics Data System (ADS)

    Jang, Hae-Won; Ih, Jeong-Guon

    2013-11-01

    In the analysis of interior acoustic problems, the time domain boundary element method (TBEM) suffers the monotonically increasing instability when using the direct Kirchhoff integral. This instability is related to the non-oscillatory static acoustic mode describing the constant spatial response in an enclosure. In this work, nonphysical natures of non-oscillatory static mode influencing the instability of TBEM calculation are investigated, and a method for stabilization is studied. In TBEM calculation, the static mode is represented by two non-oscillatory eigenmodes with different eigenvalues. The monotonically increasing instability is caused by the unstable poles of non-oscillatory eigenmodes as well as very small, very low frequency noise of an input signal. Interior problems with impedance boundary condition also exhibit the monotonically increasing instability stemming from its pseudo non-oscillatory static mode due to the lack of dissipation at very low frequencies. Calculation of transient sound fields within rigid and lined boxes provides numerical evidences. It is noted that the stabilization effort by modifying the coefficient matrix based on the spectral decomposition can be used only for correcting the unstable pole. The filtering method based on the eigen-analysis must be additionally used to avoid the remaining instability caused by very low frequency noise of input signal.

  7. Study of acoustic field modulation in the regenerator by double loudspeakers method.

    PubMed

    Zhou, Lihua; Xie, Xiujuan; Li, Qing

    2011-11-01

    A model to modulate acoustic field in a regenerator of a thermoacoustic system by the double loudspeakers method is presented in this paper. The equations are derived for acoustic field modulation. They represent the relations among acoustic field (complex pressure p(0), complex velocity u(0), and acoustic impedance Z(0)), driving parameters of loudspeakers (voltage amplitude and its phase difference), and operating parameters involved in a matrix H (frequency, temperature of regenerator). The range of acoustic field is adjustable and limited by the maximal driving voltages of loudspeakers according to driving parameters. The range is simulated and analyzed in the amplitude-phase and complex coordinate planes for a given or variable H. The simulated results indicate that the range has its intrinsic characteristics. The expected acoustic field in a regenerator can be obtained feasibly by the modulation.

  8. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  9. Near-field beamforming analysis for acoustic emission source localization.

    PubMed

    He, Tian; Pan, Qiang; Liu, Yaoguang; Liu, Xiandong; Hu, Dayong

    2012-07-01

    This paper attempts to introduce a near-field acoustic emission (AE) beamforming method to estimate the AE source locations by using a small array of sensors closely placed in a local region. The propagation characteristics of AE signals are investigated based on guided wave theory to discuss the feasibility of using beamforming techniques in AE signal processing. To validate the effectiveness of the AE beamforming method, a series of pencil lead break tests at various regions of a thin steel plate are conducted. The potential of this method for engineering applications are explored through rotor-stator rubbing tests. The experimental results demonstrate that the proposed method can effectively determine the region where rubbing occurs. It is expected that the work of this paper may provide a helpful analysis tool for near-field AE source localization.

  10. Nonlinear electron acoustic waves in presence of shear magnetic field

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  11. Fatigue crack localization with near-field acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Zhang, Yunfeng

    2013-04-01

    This paper presents an AE source localization technique using near-field acoustic emission (AE) signals induced by crack growth and propagation. The proposed AE source localization technique is based on the phase difference in the AE signals measured by two identical AE sensing elements spaced apart at a pre-specified distance. This phase difference results in canceling-out of certain frequency contents of signals, which can be related to AE source direction. Experimental data from simulated AE source such as pencil breaks was used along with analytical results from moment tensor analysis. It is observed that the theoretical predictions, numerical simulations and the experimental test results are in good agreement. Real data from field monitoring of an existing fatigue crack on a bridge was also used to test this system. Results show that the proposed method is fairly effective in determining the AE source direction in thick plates commonly encountered in civil engineering structures.

  12. Iodine-starch clathrate complexes in low-field acoustic fields

    NASA Astrophysics Data System (ADS)

    Fadeev, G. N.; Boldyrev, V. S.; Ermolaeva, V. I.; Eliseeva, N. M.

    2013-01-01

    Experimental data on the kinetics of formation and decomposition of iodine-starch clathrate complexes (amyloiodine and amylopectoiodine) in low-frequency (5-45 Hz) acoustic fields are reported. The biological activity of these compounds suggests their use as a model of biocatalysts, in which iodine represents the coenzyme active group and starch homopolysaccharides (amylopectin and amylose) represents the apoenzyme.

  13. Field Assessment of Acoustic-Doppler Based Discharge Measurements

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2002-01-01

    The use of equipment based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun a field validation of the instruments currently (2002) available for making discharge measurements from a moving boat in streams of various sizes. Instruments manufactured by SonTek/YSI2 and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made by the use of a Price AA current meter and standard USGS procedures with the acoustic instruments at each site during data collection. The discharges measured with the acoustic instruments were compared with the discharges measured with Price AA meters and the current USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating. Additional analysis of the data collected indicates that the coefficient of variation of the discharge measurements consistently was less for the RD Instruments, Inc. Rio Grandes than it was for the SonTek/YSI RiverSurveyors. The bottom-tracking referenced measurement had a lower coefficient of variation than the differentially corrected global positioning system referenced measurements. It was observed that the higher frequency RiverSurveyors measured a moving bed more often than the lower frequency Rio Grandes. The detection of a moving bed caused RiverSurveyors to be consistently biased low when referenced to bottom tracking. Differentially corrected global positioning system data may be used to remove the bias observed in the bottom-tracking referenced measurements.

  14. Active control of acoustic pressure fields using smart material technologies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, R. C.

    1993-01-01

    An overview describing the use of piezoceramic patches in reducing noise in a structural acoustics setting is presented. The passive and active contributions due to patches which are bonded to an Euler-Bernoulli beam or thin shell are briefly discussed and the results are incorporated into a 2-D structural acoustics model. In this model, an exterior noise source causes structural vibrations which in turn lead to interior noise as a result of nonlinear fluid/structure coupling mechanism. Interior sound pressure levels are reduced via patches bonded to the flexible boundary (a beam in this case) which generate pure bending moments when an out-of-phase voltage is applied. Well-posedness results for the infinite dimensional system are discussed and a Galerkin scheme for approximating the system dynamics is outlined. Control is implemented by using linear quadratic regulator (LQR) optimal control theory to calculate gains for the linearized system and then feeding these gains back into the nonlinear system of interest. The effectiveness of this strategy for this problem is illustrated in an example.

  15. Application of acoustic tomography to reconstruct the horizontal flow velocity field in a shallow river

    NASA Astrophysics Data System (ADS)

    Razaz, Mahdi; Kawanisi, Kiyosi; Kaneko, Arata; Nistor, Ioan

    2015-12-01

    A novel acoustic tomographic measurement system capable of resolving sound travel time in extremely shallow rivers is introduced and the results of an extensive field measurements campaign are presented and further discussed. Acoustic pulses were transmitted over a wide frequency band of 20-35 kHz between eight transducers for about a week in a meandering reach of theBāsen River, Hiroshima, Japan. The purpose of the field experiment was validating the concept of acoustic tomography in rivers for visualizing current fields. The particular novelty of the experiment resides in its unusual tomographic features: subbasin scale (100 m × 270 m) and shallowness (0.5-3.0 m) of the physical domain, frequency of the transmitted acoustic signals (central frequency of 30 kHz), and the use of small sampling intervals (105 s). Inverse techniques with no a priori statistical information were used to estimate the depth-average current velocity components from differential travel times. Zeroth-order Tikhonov regularization, in conjunction with L-curve method deployed to stabilize the solution and to determine the weighting factor appearing in the inverse analysis. Concurrent direct environmental measurements were provided in the form of ADCP readings close to the right and left bank. Very good agreement found between along-channel velocities larger than 0.2 m/s obtained from the two techniques. Inverted quantities were, however, underestimated, perhaps due to vicinity of the ADCPs to the banks and strong effect of river geometry on the readings. In general, comparing the visualized currents with direct nodal measurements illustrate the plausibility of the tomographically reconstructed flow structures.

  16. Investigation of crossed SAW fields by scanning acoustic force microscopy.

    PubMed

    Behme, G; Hesjedal, T

    2001-07-01

    We used multimode scanning acoustic force microscopy (SAFM) for studying noncollinearly propagating Rayleigh and Love wave fields. By analyzing torsion and bending movement of SAFM cantilever, normal and in-plane wave oscillation components are accessible. The SAFM principle is the down-conversion of surface oscillations into cantilever vibrations caused by the nonlinearity of the tip-sample interaction. Through mixing of complementary oscillation components, phase velocities of crossed Rayleigh waves on GaAs and crossed Rayleigh and Love waves on the layered system SiO2/ST-cut quartz were obtained simultaneously. Now, it is possible to investigate elastic properties of submicron areas through multimode SAFM measurements. Finally, we present mixing experiments of four SAWs on GaAs and discuss the various influences on the measured SAFM amplitude and phase contrast.

  17. Convergent acoustic field of view in echolocating bats.

    PubMed

    Jakobsen, Lasse; Ratcliffe, John M; Surlykke, Annemarie

    2013-01-03

    Most echolocating bats exhibit a strong correlation between body size and the frequency of maximum energy in their echolocation calls (peak frequency), with smaller species using signals of higher frequency than larger ones. Size-signal allometry or acoustic detection constraints imposed on wavelength by preferred prey size have been used to explain this relationship. Here we propose the hypothesis that smaller bats emit higher frequencies to achieve directional sonar beams, and that variable beam width is critical for bats. Shorter wavelengths relative to the size of the emitter translate into more directional sound beams. Therefore, bats that emit their calls through their mouths should show a relationship between mouth size and wavelength, driving smaller bats to signals of higher frequency. We found that in a flight room mimicking a closed habitat, six aerial hawking vespertilionid species (ranging in size from 4 to 21 g, ref. 5) produced sonar beams of extraordinarily similar shape and volume. Each species had a directivity index of 11 ± 1 dB (a half-amplitude angle of approximately 37°) and an on-axis sound level of 108 ± 4 dB sound pressure level referenced to 20 μPa root mean square at 10 cm. Thus all bats adapted their calls to achieve similar acoustic fields of view. We propose that the necessity for high directionality has been a key constraint on the evolution of echolocation, which explains the relationship between bat size and echolocation call frequency. Our results suggest that echolocation is a dynamic system that allows different species, regardless of their body size, to converge on optimal fields of view in response to habitat and task.

  18. On the radiation force fields of fractional-order acoustic vortices

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Zhang, J.; Drinkwater, B. W.

    2015-04-01

    Here we report the creation and observation of acoustic vortices of fractional order. Whilst integer orders are known to produce axisymmetric acoustic fields, fractional orders are shown to break this symmetry and produce a vast array of unexplored field patterns, typically exhibiting multiple closely spaced phase singularities. Here, fractional acoustic vortices are created by emitting ultrasonic waves from an annular array of sources using multiple ramps of phase delay around its circumference. Acoustic radiation force patterns, including multiple concentration points, short straight lines, triangles, squares and discontinuous circles are simulated and experimentally observed. The fractional acoustic vortex leading to two closely spaced phase singularities is used to trap, and by controlling the order, reversibly manipulate two microparticles to a proximity of 0.3 acoustic wavelengths.

  19. Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials.

    PubMed

    Ao, Xianyu; Chan, C T

    2008-02-01

    A kind of two-dimensional acoustic metamaterial is designed so that it exhibits strong anisotropy along two orthogonal directions. Based on the rectangular equal frequency contour of this metamaterial, magnifying lenses for acoustic waves, analogous to electromagnetic hyperlenses demonstrated recently in the optical regime, can be realized. Such metamaterial may offer applications in imaging for systems that obey scalar wave equations.

  20. Broadband Field Directionally Mapping using Maneuverable Acoustic Sensor Arrays

    DTIC Science & Technology

    2015-09-30

    Maneuverable Acoustic Sensor Arrays David Smith Dept. of Electrical and Computer Engineering Duke University, Box 90291 Durham, NC 27708 phone: (919) 660... acoustic arrays to resolve targets from interferers, and 2) improve the target detection, localization, and tracking performance of long arrays during tow...splines) EM algorithm. Both algorithms were run using a simulated 30 element acoustic vector sensor array with 900 snapshots. Attention has also

  1. The Dynamics of Vapor Bubbles in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    1999-01-01

    In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper examines numerically the validity of some asymptotic-theory predictions such as the existence of two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena therefore play a role for a few cycles at most, and reaching a limit size-if one exists at all-is found to require far more than several tens of thousands of cycles. It is also found that some small bubbles may grow or collapse depending on the phase of the sound field. The model accounts in detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an approximate formulation valid for bubbles small with respect to the thermal penetration length in the vapor is derived and its accuracy examined, The present findings have implications for acoustically enhanced boiling heat transfer and other special applications such as boiling in microgravity.

  2. Tomographic reconstruction of transient acoustic fields recorded by pulsed TV holography.

    PubMed

    Gren, P; Schedin, S; Li, X

    1998-02-10

    Pulsed TV holography combined with computerized tomography (CT) are used to evaluate the three-dimensional distribution of transient acoustic fields in air. Experiments are performed with an electrical discharge between two electrodes as the sound source. Holograms from several directions of the acoustic field are recorded directly onto a CCD detector by use of a double-pulsed ruby laser as the light source. Phase maps, representing projections of the acoustic field, are evaluated quantitatively from the recorded holograms. The projections are used for the CT reconstruction to evaluate the pressure-field distribution in any cross section of the measured volume of air.

  3. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.

  4. Full acoustic and thermal characterization of HIFU field in the presence of a ribcage model

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Le, Nhan; Nabi, Ghulam; Huang, Zhihong

    2017-03-01

    In the treatment of abdominal organs using high intensity focused ultrasound (HIFU), the patient's ribs are in the pathway of the HIFU beams which could result in acoustic distortion, occasional skin burns and insufficient energy delivered to the target organs. To provide full characterization of HIFU field with the influence of ribcage, the ribcage phantom reconstructed from a patient's CT images was created by tissue mimicking materials and its effect on acoustic field was characterized. The effect of the ribcage on acoustic field has been provided in acoustic pressure distribution, acoustic power and focal temperature. Measurement result shows focus splitting with one main focus and two secondary intensity maxima. With the presence of ribcage phantom, the acoustic pressure was reduced by 48.3% and another two peak values were observed near the main focus, reduced by 65.0% and 71.7% respectively. The acoustic power was decreased by 47.5% to 52.5%. With these characterization results, the form of the focus, the acoustic power, acoustic pressure and temperature rise are provided before the transcostal HIFU treatment, which are significant to determine the energy delivery dose. In conclusion, this ribcage model and characterization technique will be useful for the further study in the abdominal HIFU treatment.

  5. Deep Water Acoustics

    DTIC Science & Technology

    2016-06-28

    Estimates of basin-wide sound speed ( temperature ) fields obtained by the combination of acoustic, altimetry, and other data types with ocean...of acoustic coherence at long ranges in the ocean. Estimates of basin-wide sound speed ( temperature ) fields obtained by the combination of acoustic...index.html Award Number N00014-13-1-0053 LONG-TERM GOALS The ultimate limitations to the performance of long-range sonar are due to ocean sound speed

  6. Development of anticavitation hydrophone using a titanium front plate: Effect of the titanium front plate in high-intensity acoustic field with generation of acoustic cavitation

    NASA Astrophysics Data System (ADS)

    Shiiba, Michihisa; Okada, Nagaya; Kurosawa, Minoru; Takeuchi, Shinichi

    2016-07-01

    Novel anticavitation hydrophones were fabricated by depositing a hydrothermally synthesized lead zirconate titanate polycrystalline film at the back of a titanium front plate. These anticavitation hydrophones were not damaged by the measurement of the acoustic field formed by a high-intensity focused ultrasound (HIFU) device. Their sensitivity was improved by approximately 20 dB over that of the conventional anticavitation hydrophone by modifying their basic structure and materials. The durability of the anticavitation hydrophone that we fabricated was compared by exposing it to a high-intensity acoustic field at the focal point of the HIFU field and in the water tank of an ultrasound cleaner. Therefore, the effect of the surface of the titanium front plate on acoustic cavitation was investigated by exposing such a surface to the high-intensity acoustic field. We found that the fabricated anticavitation hydrophone was robust and was not damaged easily, even in the focused acoustic field where acoustic cavitation occurs.

  7. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    SciTech Connect

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao E-mail: wangzhibiao@haifu.com.cn; Song, Dan; Lei, Guangrong; Lin, Zhou; Zhang, Dong E-mail: wangzhibiao@haifu.com.cn; Wu, Junru

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  8. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    SciTech Connect

    Saleem, H.; Haque, Q.

    2015-08-15

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  9. Improving Classroom Acoustics (ICA): A Three-Year FM Sound Field Classroom Amplification Study.

    ERIC Educational Resources Information Center

    Rosenberg, Gail Gegg; Blake-Rahter, Patricia; Heavner, Judy; Allen, Linda; Redmond, Beatrice Myers; Phillips, Janet; Stigers, Kathy

    1999-01-01

    The Improving Classroom Acoustics (ICA) special project was designed to determine if students' listening and learning behaviors improved as a result of an acoustical environment enhanced through the use of FM sound field classroom amplification. The 3-year project involved 2,054 students in 94 general education kindergarten, first-, and…

  10. The magnetic field due to a number of toroidal conductors

    NASA Astrophysics Data System (ADS)

    Caldwell, J.

    1982-03-01

    This is an extension of the work carried out by Gibson and Caldwell on the optimization of the uniformity of the magnetic field produced in the bore of a toroidal conductor of rectangular cross section. In this paper the work is extended to consider the magnetic field due to a number of conductors. The usefulness of the work is assessed by comparing it to the work of Garrett, and numerical results are given for particular coil parameters.

  11. Ion acoustic turbulence and transport in a plasma in a strong electric field

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Iu.; Gradov, O. M.; Silin, V. P.

    1984-01-01

    A theory is derived for the nonlinear state which is established in a plasma when the ion acoustic instability is suppressed by nonlinear induced wave scattering by ions, and there is a quasi-linear relaxation of electrons among turbulent fluctuations. The behavior of the ion acoustic noise spectrum and of transport processes in strong fields, where the anomalous plasma resistance is a square-root function of the field intensity, is found. In this region of electric fields there is a universal distribution of the ion acoustic fluctuations in the magnitude of the wave vector and in angle for the turbulence spectrum.

  12. Acoustic reconstruction of the velocity field in a furnace using a characteristic flow model.

    PubMed

    Li, Yanqin; Zhou, Huaichun; Chen, Shiying; Zhang, Yindi; Wei, Xinli; Zhao, Jinhui

    2012-06-01

    An acoustic method can provide a noninvasive, efficient and full-field reconstruction of aerodynamic fields in a furnace. A simple yet reasonable model is devised for reconstruction of a velocity field in a cross section of a tangential furnace from acoustic measurements based on typical physical characteristics of the field. The solenoidal component of the velocity field is modeled by a curved surface, derived by rotating a curve of Gaussian distribution, determined by six characteristic parameters, while the nonrotational component is governed by a priori knowledge. Thus the inverse problem is translated into determination of the characteristic parameters using a set of acoustic projection data. First numerical experiments were undertaken to simulate the acoustic measurement, so as to preliminarily validate the effectiveness of the model. Based on this, physical experiments under different operating conditions were performed in a pilot-scale setup to provide a further test. Hot-wire anemometry and strip floating were applied to compare with acoustic measurements. The acoustic measurements provided satisfactory consistency with both of these approaches. Nevertheless, for a field with a relatively large magnitude of air velocities, the acoustic measurement can give more reliable reconstructions. Extension of the model to measurements of hot tangential furnaces is also discussed.

  13. Acoustic temperature measurement in a rocket noise field.

    PubMed

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.

  14. Anisotropy in MHD turbulence due to a mean magnetic field

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.; Matthaeus, W. H.; Montgomery, D.

    1982-01-01

    The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers.

  15. Bias in acoustic biomass estimates of Euphausia superba due to diel vertical migration

    NASA Astrophysics Data System (ADS)

    Demer, David A.; Hewitt, Roger P.

    1995-04-01

    The diel vertical migration (DVM) of Antarctic krill ( Euphausia superba) can greatly bias the results of qualitative and quantitative hydroacoustic surveys which are conducted with a down-looking sonar and irrespective of the time of day. To demonstrate and quantify these negative biases on both the estimates of biomass distribution and abundance, a time-depth-density analysis was performed. Data were collected, as part of the United States Antarctic Marine Living Resources Program (AMLR), in the vicinities of Elephant Island, Antarctica, during the austral summers of 1992 and 1993. Five surveys were conducted in 1992; two covered a 105 by 105 n.mi. area centered on Elephant Island, two encompassed a 60 by 35 n.mi. area immediately to the north of the Island, and one covered a 1 n.mi. 2 area centered on a large krill swarm to the west of Seal Island. The 1993 data include repetitions of the two small-area and two large-area surveys. Average krill volume densities were calculated for each hour as well as for three daily periods: day, twilight and night. These data were normalized and presented as a probability of daily average density. With spectral analysis to identify the frequencies of migration, a four-term periodic function was fitted to the probability density function of average daily biomass versus local apparent time. This function was transformed to create a temporal compensation function (TCF) for upwardly adjusting acoustic biomass estimates. The TCF was then applied to the original 1992 survey data; the resulting biomass estimates are an average of 49.5% higher than those calculated disregarding biases due to diel vertical migration. The effect of DVM on the estimates of krill distribution are illustrated by a comparison of compensated and uncompensated density maps of two 1992 surveys. Through this technique, high density kril areas are revealed where uncompensated maps indicated low densities.

  16. Axial acoustic radiation force on a sphere in Gaussian field

    SciTech Connect

    Wu, Rongrong; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated. Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.

  17. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P. Oshkai; M. Geveci; D. Rockwell; M. Pollack

    2002-12-12

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of,these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  18. Spatial correlation of the high intensity zone in deep-water acoustic field

    NASA Astrophysics Data System (ADS)

    Li, Jun; Li, Zheng-Lin; Ren, Yun

    2016-12-01

    The spatial correlations of acoustic field have important implications for underwater target detection and other applications in deep water. In this paper, the spatial correlations of the high intensity zone in the deep-water acoustic field are investigated by using the experimental data obtained in the South China Sea. The experimental results show that the structures of the spatial correlation coefficient at different ranges and depths are similar to the transmission loss structure in deep water. The main reason for this phenomenon is analyzed by combining the normal mode theory with the ray theory. It is shown that the received signals in the high intensity zone mainly include one or two main pulses which are contributed by the interference of a group of waterborne modes with similar phases. The horizontal-longitudinal correlations at the same receiver depth but in different high intensity zones are analyzed. At some positions, more pulses are received in the arrival structure of the signal due to bottom reflection and the horizontal-longitudinal correlation coefficient decreases accordingly. The multi-path arrival structure of receiving signal becomes more complex with increasing receiver depth. Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012 and 41561144006).

  19. Multiple Scattering of Sound by Internal Waves and Acoustic Characterization of Internal Wave Fields in Deep and Shallow Water

    DTIC Science & Technology

    2005-09-30

    approximation in many practical situations. The equation for the average acoustic field in the statistically homogeneous in horizontal plane stratified...using diagrammatic technique similar to the one used in the theory of wave propagation in the homogeneous medium. The mass operator was calculated...perturbations on various eigenrays due to the horizontal refraction induced by internal waves with the Garrett-Munk spectrum: rigorous internal wave model

  20. Underwater hybrid near-field acoustical holography based on the measurement of vector hydrophone array

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu

    2010-06-01

    Hybrid near-field acoustical holography (NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH, we combine statistically optimized near-field acoustical holography (SONAH) and broadband acoustical holography from intensity measurements (BAHIM) to reconstruct the underwater cylindrical source field. First, the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary, and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal, and the measurement array can be smaller than the source, thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then, an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement, as well as the identification and localization of noise sources.

  1. Lift-Off Acoustics Prediction of Clustered Rocket Engines in the Near Field

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Plotkin, Ken

    2010-01-01

    This slide presentation presents a method of predicting acoustics during lift-off of the clustered rocket engines in the near field. Included is a definition of the near field, and the use of deflectors and shielding. There is discussion about the use of PAD, a software system designed to calculate the acoustic levels from the lift of of clustered rocket enginee, including updates to extend the calculation to directivity, water suppression, and clustered nozzles.

  2. Investigation of Acoustic Fields for the Cassini Spacecraft: Reverberant Versus Launch Environments

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Himelblau, Harry

    2000-01-01

    The characterization and understanding of the acoustic field within a launch vehicle's payload fairing (PLF) is critical to the qualification of a spacecraft and ultimately to the success of its mission. Acoustic measurements taken recently for the Cassini mission have allowed unique opportunities to advance the aerospace industry's knowledge in this field. Prior to its launch, the expected liftoff acoustic environment of the spacecraft was investigated in a full-scale acoustic test of a Titan IV PLF and Cassini simulator in a reverberant test chamber. A major goal of this acoustic ground test was to quantify and verify the noise reduction performance of special barrier blankets that were designed especially to reduce the Cassirii acoustic environment. This paper will describe both the ground test and flight measurements, and compare the Cassini acoustic environment measured during launch with that measured earlier in the ground test. Special emphasis will be given to the noise reduction performance of the barrier blankets and to the acoustic coherence measured within the PLF.

  3. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  4. The magnetic component of geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field

    NASA Astrophysics Data System (ADS)

    Zhou, Deng

    2016-10-01

    The dispersion relation of geodesic acoustic modes with a magnetic perturbation in the tokamak plasma with an equilibrium radial electric field was derived. The dispersion relation was analyzed for very low field strength. The mode frequency decreases with increasing field strength, which is different from the electrostatic geodesic acoustic mode. There exists an m = 1 magnetic component that is very low when the radial electric field is absent. The ratio between the m = 1 and m = 2 magnetic components increases with strength of the radial electric field for low Mach numbers.

  5. Flow damping due to stochastization of the magnetic field

    PubMed Central

    Ida, K.; Yoshinuma, M.; Tsuchiya, H.; Kobayashi, T.; Suzuki, C.; Yokoyama, M.; Shimizu, A.; Nagaoka, K.; Inagaki, S.; Itoh, K.; Akiyama, T.; Emoto, M.; Evans, T.; Dinklage, A.; Du, X.; Fujii, K.; Goto, M.; Goto, T.; Hasuo, M.; Hidalgo, C.; Ichiguchi, K.; Ishizawa, A.; Jakubowski, M.; Kamiya, K.; Kasahara, H.; Kawamura, G.; Kato, D.; Kobayashi, M.; Morita, S.; Mukai, K.; Murakami, I.; Murakami, S.; Narushima, Y.; Nunami, M.; Ohdach, S.; Ohno, N.; Osakabe, M.; Pablant, N.; Sakakibara, S.; Seki, T.; Shimozuma, T.; Shoji, M.; Sudo, S.; Tanaka, K.; Tokuzawa, T.; Todo, Y.; Wang, H.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K. Y.; Ashikawa, N.; Chikaraishi, H.; Ejiri, A.; Furukawa, M.; Fujita, T.; Hamaguchi, S.; Igami, H.; Isobe, M.; Masuzaki, S.; Morisaki, T.; Motojima, G.; Nagasaki, K.; Nakano, H.; Oya, Y.; Suzuki, Y.; Sakamoto, R.; Sakamoto, M.; Sanpei, A.; Takahashi, H.; Tokitani, M.; Ueda, Y.; Yoshimura, Y.; Yamamoto, S.; Nishimura, K.; Sugama, H.; Yamamoto, T.; Idei, H.; Isayama, A.; Kitajima, S.; Masamune, S.; Shinohara, K.; Bawankar, P. S.; Bernard, E.; von Berkel, M.; Funaba, H.; Huang, X. L.; Ii, T.; Ido, T.; Ikeda, K.; Kamio, S.; Kumazawa, R.; Moon, C.; Muto, S.; Miyazawa, J.; Ming, T.; Nakamura, Y.; Nishimura, S.; Ogawa, K.; Ozaki, T.; Oishi, T.; Ohno, M.; Pandya, S.; Seki, R.; Sano, R.; Saito, K.; Sakaue, H.; Takemura, Y.; Tsumori, K.; Tamura, N.; Tanaka, H.; Toi, K.; Wieland, B.; Yamada, I.; Yasuhara, R.; Zhang, H.; Kaneko, O.; Komori, A.

    2015-01-01

    The driving and damping mechanism of plasma flow is an important issue because flow shear has a significant impact on turbulence in a plasma, which determines the transport in the magnetized plasma. Here we report clear evidence of the flow damping due to stochastization of the magnetic field. Abrupt damping of the toroidal flow associated with a transition from a nested magnetic flux surface to a stochastic magnetic field is observed when the magnetic shear at the rational surface decreases to 0.5 in the large helical device. This flow damping and resulting profile flattening are much stronger than expected from the Rechester–Rosenbluth model. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that the flow damping is due to the change in the non-diffusive term of momentum transport. PMID:25569268

  6. Tune Variations due to Septum Stray Field F. Pederson &

    SciTech Connect

    Rinolfi, L.

    1986-10-12

    Two types of antiproton instabilities due to trapped ions are harmful in the AA. One is a coherent instability occurring when an ion pocket resonates with a 3-Q mode (hiccups), the other is excitation of 11th and 15th order non-linear resonances due to the non-linear focusing fields from localized ion clouds trapped in uncleared potential well pockets. Accumulation with a good injection yield of antiprotons forces us to locate the tune of the dense core in the general area of the array of 15th order resonances. To avoid harmful blow-up of the dense core the tune is located between the resonances 11Q{sub H} + 4Q{sub V} = 34, 10Q{sub H} + 5Q{sub V} = 34, and 11Q{sub H} = 25, requiring a tune of Q{sub H} = 2.2722 to be maintained with a precision of a few 10{sup -4} (Fig. 4). Different angles of the injection and ejection trajectories require the septum current to be changed from 3860 A during accumulation to 3920 A, during ejection mode. Variations in the septum stray field due to these changes in current cause tune changes in the order of 10{sup -3}. In addition, at a given septum current, a pronounced hysteresis of the stray field causes tune variations of about the same order of magnitude, so also the past history of the septum excitation must be carefully controlled to obtain a reproducible tune.

  7. Acoustic Characteristics of the Question-Statement Contrast in Severe Dysarthria Due to Cerebral Palsy

    ERIC Educational Resources Information Center

    Patel, Rupal

    2003-01-01

    Studies of prosodic control in severe dysarthria (DYS) have focused on differences between impaired and nonimpaired speech in terms of the range and variation of fundamental frequency (F0), intensity, and duration. Whether individuals with severe DYS can adequately signal prosodic contrasts and "which" acoustic cues they use to do so has received…

  8. False diagnosis of acoustic neuroma due to subdural injection during gas CT cisternogram.

    PubMed

    Larsson, E M; Holtås, S

    1986-01-01

    Gas CT cisternography is a reliable examination for the detection of small acoustic neuromas. False-positive or equivocal findings do result, however, from a small number of these examinations. In this case report inadvertent subdural injection of gas caused diagnostic difficulties.

  9. An improved method for the calculation of Near-Field Acoustic Radiation Modes

    NASA Astrophysics Data System (ADS)

    Liu, Zu-Bin; Maury, Cédric

    2016-02-01

    Sensing and controlling Acoustic Radiation Modes (ARMs) in the near-field of vibrating structures is of great interest for broadband noise reduction or enhancement, as ARMs are velocity distributions defined over a vibrating surface, that independently and optimally contribute to the acoustic power in the acoustic field. But present methods only provide far-field ARMs (FFARMs) that are inadequate for the acoustic near-field problem. The Near-Field Acoustic Radiation Modes (NFARMs) are firstly studied with an improved numerical method, the Pressure-Velocity method, which rely on the eigen decomposition of the acoustic transfers between the vibrating source and a conformal observation surface, including sound pressure and velocity transfer matrices. The active and reactive parts of the sound power are separated and lead to the active and reactive ARMs. NFARMs are studied for a 2D baffled beam and for a 3D baffled plate, and so as differences between the NFARMS and the classical FFARMs. Comparisons of the NFARMs are analyzed when varying frequency and observation distance to the source. It is found that the efficiencies and shapes of the optimal active ARMs are independent on the distance while that of the reactive ones are distinctly related on.

  10. Excitation of geodesic acoustic modes by external fields.

    PubMed

    Hallatschek, K; McKee, G R

    2012-12-14

    It is planned to use external magnetic perturbations at acoustic frequencies at the DIII-D tokamak to attempt to drive geodesic acoustic modes (GAM) to modify the turbulent transport. We show that this might not only be possible--despite the well-known electrostatic nature of the GAMs--but might be a viable and efficient method to generate GAMs in magnetically confined plasmas, by developing an elegant analytic method which allows us to couple numerical dynamic equilibrium calculations with massively parallel non-Boussinesq turbulence code runs and yields practical estimates of the effectivity of the method.

  11. Biological effects due to weak magnetic field on plants

    NASA Astrophysics Data System (ADS)

    Belyavskaya, N. A.

    2004-01-01

    Throughout the evolution process, Earth's magnetic field (MF, about 50 μT) was a natural component of the environment for living organisms. Biological objects, flying on planned long-term interplanetary missions, would experience much weaker magnetic fields, since galactic MF is known to be 0.1-1 nT. However, the role of weak magnetic fields and their influence on functioning of biological organisms are still insufficiently understood, and is actively studied. Numerous experiments with seedlings of different plant species placed in weak magnetic field have shown that the growth of their primary roots is inhibited during early germination stages in comparison with control. The proliferative activity and cell reproduction in meristem of plant roots are reduced in weak magnetic field. Cell reproductive cycle slows down due to the expansion of G 1 phase in many plant species (and of G 2 phase in flax and lentil roots), while other phases of cell cycle remain relatively stabile. In plant cells exposed to weak magnetic field, the functional activity of genome at early pre-replicate period is shown to decrease. Weak magnetic field causes intensification of protein synthesis and disintegration in plant roots. At ultrastructural level, changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells were observed in pea roots exposed to weak magnetic field. Mitochondria were found to be very sensitive to weak magnetic field: their size and relative volume in cells increase, matrix becomes electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to weak magnetic field show Ca 2+ over-saturation in all organelles and in cytoplasm unlike the control ones. The data presented suggest that prolonged exposures of plants to weak

  12. An inverse method for estimation of the acoustic intensity in the focused ultrasound field

    NASA Astrophysics Data System (ADS)

    Yu, Ying; Shen, Guofeng; Chen, Yazhu

    2017-03-01

    Recently, a new method which based on infrared (IR) imaging was introduced. Authors (A. Shaw, et al and M. R. Myers, et al) have established the relationship between absorber surface temperature and incident intensity during the absorber was irradiated by the transducer. Theoretically, the shorter irradiating time makes estimation more in line with the actual results. But due to the influence of noise and performance constrains of the IR camera, it is hard to identify the difference in temperature with short heating time. An inverse technique is developed to reconstruct the incident intensity distribution using the surface temperature with shorter irradiating time. The algorithm is validated using surface temperature data generated numerically from three-layer model which was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the irradiation, and the consequent temperature elevation. To assess the effect of noisy data on the reconstructed intensity profile, in the simulations, the different noise levels with zero mean were superposed on the exact data. Simulation results demonstrate that the inversion technique can provide fairly reliable intensity estimation with satisfactory accuracy.

  13. On the Vertigo Due to Static Magnetic Fields

    PubMed Central

    Mian, Omar S.; Li, Yan; Antunes, Andre; Glover, Paul M.; Day, Brian L.

    2013-01-01

    Vertigo is sometimes experienced in and around MRI scanners. Mechanisms involving stimulation of the vestibular system by movement in magnetic fields or magnetic field spatial gradients have been proposed. However, it was recently shown that vestibular-dependent ocular nystagmus is evoked when stationary in homogenous static magnetic fields. The proposed mechanism involves Lorentz forces acting on endolymph to deflect semicircular canal (SCC) cupulae. To investigate whether vertigo arises from a similar mechanism we recorded qualitative and quantitative aspects of vertigo and 2D eye movements from supine healthy adults (n = 25) deprived of vision while pushed into the 7T static field of an MRI scanner. Exposures were variable and included up to 135s stationary at 7T. Nystagmus was mainly horizontal, persisted during long-exposures with partial decline, and reversed upon withdrawal. The dominant vertiginous perception with the head facing up was rotation in the horizontal plane (85% incidence) with a consistent direction across participants. With the head turned 90 degrees in yaw the perception did not transform into equivalent vertical plane rotation, indicating a context-dependency of the perception. During long exposures, illusory rotation lasted on average 50 s, including 42 s whilst stationary at 7T. Upon withdrawal, perception re-emerged and reversed, lasting on average 30 s. Onset fields for nystagmus and perception were significantly correlated (p<.05). Although perception did not persist as long as nystagmus, this is a known feature of continuous SSC stimulation. These observations, and others in the paper, are compatible with magnetic-field evoked-vertigo and nystagmus sharing a common mechanism. With this interpretation, response decay and reversal upon withdrawal from the field, are due to adaptation to continuous vestibular input. Although the study does not entirely exclude the possibility of mechanisms involving transient vestibular stimulation

  14. On the vertigo due to static magnetic fields.

    PubMed

    Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L

    2013-01-01

    Vertigo is sometimes experienced in and around MRI scanners. Mechanisms involving stimulation of the vestibular system by movement in magnetic fields or magnetic field spatial gradients have been proposed. However, it was recently shown that vestibular-dependent ocular nystagmus is evoked when stationary in homogenous static magnetic fields. The proposed mechanism involves Lorentz forces acting on endolymph to deflect semicircular canal (SCC) cupulae. To investigate whether vertigo arises from a similar mechanism we recorded qualitative and quantitative aspects of vertigo and 2D eye movements from supine healthy adults (n = 25) deprived of vision while pushed into the 7T static field of an MRI scanner. Exposures were variable and included up to 135s stationary at 7T. Nystagmus was mainly horizontal, persisted during long-exposures with partial decline, and reversed upon withdrawal. The dominant vertiginous perception with the head facing up was rotation in the horizontal plane (85% incidence) with a consistent direction across participants. With the head turned 90 degrees in yaw the perception did not transform into equivalent vertical plane rotation, indicating a context-dependency of the perception. During long exposures, illusory rotation lasted on average 50 s, including 42 s whilst stationary at 7T. Upon withdrawal, perception re-emerged and reversed, lasting on average 30 s. Onset fields for nystagmus and perception were significantly correlated (p<.05). Although perception did not persist as long as nystagmus, this is a known feature of continuous SSC stimulation. These observations, and others in the paper, are compatible with magnetic-field evoked-vertigo and nystagmus sharing a common mechanism. With this interpretation, response decay and reversal upon withdrawal from the field, are due to adaptation to continuous vestibular input. Although the study does not entirely exclude the possibility of mechanisms involving transient vestibular stimulation

  15. Influence of confined acoustic phonons on the Radioelectric field in a Quantum well

    NASA Astrophysics Data System (ADS)

    Long, Do Tuan; Quang Bau, Nguyen

    2015-06-01

    The influence of confined acoustic phonons on the Radioelectric field in a quantum well has been studied in the presence of a linearly polarized electromagnetic wave and a laser radiation. By using the quantum kinetic equation for electrons with confined electrons - confined acoustic phonons interaction, the analytical expression for the Radio electric field is obtained. The formula of the Radio electric field contains the quantum number m characterizing the phonons confinement and comes back to the case of unconfined phonons when m reaches to zero. The dependence of the Radio electric field on the frequency of the laser radiation, in case of confined acoustic phonons, is also achieved by numerical method for a specific quantum well AlGaAs/GaAs/AlGaAs. Results show that the Radio electric field has a peak and reaches saturation as the frequency of the laser radiation increases.

  16. NATO TG-53: acoustic detection of weapon firing joint field experiment

    NASA Astrophysics Data System (ADS)

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  17. Localized ultrahigh frequency acoustic fields induced micro-vortices for submilliseconds microfluidic mixing

    NASA Astrophysics Data System (ADS)

    Cui, Weiwei; Zhang, Hao; Zhang, Hongxiang; Yang, Yang; He, Meihang; Qu, Hemi; Pang, Wei; Zhang, Daihua; Duan, Xuexin

    2016-12-01

    We present an acoustic microfluidic mixing approach via acousto-mechanically induced micro-vortices sustained by localized ultrahigh frequency (UHF) acoustic fields. A micro-fabricated solid-mounted thin-film piezoelectric resonator (SMR) with a frequency of 1.54 GHz has been integrated into microfluidic systems. Experimental and simulation results show that UHF-SMR triggers strong acoustic field gradients to produce efficient and highly localized acoustic streaming vortices, providing a powerful source for microfluidic mixing. Homogeneous mixing with 87% mixing efficiency at a Peclet number of 35520 within 1 ms has been achieved. The proposed strategy shows a great potential for microfluidic mixing and enhanced molecule transportation in minimized analytical systems.

  18. Dust ion-acoustic solitary and shock waves due to dust charge fluctuation with vortexlike electrons

    SciTech Connect

    Duha, S. S.; Anowar, M. G. M.; Mamun, A. A.

    2010-10-15

    A rigorous theoretical investigation has been made of the dust ion-acoustic (DIA) solitary and shock waves in an unmagnetized dusty plasma (containing vortexlike electrons, mobile ions, and charge fluctuating static dust) by reductive perturbation method. The effects of dust grain charge fluctuation and vortexlike (trapped) electron are found to modify the properties of the DIA solitary and shock waves significantly. The implications of these results for some space and astrophysical dusty plasma systems, especially planetary ring systems, are briefly mentioned.

  19. Experimental validation of a method for the prediction of the acoustic field produced by an acoustic source and the reflected field produced by a solid interface

    NASA Astrophysics Data System (ADS)

    Diaz, Sandra; Chopra, Rajiv; Pichardo, Samuel

    2012-11-01

    In this work we present a model to calculate the acoustic pressure generated by the interaction of forward and reflected waves in the vicinity of a solid interface and compare it to experimental data. An experimental setup was designed to measure the forward and the combined forward-reflected acoustic fields produced by a solid interface. A 0.785mm-needle hydrophone was used to characterize the acoustic field produced by a 7.29MHz-ultrasound transducer focused at 6cm. The hydrophone was positioned perpendicularly to the sound propagation direction and moved between the transducer and a 9mm-thick acrylic sample using a robotic arm. Simulations were carried out using a modified Rayleigh-Sommerfeld integral that calculates the particle displacement over a reflecting surface. This particle displacement at the boundary of the interface is then used as an acoustic source to obtain the reflected particle displacement. The complex sum of the forward and reflected fields was compared to the experimental measurements. The measurements showed an interference pattern that increased the pressure amplitude in average 10.4% with peaks of up to 25.8%. The proposed model is able to represent the interference pattern produced by the reflected wave with an average absolute error of 3.4+/-0.54% and a maximal error of 5.6%. The comparison between the experimental measurements and the simulations indicates that the presented model predicts with good accuracy the acoustic field generated by ultrasound transducers facing a solid interface. This model can be used to foresee the outcome of therapeutic applications where the devices are used in proximity to a bone interface.

  20. Polymer coating of glass microballoons levitated in a focused acoustic field

    SciTech Connect

    Young, A.T.; Lee, M.C.; Feng, I.A.; Elleman, D.D.; Wang, T.G.

    1981-01-01

    Inertial confinement fusion (ICF) glass microballoons (GMBs) levitated in a focusing radiator acoustic device can be coated with liquid materials by deploying the liquid into the levitation field with a stepped-horn atomizer. The GMB can be forced to the center of the coating liquid with a strong acoustically generated centering force. Water solutions of organic polymers, uv-curable liquid organic monomers, and paraffin waxes have been used to prepare solid coatings on the surface of GMBs using this technique.

  1. Customization of the acoustic field produced by a piezoelectric array through interelement delays

    PubMed Central

    Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.

    2008-01-01

    A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369

  2. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P Oshkai; M Geveci; D Rockwell; M Pollack

    2004-05-24

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe, which give rise to flow tones, are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  3. Numerical Analysis of the Acoustic Field of Tip-Clearance Flow

    NASA Astrophysics Data System (ADS)

    Alavi Moghadam, S. M.; M. Meinke Team; W. Schröder Team

    2015-11-01

    Numerical simulations of the acoustic field generated by a shrouded axial fan are studied by a hybrid fluid-dynamics-acoustics method. In a first step, large-eddy simulations are performed to investigate the dynamics of tip clearance flow for various tip gap sizes and to determine the acoustic sources. The simulations are performed for a single blade out of five blades with periodic boundary conditions in the circumferential direction on a multi-block structured mesh with 1.4 ×108 grid points. The turbulent flow is simulated at a Reynolds number of 9.36 ×105 at undisturbed inflow condition and the results are compared with experimental data. The diameter and strength of the tip vortex increase with the tip gap size, while simultaneously the efficiency of the fan decreases. In a second step, the acoustic field on the near field is determined by solving the acoustic perturbation equations (APE) on a mesh for a single blade consisting of approx. 9.8 ×108 grid points. The overall agreement of the pressure spectrum and its directivity with measurements confirm the correct identification of the sound sources and accurate prediction of the acoustic duct propagation. The results show that the longer the tip gap size the higher the broadband noise level. Senior Scientist, Institute of Aerodynamics, RWTH Aachen University.

  4. Acoustic characterization of high intensity focused ultrasound field generated from a transmitter with large aperture

    NASA Astrophysics Data System (ADS)

    Fan, Tingbo; Chen, Tao; Zhang, Wei; Hu, Jimin; Zhang, Yichuan; Zhang, Dong

    2017-03-01

    A combined experiment and simulation method was utilized to characterize the acoustic field generated from a strong focused HIFU transmitter. The nonlinear sound propagation was described by the spheroidal beam equation (SBE). The relationship between the source pressure amplitude and excitation voltage was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; then the acoustic pressure field generated by the strong focused transducer was predicted by using the SBE model. A commercial fiber optic probe hydrophone (FOPH) was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a half aperture angle of 30°. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results show that the current approach might be useful to describe the HIFU field.

  5. Analyzing panel acoustic contributions toward the sound field inside the passenger compartment of a full-size automobile.

    PubMed

    Wu, Sean F; Moondra, Manmohan; Beniwal, Ravi

    2015-04-01

    The Helmholtz equation least squares (HELS)-based nearfield acoustical holography (NAH) is utilized to analyze panel acoustic contributions toward the acoustic field inside the interior region of an automobile. Specifically, the acoustic power flows from individual panels are reconstructed, and relative contributions to sound pressure level and spectrum at any point of interest are calculated. Results demonstrate that by correlating the acoustic power flows from individual panels to the field acoustic pressure, one can correctly locate the panel allowing the most acoustic energy transmission into the vehicle interior. The panel on which the surface acoustic pressure amplitude is the highest should not be used as indicative of the panel responsible for the sound field in the vehicle passenger compartment. Another significant advantage of this HELS-based NAH is that measurements of the input data only need to be taken once by using a conformal array of microphones in the near field, and ranking of panel acoustic contributions to any field point can be readily performed. The transfer functions between individual panels of any vibrating structure to the acoustic pressure anywhere in space are calculated not measured, thus significantly reducing the time and effort involved in panel acoustic contributions analyses.

  6. Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields

    NASA Astrophysics Data System (ADS)

    Courtney, Charles R. P.; Drinkwater, Bruce W.; Demore, Christine E. M.; Cochran, Sandy; Grinenko, Alon; Wilcox, Paul D.

    2013-03-01

    We show that Bessel-function acoustic pressure fields can be used to trap and controllably position microparticles. A circular, 16-element ultrasound array generates and manipulates an acoustic field within a chamber, trapping microparticles and agglomerates. Changes in the phase of the sinusoidal signals applied to the array elements result in the movement of the Bessel-function pressure field and hence the microparticles. This demonstrates ultrasonic manipulation analogous to holographic optical tweezers. The manipulation limits of the device are explained by the existence of unwanted resonances within the manipulation chamber.

  7. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.

    PubMed

    Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F

    2015-09-01

    The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial.

  8. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing

    PubMed Central

    Yan, Huichen; Xu, Jia; Long, Teng; Zhang, Xudong

    2015-01-01

    Matched field processing (MFP) is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP) model from wave propagation theory by using randomly deployed sensors. In addition, the model’s recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP) algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method. PMID:26457708

  9. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing.

    PubMed

    Yan, Huichen; Xu, Jia; Long, Teng; Zhang, Xudong

    2015-10-07

    Matched field processing (MFP) is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP) model from wave propagation theory by using randomly deployed sensors. In addition, the model's recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP) algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method.

  10. Full-Field Imaging of Acoustic Motion at Nanosecond Time and Micron Length Scales

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Cottle, David Lynn; Larson III, John D.

    2002-10-01

    A full-field view laser ultrasonic imaging method has been developed that measures acoustic motion at a surface without scanning. Images are recorded at normal video frame rates by employing dynamic holography using photorefractive interferometric detection. By extending the approach to ultra high frequencies, an acoustic microscope has been developed capable of operation on the nanosecond time and micron length scales. Both acoustic amplitude and phase are recorded allowing full calibration and determination of phases to within a single arbitrary constant. Results are presented of measurements at frequencies at 800-900 MHz illustrating a multitude of normal mode behavior in electrically driven thin film acoustic resonators. Coupled with microwave electrical impedance measurements, this imaging mode provides an exceptionally fast method for evaluation of electric to acoustic coupling and performance of these devices. Images of 256x240 pixels are recorded at 18Hz rates synchronized to obtain both in-phase and quadrature detection of the acoustic motion. Simple averaging provides sensitivity to the subnanometer level calibrated over the image using interferometry. Identification of specific acoustic modes and their relationship to electrical impedance characteristics show the advantages and overall high speed of the technique.

  11. Recovery of burner acoustic source structure from far-field sound spectra

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Jones, J. D.

    1984-01-01

    A method is presented that permits the thermal-acoustic efficiency spectrum in a long turbulent burner to be recovered from the corresponding far-field sound spectrum. An acoustic source/propagation model is used based on the perturbation solution of the equations describing the unsteady one-dimensional flow of an inviscid ideal gas with a distributed heat source. The technique is applied to a long cylindrical hydrogen-flame burner operating over power levels of 4.5-22.3 kW. The results show that the thermal-acoustic efficiency at a given frequency, defined as the fraction of the total burner power converted to acoustic energy at that frequency, is rather insensitive to burner power, having a maximum value on the order of 10 to the -4th at 150 Hz and rolling off steeply with increasing frequency. Evidence is presented that acoustic agitation of the flame at low frequencies enhances the mixing of the unburned fuel and air with the hot products of combustion. The paper establishes the potential of the technique as a useful tool for characterizing the acoustic source structure in any burner, such as a gas turbine combustor, for which a reasonable acoustic propagation model can be postulated.

  12. Damping of dust-acoustic waves due to dust-dust interactions in dusty plasmas

    NASA Astrophysics Data System (ADS)

    de Angelis, U.; Shukla, P. K.

    1998-08-01

    The results of a kinetic model are presented which includes dust-dust collisions as a damping mechanism for the low-phase velocity dust-acoustic waves which have been observed [Pieper and Goree, Phys. Rev. Lett. 77 (1976) 3137] in a dusty plasma device. A comparison of our theoretical results with those of observations exhibits a good agreement, and it also leads to quantitative estimates that are close to the predictions of the modified fluid theory, which has introduced a damping rate in an ad hoc manner.

  13. Design of acoustic logging signal source of imitation based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Ju, X. D.; Lu, J. Q.; Men, B. Y.

    2014-08-01

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes.

  14. Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept

    NASA Astrophysics Data System (ADS)

    Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.

    2016-10-01

    This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.

  15. Identification of vibration excitations from acoustic measurements using near field acoustic holography and the force analysis technique

    NASA Astrophysics Data System (ADS)

    Pézerat, C.; Leclère, Q.; Totaro, N.; Pachebat, M.

    2009-10-01

    This study presents a method of using acoustic holography and the force analysis technique to identify vibration sources from radiated noise measurements. The structure studied is a plate excited by a shaker on which three measurements were performed: the first is a reference measurement of plate velocity obtained by scanning laser vibrometry, the second is based on sound pressure measurements in the near field of the structure, and the third is the measurement of normal acoustic velocities by using a p-U probe recently developed by Microflown Technologies. This was followed by the application of classical NAH, known as pressure-to-velocity holography and velocity-to-velocity holography to predict the plate velocity field from acoustic measurements at distances of 1 and 5 cm. Afterwards, the force analysis technique, also known as the RIFF technique, is applied with these five data sets. The principle is to inject the displacement field of the structure into its equation of motion and extract the resulting force distribution. This technique requires regularization done by a low-pass filter in the wavenumber domain. Apart from pressure-to-velocity holography at 5 cm, the reconstructed force distribution allows localizing the excitation point in the measurement area. FAT regularization is also shown to improve results as its cutoff wavenumber is optimized with the natural wavenumber of the plate. Lastly, quantitative force values are extracted from force distributions at all frequencies of the band 0-4 kHz studied and compared with the force spectrum measured directly by a piezoelectric sensor.

  16. Characterization of damage due to stress corrosion cracking in carbon steel using nonlinear surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Zeitvogel, D. T.; Matlack, K. H.; Kim, J.-Y.; Jacobs, L. J.; Singh, P. M.; Qu, J.

    2013-01-01

    Cold rolled carbon steel 1018C is widely used in pressurized fuel pipelines. In these structures, stress corrosion cracking (SCC) can pose a significant problem because cracks initiate late in the lifetime and often unexpectedly, but grow fast once they get started. To ensure a safe operation it is crucial that any damage can be detected before the structural stability is reduced by large cracks. In the early stages of SCC, microstructural changes occur which in many cases increase the acoustic nonlinearity of the material. Therefore, an initially monochromatic Rayleigh wave is distorted and measurable higher harmonics are generated. Different levels of stress corrosion cracking is induced in five specimens. For each specimen, nonlinear ultrasonic measurements are performed before and after inducing the damage. For the measurements, oil coupled wedge transducers are used to generate and detect tone burst Rayleigh wave signals. The amplitudes of the received fundamental and second harmonic waves are measured at varying propagation distances to obtain a measure for the acoustic nonlinearity of the specimens. The results show a damage-dependent increase in nonlinearity for early stages of damage, indicating the feasibility of this nonlinear ultrasonic method to detect the initiation of stress corrosion cracking.

  17. An evaluation of differences due to changing source directivity in room acoustic computer modeling

    NASA Astrophysics Data System (ADS)

    Vigeant, Michelle C.; Wang, Lily M.

    2001-05-01

    This project examines the effects of changing source directivity in room acoustic computer models on objective parameters and subjective perception. Acoustic parameters and auralizations calculated from omnidirectional versus directional sources were compared. Three realistic directional sources were used, measured in a limited number of octave bands from a piano, singing voice, and violin. A highly directional source that beams only within a sixteenth-tant of a sphere was also tested. Objectively, there were differences of 5% or more in reverberation time (RT) between the realistic directional and omnidirectional sources. Between the beaming directional and omnidirectional sources, differences in clarity were close to the just-noticeable-difference (jnd) criterion of 1 dB. Subjectively, participants had great difficulty distinguishing between the realistic and omnidirectional sources; very few could discern the differences in RTs. However, a larger percentage (32% vs 20%) could differentiate between the beaming and omnidirectional sources, as well as the respective differences in clarity. Further studies of the objective results from different beaming sources have been pursued. The direction of the beaming source in the room is changed, as well as the beamwidth. The objective results are analyzed to determine if differences fall within the jnd of sound-pressure level, RT, and clarity.

  18. Receptivity of Supersonic Boundary Layers Due To Acoustic Disturbances Over Blunt Cones

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2007-01-01

    Receptivity and stability of supersonic boundary layers over a 5-degree straight cone with a blunt tip are numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 106/inch. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The linear stability results showed that bluntness has less stabilizing effects on the stability of boundary layers over cones than on flat plates and wedges. The unsteady simulations of the interaction of plane threedimensional acoustic waves with the cone showed that the modulation of wavelength and the generation of instability waves first occurred near the leading edge in the plane where the constant acoustic phase lines are perpendicular to the cone axis. Further downstream, this instability region spreads in the azimuthal direction from this plane.

  19. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  20. Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire.

    PubMed

    Jean, Cyril; Belliard, Laurent; Cornelius, Thomas W; Thomas, Olivier; Pennec, Yan; Cassinelli, Marco; Toimil-Molares, Maria Eugenia; Perrin, Bernard

    2016-10-12

    The monochromatic and geometrically anisotropic acoustic field generated by 400 and 120 nm diameter copper nanowires simply dropped on a 10 μm silicon membrane is investigated in transmission using three-dimensional time-resolved femtosecond pump-probe experiments. Two pump-probe time-resolved experiments are carried out at the same time on both sides of the silicon substrate. In reflection, the first radial breathing mode of the nanowire is excited and detected. In transmission, the longitudinal and shear waves are observed. The longitudinal signal is followed by a monochromatic component associated with the relaxation of the nanowire's first radial breathing mode. Finite difference time domain (FDTD) simulations are performed and accurately reproduce the diffracted field. A shape anisotropy resulting from the large aspect ratio of the nanowire is detected in the acoustic field. The orientation of the underlying nanowires is thus acoustically deduced.

  1. Near- and Far-field Response to Compact Acoustic Sources in Stratified Convection Zones

    NASA Astrophysics Data System (ADS)

    Cally, Paul S.

    2013-05-01

    The role of the acoustic continuum associated with compact sources in the Sun's interior wave field is explored for a simple polytropic model. The continuum produces a near-field acoustic structure—the so-called acoustic jacket—that cannot be represented by a superposition of discrete normal modes. Particular attention is paid to monochromatic point sources of various frequency and depth, and to the surface velocity power that results, both in the discrete f- and p-mode spectrum and in the continuum. It is shown that a major effect of the continuum is to heal the surface wave field produced by compact sources, and therefore to hide them from view. It is found that the continuous spectrum is not a significant contributor to observable inter-ridge seismic power.

  2. Beam stresses induced by a turbulent boundary layer and simulated with a reverberant acoustic field

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, L. A.

    1981-01-01

    Unsteady pressure fluctuations are a feature of the flow field of an airplane or a space vehicle in atmospheric flight. Undesirable effects of these fluctuations range from internal (cabin) noise to structural fatigue and damage of avionic and ordnance systems. The integrity to withstand these fluctuating loads is established through reverberant room acoustical qualification testing. The purpose of this paper is to develop a methodology of simulating turbulent boundary layer fluctuating pressure loading for a simply supported beam with a reverberant acoustic field. This goal was accomplished using normal mode vibration analysis. The main results were developed in terms of dimensionless quantities such as turbulent boundary layer spectrums, reverberant acoustical field simulation spectrums, and stress response spectrums with parameters: dimensionless fundamental frequency, Mach number, and relative boundary layer displacement thickness.

  3. Biological effects due to weak magnetic fields on plants

    NASA Astrophysics Data System (ADS)

    Belyavskaya, N.

    In the evolution process, living organisms have experienced the action of the Earth's magnetic field (MF) that is a natural component of our environment. It is known that a galactic MF induction does not exceed 0.1 nT, since investigations of weak magnetic field (WMF) effects on biological systems have attracted attention of biologists due to planning long-term space flights to other planets where the magnetizing force is near 10-5 Oe. However, the role of WMF and its influence on organisms' functioning are still insufficiently investigated. A large number of experiments with seedlings of different plant species placed in WMF has found that the growth of their primary roots is inhibited during the early terms of germination in comparison with control. The proliferation activity and cell reproduction are reduced in meristem of plant roots under WMF application. The prolongation of total cell reproductive cycle is registered due to the expansion of G phase in1 different plant species as well as of G phase in flax and lentil roots along with2 relative stability of time parameters of other phases of cell cycle. In plant cells exposed to WMF, the decrease in functional activity of genome at early prereplicate period is shown. WMF causes the intensification in the processes of proteins' synthesis and break-up in plant roots. Qualitative and quantitative changes in protein spectrum in growing and differentiated cells of plant roots exposed to WMF are revealed. At ultrastructural level, there are observed such ultrastructural peculiarities as changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells of pea roots exposed to WMF. Mitochondria are the most sensitive organelle to WMF application: their size and relative volume in cells increase, matrix is electron

  4. Flow Field and Acoustic Predictions for Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  5. A branch of energetic-particle driven geodesic acoustic modes due to magnetic drift resonance

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Kasuya, N.; Itoh, K.; Hallatschek, K.; Lesur, M.; Kosuga, Y.; Itoh, S.-I.

    2016-10-01

    Eigenmode analysis of geodesic acoustic modes (GAMs) driven by fast ions is performed, based on a set of gyrokinetic equations. Resonance to the magnetic drift of the fast ions can destabilize GAMs. A new branch is found in the family of GAMs, whose frequency is close to the magnetic drift frequency of the fast ions. The poloidal eigenfunction of this branch has bump structures in the poloidal direction where the resonance of the magnetic drift with the mode is strong. The ion heating rate by the GAMs is evaluated in the framework of quasi-linear theory. The heating is localized poloidally around the resonance locations. Owing to the bumps in the eigenfunction, the magnitude of the heating is much larger than that estimated without the magnetic drift resonance.

  6. Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kipp, C. R.; Bernhard, R. J.

    1985-01-01

    A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.

  7. Geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field

    SciTech Connect

    Zhou, Deng

    2015-09-15

    The dispersion relation of geodesic acoustic modes in the tokamak plasma with an equilibrium radial electric field is derived and analyzed. Multiple branches of eigenmodes have been found, similar to the result given by the fluid model with a poloidal mass flow. Frequencies and damping rates of both the geodesic acoustic mode and the sound wave increase with respect to the strength of radial electric field, while the frequency and the damping rate of the lower frequency branch slightly decrease. Possible connection to the experimental observation is discussed.

  8. On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method

    PubMed

    Wu

    2000-05-01

    This paper presents analyses and implementation of the reconstruction of acoustic pressure fields radiated from a general, three-dimensional complex vibrating structure using the Helmholtz equation least-squares (HELS) method. The structure under consideration emulates a full-size four-cylinder engine. To simulate sound radiation from a vibrating structure, harmonic excitations are assumed to act on arbitrarily selected surfaces. The resulting vibration responses are solved by the commercial FEM (finite element method) software I-DEAS. Once the normal component of the surface velocity distribution is determined, the surface acoustic pressures are calculated using standard boundary element method (BEM) codes. The radiated acoustic pressures over several planar surfaces at certain distances from the source are calculated by the Helmholtz integral formulation. These field pressures are taken as the input to the HELS formulation to reconstruct acoustic pressures on the entire source surface, as well as in the field. The reconstructed acoustic pressures thus obtained are then compared with benchmark values. Numerical results demonstrate that good agreements can be obtained with relatively few expansion functions. The HELS method is shown to be very effective in the low-to-mid frequency regime, and can potentially become a powerful noise diagnostic tool.

  9. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    PubMed

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  10. Deep ocean sound speed characteristics passively derived from the ambient acoustic noise field

    NASA Astrophysics Data System (ADS)

    Evers, L. G.; Wapenaar, K.; Heaney, K. D.; Snellen, M.

    2017-02-01

    The propagation of acoustic waves in the ocean strongly depends on the temperature. Low frequency acoustic waves can penetrate the ocean down to depths where few in-situ measurements are available. It is therefore attractive to obtain a measure of the deep ocean temperature from acoustic waves. The latter is especially true if the ambient acoustic noise field can be used instead of deterministic transient signals. In this study the acoustic velocity, and hence the temperature, is derived in an interferometric approach from hydrophone array recordings. The arrays were separated by over 125 km, near Ascension Island in the Atlantic Ocean, at a depth of 850m. Furthermore, the dispersive characteristics of the deep ocean sound channel are resolved based on the retrieved lag times for different modes. In addition, it is shown how the resolution of the interferometric approach can be increased by cross correlating array beams rather than recordings from single-sensor pairs. The observed acoustic lag times between the arrays corresponds well to modeled values, based on full-wave modeling through best-known oceanic models.

  11. Research on Diagnosing the Gearbox Faults Based on Near Field Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Jiang, W. K.; Hou, J. J.; Xing, J. T.

    2011-07-01

    The gearbox fault diagnosis was developed for some decades. The current diagnosis techniques were mostly based on analyzing the shell vibration signals especially close to the bearing seat of gearbox. In order to utilize the spatial distribution information of fault signal, the near field acoustic holography (NAH) is employed for the condition monitoring and fault diagnosis of the gearbox in this presentation. The distribution images of sound pressure on the surface of gearbox are reconstructed by NAH, and the feature extraction and pattern recognition can be made by image processing techniques. A gearbox is studied in a semi-anechoic chamber to verify the fault diagnosis technique based on NAH. The pitting and partial broken tooth faults of gears are artificially made on one gear as the fault statuses, and the differences of acoustic images among normal and fault working states under the idling condition are analyzed. It can be found that the acoustic images of gearbox in the three different situations change regularly, and the main sound sources can be recognized from the acoustic images which also contain rich diagnosis information. After feature extraction of the acoustic images, the pattern reorganization technique is employed for diagnosis. The results indicate that this diagnosis procedure based on acoustic images is available and feasible for the gearbox fault diagnosis.

  12. Acoustic Field Associated with Parabolized Stability Equation Models in Turbulent Jets

    DTIC Science & Technology

    2013-05-01

    discusses linear models of these wavepackets for supersonic turbulent jets based on Parabolized Stability Equations ( PSE ). In the past, results of...comparisons of the PSE models with near-field pressure fields from LES, filtered by means of Proper Orthogonal Decomposition (POD), demonstrate acceptable...fidelity of the model. Finally, the acoustic far-field associated with the PSE wavepackets is computed using a Kirchhoff surface method, capturing

  13. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.

    PubMed

    Zhou, Ji-Xun; Zhang, Xue-Zhen

    2012-12-01

    Several physics-based seabed geoacoustic models (including the Biot theory) predict that compressional wave attenuation α(2) in sandy marine sediments approximately follows quadratic frequency dependence at low frequencies, i.e., α(2)≈kf(n) (dB/m), n=2. A recent paper on broadband geoacoustic inversions from low frequency (LF) field measurements, made at 20 locations around the world, has indicated that the frequency exponent of the effective sound attenuation n≈1.80 in a frequency band of 50-1000 Hz [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)]. Carey and Pierce hypothesize that the discrepancy is due to the inversion models' neglect of shear wave effects [J. Acoust. Soc. Am. 124, EL271-EL277 (2008)]. The broadband geoacoustic inversions assume that the seabottom is an equivalent fluid and sound waves interact with the bottom at small grazing angles. The shear wave velocity and attenuation in the upper layer of ocean bottoms are estimated from the LF field-inverted effective bottom attenuations using a near-grazing bottom reflection expression for the equivalent fluid model, derived by Zhang and Tindle [J. Acoust. Soc. Am. 98, 3391-3396 (1995)]. The resultant shear wave velocity and attenuation are consistent with the SAX99 measurement at 25 Hz and 1000 Hz. The results are helpful for the analysis of shear wave effects on long-range sound propagation in shallow water.

  14. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets.

  15. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    SciTech Connect

    Chen, Tao; Fan, Tingbo; Zhang, Wei; Qiu, Yuanyuan; Tu, Juan E-mail: dzhang@nju.edu.cn; Guo, Xiasheng; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2014-03-21

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focused HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.

  16. Acoustic propagation through anisotropic internal wave fields: transmission loss, cross-range coherence, and horizontal refraction.

    PubMed

    Oba, Roger; Finette, Steven

    2002-02-01

    Results of a computer simulation study are presented for acoustic propagation in a shallow water, anisotropic ocean environment. The water column is characterized by random volume fluctuations in the sound speed field that are induced by internal gravity waves, and this variability is superimposed on a dominant summer thermocline. Both the internal wave field and resulting sound speed perturbations are represented in three-dimensional (3D) space and evolve in time. The isopycnal displacements consist of two components: a spatially diffuse, horizontally isotropic component and a spatially localized contribution from an undular bore (i.e., a solitary wave packet or solibore) that exhibits horizontal (azimuthal) anisotropy. An acoustic field is propagated through this waveguide using a 3D parabolic equation code based on differential operators representing wide-angle coverage in elevation and narrow-angle coverage in azimuth. Transmission loss is evaluated both for fixed time snapshots of the environment and as a function of time over an ordered set of snapshots which represent the time-evolving sound speed distribution. Horizontal acoustic coherence, also known as transverse or cross-range coherence, is estimated for horizontally separated points in the direction normal to the source-receiver orientation. Both transmission loss and spatial coherence are computed at acoustic frequencies 200 and 400 Hz for ranges extending to 10 km, a cross-range of 1 km, and a water depth of 68 m. Azimuthal filtering of the propagated field occurs for this environment, with the strongest variations appearing when propagation is parallel to the solitary wave depressions of the thermocline. A large anisotropic degradation in horizontal coherence occurs under the same conditions. Horizontal refraction of the acoustic wave front is responsible for the degradation, as demonstrated by an energy gradient analysis of in-plane and out-of-plane energy transfer. The solitary wave packet is

  17. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    SciTech Connect

    Xie, Jin-Han Vanneste, Jacques

    2014-10-15

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, and viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.

  18. Acoustic backscatter by suspended cohesive sediments: Field observations, Seine Estuary, France

    NASA Astrophysics Data System (ADS)

    Sahin, Cihan; Verney, Romaric; Sheremet, Alexandru; Voulgaris, George

    2017-02-01

    Observations of suspended sediment size and concentration, flow and acoustic backscatter intensity collected on the Seine Estuary (France) are used to study the acoustic response in cohesive-sediment dominated environments. Estimates of suspended sediment concentration based on optical backscatter sensors and water samples are used to calibrate the acoustic backscatter intensity. The vertical structure of suspended sediment concentration is then estimated from acoustic backscatter information. To our knowledge, this is the first field application of the recently proposed model of acoustic scattering by flocculating suspensions based on the variation of particle density (floc-scattering model). The estimates of sediment concentration reproduce well the observations under different tidal (neap/spring) conditions, confirming the applicability of the new model in the field when detailed particle size measurements are available. When particle size measurements are not available, using estimated floc sizes based on the turbulence intensities may provide reasonable SSC profiles. During spring tide events (associated with strong currents, small flocs and large concentrations), the performances of the new floc-scattering model and the previous models given for solid particle-scattering are comparable. The floc-scattering model increases the quality of the SSC estimates especially during low-energy conditions characterized with larger flocs.

  19. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    PubMed

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  20. Transmitting Information by Propagation in an Ocean Waveguide: Computation of Acoustic Field Capacity

    DTIC Science & Technology

    2015-06-17

    sound speeds and densities for both the water column and bottom, in conjunction with a correlated noise field. The acoustic source is described by a...determined here through singular value de- composition of matrices associated with the Green functions and noise distribution, in conjunction with a

  1. Assembly of colloidal molecules, polymers, and crystals in acoustic and magnetic fields.

    PubMed

    Yang, Ye; Pham, An T; Cruz, Daniela; Reyes, Christopher; Wiley, Benjamin J; Lopez, Gabriel P; Yellen, Benjamin B

    2015-08-26

    A dynamically adjustable colloidal assembly technique is presented, which combines magnetic and acoustic fields to produce a wide range of colloidal structures, ranging from discrete colloidal molecules, to polymer networks and crystals. The structures can be stabilized and dried, making them suitable for the fabrication of advanced materials.

  2. Bioacoustic field research: a primer to acoustic analyses and playback experiments with primates.

    PubMed

    Fischer, Julia; Noser, Rahel; Hammerschmidt, Kurt

    2013-07-01

    Acoustic analyses of primate vocalizations as well as playback experiments are staple methods in primatology. Acoustic analyses have been used to investigate the influence of factors such as individuality, context, sex, age, and size on variation in calls. More recent studies have expanded our knowledge on the effects of phylogenetic relatedness and the structure of primate vocal repertoires in general. Complementary playback experiments allow direct testing of hypotheses regarding the attribution of meaning to calls, the cognitive mechanisms underpinning responses, and/or the adaptive value of primate behavior. After briefly touching on the historical background of this field of research, we first provide an introduction to recording primate vocalizations and discuss different approaches to describe primate calls in terms of their temporal and spectral properties. Second, we present a tutorial regarding the preparation, execution, and interpretation of field playback experiments, including a review of studies that have used such approaches to investigate the responses to acoustic variation in calls including the integration of contextual and acoustic information, recognition of kin and social relationships, and social knowledge. Based on the review of the literature and our own experience, we make a number of recommendations regarding the most common problems and pitfalls. The power of acoustic analyses typically hinges on the quality of the recordings and the number of individuals represented in the sample. Playback experiments require profound knowledge of the natural behavior of the animals for solid interpretation; experiments should be conducted sparingly, to avoid habituation of the subjects to the occurrence of the calls; experimenter-blind designs chosen whenever possible; and researchers should brace themselves for long periods of waiting times until the appropriate moments to do the experiment arise. If all these aspects are considered, acoustic analyses

  3. Bioacoustic Field Research: A Primer to Acoustic Analyses and Playback Experiments With Primates

    PubMed Central

    FISCHER, JULIA; NOSER, RAHEL; HAMMERSCHMIDT, KURT

    2013-01-01

    Acoustic analyses of primate vocalizations as well as playback experiments are staple methods in primatology. Acoustic analyses have been used to investigate the influence of factors such as individuality, context, sex, age, and size on variation in calls. More recent studies have expanded our knowledge on the effects of phylogenetic relatedness and the structure of primate vocal repertoires in general. Complementary playback experiments allow direct testing of hypotheses regarding the attribution of meaning to calls, the cognitive mechanisms underpinning responses, and/or the adaptive value of primate behavior. After briefly touching on the historical background of this field of research, we first provide an introduction to recording primate vocalizations and discuss different approaches to describe primate calls in terms of their temporal and spectral properties. Second, we present a tutorial regarding the preparation, execution, and interpretation of field playback experiments, including a review of studies that have used such approaches to investigate the responses to acoustic variation in calls including the integration of contextual and acoustic information, recognition of kin and social relationships, and social knowledge. Based on the review of the literature and our own experience, we make a number of recommendations regarding the most common problems and pitfalls. The power of acoustic analyses typically hinges on the quality of the recordings and the number of individuals represented in the sample. Playback experiments require profound knowledge of the natural behavior of the animals for solid interpretation; experiments should be conducted sparingly, to avoid habituation of the subjects to the occurrence of the calls; experimenter-blind designs chosen whenever possible; and researchers should brace themselves for long periods of waiting times until the appropriate moments to do the experiment arise. If all these aspects are considered, acoustic analyses

  4. Generation and development of small-amplitude disturbances in a laminar boundary layer in the presence of an acoustic field

    NASA Technical Reports Server (NTRS)

    Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.

    1985-01-01

    A low-turbulence subsonic wind tunnel was used to study the influence of acoustic disturbances on the development of small sinusoidal oscillations (Tollmien-Schlichting waves) which constitute the initial phase of turbulent transition. It is found that acoustic waves propagating opposite to the flow generate vibrations of the model (plate) in the flow. Neither the plate vibrations nor the acoustic field itself have any appreciable influence on the stability of the laminar boundary layer. The influence of an acoustic field on laminar boundary layer disturbances is limited to the generation of Tollmien-Schlichting waves at the leading-edge of the plate.

  5. Field performance of an acoustic scour-depth monitoring system

    USGS Publications Warehouse

    Mason, Jr., Robert R.; Sheppard, D. Max

    1994-01-01

    The Herbert C. Bonner Bridge over Oregon Inlet serves as the only land link between Bodie and Hatteras Islands, part of the Outer Banks of North Carolina. Periodic soundings over the past 30 years have documented channel migration, local scour, and deposition at several pilings that support the bridge. In September 1992, a data-collection system was installed to permit the off-site monitoring of scour at 16 bridge pilings. The system records channel-bed elevations at 15-minute intervals and transmits the data to a satellite receiver. A cellular phone connection also permits downloading and reviewing of the data as they are being collected. A digitally recording, acoustic fathometer is the main component of the system. In November 1993, current velocity, water-surface elevation, wave characteristics, and water temperature measuring instruments were also deployed at the site. Several performance problems relating to the equipment and to the harsh marine environment have not been resolved, but the system has collected and transmitted reliable scour-depth and water-level data.

  6. Adaptive plasticity in wild field cricket's acoustic signaling.

    PubMed

    Bertram, Susan M; Harrison, Sarah J; Thomson, Ian R; Fitzsimmons, Lauren P

    2013-01-01

    Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets, rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus. Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual context they experience.

  7. Synthetic-gauge-field-induced Dirac semimetal state in an acoustic resonator system

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Zhang, Baile

    2016-12-01

    Recently, a proposal of synthetic gauge field in reduced two-dimensional (2D) system from three-dimensional (3D) acoustic structure shows an analogue of the gapped Haldane model with fixed k z , and achieves the gapless Weyl semimetal phase in 3D momentum space. Here, extending this approach of synthetic gauge flux, we propose a reduced square lattice of acoustic resonators, which exhibits Dirac nodes with broken effective time-reversal symmetry. Protected by an additional hidden symmetry, these Dirac nodes with quantized values of topological charge are characterized by nonzero winding number and the finite structure exhibits flat edge modes that cannot be destroyed by perturbations.

  8. Mapping the sound field of an erupting submarine volcano using an acoustic glider.

    PubMed

    Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W

    2011-03-01

    An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds.

  9. Optical probing of electric fields with an electro-acoustic effect toward integrated circuit diagnosis.

    PubMed

    Jin, Ru-Long; Yang, Han; Zhao, Di; Chen, Qi-Dai; Yan, Zhao-Xu; Yi, Mao-Bin; Sun, Hong-Bo

    2010-02-15

    Electro-optic probing of electric fields has been considered as a promising approach for integrated circuit diagnosis. However, the method is subject to relatively weak voltage sensitivity. In this Letter, we solve the problems with electro-acoustic effect. In contrast to the general electro-optic effect, the light phase modulation induced by the acoustic effect is 2 orders of magnitude stronger at its resonant frequency, as we observed in a GaAs thin film probe. Furthermore, this what we believe to be a novel method shows a highly reproducible linearity between the detected signals and the input voltages, which facilitates the voltage calibration.

  10. Acoustic streaming field structure. Part II. Examples that include boundary-driven flow.

    PubMed

    Bradley, Charles

    2012-01-01

    In this paper three simple acoustic streaming problems are presented and solved. The purpose of the paper is to demonstrate the use of a previously published streaming model by Bradley [J. Acoust. Soc. Am. 100(3), 1399-1408 (1996)] and illustrate, with concrete examples, some of the features of streaming flows that were predicted by the general model. In particular, the problems are intended to demonstrate cases in which the streaming field boundary condition at the face of the radiator has a nontrivial lateral dc velocity component. Such a boundary condition drives a steady solenoidal flow just like a laterally translating boundary drives Couette flow.

  11. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    SciTech Connect

    Xiong, Jichuan; Xu, Xiaodong E-mail: christ.glorieux@fys.kuleuven.be; Glorieux, Christ E-mail: christ.glorieux@fys.kuleuven.be; Matsuda, Osamu; Cheng, Liping

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  12. A gearbox fault diagnosis scheme based on near-field acoustic holography and spatial distribution features of sound field

    NASA Astrophysics Data System (ADS)

    Lu, Wenbo; Jiang, Weikang; Yuan, Guoqing; Yan, Li

    2013-05-01

    Vibration signal analysis is the main technique in machine condition monitoring or fault diagnosis, whereas in some cases vibration-based diagnosis is restrained because of its contact measurement. Acoustic-based diagnosis (ABD) with non-contact measurement has received little attention, although sound field may contain abundant information related to fault pattern. A new scheme of ABD for gearbox based on near-field acoustic holography (NAH) and spatial distribution features of sound field is presented in this paper. It focuses on applying distribution information of sound field to gearbox fault diagnosis. A two-stage industrial helical gearbox is experimentally studied in a semi-anechoic chamber and a lab workshop, respectively. Firstly, multi-class faults (mild pitting, moderate pitting, severe pitting and tooth breakage) are simulated, respectively. Secondly, sound fields and corresponding acoustic images in different gearbox running conditions are obtained by fast Fourier transform (FFT) based NAH. Thirdly, by introducing texture analysis to fault diagnosis, spatial distribution features are extracted from acoustic images for capturing fault patterns underlying the sound field. Finally, the features are fed into multi-class support vector machine for fault pattern identification. The feasibility and effectiveness of our proposed scheme is demonstrated on the good experimental results and the comparison with traditional ABD method. Even with strong noise interference, spatial distribution features of sound field can reliably reveal the fault patterns of gearbox, and thus the satisfactory accuracy can be obtained. The combination of histogram features and gray level gradient co-occurrence matrix features is suggested for good diagnosis accuracy and low time cost.

  13. Acoustic Resonators for Far-Field Control of Sound on a Subwavelength Scale

    NASA Astrophysics Data System (ADS)

    Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2011-08-01

    We prove experimentally that broadband sounds can be controlled and focused at will on a subwavelength scale by using acoustic resonators. We demonstrate our approach in the audible range with soda cans, that is, Helmholtz resonators, and commercial computer speakers. We show that diffraction-limited sound fields convert efficiently into subdiffraction modes in the collection of cans that can be controlled coherently in order to obtain focal spots as thin as 1/25 of a wavelength in air. We establish that subwavelength acoustic pressure spots are responsible for a strong enhancement of the acoustic displacement at focus, which permits us to conclude with a visual experiment exemplifying the interest of our concept for subwavelength sensors and actuators.

  14. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  15. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Romero-García, Vicent; Pagneux, Vincent; Groby, Jean-Philippe

    2017-01-01

    We theoretically and experimentally report subwavelength resonant panels for low-frequency quasiperfect sound absorption including transmission by using the accumulation of cavity resonances due to the slow sound phenomenon. The subwavelength panel is composed of periodic horizontal slits loaded by identical Helmholtz resonators (HRs). Due to the presence of the HRs, the propagation inside each slit is strongly dispersive, with near-zero phase velocity close to the resonance of the HRs. In this slow sound regime, the frequencies of the cavity modes inside the slit are down-shifted and the slit behaves as a subwavelength resonator. Moreover, due to strong dispersion, the cavity resonances accumulate at the limit of the band gap below the resonance frequency of the HRs. Near this accumulation frequency, simultaneously symmetric and antisymmetric quasicritical coupling can be achieved. In this way, using only monopolar resonators quasiperfect absorption can be obtained in a material including transmission.

  16. Adaptive Plasticity in Wild Field Cricket’s Acoustic Signaling

    PubMed Central

    Bertram, Susan M.; Harrison, Sarah J.; Thomson, Ian R.; Fitzsimmons, Lauren P.

    2013-01-01

    Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets, rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus. Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual context they experience. PMID:23935965

  17. Acoustic field interaction with a boiling system under terrestrial gravity and microgravity.

    PubMed

    Sitter, J S; Snyder, T J; Chung, J N; Marston, P L

    1998-11-01

    Pool boiling experiments from a platinum wire heater in FC-72 liquid were conducted under terrestrial and microgravity conditions, both with and without the presence of a high-intensity acoustic standing wave within the fluid. The purpose of this research was to study the interaction between an acoustic field and a pool boiling system in normal gravity and microgravity. The absence of buoyancy in microgravity complicates the process of boiling. The acoustic force on a vapor bubble generated from a heated wire in a standing wave was shown to be able to play the role of buoyancy in microgravity. The microgravity environment was achieved with 0.6 and 2.1-s drop towers. The sound was transmitted through the fluid medium by means of a half wavelength sonic transducer driven at 10.18 kHz. At high enough acoustic pressure amplitudes cavitation and streaming began playing an important role in vapor bubble dynamics and heat transfer. Several different fixed heat fluxes were chosen for the microgravity experiment and the effects of acoustics on the surface temperature of the heater were recorded and the vapor bubble movement was filmed. Video images of the pool boiling processes and heat transfer data are presented.

  18. A finite difference analysis of the field present behind an acoustically impenetrable two-layer barrier.

    PubMed

    Hurrell, Andrew M

    2008-06-01

    The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface.

  19. Near field acoustic holography measurements of carbon nanotube thin film speakers.

    PubMed

    Asgarisabet, Mahsa; Barnard, Andrew R; Bouman, Troy M

    2016-12-01

    Carbon nanotube (CNT) thin film speakers produce sound with the thermoacoustic effect. Better understanding of the physical acoustic properties of these speakers will drive future design improvements. Measuring acoustic properties at the surface of the CNT thin film is difficult because the films, themselves, do not vibrate, are fragile and have a high surface temperature. In order to measure the surface particle velocity and sound pressure level (SPL), near field acoustic holography (NAH) has been used by employing probe microphones. NAH images the acoustic quantities of the source system using the set of acoustic pressure measurements on a hologram parallel to the source surface. It is shown that the particle velocity at the surface of an open-air, double-sided speaker is nominally zero, as expected. However, the SPL distribution is not uniform on the source surface, contrary to common lumped parameter model assumptions. Also, particle velocity and sound intensity distributions on the hologram have been obtained in this study. Finally, measured directivity patterns of the planar CNT speaker are reported.

  20. Antifade sonar employs acoustic field diversity to recover signals from multipath fading

    SciTech Connect

    Lubman, D.

    1996-04-01

    Co-located pressure and particle motion (PM) hydrophones together with four-channel diversity combiners may be used to recover signals from multipath fading. Multipath fading is important in both shallow and deep water propagation and can be an important source of signal loss. The acoustic field diversity concept arises from the notion of conservation of signal energy and the observation that in rooms at least, the total acoustic energy density is the sum of potential energy (scalar field-sound pressure) and kinetic energy (vector field-sound PM) portions. One pressure hydrophone determines acoustic potential energy density at a point. In principle, three PM sensors (displacement, velocity, or acceleration) directed along orthogonal axes describe the kinetic energy density at a point. For a single plane wave, the time-averaged potential and kinetic field energies are identical everywhere. In multipath interference, however, potential and kinetic field energies at a point are partitioned unequally, depending mainly on relative signal phases. Thus, when pressure signals are in deep fade, abundant kinetic field signal energy may be available at that location. Performance benefits require a degree of uncorrelated fading between channels. The expectation of nearly uncorrelated fading is motivated from room theory. Performance benefits for sonar limited by independent Rayleigh fading are suggested by analogy to antifade radio. Average SNR can be improved by several decibels, holding time on target is multiplied manifold, and the bit error rate for data communication is reduced substantially. {copyright} {ital 1996 American Institute of Physics.}

  1. Acoustic loading effects on oscillating rod bundles

    SciTech Connect

    Lin, W.H.

    1980-01-01

    An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed.

  2. Mean-square error due to gradiometer field measuring devices.

    PubMed

    Hatsell, C P

    1991-06-01

    Gradiometers use spatial common mode magnetic field rejection to reduce interference from distant sources. They also introduce distortion that can be severe, rendering experimental data difficult to interpret. Attempts to recover the measured magnetic field from the gradiometer output will be plagued by the nonexistence of a spatial function for deconvolution (except for first-order gradiometers), and by the high-pass nature of the spatial transform that emphasizes high spatial frequency noise. Goals of a design for a facility for measuring biomagnetic fields should be an effective shielded room and a field detector employing a first-order gradiometer.

  3. Induced Magnetic Field Due to Reaction Wheel Shielding

    NASA Astrophysics Data System (ADS)

    Pudney, M. A.; Kapfunde, G.; Trougnou, L.

    2016-05-01

    In situ magnetic field measurements are of critical importance to unanswered questions on the inner heliosphere, such as: how the corona and solar wind are accelerated and heated; how the solar magnetic field evolves over a solar cycle; and how this field links into space. However, accurate spacecraft magnetometer measurements require reliable in-flight calibration. The magnetic interference caused by reaction wheels on magnetometer measurements in space is well known, and a common mitigation method is to use magnetic shielding. However, the presence of high-permeability material in-flight has the side-effect of distorting the true ambient field. We present a theoretical analysis of this distortion, and suggest a transfer function that can be used to recover the ambient field from the distorted dataset. Experimental measurements on a shield prototype for the Solar Orbiter mission agree with predictions to within an order of magnitude, demonstrating a distortion of approximately 1 part in 104.

  4. Some general properties of the exact acoustic fields in horns and baffles

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.

    1984-07-01

    The propagation of the fundamental, longitudinal acoustic mode in a duct of variable cross-section is considered, and the "Webster" wave equations for the sound pressure and velocity are used to establish some general properties of the exact acoustic fields. The equipartition of kinetic and compression energies is shown (section 2.1) to hold at all stations only for (i) a duct of constant cross-section and (ii) an exponential horn; these are the two cases for which the wave equations for the acoustic velocity and pressure coincide. It is proved (section 2.3) that there are only five duct shapes, forming two dual families, which have constant cut-off frequency(ies): namely, (I) the exponential duct, which is self-dual, and is the only shape with constant (and coincident) cut-offs both for the velocity and pressure; (II) the catenoidal horns, of cross-section S˜cosh 2, sinh 2, which, with their duals (III) the inverse catenoidal ducts S˜sech 2, csch 2, have one constant cut-off frequency, respectively, for the acoustic pressure and velocity. The existence of at least one constant cut-off frequency implies that the corresponding wave equation can be transformed into one with constant coefficients, and thus the acoustic fields calculated exactly in terms of elementary (exponential, circular and hyperbolic) functions; this property also applies to the imaginary transformations of the above shapes, viz., the sinusoidal S˜sin 2 and inverse sinusoidal S˜csc 2 ducts, that have no cut-off frequency, i.e., are acoustically "transparent". It is shown that elementary exact solutions of the Webster equation exist only (section 3.1) for these seven shapes: namely, the exponential, catenoidal, sinusoidal and inverse ducts; it is implied that for all other duct shapes the exact acoustic fields involve special functions, in infinite or finite terms, e.g., Bessel and Hermite functions respectively for power-law and Gaussian horns. Examples of the method of analysis are given by

  5. Underwater patch near-field acoustical holography based on particle velocity and vector hydrophone array

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, DeSen; Li, SiChun; Sun, Yu; Mo, ShiQi; Shi, ShengGuo

    2012-11-01

    One-step patch near-field acoustical holography (PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field. The acoustical property to be reconstructed on the surface of interest is related to the partially measured pressure on the hologram surface in terms of sampling and bandlimiting matrices, which cost more in computation. A one-step procedure based on measuring of the normal component of the particle velocity is described, including the mathematical formulation. The numerical simulation shows that one-step PNAH based on particle velocity can obtain more accurately reconstructed results and it is also less sensitive to noise than the method based on pressure. These findings are confirmed by an underwater near-field acoustical holography experiment conducted with a vector hydrophone array. The experimental results have illustrated the high performance of one-step PNAH based on particle velocity in the reconstruction of sound field and the advantages of a vector hydrophone array in an underwater near-field measurement.

  6. Acoustic structures in the near-field from clustered rocket nozzles

    NASA Astrophysics Data System (ADS)

    Canchero, Andres; Tinney, Charles E.; Murray, Nathan E.; Ruf, Joseph H.

    2014-11-01

    The plume and acoustic field produced by a cluster of two and four rocket nozzles is visualized by way of retroreflective shadowgraphy. Steady state and transient operations (startup/shutdown) were conducted in the fully-anechoic chamber and open jet facility of The University of Texas at Austin. The laboratory scale rocket nozzles comprise thrust-optimized parabolic contours, which during start-up, experience free shock separated flow, restricted shock separated flow and an end-effects regime prior to flowing full. Shadowgraphy images with synchronized surveys of the acoustic loads produced in close vicinity to the rocket clusters and wall static pressure profiles are first compared with several RANS simulations during steady operations. A Proper Orthogonal Decomposition of various regions in the shadowgraphy images is then performed to elucidate the prominent features residing in the supersonic annular flow region, the acoustic near field and the interaction zone that resides between the nozzle plumes. POD modes are used to detect propagation paths of the acoustic waves and shock cell structures in the supersonic shear layer. Spectral peak frequencies on the propagation paths are associated with the shock cell length, which are responsible for generating broadband shock noise. Aerospace Engineering & Engineering Mechanics.

  7. Statistical Properties of the Acoustic Field in Inhomogeneous Oceanic Environments

    DTIC Science & Technology

    2003-09-30

    homogeneous , the expression for potential function can be written explicitly as a ratio of polynomials of the third and fifth order. The scattering...of the received field (“time reversal”). This procedure was accomplished both in the ideal situation of a homogeneous Pekeris waveguide, and with...rough surfaces in homogeneous media. Scattering in inhomogeneous media needs to be studied separately. A novel perturbation theory has been

  8. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties.

    PubMed

    James, Kevin R; Dowling, David R

    2008-09-01

    In underwater acoustics, the accuracy of computational field predictions is commonly limited by uncertainty in environmental parameters. An approximate technique for determining the probability density function (PDF) of computed field amplitude, A, from known environmental uncertainties is presented here. The technique can be applied to several, N, uncertain parameters simultaneously, requires N+1 field calculations, and can be used with any acoustic field model. The technique implicitly assumes independent input parameters and is based on finding the optimum spatial shift between field calculations completed at two different values of each uncertain parameter. This shift information is used to convert uncertain-environmental-parameter distributions into PDF(A). The technique's accuracy is good when the shifted fields match well. Its accuracy is evaluated in range-independent underwater sound channels via an L(1) error-norm defined between approximate and numerically converged results for PDF(A). In 50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at frequencies between 100 and 800 Hz, and for ranges from 1 to 8 km, 95% of the approximate field-amplitude distributions generated L(1) values less than 0.52 using only two field calculations. Obtaining comparable accuracy from traditional methods requires of order 10 field calculations and up to 10(N) when N>1.

  9. Rapid dissipation of magnetic fields due to the Hall current

    SciTech Connect

    Vainshtein, S. I.; Chitre, S. M.; Olinto, A. V.

    2000-04-01

    We propose a mechanism for the fast dissipation of magnetic fields which is effective in a stratified medium where ion motions can be neglected. In such a medium, the field is frozen into the electrons, and Hall currents prevail. Although Hall currents conserve magnetic energy, in the presence of density gradients they are able to create current sheets which can be sites for efficient dissipation of magnetic fields. We recover the frequency {omega}{sub MH} for Hall oscillations modified by the presence of density gradients. We show that these oscillations can lead to an exchange of energy between different components of the field. We calculate the time evolution, and show that magnetic fields can dissipate on a time scale of order 1/{omega}{sub MH}. This mechanism can play an important role in magnetic dissipation in systems with very steep density gradients, where the ions are static such as those found in the solid crust of neutron stars. (c) 2000 The American Physical Society.

  10. Action of an electromagnetic pulse on a plasma with a high level of ion-acoustic turbulence. Field diffusion and subdiffusion

    SciTech Connect

    Ovchinnikov, K. N.; Uryupin, S. A.

    2013-09-15

    Specific features of the interaction of a relatively weak electromagnetic pulse with a nonisothermal current-carrying plasma in which the electron drift velocity is much higher than the ion-acoustic velocity, but lower than the electron thermal velocity, are studied. If the state of the plasma with ion-acoustic turbulence does not change during the pulse action, the field penetrates into the plasma in the ordinary diffusion regime, but the diffusion coefficient in this case is inversely proportional to the anomalous conductivity. If, during the pulse action, the particle temperatures and the current-driving field change due to turbulent heating, the field penetrates into the plasma in the subdiffusion regime. It is shown how the presence of subdiffusion can be detected by measuring the reflected field.

  11. Detection and processing of electromagnetic and near-field acoustic signals in elasmobranch fishes.

    PubMed Central

    Kalmijn, A D

    2000-01-01

    The acoustic near field of quietly moving underwater objects and the bio-electric field of aquatic animals exhibit great similarity, as both are predominantly governed by Laplace's equation. The acoustic and electrical sensory modalities thus may, in directing fishes to their prey, employ analogous processing algorithms, suggesting a common evolutionary design, founded on the salient physical features shared by the respective stimulus fields. Sharks and rays are capable of orientating to the earth's magnetic field and, hence, have a magnetic sense. The electromagnetic theory of orientation offers strong arguments for the animals using the electric fields induced by ocean currents and by their own motions in the earth's magnetic field. In the animal's frame of reference, in which the sense organs are at rest, the classical concept of motional electricity must be interpreted in relativistic terms. In the ampullae of Lorenzini, weak electric fields cause the ciliated apical receptor-cell membranes to produce graded, negative receptor currents opposite in direction to the fields applied. The observed currents form part of a positive-feedback mechanism, supporting the generation of receptor potentials much larger than the input signal. Acting across the basal cell membranes, the receptor potentials control the process of synaptic transmission. PMID:11079385

  12. A sparse equivalent source method for near-field acoustic holography.

    PubMed

    Fernandez-Grande, Efren; Xenaki, Angeliki; Gerstoft, Peter

    2017-01-01

    This study examines a near-field acoustic holography method consisting of a sparse formulation of the equivalent source method, based on the compressive sensing (CS) framework. The method, denoted Compressive-Equivalent Source Method (C-ESM), encourages spatially sparse solutions (based on the superposition of few waves) that are accurate when the acoustic sources are spatially localized. The importance of obtaining a non-redundant representation, i.e., a sensing matrix with low column coherence, and the inherent ill-conditioning of near-field reconstruction problems is addressed. Numerical and experimental results on a classical guitar and on a highly reactive dipole-like source are presented. C-ESM is valid beyond the conventional sampling limits, making wide-band reconstruction possible. Spatially extended sources can also be addressed with C-ESM, although in this case the obtained solution does not recover the spatial extent of the source.

  13. Measurements of thermal electron heating and the formation of a non-Maxwellian energy distribution due to ion acoustic turbulence

    SciTech Connect

    Hargreaves, T.A.

    1982-01-01

    The interaction of intense microwaves with an inhomogeneous plasma is studied in the U.C. Davis Prometheus III Device. P-polarized microwaves (f = 1.2 GHz, P/sub 0/ less than or equal to 5 KW) are incident on an essentially collisionless plasma with a long scale length in an oversized waveguide. For modest powers, large amplitude ion acoustic turbulence is observed on the underdense plasma shelf due to a combination of the parametric decay and the electron drift instabilities. Suprathermal and thermal electrons are strongly heated in this region with the thermal heating due to scattering with the ion turbulence. Since the cross section for interaction decreases rapidly as the electron energy increases, the low energy electrons are preferentially heated. The electron distribution function is measured and agrees with theory; the power absorption is reduced by up to a factor of two compared to a Maxwellian distribution. After the microwaves have been measured to decay, the electron distribution function is seen to relax back to its initial Maxwellian form. This occurs, as theory predicts, roughly on the electron-electron collision time scale.

  14. Orthogonal acoustic dimensions define auditory field maps in human cortex.

    PubMed

    Barton, Brian; Venezia, Jonathan H; Saberi, Kourosh; Hickok, Gregory; Brewer, Alyssa A

    2012-12-11

    The functional organization of human auditory cortex has not yet been characterized beyond a rudimentary level of detail. Here, we use functional MRI to measure the microstructure of orthogonal tonotopic and periodotopic gradients forming complete auditory field maps (AFMs) in human core and belt auditory cortex. These AFMs show clear homologies to subfields of auditory cortex identified in nonhuman primates and in human cytoarchitectural studies. In addition, we present measurements of the macrostructural organization of these AFMs into "clover leaf" clusters, consistent with the macrostructural organization seen across human visual cortex. As auditory cortex is at the interface between peripheral hearing and central processes, improved understanding of the organization of this system could open the door to a better understanding of the transformation from auditory spectrotemporal signals to higher-order information such as speech categories.

  15. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  16. Investigation of Acoustic Fields Generated by Eddy Currents Using an Atomic Force Microscope (Postprint)

    DTIC Science & Technology

    2012-08-01

    AFRL-RX-WP-JA-2014-0230 INVESTIGATION OF ACOUSTIC FIELDS GENERATED BY EDDY CURRENTS USING AN ATOMIC FORCE MICROSCOPE (POSTPRINT) V...Institute of Physics AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR... FORCE MATERIEL COMMAND UNITED STATES AIR FORCE NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data included in

  17. Site Study Plan for Acoustics, Deaf Smith County Site, Texas: Environmental Field Program: Preliminary draft

    SciTech Connect

    Not Available

    1987-06-01

    The Acoustics site study plan describes a field program which characterizes existing sound levels, determines the area's sound propagation characteristics, and monitors the project-related sound emissions. The plan describes for each study: the need for the study, study design, data management and use, schedule, and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Requirements Document. 37 refs., 9 figs., 3 tabs.

  18. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.

    PubMed

    Ben Haj Slama, Rafika; Gilles, Bruno; Ben Chiekh, Maher; Béra, Jean-Christophe

    2017-04-01

    This research evaluates the use of Particle Image Velocimetry (PIV) technique for characterizing acoustic streaming flow generated by High Intensity Focused Ultrasound (HIFU). PIV qualification tests, focusing on the seeding particle size (diameter of 5, 20 and 50μm) were carried out in degassed water subjected to a focused field of 550kHz-frequency with an acoustic pressure amplitude of 5.2, 10.5 and 15.7bar at the focus. This study shows that the ultrasonic field, especially the radiation force, can strongly affect seeding particle behavior. Large particles (50μm-diameter) are repelled from the focal zone and gathered at radiation pressure convergence lines on either side of the focus. The calculation of the acoustic radiation pressure applied on these particles explains the observed phenomenon. PIV measurements do not, therefore, properly characterize the streaming flow in this case. On the contrary, small particles (5μm-diameter) velocity measurements were in good agreement with the Computational Fluid Dynamics (CFD) simulations of the water velocity field. A simple criterion approximating the diameter threshold below which seeding particles are qualified for PIV in presence of focused ultrasound is then proposed.

  19. Prediction and near-field observation of skull-guided acoustic waves.

    PubMed

    Estrada, Hector; Rebling, Johannes; Razansky, Daniel

    2017-03-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull.. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  20. Partial sound field decomposition in multireference near-field acoustical holography by using optimally located virtual references

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Joe; Bolton, J. Stuart; Kwon, Hyu-Sang

    2004-04-01

    It has been shown previously that the multiple reference and field signals recorded during a scanning acoustical holography measurement can be used to decompose the sound field radiated by a composite sound source into mutually incoherent partial fields. To obtain physically meaningful partial fields, i.e., fields closely related to particular component sources, the reference microphones should be positioned as close as possible to the component physical sources that together comprise the complete source. However, it is not always possible either to identify the optimal reference microphone locations prior to performing a holographic measurement, or to place reference microphones at those optimal locations, even if known, owing to physical constraints. Here, post-processing procedures are described that make it possible both to identify the optimal reference microphone locations and to place virtual references at those locations after performing a holographic measurement. The optimal reference microphone locations are defined to be those at which the MUSIC power is maximized in a three-dimensional space reconstructed by holographic projection. The acoustic pressure signals at the locations thus identified can then be used as optimal ``virtual'' reference signals. It is shown through an experiment and numerical simulation that the optimal virtual reference signals can be successfully used to identify physically meaningful partial sound fields, particularly when used in conjunction with partial coherence decomposition procedures.

  1. Gaseous bubble oscillations in anisotropic non-Newtonian fluids under influence of high-frequency acoustic field

    NASA Astrophysics Data System (ADS)

    Golykh, R. N.

    2016-06-01

    Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.

  2. A nonlinear model of cell interaction with an acoustic field.

    PubMed

    Miller, A D; Subramanian, A; Viljoen, H J

    2017-03-14

    A theoretical and experimental nonlinear analysis of cellular response/displacement to ultrasound excitations is presented. Linear cell models can predict the resonant frequency (fR∼5MHz), but only a nonlinear analysis can reveal the amount of mechanical energy that couples into the cell and the bifurcation behavior of the cell when it is excited near resonance. The cell dynamics is described by the nonlinear viscoelastic constitutive behavior of the cytoplasm, nucleus and their respective membranes, in the presence of a fluid with an oscillating pressure field. The method of multiple scales is used to derive the amplitude of oscillation of the cytoplasm and nucleus as a function of frequency. A major finding is the existence of multiple solutions for a range of sub-resonant frequencies. At positive detuning (f>fR), the mechanical energy that couples into the cell is small, it is higher at resonance but significantly higher at sub-resonant frequencies in the multiplicity range. Experimentally it was shown when 3.5MHz is approached sub- and supra-resonance and 6.5MHz is approached sub-resonance, gene expression was statistically higher than that when stimulated directly. Thus, there exists an optimal range of frequencies for ultrasound treatment - in the region of multiplicity where deformation and thus mechanical energy coupling is maximized. The ultrasound protocol must be designed to operate at the solution associated with the higher mechanical energy - thus the start-up conditions should be in the domain of attraction of the high energy solution.

  3. Distributed Acoustic Sensing Technology in a Magmatic Geothermal Field - First Results From a Survey in Iceland

    NASA Astrophysics Data System (ADS)

    Reinsch, Thomas; Jousset, Philippe; Henninges, Jan; Blanck, Hanna

    2016-04-01

    Seismic methods are particularly suited for investigating the Earth's subsurface. Compared to surface-measurements , wellbore measurements can be used to acquire more detailed information about rock properties and possible fluid pathways within a geothermal reservoir. For high temperature geothermal wells, however, ambient temperatures are often far above the operating temperature range of conventional geophones. One way to overcome this limitation is the application of fiber optic sensor systems, where only the passive optical fiber is subjected to downhole conditions. Their applicability is thus determined by the operating temperature range of the optical fiber. Choosing appropriate fibers, such sensor systems can be operated at temperatures far above 200°C. Along an optical fiber, the distributed acoustic sensing technology (DAS) can be used to acquire acoustic signals with a high spatial and temporal resolution. Previous experiments have shown that the DAS technology is well suited for active seismic measurements. Within the framework of the EC funded project IMAGE, a fiber optic cable was deployed in a newly drilled geothermal well (RN-34) within the Reykjanes geothermal field, Iceland. Additionally, a >15 km fiber optic cable, already available at the surface, was connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed at the wellhead as well as along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fiber optic data to conventional seismic records from a dense seismic network deployed on the Reykjanes in the course of the IMAGE project. Here, first results from the seismic survey will be presented.

  4. Acoustic radiation from a fluid-filled, subsurface vascular tube with internal turbulent flow due to a constriction.

    PubMed

    Yazicioglu, Yigit; Royston, Thomas J; Spohnholtz, Todd; Martin, Bryn; Loth, Francis; Bassiouny, Hisham S

    2005-08-01

    The vibration of a thin-walled cylindrical, compliant viscoelastic tube with internal turbulent flow due to an axisymmetric constriction is studied theoretically and experimentally. Vibration of the tube is considered with internal fluid coupling only, and with coupling to internal-flowing fluid and external stagnant fluid or external tissue-like viscoelastic material. The theoretical analysis includes the adaptation of a model for turbulence in the internal fluid and its vibratory excitation of and interaction with the tube wall and surrounding viscoelastic medium. Analytical predictions are compared with experimental measurements conducted on a flow model system using laser Doppler vibrometry to measure tube vibration and the vibration of the surrounding viscoelastic medium. Fluid pressure within the tube was measured with miniature hydrophones. Discrepancies between theory and experiment, as well as the coupled nature of the fluid-structure interaction, are described. This study is relevant to and may lead to further insight into the patency and mechanisms of vascular failure, as well as diagnostic techniques utilizing noninvasive acoustic measurements.

  5. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    PubMed

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].

  6. Experimental study of the mapping relationship based near-field acoustic holography with spherical fundamental solutions

    NASA Astrophysics Data System (ADS)

    Wu, Haijun; Jiang, Weikang

    2017-04-01

    This paper is a consequent work of the previously proposed mapping relationship based near-field acoustic holography (MRS-based NAH), [H.J.Wu W.K. Jiang and H.B. Zhang, JSV, 373:66-88, 2016]. It is devoted to the performance study of its practical application with error analysis and experimental validation. Two types of errors, the truncation errors due to the limited number of participant modes, and the inevitable measurement errors caused by uncertainties in the experiment, are considered in the analysis. The influences of the errors on the performance of MRS-based NAH are systematically investigated. First of all, expression of the relative reconstruction error of the pressure energy is derived based on the two types of errors. An approach is developed to estimate the lower and upper bounds of the relative error. It gives a guide to predict the error for a reconstruction under the condition that the truncation error and the signal-to-noise ratio are given. Then, the condition number of the inverse operator is investigated to measure the sensitivity of the reconstruction to the input errors. Asymptotic expressions of the condition number for a special case, conformal spherical model and hologram, are obtained, which indicates the condition number has a geometric growth with the number of participant modes. Numerical examples with different kinds of errors are elaborately designed to validate the stability as well as the correctness of the error analysis. At last, the MRS-based NAH is further examined and verified by a physical experiment, a vibrating cubic model reconstructed from measurement on a spherical hologram. A satisfied agreement with the directly measured pressure on a validation surface is observed for both quantity and distribution of the reconstructed pressure.

  7. Full-field inspection of three-dimensional structures using steady-state acoustic wavenumber spectroscopy

    NASA Astrophysics Data System (ADS)

    Koskelo, Elise Anne C.; Flynn, Eric B.

    2017-02-01

    Inspection of and around joints, beams, and other three-dimensional structures is integral to practical nondestructive evaluation of large structures. Non-contact, scanning laser ultrasound techniques offer an automated means of physically accessing these regions. However, to realize the benefits of laser-scanning techniques, simultaneous inspection of multiple surfaces at different orientations to the scanner must not significantly degrade the signal level nor diminish the ability to distinguish defects from healthy geometric features. In this study, we evaluated the implementation of acoustic wavenumber spectroscopy for inspecting metal joints and crossbeams from interior angles. With this technique, we used a single-tone, steady-state, ultrasonic excitation to excite the joints via a single transducer attached to one surface. We then measured the full-field velocity responses using a scanning Laser Doppler vibrometer and produced maps of local wavenumber estimates. With the high signal level associated with steady-state excitation, scans could be performed at surface orientations of up to 45 degrees. We applied camera perspective projection transformations to remove the distortion in the scans due to a known projection angle, leading to a significant improvement in the local estimates of wavenumber. Projection leads to asymmetrical distortion in the wavenumber in one direction, making it possible to estimate view angle even when neither it nor the nominal wavenumber is known. Since plate thinning produces a purely symmetric increase in wavenumber, it also possible to independently estimate the degree of hidden corrosion. With a two-surface joint, using the wavenumber estimate maps, we were able to automatically calculate the orthographic projection component of each angled surface in the scan area.

  8. Acoustic field structure simulation in quasi-collinear acousto-optic cells with ultrasound beam reflection.

    PubMed

    Mantsevich, S N; Molchanov, V Ya; Yushkov, K B; Khorkin, V S; Kupreychik, M I

    2017-04-02

    Ultrasound wave reflection from one of the crystal faces is the convenient way to arouse the acoustic beam with a desired propagation direction in acousto-optic cells with collinear and quasi-collinear interaction geometries. The reflection process effects on the ultrasound field amplitude and phase structure. The method to simulate the reflected finite ultrasound beam structure in the case of acoustically anisotropic media is presented in this paper. The investigation is carried on the example of two quasi-collinear acousto-optic cells fabricated on the base of tellurium dioxide crystal. The cells have special geometry that allows to obtain extremely long acousto-optic interaction length and to achieve unprecedented spectral resolution. The influence of reflection process in the acousto-optic diffraction characteristics was also examined.

  9. On an acoustic field generated by subsonic jet at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Arndt, R. E. A.

    1978-01-01

    An acoustic field generated by subsonic jets at low Reynolds numbers was investigated. This work is motivated by the need to increase the fundamental understanding of the jet noise generation mechanism which is essential to the development of further advanced techniques of noise suppression. The scope of this study consists of two major investigation. One is a study of large scale coherent structure in the jet turbulence, and the other is a study of the Reynolds number dependence of jet noise. With this in mind, extensive flow and acoustic measurements in low Reynolds number turbulent jets (8,930 less than or equal to M less than or equal to 220,000) were undertaken using miniature nozzles of the same configuration but different diameters at various exist Mach numbers (0.2 less than or equal to M less than or equal to 0.9).

  10. Flow and far field acoustic amplification properties of heated and unheated jets

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Bayliss, A.

    1981-01-01

    The interaction of an acoustic pulse with the experimentally determined mean flow field of a spreading jet is simulated numerically. The simulation is obtained through solving the Euler equations linearized about the spreading jet. The model reveals a small, sustained oscillation long after the original pulse has passed. This remnant is considered a continual shedding of vortices from the nozzle lip, together with the generation of acoustic ripples. IT is shown that the jet also acts as an amplifier of sound. This amplification is traced to the jet's stability characteristics. It is demonstrated that some of the observed differences in the spectra of heated and unheated jets can be attributed to differences in the stability characteristics of the jets.

  11. Far-field acoustic data for the Texas ASE, Inc. hush house

    NASA Astrophysics Data System (ADS)

    Lee, R. A.

    1982-04-01

    This report supplements AFAMRL-TR-73-110, which describes the data base (NOISEFILE) used in the computer program (NOISEMAP) to predict the community noise exposure resulting from military aircraft operations. The results of field test measurements to define the single-event noise produced on the ground by military aircraft/engines operating in the Texas ASE Inc. hush-house are presented as a function of angle (0 deg to 180 deg from the front of the hush-house) and distance (200 ft to 2500 ft) in various acoustic metrics. All the data are normalized to standard acoustic reference conditions of 59 F temperature and 70% relative humidity. Refer to Volume I of the AFAMRL-TR-73-110 report for discussion of the scope, limitations, and definitions needed to understand and use the data in this report.

  12. Acoustic anomalies in UPt{3} at high magnetic fields and low temperatures.

    SciTech Connect

    Feller, J. R.; Ketterson, J. B.; Hinks, D. G.; Dasgupta, D.; Sarma, B. K.; Materials Science Division; Northwestern Univ.; Univ. of Wisconsin at Milwaukee

    2000-11-01

    Ultrasound velocity and attenuation measurements were performed on single crystals of the heavy fermion compound UPt{sub 3} in magnetic fields up to 33 T and at temperatures ranging from 2.4 K to below 0.1 K. With longitudinal sound propagated in the crystallographic basal plane, parallel to the applied field, the familiar elastic softening is observed at the metamagnetic transition field H-20.2 T. More complicated structure emerges at low temperatures, including quantum acoustic oscillations and a second velocity minimum at -21.6 T. A weak frequency dependence (dispersion) is observed in the velocity. The ultrasonic data are analyzed using the Landau-Khalatnikov formalism, from which temperature- and field-dependent relaxation times are deduced.

  13. Transcranial measurements of the acoustic field produced by a low frequency focused ultrasound system

    NASA Astrophysics Data System (ADS)

    Voie, Arne; Fisher, David; Ahadi, Golnaz; Hölscher, Thilo

    2012-11-01

    The purpose of this study was to ascertain the effects of the skull on the location, shape and power of the acoustic field produced by a 150 mm radius hemispherical array operating at 220 kHz. We wanted to determine whether phase aberrations were significant at this frequency, the amount of attenuation, and whether CT data could be predictive of the trans-skull field. The effects of five calvaria were evaluated. Acoustic field data and CT scans for each skull specimen were imported into MATLAB® for measurements and visualization in two and three dimensions. We examined the effects of skull density, porosity, thickness, and sonication incident angles, and estimated the relative contributions of longitudinal and shear transmission to the total transmitted power. Power transmission through the skulls varied between 4% and 23% (mean: 12%). The range of focal position shifts was from 0.50 mm to 4.32 mm (mean: 1.95 mm). The 3 dB dimensions of the focused ultrasound (FUS) intensity focal volume increased on average by 39% (low: 4%, high: 122%). The 6 dB pressure focal volume increased by an average of 130 ± 75%. In general, the main effects of the skulls were power reduction, field dispersion and slight shift of focal peak location.

  14. The effects of external acoustic pressure fields on a free-running supercavitating projectile.

    PubMed

    Cameron, Peter J K; Rogers, Peter H; Doane, John W

    2010-12-01

    Proliferation of supercavitating torpedoes has motivated research on countermeasures against them as well as on the fluid phenomenon which makes them possible. The goal of this research was to investigate an envisaged countermeasure, an acoustic field capable of slowing or diverting the weapon by disrupting the cavitation envelope. The research focused on the interactions between high pressure amplitude sound waves and a supercavity produced by a small free-flying projectile. The flight dynamics and cavity geometry measurements were compared to control experiments and theoretical considerations were made for evaluating the effects. Corrugations on the cavity/water interface caused by the pressure signal have been observed and characterized. Results also show that the accuracy of a supercavitating projectile can be adversely affected by the sound signal. This research concludes with results that indicate that it is acoustic cavitation in the medium surrounding the supercavity, caused by the high pressure amplitude sound, that is responsible for the reduced accuracy. A hypothesis has been presented addressing the means by which the acoustic cavitation could cause this effect.

  15. Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)

    PubMed Central

    Wisniewska, Danuta M; Ratcliffe, John M; Beedholm, Kristian; Christensen, Christian B; Johnson, Mark; Koblitz, Jens C; Wahlberg, Magnus; Madsen, Peter T

    2015-01-01

    Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high-repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here, we show that, like some bats, harbour porpoises can broaden their biosonar beam during the terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase. Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the melon and implemented to accommodate dynamic spatial relationships with prey and acoustic complexity of surroundings. Despite independent evolution and different means of sound generation and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth flexibility has been an important driver in the evolution of echolocation for prey tracking. DOI: http://dx.doi.org/10.7554/eLife.05651.001 PMID:25793440

  16. Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps

    NASA Astrophysics Data System (ADS)

    Robertson, James; Martin, Eleanor; Cox, Ben; Treeby, Bradley E.

    2017-04-01

    High intensity transcranial focused ultrasound is an FDA approved treatment for essential tremor, while low-intensity applications such as neurostimulation and opening the blood brain barrier are under active research. Simulations of transcranial ultrasound propagation are used both for focusing through the skull, and predicting intracranial fields. Maps of the skull acoustic properties are necessary for accurate simulations, and can be derived from medical images using a variety of methods. The skull maps range from segmented, homogeneous models, to fully heterogeneous models derived from medical image intensity. In the present work, the impact of uncertainties in the skull properties is examined using a model of transcranial propagation from a single element focused transducer. The impact of changes in bone layer geometry and the sound speed, density, and acoustic absorption values is quantified through a numerical sensitivity analysis. Sound speed is shown to be the most influential acoustic property, and must be defined with less than 4% error to obtain acceptable accuracy in simulated focus pressure, position, and volume. Changes in the skull thickness of as little as 0.1 mm can cause an error in peak intracranial pressure of greater than 5%, while smoothing with a 1 \\text{m}{{\\text{m}}3} kernel to imitate the effect of obtaining skull maps from low resolution images causes an increase of over 50% in peak pressure. The numerical results are confirmed experimentally through comparison with sonications made through 3D printed and resin cast skull bone phantoms.

  17. Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps.

    PubMed

    Robertson, James; Martin, Eleanor; Cox, Ben; Treeby, Bradley E

    2017-04-07

    High intensity transcranial focused ultrasound is an FDA approved treatment for essential tremor, while low-intensity applications such as neurostimulation and opening the blood brain barrier are under active research. Simulations of transcranial ultrasound propagation are used both for focusing through the skull, and predicting intracranial fields. Maps of the skull acoustic properties are necessary for accurate simulations, and can be derived from medical images using a variety of methods. The skull maps range from segmented, homogeneous models, to fully heterogeneous models derived from medical image intensity. In the present work, the impact of uncertainties in the skull properties is examined using a model of transcranial propagation from a single element focused transducer. The impact of changes in bone layer geometry and the sound speed, density, and acoustic absorption values is quantified through a numerical sensitivity analysis. Sound speed is shown to be the most influential acoustic property, and must be defined with less than 4% error to obtain acceptable accuracy in simulated focus pressure, position, and volume. Changes in the skull thickness of as little as 0.1 mm can cause an error in peak intracranial pressure of greater than 5%, while smoothing with a 1 [Formula: see text] kernel to imitate the effect of obtaining skull maps from low resolution images causes an increase of over 50% in peak pressure. The numerical results are confirmed experimentally through comparison with sonications made through 3D printed and resin cast skull bone phantoms.

  18. Modeling of the acoustic field of thermally induced ultrasonic emission from a spherical cavity surface.

    PubMed

    Wang, Dongdong; Hu, Hanping; Wang, Zedong

    2015-02-01

    Thermo-acoustic (TA) ultrasound has attracted considerable interest during the last decade for its many advantages over the conventional electro-acoustic ultrasound. In this paper, a general expression of the acoustic pressure field of thermally induced ultrasonic emission from a spherical cavity surface is derived by using a fully thermally-mechanically coupled TA model. The characteristics and regularities of ultrasound from spherical focusing TA emitter can therefore be studied in detail. It is found that, for the TA emission in sphere shell, wideband flat amplitude-frequency response pattern, the most important feature of TA ultrasound in an open space from a technical standpoint, is seriously disrupted by wave interference occurring in spherical cavity. The dependences of sound pressure of TA ultrasound in spherical cavity on the heating frequency, the inner radius of spherical cavity, the location in spherical cavity, and the thickness of TA sample layer, as well as the type and filling pressure of gas in cavity are given and discussed. The currently used planar TA solution is only the special case for spherical cavity with infinite radius of the analytical solution developed in this work, which would be of significance for more comprehensive guide to understanding and using TA ultrasound.

  19. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    SciTech Connect

    Bulanov, Alexey V.; Nagorny, Ivan G.

    2015-10-28

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.

  20. Insight into morphology changes of nanoparticle laden droplets in acoustic field

    NASA Astrophysics Data System (ADS)

    Basu, Saptarshi; Tijerino, Erick; Kumar, Ranganathan

    2013-04-01

    Hollow structures with unique morphologies form due to particle agglomeration in acoustically levitated nanofluid functional droplets when subjected to external heating. The final diameter of the structure depends only on the ratio of agglomeration to evaporation time scales for various nanoparticle laden droplets, and not on the type of the suspended particles. These time scales depend only on nanoparticle concentration. This valuable information may be exploited to form microstructures with desired properties from ceramic compounds. Phase diagrams for alumina and silica droplets indicate the transition from a bowl to ring structure depending on concentration.

  1. Acoustic phonon propagation in ultra-thin Si membranes under biaxial stress field

    NASA Astrophysics Data System (ADS)

    Graczykowski, B.; Gomis-Bresco, J.; Alzina, F.; Reparaz, J. S.; Shchepetov, A.; Prunnila, M.; Ahopelto, J.; Sotomayor Torres, C. M.

    2014-07-01

    We report on stress induced changes in the dispersion relations of acoustic phonons propagating in 27 nm thick single crystalline Si membranes. The static tensile stress (up to 0.3 GPa) acting on the Si membranes was achieved using an additional strain compensating silicon nitride frame. Dispersion relations of thermally activated hypersonic phonons were measured by means of Brillouin light scattering spectroscopy. The theory of Lamb wave propagation is developed for anisotropic materials subjected to an external static stress field. The dispersion relations were calculated using the elastic continuum approximation and taking into account the acousto-elastic effect. We find an excellent agreement between the theoretical and the experimental dispersion relations.

  2. Study on the bubble transport mechanism in an acoustic standing wave field.

    PubMed

    Xi, Xiaoyu; Cegla, Frederic B; Lowe, Michael; Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2011-12-01

    The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller-Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton's second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of

  3. Tunable far-field acoustic imaging by two-dimensional sonic crystal with concave incident surface

    NASA Astrophysics Data System (ADS)

    Shen, Feng-Fu; Lu, Dan-Feng; Zhu, Hong-Wei; Ji, Chang-Ying; Shi, Qing-Fan

    2017-01-01

    An additional concave incident surface comprised of two-dimensional (2D) sonic crystals (SCs) is employed to tune the acoustic image in the far-field region. The tunability is realized through changing the curvature of the concave surface. To explain the tuning mechanism, a simple ray-trace analysis is demonstrated based on the wave-beam negative refractive law. Then, a numerical confirmation is carried out. Results show that both the position and the intensity of the image can be tuned by the introduced concave surface.

  4. Review of Numerical Models in Underwater Acoustics, Including Recently Developed Fast-Field Program,

    DTIC Science & Technology

    1984-12-15

    scope of bringing together researchers in different fields of wave propagation (electromagnetics, optics , seismics, underwater acoustics) to exchange...discussed in this paper. A more detailed description can be found in references ə-10>. The starting point for all the models is the wave equation for a...harmonic point source with time dppendence exp(-iwt), V2*(x’yz) + * ] (x,Y,z) = -6(x-Xo)6(y-yo)6(z-zo ) (1) * *exp(-iwt) (2) At any point (x,y,z) in

  5. Far-field acoustic data for the Texas ASE, Inc. Hush-House, supplement

    NASA Astrophysics Data System (ADS)

    Lee, R. A.

    1982-04-01

    This report supplements AFAMRL-TR-73-110, which describes the data base (NOISEFILE) used in the computer program (NOISEMAP) to predict the community noise exposure resulting from military aircraft operations. The results of field test measurements to define the single-event noise produced on the ground by military aircraft/engines operating in the Texas ASE Inc. hush-house are presented as a function of angle (0 to 180 from the front of the hush-house) and distance (200 ft to 2500 ft) in various acoustic metrics.

  6. Measurements of underwater acoustic pressure fields using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Carroll, Gerard P.

    2004-05-01

    Laser Doppler vibrometers (LDV) are designed to measure structural vibration velocity by sensing the phase shift in the laser signal reflected from a vibrating source. It is known that index of refraction modulations resulting from acoustic pressure distributions along a laser light path will also cause a phase shift. Simpson et al. [J. Acoust. Soc. Am. 99(4), 2521(A) (1996)] have investigated this acousto-optic phase modulation as a possible contaminating effect for underwater LDV vibration measurements. This paper will investigate acousto-optic phase modulations measured by a scanning LDV as a method for measuring pressure radiating from underwater vibrating surfaces. This is done by passing the laser beam through the radiating pressure field and measuring the backscattered laser signal which is reflected off a rigid and retroreflective surface (outside the pressure field). It is shown experimentally, using the average pressure measured with an LDV over a plane in the vicinity of a vibrating structure, that the pressure at a far-field location normal to the plane can be determined.

  7. Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device

    PubMed Central

    Perez, Camilo; Chen, Hong; Matula, Thomas J.; Karzova, Maria; Khokhlova, Vera A.

    2013-01-01

    Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from −2 to −11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled. PMID:23927207

  8. Dust acoustic shock wave in electronegative dusty plasma: Roles of weak magnetic field

    SciTech Connect

    Ghosh, Samiran; Ehsan, Z.; Murtaza, G.

    2008-02-15

    The effects of nonsteady dust charge variations and weak magnetic field on small but finite amplitude nonlinear dust acoustic wave in electronegative dusty plasma are investigated. The dynamics of the nonlinear wave are governed by a Korteweg-de Vries Burger equation that possesses dispersive shock wave. The weak magnetic field is responsible for the dispersive term, whereas nonsteady dust charge variation is responsible for dissipative term, i.e., the Burger term. The coefficient of dissipative term depends only on the obliqueness of the magnetic field. It is found that for parallel propagation the dynamics of the nonlinear wave are governed by the Burger equation that possesses monotonic shock wave. The relevances of the findings to cometary dusty plasma, e.g., Comet Halley are briefly discussed.

  9. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  10. Nondeterministic wave-based methods for low- and mid-frequency response analysis of acoustic field with limited information

    NASA Astrophysics Data System (ADS)

    Xia, Baizhan; Yin, Hui; Yu, Dejie

    2017-02-01

    The response of the acoustic field, especially for the mid-frequency response, is very sensitive to uncertainties rising from manufacturing/construction tolerances, aggressive environmental factors and unpredictable excitations. To quantify these uncertainties with limited information effectively, two nondeterministic models (the interval model and the hybrid probability-interval model) are introduced. And then, two corresponding nondeterministic numerical methods are developed for the low- and mid-frequency response analysis of the acoustic field under these two nondeterministic models. The first one is the interval perturbation wave-based method (IPWBM) which is proposed to predict the maximal values of the low- and mid-frequency responses of the acoustic field under the interval model. The second one is the hybrid perturbation wave-based method (HPWBM) which is proposed to predict the maximal values of expectations and standard variances of the low- and mid-frequency responses of the acoustic field under the hybrid probability-interval model. The effectiveness and efficiency of the proposed nondeterministic numerical methods for the low- and mid-frequency response analysis of the acoustic field under the interval model and the hybrid probability-interval model are investigated by a numerical example.

  11. Methods for the treatment of acoustic and absorptive/dispersive wave field measurements

    NASA Astrophysics Data System (ADS)

    Innanen, Kristopher Albert Holm

    Many recent methods of seismic wave field processing and inversion concern themselves with the fine detail of the amplitude and phase characteristics of measured events. Processes of absorption and dispersion have a strong impact on both; the impact is particularly deleterious to the effective resolution of images created from the data. There is a need to understand the dissipation of seismic wave energy as it affects such methods. I identify: algorithms based on the inverse scattering series, algorithms based on multiresolution analysis, and algorithms based on the estimation of the order of the singularities of seismic data, as requiring this kind of study. As it turns out, these approaches may be cast such that they deal directly with issues of attenuation, to the point where they can be seen as tools for viscoacoustic forward modelling, Q estimation; viscoacoustic inversion, and/or Q compensation. In this thesis I demonstrate these ideas in turn. The forward scattering series is formulated such that a viscoacoustic wave field is represented as an expansion about an acoustic reference; analysis of the convergence properties and scattering diagrams are carried out, and it is shown that (i) the attenuated wave field may be generated by the nonlinear interplay of acoustic reference fields, and (ii) the cumulative effect of certain scattering types is responsible for macroscopic wave field properties: also, the basic form of the absorptive/dispersive inversion problem is predicted. Following this, the impact of Q on measurements of the local regularity of a seismic trace, via Lipschitz exponents, is discussed, with the aim of using these exponents as a means to estimate local Q values. The problem of inverse scattering based imaging and inversion is treated next: I present a simple, computable form for the simultaneous imaging and wavespeed inversion of 1D acoustic wave field data. This method is applied to 1D, normal incidence synthetic data: its sensitivity with

  12. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  13. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  14. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1993-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  15. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    NASA Astrophysics Data System (ADS)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  16. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    PubMed

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.

  17. Vibro-Acoustic Response of Buildings Due to Sonic Boom Exposure: June 2006 Field Test

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Buehrle, Ralph D.

    2007-01-01

    During the month of June 2006, a series of structural response measurements were made on a house on Edwards Air Force Base (AFB) property that was excited by sonic booms of various amplitudes. Many NASA personnel other than the authors of this report from both Langley Research Center and Dryden Flight Research Center participated in the planning, coordination, execution, and data reduction for the experiment documented in this report. The purpose of this report is to document the measurements that were made, the structure on which they were made, the conditions under which they were made, the sensors and other hardware that were used, and the data that were collected.

  18. Effects of external magnetic field on oblique propagation of ion acoustic cnoidal wave in nonextensive plasma

    NASA Astrophysics Data System (ADS)

    Farhad Kiyaei, Forough; Dorranian, Davoud

    2017-01-01

    Effects of the obliqueness and the strength of external magnetic field on the ion acoustic (IA) cnoidal wave in a nonextensive plasma are investigated. The reductive perturbation method is employed to derive the corresponding KdV equation for the IA wave. Sagdeev potential is extracted, and the condition of generation of IA waves in the form of cnoidal waves or solitons is discussed in detail. In this work, the domain of allowable values of nonextensivity parameter q for generation of the IA cnoidal wave in the plasma medium is considered. The results show that only the compressive IA wave may generate and propagate in the plasma medium. Increasing the strength of external magnetic field will increase the frequency of the wave and decrease its amplitude, while increasing the angle of propagation will decrease the frequency of the wave and increase its amplitude.

  19. The measurement of geodesic acoustic mode magnetic field oscillations in J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Lan, T.; Wu, J.; Shen, H. G.; Deng, T. J.; Liu, A. D.; Xie, J. L.; Li, H.; Liu, W. D.; Yu, C. X.; Sun, Y.; Liu, H.; Chen, Z. P.; Zhuang, G.

    2014-10-01

    Geodesic acoustic mode (GAM) magnetic field oscillations have been investigated using three-dimension magnetic probe and Langmuir probe arrays in the edge of J-TEXT tokamak. The probe arrays are placed on the two top windows of tokamak, separated toroidally. Inside the LCFS, GAM shows apparent oscillations in floating potential. In contrast, GAM magnetic field oscillations are not significant in raw magnetic fields signals. Using toroidal correlation technique, the GAM magnetic field oscillations are distinguished from ambient magnetic field. The amplitudes of three dimension GAM magnetic field fluctuations, as well as the dependence with local plasma parameters such as safety factor and plasma beta, are coincident with theoretical predictions. And its toroidal symmetry mode structure, i.e. n = 0, is identified. Furthermore, the GAM current sheet, in which GAM oscillates, is firstly verified with magnetic probes arrays in different radial positions, which may help us to understand the radial structure of GAM. Supported by NNSFC (Nos. 10990210, 10990211, 10335060, 10905057 and 11375188), CPSF (No. 20080440104), YIF (No. WK2030040019) and KIPCAS (No. kjcx-yw-n28).

  20. Far-field errors due to random noise in cylindrical near-field measurements

    NASA Astrophysics Data System (ADS)

    Romeu, Jordi; Jofre, Luis; Cardama, Angel

    1992-01-01

    A full characterization of the far-field noise obtained from cylindrical near- to far-field transformation, for a white Gaussian, space stationary, near-field noise is derived. A possible source for such noise is the receiver additive noise. The noise characterization is done by obtaining the autocorrelation of the far-field noise, which is shown to be easily computed during the transformation process. Even for this simple case, the far-field noise has complex behavior dependent on the measurement probe. Once the statistical properties of the far-field noise are determined, it is possible to compute upper and lower bounds for the radiation pattern for a given probability. These bounds define a strip within the radiation pattern with the desired probability. This may be used as part of a complete near-field error analysis of a particular cylindrical near-field facility.

  1. Source characterization of a subsonic jet by using near-field acoustical holography.

    PubMed

    Lee, Moohyung; Bolton, J Stuart

    2007-02-01

    In the present study, patch near-field acoustical holography was used in conjunction with a multireference, cross-spectral sound pressure measurement to visualize the sound field emitted by a subsonic jet and to predict its farfield radiation pattern. A strategy for microphone array design is described that accounts for the low spatial coherence of aeroacoustic sources and for microphone self-noise resulting from entrained flow near the jet. In the experiments, a 0.8-cm-diameter burner was used to produce a subsonic, turbulent jet with a Mach number of 0.26. Six fixed, linear arrays holding eight reference microphones apiece were disposed circumferentially around the jet, and a circular array holding sixteen, equally spaced field microphones was traversed along the jet axis to measure the sound field on a 30-cm-diameter cylindrical surface enclosing the jet. The results revealed that the jet could be modeled as a combination of eleven uncorrelated dipole-, quadrupole-, and octupole-like sources, and the contribution of each source type to the total radiated sound power could be identified. Both the total sound field reconstructed in a three-dimensional space and the farfield radiation directivity obtained by using the latter model were successfully validated by comparisons to directly measured results.

  2. Optimization of acoustic emitted field of transducer array for ultrasound imaging.

    PubMed

    He, Zhengyao

    2014-01-01

    A method is proposed to calculate the weight vector of a transducer array for ultrasound imaging to obtain a low-sidelobe transmitting beam pattern based on the near-field response vector. An optimization problem is established, and the second-order cone (SOC) algorithm is used to solve the problem to obtain the weight vector. The optimized acoustic emitted field of the transducer array is then calculated using the Field II program by applying the obtained weight vector to the array. The simulation results with a 64-element 26 MHz linear phased array show that the proposed method can be used to control the sidelobe of the near-field transmitting beam pattern of the transducer array and achieve a low-sidelobe level. The near-field sound pressure distribution of the transducer array using the proposed method focuses much better than that using the standard delay and sum (DAS) beamforming method. The sound energy is more concentrated using the proposed method.

  3. Estimation of scatterer size and acoustic concentration in sound field produced by linear phased array transducer

    NASA Astrophysics Data System (ADS)

    Oguri, Takuma; Tamura, Kazuki; Yoshida, Kenji; Mamou, Jonathan; Hasegawa, Hideyuki; Maruyama, Hitoshi; Hachiya, Hiroyuki; Yamaguchi, Tadashi

    2015-07-01

    Although there have been several quantitative ultrasound studies on the methods of estimation of scatterer size and acoustic concentration based on the analysis of RF signals for tissue characterization, some problems, e.g., narrow frequency bandwidths and complex sound fields, have limited the clinical applications of such methods. In this report, two types of ultrasound transducer are investigated for the estimation of the scatterer size and acoustic concentration in two glass bead phantoms of different weight concentrations of 0.25 and 2.50% and those in an excised pig liver. The diameters of the glass beads ranged from 5 to 63 µm with an average of 50 µm. The first transducer is a single element and the other is a linear phased array. A comparison of the estimations obtained using both transducers gives an insight into how these methods could be applied clinically. Results obtained using the two transducers were significantly different. One of the possible explanations is that beamforming could significantly affect the backscatter coefficient estimation, which was not taken into account.

  4. Near-field acoustic microbead trapping as remote anchor for single particle manipulation

    SciTech Connect

    Hwang, Jae Youn; Cheon, Dong Young; Shin, Hyunjune; Kim, Hyun Bin; Lee, Jungwoo

    2015-05-04

    We recently proposed an analytical model of a two-dimensional acoustic trapping of polystyrene beads in the ray acoustics regime, where a bead diameter is larger than the wavelength used. As its experimental validation, this paper demonstrates the transverse (or lateral) trapping of individual polystyrene beads in the near field of focused ultrasound. A 100 μm bead is immobilized on the central beam axis by a focused sound beam from a 30 MHz single element lithium niobate transducer, after being laterally displaced through hundreds of micrometers. Maximum displacement, a longest lateral distance at which a trapped bead can be directed towards the central axis, is thus measured over a discrete frequency range from 24 MHz to 36 MHz. The displacement data are found to be between 323.7 μm and 470.2 μm, depending on the transducer's driving frequency and input voltage amplitude. The experimental results are compared with their corresponding model values, and their relative errors lie between 0.9% and 3.9%. The results suggest that this remote maneuvering technique may be employed to manipulate individual cells through solid microbeads, provoking certain cellular reactions to localized mechanical disturbance without direct contact.

  5. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.

    PubMed

    Demi, L; van Dongen, K W A; Verweij, M D

    2011-03-01

    Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation.

  6. Application of cylindrical near-field acoustical holography to the visualization of aeroacoustic sources.

    PubMed

    Lee, Moohyung; Bolton, J Stuart; Mongeau, Luc

    2003-08-01

    The purpose of this study was to develop methods for visualizing the sound radiation from aeroacoustic sources in order to identify their source strength distribution, radiation patterns, and to quantify the performance of noise control solutions. Here, cylindrical Near-field Acoustical Holography was used for that purpose. In a practical holographic measurement of sources comprising either partially correlated or uncorrelated subsources, it is necessary to use a number of reference microphones so that the sound field on the hologram surface can be decomposed into mutually incoherent partial fields before holographic projection. In this article, procedures are described for determining the number of reference microphones required when visualizing partially correlated aeroacoustic sources; performing source nonstationarity compensation; and applying regularization. The procedures have been demonstrated by application to a ducted fan. Holographic tests were performed to visualize the sound radiation from that source in its original form. The system was then altered to investigate the effect of two modifications on the fan's sound radiation pattern: first, leaks were created in the fan and duct assembly, and second, sound absorbing material was used to line the downstream duct section. Results in all three cases are shown at the blade passing frequency and for a broadband noise component. In the absence of leakage, both components were found to exhibit a dipole-like radiation pattern. Leakage was found to have a strong influence on the directivity of the blade passing tone. The increase of the flow resistance caused by adding the acoustical lining resulted in a nearly symmetric reduction of sound radiation.

  7. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    of basin-wide sound speed ( temperature ) fields obtained by the combination of acoustic, altimetry, and other data types with ocean general...GOALS The ultimate limitations to the performance of long-range sonar are due to ocean sound speed perturbations and the characteristics of the...receptions. 5. To improve basin-scale ocean sound -speed predictions via assimilation of acoustic travel-time and other data into numerical ocean

  8. Investigation on optical and acoustic fields of stimulated Brillouin scattering in As2S3 suspended-core optical fibers

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Gao, Weiqing; Li, Xue; Ni, Chenquan; Chen, Xiangcai; Chen, Li; Zhang, Wei; Hu, Jigang; Chen, Xiangdong; Yuan, Zijun

    2016-10-01

    The optical and acoustic fields of stimulated Brillouin scattering (SBS) effect in the As2S3 chalcogenide suspended-core microstructured optical fibers (MOFs) are investigated by the finite-element method (FEM). The optical and acoustic fundamental modes at 1550 nm are analyzed with the core diameters of the MOFs varying from 1.0 to 6.0 μm. For each case, the holes of the MOFs are filled with different materials such as trichlormethane (CHCL3), alcohol and water. When the core diameter is 6.0 μm, the maximum peak intensity of the optical fundamental mode is in the case with air holes, while the minimum value is in the case filled with CHCL3. The ratio of difference is 0.66%. The minimum peak intensity of the acoustic fundamental mode is in the case with air holes, while the maximum value is in the case filled with water. The ratio of difference is 0.13%. The same rule occurs in the fiber cores of 4.5, 3.0 and 2.0 μm, where the decreases of 0.97%, 1.48%, 1.94% for optical field and the increases of 0.24%, 0.34%, 0.74% for acoustic field are obtained, respectively. When the core diameter is 1.0 μm, ratios of difference for optical and acoustic fields are much higher than those in the cases of 2.0-6.0 μm, which are 3.55% and 29.13%, respectively. The overlap factors between optical and acoustic fields are calculated, which are changed with the core diameter and the filled material in holes. Our results will be helpful to strengthen or suppress the SBS effect in practical applications.

  9. Computational studies of the effects of acoustics and chemistry on the flow field in an axisymmetric ramjet combustor

    NASA Astrophysics Data System (ADS)

    Kailasanath, K.; Gardner, J. H.; Oran, E. S.; Boris, J. P.

    1986-10-01

    A potentially important source of large pressure oscillations in compact ramjets is a combustion instability induced by the interaction of large-scale vortex structures with acoustic modes in the combustion chamber. To study these interactions numerical simulations were performed using the Flux Corrected Transport technique. The highlights are presented of the work to date on the chemical-acoustic-vortex interactions in an idealized axisymmetric ramjet combustor. The results of a number of cold flow calculations are presented in which the length of the combustion chamber and the acoustic forcing function were systematically varied. These simulations indicate a strong coupling between the acoustic modes and the frequency of formation of large vortical structures near the entrance to the combustion chamber. They also show the presence of a low frequency oscillation which does not directly depend on the acoustics of the combustor but depends on the acoustics of the inlet. The effects of energy release from chemical reactions on the flow field in the combustor and the low frequecy oscillations are discussed.

  10. Deformed neutron stars due to strong magnetic field in terms of relativistic mean field theories

    NASA Astrophysics Data System (ADS)

    Yanase, Kota; Yoshinaga, Naotaka

    2014-09-01

    Some observations suggest that magnetic field intensity of neutron stars that have particularly strong magnetic field, magnetars, reaches values up to 1014-15G. It is expected that there exists more strong magnetic field of several orders of magnitude in the interior of such stars. Neutron star matter is so affected by magnetic fields caused by intrinsic magnetic moments and electric charges of baryons that masses of neutron stars calculated by using Tolman-Oppenheimer-Volkoff equation is therefore modified. We calculate equation of state (EOS) in density-dependent magnetic field by using sigma-omega-rho model that can reproduce properties of stable nuclear matter in laboratory Furthermore we calculate modified masses of deformed neutron stars.

  11. Pressure field induced in the water column by acoustic-gravity waves generated from sea bottom motion

    NASA Astrophysics Data System (ADS)

    C. A. Oliveira, Tiago; Kadri, Usama

    2016-10-01

    An uplift of the ocean bottom caused by a submarine earthquake can trigger acoustic-gravity waves that travel at near the speed of sound in water and thus may act as early tsunami precursors. We study the spatiotemporal evolution of the pressure field induced by acoustic-gravity modes during submarine earthquakes, analytically. We show that these modes may all induce comparable temporal variations in pressure at different water depths in regions far from the epicenter, though the pressure field depends on the presence of a leading acoustic-gravity wave mode. Practically, this can assist in the implementation of an early tsunami detection system by identifying the pressure and frequency ranges of measurement equipment and appropriate installation locations.

  12. Distorted orbit due to field errors and particle trajectories in combined undulator and axial magnetic field

    SciTech Connect

    Papadichev, V.A.

    1995-12-31

    Undulator and solenoid field errors cause electron trajectory deviation from the ideal orbit. Even small errors can result in a large lower frequency excursion from the undulator axis of a distorted orbit and of betatron oscillations performed now around it, especially near resonant conditions. Numerical calculation of a trajectory step by step requires large computing time and treats only particular cases, thus lacking generality. Theoretical treatment is traditionally based on random distribution of field errors, which allows a rather general approach, but is not convenient for practical purposes. In contrast, analytical treatment shows explicitly how distorted orbit and betatron oscillation amplitude depend on field parameters and errors and indicates how to eliminate these distortions. An analytical solution of the equations of motion can be found by expanding field errors and distorted orbit in Fourier series as was done earlier for the simplest case of a plane undulator without axial magnetic field. The same method is applied now to the more general case of combined generlized undulator and axial magnetic fields. The undulator field is a superposition of the fields of two plane undulators with mutually orthogonal fields and an arbitrary axial shift of the second undulator relative to the first. Beam space-charge forces and external linear focusing are taken into account. The particle trajectory is a superposition of ideal and distorted orbits with cyclotron gyration and slow drift gyration in the axial magnetic field caused by a balance of focusing and defocusing forces. The amplitudes of these gyrations depend on transverse coordinate and velocity at injection and can nearly double the total deviation of an electron from the undulator axis even after an adiabatic undulator entry. If the wavenumber of any Fourier harmonic is close to the wavenumbers of cyclotron or drift gyrations, a resonant increase of orbit distortion occurs.

  13. Evaluation of the scattered pressure due to infinite rigid cylinders, infinite elastic cylindrical shells, and rigid spheres in the presence of an ambient noise field

    NASA Astrophysics Data System (ADS)

    Honeycutt, Rebecca L.; Johnson, Steven J.

    1993-04-01

    The sound scattering due to an ambient noise field, approximated by a squared cosine function, is considered for infinite rigid and elastic cylinders and rigid spheres. For the cylinders, it is assumed that the acoustic wave front is parallel to the axis of the cylinder (informally incident). For this assumption, a closed form expression for the scattered sound field-to-incident ambient noise field (signal-to-noise) ratio is obtained not only for the cosine squared directivity, but for any arbitrary directivity which can be expressed in terms of a Fourier series. For the sphere, it is assumed that the noise is circumferentially symmetric which leads to a closed form expression for the signal-to-noise ratio due to a cosine squared directivity.

  14. Nonlinear restoring forces and geometry influence on stability in near-field acoustic levitation

    NASA Astrophysics Data System (ADS)

    Li, Jin; Liu, Pinkuan; Ding, Han; Cao, Wenwu

    2011-04-01

    Stability is a key factor in near-field acoustic levitation (NFAL), which is a popular method for noncontact transportation of surface-sensitive objects. Since the physical principle of NFAL is based on nonlinear vibration and nonuniform pressure distribution of a plate resonator, traditional linearized stability analysis cannot address this problem correctly. We have performed a theoretical analysis on the levitation stability using a nonlinear squeeze film model including inertia effects and entrance pressure drop, and obtained nonlinear effective restoring force and moment. It was found that the nonuniform pressure distribution is mode-dependent, which determines the stability of the levitation system. Based on the theoretical understanding, we have designed a NFAL resonator with tapered cross section, which can provide higher stability for the levitating object than the rectangular cross-section resonator.

  15. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    PubMed

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force.

  16. Cross-correlation function of acoustic fields generated by random high-frequency sources.

    PubMed

    Godin, Oleg A

    2010-08-01

    Long-range correlations of noise fields in arbitrary inhomogeneous, moving or motionless fluids are studied in the ray approximation. Using the stationary phase method, two-point cross-correlation function of noise is shown to approximate the sum of the deterministic Green's functions describing sound propagation in opposite directions between the two points. Explicit relations between amplitudes of respective ray arrivals in the noise cross-correlation function and the Green's functions are obtained and verified against specific problems allowing an exact solution. Earlier results are extended by simultaneously accounting for sound absorption, arbitrary distribution of noise sources in a volume and on surfaces, and fluid inhomogeneity and motion. The information content of the noise cross-correlation function is discussed from the viewpoint of passive acoustic characterization of inhomogeneous flows.

  17. Expansions for infinite or finite plane circular time-reversal mirrors and acoustic curtains for wave-field-synthesis.

    PubMed

    Mellow, Tim; Kärkkäinen, Leo

    2014-03-01

    An acoustic curtain is an array of microphones used for recording sound which is subsequently reproduced through an array of loudspeakers in which each loudspeaker reproduces the signal from its corresponding microphone. Here the sound originates from a point source on the axis of symmetry of the circular array. The Kirchhoff-Helmholtz integral for a plane circular curtain is solved analytically as fast-converging expansions, assuming an ideal continuous array, to speed up computations and provide insight. By reversing the time sequence of the recording (or reversing the direction of propagation of the incident wave so that the point source becomes an "ideal" point sink), the curtain becomes a time reversal mirror and the analytical solution for this is given simultaneously. In the case of an infinite planar array, it is demonstrated that either a monopole or dipole curtain will reproduce the diverging sound field of the point source on the far side. However, although the real part of the sound field of the infinite time-reversal mirror is reproduced, the imaginary part is an approximation due to the missing singularity. It is shown that the approximation may be improved by using the appropriate combination of monopole and dipole sources in the mirror.

  18. Impact of Ion Acoustic Wave Instabilities in the Flow Field of a Hypersonic Vehicle on EM Signals

    NASA Astrophysics Data System (ADS)

    Mudaliar, Saba; Sotnikov, Vladimir

    2016-10-01

    Flow associated with a high speed air vehicle (HSAV) can get partially ionized. In the absence of external magnetic field the flow field turbulence is due to ion acoustic wave (IAW) instabilities. Our interest is in studying the impact of this turbulence on the radiation characteristics of EM signals from the HSAV. We decompose the radiated signal into coherent and diffuse parts. We find that the coherent part has the same spectrum as that of the source signal, but it is distorted because of dispersive coherent attenuation. The diffuse part is expressed as a convolution (in wavenumber and frequency) of the source signal with the spectrum of electron density fluctuations. This is a constrained convolution in the sense that the spectrum has to satisfy the IAW dispersion relation. A quantity that characterizes the flow is the mean free path (MFP). When the MFP is large compared to the thickness of the flow the coherent part is significant. If the MFP is larger than the thickness of the flow the diffuse part is the dominant part of the received signal. In the special case when the source signal frequency is close the electron plasma frequency, there can exist in the flow region Langmuir modes in addition to the EM modes. The radiation characteristics of EM source signals from the HSAV in this case are quite different.

  19. Acoustic emission and nonergodic states of the electric-field-induced-phase transition of PbMg1/3Nb2/3O3

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Roth, M.; Dkhil, B.; Kiat, J. M.

    2005-07-01

    Acoustic emission (AE) method was used to investigate the electric-field-induced-phase transition in the well-known relaxor Pb(Mg1/3Nb2/3)O3 (PMN). We show that in the field cooling process the induced-phase transition is accompanied by an AE signal, which reflects relaxation of the strong stress, associated with arising of a macroscopic domains structure similar to martensitic phase transition. However, using a procedure in which the field is applied after a zero field cooling, no AE signal is detected even after a very long time higher than expected for the appearance of the induced-phase transition. The comparison with previous x-ray-diffraction results allowed to get in the last case interesting insights on the local and long-range polar order of the induced ferroelectric state because of absence of the relaxation of the strong stress due to percolation mechanism of this phase transition.

  20. Far-field optical degradation due to near-field transmission through a turbulent heated jet.

    PubMed

    Cicchiello, J M; Jumper, E J

    1997-09-01

    When a laser beam traverses an optically active, turbulent flow field, the laser wave front is aberrated by the flow. Density variations in a heated two-dimensional jet, for example, correspond to index-of-refraction variations, and this modulation of the index in the fluid can imprint an optical phase disturbance, or phase error, onto the laser wave front. Adaptive-optic systems seek to correct the phase error of the wave front, and thus restore the integrity of the far-field irradiance pattern. Given a near-field spatial mapping of a phase disturbance, the far-field irradiance pattern of the affected wave front can be calculated with Fourier-optics techniques. A Fourier-optics computer code was used to study the far-field irradiance patterns arising from actual time-varying measurements of a fluid-induced phase error. The time-averaged Strehl ratio was studied to provide insight into the spatial and temporal design requirements for adaptive-optic systems applied to the time series of near-field spatial phase-error maps.

  1. Effects of Classroom Acoustics on Performance and Well-Being in Elementary School Children: A Field Study

    ERIC Educational Resources Information Center

    Klatte, Maria; Hellbruck, Jurgen; Seidel, Jochen; Leistner, Philip

    2010-01-01

    Children are more impaired than adults by unfavorable listening conditions such as reverberation and noise. Nevertheless, the acoustical conditions in classrooms often do not fit the specific needs of young listeners. This field study aimed to analyze the effects of classroom reverberation on children's performance and well-being at school.…

  2. A study of stone fragmentation in shock wave lithotripsy by customizing the acoustic field and waveform shape

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag Vijay

    Shock wave lithotripsy is the preferred treatment modality for kidney stones in the United States. Despite clinical use for over twenty-five years, the mechanisms of stone fragmentation are still under debate. A piezoelectric array was employed to examine the effect of waveform shape and pressure distribution on stone fragmentation in lithotripsy. The array consisted of 170 elements placed on the inner surface of a 15 cm-radius spherical cap. Each element was driven independently using a 170 individual pulsers, each capable of generating 1.2 kV. The acoustic field was characterized using a fiber optic probe hydrophone with a bandwidth of 30 MHz and a spatial resolution of 100 mum. When all elements were driven simultaneously, the focal waveform was a shock wave with peak pressures p+ = 65 +/- 3 MPa and p- = -16 +/- 2 MPa and the -6 dB focal region was 13 mm long and 2 mm wide. The delay for each element was the only control parameter for customizing the acoustic field and waveform shape, which was done with the aim of investigating the hypothesized mechanisms of stone fragmentation such as spallation, shear, squeezing, and cavitation. The acoustic field customization was achieved by employing the angular spectrum approach for modeling the forward wave propagation and regression of least square errors to determine the optimal set of delays. Results from the acoustic field customization routine and its implications on stone fragmentation will be discussed.

  3. A stochastic response surface formulation for the description of acoustic propagation through an uncertain internal wave field.

    PubMed

    Gerdes, Frank; Finette, Steven

    2012-10-01

    A modeling and simulation study is performed in a littoral ocean waveguide subject to uncertainty in four quantities: source depth, tidal forcing, initial thermocline structure, and sediment sound speed. In this partially known shelf-break environment, tidal forcing over a density-stratified water column produces internal tides and solitary wave packets. The resulting uncertainty in the space-time oceanographic field is mapped into the sound speed distribution which, in turn, introduces uncertainty into the acoustic wave field. The latter is treated as a stochastic field whose intensity is described by a polynomial chaos expansion. The expansion coefficients are estimated through constrained multivariate linear regression, and an analysis of the chaos coefficients provides insight into the relative contribution of the uncertain acoustic and oceanographic quantities. Histograms of acoustic intensity are estimated and compared to a reference solution obtained through Latin Hypercube sampling. A sensitivity analysis is performed to illustrate the relative importance of the four contributions of incomplete information about the environment. The simulation methodology represents an end-to-end analysis approach including both oceanographic and acoustic field uncertainty where the latter is quantified using stochastic basis expansions in the form of a polynomial chaos representation.

  4. A lateral field excited ZnO film bulk acoustic wave sensor working in viscous environments

    NASA Astrophysics Data System (ADS)

    Chen, Da; Wang, Jingjing; Xu, Yan; Li, Dehua; Zhang, Liuyin; Liu, Weihui

    2013-09-01

    We present a lateral field excited ZnO film bulk acoustic resonator (FBAR) operated in pure-shear mode and analyze its performances in viscous liquids. The electrodes of the device are located on the film surface and normal to the c-axis of the ZnO film. The proposed device works near 1.44 GHz with a Q-factor up to 360 in air and 310 in water, which are higher than those of the quasi-shear thickness field excited FBAR. The resonant frequency is decreased with the increasing square root of the product of the viscosity and density with a linear dependence in the viscosity below 148.7 mPa s. The mass sensitivity of 670 Hz cm2 ng-1 was measured by monitoring the frequency change during the volatilization of saline solution loaded on the resonator. In addition, the levels of the noise and the mass resolutions were measured in various viscous environments. The proposed device yields the mass resolution of 670 Hz cm2 ng-1 and the high mass resolution of 0.06 ng cm-2. These results indicated that the lateral field excited ZnO FBAR had superior sensitivity for the bio-sensing applications in viscous biological liquids.

  5. A practical approach for quantifying acoustic emission signals using diffuse field measurements

    NASA Astrophysics Data System (ADS)

    Scholey, Jonathan J.; Wilcox, Paul D.

    2009-03-01

    Acoustic Emission (AE) testing is capable of detecting a wide range of defects using a relatively sparse sensor array and as a result is a candidate structural health monitoring technology. The widespread application of the technology is restricted by a lack of predictive modelling capability and quantitative source characteristic information. Most AE tests are conducted on small coupons where source characteristics are estimated using the early arriving part of the AE signal. The early arriving part of an AE signal, and therefore the source characteristics, are dependent on the source location, source orientation and specimen geometry making them unsuitable for use in predictive models. The work in this paper is concerned with making source characterisation measurements based on the diffuse field of an AE signal. A practical approach for calibrating the diffuse field amplitude is proposed and is demonstrated on AE signals from electrochemically accelerated corrosion of a 316L stainless steel plate. The diffuse field amplitude of several AE events is calculated and reported as an equivalent absolute force. The low signal to noise ratio and high attenuation of elastic wave energy are found to reduce the accuracy of the results.

  6. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  7. Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach.

    PubMed

    Canney, Michael S; Bailey, Michael R; Crum, Lawrence A; Khokhlova, Vera A; Sapozhnikov, Oleg A

    2008-10-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24,000 W/cm(2). The inputs to a Khokhlov-Zabolotskaya-Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W/cm(2), lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields.

  8. The acoustic field on the forehead of echolocating Atlantic bottlenose dolphins (Tursiops truncatus).

    PubMed

    Au, Whitlow W L; Houser, Dorian S; Finneran, James J; Lee, Wu-Jung; Talmadge, Lois A; Moore, Patrick W

    2010-09-01

    Arrays of up to six broadband suction cup hydrophones were placed on the forehead of two bottlenose dolphins to determine the location where the beam axis emerges and to examine how signals in the acoustic near-field relate to signals in the far-field. Four different array geometries were used; a linear one with hydrophones arranged along the midline of the forehead, and two around the front of the melon at 1.4 and 4.2 cm above the rostrum insertion, and one across the melon in certain locations not measured by other configurations. The beam axis was found to be close to the midline of the melon, approximately 5.4 cm above the rostrum insert for both animals. The signal path coincided with the low-density, low-velocity core of the melon; however, the data suggest that the signals are focused mainly by the air sacs. Slight asymmetry in the signals were found with higher amplitudes on the right side of the forehead. Although the signal waveform measured on the melon appeared distorted, when they are mathematically summed in the far-field, taking into account the relative time of arrival of the signals, the resultant waveform matched that measured by the hydrophone located at 1 m.

  9. Electric field due to velocity space particle loss in field-reversed configurations

    SciTech Connect

    Hsiao, M.; Staudenmeier, J.L.; Chiang, P.

    1989-02-01

    Particle confinement criteria for velocity space particle loss are used to calculate the radial and axial electric potential profiles in field-reversed configurations (FRC's). Assuming Vlasov equilibrium distribution functions for both electrons and ions, the density profile and the potential profile are calculated self-consistently. With rest Maxwellian distribution functions for both species and the Hill's vortex magnetic configuration, a radial electric field of about 0--70 V/cm and an axial electric field of about 0--4 V/cm, depending on positions, have been found for a typical set of experimental parameters: electron temperature T/sub e/ = 100 eV, ion temperature T/sub i/ = 200 eV, magnetic field B/sub 0/ = 5500 G, separatrix radius r/sub s/ = 12 cm, and elongation factor k = 5. The corresponding density profile has behavior similar to profiles observed in the experiments. Cases using rigid-rotor distribution functions with different rigid rotating frequencies are also studied.

  10. Violin f-hole contribution to far-field radiation via patch near-field acoustical holography.

    PubMed

    Bissinger, George; Williams, Earl G; Valdivia, Nicolas

    2007-06-01

    The violin radiates either from dual ports (f-holes) or via surface motion of the corpus (top+ribs+back), with no clear delineation between these sources. Combining "patch" near-field acoustical holography over just the f-hole region of a violin with far-field radiativity measurements over a sphere, it was possible to separate f-hole from surface motion contributions to the total radiation of the corpus below 2.6 kHz. A0, the Helmholtz-like lowest cavity resonance, radiated essentially entirely through the f-holes as expected while A1, the first longitudinal cavity mode with a node at the f-holes, had no significant f-hole radiation. The observed A1 radiation comes from an indirect radiation mechanism, induced corpus motion approximately mirroring the cavity pressure profile seen for violinlike bowed string instruments across a wide range of sizes. The first estimates of the fraction of radiation from the f-holes F(f) indicate that some low frequency corpus modes thought to radiate only via surface motion (notably the first corpus bending modes) had significant radiation through the f-holes, in agreement with net volume changes estimated from experimental modal analysis. F(f) generally trended lower with increasing frequency, following corpus mobility decreases. The f-hole directivity (top/back radiativity ratio) was generally higher than whole-violin directivity.

  11. A Review of Large Solid Rocket Motor Free Field Acoustics, Part I

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Kenny, Robert Jeremy

    2011-01-01

    At the ATK facility in Utah, large full scale solid rocket motors are tested. The largest is a five segment version of the Reusable Solid Rocket Motor, which is for use on future launch vehicles. Since 2006, Acoustic measurements have been taken on large solid rocket motors at ATK. Both the four segment RSRM and the five segment RSRMV have been instrumented. Measurements are used to update acoustic prediction models and to correlate against vibration responses of the motor. Presentation focuses on two major sections: Part I) Unique challenges associated with measuring rocket acoustics Part II) Acoustic measurements summary over past five years

  12. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields

    PubMed Central

    Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne

    2015-01-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  13. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields.

    PubMed

    Sapozhnikov, Oleg A; Tsysar, Sergey A; Khokhlova, Vera A; Kreider, Wayne

    2015-09-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors.

  14. Near-field acoustic holography using sparse regularization and compressive sampling principles.

    PubMed

    Chardon, Gilles; Daudet, Laurent; Peillot, Antoine; Ollivier, François; Bertin, Nancy; Gribonval, Rémi

    2012-09-01

    Regularization of the inverse problem is a complex issue when using near-field acoustic holography (NAH) techniques to identify the vibrating sources. This paper shows that, for convex homogeneous plates with arbitrary boundary conditions, alternative regularization schemes can be developed based on the sparsity of the normal velocity of the plate in a well-designed basis, i.e., the possibility to approximate it as a weighted sum of few elementary basis functions. In particular, these techniques can handle discontinuities of the velocity field at the boundaries, which can be problematic with standard techniques. This comes at the cost of a higher computational complexity to solve the associated optimization problem, though it remains easily tractable with out-of-the-box software. Furthermore, this sparsity framework allows us to take advantage of the concept of compressive sampling; under some conditions on the sampling process (here, the design of a random array, which can be numerically and experimentally validated), it is possible to reconstruct the sparse signals with significantly less measurements (i.e., microphones) than classically required. After introducing the different concepts, this paper presents numerical and experimental results of NAH with two plate geometries, and compares the advantages and limitations of these sparsity-based techniques over standard Tikhonov regularization.

  15. Effect of ionic temperature on the modulational instability of ion acoustic waves in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Murtaza, G.; Salahuddin, M.

    1981-12-01

    The modulational instability of ion acoustic waves is studied in the presence of a dc magnetic field, taking the ion temperature into account. It is well known that the instability sets in for wave numbers exceeding 1.47 kD when there is no magnetic field and the ion temperature is negligible. The instability behaviour, however, changes drastically when either the magnetic field is switched on or the ion temperature becomes important or both. In general three different regions emerge wherein the waves becomes modulationally unstable. The relative sizes of these regions change as the magnetic field, the angle of propagation and the ion temperature are varied.

  16. Retrieval of Sea-Bed Parameters by the Method of Matching Acoustic Fields on the Basis of Vertical Angular Spectra

    NASA Astrophysics Data System (ADS)

    Kerzhakov, B. V.; Kulinich, V. V.

    2016-08-01

    We use the field matching method to solve the inverse problem of estimating the geoacoustic parameters of a stratified sea bed using the objective function based on the norm of difference between the experimental and simulated vertical angular spectra of the acoustic field and combination of the rapid-annealing method with direct search methods for localization of the global minimum of the objective function. To reduce the influence of the ravine effects of the objective function, we use regularization on the basis of mutual correlations of the experimental and simulated vertical angular spectra of the acoustic field. The numerical experiment has been performed to retrieve the parameters of the model waveguide, e.g., the thickness of the water layer and the layer of sediments, the velocity and attenuation coefficients of longitudinal waves, and the density of the sediment layer and the subjacent half-space in the presence of noise interference of different intensity levels.

  17. Investigation of scaling characteristics for defining design environments due to transient ground winds and near-field, nonlinear acoustic fields

    NASA Technical Reports Server (NTRS)

    Shih, C. C.

    1973-01-01

    In order to establish a foundation of scaling laws for the highly nonlinear waves associated with the launch vehicle, the basic knowledge of the relationships among the paramaters pertinent to the energy dissipation process associated with the propagation of nonlinear pressure waves in thermoviscous media is required. The problem of interest is to experimentally investigate the temporal and spacial velocity profiles of fluid flow in a 3-inch open-end pipe of various lengths, produced by the propagation of nonlinear pressure waves for various diaphragm burst pressures of a pressure wave generator. As a result, temporal and spacial characteristics of wave propagation for a parametric set of nonlinear pressure waves in the pipe containing air under atmospheric conditions were determined. Velocity measurements at five sections along the pipes of up to 210 ft. in length were made with hot-film anemometers for five pressure waves produced by a piston. The piston was derived with diaphragm burst pressures at 20, 40, 60, 80 and 100 psi in the driver chamber of the pressure wave generator.

  18. Towards the optimisation of acoustic fields for ablative therapies of tumours in the upper abdomen

    NASA Astrophysics Data System (ADS)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2013-08-01

    The efficacy of high intensity focused ultrasound (HIFU) for the non-invasive treatment of cancer has been demonstrated for a range of different cancers including those of the liver, kidney, prostate and breast. As a non-invasive focused therapy, HIFU offers considerable advantages over other techniques such as chemotherapy and surgical resection, in terms of its non-invasiveness and low risk of harmful side effects. There is, however, a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to induce tissue necrosis at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. As such, a common side effect of focusing ultrasound in regions located behind the rib cage is the overheating of bone and surrounding tissue, which can lead to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy are deposited. This is likely to rely on a treatment planning procedure in which optimal source velocity distributions are obtained so as to maximise a dose quantity at the treatment sites, whilst ensuring that this quantity does not exceed a specified threshold at other field locations, particularly on the surface of the ribs. Previously, a boundary element approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. This work describes the reformulation of the boundary element equations as a least-squares minimisation problem with non-linear constraints. The methodology was subsequently tested at an excitation frequency of 100 kHz on a spherical multi-element array in the presence

  19. Laboratory and Field Studies of the Acoustics of Multiphase Ocean Bottom Materials

    DTIC Science & Technology

    2012-09-30

    public release, distribution unlimited 13. SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16...gas is produced during photosynthesis ) but not the same way for all species. Three photosynthesis - and acoustics-related processes occur. The...diurnal and seasonal dependencies. During winter months, seagrass goes dormant, photosynthesis diminishes, and acoustic attenuation is also at a

  20. Laboratory and Field Studies of the Acoustics of Multiphase Ocean Bottom Materials

    DTIC Science & Technology

    2011-09-30

    Exhibition on Underwater Acoustics Measurements: Technologies and Results, J. S. Papadakis and L. Bjørnø, Eds. Heraklion, Greece, 2007, pp. 21–29, ISBN 978...in Proceedings of the 2nd International Conference and Exhibition on Underwater Acoustics Measurements: Technologies and Results, J. S. Papadakis

  1. Laboratory and Field Studies of the Acoustics of Multiphase Ocean Bottom Materials

    DTIC Science & Technology

    2010-09-30

    Exhibition on Underwater Acoustics Measurements: Technologies and Results, J. S. Papadakis and L. Bjørnø, Eds. Heraklion, Greece, 2007, pp. 21–29, ISBN...34 in Proceedings of the 2nd International Conference and Exhibition on Underwater Acoustics Measurements: Technologies and Results, J. S. Papadakis

  2. Krylov subspace iterative methods for boundary element method based near-field acoustic holography.

    PubMed

    Valdivia, Nicolas; Williams, Earl G

    2005-02-01

    The reconstruction of the acoustic field for general surfaces is obtained from the solution of a matrix system that results from a boundary integral equation discretized using boundary element methods. The solution to the resultant matrix system is obtained using iterative regularization methods that counteract the effect of noise on the measurements. These methods will not require the calculation of the singular value decomposition, which can be expensive when the matrix system is considerably large. Krylov subspace methods are iterative methods that have the phenomena known as "semi-convergence," i.e., the optimal regularization solution is obtained after a few iterations. If the iteration is not stopped, the method converges to a solution that generally is totally corrupted by errors on the measurements. For these methods the number of iterations play the role of the regularization parameter. We will focus our attention to the study of the regularizing properties from the Krylov subspace methods like conjugate gradients, least squares QR and the recently proposed Hybrid method. A discussion and comparison of the available stopping rules will be included. A vibrating plate is considered as an example to validate our results.

  3. Study on the radial vibration and acoustic field of an isotropic circular ring radiator.

    PubMed

    Lin, Shuyu; Xu, Long

    2012-01-01

    Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius.

  4. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    NASA Astrophysics Data System (ADS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-04-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  5. A Finite Element Propagation Model for Extracting Normal Incidence Impedance in Nonprogressive Acoustic Wave Fields

    NASA Astrophysics Data System (ADS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1996-04-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme were computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressive wave environment such as that usually encountered in a commercial aircraft engine and in most laboratory settings.

  6. Acoustic field of a wedge-shaped section of a spherical cap transducer

    NASA Astrophysics Data System (ADS)

    Ketterling, Jeffrey A.

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10%+/-5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  7. Azimuthal cement evaluation with an acoustic phased-arc array transmitter: numerical simulations and field tests

    NASA Astrophysics Data System (ADS)

    Che, Xiao-Hua; Qiao, Wen-Xiao; Ju, Xiao-Dong; Wang, Rui-Jia

    2016-03-01

    We developed a novel cement evaluation logging tool, named the azimuthally acoustic bond tool (AABT), which uses a phased-arc array transmitter with azimuthal detection capability. We combined numerical simulations and field tests to verify the AABT tool. The numerical simulation results showed that the radiation direction of the subarray corresponding to the maximum amplitude of the first arrival matches the azimuth of the channeling when it is behind the casing. With larger channeling size in the circumferential direction, the amplitude difference of the casing wave at different azimuths becomes more evident. The test results showed that the AABT can accurately locate the casing collars and evaluate the cement bond quality with azimuthal resolution at the casing—cement interface, and can visualize the size, depth, and azimuth of channeling. In the case of good casing—cement bonding, the AABT can further evaluate the cement bond quality at the cement—formation interface with azimuthal resolution by using the amplitude map and the velocity of the formation wave.

  8. The applicability of free-field acoustic signatures to quality inspection of rotating machinery

    NASA Astrophysics Data System (ADS)

    Paustian, Andrew Brattain

    Quality assessment tools are used to increase productivity of a production line by ensuring that the produced item is fit for consumer use. In order for a quality inspection tool to be useful, the process must not affect the item and should not significantly slow down the manufacturing process. Acoustic production can be quickly assessed in a non-intrusive manner and can depict significant information about the generation source. This thesis seeks to assess the usefulness of an acoustic quality inspection tool for rotating machinery and develop such a tool for a small air pump. The acoustics of several pumps were sampled and Fourier analyses were performed. Defects were introduced to the pump specimen and the acoustics were once again sampled. Comparing the divergence of a defective pump acoustic signature lead to the generation of a quality inspection prototype tool. An instrument was created and was able to diagnose two of the three selected pump defects based on its acoustic output. The third defect did not alter the pump acoustics but was still diagnosable by monitoring motor rotational velocity.

  9. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    SciTech Connect

    Bassindale, P. G.; Drinkwater, B. W.; Phillips, D. B.; Barnes, A. C.

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces are separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.

  10. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen

    NASA Astrophysics Data System (ADS)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2012-12-01

    High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach

  11. The Acoustic Field Scattered from Some Approximate Pressure Release Materials Coating a Finite Cylinder.

    NASA Astrophysics Data System (ADS)

    Caille, Gary William

    1988-12-01

    The objective was to determine if a pressure release boundary condition can be achieved by coating an elastic shell with a viscoelastic material. One necessary condition is that the coating must acoustically decouple the shell from the scattering problem. Two closed cell rubbers and two cork-rubber composites (nitrile and neoprene based) were investigated. The dynamic viscoelastic constants of the materials were determined by wave propagation techniques. The far field scattering form functions for an infinite cylindrical shell coated with the viscoelastic material were calculated using the complete elastic equations of motion. The form functions were experimentally measured for the different materials at different thicknesses as verification of the theory. A thick finite right cylindrical shell was coated with.25 inches of closed cell neoprene and the normalized scattered pressure measured. The pressure release normalized scattered pressure was determined for the end on incident plane wave case using the acoustic radiation Simplified Helmholtz Integral Program (SHIP). The pressure release normalized scattered pressure was determined for the side incident case using a modified Combined Helmholtz Integral Equation Formulation (CHIEF) radiation program. The material property measurements showed the closed cell rubbers have longitudinal wave propagation speeds of approximately 150 m/sec and attenuations of 30 dB/cm. The cork-rubber composites have longitudinal wave speeds of approximately 300 m/sec and attenuations of 7 dB/cm. The scattering measurements demonstrated that a thin shell (inner radius to outer radius ratio of.97) could be made to scatter in a pressure release manner with a.25 inches of nitrile. The rubber-cork composites could not produce the pressure release effect for nondimensionalized wave number (product of the wave number and the radius of the cylinder) values less than 4 with reasonable thicknesses. The coated finite thick shell, with side

  12. Plane waves at or near grazing incidence in the parabolic approximation. [acoustic equations of motion for sound fields

    NASA Technical Reports Server (NTRS)

    Mcaninch, G. L.; Myers, M. K.

    1980-01-01

    The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.

  13. Subsurface defect of amorphous carbon film imaged by near field acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, J. T.; Zhao, K. Y.; Zeng, H. R.; Song, H. Z.; Zheng, L. Y.; Li, G. R.; Yin, Q. R.

    2008-05-01

    Amorphous carbon films were examined by low frequency scanning-probe acoustic microscopy (LF-SPAM). Local elastic properties as well as topography were imaged in the acoustic mode. Two kinds of subsurface defects were revealed by the LF-SPAM method. The influence of the subsurface defects on the elastic properties was also discussed. The ability to image subsurface defects was dependent on the scan area and the scan speed. Our results showed that the low frequency scanning-probe acoustic microscopy is a useful method for imaging subsurface defects with high resolution.

  14. Active control of membrane-type acoustic metamaterial by electric field

    NASA Astrophysics Data System (ADS)

    Xiao, Songwen; Ma, Guancong; Li, Yong; Yang, Zhiyu; Sheng, Ping

    2015-03-01

    By employing a metal-coated central platelet and a rigid mesh electrode which is transparent to acoustic wave, we show that the membrane-type acoustic metamaterials (MAMs) can be easily tuned by applying an external voltage. With static voltage, the MAM's eigenfrequencies and therefore the phase of the transmitted wave are tunable up to 70 Hz. The MAM's vibration can be significantly suppressed or enhanced by using phase-matched AC voltage. Functionalities such as phase modulation and acoustic switch with on/off ratio up to 21.3 dB are demonstrated.

  15. Deformation of a nearly hemispherical conducting drop due to an electric field: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Corson, L. T.; Tsakonas, C.; Duffy, B. R.; Mottram, N. J.; Sage, I. C.; Brown, C. V.; Wilson, S. K.

    2014-12-01

    We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel-plate capacitor. Using both numerical and asymptotic approaches, we find solutions to the coupled electrostatic and augmented Young-Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely, to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle, and pressure as functions of the zero-field contact angle, drop radius, surface tension, and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained.

  16. On the statistical errors in the estimate of acoustical energy density by using two microphones in a one dimensional field.

    PubMed

    Pascal, Jean-Claude; Thomas, Jean-Hugh; Li, Jing-Fang

    2008-10-01

    It was recently shown that the statistical errors of the measurement in the acoustic energy density by the two microphone method in waveguide have little variation when the losses of coherence between microphones increase. To explain these intervals of uncertainty, the variance of the measurement is expressed in this paper as a function of the various energy quantities of the acoustic fields--energy densities and sound intensities. The necessary conditions to reach the lower bound are clarified. The results obtained are illustrated by an example of a one-dimensional partially coherent field, which allows one to specify the relationship between the coherence functions of the pressure and particle velocity and those of the two microphone signals.

  17. Active control of acoustic field-of-view in a biosonar system.

    PubMed

    Yovel, Yossi; Falk, Ben; Moss, Cynthia F; Ulanovsky, Nachum

    2011-09-01

    Active-sensing systems abound in nature, but little is known about systematic strategies that are used by these systems to scan the environment. Here, we addressed this question by studying echolocating bats, animals that have the ability to point their biosonar beam to a confined region of space. We trained Egyptian fruit bats to land on a target, under conditions of varying levels of environmental complexity, and measured their echolocation and flight behavior. The bats modulated the intensity of their biosonar emissions, and the spatial region they sampled, in a task-dependant manner. We report here that Egyptian fruit bats selectively change the emission intensity and the angle between the beam axes of sequentially emitted clicks, according to the distance to the target, and depending on the level of environmental complexity. In so doing, they effectively adjusted the spatial sector sampled by a pair of clicks-the "field-of-view." We suggest that the exact point within the beam that is directed towards an object (e.g., the beam's peak, maximal slope, etc.) is influenced by three competing task demands: detection, localization, and angular scanning-where the third factor is modulated by field-of-view. Our results suggest that lingual echolocation (based on tongue clicks) is in fact much more sophisticated than previously believed. They also reveal a new parameter under active control in animal sonar-the angle between consecutive beams. Our findings suggest that acoustic scanning of space by mammals is highly flexible and modulated much more selectively than previously recognized.

  18. Field Demonstration of a Broadband Acoustical Backscattering System Mounted on a REMUS-100 for Inferences of Zooplankton Size and Abundance

    DTIC Science & Technology

    2012-09-30

    Backscattering System Mounted on a REMUS-100 for Inferences of Zooplankton Size and Abundance Andone C. Lavery Department of Applied Ocean Physics and...SUBTITLE Field Demonstration of a Broadband Acoustical Backscattering System Mounted on a REMUS-100 for Inferences of Zooplankton Size and Abundance 5a...of this REMUS- mounted broadband backscattering system with regards to inferring fish and zooplankton distribution, size and abundance in comparison

  19. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition.

    PubMed

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo

    2013-04-01

    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  20. Noise disturbance in open-plan study environments: a field study on noise sources, student tasks and room acoustic parameters.

    PubMed

    Braat-Eggen, P Ella; van Heijst, Anne; Hornikx, Maarten; Kohlrausch, Armin

    2017-04-03

    The aim of this study is to gain more insight in the assessment of noise in open-plan study environments and to reveal correlations between noise disturbance experienced by students and the noise sources they perceive, the tasks they perform and the acoustic parameters of the open-plan study environment they work in. Data were collected in five open-plan study environments at universities in the Netherlands. A questionnaire was used to investigate student tasks, perceived sound sources and their perceived disturbance, and sound measurements were performed to determine the room acoustic parameters. This study shows that 38% of the surveyed students are disturbed by background noise in an open-plan study environment. Students are mostly disturbed by speech when performing complex cognitive tasks like studying for an exam, reading and writing. Significant but weak correlations were found between the room acoustic parameters and noise disturbance of students. Practitioner Summary: A field study was conducted to gain more insight in the assessment of noise in open-plan study environments at universities in the Netherlands. More than one third of the students was disturbed by noise. An interaction effect was found for task type, source type and room acoustic parameters.

  1. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    NASA Technical Reports Server (NTRS)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  2. Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    SciTech Connect

    Genenko, Yuri A. Hirsch, Ofer; Erhart, Paul

    2014-03-14

    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO{sub 3} is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.

  3. Domain wall interactions due to vacuum Dirac field fluctuations in 2 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Fosco, C. D.; Mazzitelli, F. D.

    2016-07-01

    We evaluate quantum effects due to a two-component Dirac field in 2 +1 spacetime dimensions, coupled to domain-wall-like defects with a smooth shape. We show that these effects induce nontrivial contributions to the (shape-dependent) energy of the domain walls. For a single defect, we study the divergences in the corresponding self-energy, and also consider the role of the massless zero mode—corresponding to the Callan-Harvey mechanism—by coupling the Dirac field to an external gauge field. For two defects, we show that the Dirac field induces a nontrivial, Casimir-like effect between them, and we provide an exact expression for that interaction in the case of two straight-line parallel defects. As is the case for the Casimir interaction energy, the result is finite and unambiguous.

  4. Near-Field Acoustical Imaging using Lateral Bending Mode of Atomic Force Microscope Cantilevers

    NASA Astrophysics Data System (ADS)

    Caron, A.; Rabe, U.; Rödel, J.; Arnold, W.

    Scanning probe microscopy techniques enable one to investigate surface properties such as contact stiffness and friction between the probe tip and a sample with nm resolution. So far the bending and the torsional eigenmodes of an atomic force microscope cantilever have been used to image variations of elasticity and shear elasticity, respectively. Such images are near-field images with the resolution given by the contact radius typically between 10 nm and 50 nm. We show that the flexural modes of a cantilever oscillating in the width direction and parallel to the sample surface can also be used for imaging. Additional to the dominant in-plane component of the oscillation, the lateral modes exhibit a vertical component as well, provided there is an asymmetry in the cross-section of the cantilever or in its suspension. The out-of-plane deflection renders the lateral modes detectable by the optical position sensors used in atomic force microscopes. We studied cracks which were generated by Vickers indents, in submicro- and nanocrystalline ZrO2. Images of the lateral contact stiffness were obtained by vibrating the cantilever close to a contact-resonance frequency. A change in contact stiffness causes a shift of the resonant frequency and hence a change of the cantilever vibration amplitude. The lateral contact-stiffness images close to the crack faces display a contrast that we attribute to altered elastic properties indicating a process zone. This could be caused by a stress-induced phase transformation during crack propagation. Using the contact mode of an atomic force microscope, we measured the crack-opening displacement as a function of distance from the crack tip, and we determined the crack-tip toughness Ktip. Furthermore, K1c was inferred from the length of radial cracks of Vickers indents that were measured using classical scanning acoustic microscopy

  5. Dynamical Effects Due to Fringe Field of the Magnets in Circular Accelerators

    SciTech Connect

    Cai, Y.; Nosochkov, Yu.; /SLAC

    2005-05-16

    The leading Lie generators, including the chromatic effects, due to hard-edge fringe field of single multipole and solenoid are derived from the vector potentials within a Hamiltonian system. These nonlinear generators are applied to the interaction region of PEP-II to analyze the linear errors due to the feed-down from the off-centered quadrupoles and solenoid. The nonlinear effects of tune shifts at large amplitude, the synchro-betatron sidebands near half integer and their impacts on the dynamic aperture are studied in the paper.

  6. The neuronal responses to repetitive acoustic pulses in different fields of the auditory cortex of awake rats.

    PubMed

    Ma, Lanlan; Tai, Xuhui; Su, Liye; Shi, Lijuan; Wang, Enhua; Qin, Ling

    2013-01-01

    Cortical representation of time-varying features of acoustic signals is a fundamental issue of acoustic processing remaining unresolved. The rat is a widely used animal model for auditory cortical processing. Though some electrophysiological studies have investigated the neural responses to temporal repetitive sounds in the auditory cortex (AC) of rats, most of them were conducted under anesthetized condition. Recently, it has been shown that anesthesia could significantly alter the temporal patterns of neural response. For this reason, we systematically examined the single-unit neural responses to click-trains in the core region of rat AC under awake condition. Consistent with the reports on anesthetized rats, we confirmed the existence of characteristic tonotopic organizations, which were used to divide the AC into anterior auditory field (AAF), primary auditory cortex (A1) and posterior auditory field (PAF). We further found that the neuron's capability to synchronize to the temporal repetitive stimuli progressively decreased along the anterior-to-posterior direction of AC. The median of maximum synchronization rate was 64, 32 and 16 Hz in AAF, A1 and PAF, respectively. On the other hand, the percentage of neurons, which showed non-synchronized responses and could represent the stimulus repetition rate by the mean firing rate, increased from 7% in AAF and A1 to 20% in PAF. These results suggest that the temporal resolution of acoustic processing gradually increases from the anterior to posterior part of AC, and thus there may be a hierarchical stream along this direction of rat AC.

  7. The magnetic field inside a layered anisotropic spherical conductor due to internal sources

    NASA Astrophysics Data System (ADS)

    Nieminen, Jaakko O.; Stenroos, Matti

    2016-01-01

    Recent advances in neuronal current imaging using magnetic resonance imaging and in invasive measurement of neuronal magnetic fields have given a need for methods to compute the magnetic field inside a volume conductor due to source currents that are within the conductor. In this work, we derive, verify, and demonstrate an analytical expression for the magnetic field inside an anisotropic multilayer spherically symmetric conductor due to an internal current dipole. We casted an existing solution for electric field to vector spherical harmonic (VSH) form. Next, we wrote an ansatz for the magnetic field using toroidal-poloidal decomposition that uses the same VSHs. Using properties of toroidal and poloidal components and VSHs and applying magnetic scalar potential, we then formulated a series expression for the magnetic field. The convergence of the solution was accelerated by formulating the solution using an addition-subtraction method. We verified the resulting formula against boundary-element method. The verification showed that the formulas and implementation are correct; 99th percentiles of amplitude and angle differences between the solutions were below 0.5% and 0.5°, respectively. As expected, the addition-subtraction model converged faster than the unaccelerated model; close to the source, 250 terms gave relative error below 1%, and the number of needed terms drops fast, as the distance to the source increases. Depending on model conductivities and source position, field patterns inside a layered sphere may differ considerably from those in a homogeneous sphere. In addition to being a practical modeling tool, the derived solution can be used to verify numerical methods, especially finite-element method, inside layered anisotropic conductors.

  8. Characteristics of the electric field accompanying a longitudinal acoustic wave in a metal. Anomaly in the superconducting phase

    NASA Astrophysics Data System (ADS)

    Avramenko, Yu. A.; Bezuglyi, E. V.; Burma, N. G.; Kolobov, I. G.; Fil', V. D.; Shevchenko, O. A.; Gokhfeld, V. M.

    2002-05-01

    The temperature dependence of the amplitude and phase of the electric potential arising at a plane boundary of a conductor when a longitudinal acoustic wave is incident normally on it is investigated theoretically and experimentally. The surface potential is formed by two contributions, one of which is spatially periodic inside the sample, with the period of the acoustic field; the second is aperiodic and arises as a result of an additional nonuniformity of the electron distribution in a surface layer of the metal. In the nonlocal of parameters region the second contribution is dominant. The phases of these contributions are shifted by approximately π/2. For metals found in the normal state the experiment is in qualitative agreement with the theory. The superconducting transition is accompanied by catastrophically rapid vanishing of the electric potential, in sharp contrast to the theoretical estimates, which predict behavior similar to the BCS dependence of the attenuation coefficient for longitudinal sound.

  9. Self-running and self-floating two-dimensional actuator using near-field acoustic levitation

    NASA Astrophysics Data System (ADS)

    Chen, Keyu; Gao, Shiming; Pan, Yayue; Guo, Ping

    2016-09-01

    Non-contact actuators are promising technologies in metrology, machine-tools, and hovercars, but have been suffering from low energy efficiency, complex design, and low controllability. Here we report a new design of a self-running and self-floating actuator capable of two-dimensional motion with an unlimited travel range. The proposed design exploits near-field acoustic levitation for heavy object lifting, and coupled resonant vibration for generation of acoustic streaming for non-contact motion in designated directions. The device utilizes resonant vibration of the structure for high energy efficiency, and adopts a single piezo element to achieve both levitation and non-contact motion for a compact and simple design. Experiments demonstrate that the proposed actuator can reach a 1.65 cm/s or faster moving speed and is capable of transporting a total weight of 80 g under 1.2 W power consumption.

  10. A computer program for the determination of the acoustic pressure signature of helicopter rotors due to blade thickness

    NASA Technical Reports Server (NTRS)

    Mall, G. H.; Farassat, F.

    1976-01-01

    A computer program is presented for the determination of the thickness noise of helicopter rotors. The results were obtained in the form of an acoutic pressure time history. The parameters of the program are the rotor geometry and the helicopter motion descriptors, and the formulation employed is valid in the near and far fields. The blade planform must be rectangular, but the helicopter motion is arbitrary; the observer position is fixed with respect to the ground with a maximum elevation of 45 deg above or below the rotor plane. With these restrictions, the program can also be used for the calculation of thickness noise of propellers.

  11. Characterization of Transducer Performance and Narrowband Transient Ultrasonic Fields in Metals by Rayleigh-Sommerfeld Backpropagation of Compression Acoustic Waves Measured with Double-Pulsed Tv Holography

    NASA Astrophysics Data System (ADS)

    Trillo, Cristina; Doval, Ángel F.; Fernández, José L.; Rodríguez-Gómez, Pablo; López-Vázquez, J. Carlos

    2014-10-01

    This article presents a method aimed at the characterization of the narrowband transient acoustic field radiated by an ultrasonic plane transducer into a homogeneous, isotropic and optically opaque prismatic solid, and the assessment of the performance of the acoustic source. The method relies on a previous technique based on the full-field optical measurement of an acoustic wavepacket at the surface of a solid and its subsequent numerical backpropagation within the material. The experimental results show that quantitative transversal and axial profiles of the complex amplitude of the beam can be obtained at any plane between the measurement and excitation surfaces. The reconstruction of the acoustic field at the transducer face, carried out on a defective transducer model, shows that the method could also be suitable for the nondestructive testing of the performance of ultrasonic sources. In all cases, the measurements were performed with the transducer working under realistic loading conditions.

  12. Field collapse due to band-tail charge in amorphous silicon solar cells

    SciTech Connect

    Wang, Qi; Crandall, R.S.; Schiff, E.A.

    1996-05-01

    It is common for the fill factor to decrease with increasing illumination intensity in hydrogenated amorphous silicon solar cells. This is especially critical for thicker solar cells, because the decrease is more severe than in thinner cells. Usually, the fill factor under uniformly absorbed red light changes much more than under strongly absorbed blue light. The cause of this is usually assumed to arise from space charge trapped in deep defect states. The authors model this behavior of solar cells using the Analysis of Microelectronic and Photonic Structures (AMPS) simulation program. The simulation shows that the decrease in fill factor is caused by photogenerated space charge trapped in the band-tail states rather than in defects. This charge screens the applied field, reducing the internal field. Owing to its lower drift mobility, the space charge due to holes exceeds that due to electrons and is the main cause of the field screening. The space charge in midgap states is small compared with that in the tails and can be ignored under normal solar-cell operating conditions. Experimentally, the authors measured the photocapacitance as a means to probe the collapsed field. They also explored the light intensity dependence of photocapacitance and explain the decrease of FF with the increasing light intensity.

  13. Plasma heating at collisionless shocks due to the kinetic cross-field streaming instability

    NASA Technical Reports Server (NTRS)

    Winske, D.; Quest, K. B.; Tanaka, M.; Wu, C. S.

    1985-01-01

    Heating at collisionless shocks due to the kinetic cross-field streaming instability, which is the finite beta (ratio of plasma to magnetic pressure) extension of the modified two stream instability, is studied. Heating rates are derived from quasi-linear theory and compared with results from particle simulations to show that electron heating relative to ion heating and heating parallel to the magnetic field relative to perpendicular heating for both the electrons and ions increase with beta. The simulations suggest that electron dynamics determine the saturation level of the instability, which is manifested by the formation of a flattop electron distribution parallel to the magnetic field. As a result, both the saturation levels of the fluctuations and the heating rates decrease sharply with beta. Applications of these results to plasma heating in simulations of shocks and the earth's bow shock are described.

  14. Additional Enhancement of Electric Field in Surface-Enhanced Raman Scattering due to Fresnel Mechanism

    NASA Astrophysics Data System (ADS)

    Jayawardhana, Sasani; Rosa, Lorenzo; Juodkazis, Saulius; Stoddart, Paul R.

    2013-08-01

    Surface-enhanced Raman scattering (SERS) is attracting increasing interest for chemical sensing, surface science research and as an intriguing challenge in nanoscale plasmonic engineering. Several studies have shown that SERS intensities are increased when metal island film substrates are excited through a transparent base material, rather than directly through air. However, to our knowledge, the origin of this additional enhancement has never been satisfactorily explained. In this paper, finite difference time domain modeling is presented to show that the electric field intensity at the dielectric interface between metal particles is higher for ``far-side'' excitation than ``near-side''. This is reasonably consistent with the observed enhancement for silver islands on SiO2. The modeling results are supported by a simple analytical model based on Fresnel reflection at the interface, which suggests that the additional SERS signal is caused by near-field enhancement of the electric field due to the phase shift at the dielectric interface.

  15. Computational and experimental techniques for coupled acoustic/structure interactions.

    SciTech Connect

    Sumali, Anton Hartono; Pierson, Kendall Hugh; Walsh, Timothy Francis; Dohner, Jeffrey Lynn; Reese, Garth M.; Day, David Minot

    2004-01-01

    This report documents the results obtained during a one-year Laboratory Directed Research and Development (LDRD) initiative aimed at investigating coupled structural acoustic interactions by means of algorithm development and experiment. Finite element acoustic formulations have been developed based on fluid velocity potential and fluid displacement. Domain decomposition and diagonal scaling preconditioners were investigated for parallel implementation. A formulation that includes fluid viscosity and that can simulate both pressure and shear waves in fluid was developed. An acoustic wave tube was built, tested, and shown to be an effective means of testing acoustic loading on simple test structures. The tube is capable of creating a semi-infinite acoustic field due to nonreflecting acoustic termination at one end. In addition, a micro-torsional disk was created and tested for the purposes of investigating acoustic shear wave damping in microstructures, and the slip boundary conditions that occur along the wet interface when the Knudsen number becomes sufficiently large.

  16. Acoustical measurements of sound fields between the stage and the orchestra pit inside an historical opera house

    NASA Astrophysics Data System (ADS)

    Sato, Shin-Ichi; Prodi, Nicola; Sakai, Hiroyuki

    2004-05-01

    To clarify the relationship of the sound fields between the stage and the orchestra pit, we conducted acoustical measurements in a typical historical opera house, the Teatro Comunale of Ferrara, Italy. Orthogonal factors based on the theory of subjective preference and other related factors were analyzed. First, the sound fields for a singer on the stage in relation to the musicians in the pit were analyzed. And then, the sound fields for performers in the pit in relation to the singers on the stage were considered. Because physical factors vary depending on the location of the sound source, performers can move on the stage or in the pit to find the preferred sound field.

  17. Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Rice, William D.; Liu, Wenyong; Baker, Thomas A.; Sinitsyn, Nikolai A.; Klimov, Victor I.; Crooker, Scott A.

    2016-02-01

    Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn2+, Co2+ and so on) couple to band carriers via strong sp-d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical fluctuations of N spins are expected to generate giant effective magnetic fields Beff, which should dramatically impact carrier spin dynamics, even in the absence of any applied field. Here we directly and unambiguously reveal the large Beff that exist in Mn2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300-600 GHz) spin precession of photoinjected electrons is observed, indicating Beff ˜ 15 -30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. These signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.

  18. Highly Effective Conductance Modulation in Planar Silicene Field Effect Devices Due to Buckling.

    PubMed

    Al-Dirini, Feras; Hossain, Faruque M; Mohammed, Mahmood A; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2015-10-06

    Silicene is an exciting two-dimensional material that shares many of graphene's electronic properties, but differs in its structural buckling. This buckling allows opening a bandgap in silicene through the application of a perpendicular electric field. Here we show that this buckling also enables highly effective modulation of silicene's conductance by means of an in-plane electric field applied through silicene side gates, which can be realized concurrently within the same silicene monolayer. We illustrate this by using silicene to implement Self-Switching Diodes (SSDs), which are two-dimensional field effect nanorectifiers realized within a single silicene monolayer. Our quantum simulation results show that the atomically-thin silicene SSDs, with sub-10 nm dimensions, achieve a current rectification ratio that exceeds 200, without the need for doping, representing a 30 fold enhancement over graphene SSDs. We attribute this enhancement to a bandgap opening due to the in-plane electric field, as a consequence of silicene's buckling. Our results suggest that silicene is a promising material for the realization of planar field effect devices.

  19. Highly Effective Conductance Modulation in Planar Silicene Field Effect Devices Due to Buckling

    PubMed Central

    Al-Dirini, Feras; Hossain, Faruque M.; Mohammed, Mahmood A.; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2015-01-01

    Silicene is an exciting two-dimensional material that shares many of graphene’s electronic properties, but differs in its structural buckling. This buckling allows opening a bandgap in silicene through the application of a perpendicular electric field. Here we show that this buckling also enables highly effective modulation of silicene’s conductance by means of an in-plane electric field applied through silicene side gates, which can be realized concurrently within the same silicene monolayer. We illustrate this by using silicene to implement Self-Switching Diodes (SSDs), which are two-dimensional field effect nanorectifiers realized within a single silicene monolayer. Our quantum simulation results show that the atomically-thin silicene SSDs, with sub-10 nm dimensions, achieve a current rectification ratio that exceeds 200, without the need for doping, representing a 30 fold enhancement over graphene SSDs. We attribute this enhancement to a bandgap opening due to the in-plane electric field, as a consequence of silicene’s buckling. Our results suggest that silicene is a promising material for the realization of planar field effect devices. PMID:26441200

  20. Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals

    DOE PAGES

    Rice, William D.; Liu, Wenyong; Baker, Thomas A.; ...

    2015-11-23

    Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn2+, Co2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields Beff, which should dramatically impactmore » carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large Beff that exist in Mn2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating Beff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.« less

  1. Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals

    SciTech Connect

    Rice, William D.; Liu, Wenyong; Baker, Thomas A.; Sinitsyn, Nikolai A.; Klimov, Victor Ivanovich; Crooker, Scott A.

    2015-11-23

    Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn2+, Co2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields Beff, which should dramatically impact carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large Beff that exist in Mn2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating Beff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.

  2. Analytical method for evaluating the quality of acoustic fields radiated by a multielement therapeutic array with electronic focus steering

    NASA Astrophysics Data System (ADS)

    Ilyin, S. A.; Yuldashev, P. V.; Khokhlova, V. A.; Gavrilov, L. R.; Rosnitskiy, P. B.; Sapozhnikov, O. A.

    2015-01-01

    The paper presents an analytical method for calculating and analyzing the quality of 3-D acoustic fields of multielement phased arrays used in noninvasive ultrasound surgical devices. An analytical solution for the far field of each of its elements is used when calculating the array field. This method significantly accelerates calculations while preserving the high accuracy of results as compared to conventional direct numerical integration. Radiation from typical phased arrays is calculated using this approach, and the quality of their dynamic focusing is analyzed. Undesired diffraction effects caused by electronic focus steering are considered: an amplitude decrease in the main maximum and the appearance of grating lobes. The quality of dynamic focusing of the acoustic fields of two practically interesting arrays with a quasi-random element distribution (256 and 1024 elements, respectively), as well as of the regular array consisting of 256 elements is compared. In addition as well, a study is made of how the dimensions of the array elements and their spatial distributions affect the dimensions of the areas in which dynamic focusing is possible without occurrence of strong grating lobes and significant decrease in pressure amplitude at the main focus.

  3. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  4. Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms.

    PubMed

    Marbjerg, Gerd; Brunskog, Jonas; Jeong, Cheol-Ho; Nilsson, Erling

    2015-09-01

    A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse reflections with complex-valued and angle-dependent boundary conditions. This paper mainly describes the combination of the two models and the implementation of the angle-dependent boundary conditions. It furthermore describes how a pressure impulse response is obtained from the energy-based acoustical radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber ceiling. Results from the full model are compared with results from other simulation tools and with measurements. The comparisons of the full model are done for real-valued and angle-independent surface properties. The proposed model agrees well with both the measured results and the alternative theories, and furthermore shows a more realistic spatial variation than energy-based methods due to the fact that interference is considered.

  5. Towards Truly Quiet MRI: animal MRI magnetic field gradients as a test platform for acoustic noise reduction

    NASA Astrophysics Data System (ADS)

    Edelstein, William; El-Sharkawy, Abdel-Monem

    2013-03-01

    Clinical MRI acoustic noise, often substantially exceeding 100 dB, causes patient anxiety and discomfort and interferes with functional MRI (fMRI) and interventional MRI. MRI acoustic noise reduction is a long-standing and difficult technical challenge. The noise is basically caused by large Lorentz forces on gradient windings--surrounding the patient bore--situated in strong magnetic fields (1.5 T, 3 T or higher). Pulsed currents of 300 A or more are switched through the gradient windings in sub-milliseconds. Experimenting with hardware noise reduction on clinical scanners is difficult and expensive because of the large scale and weight of clinical scanner components (gradient windings ~ 1000 kg) that require special handling equipment in large engineering test facilities. Our approach is to produce a Truly Quiet (<70 dB) small-scale animal imager. Results serve as a test platform for acoustic noise reduction measures that can be implemented in clinical scanners. We have so far decreased noise in an animal scale imager from 108 dB to 71 dB, a 37 dB reduction. Our noise reduction measures include: a gradient container that can be evacuated; inflatable antivibration mounts to prevent transmission of vibrations from gradient winding to gradient container; vibration damping of wires going from gradient to the outside world via the gradient container; and a copper passive shield to prevent the generation of eddy currents in the metal cryostat inner bore, which in turn can vibrate and produce noise.

  6. Near field of a transient, acoustically forced transitional and turbulent jets

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Bodony, Daniel

    2011-11-01

    Acoustic liners are widely used to reduce aircraft engine noise. They work by converting acoustic-bound energy into vorticity-bound energy, in the form of a transient jet, at an orifice that is very small relative to the incident sound wavelength. At low sound amplitudes (<130 dB) the forced jet is laminar. At higher amplitudes (> = 150 dB) vortical instabilities appear and the jet becomes turbulent. In this work the behavior of transitional and fully turbulent transient jets are studied using direct numerical simulations of the compressible Navier-Stokes equations. We focus on the near-aperture dynamics of the acoustically-forced fluid by quantifying the jets' phase-averaged properties and linking these to a reduced order dynamical model with the objective of understanding the motion of transient turbulent jets. Results indicate that boundary layer separation from the orifice walls is critical to seeding instabilities within the jets as they develop while at later times disturbances from the previous acoustic cycle reinforce the jets' unsteadiness.

  7. Modeling of Acoustic Field Statistics for Deep and Shallow Water Environments

    DTIC Science & Technology

    2014-09-30

    eddies, internal tides, internal waves, and fine structure ( spice ) are needed, while in the shallow water case a models of the random linear internal...waves and spice are lacking. APPROACH The approach to this research is to rigorously test acoustic fluctuation models using Monte Carlo

  8. Linearly polarized radiation from astrophysical masers due to magnetic fields of intermediate strength

    NASA Technical Reports Server (NTRS)

    Nedoluha, Gerald E.; Watson, William D.

    1990-01-01

    Previous solutions for polarization of astrophysical maser radiation due to closed-shell molecules in a magnetic field have potentially serious limitations. These solutions are mostly based on the approximation that the Zeeman frequency g-Omega is much greater than the rate for stimulated emission R and the rate for decay Gamma of the molecular state. Others are asymptotic solutions obtained for an angular momentum J = 1-0 transition. It has been unclear whether the polarizations due to plausible Zeeman splittings are adequately represented by the solutions obtained for g-Omega/Gamma much greater than 1 and g-Omega/R much greater than 1. Actual masing transitions tend to involve molecular states with angular momenta that are higher than J = 1 and 0. Numerical solutions for the linear polarization are presented here which do not have the foregoing restrictions on the g-Omega and which are not limited to a J = 1-0 transition.

  9. Enhancement of threshold electric field for relativistic runaway electrons due to magnetic fluctuation and synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Li, Shucai; Wang, Lu; Chen, Zhongyong; Huang, Duwei; Tong, Ruihai

    2016-10-01

    The dynamics of relativistic electrons are analyzed using the relativistic Fokker-Planck equation including deceleration due to synchrotron radiation (SR) and radial diffusion loss caused by magnetic fluctuation (MF). Threshold electric field for avalanche growth is enhanced, and the growth rate is reduced by the combined effect of MF and SR as compared to the case with only SR. The threshold electric field is determined by the time scales balance between momentum evolution and radial diffusion loss induced by MF, and increased with level of MF. More importantly, the hysteresis behavior of runaway pointed out by does not exist anymore. This is because the ``seed electrons'' cannot be sustained as a result of diffusion loss. This work was supported by NSFC Grant No. 11305071, and the Ministry of Science and technology of China, under Contract Nos. 2013GB112002, 2015GB111002 and 2015GB111001.

  10. Absence of Remote Triggering in Geothermal Fields Due to Human Activity

    NASA Astrophysics Data System (ADS)

    Ge, S.; Zhang, Q.; Lin, G.

    2014-12-01

    Operational geothermal fields typically have high seismicity rates, which could be caused by both tectonic and anthropogenic activities. Due to the high background seismicity and possible interaction between fluid and seismic waves, geothermal areas have been recognized to be susceptible to large remote earthquakes. However, whether human activity (geothermal production) affects remote earthquake triggering by changing the stress state is unclear. Here we choose two geothermal fields, Coso and Salton Sea in southern California, to study the spatiotemporal distributions of the triggered earthquakes following the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes. These two geothermal fields have been in operation since 1980s with comparable net capacity, and have long-term geothermal fluid loss. By analyzing the regional catalog recorded by the Southern California Seismic Network, we find that these two operational geothermal areas remain unaffected by the remote mainshocks, whereas the surrounding areas show vigorous triggered responses. We interpret this phenomenon as a result of human activity, which presumably has brought the stress state away from failure by reducing pore pressure. To further understand how much the human activity can affect the stress state, we also conduct a systematic study on Long Valley Caldera in northern California as a comparison site. Long Valley Caldera hosts an active geothermal field with net capacity about one sixth of that in Coso or Salton Sea geothermal field, and the extraction volume is not constantly larger than the injection. We will show comparisons of the triggered response in Long Valley with the two geothermal fields in southern California.

  11. Temperature fields due to jet induced mixing in a typical OTV tank

    NASA Technical Reports Server (NTRS)

    Hochstein, J. I.; Ji, Hyun-Chul; Aydelott, J. C.

    1987-01-01

    The Eclipse Code is being developed as a general tool for analysis of cryogenic propellant behavior in spacecraft tankage. The focus of the work being reported is on prediction of temperature fields due to introduction of a cold jet along the centerline of a typical Orbit Transfer Vehicle tank. A brief description of the formulations used for modeling heat transfer and turbulent flow is presented. Code performance is verified through comparison to experimental data for mixing in small scale tanks. An unexpected difficulty in computing long duration flows is reviewed. Preliminary results for a partially filled full scale tank are obtained by approximating the free surface by a spherical solid boundary.

  12. Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge.

    PubMed

    Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert

    2012-07-07

    Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators.

  13. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.

    PubMed

    Foerster, Bernd U; Tomasi, Dardo; Caparelli, Elisabeth C

    2005-11-01

    Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI.

  14. A seismic field test with a Low-level Acoustic Combustion Source and Pseudo-Noise codes

    NASA Astrophysics Data System (ADS)

    Askeland, Bjørn; Ruud, Bent Ole; Hobæk, Halvor; Mjelde, Rolf

    2009-01-01

    The Low-level Acoustic Combustion Source (LACS) which can fire its pulses at a high rate, has been tested successfully as a seismic marine source on shallow ice-age sediments in Byfjorden at Bergen, Norway. Pseudo-Noise pulsed signals with spiky autocorrelation functions were used to detect the sediments. Each transmitted sequence lasted 10 s and contained 43 pulses. While correlation gave a blurry result, deconvolution between the near-field recordings and the streamer recordings gave a clear seismic section. Compared to the section acquired with single air-gun shots along the same profile, the LACS gave a more clear presentation of the sediments and basement.

  15. Multiple Scattering of Sound by Internal Waves and Acoustic Characterization of Internal Wave Fields in Deep and Shallow Water

    DTIC Science & Technology

    2006-09-30

    situations. The equation for the average acoustic field in the statistically homogeneous in horizontal plane stratified waveguide satisfies an...is the vertical coordinate, and integration is along an perturbed eigenray between a source at (xS, 0, zS) and the mid-point (xR, 0, zR RR ) between...angle on the eigenray , ( ) ( )( ) ( ) ( )( ) ( ) 00 0 , ; ,, tan ; , , ; , , , cos S x R R R R R R R R R R Rx c x z x x z dxp x b z x x z x q x

  16. Technical procedures for implementation of acoustics site studies, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    SciTech Connect

    Not Available

    1987-09-01

    The purpose and scope of the technical procedure for processing data from the tethered meteorological system are covered. Definitions, interfaces, and concurrent data needs are also addressed. This technical procedure describes how to control, organize, verify, and archive tethered meteorological system data. These data will be received at the processing location from the field measurement location and are part of the characterization of the Deaf Smith County Site, Texas for the salt repository program. These measurements will be made in support of the sound propagation study and are a result of environmental data requirements for acoustics. 6 refs., 15 figs., 5 tabs.

  17. Numerical inverse method predicting acoustic spinning modes radiated by a ducted fan from free-field test data.

    PubMed

    Lewy, Serge

    2008-07-01

    Spinning modes generated by a ducted turbofan at a given frequency determine the acoustic free-field directivity. An inverse method starting from measured directivity patterns is interesting in providing information on the noise sources without requiring tedious spinning-mode experimental analyses. According to a previous article, equations are based on analytical modal splitting inside a cylindrical duct and on a Rayleigh or a Kirchhoff integral on the duct exit cross section to get far-field directivity. Equations are equal in number to free-field measurement locations and the unknowns are the propagating mode amplitudes (there are generally more unknowns than equations). A MATLAB procedure has been implemented by using either the pseudoinverse function or the backslash operator. A constraint comes from the fact that squared modal amplitudes must be positive which involves an iterative least squares fitting. Numerical simulations are discussed along with several examples based on tests performed by Rolls-Royce in the framework of a European project. It is assessed that computation is very fast and it well fits the measured directivities, but the solution depends on the method and is not unique. This means that the initial set of modes should be chosen according to any known physical property of the acoustic sources.

  18. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.

    PubMed

    Sumiya, Miwa; Fujioka, Emyo; Motoi, Kazuya; Kondo, Masaru; Hiryu, Shizuko

    2017-01-01

    Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats' flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat's wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations

  19. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging

    PubMed Central

    Sumiya, Miwa; Fujioka, Emyo; Motoi, Kazuya; Kondo, Masaru; Hiryu, Shizuko

    2017-01-01

    Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats’ flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat’s wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations

  20. An experimental study using flow visualization on the effect of an acoustic field on heat transfer from spheres

    NASA Technical Reports Server (NTRS)

    Leung, W. W.; Baroth, E. C.

    1986-01-01

    The physical mechanisms responsible for the heat transfer process in a thermal-acoustic field were investigated using the technique of holographic interferometry for flow visualization. Experimental results were obtained with sound pressure levels in the range of 120 to 150 decibels, relative to a pressure of 0.0002 dynes/sq cm. Steady state laminar flow was observed when the vibrational Reynolds number was below 400; separated flow was observed when it was above 400. In the presence of a horizontal sound field, the data indicate that the relation between the vibrational Nusselt number, Nu(v) and the vibrational Reynolds number, Re(v) is given by Nu(v) = Re(v) exp 0.22. In the presence of a vertical sound field, the corresponding relation is Nu(v) = Re(v) exp 0.15.

  1. Classical chaos and the sensitivity of the acoustic field to small-scale ocean structure

    NASA Astrophysics Data System (ADS)

    Palmer, D. R.; Georges, T. M.; Jones, R. M.

    1991-04-01

    Ray theory is usually the basis of data inversion schemes for acoustic remote sensing of the ocean. Chaotic ray paths are expected to be present whenever the ocean environment possesses small-scale, range-dependent structure. We are studying the implications of their presence for data inversion schemes. Using numerical simulations we consider ray-path characteristics for acoustic remote sensing of the Florida Current. We find small-scale bathymetric structure results in chaotic ray paths and an exponential proliferation of eigenrays. As a result, for each feature in the time-of-arrival pattern, there is associated not a single eigenray but a group, thereby limiting the spatial resolution of a remote sensing system.

  2. Computation of acoustic ressure fields produced in feline brain by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Omidi, Nazanin

    In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the ultrasonic threshold for cavitation-induced changes in the mammalian brain. The thresholds for tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The goal of this study was to improve the estimates for acoustic pressures and intensities present in vivo during those experimental exposures by estimating them using nonlinear rather than linear theory. In our current project, the acoustic pressure waveforms produced in the brains of anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer (focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et al. The focal pressure waveforms were also computed at the location of the true maximum. For low source pressures, the computed waveforms were the same as those determined using linear theory, and the focal intensities matched experimentally determined values. For higher source pressures, the focal pressure waveforms became increasingly distorted, with the compressional amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower than the values calculated using linear theory. The implications of these results for clinical exposures are discussed.

  3. Additional Enhancement of Electric Field in Surface-Enhanced Raman Scattering due to Fresnel Mechanism

    PubMed Central

    Jayawardhana, Sasani; Rosa, Lorenzo; Juodkazis, Saulius; Stoddart, Paul R.

    2013-01-01

    Surface-enhanced Raman scattering (SERS) is attracting increasing interest for chemical sensing, surface science research and as an intriguing challenge in nanoscale plasmonic engineering. Several studies have shown that SERS intensities are increased when metal island film substrates are excited through a transparent base material, rather than directly through air. However, to our knowledge, the origin of this additional enhancement has never been satisfactorily explained. In this paper, finite difference time domain modeling is presented to show that the electric field intensity at the dielectric interface between metal particles is higher for “far-side” excitation than “near-side”. This is reasonably consistent with the observed enhancement for silver islands on SiO2. The modeling results are supported by a simple analytical model based on Fresnel reflection at the interface, which suggests that the additional SERS signal is caused by near-field enhancement of the electric field due to the phase shift at the dielectric interface. PMID:23903714

  4. Biological effects due to weak electric and magnetic fields: the temperature variation threshold.

    PubMed Central

    Weaver, J C; Vaughan, T E; Martin, G T

    1999-01-01

    A large number of epidemiological and experimental studies suggest that prolonged (>100 s) weak 50-60-Hz electric and magnetic field (EMF) exposures may cause biological effects(NIEHS Working Group, NIH, 1998; Bersani, 1999). We show, however, that for typical temperature sensitivities of biochemical processes, realistic temperature variations during long exposures raise the threshold exposure by two to three orders of magnitude over a fundamental value, independent of the biophysical coupling mechanism. Temperature variations have been omitted in previous theoretical analyses of possible weak field effects, particularly stochastic resonance (Bezrukov and Vodyanoy 1997a. Nature. 385:319-321; Astumian et al., 1997 Nature. 338:632-633; Bezrukov and Vodyanoy, 1997b. Nature. 338:663; Dykman and McClintock, 1998. Nature. 391:344; McClintock, 1998;. Gammaitoni et al., 1998. Rev. Mod. Phys. 70:223-287). Although sensory systems usually respond to much shorter (approximately 1 s) exposures and can approach fundamental limits (Bialek, 1987 Annu. Rev. Biophys. Biophys. Chem. 16:455-468; Adair et al, 1998. Chaos. 8:576-587), our results significantly decrease the plausibility of effects for nonsensory biological systems due to prolonged, weak-field exposures. PMID:10354428

  5. Second-order correction to the Bigeleisen–Mayer equation due to the nuclear field shift

    PubMed Central

    Bigeleisen, Jacob

    1998-01-01

    The nuclear field shift affects the electronic, rotational, and vibrational energies of polyatomic molecules. The theory of the shifts in molecular spectra has been studied by Schlembach and Tiemann [Schlembach, J. & Tiemann, E. (1982) Chem. Phys. 68, 21]; measurements of the electronic and rotational shifts of the diatomic halides of Pb and Tl have been made by Tiemann et al. [Tiemann, E., Knöckel, H. & Schlembach, J. (1982) Ber. Bunsenges. Phys. Chem. 86, 821]. These authors have estimated the relative shifts in the harmonic frequencies of these compounds due to the nuclear field shift to be of the order of 10−6. I have used this estimate of the relative shift in vibrational frequency to calculate the correction to the harmonic oscillator approximation to the isotopic reduced partition-function ratio 208Pb32S/207Pb32S. The correction is 0.3% of the harmonic oscillator value at 300 K. In the absence of compelling evidence to the contrary, it suffices to calculate the nuclear field effect on the total isotopic partition-function ratio from its shift of the electronic zero point energy and the unperturbed molecular vibration. PMID:9560183

  6. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  7. Acoustic data analysis and scenario over watch from an aerostat at the NATO SET-153 field experiment

    NASA Astrophysics Data System (ADS)

    Reiff, Christian; Scanlon, Michael

    2012-06-01

    The purpose of the NATO SET-153 field experiment was to provide an opportunity to demonstrate multiple sensor technologies in an urban environment and determine integration capabilities for future development. The Army Research Laboratory (ARL) experimental aerostat was used primarily as a persistent over watch capability as a substitute for a UAV. Continuous video was recorded on the aerostat and segments of video were captured of the scenarios on the ground that the camera was following manually. Some of the segments showing scenario activities will be presented. The captured pictures and video frames have telemetry in the headers that provides the UTM time and the Inertial Navigation System (INS) GPS location and the inertial roll, pitch, and yaw as well as the camera gimbal pan and tilt angles. The timing is useful to synchronize the images with the scenario events providing activity ground truth. The INS, GPS, and camera gimbal angle values can be used with the acoustic solution for the location of a sound source to determine the relative accuracy of the solution if the camera is pointed at the sound source. This method will be confirmed by the use of a propane cannon whose GPS location is logged. During the field experiment, other interesting acoustic events such as vehicle convoys, platoon level firefights with vehicles using blanks, and a UAV helicopter were recorded and will be presented in a quick analysis.

  8. How females of chirping and trilling field crickets integrate the 'what' and 'where' of male acoustic signals during decision making.

    PubMed

    Gabel, Eileen; Gray, David A; Matthias Hennig, R

    2016-11-01

    In crickets acoustic communication serves mate selection. Female crickets have to perceive and integrate male cues relevant for mate choice while confronted with several different signals in an acoustically diverse background. Overall female decisions are based on the attractiveness of the temporal pattern (informative about the 'what') and on signal intensity (informative about the 'where') of male calling songs. Here, we investigated how the relevant cues for mate choice are integrated during the decision process by females of five different species of chirping and trilling field crickets. Using a behavioral design, female preferences in no-choice and choice situations for male calling songs differing in pulse rate, modulation depth, intensities, chirp/trill arrangements and temporal shifts were examined. Sensory processing underlying decisions in female field crickets is rather similar as combined evidence suggested that incoming song patterns were analyzed separately by bilaterally paired networks for pattern attractiveness and pattern intensity. A downstream gain control mechanism leads to a weighting of the intensity cue by pattern attractiveness. While remarkable differences between species were observed with respect to specific processing steps, closely related species exhibited more similar preferences than did more distantly related species.

  9. Acoustic far-field of shroud-lip-scattered instability modes of supersonic co-flowing jets

    NASA Astrophysics Data System (ADS)

    Samanta, Arnab; Freund, Jonathan B.

    2013-11-01

    We consider the acoustic radiation of instability modes in dual-stream jets, with the inner nozzle buried within the outer shroud, particularly the upstream scattering into acoustic modes that occurs at the shroud lip. For supersonic core jets, several families of instability waves are possible, beyond the regular Kelvin-Helmholtz (K-H) mode, with very different modal shapes and propagation characteristics, which are candidates for changing the sound character of very high-speed jets. The co-axial shear layers are modeled as vortex sheets, with the Wiener-Hopf method used to compute these modes coupled with an asymptotic solution for the far-field radiation. A broadband mode spectra as well as single propagating modes are considered as incident and scattered waves. The resulting far-field directivity patterns are quantified, to show the efficiency of some of these radiation mechanisms, particularly in the upstream direction, which is not directly affected by the Mach-wave-like sound that is radiated from these modes irrespective of any scattering surface. A full Kutta condition, which provides the usual boundary condition at the shroud lip, is altered to examine how vortex shedding, perhaps controllable at the lip, affects the radiated sound.

  10. Electron spin relaxation due to reorientation of a permanent zero field splitting tensor.

    PubMed

    Schaefle, Nathaniel; Sharp, Robert

    2004-09-15

    Electron spin relaxation of transition metal ions with spin S> or =1 results primarily from thermal modulation of the zero field splitting (zfs) tensor. This occurs both by distortion of the zfs tensor due to intermolecular collisions and, for complexes with less than cubic symmetry, by reorientational modulation of the permanent zfs tensor. The reorientational mechanism is much less well characterized in previous work than the distortional mechanism although it is an important determinant of nuclear magnetic resonance (NMR) paramagnetic relaxation enhancement phenomena (i.e., the enhancement of NMR relaxation rates produced by paramagnetic ions in solution or NMR-PRE). The classical density matrix theory of spin relaxation does not provide an appropriate description of the reorientational mechanism at low Zeeman field strengths because the zero-order spin wave functions are stochastic functions of time. Using spin dynamics simulation techniques, the time correlation functions of the spin operators have been computed and used to determine decay times for the reorientational relaxation mechanism for S=1. In the zfs limit of laboratory field strengths (H(Zeem)field strengths where H(Zeem) approximately H(zfs) (composite function), and in the vicinity of the Zeeman limit. The results demonstrate that the reorientational electron spin relaxation mechanism is often significant when H(zfs) (composite function)> or =H(Zeem), and that its neglect

  11. Small scale changes of geochemistry and flow field due to transient heat storage in aquifers

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.

    2013-12-01

    Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the

  12. Monte Carlo investigation of transient acoustic fields in partially or completely bounded medium. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Thanedar, B. D.

    1972-01-01

    A simple repetitive calculation was used to investigate what happens to the field in terms of the signal paths of disturbances originating from the energy source. The computation allowed the field to be reconstructed as a function of space and time on a statistical basis. The suggested Monte Carlo method is in response to the need for a numerical method to supplement analytical methods of solution which are only valid when the boundaries have simple shapes, rather than for a medium that is bounded. For the analysis, a suitable model was created from which was developed an algorithm for the estimation of acoustic pressure variations in the region under investigation. The validity of the technique was demonstrated by analysis of simple physical models with the aid of a digital computer. The Monte Carlo method is applicable to a medium which is homogeneous and is enclosed by either rectangular or curved boundaries.

  13. Estimation of Surface Roughness due to Electrode Erosion in Field-Distortion Gas Switch

    NASA Astrophysics Data System (ADS)

    Liu, Xuandong; Wang, Hu; Li, Xiaoang; Zhang, Qiaogen; Wei, Jin; Qiu, Aici

    2013-08-01

    Field distortion gas switch is one of the crucial elements in a Marx generator, fast linear transformer driver and other pulsed power installations. The performance of the gas switch, which is dramatically affected by the surface roughness due to electrode erosion during the discharge process, directly influences the output parameters, stability and reliability of the pulsed power system. In this paper, an electrode surface roughness (ESR) calculation model has been established based on a great deal of experimental data under operating current. The discharge current waveform, the peak height of the burr, the radius and the depth of etch pits in the electrode erosion region were used to predict the ESR. Also, experimental results indicate that this calculation model can effectively estimate the ESR of the test gas switch.

  14. Mesoscale current fields observed with a shipboard profiling acoustic current meter

    SciTech Connect

    Regier, L.

    1982-08-01

    Measurements of the near-surface currents obtained with a shipboard acoustic current meter during the POLYMODE Local Dynamics Experiment are discussed. The large-scale spatial structure of the directly measured currents is very similar to that obtained from simultaneous hydrographic observations assuming geostrophic dynamics. The vertical shear of geostrophic currents is half that observed directly, and the two are poorly correlated. Vertical shear is dominated by currents having spatial scales shorter than about 180 km and having no geostrophic signature. Although the shear of the ageostrophic component is clearly evident, estimation of the ageostrophic current is hampered by large experimental uncertainties.

  15. Solar Wind Slowdown Due to Dust Pickup during Interplanetary Field Enhancements

    NASA Astrophysics Data System (ADS)

    Lai, Hairong; Russell, Christopher; Wei, Hanying

    2013-04-01

    The interplanetary field enhancements (IFEs) are characterized by their cusp-shaped enhancement in the magnetic field magnitude. They are observed throughout the inner solar system from 0.72AU by Pioneer Venus Orbiter to 5AU by Ulysses. The annual IFE rate is ten at 0.72AU and around eight at 1AU, i.e., decreases as the heliocentric distance increases. Multiple-spacecraft observations show that IFEs are moving radially away from the Sun at nearly the ambient solar wind speed. During the IFE events, case studies show that while there are correlated diamagnetic compensations in pressure there are no significant correlated changes in the solar wind speed. An IFE formation mechanism that explains most of the IFE features is that IFEs result from interactions between solar wind and clouds of picked up nanoscale charged dust, which is released in interplanetary collisions between objects of 10 to 1000m in diameter. The enhanced magnetic field behaves as a magnetic barrier that can transfer momentum to the charged dust from the solar wind. Momentum lifts the dust outward in the solar gravitational well. A prediction of this hypothesis is that solar wind will be slowed down even when the IFEs have reached exactly the solar wind speed. To test this hypothesis, we perform a superposed analysis on the radial velocity of IFEs observed at 1AU. In contrast to the case studies, the statistical results have a significant change in speed. The velocity on the solar wind side of the IFEs is smaller than the ambient velocity. This slowdown increases for larger IFEs with larger estimated mass. In addition, the amount of momentum due to the solar wind slowdown is quantitatively consistent with the momentum expected to be needed to lift the dust out of the Sun's gravitational potential well, which is in strong support of our IFE formation mechanism.

  16. Acoustic fluidization - A new geologic process

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    1979-01-01

    A number of geologic processes, particularly seismic faulting, impact crater slumping, and long runout landslides, require the failure of geologic materials under differential stresses much smaller than expected on the basis of conventional rock mechanics. This paper proposes that the low strengths apparent in these phenomena are due to a state of 'acoustic fluidization' induced by a transient strong acoustic wave field. The strain rates possible in such a field are evaluated, and it is shown that acoustically fluidized debris behaves as a newtonian fluid with a viscosity in the range 100,000 to 10,000,000 P for plausible conditions. Energy gains and losses in the acoustic field are discussed, and the mechanism is shown to be effective if internal dissipation in the field gives a Q approximately greater than 100. Whether such values for Q are realized is not known at present. However, acoustic fluidization provides a qualitatively correct description of the failure of rock debris under low differential stresses in the processes of faulting, crater slumping, and long runout landslides. Acoustic fluidization thus deserves serious consideration as a possible explanation of these phenomena.

  17. The Bjerknes instability during crystal nucleation by acoustic waves

    NASA Astrophysics Data System (ADS)

    Ben Amar, Martine

    2004-05-01

    The instability of position of a growing spherical crystal in an acoustic field is studied. Due to the Bjerknes force, a spherical crystal, whose position is shifted from an antinode of pressure, moves in the acoustic field. This displacement, stable in the case of bubbles in a cavitation experiment, turns out to be unstable in the case of crystallization. This effect is studied for an arbitrary Atwood number. To cite this article: M. Ben Amar, C. R. Mecanique 332 (2004).

  18. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    PubMed

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  19. Magnetostriction of a sphere: stress development during magnetization and residual stresses due to the remanent field

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Rickert, Wilhelm; Stahn, Oliver; Müller, Wolfgang H.

    2016-12-01

    Based on the principles of rational continuum mechanics and electrodynamics (see Truesdell and Toupin in Handbuch der Physik, Springer, Berlin, 1960 or Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000), we present closed-form solutions for the mechanical displacements and stresses of two different magnets. Both magnets are initially of spherical shape. The first (hard) magnet is uniformly magnetized and deforms due to the field induced by the magnetization. In the second problem of a (soft) linear-magnetic sphere, the deformation is caused by an applied external field, giving rise to magnetization. Both problems can be used for modeling parts of general magnetization processes. We will address the similarities between both settings in context with the solutions for the stresses and displacements. In both problems, the volumetric uc(Lorentz) force density vanishes. However, a uc(Lorentz) surface traction is present. This traction is determined from the magnetic flux density. Since the obtained displacements and stresses are small in magnitude, we may use uc(Hooke's) law with a small-strain approximation, resulting in the uc(Lamé)-uc(Navier) equations of linear elasticity theory. If gravity is neglected and azimuthal symmetry is assumed, these equations can be solved in terms of a series. This has been done by uc(Hiramatsu) and uc(Oka) (Int J Rock Mech Min Sci Geomech Abstr 3(2):89-90, 1966) before. We make use of their series solution for the displacements and the stresses and expand the uc(Lorentz) tractions of the analyzed problems suitably in order to find the expansion coefficients. The resulting algebraic system yields finite numbers of nonvanishing coefficients. Finally, the resulting stresses, displacements, principal strains and the uc(Lorentz) tractions are illustrated and discussed.

  20. Evanescent field enhancement due to plasmonic resonances of a metamaterial slab.

    PubMed

    Chiu, K P; Kao, T S; Tsai, D P

    2008-02-01

    The characteristics of plasmonic resonance in a dielectric-sandwiched metamaterial film at visible wavelengths of 650 and 568 nm have been investigated (for both p- and s-polarized light). Our calculated results demonstrate that each mode of plasmonic resonance has maximum resonance strength at a particular film thickness of the metamaterial. We also demonstrated that the effect of evanescent field enhancement is due to plasmonic resonances of the sandwiched metamaterial system. And the stronger the plasmonic resonance strength the larger the evanescent field is enhanced at the interfaces of the metamaterial film. Also we see that the plasmonic resonances in a sandwiched metamaterial are influenced not only by the materials that constitute the interfaces but also by the thickness of surrounding dielectrics or distance between evanescent light source and metamaterial film. Finally, our results show that there might be an effective light propagation length that will let the coupling efficiency between evanescent light source and SPs resonance become a maximum. These properties of plasmonic resonances to structure parameters of metamaterial film and its surrounding dielectrics provide a useful way to control the optical responses of an optoelectronic device when the wavelength of light source is fixed. That is, by suitably choosing light polarizations, thickness of the metamaterial thin film or the surrounding dielectrics and the position of evanescent light source, it is possible to modulate the plasmonic resonance wavenumber or resonance strength of the system. Therefore, the optical responses of the system can be modulated. Our results will be helpful for the structure design to control the behaviours of coupled plasmonic resonances and consequently the optical properties of the dielectric-sandwiched metamaterial film.

  1. Magnetostriction of a sphere: stress development during magnetization and residual stresses due to the remanent field

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Rickert, Wilhelm; Stahn, Oliver; Müller, Wolfgang H.

    2017-03-01

    Based on the principles of rational continuum mechanics and electrodynamics (see Truesdell and Toupin in Handbuch der Physik, Springer, Berlin, 1960 or Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000), we present closed-form solutions for the mechanical displacements and stresses of two different magnets. Both magnets are initially of spherical shape. The first (hard) magnet is uniformly magnetized and deforms due to the field induced by the magnetization. In the second problem of a (soft) linear-magnetic sphere, the deformation is caused by an applied external field, giving rise to magnetization. Both problems can be used for modeling parts of general magnetization processes. We will address the similarities between both settings in context with the solutions for the stresses and displacements. In both problems, the volumetric Lorentz force density vanishes. However, a Lorentz surface traction is present. This traction is determined from the magnetic flux density. Since the obtained displacements and stresses are small in magnitude, we may use Hooke's law with a small-strain approximation, resulting in the Lamé- Navier equations of linear elasticity theory. If gravity is neglected and azimuthal symmetry is assumed, these equations can be solved in terms of a series. This has been done by Hiramatsu and Oka (Int J Rock Mech Min Sci Geomech Abstr 3(2):89-90, 1966) before. We make use of their series solution for the displacements and the stresses and expand the Lorentz tractions of the analyzed problems suitably in order to find the expansion coefficients. The resulting algebraic system yields finite numbers of nonvanishing coefficients. Finally, the resulting stresses, displacements, principal strains and the Lorentz tractions are illustrated and discussed.

  2. Nuclear Quadrupole Resonance (NQR) Method and Probe for Generating RF Magnetic Fields in Different Directions to Distinguish NQR from Acoustic Ringing Induced in a Sample

    DTIC Science & Technology

    1997-08-01

    77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically

  3. Comparison of sonochemiluminescence images using image analysis techniques and identification of acoustic pressure fields via simulation.

    PubMed

    Tiong, T Joyce; Chandesa, Tissa; Yap, Yeow Hong

    2017-05-01

    One common method to determine the existence of cavitational activity in power ultrasonics systems is by capturing images of sonoluminescence (SL) or sonochemiluminescence (SCL) in a dark environment. Conventionally, the light emitted from SL or SCL was detected based on the number of photons. Though this method is effective, it could not identify the sonochemical zones of an ultrasonic systems. SL/SCL images, on the other hand, enable identification of 'active' sonochemical zones. However, these images often provide just qualitative data as the harvesting of light intensity data from the images is tedious and require high resolution images. In this work, we propose a new image analysis technique using pseudo-colouring images to quantify the SCL zones based on the intensities of the SCL images and followed by comparison of the active SCL zones with COMSOL simulated acoustic pressure zones.

  4. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  5. Annoyance and self-reported sleep disturbance due to night-time railway noise examined in the field.

    PubMed

    Pennig, Sibylle; Quehl, Julia; Mueller, Uwe; Rolny, Vinzent; Maass, Hartmut; Basner, Mathias; Elmenhorst, Eva-Maria

    2012-11-01

    Railway noise interferes with daytime activities and disturbs sleep leading to annoyance of exposed residents. The main objective of this paper was to establish exposure-response relationships between nocturnal railway noise exposure and annoyance and to examine self-reported sleep disturbances as short-term reactions to noise. In a field study 33 residents living close to railway tracks in the Cologne/Bonn area (Germany) were investigated. Railway noise was measured indoors during nine consecutive nights at each site. Questionnaires referring to annoyance and non-acoustical factors were performed. Annoyance ratings increased significantly with the total number of trains and freight trains per night, and non-significantly with rising number of passenger trains and energy equivalent sound pressure level (L(Aeq)), when adjusting the model for non-acoustical variables. The total number of trains and the number of freight trains also significantly affected self-reported awakening frequency, but no other aspects of subjective sleep disturbances. The responses of this subject sample referring to railway noise in the previous night point to rather low impairments of exposed residents.

  6. Field evaluation of shallow-water acoustic doppler current profiler discharge measurements

    USGS Publications Warehouse

    Rehmel, M.S.

    2007-01-01

    In 2004, the U.S. Geological Survey (USGS) Office of Surface Water staff and USGS Water Science employees began testing the StreamPro, an acoustic Doppler current profiler (ADCP) for shallow-water discharge measurements. Teledyne RD Instruments introduced the StreamPro in December of 2003. The StreamPro is designed to make a "moving boat" discharge measurement in streams with depths between 0.15 and 2 m. If the StreamPro works reliably in these conditions, it will allow for use of ADCPs in a greater number of streams than previously possible. Evaluation sites were chosen to test the StreamPro over a range of conditions. Simultaneous discharge measurements with mechanical and other acoustic meters, along with stable rating curves at established USGS streamflow-gaging stations, were used for comparisons. The StreamPro measurements ranged in mean velocity from 0.076 to 1.04 m/s and in discharge from 0.083 m 3/s to 43.4 m 3/s. Tests indicate that discharges measured with the StreamPro compare favorably to the discharges measured with the other meters when the mean channel velocity is greater than 0.25 m/s. When the mean channel velocity is less than 0.25 m/s, the StreamPro discharge measurements for individual transects have greater variability than those StreamPro measurements where the mean channel velocity is greater than 0.25 m/s. Despite this greater variation in individual transects, there is no indication that the StreamPro measured discharges (the mean discharge for all transects) are biased, provided that enough transects are used to determine the mean discharge. ?? 2007 ASCE.

  7. Uncertainties in SOA simulations due to meteorological uncertainties in Mexico City during MILAGRO-2006 field campaign

    NASA Astrophysics Data System (ADS)

    Bei, N.; Li, G.; Molina, L. T.

    2013-05-01

    The purpose of the present study is to investigate the uncertainties in simulating secondary organic aerosol (SOA) in Mexico City metropolitan area (MCMA) due to meteorological initial uncertainties using the WRF-CHEM model through ensemble simulations. The simulated periods (24 and 29 March 2006) represent two typical meteorological episodes ("Convection-South" and "Convection-North", respectively) in the Mexico City basin during the MILAGRO-2006 field campaign. The organic aerosols are simulated using a non-traditional SOA model including the volatility basis-set modeling method and the contributions from glyoxal and methylglyoxal. Model results demonstrate that uncertainties in meteorological initial conditions have significant impacts on SOA simulations, including the peak time concentrations, the horizontal distributions, and the temporal variations. The ensemble spread of the simulated peak SOA at T0 can reach up to 4.0 μg m-3 during the daytime, which is around 35% of the ensemble mean. Both the basin wide wind speed and the convergence area affect the magnitude and the location of the simulated SOA concentrations inside the Mexico City basin. The wind speed, especially during the previous midnight and the following early morning, influences the magnitude of the peak SOA concentration through ventilation. The surface horizontal convergence zone generally determines the area with high SOA concentrations. The magnitude of the ensemble spreads may vary with different meteorological episodes but the ratio of the ensemble spread to mean does not change significantly.

  8. Uncertainties in SOA simulations due to meteorological uncertainties in Mexico City during MILAGRO-2006 field campaign

    NASA Astrophysics Data System (ADS)

    Bei, N.; Li, G.; Molina, L. T.

    2012-12-01

    The purpose of the present study is to investigate the uncertainties in simulating secondary organic aerosol (SOA) in Mexico City metropolitan area (MCMA) due to meteorological initial uncertainties using the WRF-CHEM model through ensemble simulations. The simulated periods (24 and 29 March 2006) represent two typical meteorological episodes ("Convection-South" and "Convection-North", respectively) in the Mexico City basin during the MILAGRO-2006 field campaign. The organic aerosols are simulated using a non-traditional SOA model including the volatility basis-set modeling method and the contributions from glyoxal and methylglyoxal. Model results demonstrate that uncertainties in meteorological initial conditions have significant impacts on SOA simulations, including the peak time concentrations, the horizontal distributions, and the temporal variations. The ensemble spread of the simulated peak SOA at T0 can reach up to 4.0 μg m-3 during the daytime, which is around 35% of the ensemble mean. Both the basin wide wind speed and the convergence area affect the magnitude and the location of the simulated SOA concentrations inside the Mexico City basin. The wind speed, especially during the previous midnight and the following early morning, influences the magnitude of the peak SOA concentration through ventilation. The surface horizontal convergence zone generally determines the area with high SOA concentrations. The magnitude of the ensemble spreads may vary with different meteorological episodes but the ratio of the ensemble spread to mean does not change significantly.

  9. Uncertainties in SOA simulations due to meteorological uncertainties in Mexico City during MILAGRO-2006 field campaign

    NASA Astrophysics Data System (ADS)

    Bei, N.; Li, G.; Molina, L. T.

    2012-07-01

    The purpose of the present study is to investigate the uncertainties in simulating secondary organic aerosol (SOA) in Mexico City metropolitan area (MCMA) due to meteorological initial uncertainties using the WRF-CHEM model through ensemble simulations. The simulated periods (24 and 29 March 2006) represent two typical meteorological episodes ("Convection-South" and "Convection-North", respectively) in the Mexico City basin during the MILAGRO-2006 field campaign. The organic aerosols are simulated using a non-traditional SOA model including the volatility basis-set modeling method and the contributions from glyoxal and methylglyoxal. Model results demonstrate that uncertainties in meteorological initial conditions have significant impacts on SOA simulations, including the peak time concentrations, the horizontal distributions, and the temporal variations. The ensemble spread of the simulated peak SOA at T0 can reach up to 4.0 µg m-3 during the daytime, which is around 35% of the ensemble mean. Both the basin wide wind speed and the convergence area affect the magnitude and the location of the simulated SOA concentrations inside the Mexico City basin. The wind speed, especially during the previous midnight and the following early morning, influences the magnitude of the peak SOA concentration through ventilation. The surface horizontal convergence zone generally determines the area with high SOA concentrations. The magnitude of the ensemble spreads may vary with different meteorological episodes but has same significance compared to the ensemble mean.

  10. Helicopter far-field acoustic levels as a function of reduced main-rotor advancing blade-tip Mach number

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Smith, Charles D.; Lemasurier, Philip

    1990-01-01

    During the design of a helicopter, the weight, engine, rotor speed, and rotor geometry are given significant attention when considering the specific operations for which the helicopter will be used. However, the noise radiated from the helicopter and its relationship to the design variables is currently not well modeled with only a limited set of full-scale field test data to study. In general, limited field data have shown that reduced main-rotor advancing blade-tip Mach numbers result in reduced far-field noise levels. The status of a recent helicopter noise research project is reviewed. It is designed to provide flight experimental data which may be used to further understand helicopter main-rotor advancing blade-tip Mach number effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a Sikorsky S-76A helicopter operating with both the rotor speed and the flight speed as the control variable. The rotor speed was operated within the range of 107 to 90 percent NR at nominal forward speeds of 35, 100, and 155 knots.

  11. On the possibility of representing an acoustic field in shallow water as the sum of normal modes and quasimodes

    NASA Astrophysics Data System (ADS)

    Grigor'ev, V. A.; Petnikov, V. G.

    2016-11-01

    Using the example of a shallow-water acoustic waveguide with a homogeneous water layer of constant thickness H lying on a homogeneous fluid absorbing half-space (bottom), we obtain estimates of distance r from a source, for which it is possible to ignore the continuous spectrum for the mode description of the depth dependence of the intensity of a low-frequency sound field in the bottom layer. We have compared two discrete representations of the field using (1) the total set of normal modes and (2) the total set of normal modes and quasimodes. It is shown that in the case when there is at least one normal mode in the channel, additional allowance for quasimodes makes it possible by an order of magnitude to approximate the boundary of applicability of mode theory and on average establish it at a level of r H or less. We explain the functional dependences of the contribution of the continuous spectrum to the total field on the waveguide parameters and find the conditions of its minimization. We present examples of description of the field in the bottom, where the advantage of using quasimodes at short distances is also demonstrated.

  12. Validation of Vehicle Panel/Equipment Response from Diffuse Acoustic Field Excitation Using Spatially Correlated Transfer Function Approach

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Fulcher, Clay; Hunt, Ron

    2012-01-01

    An approach for predicting the vibration, strain, and force responses of a flight-like vehicle panel assembly to acoustic pressures is presented. Important validation for the approach is provided by comparison to ground test measurements in a reverberant chamber. The test article and the corresponding analytical model were assembled in several configurations to demonstrate the suitability of the approach for response predictions when the vehicle panel is integrated with equipment. Critical choices in the analysis necessary for convergence of the predicted and measured responses are illustrated through sensitivity studies. The methodology includes representation of spatial correlation of the pressure field over the panel surface. Therefore, it is possible to demonstrate the effects of hydrodynamic coincidence in the response. The sensitivity to pressure patch density clearly illustrates the onset of coincidence effects on the panel response predictions.

  13. The Sounds of Nanoscience: Acoustic STM Analogues

    ERIC Educational Resources Information Center

    Euler, Manfred

    2013-01-01

    A hands-on model of scanning tunnelling microscopy (STM) is presented. It uses near-field imaging with sound and computer assisted visualization to create acoustic mappings of resonator arrangements. Due to the (partial) analogy of matter and sound waves the images closely resemble STM scans of atoms. Moreover, the method can be extended to build…

  14. Target spectrum matrix definition for multiple-input- multiple-output control strategies applied on direct-field- acoustic-excitation tests

    NASA Astrophysics Data System (ADS)

    Alvarez Blanco, M.; Janssens, K.; Bianciardi, F.

    2016-09-01

    During the last two decades there have been several improvements on environmental acoustic qualification testing for launch and space vehicles. Direct field excitation (DFAX) tests using Multiple-Input-Multiple-Output (MIMO) control strategies seems to become the most cost-efficient way for component and subsystem acoustic testing. However there are still some concerns about the uniformity and diffusivity of the acoustic field produced by direct field testing. Lately, much of the documented progresses aimed to solve the non-uniformity of the field by altering the sound pressure level requirement, limiting responses and adding or modifying control microphones positions. However, the first two solutions imply modifying the qualification criteria, which could lead to under-testing, potentially risking the mission. Furthermore, adding or moving control microphones prematurely changes the system configuration, even if it is an optimal geometric layout in terms of wave interference patterns control. This research investigates the target definition as an initial condition for the acoustic MIMO control. Through experiments it is shown that for a given system configuration the performance of a DFAX test strongly depends on the target definition procedure. As output of this research a set of descriptors are presented describing a phenomenon defined as “Energy- sink”.

  15. Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques

    NASA Astrophysics Data System (ADS)

    Giorli, Giacomo

    Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an

  16. Nearfield Acoustical Holography

    NASA Astrophysics Data System (ADS)

    Hayek, Sabih I.

    Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.

  17. Problem of intensity reduction of acoustic fields generated by gas-dynamic jets of motors of the rocket-launch vehicles at launch

    NASA Astrophysics Data System (ADS)

    Vorobyov, A. M.; Abdurashidov, T. O.; Bakulev, V. L.; But, A. B.; Kuznetsov, A. B.; Makaveev, A. T.

    2015-04-01

    The present work experimentally investigates suppression of acoustic fields generated by supersonic jets of the rocket-launch vehicles at the initial period of launch by water injection. Water jets are injected to the combined jet along its perimeter at an angle of 0° and 60°. The solid rocket motor with the rocket-launch vehicles simulator case is used at tests. Effectiveness of reduction of acoustic loads on the rocket-launch vehicles surface by way of creation of water barrier was proved. It was determined that injection angle of 60° has greater effectiveness to reduce pressure pulsation levels.

  18. A Field Evaluation of an External and Neutrally Buoyant Acoustic Transmitter for Juvenile Salmon: Implications for Estimating Hydroturbine Passage Survival

    PubMed Central

    Brown, Richard S.; Deng, Z. Daniel; Cook, Katrina V.; Pflugrath, Brett D.; Li, Xinya; Fu, Tao; Martinez, Jayson J.; Li, Huidong; Trumbo, Bradly A.; Ahmann, Martin L.; Seaburg, Adam G.

    2013-01-01

    Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this. PMID

  19. A field evaluation of an external and neutrally buoyant acoustic transmitter for juvenile salmon: implications for estimating hydroturbine passage survival.

    PubMed

    Brown, Richard S; Deng, Z Daniel; Cook, Katrina V; Pflugrath, Brett D; Li, Xinya; Fu, Tao; Martinez, Jayson J; Li, Huidong; Trumbo, Bradly A; Ahmann, Martin L; Seaburg, Adam G

    2013-01-01

    Turbine-passed fish are exposed to rapid decreases in pressure which can cause barotrauma. The presence of an implanted telemetry tag increases the likelihood of injury or death from exposure to pressure changes, thus potentially biasing studies evaluating survival of turbine-passed fish. Therefore, a neutrally buoyant externally attached tag was developed to eliminate this bias in turbine passage studies. This new tag was designed not to add excess mass in water or take up space in the coelom, having an effective tag burden of zero with the goal of reducing pressure related biases to turbine survival studies. To determine if this new tag affects fish performance or susceptibility to predation, it was evaluated in the field relative to internally implanted acoustic transmitters (JSATS; Juvenile Salmon Acoustic Telemetry System) used widely for survival studies of juvenile salmonids. Survival and travel time through the study reach was compared between fish with either tag type in an area of high predation in the Snake and Columbia rivers, Washington. An additional group of fish affixed with neutrally-buoyant dummy external tags were implanted with passive integrated transponder (PIT) tags and recovered further downstream to assess external tag retention and injury. There were no significant differences in survival to the first detection site, 12 river kilometers (rkm) downstream of release. Travel times were also similar between groups. Conversely, externally-tagged fish had reduced survival (or elevated tag loss) to the second detection site, 65 rkm downstream. In addition, the retention study revealed that tag loss was first observed in fish recaptured approximately 9 days after release. Results suggest that this new tag may be viable for short term (<8 days) single-dam turbine-passage studies and under these situations, may alleviate the turbine passage-related bias encountered when using internal tags, however further research is needed to confirm this.

  20. Primary beam steering due to field leakage from superconducting SHMS magnets

    NASA Astrophysics Data System (ADS)

    Moore, M. H.; Waidyawansa, B. P.; Covrig, S.; Carlini, R.; Benesch, J.

    2014-11-01

    Simulations of the magnetic fields from the Super High Momentum Spectrometer in Hall C at Thomas Jefferson National Accelerator Facility show significant field leakage into the region of the primary beam line between the target and the beam dump. Without mitigation, these remnant fields will steer the unscattered beam enough to limit beam operations at small scattering angles. Presented here are magnetic field simulations of the spectrometer magnets and a solution using optimal placement of a minimal amount of shielding iron around the beam line.

  1. Inner Core Anisotropy Due to the Magnetic Field--induced Preferred Orientation of Iron.

    PubMed

    Karato, S

    1993-12-10

    Anisotropy of the inner core of the Earth is proposed to result from the lattice preferred orientation of anisotropic iron crystals during their solidification in the presence of a magnetic field. The resultant seismic anisotropy is related to the geometry of the magnetic field in the core. This hypothesis implies that the observed anisotropy (fast velocity along the rotation axis) indicates a strong toroidal field in the core, which supports a strong field model for the geodynamo if the inner core is made of hexagonal close-packed iron.

  2. Primary beam steering due to field leakage from superconducting SHMS magnets

    DOE PAGES

    Moore, Michael H.; Waidyawansa, Buddhini P.; Covrig, Silviu; ...

    2014-11-05

    In this study, simulations of the magnetic fields from the Super High Momentum Spectrometer in Hall C at Thomas Jefferson National Accelerator Facility show significant field leakage into the region of the primary beam line between the target and the beam dump. Without mitigation, these remnant fields will steer the unscattered beam enough to limit beam operations at small scattering angles. Presented here are magnetic field simulations of the spectrometer magnets and a solution using optimal placement of a minimal amount of shielding iron around the beam line.

  3. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  4. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    PubMed

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  5. Modeling solar flare conduction fronts. I - Homogeneous plasmas and ion-acoustic turbulence. II - Inhomogeneous plasmas and ambipolar electric fields

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Winglee, R. M.; Dulk, G. A.

    1990-01-01

    A one-dimensional, electrostatic, particle-in-cell simulation is used here to model the expansion of a heated electron population in a coronal loop during a solar flare and the characteristics of the associated X-ray emissions. The hot electrons expand outward from the localized region, creating an ambipolar electric field which accelerates a return current of cooler, ambient electrons. Ion-acoustic waves are generated by the return currents as proposed by Brown et al. (1979), but they play little or no role in containing energetic electrons and the conduction front proposed by Brown et al. does not form. The X-ray emission efficiency of the electrons is too low in the corona for them to be the source of hard X-ray bursts. The particle dynamics changes dramatically if the heated plasma is at low altitudes and expands upward into the more tenuous plasma at higher altitudes. Two important applications of this finding are the radio-frequency heating of the corona and the collisional heating of the chromosphere by precipitating energetic electrons. In both cases, the overlying plasma has a density that is too low to supply a balancing return current to the expanding hot electrons. As a result, an ambipolar electric field develops that tends to confine the energetic electrons behind a front that propagate outward at about the speed of sound.

  6. Electromagnetic fields in the human body due to switched transverse gradient coils in MRI.

    PubMed

    While, Peter T; Forbes, Larry K

    2004-07-07

    Magnetic resonance imaging scans impose large gradient magnetic fields on the patient. Modern imaging techniques require this magnetic field to be switched rapidly for good resolution. However, it is believed that this can also lead to the unwanted side effect of peripheral nerve stimulation, which proves to be a limiting factor to the advancement of MRI technology. This paper establishes an analytical model for the fields produced within an MRI scanner by transverse gradient coils of known current density. Expressions are obtained for the magnetic induction vector and the electric field vector, as well as for the surface charge and current densities that are induced on the patient's body. The expressions obtained are general enough to allow the study of any combination of gradient coils whose behaviour can be approximated by Fourier series. For a realistic example coil current density and switching function, it is found that spikes of surface charge density are induced on the patient's body as the gradient field is switched, as well as loops of surface current density that mimic the coil current density. For a 10 mT m(-1) gradient field with a rise time of 100 micros, the magnitude of the radial electric field at the body is found to be 10.3 V m(-1). It is also found that there is a finite limit to radial electric field strength as rise time approaches zero.

  7. Flute stabilization due to ponderomotive force created by an rf field with a variable gradient

    SciTech Connect

    Yasaka, Y.; Itatani, R.

    1986-06-30

    An rf-stabilization experiment was performed in the axisymmetric single-mirror device HIEI by controlling the radial-gradient scale length of the rf field with the aid of an azimuthally phased antenna array. The flute stability depends sensitively on the scale length of the perpendicular rf electric field, which shows that rf stabilization is caused by the ponderomotive force for ions.

  8. Acoustic Neuroma

    MedlinePlus

    ... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...

  9. Nontrivial excited-state coherence due to two uncorrelated partially coherent fields

    NASA Astrophysics Data System (ADS)

    Sadeq, Z. S.

    2015-04-01

    We analyze a model where a closed V system is excited by two uncorrelated partially coherent fields. We use a collisionally broadened cw laser, which is a good model for an experimentally realizable partially coherent field, and show that it is possible to generate excited-state coherences even if the two fields are uncorrelated. This transient coherence can be increased if splitting between the excited states is reduced relative to the radiation coherence time τd. For small excited-state splitting, one can use this scheme to generate a long-lived coherent response in the system.

  10. Study on magnetic field deviation due to manufacturing errors of the SIS100 superconducting dipole magnet

    NASA Astrophysics Data System (ADS)

    Sugita, Kei; Fischer, Egbert; Mierau, Anna; Roux, Christian; Schnizer, Pierre

    2016-12-01

    An international accelerator project, Facility for Antiproton and Ion Research in Europe (FAIR), is being constructed at Darmstadt, Germany. Central part of the accelerator chain is a superconducting heavy ion synchrotron SIS100, which accelerates injected particles from existing synchrotron SIS18, and provides them to experiment sites and further accelerators. Superconducting magnets in SIS100 are mainly superferric magnet with a Nuclotron cable. After R&D, the First of Series (FoS) main dipole magnet has been manufactured and tested successfully. However, magnetic field quality is unsatisfactory. We report on the investigation of the magnetic field quality by means of magnetic field measurements, geometrical measurements, and electromagnetic simulations.

  11. Circulation in the high-latitude thermosphere due to electric fields and Joule heating

    NASA Technical Reports Server (NTRS)

    Heaps, M. G.; Megill, L. R.

    1975-01-01

    Electric fields in the earth's upper atmosphere are capable of setting the neutral atmosphere in motion via ion-neutral collisions as well as pressure gradients from resultant Joule heating. By means of simple models for the high-latitude thermosphere and electric fields a simplified set of coupled equations is solved which show that moderate electric fields, when present for a period of several hours, are capable of displacing the neutral atmosphere of the order of 50 km in the vertical, a few hundred kilometers in the north-south direction and over 1000 km in the east-west direction.

  12. Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser

    PubMed Central

    Fujioka, Shinsuke; Zhang, Zhe; Ishihara, Kazuhiro; Shigemori, Keisuke; Hironaka, Youichiro; Johzaki, Tomoyuki; Sunahara, Atsushi; Yamamoto, Naoji; Nakashima, Hideki; Watanabe, Tsuguhiro; Shiraga, Hiroyuki; Nishimura, Hiroaki; Azechi, Hiroshi

    2013-01-01

    Laboratory generation of strong magnetic fields opens new frontiers in plasma and beam physics, astro- and solar-physics, materials science, and atomic and molecular physics. Although kilotesla magnetic fields have already been produced by magnetic flux compression using an imploding metal tube or plasma shell, accessibility at multiple points and better controlled shapes of the field are desirable. Here we have generated kilotesla magnetic fields using a capacitor-coil target, in which two nickel disks are connected by a U-turn coil. A magnetic flux density of 1.5 kT was measured using the Faraday effect 650 μm away from the coil, when the capacitor was driven by two beams from the GEKKO-XII laser (at 1 kJ (total), 1.3 ns, 0.53 or 1 μm, and 5 × 1016 W/cm2). PMID:23378905

  13. Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping.

    PubMed

    Stockem, A; Grismayer, T; Fonseca, R A; Silva, L O

    2014-09-05

    A new magnetic field generation mechanism in electrostatic shocks is found, which can produce fields with magnetic energy density as high as 0.01 of the kinetic energy density of the flows on time scales ∼10(4)ωpe-1. Electron trapping during the shock formation process creates a strong temperature anisotropy in the distribution function, giving rise to the pure Weibel instability. The generated magnetic field is well confined to the downstream region of the electrostatic shock. The shock formation process is not modified, and the features of the shock front responsible for ion acceleration, which are currently probed in laser-plasma laboratory experiments, are maintained. However, such a strong magnetic field determines the particle trajectories downstream and has the potential to modify the signatures of the collisionless shock.

  14. Ducted fan acoustic radiation including the effects of nonuniform mean flow and acoustic treatment

    NASA Technical Reports Server (NTRS)

    Eversman, Walter; Roy, Indranil Danda

    1993-01-01

    Forward and aft acoustic propagation and radiation from a ducted fan is modeled using a finite element discretization of the acoustic field equations. The fan noise source is introduced as equivalent body forces representing distributed blade loading. The flow in and around the nacelle is assumed to be nonuniform, reflecting the effects of forward flight and flow into the inlet. Refraction due to the fan exit jet shear layer is not represented. Acoustic treatment on the inlet and exhaust duct surfaces provides a mechanism for attenuation. In a region enclosing the fan a pressure formulation is used with the assumption of locally uniform flow. Away from the fan a velocity potential formulation is used and the flow is assumed nonuniform but irrotational. A procedure is developed for matching the two regions by making use of local duct modal amplitudes as transition state variables and determining the amplitudes by enforcing natural boundary conditions at the interface between adjacent regions in which pressure and velocity potential are used. Simple models of rotor alone and rotor/exit guide vane generated noise are used to demonstrate the calculation of the radiated acoustic field and to show the effect of acoustic treatment. The model has been used to assess the success of four techniques for acoustic lining optimization in reducing far field noise.

  15. Simulations of magnetic field gradients due to micro-magnets on a triple quantum dot circuit

    SciTech Connect

    Poulin-Lamarre, G.; Bureau-Oxton, C.; Kam, A.; Zawadzki, P.; Aers, G.; Studenikin, S.; Pioro-Ladrière, M.; Sachrajda, A. S.

    2013-12-04

    To quantify the effects of local magnetic fields on triple quantum dots, the Heisenberg Hamiltonian has been diagonalized for three electrons coupled via the exchange interaction. In particular, we have investigated different geometries of micro-magnets located on top of the triple dot in order to optimize the field gradient characteristics. In this paper, we focus on two geometries which are candidates for an addressable EDSR triple quantum dot device.

  16. Alignment of Iron Nanoparticles in a Magnetic Field Due to Shape Anisotropy

    SciTech Connect

    Radhakrishnan, Balasubramaniam; Nicholson, Don M; Eisenbach, Markus; Ludtka, Gerard Michael; Rios, Orlando; Parish, Chad M

    2015-07-09

    During high magnetic field processing there is evidence for alignment of non-spherical metallic particles above the Curie temperature in alloys with negligible magneto-crystalline anisotropy. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with size scaling to show the conditions under which alignment is possible.

  17. Near-Field Acoustic Power Level Analysis of F31/A31 Open Rotor Model at Simulated Cruise Conditions, Technical Report II

    NASA Technical Reports Server (NTRS)

    Sree, Dave

    2015-01-01

    Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.

  18. Morphology of blazar-induced gamma ray halos due to a helical intergalactic magnetic field

    SciTech Connect

    Long, Andrew J.; Vachaspati, Tanmay E-mail: tvachasp@asu.edu

    2015-09-01

    We study the characteristic size and shape of idealized blazar-induced cascade halos in the 1–100,GeV energy range assuming various non-helical and helical configurations for the intergalactic magnetic field (IGMF). While the magnetic field creates an extended halo, the helicity provides the halo with a twist. Under simplifying assumptions, we assess the parameter regimes for which it is possible to measure the size and shape of the halo from a single source and then to deduce properties of the IGMF. We find that blazar halo measurements with an experiment similar to Fermi-LAT are best suited to probe a helical magnetic field with strength and coherence length today in the ranges 10{sup −17} ∼< B{sub 0} / Gauss ∼< 10{sup −13} and 10 Mpc ∼< λ ∼< 10 Gpc where H ∼ B{sub 0}{sup 2} / λ is the magnetic helicity density. Stronger magnetic fields or smaller coherence scales can still potentially be investigated, but the connection between the halo morphology and the magnetic field properties is more involved. Weaker magnetic fields or longer coherence scales require high photon statistics or superior angular resolution.

  19. A blood-oxygenation-dependent increase in blood viscosity due to a static magnetic field.

    PubMed

    Yamamoto, Toru; Nagayama, Yuki; Tamura, Mamoru

    2004-07-21

    As the magnetic field of widely used MR scanners is one of the strongest magnetic fields to which people are exposed, the biological influence of the static magnetic field of MR scanners is of great concern. One magnetic interaction in biological subjects is the magnetic torque on the magnetic moment induced by biomagnetic substances. The red blood cell is a major biomagnetic substance, and the blood flow may be influenced by the magnetic field. However, the underlying mechanisms have been poorly understood. To examine the mechanisms of the magnetic influence on blood viscosity, we measured the time for blood to fall through a glass capillary inside and outside a 1.5 T MR scanner. Our in vitro results showed that the blood viscosity significantly increased in a 1.5 T MR scanner, and also clarified the mechanism of the interaction between red blood cells and the external magnetic field. Notably, the blood viscosity increased depending on blood oxygenation and the shear rate of the blood flow. Thus, our findings suggest that even a 1.5 T magnetic field may modulate blood flow.

  20. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    NASA Astrophysics Data System (ADS)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-08-01

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of ReD = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  1. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    SciTech Connect

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-08-15

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  2. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Kumar, A.; Xu, S.; Zou, J.

    2016-10-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  3. Multi-field characteristics and eigenmode spatial structure of geodesic acoustic modes in DIII-D L-mode plasmas

    SciTech Connect

    Wang, G.; Peebles, W. A.; Rhodes, T. L.; Doyle, E. J.; Hillesheim, J. C.; Schmitz, L.; Zeng, L.; Austin, M. E.; Yan, Z.; McKee, G. R.; La Haye, R. J.; Burrell, K. H.; Lanctot, M. J.; Petty, C. C.; Smith, S.; Strait, E. J.; Van Zeeland, M.; Nazikian, R.

    2013-09-15

    The geodesic acoustic mode (GAM), a coherent form of the zonal flow, plays a critical role in turbulence regulation and cross-magnetic-field transport. In the DIII-D tokamak, unique information on multi-field characteristics and radial structure of eigenmode GAMs has been measured. Two simultaneous and distinct, radially overlapping eigenmode GAMs (i.e., constant frequency vs. radius) have been observed in the poloidal E×B flow in L-mode plasmas. As the plasma transitions from an L-mode to an Ohmic regime, one of these eigenmode GAMs becomes a continuum GAM (frequency responds to local parameters), while the second decays below the noise level. The eigenmode GAMs occupy a radial range of ρ = 0.6–0.8 and 0.75–0.95, respectively. In addition, oscillations at the GAM frequency are observed for the first time in multiple plasma parameters, including n{sub e}, T{sub e}, and B{sub θ}. The magnitude of T(tilde sign){sub e}/T{sub e} at the GAM frequency (the magnitude is similar to that of ñ{sub e}/n{sub e}) and measured n{sub e}–T{sub e} cross-phase (∼140° at the GAM frequency) together indicate that the GAM pressure perturbation is not determined solely by ñ{sub e}. The magnetic GAM behavior, a feature only rarely reported, is significantly stronger (×18) on the high-field side of the tokamak, suggesting an anti-ballooning nature. Finally, the GAM is also observed to directly modify intermediate-wavenumber ñ{sub e} levels (kρ{sub s} ∼ 1.1). The simultaneous temperature, density, flow fluctuations, density-temperature cross-phase, and magnetic behavior present a new perspective on the underlying physics of the GAM.

  4. Distortion of magnetic field and magnetic force of a brushless dc motor due to deformed rubber magnet

    NASA Astrophysics Data System (ADS)

    Lee, C. J.; Jang, G. H.

    2008-04-01

    This paper investigates the distortion of magnetic field of a brushless dc (BLDC) motor due to deformed rubber magnet. Global or local deformation of rubber magnet in the BLDC motor is mathematically modeled by using the Fourier series. Distorted magnetic field is calculated by using the finite element method, and unbalanced magnetic force is calculated by using the Maxwell stress tensor. When the rubber magnet is globally or locally deformed, the unbalanced magnetic force has the frequencies with the first harmonic and the harmonics of slot number ±1. However, the harmonic deformation with multiple of common divisor of pole and slot does not generate unbalanced magnetic force due to the rotational symmetry.

  5. A Small Acoustic Goniometer for General Purpose Research

    PubMed Central

    Pook, Michael L.; Loo, Sin Ming

    2016-01-01

    Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed. PMID:27136563

  6. A Small Acoustic Goniometer for General Purpose Research.

    PubMed

    Pook, Michael L; Loo, Sin Ming

    2016-04-29

    Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed.

  7. Magnetic Field Due to a Finite Length Current-Carrying Wire Using the Concept of Displacement Current

    ERIC Educational Resources Information Center

    Buschauer, Robert

    2014-01-01

    In undergraduate E&M courses the magnetic field due to a finite length, current-carrying wire can be calculated using the Biot-Savart law. However, to the author's knowledge, no textbook presents the calculation of this field using the Ampere-Maxwell law: ?B [multiplied by] dl = µ[subscript 0] (I + e[subscript 0] dF/dt) [multiplied by] 1

  8. Quantitative imaging of acoustic reflection and interference

    NASA Astrophysics Data System (ADS)

    Malkin, Robert; Todd, Thomas; Robert, Daniel

    2015-01-01

    This paper presents a method for time resolved quantitative imaging of acoustic waves. We present the theoretical background, the experimental method and the comparison between experimental and numerical reconstructions of acoustic reflection and interference. Laser Doppler vibrometry is used to detect the modulation of the propagation velocity of light, c, due to pressure-dependant changes in the refractive index of air. Variation in c is known to be proportional to variation in acoustic pressure and thus can be used to quantify sound pressure fluctuations. The method requires the laser beam to travel through the sound field, in effect integrating pressure along a transect line. We investigate the applicability of the method, in particular the effect of the geometry of the sound radiator on line integration. Both experimental and finite element reconstructions of the sound field are in good agreement, corroborating punctual pressure measurements from a precision microphone. Spatial limitations and accuracy of the method are presented and discussed.

  9. Near-field acoustic characteristics of a single-rotor propfan

    NASA Technical Reports Server (NTRS)

    Bartel, H. W.; Swift, G.

    1989-01-01

    The near-field noise characteristics of the SR-7L, an eight-blade, single-rotor, wing-mounted, tractor propfan have been determined. It is found that the noise is dominated by discrete tones, usually at the first order (and occasionally at the second or third order) of the blade-passage frequency. The highest noise levels were noted at conditions of high tip helical speeds and high dynamic pressures.

  10. Acoustic Nondestructive Testing and Measurement of Tension for Steel Reinforcing Members: Part 2 - Field Testing

    DTIC Science & Technology

    2014-09-01

    BACKGROUND: Many reinforced concrete structures contain embedded pre- and post- tensioned steel members that are subject to corrosion and fracturing...Tension for Steel Reinforcing Members Part 2 – Field Testing by Michael K. McInerney PURPOSE: This Coastal and Hydraulics Engineering Technical...Specifically, the technology application addresses the problem of determining tension in concrete -embedded pre- and post-tensioned reinforcement rods

  11. Cosmic parity violation due to a flavor-space locked gauge field

    NASA Astrophysics Data System (ADS)

    Caldwell, Robert

    2016-05-01

    A flavor-space locked gauge field is shown to behave like a birefringent medium, imparting a preferred left- or right-circular polarization onto gravitational waves. In a cosmological scenario, such a gauge field can cause a primordial spectrum of gravitational waves to develop a net handedness. The degree of chiral asymmetry depends on the wavelength, the abundance of the gauge field, and the strength of the gauge coupling. An asymmetry in the gravitational wave spectrum would be imprinted on the photon polarization pattern of the cosmic microwave background at last scattering. In this scenario, cosmic parity violation is written on the sky, as we predict nonzero correlation of the curl polarization with the temperature, as well as curl with gradient polarization. We compare this phenomena with parity violation in models of chiral gravity, in which the chiral asymmetry is primordial, and with models of quintessence cosmic birefringence, in which parity-violating correlations are induced along the line of sight.

  12. Formation of electric dipoles in pea stem tissue due to an electric field

    NASA Astrophysics Data System (ADS)

    Ahmadi, Fatemeh; Farahani, Elham

    2016-07-01

    For examining the effect of an electrical field (DC) on pea seed, we exposed the pea seeds to electric fields with intensities 1, 4 and 7 kV/cm for 30, 230, 430 and 630 seconds. The tests were repeated three times, and each iteration had 5 seeds. Then, the seeds were moved to packaged plates. Finally, microscopic observation of the pea stem tissue showed that the application of a DC electrical field caused a deformation in the pea stem tissue. The results led us to examine the deformation of the tissue theoretically and to address that deformation as an electrostatic problem. In this regard, we modeled the pea stem based on the formation of electric dipoles. Then, theoretically, we calculated the force acting on each xylem section by coding, and the results were consistent with the experimental data.

  13. Infrared near-field detection of a narrow resonance due to molecular vibrations in a nanoparticle

    SciTech Connect

    Romanov, Vyacheslav; Walker, G.C.

    2007-02-27

    Di-iron nonacarbonyl particles on a gold surface have been imaged using an apertureless near-field scanning infrared microscopy. First and second harmonic detection, with and without an auto-homodyning option, have been used to collect the near-field spectrum of a single vibrational mode of the bridging carbonyls in di-iron nonacarbonyl nanocrystalline flakes on a gold surface. The experimental results have been compared to two theoretical models, a static image-dipole effective medium and an image dipole modified by a Fresnel coefficient for the appropriate observation angle. The calculations have taken into account the roughness of the gold film. The phase dependence of the near-field contrast has been investigated using broadband and tunable CO2 lasers. Particle size effects on contrast and spatial resolution have been studied to determine the limits of applicability of the half-space approximation.

  14. Neoclassical Drift of Circulating Orbits Due toToroidal Electric Field in Tokamaks

    SciTech Connect

    Hong, Qin; Guan, Xiaoyin; Fisch, Nathaniel J.

    2011-07-19

    In tokamaks, Ware pinch is a well known neoclassical effect for trapped particles in response to a toroidal electric field. It is generally believed that there exists no similar neoclassical effect for circulating particles without collisions. However, this belief is erroneous, and misses an important effect. We show both analytically and numerically that under the influence of a toroidal electric field parallel to the current, the circulating orbits drift outward toward the outer wall with a characteristic velocity O ({var_epsilon}{sup -1}) larger than the E x B velocity, where {var_epsilon} is the inverse aspect-ratio of a tokamak. During a RF overdrive, the toroidal electric field is anti-parallel to the current. As a consequence, all charged particles, including backward runaway electrons, will drift inward towards the inner wall.

  15. An acoustic system for providing the two-phase liquid profile in oil field storage tanks.

    PubMed

    Meribout, Mahmoud; Al Naamany, Ahmed; Al Busaidi, Khamis

    2009-10-01

    The continuing need for in situ measurements of the emulsion layer between crude oil and water within oil field tanks has initiated experimental and theoretical investigations of candidate measurement methods. This paper describes a new low-cost and nonradioactive industrial field prototype device that provides, continuously and in real time, the vertical profile of the 2-phase liquid within oil field tank separators (i.e., percentage of water in oil at different heights of the tank, as well as the emulsion layer interfaces) using ultrasonic waves. The device, which has been installed in a vessel through an 8-in. flange, consists of a 1-D array of tens of ultrasonic transducers (28 transducers in this paper) that are activated in a time-multiplexed manner by an embedded transmitter fixed on the top of the tank. This latest version implements a feedforward neural network with back-propagation learning to determine the vertical water-cut distribution along the vessel. It also implements an expert-system-based algorithm to determine the lower and higher positions of the emulsion layer. The results obtained from the extensive experiments, which have been conducted under various conditions of temperature, indicate that the device can determine the profile of the 2-phase liquid within a relative error of +/- 3%.

  16. Transient particle acceleration in strongly magnetized neutron stars. II - Effects due to a dipole field geometry

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1991-01-01

    Sheared Alfven waves generated by nonradial crustal disturbances above the polar cap of a strongly magnetized neutron star induce an electric field component parallel to B. An attempt is made to determine the manner in which the strong radial dependence of B affects the propagation of these sheared Alfven waves, and whether this MHD process is still an effective particle accelerator. It is found that although the general field equation is quite complicated, a simple wavelike solution can still be obtained under the conditions of interest for which the Alfven phase velocity decouples from the wave equation. The results may be applicable to gamma-ray burst sources.

  17. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    NASA Astrophysics Data System (ADS)

    Koukoulas, Triantafillos; Piper, Ben

    2015-04-01

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  18. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    SciTech Connect

    Koukoulas, Triantafillos Piper, Ben

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  19. Numerical analysis of the transportation characteristics of a self-running sliding stage based on near-field acoustic levitation.

    PubMed

    Feng, Kai; Liu, Yuanyuan; Cheng, Miaomiao

    2015-12-01

    Owing to its distinct non-contact and oil-free characteristics, a self-running sliding stage based on near-field acoustic levitation can be used in an environment, which demands clean rooms and zero noise. This paper presents a numerical analysis on the lifting and transportation capacity of a non-contact transportation system. Two simplified structure models, namely, free vibration and force vibration models, are proposed for the study of the displacement amplitude distribution of two cases using the finite element method. After coupling the stage displacement into the film thickness, the Reynolds equation is solved by the finite difference method to obtain the lifting and thrusting forces. Parametric analyses of the effects of amplitude, frequency, and standing wave ratio (SWR) on the sliding stage dynamic performance are investigated. Numerical results show good agreement with published experimental values. The predictions also reveal that greater transportation capacity of the self-running sliding stage is generally achieved at less SWR and at higher amplitude.

  20. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    SciTech Connect

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.; Frederick, G.S.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigma STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.

  1. Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response.

    PubMed

    Toscano, Giuseppe; Raza, Søren; Jauho, Antti-Pekka; Mortensen, N Asger; Wubs, Martijn

    2012-02-13

    We study the effect of nonlocal optical response on the optical properties of metallic nanowires, by numerically implementing the hydrodynamical Drude model for arbitrary nanowire geometries. We first demonstrate the accuracy of our frequency-domain finite-element implementation by benchmarking it in a wide frequency range against analytical results for the extinction cross section of a cylindrical plasmonic nanowire. Our main results concern more complex geometries, namely cylindrical and bow-tie nanowire dimers that can strongly enhance optical fields. For both types of dimers we find that nonlocal response can strongly affect both the field enhancement in between the dimers and their respective extinction cross sections. In particular, we give examples of blueshifted maximal field enhancements near hybridized plasmonic dimer resonances that are still large but nearly two times smaller than in the usual local-response description. For the same geometry at a fixed frequency, the field enhancement and cross section can also be significantly more enhanced in the nonlocal-response model.

  2. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  3. Probability of acoustic transmitter detections by receiver lines in Lake Huron: results of multi-year field tests and simulations

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher M.; Binder, Thomas; Dettmers, John M.; Cooke, Steven J.; Vandergoot, Christopher S.; Krueger, Charles C.

    2016-01-01

    BackgroundAdvances in acoustic telemetry technology have led to an improved understanding of the spatial ecology of many freshwater and marine fish species. Understanding the performance of acoustic receivers is necessary to distinguish between tagged fish that may have been present but not detected and from those fish that were absent from the area. In this study, two stationary acoustic transmitters were deployed 250 m apart within each of four acoustic receiver lines each containing at least 10 receivers (i.e., eight acoustic transmitters) located in Saginaw Bay and central Lake Huron for nearly 2 years to determine whether the probability of detecting an acoustic transmission varied as a function of time (i.e., season), location, and distance between acoustic transmitter and receiver. Distances between acoustic transmitters and receivers ranged from 200 m to >10 km in each line. The daily observed probability of detecting an acoustic transmission was used in simulation models to estimate the probability of detecting a moving acoustic transmitter on a line of receivers.ResultsThe probability of detecting an acoustic transmitter on a receiver 1000 m away differed by month for different receiver lines in Lake Huron and Saginaw Bay but was similar for paired acoustic transmitters deployed 250 m apart within the same line. Mean probability of detecting an acoustic transmitter at 1000 m calculated over the study period varied among acoustic transmitters 250 m apart within a line and differed among receiver lines in Lake Huron and Saginaw Bay. The simulated probability of detecting a moving acoustic transmitter on a receiver line was characterized by short periods of time with decreased detection. Although increased receiver spacing and higher fish movement rates decreased simulated detection probability, the location of the simulated receiver line in Lake Huron had the strongest effect on simulated detection probability.ConclusionsPerformance of receiver

  4. Enhanced excitonic photoconductivity due to built-in internal electric field in TlGaSe{sub 2} layered semiconductor

    SciTech Connect

    Seyidov, MirHasan Yu. Suleymanov, Rauf A.; Şale, Yasin; Balaban, Ertan

    2014-12-07

    The strong enhancement, by several orders of magnitude, of the excitonic peak within the photoconductivity spectrum of TlGaSe{sub 2} semiconductor was observed. The samples were polarized in external dc electric field, which was applied prior to the measurements. Due to the accumulation of charges near the surface, an internal electric field was formed. Electron-hole pairs that were created after the absorption of light are fallen in and then separated by the built-in electric field, which prevents radiative recombination process.

  5. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs.

    PubMed

    Gélat, Pierre; Ter Haar, Gail; Saffari, Nader

    2011-09-07

    The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.

  6. Quantitative measurement of in-plane acoustic field components using surface-mounted fiber sensors

    NASA Technical Reports Server (NTRS)

    Claus, Richard O.; Dhawan, Rajat R.; Gunther, Michael F.; Murphy, Kent A.

    1993-01-01

    Extrinsic Fabry-Perot interferometric sensors have been used to obtain calibrated, quantitative measurements of the in-plane displacement components associated with the propagation of ultrasonic elastic stress waves on the surfaces of solids. The frequency response of the sensor is determined by the internal spacing between the two reflecting fiber endface surfaces which form the Fabry-Perot cavity, a distance which is easily controlled during fabrication. With knowledge of the material properties of the solid, the out-of-plane displacement component of the wave may also be determined, giving full field data.

  7. Fourier method for recovering acoustic sources from multi-frequency far-field data

    NASA Astrophysics Data System (ADS)

    Wang, Xianchao; Guo, Yukun; Zhang, Deyue; Liu, Hongyu

    2017-03-01

    We consider an inverse source problem of determining a source term in the Helmholtz equation from multi-frequency far-field measurements. Based on the Fourier series expansion, we develop a novel non-iterative reconstruction method for solving the problem. A promising feature of this method is that it utilizes the data from only a few observation directions for each frequency. Theoretical uniqueness and stability analysis are provided. Numerical experiments are conducted to illustrate the effectiveness and efficiency of the proposed method in both two and three dimensions.

  8. Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang; Äkäslompolo, Simppa; Cavinato, Mario; Koechl, Florian; Kurki-Suonio, Taina; Li, Li; Parail, Vassili; Saibene, Gabriella; Särkimäki, Konsta; Sipilä, Seppo; Varje, Jari

    2016-06-01

    Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n  =  1-6 field components are computed and compared. The plasma response is found to be weak for the high-n (n  >  4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n  =  1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n  =  1 field errors will not cause substantial flow damping for the 15 MA baseline scenario.

  9. Energy conversion of the flare due to direct electric fields from the sheared reconnection

    NASA Astrophysics Data System (ADS)

    Hirayama, T.

    In this paper we present a new mechanism of the main energy conversion of the solar flare. Since a flare inducing prominence (flux tube) rises Vz ⩽ 300 km s-1, the plasmas below it cannot continuously eject with Alfvén speeds of VA = 3000 km s-1 but probably with Vz ≈ ±100 km s-1. Plasma up and downflows with VA will within a short duration be blocked between the chromosphere where reconnected flux tubes are piling up, and the slowly rising flux rope. Hence the Petschek slow shock mechanism is difficult to be realized as a major energy converting mechanism. Adopting a conventional reconnecting morphology, we assume a magnetic component parallel to the photospheric neutral line, i.e. sheared fields of By ≠ 0. Then Gauss’s law leads to non-vanishing electric charges σ; 4πσ = -div(V × B/c) ≈ By∂Vz/c∂x where the horizontal inflow velocity Vx changes to vertical down-flow Vz (e.g. By ≈ Bz = 40G and Δx ≈ 104 km). Then the electric field parallel to the magnetic fields E∥ calculated from Coulomb’s law from this σ is found to be far greater than the Dreicer field, and accelerates electrons and protons. Thus the horizontally inflowing Poynting energy flux in area Sx is immediately converted to the kinetic energy of electron beams along the magnetic field in area Sz; BVxSx/4π=12menVbeam3Sz with Sx/Sz ≈ 4. The particle beam energy flux cannot exceed the Poynting energy flux however large E∥ may be. The total energy can be supplied by 10 keV electrons and nbeam = 2 × 107 cm-3 for Vx = 40 km s-1. This inflow velocity Vx, though restricted by the rising prominence speed, explains the short flare duration consistent to observations. The electron beam flux nbeamVbeam will be simultaneously and co-spatially compensated by the slowly back-flowing bulk electrons, avoiding possible enormous charge pile-up. Instead of the conventional diffusion region, which contains serious difficulties if there is the shear as one should normally expect, we propose

  10. Directivity of acoustic radiation from sources

    NASA Technical Reports Server (NTRS)

    Lansing, D. L.

    1979-01-01

    The radiation properties of acoustic monopoles and dipoles are described. The directivity of radiation from these sources in a free field and in the presence of an absorptive surface is described. The kinematic effects on source radiation due to translation and rotation are discussed. Experimental measurements of sound from an acoustic monopole in motion and the characteristics of helicopter rotor and propeller noise are reviewed. An introduction is provided to several essential concepts required by noise control engineers making measurements of noise from moving sources in the proximity of the ground.

  11. Directivity of acoustic radiation from sources

    NASA Technical Reports Server (NTRS)

    Lansing, D. L.

    1979-01-01

    The radiation properties of acoustic monopoles and dipoles are described, as well as the directivity of radiation from these sources in a free field and in the presence of an absorptive surface. The kinematic effects on source radiation due to translation and rotation are discussed. Experimental measurements of sound from an acoustic monopole in motion and the characteristics of helicopter rotor and propeller noise are reviewed. Several essential concepts required by noise control engineers making measurements of noise from moving sources in the proximity of the ground are introduced.

  12. Particle acceleration due to shocks in the interplanetary field: High time resolution data and simulation results

    NASA Technical Reports Server (NTRS)

    Kessel, R. L.; Armstrong, T. P.; Nuber, R.; Bandle, J.

    1985-01-01

    Data were examined from two experiments aboard the Explorer 50 (IMP 8) spacecraft. The Johns Hopkins University/Applied Lab Charged Particle Measurement Experiment (CPME) provides 10.12 second resolution ion and electron count rates as well as 5.5 minute or longer averages of the same, with data sampled in the ecliptic plane. The high time resolution of the data allows for an explicit, point by point, merging of the magnetic field and particle data and thus a close examination of the pre- and post-shock conditions and particle fluxes associated with large angle oblique shocks in the interplanetary field. A computer simulation has been developed wherein sample particle trajectories, taken from observed fluxes, are allowed to interact with a planar shock either forward or backward in time. One event, the 1974 Day 312 shock, is examined in detail.

  13. Spinmotive force due to motion of magnetic bubble arrays driven by magnetic field gradient

    PubMed Central

    Yamane, Yuta; Hemmatiyan, Shayan; Ieda, Jun'ichi; Maekawa, Sadamichi; Sinova, Jairo

    2014-01-01

    Interaction between local magnetization and conduction electrons is responsible for a variety of phenomena in magnetic materials. It has been recently shown that spin current and associated electric voltage can be induced by magnetization that depends on both time and space. This effect, called spinmotive force, provides for a powerful tool for exploring the dynamics and the nature of magnetic textures, as well as a new source for electromotive force. Here we theoretically demonstrate the generation of electric voltages in magnetic bubble array systems subjected to a magnetic field gradient. It is shown by deriving expressions for the electric voltages that the present system offers a direct measure of phenomenological parameter β that describes non-adiabaticity in the current induced magnetization dynamics. This spinmotive force opens a door for new types of spintronic devices that exploit the field-gradient. PMID:25365971

  14. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    SciTech Connect

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  15. Field emission current fluctuations due to lithium adsorbed on the W(111) region

    NASA Astrophysics Data System (ADS)

    Biernat, T.; Kleint, Ch.; Mȩclewski, R.

    1991-04-01

    Field emission current fluctuations for lithium adsorbed on the tungsten (111) region were investigated by a probe-hole field emission microscope. The coverage dependence of the noise power as well as spectral density functions W(ƒ) at different temperatures were obtained. The spectral density functions have been analysed in terms of the Timm and van der Ziel concentration fluctuation model. Using Comer's method the surface diffusion energies and prefactors have been determined for submonolayer coverages of lithium. They are strongly coverage dependent. The activation energy varies non-monotonically between 0.41 and 0.53 eV and the prefactor between 2.4 × 10 -4 and 1.3 × 10 -2 cm 2/s in the Li surface concentration interval (0.5-3.7) × 10 14 cm -2. The results are compared with those obtained for the W(111)/K system.

  16. Quasi-static electromagnetic fields due to dipole antennas in bounded conducting media

    NASA Astrophysics Data System (ADS)

    Habashy, T. M.; Kong, J. A.; Tsang, L.

    1985-05-01

    Several techniques are employed to model dipole fields in a two-layer dissipative medium. The upper layer is assumed lossless, the lower lossy. Attention is limited to solutions of integrals over the vertical field by quasi-static approximation (QSA), steepest descent image-source (SDIS), residue and hybrid solution approaches. A comparison of the solutions with experimental data delineates the realms of effectiveness for each computational technique: QSA is good for frequencies below 100 kHz and measurements of less than 1/30 wavelength; SDIS is valid at high frequencies on thick layers; and, normal mode residue is applicable for low frequency thin layers. Finally, intermediate conditions require all three techniques.

  17. False vacuum bubble nucleation due to a nonminimally coupled scalar field

    SciTech Connect

    Lee, Wonwoo; Park, Chanyong; Lee, Bum-Hoon; Lee, Chul H.

    2006-12-15

    We study the possibility of forming the false vacuum bubble nucleated within the true vacuum background via the true-to-false vacuum phase transition in curved spacetime. We consider a semiclassical Euclidean bubble in the Einstein theory of gravity with a nonminimally coupled scalar field. In this paper we present the numerical computations as well as the approximate analytical computations. We mention the evolution of the false vacuum bubble after nucleation.

  18. VISCOUS EVOLUTION AND PHOTOEVAPORATION OF CIRCUMSTELLAR DISKS DUE TO EXTERNAL FAR ULTRAVIOLET RADIATION FIELDS

    SciTech Connect

    Anderson, Kassandra R.; Adams, Fred C.; Calvet, Nuria

    2013-09-01

    This paper explores the effects of FUV radiation fields from external stars on circumstellar disk evolution. Disks residing in young clusters can be exposed to extreme levels of FUV flux from nearby OB stars, and observations show that disks in such environments are being actively photoevaporated. Typical FUV flux levels can be factors of {approx}10{sup 2}-10{sup 4} higher than the interstellar value. These fields are effective in driving mass loss from circumstellar disks because they act at large radial distance from the host star, i.e., where most of the disk mass is located, and where the gravitational potential well is shallow. We combine viscous evolution (an {alpha}-disk model) with an existing FUV photoevaporation model to derive constraints on disk lifetimes, and to determine disk properties as functions of time, including mass-loss rates, disk masses, and radii. We also consider the effects of X-ray photoevaporation from the host star using an existing model, and show that for disks around solar-mass stars, externally generated FUV fields are often the dominant mechanism in depleting disk material. For sufficiently large viscosities, FUV fields can efficiently photoevaporate disks over the entire range of parameter space. Disks with viscosity parameter {alpha} = 10{sup -3} are effectively dispersed within 1-3 Myr; for higher viscosities ({alpha} = 10{sup -2}) disks are dispersed within {approx}0.25-0.5 Myr. Furthermore, disk radii are truncated to less than {approx}100 AU, which can possibly affect the formation of planets. Our model predictions are consistent with the range of observed masses and radii of proplyds in the Orion Nebula Cluster.

  19. Toroidal response due to strong near-field coupling in planar metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Basharin, Alexey A.; Chuguevskiy, Vitaliy; Kafesaki, Maria; Economou, Eleftherios; Ustinov, Alexey V.

    2016-04-01

    The main research efforts in the metamaterials science are focused on achieving negative permittivity and permeability, as well as on effects such as superresolution, subwavelength guiding, enhancement of field localization, nanoantennas etc. At the same time, there is a wide range of interesting problems, beyond the issues of negative refraction. One of them is the problem associated with the excitation of toroidal response in metamaterials and the unusual phenomena associated with such response. In this paper, we demonstrate that, owing to the unique topology of the toroidal dipolar mode, its electric/magnetic field can be spatially confined within sub-wavelength, externally accessible regions of the metamolecules, which makes the toroidal metamaterials a viable platform for sensing, enhancement of light absorption and optical nonlinearities, and, especially, ingredient for qubits and quantum metamaterials. The metamolecules employed in the present study are planar conductive structures consisting of two symmetric split loops. The excited circular currents along the loops lead to a circulating magnetic moment and, as a result, to a toroidal moment. We note that the electric field is strongly localized in the splits of the loops and allows achieving the extremely high Q-factor of such types of resonators.

  20. Inputs of heavy metals due to agrochemical use in tobacco fields in Brazil's Southern Region.

    PubMed

    Zoffoli, Hugo José Oliveira; do Amaral-Sobrinho, Nelson Moura Brasil; Zonta, Everaldo; Luisi, Marcus Vinícius; Marcon, Gracioso; Tolón-Becerra, Alfredo

    2013-03-01

    Only a few studies have assessed the joint incorporation of heavy metals into agricultural systems based on the range of agrochemicals used on a specific agricultural crop. This study was conducted to assess the heavy metals input through application of the main agrochemicals used in Brazilian tobacco fields. A total of 56 samples of different batches of 5 fertilizers, 3 substrates, 8 insecticides, 3 fungicides, 2 herbicides, and 1 growth regulator commonly used in the cultivation of tobacco in Brazil's Southern Region were collected from 3 warehouses located in the States of Rio Grande do Sul, Santa Catarina, and Paraná. The total As, Cd, Co, Cr, Cu, Hg, Fe, Mn, Ni, Pb, and Zn content of the samples was then determined and compared with the regulations of different countries and information found in the available literature. The fertilizers were identified as the primary source of heavy metals among the agrochemicals used. Application of pesticides directly to the shoots of tobacco plants contributed very little to the supply of heavy metals. The agrochemicals used in Brazilian tobacco fields provide lower inputs of the main heavy metals that are nonessential for plants than those registered in the international literature for the majority of crop fields in different regions of the world.

  1. The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Contreras, A.; Garcia-Azpeitia, C.; García-Cervera, C. J.; Joo, S.

    2016-08-01

    We investigate the effect of a strong magnetic field on a three dimensional smectic A liquid crystal. We identify a critical field above which the uniform layered state loses stability; this is associated to the onset of layer undulations. In a previous work García-Cervera and Joo (2012 Arch. Ration. Mech. Anal. 203 1-43), García-Cervera and Joo considered the two dimensional case and analyzed the transition to the undulated state via a simple bifurcation. In dimension n  =  3 the situation is more delicate because the first eigenvalue of the corresponding linearized problem is not simple. We overcome the difficulties inherent to this higher dimensional setting by identifying the irreducible representations for natural actions on the functional that take into account the invariances of the problem thus allowing for reducing the bifurcation analysis to a subspace with symmetries. We are able to describe at least two bifurcation branches, highlighting the richer landscape of energy critical states in the three dimensional setting. Finally, we analyze a reduced two dimensional problem, assuming the magnetic field is very strong, and are able to relate this to a model in micromagnetics studied in Alouges et al (2002 ESAIM Control Optim. Calc. Var. 8 31-68), from where we deduce the periodicity property of minimizers.

  2. Transition control of instability waves over a flexible surface in the presence of an acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1990-01-01

    Experimental results are presented which demonstrate the coupling of a laminar boundary layer flow with a typical flexible aircraft panel. It is shown that the boundary layer induces plate oscillations which, in turn, perturb the flow at the same frequencies. This feedback mechanism is an inherent property of laminar boundary layer flow passing over a flexible plate. As a result, the flexibility of the plate becomes a source of early transition. The laminar boundary layer at the leading edge of the plate reacts to small, upstream, unsteady disturbances due to a streamwise pressure gradient. The experiments demonstrate that a nominal sound pressure incident at the leading edge triggers early transition. It is shown that transition can be delayed by activating a heat source at the leading edge of the plate which results in downstream cooling.

  3. Acoustic dispersive prism

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  4. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-07

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  5. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  6. Numerical investigation of acoustic field in enclosures: Evaluation of active and reactive components of sound intensity

    NASA Astrophysics Data System (ADS)

    Meissner, Mirosław

    2015-03-01

    The paper focuses on a theoretical description and numerical evaluation of active and reactive components of sound intensity in enclosed spaces. As the study was dedicated to low-frequency room responses, a modal expansion of the sound pressure was used. Numerical simulations have shown that the presence of energy vortices whose size and distribution depend on the character of the room response is a distinctive feature of the active intensity field. When several modes with frequencies close to a source frequency are excited, the vortices within the room are positioned irregularly. However, if the response is determined by one or two dominant modes, a regular distribution of vortices in the room can be observed. The irrotational component of the active intensity was found using the Helmholtz decomposition theorem. As was evidenced by numerical simulations, the suppression of the vortical flow of sound energy in the nearfield permits obtaining a clear image of the sound source.

  7. Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC

    SciTech Connect

    Lehman, S K

    2006-02-09

    We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated data with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.

  8. NASA powered lift facility internally generated noise and its transmission to the acoustic far field

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1988-01-01

    Noise tests of NASA Lewis Research Center's Powered Lift Facility (PLF) were performed to determine the frequency content of the internally generated noise that reaches the far field. The sources of the internally generated noise are the burner, elbows, valves, and flow turbulence. Tests over a range of nozzle pressure ratios from 1.2 to 3.5 using coherence analysis revealed that low frequency noise below 1200 Hz is transmitted through the nozzle. Broad banded peaks at 240 and 640 Hz were found in the transmitted noise. Aeroacoustic excitation effects are possible in this frequency range. The internal noise creates a noise floor that limits the amount of jet noise suppression that can be measured on the PLF and similar facilities.

  9. Fast prediction of pulsed nonlinear acoustic fields from clinically relevant sources using time-averaged wave envelope approach: comparison of numerical simulations and experimental results.

    PubMed

    Wójcik, J; Kujawska, T; Nowicki, A; Lewin, P A

    2008-12-01

    The primary goal of this work was to verify experimentally the applicability of the recently introduced time-averaged wave envelope (TAWE) method [J. Wójcik, A. Nowicki, P.A. Lewin, P.E. Bloomfield, T. Kujawska, L. Filipczyński, Wave envelopes method for description of nonlinear acoustic wave propagation, Ultrasonics 44 (2006) 310-329.] as a tool for fast prediction of four dimensional (4D) pulsed nonlinear pressure fields from arbitrarily shaped acoustic sources in attenuating media. The experiments were performed in water at the fundamental frequency of 2.8 MHz for spherically focused (focal length F=80 mm) square (20 x 20 mm) and rectangular (10 x 25mm) sources similar to those used in the design of 1D linear arrays operating with ultrasonic imaging systems. The experimental results obtained with 10-cycle tone bursts at three different excitation levels corresponding to linear, moderately nonlinear and highly nonlinear propagation conditions (0.045, 0.225 and 0.45 MPa on-source pressure amplitude, respectively) were compared with those yielded using the TAWE approach [J. Wójcik, A. Nowicki, P.A. Lewin, P.E. Bloomfield, T. Kujawska, L. Filipczyński, Wave envelopes method for description of nonlinear acoustic wave propagation, Ultrasonics 44 (2006) 310-329.]. The comparison of the experimental results and numerical simulations has shown that the TAWE approach is well suited to predict (to within+/-1 dB) both the spatial-temporal and spatial-spectral pressure variations in the pulsed nonlinear acoustic beams. The obtained results indicated that implementation of the TAWE approach enabled shortening of computation time in comparison with the time needed for prediction of the full 4D pulsed nonlinear acoustic fields using a conventional (Fourier-series) approach [P.T. Christopher, K.J. Parker, New approaches to nonlinear diffractive field propagation, J. Acoust. Soc. Am. 90 (1) (1991) 488-499.]. The reduction in computation time depends on several parameters

  10. Reordering of the ridge patterns of a stochastic electromagnetic field by diffraction due to an ideal slit

    NASA Astrophysics Data System (ADS)

    Avendaño, J.; de La Peña, L.

    2005-12-01

    We study the behavior of scarlets of a stochastic radiation field of fixed frequency in the presence of a slit pierced on an infinitely thin metallic screen of ideal conductivity. Our methodology involves the exact solution of the Maxwell equations with appropriate boundary conditions, the only approximations being those due to the numerical procedure. Our numerical simulations show that the field is unfolded into two components, a dominant one that is disordered and a weaker one that is ordered. The former still presents scarlets although modified, while the latter exhibits a pattern of perfectly coherent diffraction. Due to the dominant character of the disordered component, the general appearance of the scattered field is stochastic; however, an underlying order exists. Our results confirm, thus, a novel effect suggested previously in the context of stochastic electrodynamics.

  11. Reordering of the ridge patterns of a stochastic electromagnetic field by diffraction due to an ideal slit.

    PubMed

    Avendaño, J; de la Peña, L

    2005-12-01

    We study the behavior of scarlets of a stochastic radiation field of fixed frequency in the presence of a slit pierced on an infinitely thin metallic screen of ideal conductivity. Our methodology involves the exact solution of the Maxwell equations with appropriate boundary conditions, the only approximations being those due to the numerical procedure. Our numerical simulations show that the field is unfolded into two components, a dominant one that is disordered and a weaker one that is ordered. The former still presents scarlets although modified, while the latter exhibits a pattern of perfectly coherent diffraction. Due to the dominant character of the disordered component, the general appearance of the scattered field is stochastic; however, an underlying order exists. Our results confirm, thus, a novel effect suggested previously in the context of stochastic electrodynamics.

  12. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    PubMed

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)).

  13. Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface.

    PubMed

    Senne, J; Song, A; Badiey, M; Smith, K B

    2012-09-01

    The present paper examines the temporal evolution of acoustic fields by modeling forward propagation subject to sea surface dynamics with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Surface waves are generated from surface wave spectra, and stepped in time using a Runge-Kutta integration technique applied to linear evolution equations. This evolving, range-dependent surface information is combined with other environmental parameters and input to the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. This merged acoustic model is validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the model is able to approximate the ensemble-averaged acoustic intensity at ranges of about a kilometer for acoustic signals of around 15 kHz. Furthermore, the model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds.

  14. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.

    PubMed

    Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin

    2016-09-01

    Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.

  15. Estimating the change in asymptotic direction due to secular changes in the geomagnetic field

    NASA Technical Reports Server (NTRS)

    Flueckiger, E. O.; Smart, D. F.; Shea, M. A.; Gentile, L. C.; Bathurat, A. A.

    1985-01-01

    The concept of geomagnetic optics, as described by the asymptotic directions of approach, is extremely useful in the analysis of cosmic radiation data. However, when changes in cutoff occur as a result of evolution in the geomagnetic field, there are corresponding changes in the asymptotic cones of acceptance. A method is introduced of estimating the change in the asymptotic direction of approach for vertically incident cosmic ray particles from a reference set of directions at a specific epoch by considering the change in the geomagnetic cutoff.

  16. In-flight near- and far-field acoustic data measured on the Propfan Test Assessment (PTA) testbed and with an adjacent aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.

    1993-01-01

    Flight tests to define the far-field tone source at cruise conditions were completed on the full-scale SR-7L advanced turboprop that was installed on the left wing of a Gulfstream 2 aircraft. This program, designated Propfan Test Assessment (PTA), involved aeroacoustic testing of the propeller over a range of test conditions. These measurements defined source levels for input into long-distance propagation models to predict en route noise. In-flight data were taken for seven test cases. Near-field acoustic data were taken on the Gulfstream fuselage and on a microphone boom that was mounted on the Gulfstream wing outboard of the propeller. Far-field acoustic data were taken by an acoustically instrumented Learjet that flew in formation with the Gulfstream. These flight tests were flown from El Paso, Texas, and from the NASA Lewis Research Center. A comprehensive listing of the aeroacoustic results from these flight tests which may be used for future analysis are presented.

  17. Stochastic simulation for the propagation of high-frequency acoustic waves through a random velocity field

    NASA Astrophysics Data System (ADS)

    Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.

    2012-05-01

    In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.

  18. The Acoustic Wave Field Features and Thickness Analysis of the Footstone of the Yellow River Levee

    NASA Astrophysics Data System (ADS)

    Li, G.; Zhu, P.; Yang, K.; Jiang, J.

    2014-12-01

    The dangerous control engineering often stacks stones, named the footstone, outside the sediment matrix to resist the scour erosion in lower Yellow River. In order to ensure the stability of the bank, the footstones are stacked in the certain proportion. Due to the effect of the seasonal changes and the adjustment of the upstream reservoir, the water depth of the Yellow River near the lobes of banks changes constantly. The scouring erosion in flood season and depositing in dry season make the stacked footstones to be washed away. The thickness and the location of the maximum burial depth of the footstones are the important supporting data for calculating the river scour. Thus, it is significant to investigate the location, thickness and slope of the footstones. This study proposed a new method to distinguish the silt and footing stones according to their frequency differences by applying time-frequency analysis to the sub-bottom profiler data, and to estimate the thickness of the footstones by using the messy reflection waves formed by the riprap, and then to has solved the estimation of the maximum scour depth.

  19. Vertical amplitude phase structure of a low-frequency acoustic field in shallow water

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.

    2016-11-01

    We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.

  20. Suppression of drift wave instability due to sheared field-aligned flow and negative ions

    NASA Astrophysics Data System (ADS)

    Ichiki, Ryuta; Hayashi, Kenichiro; Kaneko, Toshiro; Hatakeyama, Rikizo

    2006-10-01

    Sheared field-aligned plasma flow is a significant topic in space/circumterrestrial plasmas. Taking into account negative ions or dust grains will make the space plasma physics more general and accurate. Using the QT-Upgrade Machine, we have conducted laboratory experiments to examine negative ion effects on shear-modified drift waves. Field-aligned K^+ ion flow and its shear strength are controlled with a concentrically segmented W hot plate. Negative ions SF6^- are produced by introducing SF6 gas in the plasma. The drift wave shows a gradual monotonic decrease in amplitude as the shear strength is increased from zero. However, as the shear strength is decreased from zero to negative values, the amplitude increases up to a certain shear strength and rapidly decreases after the peaking. The negative ion introduction, in general, suppresses this instability while retaining the dependence of the amplitude on the shear. These wave characteristics are interpreted using the theories of current-driven (kinetic) and of D’Angelo (fluid) instabilities.

  1. Excitation of dayside chorus waves due to magnetic field line compression in response to interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Li, Wen; Thorne, Richard M.; Bortnik, Jacob; Ma, Qianli; An, Xin; Zhang, Xiao-jia; Angelopoulos, Vassilis; Ni, Binbin; Gu, Xudong; Fu, Song; Zhao, Zhengyu

    2015-10-01

    The excitation of magnetospheric whistler-mode chorus in response to interplanetary (IP) shocks is investigated using wave data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. As an example, we show a typical chorus wave excitation following an IP shock event that was observed by THEMIS in the postnoon sector near the magnetopause on 3 August 2010. We then analyze characteristic changes during this event and perform a survey of similar events during the period 2008-2014 using the THEMIS and OMNI data set. Our statistical analysis demonstrates that the chorus wave excitation/intensification in response to IP shocks occurs only at high L shells (L > 8) on the dayside. We analyzed the variations of magnetic curvature following the arrival of the IP shock and found that IP shocks lead to more homogeneous background magnetic field configurations in the near-equatorial dayside magnetosphere; and therefore, the threshold of nonlinear chorus wave growth is likely to be reduced, favoring chorus wave generation. Our results provide the observational evidence to support the concept that the geomagnetic field line configuration plays a key role in the excitation of dayside chorus.

  2. Electron residual energy due to stochastic heating in field-ionized plasma

    SciTech Connect

    Khalilzadeh, Elnaz; Yazdanpanah, Jam Chakhmachi, Amir; Jahanpanah, Jafar; Yazdani, Elnaz

    2015-11-15

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  3. Mobility overestimation due to gated contacts in organic field-effect transistors

    PubMed Central

    Bittle, Emily G.; Basham, James I.; Jackson, Thomas N.; Jurchescu, Oana D.; Gundlach, David J.

    2016-01-01

    Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current–voltage characteristics and interpreted by using the classical metal oxide–semiconductor field-effect transistor model. However, in recent reports of devices with ultra-high mobility (>40 cm2 V−1 s−1), the device characteristics deviate from this idealized model and show an abrupt turn-on in the drain current when measured as a function of gate voltage. In order to investigate this phenomenon, here we report on single crystal rubrene transistors intentionally fabricated to exhibit an abrupt turn-on. We disentangle the channel properties from the contact resistance by using impedance spectroscopy and show that the current in such devices is governed by a gate bias dependence of the contact resistance. As a result, extracted mobility values from d.c. current–voltage characterization are overestimated by one order of magnitude or more. PMID:26961271

  4. Electron residual energy due to stochastic heating in field-ionized plasma

    NASA Astrophysics Data System (ADS)

    Khalilzadeh, Elnaz; Yazdanpanah, Jam; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz

    2015-11-01

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  5. Vibroacoustic Response of Residential Housing due to Sonic Boom Exposure: A Summary of two Field Tests

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Buehrle, Ralph; Sullivan, Brenda; Gavin, Joseph; Salamone, Joseph; Haering, Edward A., jr.; Miller, Denise M.

    2008-01-01

    Two experiments have been performed to measure the vibroacoustic response of houses exposed to sonic booms. In 2006, an old home in the base housing area of Edwards Air Force Base, built around 1960 and demolished in 2007, was instrumented with 288 transducers. During a 2007 follow-on test, a newer home in the base housing area, built in 1997, was instrumented with 112 transducers. For each experiment, accelerometers were placed on walls, windows and ceilings in bedrooms of the house to measure the vibration response of the structure. Microphones were placed outside and inside the house to measure the excitation field and resulting interior sound field. The vibroacoustic response of each house was measured for sonic boom amplitudes spanning from 2.4 to 96 Pa (0.05 to 2 lbf/sq ft). The boom amplitudes were systematically varied using a unique dive maneuver of an F/A-18 airplane. In total, the database for both houses contains vibroacoustic response data for 154 sonic booms. In addition, several tests were performed with mechanical shaker excitation of the structure to characterize the forced response of the houses. The purpose of this paper is to summarize all the data from these experiments that are available to the research community, and to compare and contrast the vibroacoustic behavior of these two dissimilar houses.

  6. Global Simulation of Proton Precipitation Due to Field Line Curvature During Substorms

    NASA Technical Reports Server (NTRS)

    Gilson, M. L.; Raeder, J.; Donovan, E.; Ge, Y. S.; Kepko, L.

    2012-01-01

    The low latitude boundary of the proton aurora (known as the Isotropy Boundary or IB) marks an important boundary between empty and full downgoing loss cones. There is significant evidence that the IB maps to a region in the magnetosphere where the ion gyroradius becomes comparable to the local field line curvature. However, the location of the IB in the magnetosphere remains in question. In this paper, we show simulated proton precipitation derived from the Field Line Curvature (FLC) model of proton scattering and a global magnetohydrodynamic simulation during two substorms. The simulated proton precipitation drifts equatorward during the growth phase, intensifies at onset and reproduces the azimuthal splitting published in previous studies. In the simulation, the pre-onset IB maps to 7-8 RE for the substorms presented and the azimuthal splitting is caused by the development of the substorm current wedge. The simulation also demonstrates that the central plasma sheet temperature can significantly influence when and where the azimuthal splitting takes place.

  7. Screening of external magnetic perturbation fields due to sheared plasma flow

    NASA Astrophysics Data System (ADS)

    Li, L.; Liu, Y. Q.; Liang, Y.; Wang, N.; Luan, Q.; Zhong, F. C.; Liu, Y.

    2016-09-01

    Within the single fluid resistive magnetohydrodynamic model, systematic toroidal modelling efforts are devoted to investigate the plasma response induced screening of the applied external 3D magnetic field perturbations in the presence of sheared toroidal flow. One particular issue of interest is addressed, when the local flow speed approaches zero at the perturbation rational surface inside the plasma. Subtle screening physics, associated with the favourable averaged toroidal curvature effect (the GGJ effect (Glasser et al 1975 Phys. Fluids 7 875)), is found to play an essential role during slow flow near the rational surface by enhancing the screening at reduced flow. A strong cancellation effect between different terms of Ohm’s law is discovered, leading to different screening physics in the GGJ regime, as compared to that of conventional screening of the typical resistive-inertial regime occurring at faster flow. These modelling results may be applicable to interpret certain mode locking experiments, as well as type-I edge localized mode suppression experiments, with resonant magnetic field perturbations being applied to tokamak plasmas at low input toroidal torque.

  8. SOI detector with drift field due to majority carrier flow - an alternative to biasing in depletion

    SciTech Connect

    Trimpl, M.; Deptuch, G.; Yarema, R.; /Fermilab

    2010-11-01

    This paper reports on a SOI detector with drift field induced by the flow of majority carriers. It is proposed as an alternative method of detector biasing compared to standard depletion. N-drift rings in n-substrate are used at the front side of the detector to provide charge collecting field in depth as well as to improve the lateral charge collection. The concept was verified on a 2.5 x 2.5 mm{sup 2} large detector array with 20 {micro}m and 40 {micro}m pixel pitch fabricated in August 2009 using the OKI semiconductor process. First results, obtained with a radioactive source to demonstrate spatial resolution and spectroscopic performance of the detector for the two different pixel sizes will be shown and compared to results obtained with a standard depletion scheme. Two different diode designs, one using a standard p-implantation and one surrounded by an additional BPW implant will be compared as well.

  9. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    NASA Astrophysics Data System (ADS)

    Fisher, Aileen

    spatial wind noise filtering hoses or pipes. The grid was within the distance limits of a single gauge's normal hose array, and data were used to perform a spatial noise correlation study. The highest correlation values were not found in the lower frequencies as anticipated, owing to a lack of sources in the lower range and the uncorrelated nature of wind noise. The highest values, with cross-correlation averages between 0.4 and 0.7 from 3 to 17 m between gauges, were found at night from 10 and 20 Hz due to a continuous local noise source and low wind. Data from the larger array were used to identify continuous and impulsive signals in the area that comprise the ambient noise field. Ground truth infrasound and acoustic, time and location data were taken for a highway site, a wind farm, and a natural gas compressor. Close-range sound data were taken with a single IML "traveler" gauge. Spectrograms and spectrum peaks were used to identify their source signatures. Two regional location techniques were also tested with data from the large array by using a propane cannon as a controlled, impulsive source. A comparison is presented of the Multiple Signal Classification Algorithm (MUSIC) to a simple, quadratic, circular wavefront algorithm. MUSIC was unable to effectively separate noise and source eignenvalues and eigenvectors due to spatial aliasing of the propane cannon signal and a lack of incoherent noise. Only 33 out of 80 usable shots were located by MUSIC within 100 m. Future work with the algorithm should focus on location of impulsive and continuous signals with development of methods for accurate separation of signal and noise eigenvectors in the presence of coherent noise and possible spatial aliasing. The circular wavefront algorithm performed better with our specific dataset and successfully located 70 out of 80 propane cannon shots within 100 m of the original location, 66 of which were within 20 m. This method has low computation requirements, making it well

  10. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter

    PubMed Central

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen

    2017-01-01

    Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial “DOK.” We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0–0.25, 0.25–0.5, 0.5–0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and

  11. Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter.

    PubMed

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen

    2017-01-01

    Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial "DOK." We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0-0.25, 0.25-0.5, 0.5-0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations

  12. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  13. Experimental observation of increased threshold electric field for runaway generation due to synchrotron radiation losses in the FTU tokamak

    SciTech Connect

    Martin-Solis, Jose Ramon; Sanchez, Raul; Esposito, Basilio

    2010-01-01

    The threshold electric field for runaway generation has been investigated during runaway suppression experiments by means of electron-cyclotron-resonance heating in the flattop phase of FTU discharges. Runaway suppression has been experimentally found to occur at electric fields substantially larger than those predicted by the relativistic collisional theory of runaway generation, E{sub R} = n{sub e}e{sup 3}ln{Lambda}/4{pi}{var_epsilon}{sub 0}{sup 2}m{sub e}c{sup 2}. These experimental results are consistent with an increase of the critical electric field due to the electron synchrotron radiation losses. No runaway electrons are found in FTU experiments below the radiation threshold. These results support evidence for a new threshold electric field for runaway generation that accounts for the effect of the synchrotron losses, and which should be considered when making predictions on runaway generation and mitigation in devices such as ITER.

  14. Entanglement production due to quench dynamics of an anisotropic XY chain in a transverse field

    NASA Astrophysics Data System (ADS)

    Sengupta, K.; Sen, Diptiman

    2009-09-01

    We compute concurrence and negativity as measures of two-spin entanglement generated by a power-law quench (characterized by a rate τ-1 and an exponent α ) which takes an anisotropic XY chain in a transverse field through a quantum critical point (QCP). We show that only spins separated by an even number of lattice spacings get entangled in such a process. Moreover, there is a critical rate of quench, τc-1 , above which no two-spin entanglement is generated; the entire entanglement is multipartite. The ratio of the entanglements between consecutive even neighbors can be tuned by changing the quench rate. We also show that for large τ , the concurrence (negativity) scales as α/τ (α/τ) , and we relate this scaling behavior to defect production by the quench through a QCP.

  15. Gyrokinetic Simulations of Electrostatic Turbulence Reduction due to Radial Electric Field Shear in DIII-D

    NASA Astrophysics Data System (ADS)

    Taimourzadeh, Sam; Holod, Ihor; Lin, Zhihong; Nazikian, Raffi

    2015-11-01

    It has been demonstrated that edge localized modes (ELMs) can be fully suppressed in DIII-D H-mode plasmas with the application of resonant magnetic perturbations (RMPs), and that there is a corresponding reduction of pedestal gradients, changes in rotation, and changes in the radial electric field (Er) profile. However, with the application of RMPs there is also an increase in short wavelength, electrostatic turbulence on top of the pedestal, as observed with BES, DBS, and other fluctuation diagnostics. The effects of Er shear on this turbulence, is investigated using gyrokinetic simulations via the gyrokinetic toroidal code (GTC) for in DIII-D shot 158103, at times 3750 ms (RMP on, ELM active) and 3050 ms (RMP on, ELM suppressed).

  16. Second Law Violations by Means of a Stratification of Temperature Due to Force Fields

    NASA Astrophysics Data System (ADS)

    Trupp, Andreas

    2002-11-01

    In 1868 J.C. Maxwell proved that a perpetual motion machine of the second kind would become possible, if the equilibrium temperature in a vertical column of gas subject to gravity were a function of height. However, Maxwell had claimed that the temperature had to be the same at all points of the column. So did Boltzmann. Their opponent was Loschmidt. He claimed that the equilibrium temperature declined with height, and that a perpetual motion machine of the second kind operating by means of such column was compatible with the second law of thermodynamics. Extending the general idea behind Loschmidt's concept to other force fields, gravity can be replaced by molecular forces acting on molecules that try to escape from the surface of a liquid into the vapor space. Experiments proving the difference of temperature between the liquid and the vapor phase were conducted in the 19th century already.

  17. Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients

    NASA Astrophysics Data System (ADS)

    Glover, P. M.; Bowtell, R.

    2008-01-01

    A dual dipole electric field probe has been used to measure surface electric fields in vivo on a human subject over a frequency range of 0.1-800 Hz. The low-frequency electric fields were induced by natural body movements such as walking and turning in the fringe magnetic fields of a 3 T magnetic resonance whole-body scanner. The rate-of-change of magnetic field (dB/dt) was also recorded simultaneously by using three orthogonal search coils positioned near to the location of the electric field probe. Rates-of-change of magnetic field for natural body rotations were found to exceed 1 T s-1 near the end of the magnet bore. Typical electric fields measured on the upper abdomen, head and across the tongue for 1 T s-1 rate of change of magnetic field were 0.15 ± 0.02, 0.077 ± 0.003 and 0.015 ± 0.002 V m-1 respectively. Electric fields on the abdomen and chest were measured during an echo-planar sequence with the subject positioned within the scanner. With the scanner rate-of-change of gradient set to 10 T m-1 s-1 the measured rate-of-change of magnetic field was 2.2 ± 0.1 T s-1 and the peak electric field was 0.30 ± 0.01 V m-1 on the chest. The values of induced electric field can be related to dB/dt by a 'geometry factor' for a given subject and sensor position. Typical values of this factor for the abdomen or chest (for measured surface electric fields) lie in the range of 0.10-0.18 m. The measured values of electric field are consistent with currently available numerical modelling results for movement in static magnetic fields and exposure to switched magnetic field gradients.

  18. Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients.

    PubMed

    Glover, P M; Bowtell, R

    2008-01-21

    A dual dipole electric field probe has been used to measure surface electric fields in vivo on a human subject over a frequency range of 0.1-800 Hz. The low-frequency electric fields were induced by natural body movements such as walking and turning in the fringe magnetic fields of a 3 T magnetic resonance whole-body scanner. The rate-of-change of magnetic field (dB/dt) was also recorded simultaneously by using three orthogonal search coils positioned near to the location of the electric field probe. Rates-of-change of magnetic field for natural body rotations were found to exceed 1 T s(-1) near the end of the magnet bore. Typical electric fields measured on the upper abdomen, head and across the tongue for 1 T s(-1) rate of change of magnetic field were 0.15+/-0.02, 0.077+/-0.003 and 0.015+/-0.002 V m(-1) respectively. Electric fields on the abdomen and chest were measured during an echo-planar sequence with the subject positioned within the scanner. With the scanner rate-of-change of gradient set to 10 T m(-1) s(-1) the measured rate-of-change of magnetic field was 2.2+/-0.1 T s(-1) and the peak electric field was 0.30+/-0.01 V m(-1) on the chest. The values of induced electric field can be related to dB/dt by a 'geometry factor' for a given subject and sensor position. Typical values of this factor for the abdomen or chest (for measured surface electric fields) lie in the range of 0.10-0.18 m. The measured values of electric field are consistent with currently available numerical modelling results for movement in static magnetic fields and exposure to switched magnetic field gradients.

  19. A Spectral Analysis Approach for Acoustic Radiation from Composite Panels

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Singh, Mahendra P.; Mei, Chuh

    2004-01-01

    A method is developed to predict the vibration response of a composite panel and the resulting far-field acoustic radiation due to acoustic excitation. The acoustic excitation is assumed to consist of obliquely incident plane waves. The panel is modeled by a finite element analysis and the radiated field is predicted using Rayleigh's integral. The approach can easily include other effects such as shape memory alloy (SMA) ber reinforcement, large detection thermal postbuckling, and non-symmetric SMA distribution or lamination. Transmission loss predictions for the case of an aluminum panel excited by a harmonic acoustic pressure are shown to compare very well with a classical analysis. Results for a composite panel with and without shape memory alloy reinforcement are also presented. The preliminary results demonstrate that the transmission loss can be significantly increased with shape memory alloy reinforcement. The mechanisms for further transmission loss improvement are identified and discussed.

  20. A study of the acoustical radiation force considering attenuation

    NASA Astrophysics Data System (ADS)

    Wu, RongRong; Liu, XiaoZhou; Gong, XiuFen

    2013-07-01

    Acoustical tweezer is a primary application of the radiation force of a sound field. When an ultrasound focused beam passes through a micro-particle, like a cell or living biological specimens, the particle will be manipulated accurately without physical contact and invasion, due to the three-dimensional acoustical trapping force. Based on the Ray acoustics approach in the Mie regime, this work discusses the effects on the particle caused by Gaussian focused ultrasound, studies the acoustical trapping force of spherical Mie particles by ultrasound in any position, and analyzes the numerical calculation on the two-dimensional acoustical radiation force. This article also analyzes the conditions for the acoustical trapping phenomenon, and discusses the impact of the initial position and size of the particle on the magnitude of the acoustical radiation force. Furthermore, this paper considers the ultrasonic attenuation in a particle in the case of two-dimension, studies the attenuation's effects on the acoustical trapping force, and amends the calculation to the ordinary case with attenuation.