Science.gov

Sample records for acoustic field radiated

  1. Axial acoustic radiation force on a sphere in Gaussian field

    SciTech Connect

    Wu, Rongrong; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated. Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.

  2. Acoustic Radiation Force on a Finite-Sized Particle due to an Acoustic Field in a Viscous Compressible Fluid

    NASA Astrophysics Data System (ADS)

    Annamalai, Subramanian; Parmar, Manoj; Balachandar, S.

    2013-11-01

    Particles when subjected to acoustic waves experience a time-averaged second-order force known as the acoustic radiation force, which is of prime importance in the fields of microfluidics and acoustic levitation. Here, the acoustic radiation force on a rigid spherical particle in a viscous compressible medium due to progressive and standing waves is considered. The relevant length scales include: particle radius (a), acoustic wavelength (λ) and viscous penetration depth (δ). While a / λ and a / δ are arbitrary, δ << λ . A farfield derivation approach has been used in determining the radiated force. Expressing the flow-field as a sum of the incident and scattered fields, an analytical expression for the force is obtained as a summation over infinite series (monopole, dipole and higher sources). These results indicate that the contributions from monopole, dipole and their cross-interaction are sufficient to describe the acoustic radiation force. Subsequently, the monopole and dipole strengths are represented in terms of the particle surface and volume averages of the incoming velocity. This generalization allows one to evaluate the radiation force for an incoming wave of any functional form. However acoustic streaming effects are neglected.

  3. An improved method for the calculation of Near-Field Acoustic Radiation Modes

    NASA Astrophysics Data System (ADS)

    Liu, Zu-Bin; Maury, Cédric

    2016-02-01

    Sensing and controlling Acoustic Radiation Modes (ARMs) in the near-field of vibrating structures is of great interest for broadband noise reduction or enhancement, as ARMs are velocity distributions defined over a vibrating surface, that independently and optimally contribute to the acoustic power in the acoustic field. But present methods only provide far-field ARMs (FFARMs) that are inadequate for the acoustic near-field problem. The Near-Field Acoustic Radiation Modes (NFARMs) are firstly studied with an improved numerical method, the Pressure-Velocity method, which rely on the eigen decomposition of the acoustic transfers between the vibrating source and a conformal observation surface, including sound pressure and velocity transfer matrices. The active and reactive parts of the sound power are separated and lead to the active and reactive ARMs. NFARMs are studied for a 2D baffled beam and for a 3D baffled plate, and so as differences between the NFARMS and the classical FFARMs. Comparisons of the NFARMs are analyzed when varying frequency and observation distance to the source. It is found that the efficiencies and shapes of the optimal active ARMs are independent on the distance while that of the reactive ones are distinctly related on.

  4. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  5. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  6. Acoustic black holes: massless scalar field analytic solutions and analogue Hawking radiation

    NASA Astrophysics Data System (ADS)

    Vieira, H. S.; Bezerra, V. B.

    2016-07-01

    We obtain the analytic solutions of the radial part of the massless Klein-Gordon equation in the spacetime of both three dimensional rotating and four dimensional canonical acoustic black holes, which are given in terms of the confluent Heun functions. From these solutions, we obtain the scalar waves near the acoustic horizon. We discuss the analogue Hawking radiation of massless scalar particles and the features of the spectrum associated with the radiation emitted by these acoustic black holes.

  7. Violin f-hole contribution to far-field radiation via patch near-field acoustical holography.

    PubMed

    Bissinger, George; Williams, Earl G; Valdivia, Nicolas

    2007-06-01

    The violin radiates either from dual ports (f-holes) or via surface motion of the corpus (top+ribs+back), with no clear delineation between these sources. Combining "patch" near-field acoustical holography over just the f-hole region of a violin with far-field radiativity measurements over a sphere, it was possible to separate f-hole from surface motion contributions to the total radiation of the corpus below 2.6 kHz. A0, the Helmholtz-like lowest cavity resonance, radiated essentially entirely through the f-holes as expected while A1, the first longitudinal cavity mode with a node at the f-holes, had no significant f-hole radiation. The observed A1 radiation comes from an indirect radiation mechanism, induced corpus motion approximately mirroring the cavity pressure profile seen for violinlike bowed string instruments across a wide range of sizes. The first estimates of the fraction of radiation from the f-holes F(f) indicate that some low frequency corpus modes thought to radiate only via surface motion (notably the first corpus bending modes) had significant radiation through the f-holes, in agreement with net volume changes estimated from experimental modal analysis. F(f) generally trended lower with increasing frequency, following corpus mobility decreases. The f-hole directivity (top/back radiativity ratio) was generally higher than whole-violin directivity. PMID:17552736

  8. Violin f-hole contribution to far-field radiation via patch near-field acoustical holography.

    PubMed

    Bissinger, George; Williams, Earl G; Valdivia, Nicolas

    2007-06-01

    The violin radiates either from dual ports (f-holes) or via surface motion of the corpus (top+ribs+back), with no clear delineation between these sources. Combining "patch" near-field acoustical holography over just the f-hole region of a violin with far-field radiativity measurements over a sphere, it was possible to separate f-hole from surface motion contributions to the total radiation of the corpus below 2.6 kHz. A0, the Helmholtz-like lowest cavity resonance, radiated essentially entirely through the f-holes as expected while A1, the first longitudinal cavity mode with a node at the f-holes, had no significant f-hole radiation. The observed A1 radiation comes from an indirect radiation mechanism, induced corpus motion approximately mirroring the cavity pressure profile seen for violinlike bowed string instruments across a wide range of sizes. The first estimates of the fraction of radiation from the f-holes F(f) indicate that some low frequency corpus modes thought to radiate only via surface motion (notably the first corpus bending modes) had significant radiation through the f-holes, in agreement with net volume changes estimated from experimental modal analysis. F(f) generally trended lower with increasing frequency, following corpus mobility decreases. The f-hole directivity (top/back radiativity ratio) was generally higher than whole-violin directivity.

  9. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  10. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  11. Study on the radial vibration and acoustic field of an isotropic circular ring radiator.

    PubMed

    Lin, Shuyu; Xu, Long

    2012-01-01

    Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius.

  12. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    SciTech Connect

    Treweek, Benjamin C. Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  13. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    NASA Astrophysics Data System (ADS)

    Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  14. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  15. Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Sawdy, D. T.

    1971-01-01

    An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.

  16. Near- to far-field characteristics of acoustic radiation through plug flow jets.

    PubMed

    Gabard, G

    2008-11-01

    This paper reports a theoretical study of the radiation of sound through jet exhausts. It focuses on the transition from near field to far field by considering the features of the near-field solution and how these features translate to the far field. The main focus of this work is the importance in some cases of lateral waves radiating from the jet. While the presence of lateral waves has long been recognized, there has been no systematic investigation of the practical consequences of these waves in the prediction of sound propagation through round jets. The physical mechanisms involved in the generation of these waves are presented as well as the conditions under which they become significant. Another issue is the possibility of "channeled waves" inside the jet associated with strong sound radiation in the forward arc. This paper also discusses the validity of the far-field approximation when lateral waves are present. It is shown that the standard far-field approximation can be improved by adding correction terms that account for the presence of the lateral waves and channeled waves. The challenge posed to computational aeroacoustics by these near-field effects is also discussed.

  17. Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotorod, and acoustic startle

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Haerich, Paul; Zuccarelli, Cara N.; Smith, Anna L.; Zendejas, Eric D.; Nelson, Gregory A.

    2002-01-01

    Two experiments were carried out to investigate the consequences of exposure to proton radiation, such as might occur for astronauts during space flight. C57BL/6 mice were exposed, either with or without 15-g/cm2 aluminum shielding, to 0-, 3-, or 4-Gy proton irradiation mimicking features of a solar particle event. Irradiation produced transient direct deficits in open-field exploratory behavior and acoustic startle habituation. Rotorod performance at 18 rpm was impaired by exposure to proton radiation and was impaired at 26 rpm, but only for mice irradiated with shielding and at the 4-Gy dose. Long-term (>2 weeks) indirect deficits in open-field activity appeared as a result of impaired experiential encoding immediately following exposure. A 2-week recovery prior to testing decreased most of the direct effects of exposure, with only rotorod performance at 26 rpm being impaired. These results suggest that the performance deficits may have been mediated by radiation damage to hippocampal, cerebellar, and possibly, forebrain dopaminergic function.

  18. Measuring Acoustic-Radiation Stresses in Materials

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, W. T.

    1986-01-01

    System measures nonlinearity parameters of materials. Uses static strain generated by acoustic wave propagating in material. Since static strain is effectively "dc" component of waveform distortion, problems associated with phase-cancellation artifacts disappear. Further, sign of nonlinearity parameter obtained by simple inspection of measured signal polarity. These features make this system very amenable to use in field. System expected to become standard for acoustic-radiation-stress measurements for solids and liquids and for characterization of material properties related to strength and residual or applied stresses. Also expected to become standard for transducer calibration.

  19. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  20. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. PMID:26558995

  1. Numerical inverse method predicting acoustic spinning modes radiated by a ducted fan from free-field test data.

    PubMed

    Lewy, Serge

    2008-07-01

    Spinning modes generated by a ducted turbofan at a given frequency determine the acoustic free-field directivity. An inverse method starting from measured directivity patterns is interesting in providing information on the noise sources without requiring tedious spinning-mode experimental analyses. According to a previous article, equations are based on analytical modal splitting inside a cylindrical duct and on a Rayleigh or a Kirchhoff integral on the duct exit cross section to get far-field directivity. Equations are equal in number to free-field measurement locations and the unknowns are the propagating mode amplitudes (there are generally more unknowns than equations). A MATLAB procedure has been implemented by using either the pseudoinverse function or the backslash operator. A constraint comes from the fact that squared modal amplitudes must be positive which involves an iterative least squares fitting. Numerical simulations are discussed along with several examples based on tests performed by Rolls-Royce in the framework of a European project. It is assessed that computation is very fast and it well fits the measured directivities, but the solution depends on the method and is not unique. This means that the initial set of modes should be chosen according to any known physical property of the acoustic sources. PMID:18646973

  2. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  3. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  4. Correlation reception of thermal acoustic radiation

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Barabanenkov, Yu. N.; Sel'Skii, A. G.

    2003-11-01

    Correlated signals of thermal acoustic radiation from heated sources extending in the transverse direction (a pair of narrow plasticine plates and a wide plasticine strip) are measured. The measurements are performed by multiplying together the signals that are shifted in time with respect to each other and detected by two piezoelectric transducers. The values of the correlated signals of thermal acoustic radiation are determined by the spatial variation of temperature in the medium under study.

  5. A Spectral Analysis Approach for Acoustic Radiation from Composite Panels

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Singh, Mahendra P.; Mei, Chuh

    2004-01-01

    A method is developed to predict the vibration response of a composite panel and the resulting far-field acoustic radiation due to acoustic excitation. The acoustic excitation is assumed to consist of obliquely incident plane waves. The panel is modeled by a finite element analysis and the radiated field is predicted using Rayleigh's integral. The approach can easily include other effects such as shape memory alloy (SMA) ber reinforcement, large detection thermal postbuckling, and non-symmetric SMA distribution or lamination. Transmission loss predictions for the case of an aluminum panel excited by a harmonic acoustic pressure are shown to compare very well with a classical analysis. Results for a composite panel with and without shape memory alloy reinforcement are also presented. The preliminary results demonstrate that the transmission loss can be significantly increased with shape memory alloy reinforcement. The mechanisms for further transmission loss improvement are identified and discussed.

  6. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip. PMID:27661695

  7. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  8. Chromospheric Heating by Acoustic Waves Compared to Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Sobotka, M.; Heinzel, P.; Švanda, M.; Jurčák, J.; del Moro, D.; Berrilli, F.

    2016-07-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra of Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°-60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.

  9. The near-field acoustic levitation of high-mass rotors

    SciTech Connect

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  10. The near-field acoustic levitation of high-mass rotors.

    PubMed

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope. PMID:25362441

  11. The near-field acoustic levitation of high-mass rotors

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  12. Prediction of the Acoustic Field Associated with Instability Wave Source Model for a Compressible Jet

    NASA Technical Reports Server (NTRS)

    Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.

  13. Material fabrication using acoustic radiation forces

    DOEpatents

    Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ

    2015-12-01

    Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.

  14. Ducted fan acoustic radiation including the effects of nonuniform mean flow and acoustic treatment

    NASA Technical Reports Server (NTRS)

    Eversman, Walter; Roy, Indranil Danda

    1993-01-01

    Forward and aft acoustic propagation and radiation from a ducted fan is modeled using a finite element discretization of the acoustic field equations. The fan noise source is introduced as equivalent body forces representing distributed blade loading. The flow in and around the nacelle is assumed to be nonuniform, reflecting the effects of forward flight and flow into the inlet. Refraction due to the fan exit jet shear layer is not represented. Acoustic treatment on the inlet and exhaust duct surfaces provides a mechanism for attenuation. In a region enclosing the fan a pressure formulation is used with the assumption of locally uniform flow. Away from the fan a velocity potential formulation is used and the flow is assumed nonuniform but irrotational. A procedure is developed for matching the two regions by making use of local duct modal amplitudes as transition state variables and determining the amplitudes by enforcing natural boundary conditions at the interface between adjacent regions in which pressure and velocity potential are used. Simple models of rotor alone and rotor/exit guide vane generated noise are used to demonstrate the calculation of the radiated acoustic field and to show the effect of acoustic treatment. The model has been used to assess the success of four techniques for acoustic lining optimization in reducing far field noise.

  15. Correlation of signals of thermal acoustic radiation

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Passechnik, V. I.

    2003-03-01

    The spatial correlation function is measured for the pressure of thermal acoustic radiation from a source (a narrow plasticine plate) whose temperature is made both higher and lower than the temperature of the receiver. The spatial correlation function of the pressure of thermal acoustic radiation is found to be oscillatory in character. The oscillation amplitude is determined not by the absolute temperature of the source but by the temperature difference between the source and the receiver. The correlation function changes its sign when a source heated with respect to the receiver is replaced by a cooled one.

  16. Acoustic Radiation Force Impulse (ARFI) Imaging: a Review

    PubMed Central

    Nightingale, Kathy

    2012-01-01

    Acoustic radiation force based elasticity imaging methods are under investigation by many groups. These methods differ from traditional ultrasonic elasticity imaging methods in that they do not require compression of the transducer, and are thus expected to be less operator dependent. Methods have been developed that utilize impulsive (i.e. < 1 ms), harmonic (pulsed), and steady state radiation force excitations. The work discussed herein utilizes impulsive methods, for which two imaging approaches have been pursued: 1) monitoring the tissue response within the radiation force region of excitation (ROE) and generating images of relative differences in tissue stiffness (Acoustic Radiation Force Impulse (ARFI) imaging); and 2) monitoring the speed of shear wave propagation away from the ROE to quantify tissue stiffness (Shear Wave Elasticity Imaging (SWEI)). For these methods, a single ultrasound transducer on a commercial ultrasound system can be used to both generate acoustic radiation force in tissue, and to monitor the tissue displacement response. The response of tissue to this transient excitation is complicated and depends upon tissue geometry, radiation force field geometry, and tissue mechanical and acoustic properties. Higher shear wave speeds and smaller displacements are associated with stiffer tissues, and slower shear wave speeds and larger displacements occur with more compliant tissues. ARFI images have spatial resolution comparable to that of B-mode, often with greater contrast, providing matched, adjunctive information. SWEI images provide quantitative information about the tissue stiffness, typically with lower spatial resolution. A review these methods and examples of clinical applications are presented herein. PMID:22545033

  17. Frustrated total internal reflection acoustic field sensor

    DOEpatents

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  18. Analytical modeling of the acoustic field during a direct field acoustic test.

    SciTech Connect

    Stasiunas, Eric Carl; Rouse, Jerry W.; Mesh, Mikhail

    2010-12-01

    The acoustic field generated during a Direct Field Acoustic Test (DFAT) has been analytically modeled in two space dimensions using a properly phased distribution of propagating plane waves. Both the pure-tone and broadband acoustic field were qualitatively and quantitatively compared to a diffuse acoustic field. The modeling indicates significant non-uniformity of sound pressure level for an empty (no test article) DFAT, specifically a center peak and concentric maxima/minima rings. This spatial variation is due to the equivalent phase among all propagating plane waves at each frequency. The excitation of a simply supported slender beam immersed within the acoustic fields was also analytically modeled. Results indicate that mid-span response is dependent upon location and orientation of the beam relative to the center of the DFAT acoustic field. For a diffuse acoustic field, due to its spatial uniformity, mid-span response sensitivity to location and orientation is nonexistent.

  19. Radiation directivity rotation by acoustic metamaterials

    SciTech Connect

    Jiang, Xue; Liang, Bin E-mail: jccheng@nju.edu.cn; Zou, Xin-ye; Cheng, Jian-chun E-mail: jccheng@nju.edu.cn; Zhang, Likun

    2015-08-31

    We use a metamaterial-based scheme to rotate the radiation directivity of sound radiated by a source surrounded by the structure. The rotation is demonstrated through both numerical simulations and experiments. The performance persists within a broadband and is entirely independent of the location and pattern of source inside, suggesting great potential in various practical scenarios where both the signal frequency and source position may vary significantly. We have also investigated the possibility to realize versatile controls of radiation direction by tailoring the structural parameters. Our design with special directivity-steering capability may open route to loudspeaker and auditorium acoustics designs and medical ultrasound applications.

  20. Radiation directivity rotation by acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Zhang, Likun; Liang, Bin; Zou, Xin-ye; Cheng, Jian-chun

    2015-08-01

    We use a metamaterial-based scheme to rotate the radiation directivity of sound radiated by a source surrounded by the structure. The rotation is demonstrated through both numerical simulations and experiments. The performance persists within a broadband and is entirely independent of the location and pattern of source inside, suggesting great potential in various practical scenarios where both the signal frequency and source position may vary significantly. We have also investigated the possibility to realize versatile controls of radiation direction by tailoring the structural parameters. Our design with special directivity-steering capability may open route to loudspeaker and auditorium acoustics designs and medical ultrasound applications.

  1. Prediction of acoustic fields radiated into a damped cavity by an N-port source through ducts

    NASA Astrophysics Data System (ADS)

    Boudoy, M.; Martin, V.

    2003-07-01

    The use of two parameters—source impedance and source strength—to model a fluid machine radiating fluid-borne sound via ducts has led to excellent predictions when the source, a ventilator, propagates in one or two plane-wave ducts. Can such previously published methods successfully be applied to the case of a multi-port source radiating via ducts into a damped cavity? The case under study here is a car ventilation/heating unit and the aim was to predict the pressure spectrum inside the passenger compartment caused by the noise propagated through the ventilation ducts. The progressive validation procedure used indicated how and why as the system increases in complexity, predictive accuracy diminishes. The final results are nevertheless convincing and the hypotheses, which can be further refined to reflect the reality better and provide higher quality results, are clearly defined.

  2. On the acoustic radiation of a pitching airfoil

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2013-07-01

    We examine the acoustic far field of a thin elastic airfoil, immersed in low-Mach non-uniform stream flow, and actuated by small-amplitude sinusoidal pitching motion. The near-field fluid-structure interaction problem is analyzed using potential thin-airfoil theory, combined with a discrete vortex model to describe the evolution of airfoil trailing edge wake. The leading order dipole-sound signature of the system is investigated using Powell-Howe acoustic analogy. Compared with a pitching rigid airfoil, the results demonstrate a two-fold effect of structure elasticity on airfoil acoustic field: at actuation frequencies close to the system least stable eigenfrequency, elasticity amplifies airfoil motion amplitude and associated sound levels; however, at frequencies distant from this eigenfrequency, structure elasticity acts to absorb system kinetic energy and reduce acoustic radiation. In the latter case, and with increasing pitching frequency ωp, a rigid-airfoil setup becomes significantly noisier than an elastic airfoil, owing to an ω _p^{5/2} increase of its direct motion noise component. Unlike rigid airfoil signature, it is shown that wake sound contribution to elastic airfoil radiation is significant for all ωp. Remarkably, this contribution contains, in addition to the fundamental pitching frequency, its odd multiple harmonics, which result from nonlinear interactions between the airfoil and the wake. The results suggest that structure elasticity may serve as a viable means for design of flapping flight noise control methodologies.

  3. Standing wave pressure fields generated in an acoustic levitation chamber

    NASA Astrophysics Data System (ADS)

    Hancock, Andrew; Allen, John S.; Kruse, Dustin E.; Dayton, Paul A.; Kargel, Christian M.; Insana, Michael F.

    2001-05-01

    We are developing an acoustic levitation chamber for measuring adhesion force strengths among biological cells. Our research has four phases. Phase I, presented here, is concerned with the design and construction of a chamber for trapping cell-sized microbubbles with known properties in acoustic standing waves, and examines the theory that describes the standing wave field. A cylindrical chamber has been developed to generate a stable acoustic standing wave field. The pressure field was mapped using a 0.4-mm needle hydrophone, and experiments were performed using 100 micron diameter unencapsulated air bubbles, 9 micron diameter isobutane-filled microbubbles, and 3 micron diameter decafluorobutane (C4F10)-filled microbubbles, confirming that the net radiation force from the standing wave pressure field tends to band the microbubbles at pressure antinodes, in accordance with theory.

  4. Spinning mode acoustic radiation from the flight inlet

    NASA Technical Reports Server (NTRS)

    Moss, W. F.

    1983-01-01

    A mathematical model was developed for spinning mode acoustic radiation from a thick wall duct without flow. This model is based on a series of experiments (with and without flow). A nearly pure azimuthal spinning mode was isolated and then reflection coefficients and far field pressure (amplitude and phase) were measured. In our model the governing boundary value problem for the Helmholtz equation is first converted into an integral equation for the unknown acoustic pressure over a disk, S1, near the mouth of the duct and over the exterior surface, S2, of the duct. Assuming a pure azimuthal mode excitation, the azimuthal dependence is integrated out which yields an integral equation over the generator C1 of S1 and the generator C2 of S2. The sound pressure on C1 was approximated by a truncated modal expansion of the interior acoustic pressure. Piecewise linear spline approximation on C2 was used.

  5. Deformation of red blood cells using acoustic radiation forces

    PubMed Central

    Mishra, Puja; Hill, Martyn; Glynne-Jones, Peter

    2014-01-01

    Acoustic radiation forces have been used to manipulate cells and bacteria in a number of recent microfluidic applications. The net force on a cell has been subject to careful investigation over a number of decades. We demonstrate that the radiation forces also act to deform cells. An ultrasonic standing wave field is created in a 0.1 mm glass capillary at a frequency of 7.9 MHz. Using osmotically swollen red-blood cells, we show observable deformations up to an aspect ratio of 1.35, comparable to deformations created by optical tweezing. In contrast to optical technologies, ultrasonic devices are potentially capable of deforming thousands of cells simultaneously. We create a finite element model that includes both the acoustic environment of the cell, and a model of the cell membrane subject to forces resulting from the non-linear aspects of the acoustic field. The model is found to give reasonable agreement with the experimental results, and shows that the deformation is the result of variation in an acoustic force that is directed outwards at all points on the cell membrane. We foresee applications in diagnostic devices, and in the possibility of mechanically stimulating cells to promote differentiation and physiological effects. PMID:25379070

  6. A general low frequency acoustic radiation capability for NASTRAN

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Henderson, F. M.; Schroeder, E. A.; Lipman, R. R.

    1986-01-01

    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads.

  7. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    PubMed

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  8. Radiation force produced by time reversal acoustic focusing system

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Armen; Sutin, Alexander

    2003-10-01

    An ultrasonic induced radiation force is an efficient tool for remote probing of internal anatomical structures and evaluating tissue viscoelastic properties, which are closely related to tissue functional state and abnormalities. Time Reversal Acoustic Focusing System (TRA FS) can provide efficient ultrasound focusing in highly inhomogeneous media. Furthermore, numerous reflections from boundaries, which distort focusing in conventional ultrasound focusing systems and are viewed as a significant technical hurdle, lead to an improvement of the focusing ability of the TRA system. In this work the TRA FS field structure and radiation force in a transcranial phantom were investigated. A simple TRA FS comprising a plane piezoceramic transducer attached to an external resonator such as an aluminum block was acoustically coupled to the tested transcranial phantom. A custom-designed compact electronic unit for TRA FS provided receiving, digitizing, storing, time reversing and transmitting of acoustic signals in a wide frequency range from 0.01 to 10 MHz. The radiation force produced by ultrasonic pulses was investigated as a function of the transmitted ultrasound temporal parameters. The simplest TRA FS provided focusing of 500 kHz ultrasound pulses and the generation of a radiation force with an efficacy hardly achievable using conventional sophisticated phased array transmitters. [Work supported by NIH.

  9. Relation between near field and far field acoustic measurements

    NASA Technical Reports Server (NTRS)

    Bies, D. A.; Scharton, T. D.

    1974-01-01

    Several approaches to the problem of determining the far field directivity of an acoustic source located in a reverberant environment, such as a wind tunnel, are investigated analytically and experimentally. The decrease of sound pressure level with distance is illustrated; and the spatial extent of the hydrodynamic and geometric near fields, the far field, and the reverberant field are described. A previously-prosposed analytical technique for predicting the far field directivity of the acoustic source on the basis of near field data is investigated. Experiments are conducted with small acoustic sources and an analysis is performed to determine the variation with distance from the source of the directionality of the sound field. A novel experiment is conducted in which the sound pressure measured at various distances from an acoustic driver located in the NASA Ames 40 x 80 ft wind tunnel is crosscorrelated with the driver excitation voltage.

  10. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    SciTech Connect

    Nikolaeva, Anastasiia V. Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2015-10-28

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  11. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2015-10-01

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  12. Forced response sound radiation from acoustically or mechanically excited small plates

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1992-01-01

    Sound radiation from an acoustically excited, clamped aluminum plate is measured and expressed in terms of noise reduction to take into account the incident acoustic excitation field. Its mode shapes and modal frequencies are measured and show good agreement with the predictions from a finite element MSC/NASTRAN model. Noise reduction is measured at 15 points behind the plate and demonstrate good agreement with predictions employing the SYSNOISE numerical analysis system for acoustic-structure interaction.

  13. The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect

    NASA Astrophysics Data System (ADS)

    Ma, Zhichao; Guo, Jinhong; Liu, Yan Jun; Ai, Ye

    2015-08-01

    In this study, we present a simple technique capable of assembling and patterning suspended CNTs using a standing surface acoustic wave (SSAW) field. Individual CNTs could be assembled into larger CNT bundles and patterned in periodic positions on a substrate surface. The mechanism of the SSAW-based patterning technique has been investigated using both numerical simulation and experimental study. It has been found that the acoustic radiation effect due to the acoustic pressure field and the dielectrophoretic (DEP) effect induced by the electric field co-existing in the patterning process however play different roles depending on the properties of the suspended particles and the suspension medium. In the SSAW-based patterning of highly conductive CNTs with high aspect ratio geometry, the positive DEP effect dominates over the acoustic radiation effect. In contrast, the acoustic radiation effect dominates over the DEP effect when manipulating less conductive, spherical or low aspect ratio particles or biological cells. These results provide a meaningful insight into the mechanism of SSAW-based patterning, which is of great help to guide the effective use of this patterning technique for various applications.In this study, we present a simple technique capable of assembling and patterning suspended CNTs using a standing surface acoustic wave (SSAW) field. Individual CNTs could be assembled into larger CNT bundles and patterned in periodic positions on a substrate surface. The mechanism of the SSAW-based patterning technique has been investigated using both numerical simulation and experimental study. It has been found that the acoustic radiation effect due to the acoustic pressure field and the dielectrophoretic (DEP) effect induced by the electric field co-existing in the patterning process however play different roles depending on the properties of the suspended particles and the suspension medium. In the SSAW-based patterning of highly conductive CNTs with high

  14. Acoustic radiation from weakly wrinkled premixed flames

    SciTech Connect

    Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh; Preetham,

    2006-01-01

    This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of the flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.

  15. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  16. Modal analysis and intensity of acoustic radiation of the kettledrum.

    PubMed

    Tronchin, Lamberto

    2005-02-01

    The acoustical features of kettledrums have been analyzed by means of modal analysis and acoustic radiation (p/v ratio) measurements. Modal analysis of two different kettledrums was undertaken, exciting the system both by a hammer and a shaker. Up to 15 vibrational modes were clearly identified. Acoustic radiation was studied using two ways. Based on previous experiments of other researchers, a new parameter, called intensity of acoustic radiation (IAR), has been defined and measured. Results show a strict relationship between IAR and the frequency response function (FRF, which is the v/F ratio), and IAR also strongly relates the modal pattern to acoustic radiation. Finally, IAR is proposed for vibro-acoustical characterization of kettledrums and other musical instruments such as strings, pianos, and harpsichords. PMID:15759711

  17. Particle Cloud Flames in Acoustic Fields

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.; Tangirala, V.; Ross, H.; Facca, L.

    1990-01-01

    Results are presented on a study of flames supported by clouds of particles suspended in air, at pressures about 100 times lower than normal. In the experiment, an acoustic driver (4-in speaker) placed at one end of a closed tube, 0.75-m long and 0.05 m in diameter, disperses a cloud of lycopodium particles during a 0.5-sec powerful acoustic burst. Properties of the particle cloud and the flame were recorded by high-speed motion pictures and optical transmission detectors. Novel flame structures were observed, which owe their features to partial confinement, which encourages flame-acoustic interactions, segregation of particle clouds into laminae, and penetration of the flame's radiative flux density into the unburned particle-cloud regimes. Results of these experiments imply that, for particles in confined spaces, uncontrolled fire and explosion may be a threat even if the Phi(0) values are below some apparent lean limit.

  18. Computation of instantaneous and time-averaged active acoustic intensity field around rotating source

    NASA Astrophysics Data System (ADS)

    Mao, Yijun; Xu, Chen; Qi, Datong

    2015-02-01

    A vector aeroacoustics method is developed to analyze the acoustic energy flow path from the rotating source. In this method, the instantaneous and time-averaged active acoustic intensity vectors are evaluated from the time-domain and frequency-domain acoustic pressure and acoustic velocity formulations, respectively. With the above method, the acoustic intensity vectors and the acoustic energy streamlines are visualized to investigate the propagation feature of the noise radiated from the monopole and dipole point sources and the rotor in subsonic rotation. The result reveals that a portion of the acoustic energy spirals many circles before moving towards the far field, and another portion of the acoustic energy firstly flows inward along the radial direction and then propagates along the axial direction. Further, an acoustic black hole exists in the plane of source rotation, from which the acoustic energy cannot escape once the acoustic energy flows into it. Moreover, by visualizing the acoustic intensity field around the rotating sources, the acoustic-absorption performance of the acoustic liner built in the casing and centerbody is discussed.

  19. Theoretical and experimental examination of near-field acoustic levitation.

    PubMed

    Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa

    2002-04-01

    A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense. PMID:12002842

  20. Stirring and mixing of liquids using acoustic radiation force.

    PubMed

    Sarvazyan, Armen; Ostrovsky, Lev

    2009-06-01

    The possibility of using acoustic radiation force in standing waves for stirring and mixing small volumes of liquids is theoretically analyzed. The principle of stirring considered in this paper is based on moving the microparticles suspended in a standing acoustic wave by changing the frequency so that one standing wave mode is replaced by the other, with differently positioned minima of potential energy. The period-average transient dynamics of solid microparticles and gas microbubbles is considered, and simple analytical solutions are obtained for the case of standing waves of variable amplitude. It is shown that bubbles can be moved from one equilibrium position to another two to three orders of magnitude faster than solid particles. For example, radiation force in a standing acoustic wave field may induce movement of microbubbles with a speed of the order of a few m/s at a frequency of 1 MHz and ultrasound pressure amplitude of 100 kPa, whereas the speed of rigid particles does not exceed 1 cms under the same conditions. The stirring effect can be additionally enhanced due to the fact that the bubbles that are larger and smaller than the resonant bubbles move in opposite directions. Possible applications of the analyzed stirring mechanism, such as in microarrays, are discussed. PMID:19507936

  1. Experimental Robust Control of Structural Acoustic Radiation

    NASA Technical Reports Server (NTRS)

    Cox, David E.; Gibbs, Gary P.; Clark, Robert L.; Vipperman, Jeffrey S.

    1998-01-01

    This work addresses the design and application of robust controllers for structural acoustic control. Both simulation and experimental results are presented. H(infinity) and mu-synthesis design methods were used to design feedback controllers which minimize power radiated from a panel while avoiding instability due to unmodeled dynamics. Specifically, high order structural modes which couple strongly to the actuator-sensor path were poorly modeled. This model error was analytically bounded with an uncertainty model, which allowed controllers to be designed without artificial limits on control effort. It is found that robust control methods provide the control designer with physically meaningful parameters with which to tune control designs and can be very useful in determining limits of performance. Experimental results also showed, however, poor robustness properties for control designs with ad-hoc uncertainty models. The importance of quantifying and bounding model errors is discussed.

  2. Acoustic radiation from single and double ribbed circular cylindrical shells

    NASA Astrophysics Data System (ADS)

    Burroughs, C. B.; Hayek, S. I.; Hallander, J. E.; Bostian, D. A.

    1984-03-01

    Measurements of the acoustic radiation from single and double ribbed circular cylindrical shells were made on the NUSC Transducer Calibration Platform (TCP) in Lake Seneca, NY. Six different types of mechanical drives were used at each of three locations inside the inner shell. Measurements of the shell vibration and acoustic radiation were made with and without outer shells installed around the inner shell structure. For two types of drives, measurements were made with a pressure release layer installed between the inner and outer shell surfaces. Acoustic radiation measurements were made as a function of frequency from 20 to 5,000 Hz and as a function of observation direction at several frequencies for each shell and drive measurement configuration. Measured acoustic radiation data as a function of frequency have been processed. Analysis of the processed data is presented and discussed. It is shown that the location of the drive had a significant effect on the acoustic radiation. The outer shell reduced the acoustic radiation at shell resonant frequencies, but had little effect on other frequencies. The pressure release layer in the double shell had little effect on the acoustic radiation.

  3. Radiative Amplification of Acoustic Waves in Hot Stars

    NASA Technical Reports Server (NTRS)

    Wolf, B. E.

    1985-01-01

    The discovery of broad P Cygni profiles in early type stars and the detection of X-rays emitted from the envelopes of these stars made it clear, that a considerable amount of mechanical energy has to be present in massive stars. An attack on the problem, which has proven successful when applied to late type stars is proposed. It is possible that acoustic waves form out of random fluctuations, amplify by absorbing momentum from stellar radiation field, steepen into shock waves and dissipate. A stellar atmosphere was constructed, and sinusoidal small amplitude perturbations of specified Mach number and period at the inner boundary was introduced. The partial differential equations of hydrodynamics and the equations of radiation transfer for grey matter were solved numerically. The equation of motion was augmented by a term which describes the absorption of momentum from the radiation field in the continuum and in lines, including the Doppler effect and allows for the treatment of a large number of lines in the radiative acceleration term.

  4. Fourth-order acoustic torque in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  5. Theoretical models for duct acoustic propagation and radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1991-01-01

    The development of computational methods in acoustics has led to the introduction of analysis and design procedures which model the turbofan inlet as a coupled system, simultaneously modeling propagation and radiation in the presence of realistic internal and external flows. Such models are generally large, require substantial computer speed and capacity, and can be expected to be used in the final design stages, with the simpler models being used in the early design iterations. Emphasis is given to practical modeling methods that have been applied to the acoustical design problem in turbofan engines. The mathematical model is established and the simplest case of propagation in a duct with hard walls is solved to introduce concepts and terminologies. An extensive overview is given of methods for the calculation of attenuation in uniform ducts with uniform flow and with shear flow. Subsequent sections deal with numerical techniques which provide an integrated representation of duct propagation and near- and far-field radiation for realistic geometries and flight conditions.

  6. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  7. Acoustic radiation force-based elasticity imaging methods

    PubMed Central

    Palmeri, Mark L.; Nightingale, Kathryn R.

    2011-01-01

    Conventional diagnostic ultrasound images portray differences in the acoustic properties of soft tissues, whereas ultrasound-based elasticity images portray differences in the elastic properties of soft tissues (i.e. stiffness, viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathological lesions. Acoustic radiation force-based elasticity imaging methods use acoustic radiation force to transiently deform soft tissues, and the dynamic displacement response of those tissues is measured ultrasonically and is used to estimate the tissue's mechanical properties. Both qualitative images and quantitative elasticity metrics can be reconstructed from these measured data, providing complimentary information to both diagnose and longitudinally monitor disease progression. Recently, acoustic radiation force-based elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric, and commercial implementations of radiation force-based ultrasonic elasticity imaging are beginning to appear on the commercial market. This article provides an overview of acoustic radiation force-based elasticity imaging, including a review of the relevant soft tissue material properties, a review of radiation force-based methods that have been proposed for elasticity imaging, and a discussion of current research and commercial realizations of radiation force based-elasticity imaging technologies. PMID:22419986

  8. Acoustic intensity-based method for sound radiations in a uniform flow.

    PubMed

    Yu, Chao; Zhou, Zhengfang; Zhuang, Mei

    2009-11-01

    An acoustic intensity-based method (AIBM) is extended and verified for predicting sound radiation in a subsonic uniform flow. The method assumes that the acoustic propagation is governed by the modified Helmholtz equation on and outside of a control surface, which encloses all the noise sources and nonlinear effects. With acoustic pressure derivative and its co-located acoustic pressure as input from an open control surface, the unique solution of the modified Helmholtz equation is obtained by solving the least squares problem. The AIBM is coupled with near-field Computational Fluid Dynamics (CFD)/Computational Aeroacoustics (CAA) methods to predict sound radiation of model aeroacoustic problems. The effectiveness of this hybrid approach has been demonstrated by examples of both tonal and broadband noise. Since the AIBM method is stable and accurate based on the input acoustic data from an open surface in a radiated field, it is therefore advantageous for the far-field prediction of aerodynamics noise propagation when an acoustic input from a closed control surface, like the Ffowcs Williams-Hawkings surface, is not available [Philos. Trans. R. Soc. London, Ser. A 264, 321-342 (1969)]. PMID:19894800

  9. Theoretical Analysis of Shear Wave Interference Patterns by Means of Dynamic Acoustic Radiation Forces.

    PubMed

    Hoyt, Kenneth

    2011-03-01

    Acoustic radiation forces associated with high intensity focused ultrasound stimulate shear wave propagation allowing shear wave speed and shear viscosity estimation of tissue structures. As wave speeds are meters per second, real time displacement tracking over an extend field-of-view using ultrasound is problematic due to very high frame rate requirements. However, two spatially separated dynamic external sources can stimulate shear wave motion leading to shear wave interference patterns. Advantages are shear waves can be imaged at lower frame rates and local interference pattern spatial properties reflect tissue's viscoelastic properties. Here a theoretical analysis of shear wave interference patterns by means of dynamic acoustic radiation forces is detailed. Using a viscoelastic Green's function analysis, tissue motion due to a pair of focused ultrasound beams and associated radiation forces are presented. Overall, this paper theoretically demonstrates shear wave interference patterns can be stimulated using dynamic acoustic radiation forces and tracked using conventional ultrasound imaging.

  10. A numerical method for the calculation of dynamic response and acoustic radiation from an underwater structure

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Joseph, P. F.

    2005-05-01

    An approach combining finite element with boundary element methods is proposed to calculate the elastic vibration and acoustic field radiated from an underwater structure. The FEM software NASTRAN is employed for computation of the structural vibration. An uncoupled boundary element method, based on the potential decomposition technique, is described to determine the acoustic added mass and damping coefficients that result due to fluid loading effects. The acoustic matrices of added mass and damping coefficients are then added to the structural mass and damping matrices, respectively, by the DMAP modules of NASTRAN. Numerical results are shown to be in good agreement with experimental data. The complex eigenvalue analyses of underwater structure are obtained by NASTRAN solution sequence SOL107. Results obtained from this study suggest that the natural frequencies of underwater structures are only weakly dependent on the acoustic frequency if the acoustic wavelength is roughly twice as large as the maximum structural dimension.

  11. Acoustic Radiation from High-Speed Turbulent Boundary Layers in a Tunnel-Like Environment

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2015-01-01

    Direct numerical simulation of acoustic radiation from a turbulent boundary layer in a cylindrical domain will be conducted under the flow conditions corresponding to those at the nozzle exit of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) operated under noisy-flow conditions with a total pressure p(sub t) of 225 kPa and a total temperature of T(sub t) equal to 430 K. Simulations of acoustic radiation from a turbulent boundary layer over a flat surface are used as a reference configuration to illustrate the effects of the cylindrical enclosure. A detailed analysis of acoustic freestream disturbances in the cylindrical domain will be reported in the final paper along with a discussion pertaining to the significance of the flat-plate acoustic simulations and guidelines concerning the modeling of the effects of an axisymmetric tunnel wall on the noise field.

  12. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  13. Surprises and anomalies in acoustical and optical scattering and radiation forces

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2015-09-01

    Experiments on radiation torques and negative radiation forces by various researchers display how the underlying wave-field geometry influences radiation forces. Other situations strongly influenced by wave-field geometry include high-order caustics present in light-scattering patterns of objects as simple as oblate drops of water or oblate bubbles of air in water. Related theoretical and experimental investigations are considered. Acoustic scattering enhancements associated with various guided waves are also examined. These include guided waves having negative group velocities and guided wave radiating wavefronts having a vanishing Gaussian curvature.

  14. Droplet Vaporization In A Levitating Acoustic Field

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and

  15. Acoustic field and array response uncertainties in stratified ocean media.

    PubMed

    Hayward, Thomas J; Dhakal, Sagar

    2012-07-01

    The change-of-variables theorem of probability theory is applied to compute acoustic field and array beam power probability density functions (pdfs) in uncertain ocean environments represented by stratified, attenuating ocean waveguide models. Computational studies for one and two-layer waveguides investigate the functional properties of the acoustic field and array beam power pdfs. For the studies, the acoustic parameter uncertainties are represented by parametric pdfs. The field and beam response pdfs are computed directly from the parameter pdfs using the normal-mode representation and the change-of-variables theorem. For two-dimensional acoustic parameter uncertainties of sound speed and attenuation, the field and beam power pdfs exhibit irregular functional behavior and singularities associated with stationary points of the mapping, defined by acoustic propagation, from the parameter space to the field or beam power space. Implications for the assessment of orthogonal polynomial expansion and other methods for computing acoustic field pdfs are discussed.

  16. Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.

    1986-01-01

    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a "Gutin" propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.

  17. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  18. Introduction of acoustical diffraction in the radiative transfer method

    NASA Astrophysics Data System (ADS)

    Reboul, Emeline; Le Bot, Alain; Perret-Liaudet, Joël

    2004-07-01

    This Note presents an original approach to include diffraction in the radiative transfer method when applied to acoustics. This approach leads to a better spatial description of the acoustical energy. An energetic diffraction coefficient and some diffraction sources are introduced to model the diffraction phenomena. The amplitudes of these sources are determined by solving a linear sytem of equations resulting from the power balance between all acoustical sources. The approach is applied on bidimensional examples and gives good results except at geometrical boundaries. To cite this article: E. Reboul et al., C. R. Mecanique 332 (2004).

  19. Acoustic radiation from a laminated composite plate reinforced by doubly periodic parallel stiffeners

    NASA Astrophysics Data System (ADS)

    Yin, X. W.; Gu, X. J.; Cui, H. F.; Shen, R. Y.

    2007-10-01

    Acoustic radiation from a point-driven, infinite fluid-loaded, laminated composite plate which is reinforced by doubly periodic parallel stiffeners is investigated theoretically. The stiffeners interact with the plate only through normal forces. Fourier transform is used for solving the responses of the plate, and the stationary phase approximate is then employed to find an expression for the far field pressure. Acoustic radiation from a stiffened uniform plate composed of multiple isotropic layers is calculated with the present stiffened, laminated composite plate theory, and with the stiffened uniform isotropic plate theory that Mace has proposed. Comparison of the numerical results reveals the validity of our work. Characteristics of the acoustic radiation from a stiffened laminated composite plate are examined through examples and some physical interpretations of significant features are also offered.

  20. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  1. Investigating the motion of particles in an ultrasonic acoustic wave field using PIV/PTV

    NASA Astrophysics Data System (ADS)

    Nobes, David S.; Setayeshgar, Alireza; Lipsett, Michael G.; Koch, Charles R.

    2012-05-01

    The influence of a multi-wavelength acoustic standing wave field on the motion of micron-sized particles is experimentally investigated using particle image velocimetry/particle tracking velocimetry (PIV/PTV) to examine existing theories describing the radiation force on particles. An ultrasonic acoustic wave is introduced into a column chamber containing a mixture of distilled water and a disperse population of spherical particles. In this system the acoustic field is aligned with gravity to form horizontal bands of particles, which are also influenced by buoyancy and drag forces. Accounting for these forces with the acoustic radiation pressure, the motion of an individual particle is modeled. There is a good agreement between the pattern of the particles motion in experimental results and the predicted single particle motion; however, due to the concentration of particles in the experiment, a difference is observed in the maximum value of the velocity of the particles in the experiment and in the single particle model.

  2. Polymer coating of glass microballoons levitated in a focused acoustic field

    NASA Technical Reports Server (NTRS)

    Young, A. T.; Lee, M. C.; Feng, I.-A.; Elleman, D. D.; Wang, T. G.

    1982-01-01

    Inertial confinement fusion (ICF) glass microballoons (GMBs) levitated in a focusing radiator acoustic device can be coated with liquid materials by deploying the liquid into the levitation field with a stepped-horn atomizer. The GMB can be forced to the center of the coating liquid with a strong acoustically generated centering force. Water solutions of organic polymers, UV-curable liquid organic monomers, and paraffin waxes have been used to prepare solid coatings on the surface of GMBs using this technique.

  3. Polymer coating of glass microballoons levitated in a focused acoustic field

    SciTech Connect

    Young, A.T.; Lee, M.C.; Feng, I.A.; Elleman, D.D.; Wang, T.G.

    1981-01-01

    Inertial confinement fusion (ICF) glass microballoons (GMBs) levitated in a focusing radiator acoustic device can be coated with liquid materials by deploying the liquid into the levitation field with a stepped-horn atomizer. The GMB can be forced to the center of the coating liquid with a strong acoustically generated centering force. Water solutions of organic polymers, uv-curable liquid organic monomers, and paraffin waxes have been used to prepare solid coatings on the surface of GMBs using this technique.

  4. A contactless methodology of picking up micro-particles from rigid surfaces by acoustic radiation force.

    PubMed

    Jia, Kun; Yang, Keji; Fan, Zongwei; Ju, Bing-Feng

    2012-01-01

    Controlled movement and pick up of small object from a rigid surface is a primary challenge in many applications. In this paper, a contactless methodology of picking up micro-particles within deionized water from rigid surfaces by acoustic radiation force is presented. In order to achieve this, an acoustic radiation force was generated by 1.75 MHz transducers. A custom built setup facilitates the optimization of the sound field by varying the parameters such as sound source size and source position. The three-dimensional pressure distributions are measured and its relative sound field is also characterized accordingly. The standing wave field has been formed and it is mainly composed of two obliquely incident plane waves and their reflectors. We demonstrated the gripping and positioning of silica beads, SiO(2), and aluminum micro-particles of 100 μm to 500 μm in size with this method using acoustic radiation force. The acoustic radiation force generated is well controlled, contactless, and in the tens of nano-Newton range which allowed us to manipulate relative big micro objects such as MEMS components as well as moving objects such as living cells. The proposed method provided an alternative form of contactless operating environment with scalable dimensions suitable for the manipulating of small objects. This permits high-throughput processing and reduction in time required for MEMS assembling, cell biomechanics, and biotechnology applications.

  5. A contactless methodology of picking up micro-particles from rigid surfaces by acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Yang, Keji; Fan, Zongwei; Ju, Bing-Feng

    2012-01-01

    Controlled movement and pick up of small object from a rigid surface is a primary challenge in many applications. In this paper, a contactless methodology of picking up micro-particles within deionized water from rigid surfaces by acoustic radiation force is presented. In order to achieve this, an acoustic radiation force was generated by 1.75 MHz transducers. A custom built setup facilitates the optimization of the sound field by varying the parameters such as sound source size and source position. The three-dimensional pressure distributions are measured and its relative sound field is also characterized accordingly. The standing wave field has been formed and it is mainly composed of two obliquely incident plane waves and their reflectors. We demonstrated the gripping and positioning of silica beads, SiO2, and aluminum micro-particles of 100 μm to 500 μm in size with this method using acoustic radiation force. The acoustic radiation force generated is well controlled, contactless, and in the tens of nano-Newton range which allowed us to manipulate relative big micro objects such as MEMS components as well as moving objects such as living cells. The proposed method provided an alternative form of contactless operating environment with scalable dimensions suitable for the manipulating of small objects. This permits high-throughput processing and reduction in time required for MEMS assembling, cell biomechanics, and biotechnology applications.

  6. Acoustic-radiation stress in solids. I - Theory

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.

    1984-01-01

    The general case of acoustic-radiation stress associated with quasi-compressional and quasi-shear waves propagating in infinite and semiinfinite lossless solids of arbitrary crystalline symmetry is studied. The Boussinesq radiation stress is defined and found to depend directly on an acoustic nonlinearity parameter which characterizes the radiation-induced static strain, a stress-generalized nonlinearity parameter which characterizes the stress nonlinearity, and the energy density of the propagating wave. Application of the Boltzmann-Ehrenfest principle of adiabatic invariance to a self-constrained system described by the nonlinear equations of motion allows the acoustic-radiation-induced static strain to be identified with a self-constrained variation in the time-averaged product of the internal energy density and displacement gradient. The time-averaged product is scaled by the acoustic nonlinearity parameter and represents the first-order nonlinearity in the virial theorem. Finally, the relationship between the Boussinesq and the Cauchy radiation stress is obtained in a closed three-dimensional form.

  7. Sound field inside acoustically levitated spherical drop

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2007-05-01

    The sound field inside an acoustically levitated small spherical water drop (radius of 1mm) is studied under different incident sound pressures (amplitude p0=2735-5643Pa). The transmitted pressure ptr in the drop shows a plane standing wave, which varies mainly in the vertical direction, and distributes almost uniformly in the horizontal direction. The maximum of ptr is always located at the lowermost point of the levitated drop. Whereas the secondary maximum appears at the uppermost point if the incident pressure amplitude p0 is higher than an intermediate value (3044Pa), in which there exists a pressure nodal surface in the drop interior. The value of the maximum ptr lies in a narrow range of 2489-3173Pa, which has a lower limit of 2489Pa when p0=3044Pa. The secondary maximum of ptr is rather small and only remarkable at high incident pressures.

  8. Modulated acoustic radiation pressure and stress-coupling projections

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Thiessen, David B.

    2005-09-01

    Low-frequency deformation can be induced at a single frequency using radiation stress oscillations of double-sideband suppressed-carrier ultrasound [P. L. Marston and R. E. Apfel, J. Acoust. Soc. Am. 67, 27 (1980)]. The transducer voltage is proportional to a product of low- and high-frequency sine waves. To anticipate the shape and magnitude of induced deformations, it is helpful to expand the distribution of the radiation stress on the object to be deformed as a series of projections [P. L. Marston, J. Acoust. Soc. Am. 67, 15 (1980)]. Stress projections are also useful for unmodulated waves: the radiation force is an example. In addition to spherical and nearly spherical objects, recent experiments and calculations have concerned cylindrical objects [S. F. Morse, D. B. Thiessen, and P. L. Marston, Phys. Fluids 8, 3 (1996); W. Wei, D. B. Thiessen, and P. L. Marston, J. Acoust. Soc. Am. 116, 202 (2004)]. In standing waves the following projections are nonvanishing in the low acoustic frequency limit for appropriately situated dense objects: radial projection [M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston, Phys. Rev. Lett. 86, 2293 (2001)] and quadrupole projection [P. L. Marston et al., J. Acoust. Soc. Am. 69, 1499 (1981)].

  9. Tunable acoustic radiation pattern assisted by effective impedance boundary

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Quan, Li; Wang, Li-Wei; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2016-02-01

    The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no fingerprint of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No.11474160), the Fundamental Research Funds for Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201401), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  10. Directional radiation pattern in structural-acoustic coupled system.

    PubMed

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-07-01

    In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm.

  11. Directional radiation pattern in structural-acoustic coupled system.

    PubMed

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-07-01

    In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm. PMID:16119333

  12. Separation of Yeast Cells from MS2 Viruses Using Acoustic Radiation Force

    SciTech Connect

    Jung, B; Fisher, K; Ness, K; Rose, K A; Mariella, Jr., R P

    2008-03-27

    We report a rapid and robust separation of Saccharomyces cerevisiae and MS2 bacteriophage using acoustic focusing in a microfluidic device. A piezoelectric transducer (PZT) generates acoustic standing waves in the microchannel. These standing waves induce acoustic radiation force fields that direct microparticles towards the nodes (i.e., pressure minima) or the anti-nodes (i.e., pressure maxima) of the standing waves depending on the relative compressidensity between the particle and the suspending liquid.[1] For particles larger than 2 {micro}m, the transverse velocities generated by these force fields enable continuous, high throughput separation. Extensive work in the last decade [2-4] has demonstrated acoustic focusing for manipulating microparticles or biological samples in microfluidic devices. This prior work has primarily focused on experimental realization of acoustic focusing without modeling or with limited one-dimensional modeling estimates. We recently developed a finite element modeling tool to predict the two-dimensional acoustic radiation force field perpendicular to the flow direction in microfluidic devices.[1] Here we compare results from this model with experimental parametric studies including variations of the PZT driving frequencies and voltages as well as various particle sizes and compressidensities. These experimental parametric studies also provide insight into the development of an adjustable 'virtual' pore-size filter as well as optimal operating conditions for various microparticle sizes. Figure 1 shows a typical experimental acoustic focusing result for microparticles (diameter = 2.0 {micro}m) in a 500 {micro}m wide by 200 {micro}m deep microchannel. In this case, the PZT driving frequency and voltage are, respectively, 1.459 MHz and 6.6 V. The microparticles tightly focus (full width half maximum (FWHM) {approx}30 {micro}m) less than 30 s after the initiation of the acoustic field. We simulated the same geometry and operating

  13. Finite Element Prediction of Acoustic Scattering and Radiation from Submerged Elastic Structures

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Henderson, F. M.; Lipman, R. R.

    1984-01-01

    A finite element formulation is derived for the scattering and radiation of acoustic waves from submerged elastic structures. The formulation uses as fundamental unknowns the displacement in the structure and a velocity potential in the field. Symmetric coefficient matrices result. The outer boundary of the fluid region is terminated with an approximate local wave-absorbing boundary condition which assumes that outgoing waves are locally planar. The finite element model is capable of predicting only the near-field acoustic pressures. Far-field sound pressure levels may be determined by integrating the surface pressures and velocities over the wet boundary of the structure using the Helmholtz integral. Comparison of finite element results with analytic results show excellent agreement. The coupled fluid-structure problem may be solved with general purpose finite element codes by using an analogy between the equations of elasticity and the wave equation of linear acoustics.

  14. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-09-01

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.

  15. Validation of acoustic-analogy predictions for sound radiated by turbulence

    NASA Astrophysics Data System (ADS)

    Whitmire, Julia; Sarkar, Sutanu

    2000-02-01

    Predicting sound radiated by turbulence is of interest in aeroacoustics, hydroacoustics, and combustion noise. Significant improvements in computer technology have renewed interest in applying numerical techniques to predict sound from turbulent flows. One such technique is a hybrid approach in which the turbulence is computed using a method such as direct numerical simulation (DNS) or large eddy simulation (LES), and the sound is calculated using an acoustic analogy. In this study, sound from a turbulent flow is computed using DNS, and the DNS results are compared with acoustic-analogy predictions for mutual validation. The source considered is a three-dimensional region of forced turbulence which has limited extent in one coordinate direction and is periodic in the other two directions. Sound propagates statistically as a plane wave from the turbulence to the far field. The cases considered here have a small turbulent Mach number so that the source is spatially compact; that is, the turbulence integral scale is much smaller than the acoustic wavelength. The scaling of the amplitude and frequency of the far-field sound for the problem considered are derived in an analysis based on Lighthill's acoustic analogy. The analytical results predict that the far-field sound should exhibit "dipole-type" behavior; the root-mean-square pressure in the acoustic far field should increase as the cube of the turbulent Mach number. The acoustic power normalized by the turbulent dissipation rate is also predicted to scale as turbulent Mach number cubed. Agreement between the DNS results and the acoustic-analogy predictions is good. This study verifies the ability of the Lighthill acoustic analogy to predict sound generated by a three-dimensional, turbulent source containing many length and time scales.

  16. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  17. Diversity of acoustic streaming in a rectangular acoustofluidic field.

    PubMed

    Tang, Qiang; Hu, Junhui

    2015-04-01

    Diversity of acoustic streaming field in a 2D rectangular chamber with a traveling wave and using water as the acoustic medium is numerically investigated by the finite element method. It is found that the working frequency, the vibration excitation source length, and the distance and phase difference between two separated symmetric vibration excitation sources can cause the diversity in the acoustic streaming pattern. It is also found that a small object in the acoustic field results in an additional eddy, and affects the eddy size in the acoustic streaming field. In addition, the computation results show that with an increase of the acoustic medium's temperature, the speed of the main acoustic streaming decreases first and then increases, and the angular velocity of the corner eddies increases monotonously, which can be clearly explained by the change of the acoustic dissipation factor and shearing viscosity of the acoustic medium with temperature. Commercialized FEM software COMSOL Multiphysics is used to implement the computation tasks, which makes our method very easy to use. And the computation method is partially verified by an established analytical solution.

  18. [Nonionizing radiation and electromagnetic fields].

    PubMed

    Bernhardt, J H

    1991-01-01

    Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life.

  19. [Nonionizing radiation and electromagnetic fields].

    PubMed

    Bernhardt, J H

    1991-01-01

    Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life. PMID:1837859

  20. Physics of Acoustic Radiation from Jet Engine Inlets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  1. Acoustic and elastic multiple scattering and radiation from cylindrical structures

    NASA Astrophysics Data System (ADS)

    Amirkulova, Feruza Abdukadirovna

    Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance and is required in a wide variety of physical contexts such as the implementation of "invisibility" cloaks, the effective parameter characterization, and the fabrication of dynamically tunable structures, etc. The dissertation develops fast, rapidly convergent iterative techniques to expedite the solution of MS problems. The formulation of MS problems reduces to a system of linear algebraic equations using Graf's theorem and separation of variables. The iterative techniques are developed using Neumann expansion and Block Toeplitz structure of the linear system; they are very general, and suitable for parallel computations and a large number of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the theoretical predictions are compared to computations obtained by COMSOL. To formulate the MS problem, the transition matrix is obtained by analyzing an acoustic and an elastic single scattering of incident waves by elastic isotropic and anisotropic solids. The mathematical model of wave scattering from multilayered cylindrical and spherical structures is developed by means of an exact solution of dynamic 3D elasticity theory. The recursive impedance matrix algorithm is derived for radially heterogeneous anisotropic solids. An explicit method for finding the impedance in piecewise uniform, transverse-isotropic material is proposed; the solution is compared to elasticity theory solutions involving Buchwald potentials. Furthermore, active exterior cloaking devices are modeled for acoustic and elastic media using multipole sources. A cloaking device can render an object invisible to some incident waves as seen by some external observer. The active cloak is generated by a discrete set of multipole sources that destructively interfere with an

  2. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  3. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  4. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  5. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  6. Nondestructive acoustic electric field probe apparatus and method

    DOEpatents

    Migliori, Albert

    1982-01-01

    The disclosure relates to a nondestructive acoustic electric field probe and its method of use. A source of acoustic pulses of arbitrary but selected shape is placed in an oil bath along with material to be tested across which a voltage is disposed and means for receiving acoustic pulses after they have passed through the material. The received pulses are compared with voltage changes across the material occurring while acoustic pulses pass through it and analysis is made thereof to determine preselected characteristics of the material.

  7. Acoustic radiation from a shell with internal structures

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1989-01-01

    A method is developed to compute frequency response and acoustic radiation of a complex shell. The axisymmetric geometry of the shell includes cylindrical, conical, and spherical segments stiffened by discrete rings and bulkheads. The shell is coupled to internal masses and elastic frames. Shell segments are treated by transfer matrices. Rings, bulkheads, frames, and concentrated masses are treated by impedances at junctions of segments. The shell is coupled to an external acoustic fluid treated by Green's function and curved surface elements. A major issue facing the method's treatment of the fluid would be lack of existence or uniqueness encountered in the uncoupled, external acoustic problem at characteristic wavenumbers. By using a simple spherical shell, without internal structures, this potential hindrance is shown not to arise. A fuller application of the method awaits subsequent results.

  8. GUP assisted Hawking radiation of rotating acoustic black holes

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Övgün, A.; Jusufi, K.

    2016-10-01

    Recent studies (Steinhauer in Nat. Phys. 10:864, 2014, Phys. Rev. D 92:024043, 2015) provide compelling evidences that Hawking radiation could be experimentally proven by using an analogue black hole. In this paper, taking this situation into account we study the quantum gravitational effects on the Hawking radiation of rotating acoustic black holes. For this purpose, we consider the generalized uncertainty principle (GUP) in the phenomenon of quantum tunneling. We firstly take the modified commutation relations into account to compute the GUP modified Hawking temperature when the massive scalar particles tunnel from this black hole. Then, we find a remarkably instructive expression for the GUP entropy to derive the quantum gravity corrected Hawking temperature of the rotating acoustic black hole.

  9. Effect of holed reflector on acoustic radiation force in noncontact ultrasonic dispensing of small droplets

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroki; Wada, Yuji; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We investigated the fundamental aspects of droplet dispensing, which is an important procedure in the noncontact ultrasonic manipulation of droplets in air. A holed reflector was used to dispense a droplet from a 27.4 kHz standing-wave acoustic field to a well. First, the relationship between the hole diameter of the reflector and the acoustic radiation force acting on a levitated droplet was clarified by calculating the acoustic impedance of the point just above the hole. When the hole diameter was half of (or equal to) the acoustic wavelength λ, the acoustic radiation force was ∼80% (or 50%) of that without a hole. The maximal diameters of droplets levitated above the holes through flat and half-cylindrical reflectors were then experimentally investigated. For instance, with the half-cylindrical reflector, the maximal diameter was 5.0 mm for a hole diameter of 6.0 mm, and droplets were levitatable up to a hole diameter of 12 mm (∼λ).

  10. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    NASA Astrophysics Data System (ADS)

    Lipkens, Bart; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    2015-10-01

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  11. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    SciTech Connect

    Lipkens, Bart; Ilinskii, Yurii A. Zabolotskaya, Evgenia A.

    2015-10-28

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  12. Non-contact transportation using near-field acoustic levitation

    PubMed

    Ueha; Hashimoto; Koike

    2000-03-01

    Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described. PMID:10829622

  13. Field Measurement of the Acoustic Nonlinearity Parameter in Turbine Blades

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.; Na, Jeong K.; Yost, William T.; Kessel, Gregory L.

    2000-01-01

    Nonlinear acoustics techniques were used to measure fatigue in turbine blades in a power generation plant. The measurements were made in the field using a reference based measurement technique, and a reference sample previously measured in the laboratory. The acoustic nonlinearity parameter showed significant increase with fatigue in the blades, as indicated by service age and areas of increased stress. The technique shows promise for effectively measuring fatigue in field applications and predicting subsequent failures.

  14. Hawking radiation from an acoustic black hole on an ion ring.

    PubMed

    Horstmann, B; Reznik, B; Fagnocchi, S; Cirac, J I

    2010-06-25

    In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it. PMID:20867352

  15. Adjustable virtual pore-size filter for automated sample preparation using acoustic radiation force

    SciTech Connect

    Jung, B; Fisher, K; Ness, K; Rose, K; Mariella, R

    2008-05-22

    We present a rapid and robust size-based separation method for high throughput microfluidic devices using acoustic radiation force. We developed a finite element modeling tool to predict the two-dimensional acoustic radiation force field perpendicular to the flow direction in microfluidic devices. Here we compare the results from this model with experimental parametric studies including variations of the PZT driving frequencies and voltages as well as various particle sizes and compressidensities. These experimental parametric studies also provide insight into the development of an adjustable 'virtual' pore-size filter as well as optimal operating conditions for various microparticle sizes. We demonstrated the separation of Saccharomyces cerevisiae and MS2 bacteriophage using acoustic focusing. The acoustic radiation force did not affect the MS2 viruses, and their concentration profile remained unchanged. With optimized design of our microfluidic flow system we were able to achieve yields of > 90% for the MS2 with > 80% of the S. cerevisiae being removed in this continuous-flow sample preparation device.

  16. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    SciTech Connect

    Xie, Jin-Han Vanneste, Jacques

    2014-10-15

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, and viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.

  17. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.

    PubMed

    Hahn, Philipp; Leibacher, Ivo; Baasch, Thierry; Dual, Jurg

    2015-11-21

    The numerical prediction of acoustofluidic particle motion is of great help for the design, the analysis, and the physical understanding of acoustofluidic devices as it allows for a simple and direct comparison with experimental observations. However, such a numerical setup requires detailed modeling of the acoustofluidic device with all its components and thorough understanding of the acoustofluidic forces inducing the particle motion. In this work, we present a 3D trajectory simulation setup that covers the full spectrum, comprising a time-harmonic device model, an acoustic streaming model of the fluid cavity, a radiation force simulation, and the calculation of the hydrodynamic drag. In order to make quantitatively accurate predictions of the device vibration and the acoustic field, we include the viscous boundary layer damping. Using a semi-analytical method based on Nyborg's calculations, the boundary-driven acoustic streaming is derived directly from the device simulation and takes into account cavity wall vibrations which have often been neglected in the literature. The acoustic radiation forces and the hydrodynamic drag are calculated numerically to handle particles of arbitrary shape, structure, and size. In this way, complex 3D particle translation and rotation inside experimental microdevices can be predicted. We simulate the rotation of a microfiber in an amplitude-modulated 2D field and analyze the results with respect to experimental observations. For a quantitative verification, the motion of an alumina microdisk is compared to a simple experiment. Demonstrating the potential of the simulation setup, we compute the trajectory of a red blood cell inside a realistic microdevice under the simultaneous effects of acoustic streaming and radiation forces. PMID:26448531

  18. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.

    PubMed

    Hahn, Philipp; Leibacher, Ivo; Baasch, Thierry; Dual, Jurg

    2015-11-21

    The numerical prediction of acoustofluidic particle motion is of great help for the design, the analysis, and the physical understanding of acoustofluidic devices as it allows for a simple and direct comparison with experimental observations. However, such a numerical setup requires detailed modeling of the acoustofluidic device with all its components and thorough understanding of the acoustofluidic forces inducing the particle motion. In this work, we present a 3D trajectory simulation setup that covers the full spectrum, comprising a time-harmonic device model, an acoustic streaming model of the fluid cavity, a radiation force simulation, and the calculation of the hydrodynamic drag. In order to make quantitatively accurate predictions of the device vibration and the acoustic field, we include the viscous boundary layer damping. Using a semi-analytical method based on Nyborg's calculations, the boundary-driven acoustic streaming is derived directly from the device simulation and takes into account cavity wall vibrations which have often been neglected in the literature. The acoustic radiation forces and the hydrodynamic drag are calculated numerically to handle particles of arbitrary shape, structure, and size. In this way, complex 3D particle translation and rotation inside experimental microdevices can be predicted. We simulate the rotation of a microfiber in an amplitude-modulated 2D field and analyze the results with respect to experimental observations. For a quantitative verification, the motion of an alumina microdisk is compared to a simple experiment. Demonstrating the potential of the simulation setup, we compute the trajectory of a red blood cell inside a realistic microdevice under the simultaneous effects of acoustic streaming and radiation forces.

  19. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  20. RADIATIVE HYDRODYNAMIC SIMULATIONS OF ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Bard, S.; Carlsson, M.

    2010-10-10

    We investigate the formation and evolution of the Ca II H line in a sunspot. The aim of our study is to establish the mechanisms underlying the formation of the frequently observed brightenings of small regions of sunspot umbrae known as 'umbral flashes'. We perform fully consistent NLTE radiation hydrodynamic simulations of the propagation of acoustic waves in sunspot umbrae and conclude that umbral flashes result from increased emission of the local solar material during the passage of acoustic waves originating in the photosphere and steepening to shock in the chromosphere. To quantify the significance of possible physical mechanisms that contribute to the formation of umbral flashes, we perform a set of simulations on a grid formed by different wave power spectra, different inbound coronal radiation, and different parameterized chromospheric heating. Our simulations show that the waves with frequencies in the range 4.5-7.0 mHz are critical to the formation of the observed blueshifts of umbral flashes while waves with frequencies below 4.5 mHz do not play a role despite their dominance in the photosphere. The observed emission in the Ca II H core between flashes only occurs in the simulations that include significant inbound coronal radiation and/or extra non-radiative chromospheric heating in addition to shock dissipation.

  1. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  2. Off-axial acoustic radiation force of repulsor and tractor bessel beams on a sphere.

    PubMed

    Silva, Glauber T; Lopes, J Henrique; Mitri, Farid G

    2013-06-01

    Acoustic Bessel beams are known to produce an axial radiation force on a sphere centered on the beam axis (on-axial configuration) that exhibits both repulsor and tractor behaviors. The repulsor and the tractor forces are oriented along the beam's direction of propagation and opposite to it, respectively. The behavior of the acoustic radiation force generated by Bessel beams when the sphere lies outside the beam's axis (off-axial configuration) is unknown. Using the 3-D radiation force formulas given in terms of the partial wave expansion coefficients for the incident and scattered waves, both axial and transverse components of the force exerted on a silicone- oil sphere are obtained for a zero- and a first-order Bessel vortex beam. As the sphere departs from the beam's axis, the tractor force becomes weaker. Moreover, the behavior of the transverse radiation force field may vary with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on ka values. These results are particularly important for the design of acoustical tractor beam devices operating with Bessel beams. PMID:25004483

  3. Acoustic field distribution of sawtooth wave with nonlinear SBE model

    SciTech Connect

    Liu, Xiaozhou Zhang, Lue; Wang, Xiangda; Gong, Xiufen

    2015-10-28

    For precise prediction of the acoustic field distribution of extracorporeal shock wave lithotripsy with an ellipsoid transducer, the nonlinear spheroidal beam equations (SBE) are employed to model acoustic wave propagation in medium. To solve the SBE model with frequency domain algorithm, boundary conditions are obtained for monochromatic and sawtooth waves based on the phase compensation. In numerical analysis, the influence of sinusoidal wave and sawtooth wave on axial pressure distributions are investigated.

  4. Application of the Spectral Element Method to Acoustic Radiation

    NASA Technical Reports Server (NTRS)

    Doyle, James F.; Rizzi, Stephen A. (Technical Monitor)

    2000-01-01

    This report summarizes research to develop a capability for analysis of interior noise in enclosed structures when acoustically excited by an external random source. Of particular interest was the application to the study of noise and vibration transmission in thin-walled structures as typified by aircraft fuselages. Three related topics are focused upon. The first concerns the development of a curved frame spectral element, the second shows how the spectral element method for wave propagation in folded plate structures is extended to problems involving curved segmented plates. These are of significance because by combining these curved spectral elements with previously presented flat spectral elements, the dynamic response of geometrically complex structures can be determined. The third topic shows how spectral elements, which incorporate the effect of fluid loading on the structure, are developed for analyzing acoustic radiation from dynamically loaded extended plates.

  5. Acoustophoresis of disk-shaped microparticles: A numerical and experimental study of acoustic radiation forces and torques.

    PubMed

    Garbin, Alexander; Leibacher, Ivo; Hahn, Philipp; Le Ferrand, Hortense; Studart, André; Dual, Jürg

    2015-11-01

    Disk-shaped microparticles experience an acoustic radiation force and torque in an ultrasonic standing wave. Hence, they are translated by the acoustic field, an effect called acoustophoresis, and rotated. The torque effect is also known from the "Rayleigh disk" which is described in literature for sound intensity measurements. In this paper, inviscid numerical simulations of acoustic radiation forces and torques for disks with radius ≪ wavelength in water are developed in good agreement with former analytical solutions, and the dependence on disk geometry, density, and orientation is discussed. Experiments with alumina disks (diameter 7.5 μm), suspended in an aqueous liquid in a silicon microchannel, confirm the theoretical results qualitatively at the microscale and ultrasonic frequencies around 2 MHz. These results can potentially be applied for the synthesis of disk-reinforced composite materials. The insights are also relevant for the acoustic handling of various disk-shaped particles, such as red blood cells. PMID:26627752

  6. Nonlinear Evolution of the Radiation-driven Magneto-acoustic Instability

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Socrates, Aristotle

    2013-04-01

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux—the radiation-driven magneto-acoustic instability (RMI, a.k.a. the "photon bubble" instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes & Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.

  7. NONLINEAR EVOLUTION OF THE RADIATION-DRIVEN MAGNETO-ACOUSTIC INSTABILITY

    SciTech Connect

    Fernandez, Rodrigo; Socrates, Aristotle

    2013-04-20

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux-the radiation-driven magneto-acoustic instability (RMI, a.k.a. the ''photon bubble'' instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.

  8. Acoustic streaming field structure. Part II. Examples that include boundary-driven flow.

    PubMed

    Bradley, Charles

    2012-01-01

    In this paper three simple acoustic streaming problems are presented and solved. The purpose of the paper is to demonstrate the use of a previously published streaming model by Bradley [J. Acoust. Soc. Am. 100(3), 1399-1408 (1996)] and illustrate, with concrete examples, some of the features of streaming flows that were predicted by the general model. In particular, the problems are intended to demonstrate cases in which the streaming field boundary condition at the face of the radiator has a nontrivial lateral dc velocity component. Such a boundary condition drives a steady solenoidal flow just like a laterally translating boundary drives Couette flow.

  9. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  10. Modified electron acoustic field and energy applied to observation data

    NASA Astrophysics Data System (ADS)

    Abdelwahed, H. G.; El-Shewy, E. K.

    2016-08-01

    Improved electrostatic acoustic field and energy have been debated in vortex trapped hot electrons and fluid of cold electrons with pressure term plasmas. The perturbed higher-order modified-Korteweg-de Vries equation (PhomKdV) has been worked out. The effect of trapping and electron temperatures on the electro-field and energy properties in auroral plasmas has been inspected.

  11. Nonlinear aspects of acoustic radiation force in biomedical applications

    SciTech Connect

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-10-28

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  12. An efficient model for coupling structural vibrations with acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Ting, LU

    1993-01-01

    The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.

  13. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.

    PubMed

    Koyama, Daisuke; Kotera, Hironori; Kitazawa, Natsuko; Yoshida, Kenji; Nakamura, Kentaro; Watanabe, Yoshiaki

    2011-04-01

    Observation techniques for measuring the small vibration of a single microcapsule of tens of nanometers in an acoustic standing wave field are discussed. First, simultaneous optical observation of a microbubble vibration by two methods is investigated, using a high-speed video camera, which permits two-dimensional observation of the bubble vibration, and a laser Doppler vibrometer (LDV), which can observe small bubble vibration amplitudes at high frequency. Bubbles of tens of micrometers size were trapped at the antinode of an acoustic standing wave generated in an observational cell. Bubble vibration at 27 kHz could be observed and the experimental results for the two methods showed good agreement. The radial vibration of microcapsules with a hard plastic shell was observed using the LDV and the measurement of the capsule vibration with radial oscillation amplitude of tens of nanometers was successful. The acoustic radiation force acting on microcapsules in the acoustic standing wave was measured from the trapped position of the standing wave and the radial oscillation amplitude of the capsules was estimated from the theoretical equation of the acoustic radiation force, giving results in good agreement with the LDV measurements. The radial oscillation amplitude of a capsule was found to be proportional to the amplitude of the driving sound pressure. A larger expansion ratio was observed for capsules closer to the resonance condition under the same driving sound pressure and frequency.

  14. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    NASA Technical Reports Server (NTRS)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  15. Acoustic Radiation Optimization Using the Particle Swarm Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Jeon, Jin-Young; Okuma, Masaaki

    The present paper describes a fundamental study on structural bending design to reduce noise using a new evolutionary population-based heuristic algorithm called the particle swarm optimization algorithm (PSOA). The particle swarm optimization algorithm is a parallel evolutionary computation technique proposed by Kennedy and Eberhart in 1995. This algorithm is based on the social behavior models for bird flocking, fish schooling and other models investigated by zoologists. Optimal structural design problems to reduce noise are highly nonlinear, so that most conventional methods are difficult to apply. The present paper investigates the applicability of PSOA to such problems. Optimal bending design of a vibrating plate using PSOA is performed in order to minimize noise radiation. PSOA can be effectively applied to such nonlinear acoustic radiation optimization.

  16. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    PubMed

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. PMID:26726146

  17. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    PubMed

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications.

  18. Field-Deployable Acoustic Digital Systems for Noise Measurement

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  19. Aerodynamic sound generation due to vortex-aerofoil interaction. Part 2: Analysis of the acoustic field

    NASA Technical Reports Server (NTRS)

    Parasarathy, R.; Karamcheti, K.

    1972-01-01

    The Lighthill method was the basic procedure used to analyze the sound field associated with a vortex of modified strength interacting with an airfoil. A free vortex interacting with an airfoil in uniform motion was modeled in order to determine the sound field due to all the acoustic sources, not only on the airfoil surfaces (dipoles), but also the ones distributed on the perturbed flow field (quadrupoles) due to the vortex-airfoil interaction. Because inviscid flow is assumed in the study of the interaction, the quadrupoles considered in the perturbed flow field are entirely due to an unsteady flow field. The effects of airfoil thickness on the second radiation are examined by using a symmetric Joukowski airfoil for the vortex-airfoil interaction. Sound radiation in a plane, far field simplification, and computation of the sound field are discussed.

  20. Observation of cavitation bubbles and acoustic streaming in high intensity ultrasound fields

    NASA Astrophysics Data System (ADS)

    Uemura, Yuuki; Sasaki, Kazuma; Minami, Kyohei; Sato, Toshio; Choi, Pak-Kon; Takeuchi, Shinichi

    2015-07-01

    We observed the behavior of acoustic cavitation by sonochemical luminescence and ultrasound B-mode imaging with ultrasound diagnostic equipment in a standing-wave ultrasound field and focused ultrasound field. Furthermore, in order to investigate the influence of acoustic streaming on acoustic cavitation bubbles, we performed flow analysis of the sound field using particle image velocimetry. We found that acoustic cavitation bubbles are stirred by circulating acoustic streaming and local vortexes occurring in the water tank of the standing-wave ultrasound exposure system. We considered that the acoustic cavitation bubbles are carried away by acoustic streaming due to the high ultrasound pressure in the focused ultrasound field.

  1. Strategies for single particle manipulation using acoustic radiation forces and external tools

    NASA Astrophysics Data System (ADS)

    Oberti, Stefano; Neild, Adrian; Möller, Dirk; Dual, Jurg

    2010-01-01

    The use of primary acoustic radiation forces has been shown to be a valid technique for the handling of micron sized suspended particles, such as beads or biological cells. These forces arise as a nonlinear effect when an acoustic wave or vibration, which is set up in the fluid by exciting to resonance the system containing the suspension, interacts with the particles. The typical frequencies (upper kHz - lower MHz range) and the periodicity (in the range of hundreds of micrometers) of the acoustic field make this technique particularly suited for the handling of particles within microfluidic systems. A variety of devices for separation, fractionation, trapping and positioning of beads or biological cells, working both in batch or fluid flow mode, have been proposed. With the exception of the ports used to inject or remove the sample or the carrier medium, these systems can be considered as closed systems. Nevertheless, access to the particles with external tools is sometimes needed after acoustic manipulation has been performed. For instance, particles or cells pre-positioned in a sequence along the centerline of a channel using acoustic radiation forces need to be removed from it using a microgripper for further handling. Furthermore, in the field of crystallography research protein crystals have to be placed one by one onto a nylon loop prior to X-ray analysis with synchrotron radiation. This is usually done using the loop to pick up the crystal from the solution where it has been growing with other ones. As this process is sometimes repeated for a large number of crystals there are efforts to automate it. To this purpose it would be advantageous to bring the crystals spatially separated into a known position where they than can be sequentially collected with the loop. Here strategies for single particle manipulation are presented combining the effects of acoustic fields, fluid flow, surface tension and external tools. They are discussed by means of numerical

  2. Acoustic radiation force and torque exerted on a small viscoelastic particle in an ideal fluid.

    PubMed

    Leão-Neto, J P; Silva, G T

    2016-09-01

    We provide a detailed analysis on the acoustic radiation force and torque exerted on a homogeneous viscoelastic particle in the long-wave limit (i.e. the particle radius is much smaller than the incident wavelength) by an arbitrary wave. We assume that the particle behaves as a linear viscoelastic solid, which obeys the fractional Kelvin-Voigt model. Simple analytical expressions for the radiation force and torque are obtained. The developed theory is used to describe the interaction of acoustic waves (traveling and standing plane waves, and zero- and first-order Bessel beams) in the MHz-range with polymeric particles, namely lexan, low-density (LDPE) and high-density (HDPE) polyethylene. We found that particle absorption is chiefly the cause of the radiation force due to a traveling plane wave and zero-order Bessel beam when the frequency is smaller than 5MHz (HDPE), 3.9MHz (LDPE), and 0.9MHz (lexan). Whereas in a standing wave field, the radiation force is mildly changed due to dispersion inside the particle. We also show that the radiation torque caused by a first-order Bessel beam varies nearly quadratic with frequency. These findings may enable new possibilities of particle handling in acoustophoretic techniques. PMID:27254398

  3. On noninvasive assessment of acoustic fields acting on the fetus

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Kazakov, V. V.

    2014-05-01

    The aim of this study is to verify a noninvasive technique for assessing the characteristics of acoustic fields in the audible range arising in the uterus under the action of maternal voice, external sounds, and vibrations. This problem is very important in view of actively developed methods for delivery of external sounds to the uterus: music, maternal voice recordings, sounds from outside the mother's body, etc., that supposedly support development of the fetus at the prenatal stage psychologically and cognitively. However, the parameters of acoustic signals have been neither measured nor normalized, which may be dangerous for the fetus and hinder actual assessment of their impact on fetal development. The authors show that at frequencies below 1 kHz, acoustic pressure in the uterus may be measured noninvasively using a hydrophone placed in a soft capsule filled with liquid. It was found that the acoustic field at frequencies up to 1 kHz arising in the uterus under the action of an external sound field has amplitude-frequency parameters close to those of the external field; i.e., the external field penetrates the uterus with hardly any difficulty.

  4. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves

    NASA Astrophysics Data System (ADS)

    Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  5. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves.

    PubMed

    Johnson, Kennita A; Vormohr, Hannah R; Doinikov, Alexander A; Bouakaz, Ayache; Shields, C Wyatt; López, Gabriel P; Dayton, Paul A

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid. PMID:27300980

  6. a Computational Method for the Analysis of Acoustic Radiation from Turbofan Inlets

    NASA Astrophysics Data System (ADS)

    Raviprakash, G. K.

    1992-01-01

    A computational method is presented for the analysis of the noise radiation from turbofan inlets. The method developed considers the effect of mean flow and can be used at high frequencies. The techniques for generating the grid, solving the acoustic equations, applying radiating conditions on the far-field boundary, imposing inlet-fan interface conditions as well as solving the steady compressible flow equations are embodied in the Inlet Acoustic Analysis Method. The theoretical basis, formulated for 3-D acoustics within an axisymmetric domain, considers the effect of non-uniform mean flow. The discretization of the field equations is done using a finite volume type differencing. This leads to a block tri-diagonal system of equations which is then efficiently solved. A new and powerful method is developed for the application of radiating conditions. A layer potential representation is used in obtaining numerically local radiating conditions. The locally radiating conditions, developed using the single layer source representation, can be used even at the interior eigenvalues. Using this technique, the radiating conditions can be applied very close to the inlet, and hence the computational efficiency can be significantly increased. The irrotationality conditions for the axisymmetric compressible flow are discretized for solving the mean flow field. An iterative scheme is developed to solve for the stream function, the density, and the speed of sound. The inlet-fan interface conditions are incorporated to properly specify the source of noise. The noise source is either directly specified or the interface potential distribution is split into a combination of an imposed right traveling disturbance and an unknown combination of left traveling disturbances, that come out as part of the solution process. The grid generation procedure utilizes algebraic transformations as well as the grid blending technique. This process is automated to accommodate variations in the grid

  7. A computational method for the analysis of acoustic radiation from turbofan inlets

    NASA Astrophysics Data System (ADS)

    Raviprakash, G. K.

    A computational method is presented for the analysis of the noise radiation from turbofan inlets. The method developed considers the effect of mean flow and can be used at high frequencies. The techniques for generating the grid, solving the acoustic equations, applying radiating conditions on the far-field boundary, imposing inlet-fan interface conditions as well as solving the steady compressible flow equations are embodied in the Inlet Acoustic Analysis Method. The theoretical basis, formulated for 3-D acoustics within an axisymmetric domain, considers the effect of non-uniform mean flow. The discretization of the field equations is done using a finite volume type differencing. This leads to a block tri-diagonal system of equations which is then efficiently solved. A new and powerful method is developed for the application of radiating conditions. A layer potential representation is used in obtaining numerically local radiating conditions. The locally radiating conditions, developed using the single layer source representation, can be used even at the interior eigenvalues. Using this technique, the radiating conditions can be applied very close to the inlet, and hence the computational efficiency can be significantly increased. The irrotationality conditions for the axisymmetric compressible flow are discretized for solving the mean flow field. An iterative scheme is developed to solve for the stream function, the density, and the speed of sound. The inlet-fan interface conditions are incorporated to properly specify the source of noise. The noise source is either directly specified or the interface potential distribution is split into a combination of an imposed right traveling disturbance and an unknown combination of left traveling disturbances, that come out as part of the solution process. The grid generation procedure utilizes algebraic transformations as well as the grid blending techniques. This process is automated to accommodate variations in the grid

  8. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fairly extensive measurements have been conducted of the turbulent flow around various surfaces as a basis for a study of the acoustic characteristics involved. In the experiments the flow from a nozzle was directed upon various two-dimensional surface configurations such as the three-flap model. A turbulent flow field description is given and an estimate of the acoustic characteristics is provided. The developed equations are based upon fundamental theories for simple configurations having simple flows. Qualitative estimates are obtained regarding the radiation pattern and the velocity power law. The effect of geometry and turbulent flow distribution on the acoustic emission from simple configurations are discussed.

  9. Prediction of acoustic radiation from functionally graded shells of revolution in light and heavy fluids

    NASA Astrophysics Data System (ADS)

    Qu, Yegao; Meng, Guang

    2016-08-01

    This paper presents a semi-analytical method for the vibro-acoustic analysis of a functionally graded shell of revolution immersed in an infinite light or heavy fluid. The structural model of the shell is formulated on the basis of a modified variational method combined with a multi-segment technique, whereas a spectral Kirchhoff-Helmholtz integral formulation is employed to model the exterior fluid field. The material properties of the shell are estimated by using the Voigt's rule of mixture and the Mori-Tanaka's homogenization scheme. Displacement and sound pressure variables of each segment are expanded in the form of a mixed series using Fourier series and Chebyshev orthogonal polynomials. A set of collocation nodes distributed over the roots of Chebyshev polynomials are employed to establish the algebraic system of the acoustic integral equations, and the non-uniqueness solution is eliminated using a combined Helmholtz integral equation formulation. Loosely and strongly coupled schemes are implemented for the structure-acoustic interaction problem of a functionally graded shell immersed in a light and heavy fluid, respectively. The present method provides a flexible way to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of functionally graded shells of revolution in an analytical manner. Numerical tests are presented for sound radiation problems of spherical, cylindrical, conical and coupled shells. The individual contributions of the circumferential modes to the radiated sound pressure and sound power of functionally graded shells are observed. Effects of the material profile on the sound radiation of the shells are also investigated.

  10. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  11. Shear-layer acoustic radiation in an excited subsonic jet: experimental study

    NASA Astrophysics Data System (ADS)

    Fleury, Vincent; Bailly, Christophe; Juvé, Daniel

    2005-10-01

    The subharmonic acoustic radiation of a tone excited subsonic jet shear-layer has been investigated experimentally. Two jet velocities U=20 mṡs and U=40 mṡs were studied. For U=20 mṡs, the natural boundary-layer at the nozzle exit is laminar. When the perturbation is applied, the fluctuations of the first and the second subharmonics of the excitation frequency are detected in the shear-layer. In addition, the first subharmonic near pressure field along the spreading jet is constituted of two strong maxima of sinusoidal shape. The far-field directivity pattern displays two lobes separated by an extinction angle θ at around 85° from the jet axis. These observations follow the results of Bridges about the vortex pairing noise. On the other hand, for U=40 mṡs, the initial boundary-layer is transitional and only the first subharmonic is observed in the presence of the excitation. The near pressure field is of Gaussian shape in the jet periphery and the acoustic far-field is superdirective as observed by Laufer and Yen. The state of the initial shear-layer seems to be the key feature to distinguish these two different radiation patterns. To cite this article: V. Fleury et al., C. R. Mecanique 333 (2005).

  12. A 3-D elasticity theory based model for acoustic radiation from multilayered anisotropic plates.

    PubMed

    Shen, C; Xin, F X; Lu, T J

    2014-05-01

    A theoretical model built upon three-dimensional elasticity theory is developed to investigate the acoustic radiation from multilayered anisotropic plates subjected to a harmonic point force excitation. Fourier transform technique and stationary phase method are combined to predict the far-field radiated sound pressure of one-side water immersed plate. Compared to equivalent single-layer plate models, the present model based on elasticity theory can differentiate radiated sound pressure between dry-side and wet-side excited cases, as well as discrepancies induced by different layer sequences for multilayered anisotropic plates. These results highlight the superiority of the present theoretical model especially for handling multilayered anisotropic structures. PMID:24815294

  13. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    SciTech Connect

    Bulanov, Alexey V.; Nagorny, Ivan G.

    2015-10-28

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.

  14. A field-deployable digital acoustic measurement system

    NASA Technical Reports Server (NTRS)

    Gray, David L.; Wright, Kenneth D., II; Rowland, Wayne D.

    1991-01-01

    A field deployable digital acoustic measurement system was developed to support acoustic research programs at the Langley Research Center. The system digitizes the acoustic inputs at the microphone, which can be located up to 1000 feet from the van which houses the acquisition, storage, and analysis equipment. Digitized data from up to 12 microphones is recorded on high density 8mm tape and is analyzed post-test by a microcomputer system. Synchronous and nonsynchronous sampling is available with maximum sample rates of 12,500 and 40,000 samples per second respectively. The high density tape storage system is capable of storing 5 gigabytes of data at transfer rates up to 1 megabyte per second. System overall dynamic range exceeds 83 dB.

  15. Sound field simulation and acoustic animation in urban squares

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  16. Structural acoustics model of the violin radiativity profile.

    PubMed

    Bissinger, George

    2008-12-01

    Violin radiativity profiles are dominated by the Helmholtz-like A0 cavity mode ( approximately 280 Hz), first corpus bending modes B1(-) and B1(+) ( approximately 500 Hz), and BH and bridge-filter peaks ( approximately 2.4 kHz and approximately 3.5 kHz, respectively), with falloff above approximately 4 kHz. The B1 modes-dependent on two low-lying free-plate modes--are proposed to excite A0 via coupling to B1-driven in-phase f-hole volume flows. VIOCADEAS data show that A0 radiativity increases primarily as A0-B1(-) frequency difference decreases, consistent with Meinel's 1937 experiment for too-thick/too-thin plate thicknesses, plus sound post removal and violin octet baritone results. The vibration-->acoustic energy filter, F(RAD), computed from shape-material-independent radiation and total damping, peaks at the critical frequency f(crit), estimated from a free-plate mode by analogy to flat-plate bending. Experimentally, f(crit) decreased as this plate mode (and B1(+)) frequency increased. Simulations show that increasing plate thicknesses lowers f(crit), reduces F(RAD), and moves the spectral balance toward lower frequencies. Incorporating string-->corpus filters (including bridge versus bridge-island impedances) provides a model for overall violin radiativity. This model-with B1 and A0-B1 couplings, and f(crit) (computed from a free-plate mode important to B1) strongly affecting the lowest and highest parts of the radiativity profile-substantiates prior empirical B1--sound quality linkages. PMID:19206824

  17. Structural acoustics model of the violin radiativity profile.

    PubMed

    Bissinger, George

    2008-12-01

    Violin radiativity profiles are dominated by the Helmholtz-like A0 cavity mode ( approximately 280 Hz), first corpus bending modes B1(-) and B1(+) ( approximately 500 Hz), and BH and bridge-filter peaks ( approximately 2.4 kHz and approximately 3.5 kHz, respectively), with falloff above approximately 4 kHz. The B1 modes-dependent on two low-lying free-plate modes--are proposed to excite A0 via coupling to B1-driven in-phase f-hole volume flows. VIOCADEAS data show that A0 radiativity increases primarily as A0-B1(-) frequency difference decreases, consistent with Meinel's 1937 experiment for too-thick/too-thin plate thicknesses, plus sound post removal and violin octet baritone results. The vibration-->acoustic energy filter, F(RAD), computed from shape-material-independent radiation and total damping, peaks at the critical frequency f(crit), estimated from a free-plate mode by analogy to flat-plate bending. Experimentally, f(crit) decreased as this plate mode (and B1(+)) frequency increased. Simulations show that increasing plate thicknesses lowers f(crit), reduces F(RAD), and moves the spectral balance toward lower frequencies. Incorporating string-->corpus filters (including bridge versus bridge-island impedances) provides a model for overall violin radiativity. This model-with B1 and A0-B1 couplings, and f(crit) (computed from a free-plate mode important to B1) strongly affecting the lowest and highest parts of the radiativity profile-substantiates prior empirical B1--sound quality linkages.

  18. A Novel Motion Compensation Algorithm for Acoustic Radiation Force Elastography

    PubMed Central

    Hsu, Stephen J.; Trahey, Gregg E.

    2009-01-01

    A novel method of physiological motion compensation for use with radiation force elasticity imaging has been developed. The method utilizes a priori information from finite element method models of the response of soft tissue to impulsive radiation force to isolate physiological motion artifacts from radiation force-induced displacement fields. The new algorithm is evaluated in a series of clinically realistic imaging scenarios, and its performance is compared to that achieved with previously described motion compensation algorithms. Though not without limitations, the new model-based motion compensation algorithm performs favorably in many circumstances and may be a logical choice for use with in vivo abdominal imaging. PMID:18519218

  19. Oscillations of a deformed liquid drop in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Apfel, Robert E.

    1995-07-01

    The oscillations of an axially symmetric liquid drop in an acoustic standing wave field in air have been studied using the boundary integral method. The interaction between the drop oscillation and sound field has been included in this analysis. Our computations focus on the frequency shift of small-amplitude oscillations of an acoustically deformed drop typical of a drop levitated in air. In the presence or absence of gravity, the trend and the magnitude of the frequency shift have been given in terms of drop size, drop deformation, and the strength of the sound field. Our calculations are compared with experiments performed on the United States Microgravity Laboratory (USML-1) and with ground-based measurements, and are found to be in good agreement within the accuracy of the experimental data.

  20. Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid.

    PubMed

    Sapozhnikov, Oleg A; Bailey, Michael R

    2013-02-01

    A theoretical approach is developed to calculate the radiation force of an arbitrary acoustic beam on an elastic sphere in a liquid or gas medium. First, the incident beam is described as a sum of plane waves by employing conventional angular spectrum decomposition. Then, the classical solution for the scattering of a plane wave from an elastic sphere is applied for each plane-wave component of the incident field. The net scattered field is expressed as a superposition of the scattered fields from all angular spectrum components of the incident beam. With this formulation, the incident and scattered waves are superposed in the far field to derive expressions for components of the radiation stress tensor. These expressions are then integrated over a spherical surface to analytically describe the radiation force on an elastic sphere. Limiting cases for particular types of incident beams are presented and are shown to agree with known results. Finally, the analytical expressions are used to calculate radiation forces associated with two specific focusing transducers.

  1. Laval nozzle as an acoustic analogue of a massive field

    NASA Astrophysics Data System (ADS)

    Cuyubamba, M. A.

    2013-10-01

    We study a gas flow in the Laval nozzle, which is a convergent-divergent tube that has a sonic point in its throat. We show how to obtain the appropriate form of the tube, so that the acoustic perturbations of the gas flow in it satisfy any given wave-like equation. With the help of the proposed method we find the Laval nozzle, which is an acoustic analogue of the massive scalar field in the background of the Schwarzschild black hole. This gives us a possibility to observe in a laboratory the quasinormal ringing of the massive scalar field, which, for special set of the parameters, can have infinitely long-living oscillations in its spectrum.

  2. Field tests of acoustic telemetry for a portable coastal observatory

    USGS Publications Warehouse

    Martini, M.; Butman, B.; Ware, J.; Frye, D.

    2006-01-01

    Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.

  3. Direct Field and Reverberant Chamber Acoustic Test Comparisons

    NASA Technical Reports Server (NTRS)

    OConnell, Michael

    2007-01-01

    Reverberant and direct acoustic test comparisons were analyzed in this viewgraph presentation. The acoustic test data set includes: 1) CloudSat antenna subjected to PF reverberant chamber acoustic test; 2) CloudSat subjected to a PF direct speaker acoustic test; and 3) DAWN flight spacecraft subjected to PF direct speaker and a workmanship reverberant chamber acoustic test.

  4. Application of cylindrical near-field acoustical holography to the visualization of aeroacoustic sources.

    PubMed

    Lee, Moohyung; Bolton, J Stuart; Mongeau, Luc

    2003-08-01

    The purpose of this study was to develop methods for visualizing the sound radiation from aeroacoustic sources in order to identify their source strength distribution, radiation patterns, and to quantify the performance of noise control solutions. Here, cylindrical Near-field Acoustical Holography was used for that purpose. In a practical holographic measurement of sources comprising either partially correlated or uncorrelated subsources, it is necessary to use a number of reference microphones so that the sound field on the hologram surface can be decomposed into mutually incoherent partial fields before holographic projection. In this article, procedures are described for determining the number of reference microphones required when visualizing partially correlated aeroacoustic sources; performing source nonstationarity compensation; and applying regularization. The procedures have been demonstrated by application to a ducted fan. Holographic tests were performed to visualize the sound radiation from that source in its original form. The system was then altered to investigate the effect of two modifications on the fan's sound radiation pattern: first, leaks were created in the fan and duct assembly, and second, sound absorbing material was used to line the downstream duct section. Results in all three cases are shown at the blade passing frequency and for a broadband noise component. In the absence of leakage, both components were found to exhibit a dipole-like radiation pattern. Leakage was found to have a strong influence on the directivity of the blade passing tone. The increase of the flow resistance caused by adding the acoustical lining resulted in a nearly symmetric reduction of sound radiation. PMID:12942967

  5. Application of cylindrical near-field acoustical holography to the visualization of aeroacoustic sources

    NASA Astrophysics Data System (ADS)

    Lee, Moohyung; Bolton, J. Stuart; Mongeau, Luc

    2003-08-01

    The purpose of this study was to develop methods for visualizing the sound radiation from aeroacoustic sources in order to identify their source strength distribution, radiation patterns, and to quantify the performance of noise control solutions. Here, cylindrical Near-field Acoustical Holography was used for that purpose. In a practical holographic measurement of sources comprising either partially correlated or uncorrelated subsources, it is necessary to use a number of reference microphones so that the sound field on the hologram surface can be decomposed into mutually incoherent partial fields before holographic projection. In this article, procedures are described for determining the number of reference microphones required when visualizing partially correlated aeroacoustic sources; performing source nonstationarity compensation; and applying regularization. The procedures have been demonstrated by application to a ducted fan. Holographic tests were performed to visualize the sound radiation from that source in its original form. The system was then altered to investigate the effect of two modifications on the fan's sound radiation pattern: first, leaks were created in the fan and duct assembly, and second, sound absorbing material was used to line the downstream duct section. Results in all three cases are shown at the blade passing frequency and for a broadband noise component. In the absence of leakage, both components were found to exhibit a dipole-like radiation pattern. Leakage was found to have a strong influence on the directivity of the blade passing tone. The increase of the flow resistance caused by adding the acoustical lining resulted in a nearly symmetric reduction of sound radiation.

  6. Near-Field Acoustical Characterization of Clustered Rocket Engines

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Vu, Bruce T.; Lindsay Halie K.

    2005-01-01

    This paper presents an approach for the prediction and characterization of the near-field acoustic levels from closely-spaced clustered rocket engines. The calculations are based on the method proposed by Eldred, wherein the flowfield from the clustered rockets is divided into two zones. Zone 1 contains the isolated nozzles which produce noise independently, and extends up to a distance where the individual flows completely mix to form an equivalent single nozzle flow. Zone 2 is occupied by the single mixed stream starting from the station where the jets merge. The acoustic fields from the two zones are computed separately on the basis of the NASA-SP method of Eldred developed for a single equivalent nozzle. A summation of the spectra for the two zones yields the total effective sound pressure level for the clustered engines. Under certain conditions of nozzle spacing and flow parameters, the combined sound pressure level spectrum for the clustered nozzles displays a double peak. Test cases are presented here to demonstrate the importance of hydrodynamic interactions responsible for the double peak in the sound spectrum in the case of clustered rocket nozzles, and the role of ground reflections in the case of non-interfering jets. A graphics interface (Rocket Acoustic Prediction Tool) has been developed to take into account the effects of clustered nozzles and ground reflections.

  7. [Thermoelastic excitation of acoustic waves in biological models under the effect of the high peak-power pulsed electromagnetic radiation of extremely high frequency].

    PubMed

    Gapeev, A B; Rubanik, A V; Pashovkin, T N; Chemeris, N K

    2007-01-01

    The capability of high peak-power pulsed electromagnetic radiation of extremely high frequency (35,27 GHz, pulse widths of 100 and 600 ns, peak power of 20 kW) to excite acoustic waves in model water-containing objects and muscular tissue of animals has been experimentally shown for the first time. The amplitude and duration of excited acoustic pulses are within the limits of accuracy of theoretical assessments and have a complex nonlinear dependence on the energy input of electromagnetic radiation supplied. The velocity of propagation of acoustic pulses in water-containing models and isolated muscular tissue of animals was close to the reference data. The excitation of acoustic waves in biological systems under the action of high peak-power pulsed electromagnetic radiation of extremely high frequency is the important phenomenon, which essentially contributes to the understanding of the mechanisms of biological effects of these electromagnetic fields.

  8. Acoustic source localization in mixed field using spherical microphone arrays

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua; Wang, Tong

    2014-12-01

    Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.

  9. Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

    NASA Technical Reports Server (NTRS)

    Agarwal, Anurag; Morris, Philip J.

    2000-01-01

    A parallel numerical simulation of the radiation of sound from an acoustic source inside a 2-D jet is presented in this paper. This basic benchmark problem is used as a test case for scattering problems that are presently being solved by using the Impedance Mismatch Method (IMM). In this technique, a solid body in the domain is represented by setting the acoustic impedance of each medium, encountered by a wave, to a different value. This impedance discrepancy results in reflected and scattered waves with appropriate amplitudes. The great advantage of the use of this method is that no modifications to a simple Cartesian grid need to be made for complicated geometry bodies. Thus, high order finite difference schemes may be applied simply to all parts of the domain. In the IMM, the total perturbation field is split into incident and scattered fields. The incident pressure is assumed to be known and the equivalent sources for the scattered field are associated with the presence of the scattering body (through the impedance mismatch) and the propagation of the incident field through a non-uniform flow. An earlier version of the technique could only handle uniform flow in the vicinity of the source and at the outflow boundary. Scattering problems in non-uniform mean flow are of great practical importance (for example, scattering from a high lift device in a non-uniform mean flow or the effects of a fuselage boundary layer). The solution to this benchmark problem, which has an acoustic wave propagating through a non-uniform mean flow, serves as a test case for the extensions of the IMM technique.

  10. Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers

    SciTech Connect

    Mitri, F.G.

    2008-07-15

    Starting from the exact acoustic scattering from a sphere immersed in an ideal fluid and centered along the propagation axis of a standing or quasi-standing zero-order Bessel beam, explicit partial-wave representations for the radiation force are derived. A standing or a quasi-standing acoustic field is the result of propagating two equal or unequal amplitude zero-order Bessel beams, respectively, along the same axis but in opposite sense. The Bessel beam is characterized by the half-cone angle {beta} of its plane wave components, such that {beta} = 0 represents a plane wave. It is assumed here that the half-cone angle {beta} for each of the counter-propagating acoustic Bessel beams is equal. Fluid, elastic and viscoelastic spheres immersed in water are treated as examples. Results indicate the capability of manipulating spherical targets based on their mechanical and acoustical properties. This condition provides an impetus for further designing acoustic tweezers operating with standing or quasi-standing Bessel acoustic waves. Potential applications include particle manipulation in micro-fluidic lab-on-chips as well as in reduced gravity environments.

  11. Effects of Horizontal Magnetic Fields on Acoustic Travel Times

    NASA Astrophysics Data System (ADS)

    Jain, Rekha

    2007-02-01

    Local helioseismology techniques seek to probe the subsurface magnetic fields and flows by observing waves that emerge at the solar surface after passing through these inhomogeneities. Active regions on the surface of the Sun are distinguished by their strong magnetic fields, and techniques such as time-distance helioseismology can provide a useful diagnostic for probing these structures. Above the active regions, the fields fan out to create a horizontal magnetic canopy. We investigate the effect of a uniform horizontal magnetic field on the travel time of acoustic waves by considering vertical velocity in a simple plane-parallel adiabatically stratified polytrope. It is shown that such fields can lower the upper turning point of p-modes and hence influence their travel time. It is found that acoustic waves reflected from magnetically active regions have travel times up to a minute less than for waves similarly reflected in quiet regions. It is also found that sound speeds are increased below the active regions. These findings are consistent with time-distance measurements.

  12. Acoustic Radiation Force Impulse (ARFI) Imaging-Based Needle Visualization

    PubMed Central

    Rotemberg, Veronica; Palmeri, Mark; Rosenzweig, Stephen; Grant, Stuart; Macleod, David; Nightingale, Kathryn

    2011-01-01

    Ultrasound-guided needle placement is widely used in the clinical setting, particularly for central venous catheter placement, tissue biopsy and regional anesthesia. Difficulties with ultrasound guidance in these areas often result from steep needle insertion angles and spatial offsets between the imaging plane and the needle. Acoustic Radiation Force Impulse (ARFI) imaging leads to improved needle visualization because it uses a standard diagnostic scanner to perform radiation force based elasticity imaging, creating a displacement map that displays tissue stiffness variations. The needle visualization in ARFI images is independent of needle-insertion angle and also extends needle visibility out of plane. Although ARFI images portray needles well, they often do not contain the usual B-mode landmarks. Therefore, a three-step segmentation algorithm has been developed to identify a needle in an ARFI image and overlay the needle prediction on a coregistered B-mode image. The steps are: (1) contrast enhancement by median filtration and Laplacian operator filtration, (2) noise suppression through displacement estimate correlation coefficient thresholding and (3) smoothing by removal of outliers and best-fit line prediction. The algorithm was applied to data sets from horizontal 18, 21 and 25 gauge needles between 0–4 mm offset in elevation from the transducer imaging plane and to 18G needles on the transducer axis (in plane) between 10° and 35° from the horizontal. Needle tips were visualized within 2 mm of their actual position for both horizontal needle orientations up to 1.5 mm off set in elevation from the transducer imaging plane and on-axis angled needles between 10°–35° above the horizontal orientation. We conclude that segmented ARFI images overlaid on matched B-mode images hold promise for improved needle visibility in many clinical applications. PMID:21608445

  13. Analysis of clot formation with acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Longo, Diane M.; Lawrence, Michael B.; Walker, William F.

    2002-04-01

    Inappropriate blood coagulation plays an important role in diseases including stroke, heart attack, and deep vein thrombosis (DVT). DVT arises when a blood clot forms in a large vein of the leg. DVT is detrimental because the blood flow may be partially or completely obstructed. More importantly, a potentially fatal situation may arise if part of the clot travels to the arteries in the lungs, forming a pulmonary embolism (PE). Characterization of the mechanical properties of DVT could improve diagnosis and suggest appropriate treatment. We are developing a technique to assess mechanical properties of forming thrombi. The technique uses acoustic radiation force as a means to produce small, localized displacements within the sample. Returned ultrasound echoes are processed to estimate the time dependent displacement of the sample. Appropriate mechanical modeling and signal processing produce plots depicting relative mechanical properties (relative elasticity and relative viscosity) and force-free parameters (time constant, damping ratio, and natural frequency). We present time displacement curves of blood samples obtained during coagulation, and show associated relative and force-free parameter plots. These results show that the Voigt model with added mass accurately characterizes blood behavior during clot formation.

  14. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  15. Sound field reproduction as an equivalent acoustical scattering problem.

    PubMed

    Fazi, Filippo Maria; Nelson, Philip A

    2013-11-01

    Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.

  16. Modeling of spray combustion in an acoustic field

    SciTech Connect

    Dubey, R.K.; McQuay, M.Q.; Carvalho, J.A. Jr.

    1998-07-01

    Combustion characteristics of an ethanol flame in a Rijke-tube, pulse combustor was theoretically studied to analyze the effects of injection velocity, burner location, droplet size distribution, surrounding gas velocity, and droplet phase difference on Sauter-mean diameter. The effects of these parameters were studied at first (80 Hz), second (160 Hz), and third (240 Hz) acoustic modes with steady (no oscillations) case as reference. The sound pressure level was kept constant at 150 decibels for all theoretical simulations. The simulation frequencies and sound pressure level was selected to match the actual conditions inside the rector. For all simulations, actual droplet size and velocity distributions, as experimentally measured using a phase-Doppler particle analyzer, at the injector exit were used. Significant effects on spray size distributions were found when the burning droplets were placed at the locations corresponding to the maximum acoustic velocity amplitude. Also, for both simulations and experimental results, the Sauter-mean diameters were higher for oscillating conditions compared to steady value because small droplets burn faster under an acoustic field and therefore, Sauter-mean diameter, which is biased towards larger droplets, increases.

  17. Upscaling behavioural studies to the field using acoustic telemetry.

    PubMed

    Hellström, Gustav; Klaminder, Jonatan; Jonsson, Micael; Fick, Jerker; Brodin, Tomas

    2016-01-01

    Laboratory-based behavioural assays are often used in ecotoxicological studies to assess the environmental risk of aquatic contaminants. While results from such laboratory-based risk assessments may be difficult to extrapolate to natural environments, technological advancements over the past decade now make it possible to perform risk assessments through detailed studies of exposed individuals in natural settings. Acoustic telemetry is a technology to monitor movement and behaviour of aquatic organism in oceans, lakes, and rivers. The technology allows for tracking of multiple individuals simultaneously with very high temporal and spatial resolution, with the option to incorporate sensors to measure various physiological and environmental parameters. Although frequently used in fisheries research, aquatic ecotoxicology has been slow to adopt acoustic telemetry as a tool in field-based studies. This mini-review intends to introduce acoustic telemetry to aquatic ecotoxicologists, focusing on the potential of the technology to bridge the gap between laboratory assays and natural behaviours when making toxicological risk assessments. PMID:26683267

  18. Acoustic experience shapes female mate choice in field crickets

    PubMed Central

    Bailey, Nathan W; Zuk, Marlene

    2008-01-01

    Female choice can drive the evolution of extravagant male traits. In invertebrates, the influence of prior social experience on female choice has only recently been considered. To better understand the evolutionary implications of experience-mediated plasticity in female choice, we investigated the effect of acoustic experience during rearing on female responsiveness to male song in the field cricket Teleogryllus oceanicus. Acoustic experience has unique biological relevance in this species: a morphological mutation has rendered over 90 per cent of males on the Hawaiian island of Kauai silent in fewer than 20 generations, impeding females' abilities to locate potential mates. Females reared in silent conditions mimicking Kauai were less discriminating of male calling song and more responsive to playbacks, compared with females that experienced song during rearing. Our results to our knowledge, are the first demonstration of long-term effects of acoustic experience in an arthropod, and suggest that female T. oceanicus may be able to compensate for the reduced availability of long-range male sexual signals by increasing their responsiveness to the few remaining signallers. Understanding the adaptive significance of experience-mediated plasticity in female choice provides insight into processes that facilitate rapid evolutionary change and shape sexual selection pressure in natural populations. PMID:18700205

  19. Tracing Magnetic Fields by Atomic Alignment in Extended Radiation Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong; Dong, Le

    2015-05-01

    Tracing magnetic field is crucial as magnetic field plays an important role in many astrophysical processes. Earlier studies have demonstrated that ground state alignment (GSA) is an effective way to detect a weak magnetic field (1G≳ B≳ {{10}-15} G) in a diffuse medium. We explore the atomic alignment in the presence of an extended radiation field for both absorption lines and emission lines. The alignment in the circumstellar medium, binary systems, disks, and the local interstellar medium are considered in order to study the alignment in the radiation field where the pumping source has a clear geometric structure. Furthermore, the multipole expansion method is adopted to study GSA induced in the radiation field with unidentified pumping sources. We study the alignment in the dominant radiation components of the general radiation field: the dipole and quadrupole radiation field. We discuss the approximation of GSA in a general radiation field by summing the contribution from the dipole and quadrupole radiation field. We conclude that GSA is a powerful tool for detecting weak magnetic fields in the diffuse medium in general radiation fields.

  20. A Advanced Boundary Element Formulation for Acoustic Radiation and Scattering in Three Dimensions.

    NASA Astrophysics Data System (ADS)

    Soenarko, Benjamin

    A computational method is presented for determining acoustic fields produced by arbitrary shaped three-dimensional bodies. The formulation includes both radiation and scattering problems. In particular an isoparametric element formulation is introduced in which both the surface geometry and the acoustic variables on the surface of the body are represented by second order shape functions within the local coordinate system. A general result for the surface velocity potential and the exterior field is derived. This result is applicable to non-smooth bodies, i.e. it includes the case where the surface may have a non-unique normal (e.g. at the edge of a cube). Test cases are shown involving spherical, cylindrical and cubical geometry for both radiation and scattering problems. The present formulation is also extended to include half-space problems in which the effect of the reflected wave from an infinite plane is taken into account. By selecting an appropriate Green's function, the surface integral over the plane is nullified; thus all the computational efforts can be performed only on the radiating or scattering body at issue and thereby greatly simplify the solution. A special formulation involving axisymmetric bodies and boundary conditions is also presented. For this special case, the surface integrals are reduced to line integrals and an integral over the angle of revolution. The integration over the angle is performed partly analytically in terms of elliptic integrals and partly numerically using simple Gaussian quadrature formula. Since the rest of the integrals involve only line integrals along the generator of the body, any discretization scheme can be easily obtained to achieve a desired degree of accuracy in evaluating these integrals.

  1. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    NASA Astrophysics Data System (ADS)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Xiaozhou; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen

    2014-10-01

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  2. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    SciTech Connect

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen; Liu, Xiaozhou

    2014-10-14

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  3. Interior near-field acoustical holography in flight.

    PubMed

    Williams, E G; Houston, B H; Herdic, P C; Raveendra, S T; Gardner, B

    2000-10-01

    In this paper boundary element methods (BEM) are mated with near-field acoustical holography (NAH) in order to determine the normal velocity over a large area of a fuselage of a turboprop airplane from a measurement of the pressure (hologram) on a concentric surface in the interior of the aircraft. This work represents the first time NAH has been applied in situ, in-flight. The normal fuselage velocity was successfully reconstructed at the blade passage frequency (BPF) of the propeller and its first two harmonics. This reconstructed velocity reveals structure-borne and airborne sound-transmission paths from the engine to the interior space.

  4. Particle trapping and transport achieved via an adjustable acoustic field above a phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ke, M.; Qiu, C.; Liu, Z.

    2016-06-01

    We present the design for an acoustic system that can achieve particle trapping and transport using the acoustic force field above a phononic crystal plate. The phononic crystal plate comprised a thin brass plate with periodic slits alternately embedded with two kinds of elastic inclusions. Enhanced acoustic transmission and localized acoustic fields were achieved when the structure was excited by external acoustic waves. Because of the different resonant frequencies of the two elastic inclusions, the acoustic field could be controlled via the working frequency. Particles were transported between adjacent traps under the influence of the adjustable acoustic field. This device provides a new and versatile avenue for particle manipulation that would complement other means of particle manipulation.

  5. Theoretical evaluation of the acoustic field in an ultrasonic bioreactor.

    PubMed

    Louw, Tobias M; Subramanian, Anuradha; Viljoen, Hendrik J

    2015-06-01

    Ultrasound-assisted bioreactors that provide mechanical conditioning to cells have broad applicability in tissue engineering, but biological experiments with ultrasound are very sensitive to environmental conditions. A mathematical model was developed to complement experimental measurements, as well as to describe ultrasonic fields existing in regions where measurements are impossible, specifically, within microporous tissue engineering scaffolds. The model uniquely combines Biot theory to predict the ultrasonic field in the scaffold with an electromechanical transducer model to couple the mechanical stimulation experienced by cells to the external electrical input. In the specific example examined here, cells immobilized on scaffolds are subjected to different forms of ultrasonic stimulation due to the formation of standing wave fields and vertical high-pressure bands. The model confirms the sensitivity of the supplied acoustic power to the liquid level in sonobioreactors and identifies the input electrical impedance as a method of detecting resonance effects.

  6. Angular Spectrum Method for the Focused Acoustic Field of a Linear Transducer

    NASA Astrophysics Data System (ADS)

    Belgroune, D.; de Belleval, J. F.; Djelouah, H.

    Applications involving non-destructive testing or acoustical imaging are more and more sophisticated. In this context, a model based on the angular spectrum approach is tackled in view to calculate the focused impulse field radiated by a linear transducer through a plane fluid-solid interface. It is well known that electronic focusing, based on a cylindrical delay law, like for the classical cases (lenses, curved transducer), leads to an inaccurate focusing in the solid due to geometric aberrations errors affecting refraction. Generally, there is a significant difference between the acoustic focal distance and the geometrical focal due to refraction. In our work, an optimized delay law, based on the Fermat's principle is established, particularly at an oblique incidence where the geometrical considerations, relatively simple in normal incidence, become quickly laborious. Numerical simulations of impulse field are judiciously carried out. Subsequently, the input parameters are optimally selected in order to achieve good computation accuracy and a high focusing. The overall results, involving compression and shear waves, have highlighted the focusing improvement in the solid when compared to the currently available approaches. Indeed, the acoustic focal distance is very close to geometrical focal distance and then, allows better control of the refracted angular beam profile (refraction angle, focusing depth and focal size).

  7. Layer contributions to the nonlinear acoustic radiation from stratified media.

    PubMed

    Vander Meulen, François; Haumesser, Lionel

    2016-12-01

    This study presents the thorough investigation of the second harmonic generation scenario in a three fluid layer system. An emphasis is on the evaluation of the nonlinear parameter B/A in each layer from remote measurements. A theoretical approach of the propagation of a finite amplitude acoustic wave in a multilayered medium is developed. In the frame of the KZK equation, the weak nonlinearity of the media, attenuation and diffraction effects are computed for the fundamental and second harmonic waves propagating back and forth in each of the layers of the system. The model uses a gaussian expansion to describe the beam propagation in order to quantitatively evaluate the contribution of each part of the system (layers and interfaces) to its nonlinearity. The model is validated through measurements on a water/aluminum/water system. Transmission as well as reflection configurations are studied. Good agreement is found between the theoretical results and the experimental data. The analysis of the second harmonic field sources measured by the transducers from outside the stratified medium highlights the factors that favor the cumulative effects.

  8. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.

  9. Inverse problem of nonlinear acoustics: Synthesizing intense signals to intensify the thermal and radiation action of ultrasound

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Gurbatov, S. N.

    2016-07-01

    Inverse problems of nonlinear acoustics have important applied significance. On the one hand, they are necessary for nonlinear diagnostics of media, materials, manufactured articles, building units, and biological and geological structures. On the other hand, they are needed for creating devices that ensure optimal action of acoustic radiation on a target. However, despite the many promising applications, this direction remains underdeveloped, especially for strongly distorted high-intensity waves containing shock fronts. An example of such an inverse problem is synthesis of the spatiotemporal structure of a field in a radiating system that ensures the highest possible energy density in the focal region. This problem is also related to the urgent problems of localizing wave energy and the theory of strongly nonlinear waves. Below we analyze some quite general and simple inverse nonlinear problems.

  10. Field studies in architectural acoustics using Tablet PCs

    NASA Astrophysics Data System (ADS)

    Boye, Daniel

    2005-04-01

    Core requirements for the sciences within the liberal arts curriculum challenge students to become directly involved in scientific study. These requirements seek to develop scientifically literate leaders and members of society. Formal laboratory periods are not usually associated with these courses. Thus, conceptual discovery and quantitative experimentation must take place outside of the classroom. Physics 115: Musical Technology at Davidson College is such a course and contains a section dealing with architectural acoustics. Field studies in the past have been an awkward and cumbersome activity, especially for non-science majors. The emerging technology of Tablet PCs overcomes many of the problems of mobile data acquisition and analysis, and allows the students to determine the locations of the rooms to be studied. The impulse method for determining reverberation time is used and compared with calculations based on room size and absorption media. The use of Tablet PCs and the publicly available freeware Audacity in field studies investigating architectural acoustics will be discussed. [Work supported in part by the Associated Colleges of the South through their Technology Fellowship program.

  11. Nonstationary random acoustic and electromagnetic fields as wave diffusion processes

    NASA Astrophysics Data System (ADS)

    Arnaut, L. R.

    2007-07-01

    We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin-It\\hato and Fokker-Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general not separable, as a result of nonstationarity. A general solution of the Fokker-Planck equation is obtained in integral form, together with explicit closed-form solutions for several asymptotic cases. The findings extend known results on statistics and distributions of quasi-stationary ideal random fields (pure diffusions), which are retrieved as special cases. A summary of selected results in this paper appeared in [1].

  12. Applications of acoustic radiation force impulse quantification in chronic kidney disease: a review.

    PubMed

    Wang, Liang

    2016-10-01

    Acoustic radiation force impulse (ARFI) imaging is an emerging technique with great promise in the field of elastography. Previous studies have validated ARFI quantification as a method of estimating fibrosis in chronic liver disease. Similarly, fibrosis is the principal process underlying the progression of chronic kidney disease, which is the major cause of renal failure. However, the quantification of tissue stiffness using ARFI imaging is more complex in the kidney than in the liver. Moreover, not all previous studies are comparable because they employed different procedures. Therefore, subsequent studies are warranted, both in animal models and in clinical patients, in order to better understand the histopathological mechanisms associated with renal elasticity and to further improve this imaging method by developing a standardized guidelines for its implementation.

  13. Applications of acoustic radiation force impulse quantification in chronic kidney disease: a review.

    PubMed

    Wang, Liang

    2016-10-01

    Acoustic radiation force impulse (ARFI) imaging is an emerging technique with great promise in the field of elastography. Previous studies have validated ARFI quantification as a method of estimating fibrosis in chronic liver disease. Similarly, fibrosis is the principal process underlying the progression of chronic kidney disease, which is the major cause of renal failure. However, the quantification of tissue stiffness using ARFI imaging is more complex in the kidney than in the liver. Moreover, not all previous studies are comparable because they employed different procedures. Therefore, subsequent studies are warranted, both in animal models and in clinical patients, in order to better understand the histopathological mechanisms associated with renal elasticity and to further improve this imaging method by developing a standardized guidelines for its implementation. PMID:27599890

  14. Applications of acoustic radiation force impulse quantification in chronic kidney disease: a review

    PubMed Central

    2016-01-01

    Acoustic radiation force impulse (ARFI) imaging is an emerging technique with great promise in the field of elastography. Previous studies have validated ARFI quantification as a method of estimating fibrosis in chronic liver disease. Similarly, fibrosis is the principal process underlying the progression of chronic kidney disease, which is the major cause of renal failure. However, the quantification of tissue stiffness using ARFI imaging is more complex in the kidney than in the liver. Moreover, not all previous studies are comparable because they employed different procedures. Therefore, subsequent studies are warranted, both in animal models and in clinical patients, in order to better understand the histopathological mechanisms associated with renal elasticity and to further improve this imaging method by developing a standardized guidelines for its implementation. PMID:27599890

  15. Potential theoretic methods for far field sound radiation calculations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Stenger, Edward J.; Scott, J. R.

    1995-01-01

    In the area of computational acoustics, procedures which accurately predict the far-field sound radiation are much sought after. A systematic development of such procedures are found in a sequence of papers by Atassi. The method presented here is an alternate approach to predicting far field sound based on simple layer potential theoretic methods. The main advantages of this method are: it requires only a simple free space Green's function, it can accommodate arbitrary shapes of Kirchoff surfaces, and is readily extendable to three-dimensional problems. Moreover, the procedure presented here, though tested for unsteady lifting airfoil problems, can easily be adapted to other areas of interest, such as jet noise radiation problems. Results are presented for lifting airfoil problems and comparisons are made with the results reported by Atassi. Direct comparisons are also made for the flat plate case.

  16. Nonlinear electron acoustic waves in presence of shear magnetic field

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  17. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  18. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels with In Vivo Results

    PubMed Central

    Wang, Shiying; Wang, Claudia Y.; Unnikrishnan, Sunil; Klibanov, Alexander L.; Hossack, John A.; Mauldin, F. William

    2015-01-01

    Objectives To optically verify the dynamic behaviors of adherent microbubbles in large blood vessel environments in response to a new ultrasound technique using modulated acoustic radiation force. Materials and Methods Polydimethylsiloxane (PDMS) flow channels coated with streptavidin were used in targeted groups to mimic large blood vessels. The custom modulated acoustic radiation force beam sequence was programmed on a Verasonics research scanner. In vitro experiments were performed by injecting a biotinylated lipid-perfluorobutane microbubble dispersion through flow channels. The dynamic response of adherent microbubbles was detected acoustically and simultaneously visualized using a video camera connected to a microscope. In vivo verification was performed in a large abdominal blood vessel of a murine model for inflammation with injection of biotinylated microbubbles conjugated with P-selectin antibody. Results Aggregates of adherent microbubbles were observed optically under the influence of acoustic radiation force. Large microbubble aggregates were observed solely in control groups without targeted adhesion. Additionally, the dispersion of microbubble aggregates were demonstrated to lead to a transient acoustic signal enhancement in control groups (a new phenomenon we refer to as “control peak”). In agreement with in vitro results, the “control peak” phenomenon was observed in vivo in a murine model. Conclusions This study provides the first optical observation of microbubble binding dynamics in large blood vessel environments with application of a modulated acoustic radiation force beam sequence. With targeted adhesion, secondary radiation forces were unable to produce large aggregates of adherent microbubbles. Additionally, the new phenomenon called “control peak” was observed both in vitro and in vivo in a murine model for the first time. The findings in this study provide us with a better understanding of microbubble behaviors in large blood

  19. Field Assessment of Acoustic-Doppler Based Discharge Measurements

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2002-01-01

    The use of equipment based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun a field validation of the instruments currently (2002) available for making discharge measurements from a moving boat in streams of various sizes. Instruments manufactured by SonTek/YSI2 and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made by the use of a Price AA current meter and standard USGS procedures with the acoustic instruments at each site during data collection. The discharges measured with the acoustic instruments were compared with the discharges measured with Price AA meters and the current USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating. Additional analysis of the data collected indicates that the coefficient of variation of the discharge measurements consistently was less for the RD Instruments, Inc. Rio Grandes than it was for the SonTek/YSI RiverSurveyors. The bottom-tracking referenced measurement had a lower coefficient of variation than the differentially corrected global positioning system referenced measurements. It was observed that the higher frequency RiverSurveyors measured a moving bed more often than the lower frequency Rio Grandes. The detection of a moving bed caused RiverSurveyors to be consistently biased low when referenced to bottom tracking. Differentially corrected global positioning system data may be used to remove the bias observed in the bottom-tracking referenced measurements.

  20. Iodine-starch clathrate complexes in low-field acoustic fields

    NASA Astrophysics Data System (ADS)

    Fadeev, G. N.; Boldyrev, V. S.; Ermolaeva, V. I.; Eliseeva, N. M.

    2013-01-01

    Experimental data on the kinetics of formation and decomposition of iodine-starch clathrate complexes (amyloiodine and amylopectoiodine) in low-frequency (5-45 Hz) acoustic fields are reported. The biological activity of these compounds suggests their use as a model of biocatalysts, in which iodine represents the coenzyme active group and starch homopolysaccharides (amylopectin and amylose) represents the apoenzyme.

  1. Bubble-Based Acoustic Radiation Force Using Chirp Insonation to Reduce Standing Wave Effects

    PubMed Central

    Erpelding, Todd N.; Hollman, Kyle W.; O’Donnell, Matthew

    2007-01-01

    Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young’s modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200, and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size. PMID:17306697

  2. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    PubMed

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force. PMID:20040404

  3. Deformation of drop due to radiation pressure of acoustic standing wave

    NASA Astrophysics Data System (ADS)

    Yamanaka, T.; Saito, M.; Kamimura, H.

    To investigate the deformation of a liquid drop due to radiation pressure of acoustic standing waves, an analytical and experimental study was carried out. An approximate axisymmetric figure of equilibrium is obtained. The experimental study was carried out in the laboratory by using a triaxial acoustic chamber. An injection syringe was placed at the center of the triaxial acoustic resonance chamber. Holding a small liquid drop at the pointed end of the syringe, deformations of the liquid drop were measured. Assuming an oblate spheroid for the deformation, the experimental results were compared with theory.

  4. Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.

    1990-01-01

    Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.

  5. Numerical derivation of forces on particles and agglomerates in a resonant acoustic field

    NASA Astrophysics Data System (ADS)

    Knoop, Claas; Fritsching, Udo

    2013-10-01

    Particles and agglomerates are investigated in gaseous acoustic flow fields. Acoustic fields exert forces on solid objects, which can influence the shape of the exposed bodies, even to the point of breakage of the structures. Motivated by experimentally observed breakage of agglomerates in an acoustic levitator (f = 20 kHz), a numerical study is presented that derives the acoustic forces on a complex model agglomerate from the pressure and velocity fields of a resonant standing ultrasound wave, calculated by computational fluid dynamics (CFD). It is distinguished between the drag and lift/lateral forces on the overall agglomerate and on the different primary particles of the model.

  6. Nonlinear effects of flow unsteadiness on the acoustic radiation of a heaving airfoil

    NASA Astrophysics Data System (ADS)

    Manela, Avshalom

    2013-12-01

    The study considers the combined effects of boundary animation (small-amplitude heaving) and incoming flow unsteadiness (incident vorticity) on the vibroacoustic signature of a thin rigid airfoil in low-Mach number flow. The potential-flow problem is analysed using the Brown and Michael equation, yielding the incident vortex trajectory and time evolution of trailing edge wake. The dynamical description serves as an effective source term to evaluate the far-field sound using Powell-Howe analogy. The results identify the fluid-airfoil system as a dipole-type source, and demonstrate the significance of nonlinear eddy-airfoil interactions on the acoustic radiation. Based on the value of scaled heaving frequency ωa/U (with ω the dimensional heaving frequency, a the airfoil half-chord, and U the mean flow speed), the system behaviour can be divided into two characteristic regimes: (i) for ωa/U≪1, the effect of heaving is minor, and the acoustic response is well approximated by considering the interaction of a line vortex with a stationary airfoil; (ii) for ωa/U≫1, the impact of heaving is dominant, radiating sound through an “airfoil motion” dipole oriented along the direction of heaving. In between (for ωa/U~O(1)), an intermediate regime takes place. The results indicate that trailing edge vorticity has a two-fold impact on the acoustic far field: while reducing pressure fluctuations generated by incident vortex interaction with the airfoil, trailing edge vortices transmit sound along the mean-flow direction, characterized by airfoil heaving frequency. The “silencing” effect of trailing edge vorticity is particularly efficient when the incident vortex passes close to the airfoil trailing edge: at that time, application of the Kutta condition implies the release of a trailing edge vortex in the opposite direction to the incident vortex; the released vortex then detaches from the airfoil and follows the incident vortex, forming a “silent” vortex pair

  7. Generation of acoustic waves by focused infrared neodymium-laser radiation

    NASA Astrophysics Data System (ADS)

    Ward, Barry

    1991-02-01

    When the radiation from a sufficiently powerful pulsed laser is focused into the transparent gaseous, liquid or solid media, dielectric breakdown may occur around the beam waist giving rise to a short-lived high-temperature plasma which quickly heats the surrounding material. As a consequence of various energy-coupling mechanisms, this phenomenon causes the emission of one or more high-frequency ultrasonic acoustic waves whose speeds of propagation are dependent upon the physical properties of the host medium. In the high-speed photographic studies described, the 1.06 micron near-infrared radiation from an 8-ns, 10-mJ Q-switched Nd:YAG laser is focused in or onto a variety of fluid and solid materials. The rapid variations in density around the resulting plasma events are visualized using a Mach-Zehnder interferometer with a sub-nanosecond dye-laser light source and a video-imaging system. Calculations of the corresponding transient pressure distributions are then enacted from the digitally-recorded interferograms using a semi-automatic procedure under the control of a personal computer. Measurements of position, displacement, and velocity are also carried out using the same optical apparatus in schlieren and focused shadowgraph high-speed photographic measurements. The experimental work outlined in the following chapters is divided into three broad fields of interest. In the first of these, a study of the laser-generation of spherical shock waves in atmospheric air is carried out. In the second, the neodymium-laser beam is focused onto different solid-fluid interfaces resulting in the formation of bulk longitudinal and shear waves and surface acoustic waves. The interactions of these waves with various obstacles and defects are investigated with reference to their application to non-destructive testing. In the third and most important field, a detailed study of the dynamics of laser-induced cavitation bubbles in water is carried out. With regard to the associated

  8. Orbital motions of bubbles in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shirota, Minori; Yamashita, Ko; Inamura, Takao

    2012-09-01

    This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion on the wall of a spherical levitator was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging technique. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along an elliptic orbit around the center of mass of the bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force.

  9. Acousto-optic effect compensation for optical determination of the normal velocity distribution associated with acoustic transducer radiation.

    PubMed

    Foote, Kenneth G; Theobald, Peter D

    2015-09-01

    The acousto-optic effect, in which an acoustic wave causes variations in the optical index of refraction, imposes a fundamental limitation on the determination of the normal velocity, or normal displacement, distribution on the surface of an acoustic transducer or optically reflecting pellicle by a scanning heterodyne, or homodyne, laser interferometer. A general method of compensation is developed for a pulsed harmonic pressure field, transmitted by an acoustic transducer, in which the laser beam can transit the transducer nearfield. By representing the pressure field by the Rayleigh integral, the basic equation for the unknown normal velocity on the surface of the transducer or pellicle is transformed into a Fredholm equation of the second kind. A numerical solution is immediate when the scanned points on the surface correspond to those of the surface area discretization. Compensation is also made for oblique angles of incidence by the scanning laser beam. The present compensation method neglects edge waves, or those due to boundary diffraction, as well as effects due to baffles, if present. By allowing measurement in the nearfield of the radiating transducer, the method can enable quantification of edge-wave and baffle effects on transducer radiation. A verification experiment has been designed. PMID:26428801

  10. Convergent acoustic field of view in echolocating bats.

    PubMed

    Jakobsen, Lasse; Ratcliffe, John M; Surlykke, Annemarie

    2013-01-01

    Most echolocating bats exhibit a strong correlation between body size and the frequency of maximum energy in their echolocation calls (peak frequency), with smaller species using signals of higher frequency than larger ones. Size-signal allometry or acoustic detection constraints imposed on wavelength by preferred prey size have been used to explain this relationship. Here we propose the hypothesis that smaller bats emit higher frequencies to achieve directional sonar beams, and that variable beam width is critical for bats. Shorter wavelengths relative to the size of the emitter translate into more directional sound beams. Therefore, bats that emit their calls through their mouths should show a relationship between mouth size and wavelength, driving smaller bats to signals of higher frequency. We found that in a flight room mimicking a closed habitat, six aerial hawking vespertilionid species (ranging in size from 4 to 21 g, ref. 5) produced sonar beams of extraordinarily similar shape and volume. Each species had a directivity index of 11 ± 1 dB (a half-amplitude angle of approximately 37°) and an on-axis sound level of 108 ± 4 dB sound pressure level referenced to 20 μPa root mean square at 10 cm. Thus all bats adapted their calls to achieve similar acoustic fields of view. We propose that the necessity for high directionality has been a key constraint on the evolution of echolocation, which explains the relationship between bat size and echolocation call frequency. Our results suggest that echolocation is a dynamic system that allows different species, regardless of their body size, to converge on optimal fields of view in response to habitat and task.

  11. Concurrent Visualization of Acoustic Radiation Force Displacement and Shear Wave Propagation with 7T MRI

    PubMed Central

    Liu, Yu; Fite, Brett Z.; Mahakian, Lisa M.; Johnson, Sarah M.; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W.

    2015-01-01

    Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T) MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm), as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI) provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU) ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable. PMID:26439259

  12. Generation of a reference radiation pattern of string instruments using automatic excitation and acoustic centering.

    PubMed

    Shabtai, Noam R; Behler, Gottfried; Vorländer, Michael

    2015-11-01

    Radiation patterns of musical instruments are important for the understanding of music perception in concert halls, and may be used to improve the plausibility of virtual acoustic systems. Many attempts have been performed to measure the spatial response of musical instruments using surrounding spherical microphone arrays with a limited number of microphones. This work presents a high-resolution spatial sampling of the radiation pattern of an electrically excited violin, and addresses technical problems that arise due to mechanical reasons of the excitation apparatus using acoustic centering.

  13. Tunable optical lens array using viscoelastic material and acoustic radiation force

    SciTech Connect

    Koyama, Daisuke Kashihara, Yuta; Matsukawa, Mami; Hatanaka, Megumi; Nakamura, Kentaro

    2015-10-28

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.

  14. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    SciTech Connect

    Qi, Wenjuan; Li, Rui; Ma, Teng; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  15. Generation of a reference radiation pattern of string instruments using automatic excitation and acoustic centering.

    PubMed

    Shabtai, Noam R; Behler, Gottfried; Vorländer, Michael

    2015-11-01

    Radiation patterns of musical instruments are important for the understanding of music perception in concert halls, and may be used to improve the plausibility of virtual acoustic systems. Many attempts have been performed to measure the spatial response of musical instruments using surrounding spherical microphone arrays with a limited number of microphones. This work presents a high-resolution spatial sampling of the radiation pattern of an electrically excited violin, and addresses technical problems that arise due to mechanical reasons of the excitation apparatus using acoustic centering. PMID:26627818

  16. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    SciTech Connect

    Mitri, F.G.

    2014-03-15

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.

  17. Liver reserve function assessment by acoustic radiation force impulse imaging

    PubMed Central

    Sun, Xiao-Lan; Liang, Li-Wei; Cao, Hui; Men, Qiong; Hou, Ke-Zhu; Chen, Zhen; Zhao, Ya-E

    2015-01-01

    AIM: To evaluate the utility of liver reserve function by acoustic radiation force impulse (ARFI) imaging in patients with liver tumors. METHODS: Seventy-six patients with liver tumors were enrolled in this study. Serum biochemical indexes, such as aminotransferase (ALT), aspartate aminotransferase (AST), serum albumin (ALB), total bilirubin (T-Bil), and other indicators were observed. Liver stiffness (LS) was measured by ARFI imaging, measurements were repeated 10 times, and the average value of the results was taken as the final LS value. Indocyanine green (ICG) retention was performed, and ICG-K and ICG-R15 were recorded. Child-Pugh (CP) scores were carried out based on patient’s preoperative biochemical tests and physical condition. Correlations among CP scores, ICG-R15, ICG-K and LS values were observed and analyzed using either the Pearson correlation coefficient or the Spearman rank correlation coefficient. Kruskal-Wallis test was used to compare LS values of CP scores, and the receiver-operator characteristic (ROC) curve was used to analyze liver reserve function assessment accuracy. RESULTS: LS in the ICG-R15 10%-20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.19 ± 0.27 vs 1.59 ± 0.32, P < 0.01). LS in the ICG-R15 > 20% group was significantly higher than in the ICG-R15 < 10% group; and the difference was statistically significant (2.92 ± 0.29 vs 1.59 ± 0.32, P < 0.01). The LS value in patients with CP class A was lower than in patients with CP class B (1.57 ± 0.34 vs 1.86 ± 0.27, P < 0.05), while the LS value in patients with CP class B was lower than in patients with CP class C (1.86 ± 0.27 vs 2.47 ± 0.33, P < 0.01). LS was positively correlated with ICG-R15 (r = 0.617, P < 0.01) and CP score (r = 0.772, P < 0.01). Meanwhile, LS was negatively correlated with ICG-K (r = -0.673, P < 0.01). AST, ALT and T-Bil were positively correlated with LS, while ALB was negatively

  18. Virtual radiation fields for ALARA determination

    SciTech Connect

    Knight, T.W.; Dalton, G.R.; Tulenko, J.S.

    1995-12-31

    VRF (virtual radiation fields) was developed to accurately predict the radiation dose received by a person or robotic device with minimum effort. Dose calculations are performed using Monte Carlo techniques while the user interacts with the computer via a user-friendly graphical interface. The code has been utilized for the prediction of radiation doses from the Hanford Reservation waste tanks, particularly tank c-106. This paper describes the features of the code and evaluates it`s application to tank c-106.

  19. Acoustic assisted, field-induced strain in ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Peterson, Bradley W.; Feuchtwanger, Jorge; Chambers, Joshua M.; Bono, David; Hall, Steven R.; Allen, Samuel M.; O'Handley, Robert C.

    2004-06-01

    A technique has been developed that uses acoustic energy to assist a magnetic field in driving twin boundary motion in a NiMnGa single crystal. Acoustic assisted magnetic-field-induced strain has been observed to increase the magnetic-field-induced strain response by up to one order of magnitude. This effect is most pronounced for magnetic field drives near the twin boundary threshold field. Increasing frequency of the acoustic wave input is shown to increase strain up to about 4 kHz after which there is a small decline in FSMA strain for higher frequencies.

  20. Characterization of Transducer Performance and Narrowband Transient Ultrasonic Fields in Metals by Rayleigh-Sommerfeld Backpropagation of Compression Acoustic Waves Measured with Double-Pulsed Tv Holography

    NASA Astrophysics Data System (ADS)

    Trillo, Cristina; Doval, Ángel F.; Fernández, José L.; Rodríguez-Gómez, Pablo; López-Vázquez, J. Carlos

    2014-10-01

    This article presents a method aimed at the characterization of the narrowband transient acoustic field radiated by an ultrasonic plane transducer into a homogeneous, isotropic and optically opaque prismatic solid, and the assessment of the performance of the acoustic source. The method relies on a previous technique based on the full-field optical measurement of an acoustic wavepacket at the surface of a solid and its subsequent numerical backpropagation within the material. The experimental results show that quantitative transversal and axial profiles of the complex amplitude of the beam can be obtained at any plane between the measurement and excitation surfaces. The reconstruction of the acoustic field at the transducer face, carried out on a defective transducer model, shows that the method could also be suitable for the nondestructive testing of the performance of ultrasonic sources. In all cases, the measurements were performed with the transducer working under realistic loading conditions.

  1. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  2. On the Feasibility of Quantifying Fibrous Cap Thickness With Acoustic Radiation Force Impulse (ARFI) Ultrasound.

    PubMed

    Czernuszewicz, Tomasz J; Gallippi, Caterina M

    2016-09-01

    Acute cerebrovascular accidents are associated with the rupture of vulnerable atherosclerotic plaques in the carotid arteries. Fibrous cap (FC) thickness has been shown to be an important predictor of plaque rupture but has been challenging to measure accurately with clinical noninvasive imaging modalities. The goals of this investigation were first, to evaluate the feasibility of using transcutaneous acoustic radiation force impulse (ARFI) ultrasound to quantify FC thickness and second, to optimize both imaging and motion-tracking parameters to support such measurements. FCs with varying thickness (0.1-1.0 mm) were simulated using a simple-layered geometry, and their mechanical response to an impulse of radiation force was solved using finite-element method (FEM) modeling. Ultrasound tracking of FEM displacements was performed in Field II utilizing three center frequencies (6, 9, and 12 MHz) and eight motion-tracking kernel lengths ( 0.5λ-4λ). Additionally, FC thickness in two carotid plaques imaged in vivo was measured with ARFI and compared to matched histology. The results of this study demonstrate that 1) tracking pulse frequencies around 12 MHz are necessary to resolve caps around 0.2 mm; 2) large motion-tracking kernel sizes introduce bias into thickness measurements and overestimate the true cap thickness; and 3) color saturation settings on ARFI peak displacement images can impact thickness measurement accuracy substantially. PMID:26955026

  3. The Dynamics of Vapor Bubbles in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    1999-01-01

    In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper examines numerically the validity of some asymptotic-theory predictions such as the existence of two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena therefore play a role for a few cycles at most, and reaching a limit size-if one exists at all-is found to require far more than several tens of thousands of cycles. It is also found that some small bubbles may grow or collapse depending on the phase of the sound field. The model accounts in detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an approximate formulation valid for bubbles small with respect to the thermal penetration length in the vapor is derived and its accuracy examined, The present findings have implications for acoustically enhanced boiling heat transfer and other special applications such as boiling in microgravity.

  4. Core-Shell Particles that are Unresponsive to Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Leão-Neto, J. P.; Lopes, J. H.; Silva, G. T.

    2016-08-01

    We theoretically demonstrate that core-shell particles with a designed cloaking shell can be unresponsive to acoustic radiation force in an inviscid fluid. The core-shell particles' size is assumed to be much smaller than the incident wavelength, i.e., the long-wavelength limit. The cloaking shell should have an optimal thickness with which the radiation force is drastically attenuated or even totally suppressed. We show that absorbing shells (polymer type) do not yield neutrality under the radiation force of traveling waves. Such a restriction does not appear in the case of standing waves. In addition, we establish the conditions for the suppression of the acoustic interaction forces (secondary radiation forces) between two or more cloaked particles.

  5. Acoustical radiation torque and force for spheres and Bessel beam extinction efficiency

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2014-11-01

    The scattering of optical and acoustical beams is relevant to the levitation and manipulation of drops. Here we examine theoretical developments in the acoustical case. We previously showed how the optical theorem for extinction can be extended to invariant beams. The example of a sphere in a Bessel beam facilitates the direct comparison with a circular disc computed using Babinet's principle and the Kirchhoff approximation. In related work, by considering traveling or standing wave first-order vortex beams we previously showed that the radiation torque is the ratio of the absorbed power and the radian acoustic frequency. By modifying the scattering to account for the viscosity of the surrounding fluid in the analysis of the absorbed power, approximations for radiation torque and force are obtained at long wavelengths in special cases and these can be compared with results published elsewhere.

  6. Application of an ultrasonic focusing radiator for acoustic levitation of submillimeter samples

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1981-01-01

    An acoustic apparatus has been specifically developed to handle samples of submillimeter size in a gaseous medium. This apparatus consists of an acoustic levitation device, deployment devices for small liquid and solid samples, heat sources for sample heat treatment, acoustic alignment devices, a cooling system and data-acquisition instrumentation. The levitation device includes a spherical aluminum dish of 12 in. diameter and 0.6 in. thickness, 130 pieces of PZT transducers attached to the back side of the dish and a spherical concave reflector situated in the vicinity of the center of curvature of the dish. The three lowest operating frequencies for the focusing-radiator levitation device are 75, 105 and 163 kHz, respectively. In comparison with other levitation apparatus, it possesses a large radiation pressure and a high lateral positional stability. This apparatus can be used most advantageously in the study of droplets and spherical shell systems, for instance, for fusion target applications.

  7. Application of an ultrasonic focusing radiator for acoustic levitation of submillimeter samples

    SciTech Connect

    Lee, M.C.

    1981-01-01

    An acoustic apparatus has been specifically developed to handle samples of submillimeter size in a gaseous medium. This apparatus consists of an acoustic levitation device, deployment devices for small liquid and solid samples, heat sources for sample heat treatment, acoustic alignment devices, a cooling system and data-acquisition instrumentation. The levitation device includes a spherical aluminum dish of 12'' diameter and 0.6'' thickness, 130 pieces of PZT tranducers attached to the back side of the dish and a spherical concave reflector situated in the vicinity of the center of curvature of the dish. The three lowest operating frequencies for the focusing-radiator levitation device are 75, 105 and 163 kHz, respectively. In comparison with other levitation apparatus, it possesses a large radiation pressure and a high lateral positional stability. This apparatus can be used most advantageously in the study of droplets and spherical shell systems, for instance, for fusion target applications.

  8. Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    2000-01-01

    A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.

  9. Cavitation mapping by sonochemiluminescence with less bubble displacement induced by acoustic radiation force in a 1.2 MHz HIFU.

    PubMed

    Yin, Hui; Qiao, Yangzi; Cao, Hua; Li, Zhaopeng; Wan, Mingxi

    2014-03-01

    An acoustic radiation force counterbalanced appliance was employed to map the cavitation distribution in water. The appliance was made up of a focused ultrasound transducer and an aluminum alloy reflector with the exactly same shape. They were centrosymmetry around the focus of the source transducer. Spatial-temporal dynamics of cavitation bubble clouds in the 1.2 MHz ultrasonic field within this appliance were observed in water. And they were mapped by sonochemiluminescence (SCL) recordings and high-speed photography. There were significant differences in spatial distribution and temporal evolution between normal group and counterbalanced group. The reflector could avoid bubble directional displacement induced by acoustic radiation force under certain electric power (≤50 W). As a result, the SCL intensity in the pre-focal region was larger than that of normal group. In event of high electric power (≥70 W), most of the bubbles were moving in acoustic streaming. When electric power decreased, bubbles kept stable and showed stripe structure in SCL images. Both stationary bubbles and moving bubbles have been captured, and exhibited analytical potential with respect to bubbles in therapeutic ultrasound.

  10. Comparison with Analytical Solution: Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2000-01-01

    An acoustic source inside of a 2-D jet excites an instability wave in the shear layer resulting in sound radiating away from the shear layer. Solve the linearized Euler equations to predict the sound radiation outside of the jet. The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary condition along the x-axis.

  11. Acoustic radiation damping of flat rectangular plates subjected to subsonic flows

    NASA Technical Reports Server (NTRS)

    Lyle, Karen Heitman

    1993-01-01

    The acoustic radiation damping for various isotropic and laminated composite plates and semi-infinite strips subjected to a uniform, subsonic and steady flow has been predicted. The predictions are based on the linear vibration of a flat plate. The fluid loading is characterized as the perturbation pressure derived from the linearized Bernoulli and continuity equations. Parameters varied in the analysis include Mach number, mode number and plate size, aspect ratio and mass. The predictions are compared with existing theoretical results and experimental data. The analytical results show that the fluid loading can significantly affect realistic plate responses. Generally, graphite/epoxy and carbon/carbon plates have higher acoustic radiation damping values than similar aluminum plates, except near plate divergence conditions resulting from aeroelastic instability. Universal curves are presented where the acoustic radiation damping normalized by the mass ratio is a linear function of the reduced frequency. A separate curve is required for each Mach number and plate aspect ratio. In addition, acoustic radiation damping values can be greater than or equal to the structural component of the modal critical damping ratio (assumed as 0.01) for the higher subsonic Mach numbers. New experimental data were acquired for comparison with the analytical results.

  12. Integration of Acoustic Radiation Force and Optical Imaging for Blood Plasma Clot Stiffness Measurement

    PubMed Central

    Wang, Caroline W.; Perez, Matthew J.; Helmke, Brian P.; Viola, Francesco; Lawrence, Michael B.

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  13. Intravascular Ultrasound Catheter to Enhance Microbubble-Based Drug Delivery via Acoustic Radiation Force

    PubMed Central

    Kilroy, Joseph P.; Klibanov, Alexander L.; Wamhoff, Brian R.; Hossack, John A.

    2015-01-01

    Previous research has demonstrated that acoustic radiation force enhances intravascular microbubble adhesion to blood vessels in the presence of flow for molecular-targeted ultrasound imaging and drug delivery. A prototype acoustic radiation force intravascular ultrasound (ARFIVUS) catheter was designed and fabricated to displace a microbubble contrast agent in flow representative of conditions encountered in the human carotid artery. The prototype ARFIVUS transducer was designed to match the resonance frequency of 1.4- to 2.6-μm-diameter microbubbles modeled by an experimentally verified 1-D microbubble acoustic radiation force translation model. The transducer element was an elongated Navy Type I (hard) lead zirconate titanate (PZT) ceramic designed to operate at 3 MHz. Fabricated devices operated with center frequencies of 3.3 and 3.6 MHz with −6-dB fractional bandwidths of 55% and 50%, respectively. Microbubble translation velocities as high as 0.86 m/s were measured using a high-speed streak camera when insonating with the ARFIVUS transducer. Finally, the prototype was used to displace microbubbles in a flow phantom while imaging with a commercial 45-MHz imaging IVUS transducer. A sustained increase of 31 dB in average video intensity was measured following insonation with the ARFIVUS, indicating microbubble accumulation resulting from the application of acoustic radiation force. PMID:23143566

  14. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    PubMed

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  15. Active Path Selection of Fluid Microcapsules in Artificial Blood Vessel by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Masuda, Kohji; Muramatsu, Yusuke; Ueda, Sawami; Nakamoto, Ryusuke; Nakayashiki, Yusuke; Ishihara, Ken

    2009-07-01

    Micrometer-sized microcapsules collapse upon exposure to ultrasound. Use of this phenomenon for a drug delivery system (DDS), not only for local delivery of medication but also for gene therapy, should be possible. However, enhancing the efficiency of medication is limited because capsules in suspension diffuse in the human body after injection, since the motion of capsules in blood flow cannot be controlled. To control the behavior of microcapsules, acoustic radiation force was introduced. We detected local changes in microcapsule density by producing acoustic radiation force in an artificial blood vessel. Furthermore, we theoretically estimated the conditions required for active path selection of capsules at a bifurcation point in the artificial blood vessel. We observed the difference in capsule density at both in the bifurcation point and in alternative paths downstream of the bifurcation point for different acoustic radiation forces. Comparing the experimental results with those obtained theoretically, the conditions for active path selection were calculated from the acoustic radiation force and fluid resistance of the capsules. The possibility of controlling capsule flow towards a specific point in a blood vessel was demonstrated.

  16. Development of anticavitation hydrophone using a titanium front plate: Effect of the titanium front plate in high-intensity acoustic field with generation of acoustic cavitation

    NASA Astrophysics Data System (ADS)

    Shiiba, Michihisa; Okada, Nagaya; Kurosawa, Minoru; Takeuchi, Shinichi

    2016-07-01

    Novel anticavitation hydrophones were fabricated by depositing a hydrothermally synthesized lead zirconate titanate polycrystalline film at the back of a titanium front plate. These anticavitation hydrophones were not damaged by the measurement of the acoustic field formed by a high-intensity focused ultrasound (HIFU) device. Their sensitivity was improved by approximately 20 dB over that of the conventional anticavitation hydrophone by modifying their basic structure and materials. The durability of the anticavitation hydrophone that we fabricated was compared by exposing it to a high-intensity acoustic field at the focal point of the HIFU field and in the water tank of an ultrasound cleaner. Therefore, the effect of the surface of the titanium front plate on acoustic cavitation was investigated by exposing such a surface to the high-intensity acoustic field. We found that the fabricated anticavitation hydrophone was robust and was not damaged easily, even in the focused acoustic field where acoustic cavitation occurs.

  17. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    SciTech Connect

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao E-mail: wangzhibiao@haifu.com.cn; Song, Dan; Lei, Guangrong; Lin, Zhou; Zhang, Dong E-mail: wangzhibiao@haifu.com.cn; Wu, Junru

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  18. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-12-01

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  19. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    SciTech Connect

    Mitri, F. G.

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  20. Acoustic radiation force of a Bessel beam on a porous sphere.

    PubMed

    Azarpeyvand, Mahdi

    2012-06-01

    The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.

  1. Improving Classroom Acoustics (ICA): A Three-Year FM Sound Field Classroom Amplification Study.

    ERIC Educational Resources Information Center

    Rosenberg, Gail Gegg; Blake-Rahter, Patricia; Heavner, Judy; Allen, Linda; Redmond, Beatrice Myers; Phillips, Janet; Stigers, Kathy

    1999-01-01

    The Improving Classroom Acoustics (ICA) special project was designed to determine if students' listening and learning behaviors improved as a result of an acoustical environment enhanced through the use of FM sound field classroom amplification. The 3-year project involved 2,054 students in 94 general education kindergarten, first-, and…

  2. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    SciTech Connect

    Saleem, H.; Haque, Q.

    2015-08-15

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  3. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    NASA Astrophysics Data System (ADS)

    Saleem, H.; Ali, S.; Haque, Q.

    2015-08-01

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Koeteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  4. Computation of Generalized Modal Loads in an Acoustic Field Defined by a Distribution of Correlated Pressures

    NASA Technical Reports Server (NTRS)

    Sepcenko, Valentin

    1989-01-01

    This report is an aid to designers of structures with large area-to-mass ratios that are subject to high acoustic pressures during rocket launches. A means is provided for determining generalized modal loads using AJ-coefficients. AJ-coefficients are a measure of a vibroacoustic coupling between the structure and the acoustic field.

  5. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  6. Acoustic temperature measurement in a rocket noise field.

    PubMed

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.

  7. Acoustic radiation force expressed using complex phase shifts and momentum-transfer cross sections.

    PubMed

    Zhang, Likun; Marston, Philip L

    2016-08-01

    Acoustic radiation force is expressed using complex phase shifts of partial wave scattering functions and the momentum-transfer cross section, herein incorporated into acoustics from quantum mechanisms. Imaginary parts of the phase shifts represent dissipation in the object and/or in the boundary layer adjacent to the object. The formula simplifies the force as summation of functions of complex phase shifts of adjacent partial waves involving differences of real parts and sums of imaginary parts, providing an efficient way of exploring the force parameter-space. The formula for the force is proportional to a generalized momentum-transfer cross section for plane waves and no dissipation. PMID:27586777

  8. SU-E-CAMPUS-T-02: Exploring Radiation Acoustics CT Dosimeter Design Aspects for Proton Therapy

    SciTech Connect

    Alsanea, F; Moskvin, V; Stantz, K

    2014-06-15

    Purpose: Investigate the design aspects and imaging dose capabilities of the Radiation Acoustics Computed Tomography (RA CT) dosimeter for Proton induced acoustics, with the objective to characterize a pulsed pencil proton beam. The focus includes scanner geometry, transducer array, and transducer bandwidth on image quality. Methods: The geometry of the dosimeter is a cylindrical water phantom (length 40cm, radius 15cm) with 71 ultrasound transducers placed along the length and end of the cylinder to achieve a weighted set of projections with spherical sampling. A 3D filtered backprojection algorithm was used to reconstruct the dosimetric images and compared to MC dose distribution. First, 3D Monte Carlo (MC) Dose distributions for proton beam energies (range of 12cm, 16cm, 20cm, and 27cm) were used to simulate the acoustic pressure signal within this scanner for a pulsed proton beam of 1.8x107 protons, with a pulse width of 1 microsecond and a rise time of 0.1 microseconds. Dose comparison within the Bragg peak and distal edge were compared to MC analysis, where the integrated Gaussian was used to locate the 50% dose of the distal edge. To evaluate spatial fidelity, a set of point sources within the scanner field of view (15×15×15cm3) were simulated implementing a low-pass bandwidth response function (0 to 1MHz) equivalent to a multiple frequency transducer array, and the FWHM of the point-spread-function determined. Results: From the reconstructed images, RACT and MC range values are within 0.5mm, and the average variation of the dose within the Bragg peak are within 2%. The spatial resolution tracked with transducer bandwidth and projection angle sampling, and can be kept at 1.5mm. Conclusion: This design is ready for fabrication to start acquiring measurements. The 15 cm FOV is an optimum size for imaging dosimetry. Currently, simulations comparing transducer sensitivity, bandwidth, and proton beam parameters are being evaluated to assess signal-to-noise.

  9. Study on Transient Properties of Levitated Object in Near-Field Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Chen, Chao; Zhao, Chun-Sheng

    2011-12-01

    A new approach to the study on the transient properties of the levitated object in near-field acoustic levitation (NFAL) is presented. In this article, the transient response characteristics, including the levitated height of an object with radius of 24 mm and thickness of 5 mm, the radial velocity and pressure difference of gas at the boundary of clearance between the levitated object and radiating surface (squeeze film), is calculated according to several velocity amplitudes of radiating surface. First, the basic equations in fluid areas on Arbitrary Lagrange—Euler (ALE) form are numerically solved by using streamline upwind petrov galerkin (SUPG) finite elements method. Second, the formed algebraic equations and solid control equations are solved by using synchronous alternating method to gain the transient messages of the levitated object and gas in the squeeze film. Through theoretical and numerical analyses, it is found that there is a oscillation time in the transient process and that the response time does not simply increase with the increasing of velocity amplitudes of radiating surface. More investigations in this paper are helpful for the understanding of the transient properties of levitated object in NFAL, which are in favor of enhancing stabilities and responsiveness of levitated object.

  10. Studies about space radiation promote new fields in radiation biology.

    PubMed

    Ohnishi, Takeo; Takahashi, Akihisa; Ohnishi, Ken

    2002-12-01

    Astronauts are constantly exposed to space radiation of various types of energy with a low dose-rate during long-term stays in space. Therefore, it is important to determine correctly the biological effects of space radiation on human health. Studies about biological the effects at a low dose and a low dose-rate include various aspects of microbeams, bystander effects, radioadaptive responses and hormesis which are important fields in radiation biology. In addition, space radiations contain high linear energy transfer (LET) particles. In particular, neutrons may cause reverse effectiveness at a low dose-rate in comparison to ionizing radiation. We are also interested in p53-centered signal transduction pathways involved in the cell cycle, DNA repair and apoptosis induced by space radiations. We must also study whether the relative biological effectiveness (RBE) of space radiation is affected by microgravity which is another typical component in space. To confirm this, we must prepare centrifuge systems in an International Space Station (ISS). In addition, we must prepare many types of equipment for space experiments in an ISS, because we cannot use conventional equipment from our laboratories. Furthermore, the research for space radiation might give us valuable information about the birth and evolution of life on the Earth. We can also realize the importance of preventing the ozone layer from depletion by the use of exposure equipment to sunlight in an ISS. For these reasons, we desire to educate space researchers of the next generation based on the consideration of the preservation of the Earth from research about space radiation. PMID:12793723

  11. Studies about space radiation promote new fields in radiation biology.

    PubMed

    Ohnishi, Takeo; Takahashi, Akihisa; Ohnishi, Ken

    2002-12-01

    Astronauts are constantly exposed to space radiation of various types of energy with a low dose-rate during long-term stays in space. Therefore, it is important to determine correctly the biological effects of space radiation on human health. Studies about biological the effects at a low dose and a low dose-rate include various aspects of microbeams, bystander effects, radioadaptive responses and hormesis which are important fields in radiation biology. In addition, space radiations contain high linear energy transfer (LET) particles. In particular, neutrons may cause reverse effectiveness at a low dose-rate in comparison to ionizing radiation. We are also interested in p53-centered signal transduction pathways involved in the cell cycle, DNA repair and apoptosis induced by space radiations. We must also study whether the relative biological effectiveness (RBE) of space radiation is affected by microgravity which is another typical component in space. To confirm this, we must prepare centrifuge systems in an International Space Station (ISS). In addition, we must prepare many types of equipment for space experiments in an ISS, because we cannot use conventional equipment from our laboratories. Furthermore, the research for space radiation might give us valuable information about the birth and evolution of life on the Earth. We can also realize the importance of preventing the ozone layer from depletion by the use of exposure equipment to sunlight in an ISS. For these reasons, we desire to educate space researchers of the next generation based on the consideration of the preservation of the Earth from research about space radiation.

  12. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  13. Radiation Entropy and Near-Field Thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  14. Field observation of low-to-mid-frequency acoustic propagation characteristics of an estuarine salt wedge.

    PubMed

    Reeder, D Benjamin

    2016-01-01

    The estuarine environment often hosts a salt wedge, the stratification of which is a function of the tide's range and speed of advance, river discharge volumetric flow rate, and river mouth morphology. Competing effects of temperature and salinity on sound speed in this stratified environment control the degree of acoustic refraction occurring along an acoustic path. A field experiment was carried out in the Columbia River Estuary to test the hypothesis: the estuarine salt wedge is acoustically observable in terms of low-to-mid-frequency acoustic propagation. Linear frequency-modulated acoustic signals in the 500-2000 Hz band were transmitted during the advance and retreat of the salt wedge during May 27-29, 2013. Results demonstrate that the salt wedge front is the dominant physical mechanism controlling acoustic propagation in this environment: received signal energy is relatively stable before and after the passage of the salt wedge front when the acoustic path consists of a single medium (either entirely fresh water or entirely salt water), and suffers a 10-15 dB loss and increased variability during salt wedge front passage. Physical parameters and acoustic propagation modeling corroborate and inform the acoustic observations. PMID:26827001

  15. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields.

    PubMed

    Xu, Tailin; Soto, Fernando; Gao, Wei; Dong, Renfeng; Garcia-Gradilla, Victor; Magaña, Ernesto; Zhang, Xueji; Wang, Joseph

    2015-02-18

    The collective behavior of biological systems has inspired efforts toward the controlled assembly of synthetic nanomotors. Here we demonstrate the use of acoustic fields to induce reversible assembly of catalytic nanomotors, controlled swarm movement, and separation of different nanomotors. The swarming mechanism relies on the interaction between individual nanomotors and the acoustic field, which triggers rapid migration and assembly around the nearest pressure node. Such on-demand assembly of catalytic nanomotors is extremely fast and reversible. Controlled movement of the resulting swarm is illustrated by changing the frequency of the acoustic field. Efficient separation of different types of nanomotors, which assemble in distinct swarming regions, is illustrated. The ability of acoustic fields to regulate the collective behavior of catalytic nanomotors holds considerable promise for a wide range of practical applications. PMID:25634724

  16. Deformation of biological cells in the acoustic field of an oscillating bubble

    PubMed Central

    Zinin, Pavel V.; Allen, John S.

    2009-01-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin et al., Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA, (c) the relative change in the area has a maximum at frequency fK∼12πKA/(ρa3), where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E. coli in which the quality factor of natural vibrations is less than 1 (Q < 1). For bacteria with high value quality factors (Q > 1), the area deformation has a strong peak near a resonance frequency fK; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  17. Deformation of biological cells in the acoustic field of an oscillating bubble.

    PubMed

    Zinin, Pavel V; Allen, John S

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin, Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell's oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell's shell deforms due to a change in the shell area this oscillation depends on the surface area modulus K{A} , (c) the relative change in the area has a maximum at frequency f{K} approximately 1/2pi square root[K{A}(rhoa;{3})] , where a is the cell's radius and rho is its density. It was predicted that deformation of the cell wall at the frequency f{K} is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1). For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency f{K} however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  18. Near and Far Field Acoustic Pressure Skewness in a Heated Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim; Mora, Pablo; Kastner, Jeff; Heeb, Nick; Kailasanath, Kailas; Liu, Junhui; University of Cincinnati Collaboration; Naval Research Laboratory Collaboration

    2012-11-01

    The dominant component of turbulent mixing noise in high speed jets is the Mach wave radiation generated by large turbulent structures in the shear layer The Over-All Sound Pressure Level (OASPL) in the far field peaks in a direction near the Mach wave angle. ``Crackle'' is another important component of high speed jet noise. Crackle cannot be recognized in the spectrum of the acoustic pressure signal, but it appears in the temporal waveform of the pressure as sharply rising peaks. Skewness levels of the pressure and dP/dt have been used as a measure of crackle in high specific thrust engines and rockets. In this paper, we focus on recognizing a technique that identifies the impact of different test conditions on the near-field and far-field statistics of the pressure and dP/dt signals of a supersonic jet with a design Mach number of Md=1.5 produced by a C-D conical nozzle. Cold and hot jets, T0=300K and 600K, are tested at over, design, and under-expanded conditions, with NPRs=2.5, 3.671, 4.5, respectively. Second, Third and Forth order statistics are examined in the near and far fields. Rms, skewness and kurtosis intensity levels and propagation are better identified in the dP/dt than in the pressure signal. Statistics of the dP/dt demonstrate to be a better measure for crackle. Project funded by ONR grant.

  19. Influence of Acoustic Field Structure on Polarization Characteristics of Acousto-optic Interaction in Crystals

    NASA Astrophysics Data System (ADS)

    Muromets, A. V.; Trushin, A. S.

    Influence of acoustic field structure on polarization characteristics of acousto-optic interaction is investigated. It is shown that inhomogeneity of acoustic field and mechanism of ultrasound excitation causes changes in values of acousto-optic figure of merit for ordinary and extraordinary light beams in comparison with theoretic values. The theoretic values were derived under assumption that acoustic wave is homogeneous. Experimental analysis was carried out in acousto-optic cell based on lithium niobate crystal where the acoustic wave propagates at the angle 13 degrees to Z axis of the crystal. We used three different methods of ultrasound generation in the crystal: by means of external piezotransducer, by interdigital transducer and by two sets of electrodes placed on top of the crystal surface. In the latter case, the first pair of the electrodes was directed along X crystal axis, while the second pair of the electrodes was directed orthogonally to X crystal axis and the direction of ultrasound. Obtained values for diffraction efficiencies for ordinary and extraordinary polarized optical beams were qualitatively different which may be caused by spatial inhomogeneity of the generated acoustic waves in the crystal. Structure of acoustic field generated by these sets of electrodes was examined by laser probing. We performed the analysis of the acoustic field intensity using acousto-optic method. A relation of diffraction efficiencies for ordinary and extraordinary light waves was measured during each iteration of the laser probing.

  20. Generation and Radiation of Acoustic Waves from a 2D Shear Layer

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2000-01-01

    A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable. Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the downstream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic. Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of noise. The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness is constant. With the source amplitude small enough, the problem is governed by the following set of linear equations given in dimensional form.

  1. Optical tracking of acoustic radiation force impulse-induced dynamics in a tissue-mimicking phantom

    PubMed Central

    Bouchard, Richard R.; Palmeri, Mark L.; Pinton, Gianmarco F.; Trahey, Gregg E.; Streeter, Jason E.; Dayton, Paul A.

    2009-01-01

    Optical tracking was utilized to investigate the acoustic radiation force impulse (ARFI)-induced response, generated by a 5-MHz piston transducer, in a translucent tissue-mimicking phantom. Suspended 10-μm microspheres were tracked axially and laterally at multiple locations throughout the field of view of an optical microscope with 0.5-μm displacement resolution, in both dimensions, and at frame rates of up to 36 kHz. Induced dynamics were successfully captured before, during, and after the ARFI excitation at depths of up to 4.8 mm from the phantom’s proximal boundary. Results are presented for tracked axial and lateral displacements resulting from on-axis and off-axis (i.e., shear wave) acquisitions; these results are compared to matched finite element method modeling and independent ultrasonically based empirical results and yielded reasonable agreement in most cases. A shear wave reflection, generated by the proximal boundary, consistently produced an artifact in tracked displacement data later in time (i.e., after the initial ARFI-induced displacement peak). This tracking method provides high-frame-rate, two-dimensional tracking data and thus could prove useful in the investigation of complex ARFI-induced dynamics in controlled experimental settings. PMID:19894849

  2. Investigation of Acoustic Fields for the Cassini Spacecraft: Reverberant Versus Launch Environments

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Himelblau, Harry

    2000-01-01

    The characterization and understanding of the acoustic field within a launch vehicle's payload fairing (PLF) is critical to the qualification of a spacecraft and ultimately to the success of its mission. Acoustic measurements taken recently for the Cassini mission have allowed unique opportunities to advance the aerospace industry's knowledge in this field. Prior to its launch, the expected liftoff acoustic environment of the spacecraft was investigated in a full-scale acoustic test of a Titan IV PLF and Cassini simulator in a reverberant test chamber. A major goal of this acoustic ground test was to quantify and verify the noise reduction performance of special barrier blankets that were designed especially to reduce the Cassirii acoustic environment. This paper will describe both the ground test and flight measurements, and compare the Cassini acoustic environment measured during launch with that measured earlier in the ground test. Special emphasis will be given to the noise reduction performance of the barrier blankets and to the acoustic coherence measured within the PLF.

  3. Lift-Off Acoustics Prediction of Clustered Rocket Engines in the Near Field

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Plotkin, Ken

    2010-01-01

    This slide presentation presents a method of predicting acoustics during lift-off of the clustered rocket engines in the near field. Included is a definition of the near field, and the use of deflectors and shielding. There is discussion about the use of PAD, a software system designed to calculate the acoustic levels from the lift of of clustered rocket enginee, including updates to extend the calculation to directivity, water suppression, and clustered nozzles.

  4. Acoustic Field Calculation of Ultrasonic Linear Phased Array Transducers with Curve Surface

    NASA Astrophysics Data System (ADS)

    Xu, Chunguang; Wang, Lijiu; Xiao, Dingguo; Zhou, Shiyuan

    2011-06-01

    The focus law and acoustic field computation method about circular arc linear phased array have been discussed in the paper. Acoustic field of transducers is given by the use of the coordinate transformation and an approximation with rectangle element instead of circular arc element, and was validated using Rayleigh-Sommerfeld Integral and nonparallel multiple Gaussian beam model respectively. The results of two methods match well.

  5. Symmetries of Type N Pure Radiation Fields

    NASA Astrophysics Data System (ADS)

    Ahsan, Zafar; Ali, Musavvir

    2015-05-01

    The geometrical symmetries corresponding to the continuous groups of collineations and motions generated by a null vector l are considered. These symmetries have been translated into the language of Newman-Penrose formalism for pure radiation (PR) type N fields. It is seen that for such fields, conformal, special conformal and homothetic motions degenerate to motion. The concept of free curvature, matter curvature and matter affine collineations have been discussed and the conditions under which PR type N fields admit such collineations have been obtained. Moreover, it is shown that the projective collineation degenerate to matter affine, special projective, conformal, special conformal, null geodesic and special null geodesic collineations. It is also seen that type N pure radiation fields admit Maxwell collineation along the propagation vector l.

  6. Source signature and acoustic field of seismic physical modeling

    NASA Astrophysics Data System (ADS)

    Lin, Q.; Jackson, C.; Tang, G.; Burbach, G.

    2004-12-01

    As an important tool of seismic research and exploration, seismic physical modeling simulates the real world data acquisition by scaling the model, acquisition parameters, and some features of the source generated by a transducer. Unlike the numerical simulation where a point source is easily satisfied, the transducer can't be made small enough for approximating the point source in physical modeling, therefore yield different source signature than the sources applied in the field data acquisition. To better understand the physical modeling data, characterizing the wave field generated by ultrasonic transducers is desirable and helpful. In this study, we explode several aspects of source characterization; including their radiation pattern, directivity, sensitivity and frequency response. We also try to figure out how to improve the acquired data quality, such as minimize ambient noise, use encoded chirp to prevent ringing, apply deterministic deconvolution to enhance data resolution and t-P filtering to remove linear events. We found that the transducer and their wave field, the modeling system performance, as well as material properties of the model and their coupling conditions all play roles in the physical modeling data acquisition.

  7. Location of acoustic radiators and inversion for energy density using radio-frequency sources and thunder recordings

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J. B.; Arechiga, R. O.; Edens, H. E.; Thomas, R. J.

    2011-12-01

    We use radio frequency (VHF) pulse locations mapped with the New Mexico Tech Lightning Mapping Array (LMA) to study the distribution of thunder sources in lightning channels. A least squares inversion is used to fit channel acoustic energy radiation with broadband (0.01 to 500 Hz) acoustic recordings using microphones deployed local (< 10 km) to the lightning. We model the thunder (acoustic) source as a superposition of line segments connecting the LMA VHF pulses. An optimum branching algorithm is used to reconstruct conductive channels delineated by VHF sources, which we discretize as a superposition of finely-spaced (0.25 m) acoustic point sources. We consider total radiated thunder as a weighted superposition of acoustic waves from individual channels, each with a constant current along its length that is presumed to be proportional to acoustic energy density radiated per unit length. Merged channels are considered as a linear sum of current-carrying branches and radiate proportionally greater acoustic energy. Synthetic energy time series for a given microphone location are calculated for each independent channel. We then use a non-negative least squares inversion to solve for channel energy densities to match the energy time series determined from broadband acoustic recordings across a 4-station microphone network. Events analyzed by this method have so far included 300-1000 VHF sources, and correlations as high as 0.5 between synthetic and recorded thunder energy were obtained, despite the presence of wind noise and 10-30 m uncertainty in VHF source locations.

  8. A theoretical study of inertial cavitation from acoustic radiation force impulse (ARFI) imaging and implications for the mechanical index

    PubMed Central

    Church, Charles C.; Labuda, Cecille; Nightingale, Kathryn

    2014-01-01

    The mechanical index (MI) attempts to quantify the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a nonthermal mechanism. The current formulation of the MI implicitly assumes that the acoustic field is generated using the short pulse durations appropriate to B-mode imaging. However, acoustic radiation force impulse (ARFI) imaging employs high-intensity pulses up to several hundred acoustic periods long. The effect of increased pulse durations on the thresholds for inertial cavitation was studied computationally in water, urine, blood, cardiac and skeletal muscle, brain, kidney, liver and skin. The results show that while the effect of pulse duration on cavitation thresholds in the three liquids can be considerable, reducing them by, e.g., 6% – 24% at 1 MHz, the effect in tissue is minor. More importantly, the frequency dependence of the MI appears to be unnecessarily conservative, i.e., that the magnitude of the exponent on frequency could be increased to 0.75. Comparison of these theoretical results with experimental measurements suggests that some tissues do not contain the pre-existing, optimally sized bubbles assumed for the MI. This means that in these tissues the MI is not necessarily a strong predictor of the probability for an adverse biological effect. PMID:25592457

  9. Shape oscillations of acoustically levitated drops in water: Early research with Bob Apfel on modulated radiation pressure

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2001-05-01

    In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.

  10. Modelling of acoustic radiation problems associated with turbomachinery and rotating blades

    NASA Astrophysics Data System (ADS)

    Eversman, W.

    Finite element methods developed for computational predictions of turbofan and propeller acoustic radiation are presented. Account is taken of the disparate acoustic and geometric scales, the complex geometry, sound propagation in a nonuniformly flowing medium, the presence of a lining, and definition of bounds for calculations which are carried out in an unbounded domain. Density and pressure perturbations in the turbofan inlet are modeled with a linearized momentum equation. The sound radiation is represented by the Fourier components, i.e., angular modes. The same nacelle geometry is used for propeller noise, which requires inclusion of acoustic volume sources and forces. A forced convected wave equation for harmonic driving is obtained by combining continuity, momentum and state equations linearized for acoustic perturbations. The weak formulations for the two types of noise generation are solved by the Galerkin method modified with a frontal solver to reduce the required computer time. Model predictions show good agreement with experimental data for the directivity and amplitude of sound from the bellmouth inlet of the NASA-Langley Spinning Mode Synthesizer.

  11. Acoustic temperature measurement in a rocket noise field.

    PubMed

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations. PMID:21117711

  12. The magnetic component of geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field

    NASA Astrophysics Data System (ADS)

    Zhou, Deng

    2016-10-01

    The dispersion relation of geodesic acoustic modes with a magnetic perturbation in the tokamak plasma with an equilibrium radial electric field was derived. The dispersion relation was analyzed for very low field strength. The mode frequency decreases with increasing field strength, which is different from the electrostatic geodesic acoustic mode. There exists an m = 1 magnetic component that is very low when the radial electric field is absent. The ratio between the m = 1 and m = 2 magnetic components increases with strength of the radial electric field for low Mach numbers.

  13. Nonperturbing measurements of spatially distributed underwater acoustic fields using a scanning laser Doppler vibrometer.

    PubMed

    Harland, Andy R; Petzing, Jon N; Tyrer, John R

    2004-01-01

    Localized changes in the density of water induced by the presence of an acoustic field cause perturbations in the localized refractive index. This relationship has given rise to a number of nonperturbing optical metrology techniques for recording measurement parameters from underwater acoustic fields. A method that has been recently developed involves the use of a Laser Doppler Vibrometer (LDV) targeted at a fixed, nonvibrating, plate through an underwater acoustic field. Measurements of the rate of change of optical pathlength along a line section enable the identification of the temporal and frequency characteristics of the acoustic wave front. This approach has been extended through the use of a scanning LDV, which facilitates the measurement of a range of spatially distributed parameters. A mathematical model is presented that relates the distribution of pressure amplitude and phase in a planar wave front with the rate of change of optical pathlength measured by the LDV along a specifically orientated laser line section. Measurements of a 1 MHz acoustic tone burst generated by a focused transducer are described and the results presented. Graphical depictions of the acoustic power and phase distribution recorded by the LDV are shown, together with images representing time history during the acoustic wave propagation.

  14. Numerical calculation of acoustic radiation forces acting on a sphere in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Sepehrirahnama, Shahrokh; Chau, Fook Siong; Lim, Kian-Meng

    2015-12-01

    In this work, a numerical scheme based on multipoles and Stokeslet is proposed for calculating the radiation force acting on a single rigid sphere in a viscous fluid. First-order velocity and pressure are obtained from the multipole series solution, and the volumetric force in the acoustic streaming is subsequently calculated from the first-order velocity and pressure. The acoustic streaming equations are solved using the Stokeslet method within a finite domain descretized by tetrahedral elements. The boundary conditions for streaming are imposed using the weighted residue method to obtain the unknown coefficients in the multipole series expansion for the second-order velocity potentials. The radiation forces obtained from this multipole-Stokeslet method match well with Doinikov's series solution, for a wide range of the sphere size. Compared to the complicated series solution, the multipole-Stokeslet method can be easily implemented without the evaluation of the semi-infinite integrals.

  15. Experimental validation of acoustic radiation force induced shear wave interference patterns.

    PubMed

    Hoyt, Kenneth; Hah, Zaegyoo; Hazard, Chris; Parker, Kevin J

    2012-01-01

    A novel elasticity imaging system founded on the use of acoustic radiation forces from a dual beam arrangement to generate shear wave interference patterns is described. Acquired pulse-echo data and correlation-based techniques were used to estimate the resultant deformation and to visualize tissue viscoelastic response. The use of normal versus axicon focal configurations was investigated for effects on shear wave generation. Theoretical models were introduced and shown in simulation to accurately predict shear wave propagation and interference pattern properties. In a tissue-mimicking phantom, experimental results are in congruence with theoretical predictions. Using dynamic acoustic radiation force excitation, results confirm that shear wave interference patterns can be produced remotely in a particular tissue region of interest (ROI). Overall, preliminary results are encouraging and the system described may prove feasible for interrogating the viscoelastic properties of normal and diseased tissue types.

  16. Three-dimensional visualization of shear wave propagation generated by dual acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.

  17. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    SciTech Connect

    Bassindale, P. G.; Drinkwater, B. W.; Phillips, D. B.; Barnes, A. C.

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces are separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.

  18. Measurement of the space-time correlation function of thermal acoustic radiation

    NASA Astrophysics Data System (ADS)

    Passechnik, V. I.; Anosov, A. A.; Barabanenkov, Yu. N.; Sel'Sky, A. G.

    2003-09-01

    The space-time correlation function of thermal acoustic radiation pressure is measured for a stationary heated source (a narrow plasticine plate). The correlation dependence is obtained by the multiplication of two signals shifted in time with respect to each other and measured by two receivers. The dependence exhibits an oscillating behavior and changes sign when the source is displaced by half the spatial period of the correlation function.

  19. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.

    PubMed

    Ogam, Erick; Depollier, Claude; Fellah, Z E A

    2010-09-01

    Gas-saturated porous skeleton materials such as geomaterials, polymeric and metallic foams, or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss are still few. Accurate acoustic methods of characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we develop an acoustic method for the recovery of the material parameters of a rigid-frame, air-saturated polymeric foam cylinder. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field shows that it is also dependent on the intrinsic acoustic parameters of the porous cylinder, namely, porosity, tortuosity, and flow resistivity (permeability). The inverse problem of the recovery of the flow resistivity and porosity is solved by seeking the minima of the objective functions consisting of the sum of squared residuals of the differences between the experimental and theoretical scattered field data. PMID:20887001

  20. Applications of digital holography in visualized measurement of acoustic and flow fields

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Li, Enpu; Sun, Weiwei; Di, Jianglei

    2010-03-01

    Digital holography allows recording the hologram using digitally imaging devices such as CCD, and reconstructing the holographic image by numerically simulating the diffraction of the hologram. Its main advantages are by which one can directly obtain the complex amplitude distribution of the object field, so that more impersonally measure the detail information of the object field, such as the distribution of the refractive index changing in crystals induced by light irradiation, deformation of the object surface, particle distribution, as well as acoustic field, flow field and temperature distribution in air. In this paper, we summarize the principle and some of our experimental results on the applications of digital holography in visualized measurement of acoustic standing wave (acoustic levitation field), plasma plume and water flow (Karman vortex street) fields.

  1. Applications of digital holography in visualized measurement of acoustic and flow fields

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Li, Enpu; Sun, Weiwei; di, Jianglei

    2009-12-01

    Digital holography allows recording the hologram using digitally imaging devices such as CCD, and reconstructing the holographic image by numerically simulating the diffraction of the hologram. Its main advantages are by which one can directly obtain the complex amplitude distribution of the object field, so that more impersonally measure the detail information of the object field, such as the distribution of the refractive index changing in crystals induced by light irradiation, deformation of the object surface, particle distribution, as well as acoustic field, flow field and temperature distribution in air. In this paper, we summarize the principle and some of our experimental results on the applications of digital holography in visualized measurement of acoustic standing wave (acoustic levitation field), plasma plume and water flow (Karman vortex street) fields.

  2. Direct-field acoustic testing of a flight system : logistics, challenges, and results.

    SciTech Connect

    Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit; Skousen, Troy J.

    2010-10-01

    Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, the test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.

  3. Noise control using a plate radiator and an acoustic resonator

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor)

    1996-01-01

    An active noise control subassembly for reducing noise caused by a source (such as an aircraft engine) independent of the subassembly. A noise radiating panel is bendably vibratable to generate a panel noise canceling at least a portion of the source noise. A piezoceramic actuator plate is connected to the panel. A front plate is spaced apart from the panel and the first plate, is positioned generally between the source noise and the panel, and has a sound exit port. A first pair of spaced-apart side walls each generally abut the panel and the front plate so as to generally enclose a front cavity to define a resonator.

  4. Binding Dynamics of Targeted Microbubbles in Response to Modulated Acoustic Radiation Force

    PubMed Central

    Wang, Shiying; Hossack, John A; Klibanov, Alexander L; Mauldin, F William

    2014-01-01

    Detection of molecular targeted microbubbles plays a foundational role in ultrasound-based molecular imaging and targeted gene or drug delivery. In this paper, an empirical model describing the binding dynamics of targeted microbubbles in response to modulated acoustic radiation forces in large vessels is presented and experimentally verified using tissue-mimicking flow phantoms. Higher flow velocity and microbubble concentration led to faster detaching rates for specifically bound microbubbles (p < 0.001). Higher time-averaged acoustic radiation force intensity led to faster attaching rates and a higher saturation level of specifically bound microbubbles (p < 0.05). The level of residual microbubble signal in targeted experiments after cessation of radiation forces was the only response parameter that was reliably different between targeted and control experiments (p < 0.05). A related parameter, the ratio of residual-to-saturated microbubble signal (Rresid), is proposed as a measurement that is independent of absolute acoustic signal magnitude and therefore able to reliably detect targeted adhesion independently of control measurements (p < 0.01). These findings suggest the possibility of enhanced detection of specifically bound microbubbles in real-time, using relatively short imaging protocols (approximately 3 min), without waiting for free microbubble clearance. PMID:24374866

  5. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2014-03-01

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere's radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study.

  6. NATO TG-53: acoustic detection of weapon firing joint field experiment

    NASA Astrophysics Data System (ADS)

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  7. Adaptive algorithm for active control of high-amplitude acoustic field in resonator

    NASA Astrophysics Data System (ADS)

    Červenka, M.; Bednařík, M.; Koníček, P.

    2008-06-01

    This work is concerned with suppression of nonlinear effects in piston-driven acoustic resonators by means of two-frequency driving technique. An iterative adaptive algorithm is proposed to calculate parameters of the driving signal in order that amplitude of the second harmonics of the acoustic pressure is minimized. Functionality of the algorithm is verified firstly by means of numerical model and secondly, it is used in real computer-controlled experiment. The numerical and experimental results show that the proposed algorithm can be successfully used for generation of high-amplitude shock-free acoustic field in resonators.

  8. Determination of near and far field acoustics for advanced propeller configurations

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Jaeger, S. M.; Kim, J. H.

    1989-01-01

    A method has been studied for predicting the acoustic field of the SR-3 transonic propfan using flow data generated by two versions of the NASPROP-E computer code. Since the flow fields calculated by the solvers include the shock-wave system of the propeller, the nonlinear quadrupole noise source term is included along with the monopole and dipole noise sources in the calculation of the acoustic near field. Acoustic time histories in the near field are determined by transforming the azimuthal coordinate in the rotating, blade-fixed coordinate system to the time coordinate in a nonrotating coordinate system. Fourier analysis of the pressure time histories is used to obtain the frequency spectra of the near-field noise.

  9. Thermo acoustic study of carbon nanotubes in near and far field: Theory, simulation, and experiment

    NASA Astrophysics Data System (ADS)

    Asadzadeh, S. S.; Moosavi, A.; Huynh, C.; Saleki, O.

    2015-03-01

    Carbon nanotube webs exhibit interesting properties when used as thermo-acoustic projectors. This work studies thermo-acoustic effect of these sound sources both in near and far field regions. Based on two alternative forms of the energy equation, we have developed a straightforward formula for calculation of pressure field, which is consistent with experimental data in far field. Also we have solved full 3-D governing equations using numerical methods. Our three-dimensional simulation and experimental data show pressure waves are highly affected by dimensions of sound sources in near field due to interference effects. However, generation of sound waves in far field is independent of projectors area surface. Energy analysis for free standing Thermo-Acoustic (TA) sound sources show that aerogel TA sound sources like CNT based projectors could act more efficiently compared to the other sources in delivering more than 75% of alternative input energy to the medium gas up to a frequency of 1 MHz.

  10. Radiation Effects on Current Field Programmable Technologies

    NASA Technical Reports Server (NTRS)

    Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.

    1997-01-01

    Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.

  11. Customization of the acoustic field produced by a piezoelectric array through interelement delays

    PubMed Central

    Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.

    2008-01-01

    A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369

  12. Haemopoietic cell renewal in radiation fields

    NASA Astrophysics Data System (ADS)

    Fliedner, T. M.; Nothdurft, W.; Tibken, B.; Hofer, E.; Weiss, M.; Kindler, H.

    1994-10-01

    Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a ``turbulence region'' for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a ``blood stem cell bank'' might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container.

  13. Haemopoietic cell renewal in radiation fields.

    PubMed

    Fliedner, T M; Nothdurft, W; Tibken, B; Hofer, E; Weiss, M; Kindler, H

    1994-10-01

    Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a "turbulence region" for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a "blood stem cell bank" might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container. PMID:11539991

  14. Near-Field Imaging with Sound: An Acoustic STM Model

    NASA Astrophysics Data System (ADS)

    Euler, Manfred

    2012-10-01

    The invention of scanning tunneling microscopy (STM) 30 years ago opened up a visual window to the nano-world and sparked off a bunch of new methods for investigating and controlling matter and its transformations at the atomic and molecular level. However, an adequate theoretical understanding of the method is demanding; STM images can be considered quantum theory condensed into a pictorial representation. A hands-on model is presented for demonstrating the imaging principles in introductory teaching. It uses sound waves and computer visualization to create mappings of acoustic resonators. The macroscopic simile is made possible by quantum-classical analogies between matter and sound waves. Grounding STM in acoustic experience may help to make the underlying quantum concepts such as tunneling less abstract to students.

  15. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  16. Radiation, propagtion, fluid-structure coupling; Colloquium on Aeronautical Acoustics, 9th, Compiegne, France, November 14-16, 1984, Reports. Parts 1 & 2

    NASA Astrophysics Data System (ADS)

    Analytical tools which have been devised for examination of acoustic phenomena of interest in aerospace applications are presented. The techniques include a finite element method for elasto-acoustic coupling in a surface, a finite difference model for acoustic propagation in ducts and a variational formulation for acoustic radiation from axisymmetric structures. The situations studied also cover acoustic energy transfer near the ring frequency in a cylinder and in a cylindrical shell excited by a plane wave. Finally, attention is devoted to the propagation of acoustic radiation in a turbomachinery duct.

  17. Radiative instabilities in sheared magnetic field

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Sparks, L.; Van Hoven, G.

    1988-01-01

    The structure and growth rate of the radiative instability in a sheared magnetic field B have been calculated analytically using the Braginskii fluid equations. In a shear layer, temperature and density perturbations are linked by the propagation of sound waves parallel to the local magnetic field. As a consequence, density clumping or condensation plays an important role in driving the instability. Parallel thermal conduction localizes the mode to a narrow layer where K(parallel) is small and stabilizes short wavelengths k larger-than(c) where k(c) depends on the local radiation and conduction rates. Thermal coupling to ions also limits the width of the unstable spectrum. It is shown that a broad spectrum of modes is typically unstable in tokamak edge plasmas and it is argued that this instability is sufficiently robust to drive the large-amplitude density fluctuations often measured there.

  18. Numerical investigation of acoustic radiation from vortex-airfoil interaction

    NASA Astrophysics Data System (ADS)

    Legault, Anne; Ji, Minsuk; Wang, Meng

    2012-11-01

    Numerical simulations of vortices interacting with a NACA 0012 airfoil and a flat-plate airfoil at zero angle of attack are carried out to assess the applicability and accuracy of classical theories. Unsteady lift and sound are computed and compared with the predictions by theories of Sears and Amiet, which assume a thin-plate airfoil in an inviscid flow. A Navier-Stokes solver is used in the simulations, and therefore viscous effects are taken into consideration. For the thin-plate airfoil, the effect of viscosity is negligible. For a NACA 0012 airfoil, the viscous contribution to the unsteady lift and sound mainly comes from coherent vortex shedding in the wake of the airfoil and the interaction of the incoming vortices with the airfoil wake, which become stronger at higher Reynolds numbers for a 2-D laminar flow. When the flow is turbulent at chord Reynolds number of 4 . 8 ×105 , however, the viscous contribution becomes negligible as coherent vortex shedding is not present. Sound radiation from vortex-airfoil interaction at turbulent Reynolds numbers is computed numerically via Lighthill's theory and the result is compared with the predictions of Amiet and Curle. The effect of the airfoil thickness is also examined. Supported by ONR Grant N00014-09-1-1088.

  19. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane.

    PubMed

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas; Bruus, Henrik

    2012-11-01

    We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10 μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming flow, while the motion of the largest particles is dominated by the acoustic radiation force. For all particle sizes we predict theoretically how much of the particle velocity is due to radiation and streaming, respectively. These predictions include corrections for particle-wall interactions and ultrasonic thermoviscous effects and match our measurements within the experimental uncertainty. Finally, we predict theoretically and confirm experimentally that the ratio between the acoustic radiation- and streaming-induced particle velocities is proportional to the actuation frequency, the acoustic contrast factor, and the square of the particle size, while it is inversely proportional to the kinematic viscosity.

  20. Numerical Analysis of the Acoustic Field of Tip-Clearance Flow

    NASA Astrophysics Data System (ADS)

    Alavi Moghadam, S. M.; M. Meinke Team; W. Schröder Team

    2015-11-01

    Numerical simulations of the acoustic field generated by a shrouded axial fan are studied by a hybrid fluid-dynamics-acoustics method. In a first step, large-eddy simulations are performed to investigate the dynamics of tip clearance flow for various tip gap sizes and to determine the acoustic sources. The simulations are performed for a single blade out of five blades with periodic boundary conditions in the circumferential direction on a multi-block structured mesh with 1.4 ×108 grid points. The turbulent flow is simulated at a Reynolds number of 9.36 ×105 at undisturbed inflow condition and the results are compared with experimental data. The diameter and strength of the tip vortex increase with the tip gap size, while simultaneously the efficiency of the fan decreases. In a second step, the acoustic field on the near field is determined by solving the acoustic perturbation equations (APE) on a mesh for a single blade consisting of approx. 9.8 ×108 grid points. The overall agreement of the pressure spectrum and its directivity with measurements confirm the correct identification of the sound sources and accurate prediction of the acoustic duct propagation. The results show that the longer the tip gap size the higher the broadband noise level. Senior Scientist, Institute of Aerodynamics, RWTH Aachen University.

  1. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields.

    PubMed

    Sapozhnikov, Oleg A; Tsysar, Sergey A; Khokhlova, Vera A; Kreider, Wayne

    2015-09-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  2. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields

    PubMed Central

    Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne

    2015-01-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  3. Acoustic noise from volcanoes - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Woulff, G.; Mcgetchin, T. R.

    1976-01-01

    The paper discusses some theoretical aspects of acoustic investigation of volcanoes and describes a field experiment involving the recording, analysis, and interpretation of acoustic radiation from energetic fumaroles at Volcan Acatenango, Guatemala, during mid-January 1973. Particular attention is given to deriving information about the flow velocity of the erupting medium from acoustics as a means to study eruption dynamics. Theoretical considerations suggest that acoustic power radiated during gaseous volcanic eruptions may be related to gas exit velocity according to appropriate power laws. Eruption acoustics proves useful as a means of quantitative monitoring of volcanic activity.

  4. A mapping relationship based near-field acoustic holography with spherical fundamental solutions for Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Wu, Haijun; Jiang, Weikang; Zhang, Haibin

    2016-07-01

    In the procedure of the near-field acoustic holography (NAH) based on the fundamental solutions for Helmholtz equation (FS), the number of FS and the measurement setup to obtain their coefficients are two crucial issues to the successful reconstruction. The current work is motivated to develop a framework for the NAH which supplies a guideline to the determination of the number of FS as well as an optimized measurement setup. A mapping relationship between modes on surfaces of boundary and hologram is analytically derived by adopting the modes as FS in spherical coordinates. Thus, reconstruction is converted to obtain the coefficients of participant modes on holograms. In addition, an integral identity is firstly to be derived for the modes on convex surfaces, which is useful in determining the inefficient or evanescent modes for acoustic radiation in free space. To determine the number of FS adopted in the mapping relationship based NAH (MRS-based NAH), two approaches are proposed to supply reasonable estimations with criteria of point-wise pressure and energy, respectively. A technique to approximate a specific degree of mode on patches by a set of locally orthogonal patterns is explored for three widely used holograms, such as planar, cylindrical and spherical holograms, which results in an automatic determinations of the number and position of experimental setup for a given tolerance. Numerical examples are set up to validate the theory and techniques in the MRS-based NAH. Reconstructions of a cubic model demonstrate the potential of the proposed method for regular models even with corners and shapers. Worse results for the elongated cylinder with two spherical caps reveal the deficiency of the MRS-based NAH for irregular models which is largely due to the adopted modes are FS in spherical coordinates. The NAH framework pursued in the current work provides a new insight to the reconstruction procedure based on the FS in spherical coordinates.

  5. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  6. Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid.

    PubMed

    Silva, Glauber T

    2014-11-01

    Exact formulas of the acoustic radiation force and torque exerted by an arbitrary time-harmonic wave on an absorbing compressible particle that is suspended in an inviscid fluid are presented. It is considered that the particle diameter is much smaller than the incident wavelength, i.e., the so-called Rayleigh scattering limit. Moreover, the particle absorption assumed here is due to the attenuation of compressional waves only. Shear waves inside and outside the particle are neglected, since the inner and outer viscous boundary layer of the particle are supposed to be much smaller than the particle radius. The obtained radiation force formulas are used to establish the trapping conditions of a particle by a single-beam acoustical tweezer based on a spherically focused ultrasound transducer. In this case, it is shown that the particle absorption has a pivotal role in single-beam trapping at the transducer focal region. Furthermore, it is found that only the first-order Bessel vortex beam can generate the radiation torque on a small particle. In addition, numerical evaluation of the radiation force and torque exerted on a benzene and an olive oil droplet suspended in water are presented and discussed. PMID:25373943

  7. Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid.

    PubMed

    Silva, Glauber T

    2014-11-01

    Exact formulas of the acoustic radiation force and torque exerted by an arbitrary time-harmonic wave on an absorbing compressible particle that is suspended in an inviscid fluid are presented. It is considered that the particle diameter is much smaller than the incident wavelength, i.e., the so-called Rayleigh scattering limit. Moreover, the particle absorption assumed here is due to the attenuation of compressional waves only. Shear waves inside and outside the particle are neglected, since the inner and outer viscous boundary layer of the particle are supposed to be much smaller than the particle radius. The obtained radiation force formulas are used to establish the trapping conditions of a particle by a single-beam acoustical tweezer based on a spherically focused ultrasound transducer. In this case, it is shown that the particle absorption has a pivotal role in single-beam trapping at the transducer focal region. Furthermore, it is found that only the first-order Bessel vortex beam can generate the radiation torque on a small particle. In addition, numerical evaluation of the radiation force and torque exerted on a benzene and an olive oil droplet suspended in water are presented and discussed.

  8. Generation of ultrasound radiation force with the use of time reversal acoustics principles

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Armen; Sutin, Alexander

    2005-09-01

    There are numerous medical applications of ultrasound radiation force (RF) which could be made more effective using the time reversal acoustics (TRA) principles. This paper gives an overview of research into physical and technical bases of RF generation in heterogeneous biological media using TRA focusing systems. A custom-designed compact multichannel TRA system for receiving, digitizing, storing, time reversing, and transmitting acoustic signals in a wide frequency range from 0.01 to 10 MHz has been developed and extensively tested in model systems and ex vivo tissues and bones. Shear strain and shear waves remotely induced in soft tissues and bones by radiation force were detected using various acoustical and optical means. Experimental studies fully confirmed the feasibility of TRA generation of RF and demonstrated several advantages over conventional means of remotely inducing shear stress in biological media. These advantages include a possibility to create highly localized (close to diffraction limit) shear stress in heterogeneous media stir focused ultrasound beam in 3-D volume using very simple hardware. [Work supported by NIH grant.

  9. Analyzing panel acoustic contributions toward the sound field inside the passenger compartment of a full-size automobile.

    PubMed

    Wu, Sean F; Moondra, Manmohan; Beniwal, Ravi

    2015-04-01

    The Helmholtz equation least squares (HELS)-based nearfield acoustical holography (NAH) is utilized to analyze panel acoustic contributions toward the acoustic field inside the interior region of an automobile. Specifically, the acoustic power flows from individual panels are reconstructed, and relative contributions to sound pressure level and spectrum at any point of interest are calculated. Results demonstrate that by correlating the acoustic power flows from individual panels to the field acoustic pressure, one can correctly locate the panel allowing the most acoustic energy transmission into the vehicle interior. The panel on which the surface acoustic pressure amplitude is the highest should not be used as indicative of the panel responsible for the sound field in the vehicle passenger compartment. Another significant advantage of this HELS-based NAH is that measurements of the input data only need to be taken once by using a conformal array of microphones in the near field, and ranking of panel acoustic contributions to any field point can be readily performed. The transfer functions between individual panels of any vibrating structure to the acoustic pressure anywhere in space are calculated not measured, thus significantly reducing the time and effort involved in panel acoustic contributions analyses.

  10. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.

    PubMed

    Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F

    2015-09-01

    The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. PMID:25800984

  11. Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field.

    PubMed

    Jiao, Junjie; He, Yong; Yasui, Kyuichi; Kentish, Sandra E; Ashokkumar, Muthupandian; Manasseh, Richard; Lee, Judy

    2015-01-01

    In this study, the coalescence time between two contacting sub-resonance size bubbles was measured experimentally under an acoustic pressure ranging from 10kPa to 120kPa, driven at a frequency of 22.4kHz. The coalescence time obtained under sonication was much longer compared to that calculated by the film drainage theory for a free bubble surface without surfactants. It was found that under the influence of an acoustic field, the coalescence time could be probabilistic in nature, exhibiting upper and lower limits of coalescence times which are prolonged when both the maximum surface approach velocity and secondary Bjerknes force increases. The size of the two contacting bubbles is also important. For a given acoustic pressure, bubbles having a larger average size and size difference were observed to exhibit longer coalescence times. This could be caused by the phase difference between the volume oscillations of the two bubbles, which in turn affects the minimum film thickness reached between the bubbles and the film drainage time. These results will have important implications for developing film drainage theory to account for the effect of bubble translational and volumetric oscillations, bubble surface fluctuations and microstreaming.

  12. Full-Field Imaging of GHz Film Bulk Acoustic Resonator Motion

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Cottle, David Lynn; Larson III, J. D.

    2003-10-01

    A full-field view laser ultrasonic imaging method has been developed that measures acoustic motion at a surface without scanning. Images are recorded at normal video frame rates by using dynamic holography with photorefractive interferometric detection. By extending the approach to ultra high frequencies, an acoustic microscope has been developed that is capable of operation at gigahertz frequency and micron length scales. Both acoustic amplitude and phase are recorded, allowing full calibration and determination of phases to within a single arbitrary constant. Results are presented of measurements at frequencies of 800-900 MHz, illustrating a multitude of normal mode behavior in electrically driven thin film acoustic resonators. Coupled with microwave electrical impedance measurements, this imaging mode provides an exceptionally fast method for evaluation of electric-to-acoustic coupling of these devices and their performance. Images of 256 /spl times/ 240 pixels are recorded at 18 fps rates synchronized to obtain both in-phase and quadrature detection of the acoustic motion. Simple averaging provides sensitivity to the subnanometer level at each pixel calibrated over the image using interferometry. Identification of specific acoustic modes and their relationship to electrical impedance characteristics show the advantages and overall high speed of the technique.

  13. Full-Field Imaging of Acoustic Motion at Nanosecond Time and Micron Length Scales

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Cottle, David Lynn; Larson III, John D.

    2002-10-01

    A full-field view laser ultrasonic imaging method has been developed that measures acoustic motion at a surface without scanning. Images are recorded at normal video frame rates by employing dynamic holography using photorefractive interferometric detection. By extending the approach to ultra high frequencies, an acoustic microscope has been developed capable of operation on the nanosecond time and micron length scales. Both acoustic amplitude and phase are recorded allowing full calibration and determination of phases to within a single arbitrary constant. Results are presented of measurements at frequencies at 800-900 MHz illustrating a multitude of normal mode behavior in electrically driven thin film acoustic resonators. Coupled with microwave electrical impedance measurements, this imaging mode provides an exceptionally fast method for evaluation of electric to acoustic coupling and performance of these devices. Images of 256x240 pixels are recorded at 18Hz rates synchronized to obtain both in-phase and quadrature detection of the acoustic motion. Simple averaging provides sensitivity to the subnanometer level calibrated over the image using interferometry. Identification of specific acoustic modes and their relationship to electrical impedance characteristics show the advantages and overall high speed of the technique.

  14. Recovery of burner acoustic source structure from far-field sound spectra

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Jones, J. D.

    1984-01-01

    A method is presented that permits the thermal-acoustic efficiency spectrum in a long turbulent burner to be recovered from the corresponding far-field sound spectrum. An acoustic source/propagation model is used based on the perturbation solution of the equations describing the unsteady one-dimensional flow of an inviscid ideal gas with a distributed heat source. The technique is applied to a long cylindrical hydrogen-flame burner operating over power levels of 4.5-22.3 kW. The results show that the thermal-acoustic efficiency at a given frequency, defined as the fraction of the total burner power converted to acoustic energy at that frequency, is rather insensitive to burner power, having a maximum value on the order of 10 to the -4th at 150 Hz and rolling off steeply with increasing frequency. Evidence is presented that acoustic agitation of the flame at low frequencies enhances the mixing of the unburned fuel and air with the hot products of combustion. The paper establishes the potential of the technique as a useful tool for characterizing the acoustic source structure in any burner, such as a gas turbine combustor, for which a reasonable acoustic propagation model can be postulated.

  15. Cellular response to modulated radiation fields

    NASA Astrophysics Data System (ADS)

    Claridge Mackonis, E.; Suchowerska, N.; Zhang, M.; Ebert, M.; McKenzie, D. R.; Jackson, M.

    2007-09-01

    Cell survival following exposure to spatially modulated beams, as created by intensity-modulated radiotherapy (IMRT), is investigated. In vitro experiments were performed using malignant melanoma cells (MM576) exposed to a therapeutic megavoltage photon beam. We compared cell survival in modulated fields with cell survival in uniform control fields. Three different spatial modulations of the field were used: a control 'uniform' field in which all cells in a flask were uniformly exposed; a 'quarter' field in which 25% of cells at one end of the flask were exposed and a 'striped' field in which 25% of cells were exposed in three parallel stripes. The cell survival in both the shielded and unshielded regions of the modulated fields, as determined by a clonogenic assay, were compared to the cell survival in the uniform field. We have distinguished three ways in which cell survival is influenced by the fate of neighbouring cells. The first of these (type I effect) is the previously reported classical Bystander effect, where cell survival is reduced when communicating with irradiated cells. We find two new types of Bystander effect. The type II effect is an observed increase in cell survival when nearby cells receive a lethal dose. The type III effect is an increase in the survival of cells receiving a high dose of radiation, when nearby cells receive a low dose. These observations of the Bystander effects emphasize the need for improved radiobiological models, which include communicated effects and account for the effects of modulated dose distribution.

  16. Radiation and Maxwell Stress Stabilization of Liquid Bridges

    NASA Technical Reports Server (NTRS)

    Marr-Lyon, M. J.; Thiessen, D. B.; Blonigen, F. J.; Marston, P. L.

    1999-01-01

    The use of both acoustic radiation stress and the Maxwell stress to stabilize liquid bridges is reported. Acoustic radiation stress arises from the time-averaged acoustic pressure at the surface of an object immersed in a sound field. Both passive and active acoustic stabilization schemes as well as an active electrostatic method are examined.

  17. Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept

    NASA Astrophysics Data System (ADS)

    Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.

    2016-10-01

    This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.

  18. Design of acoustic logging signal source of imitation based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Ju, X. D.; Lu, J. Q.; Men, B. Y.

    2014-08-01

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes.

  19. Thermally induced secondary atomization of droplet in an acoustic field

    NASA Astrophysics Data System (ADS)

    Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-01-01

    We study the thermal effects that lead to instability and break up in acoustically levitated vaporizing fuel droplets. For selective liquids, atomization occurs at the droplet equator under external heating. Short wavelength [Kelvin-Helmholtz (KH)] instability for diesel and bio-diesel droplets triggers this secondary atomization. Vapor pressure, latent heat, and specific heat govern the vaporization rate and temperature history, which affect the surface tension gradient and gas phase density, ultimately dictating the onset of KH instability. We develop a criterion based on Weber number to define a condition for the inception of secondary atomization.

  20. Limited-field radiation for bifocal germinoma

    SciTech Connect

    Lafay-Cousin, Lucie . E-mail: lucie.lafay-cousin@sickkids.ca; Millar, Barbara-Ann; Mabbott, Donald; Spiegler, Brenda; Drake, Jim; Bartels, Ute; Huang, Annie; Bouffet, Eric

    2006-06-01

    Purpose: To report the incidence, characteristics, treatment, and outcomes of bifocal germinomas treated with chemotherapy followed by focal radiation. Methods and Materials: This was a retrospective review. Inclusion criteria included radiologic diagnosis of bifocal germinoma involving the pineal and neurohypophyseal region, no evidence of dissemination on spinal MRI, negative results from cerebrospinal fluid cytologic evaluation, and negative tumor markers. Results: Between 1995 and 2004, 6 patients (5 male, 1 female; median age, 12.8 years) fulfilled the inclusion criteria. All had symptoms of diabetes insipidus at presentation. On MRI, 4 patients had a pineal and suprasellar mass, and 2 had a pineal mass associated with abnormal neurohypophyseal enhancement. All patients received chemotherapy followed by limited-field radiation and achieved complete remission after chemotherapy. The radiation field involved the whole ventricular system (range, 2,400-4,000 cGy) with or without a boost to the primary lesions. All patients remain in complete remission at a median follow-up of 48.1 months (range, 9-73.4 months). Conclusions: This experience suggests that bifocal germinoma can be considered a locoregional rather than a metastatic disease. Chemotherapy and focal radiotherapy might be sufficient to provide excellent outcomes. Staging refinement with new diagnostic tools will likely increase the incidence of the entity.

  1. Orthogonal acoustical factors of a sound field in a bamboo forest.

    PubMed

    Sakai, H; Shibata, S; Ando, Y

    2001-06-01

    To investigate the acoustical quality of a sound field in a bamboo forest, acoustical measurements were conducted to obtain orthogonal acoustical factors of the sound field. These results are compared with previous results for a sound field in an ordinary forest [H. Sakai, S. Sato, and Y. Ando, J. Acoust. Soc. Am. 104, 1491-1497 (1998)]. The IACC, which is defined as a maximum value of the normalized interaural cross-correlation function between signals at the ears, was 0.07 (4 kHz) and 0.16 (2 kHz) at positions 20 and 40 m from the source, respectively. These values are much better than those in the previously investigated forest. The measured subsequent reverberation time Tsub was up to 1.5 s in the frequency range above 1 kHz at the position 40 m from the source. For certain music sources with higher frequency components, therefore, sound fields in a bamboo forest have excellent acoustic properties.

  2. Radiative processes in external gravitational fields

    SciTech Connect

    Papini, Giorgio

    2010-07-15

    Kinematically forbidden processes may be allowed in the presence of external gravitational fields. These can be taken into account by introducing generalized particle momenta. The corresponding transition probabilities can then be calculated to all orders in the metric deviation from the field-free expressions by simply replacing the particle momenta with their generalized counterparts. The procedure applies to particles of any spin and to any gravitational fields. Transition probabilities, emission power, and spectra are, to leading order, linear in the metric deviation. It is also shown how a small dissipation term in the particle wave equations can trigger a strong backreaction that introduces resonances in the radiative process and deeply affects the resulting gravitational background.

  3. Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire

    NASA Astrophysics Data System (ADS)

    Jean, Cyril; Belliard, Laurent; Cornelius, Thomas W.; Thomas, Olivier; Pennec, Yan; Cassinelli, Marco; Toimil-Molares, Maria Eugenia; Perrin, Bernard

    2016-10-01

    The monochromatic and geometrically anisotropic acoustic field generated by 400 nm and 120 nm diameter copper nanowires simply dropped on a 10 $\\mu$m silicon membrane is investigated in transmission using three-dimensional time-resolved femtosecond pump-probe experiments. Two pump-probe time-resolved experiments are carried out at the same time on both side of the silicon substrate. In reflection, the first radial breathing mode of the nanowire is excited and detected. In transmission, the longitudinal and shear waves are observed. The longitudinal signal is followed by a monochromatic component associated with the relaxation of the nanowire's first radial breathing mode. Finite Difference Time Domain (FDTD) simulations are performed and accurately reproduce the diffracted field. A shape anisotropy resulting from the large aspect ratio of the nanowire is detected in the acoustic field. The orientation of the underlying nanowires is thus acoustically deduced.

  4. Active control of acoustic pressure fields using smart material technologies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, R. C.

    1993-01-01

    An overview describing the use of piezoceramic patches in reducing noise in a structural acoustics setting is presented. The passive and active contributions due to patches which are bonded to an Euler-Bernoulli beam or thin shell are briefly discussed and the results are incorporated into a 2-D structural acoustics model. In this model, an exterior noise source causes structural vibrations which in turn lead to interior noise as a result of nonlinear fluid/structure coupling mechanism. Interior sound pressure levels are reduced via patches bonded to the flexible boundary (a beam in this case) which generate pure bending moments when an out-of-phase voltage is applied. Well-posedness results for the infinite dimensional system are discussed and a Galerkin scheme for approximating the system dynamics is outlined. Control is implemented by using linear quadratic regulator (LQR) optimal control theory to calculate gains for the linearized system and then feeding these gains back into the nonlinear system of interest. The effectiveness of this strategy for this problem is illustrated in an example.

  5. Flow Field and Acoustic Predictions for Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  6. Virtual radiation fields for ALARA determination

    SciTech Connect

    Knight, T.W.

    1995-12-31

    As computing power has increased, so too has the ability to model and simulate complex systems and processes. In addition, virtual reality technology has made it possible to visualize and understand many complex scientific and engineering problems. For this reason, a virtual dosimetry program called Virtual Radiation Fields (VRF) is developed to model radiation dose rate and cumulative dose to a receptor operating in a virtual radiation environment. With the design and testing of many facilities and products taking place in the virtual world, this program facilitates the concurrent consideration of radiological concerns during the design process. Three-dimensional (3D) graphical presentation of the radiation environment is made possible through the use of IGRIP, a graphical modeling program developed by Deneb Robotics, Inc. The VRF simulation program was designed to model and display a virtual dosimeter. As a demonstration of the program`s capability, the Hanford tank, C-106, was modeled to predict radiation doses to robotic equipment used to remove radioactive waste from the tank. To validate VRF dose predictions, comparison was made with reported values for tank C-106, which showed agreement to within 0.5%. Graphical information is presented regarding the 3D dose rate variation inside the tank. Cumulative dose predictions were made for the cleanup operations of tank C-106. A four-dimensional dose rate map generated by VRF was used to model the dose rate not only in 3D space but also as a function of the amount of waste remaining in the tank. This allowed VRF to predict dose rate at any stage in the waste removal process for an accurate simulation of the radiological conditions throughout the tank cleanup procedure.

  7. Second harmonic acoustic responses induced in matter by quasi continuous radiofrequency fields

    NASA Astrophysics Data System (ADS)

    Kellnberger, Stephan; Omar, Murad; Sergiadis, George; Ntziachristos, Vasilis

    2013-10-01

    We subjected conductive matter and tissue to intermittent continuous-wave radiofrequency fields and investigated whether acoustic responses could be recorded. By placing samples in the near-field of the excitation, we observed frequency-domain acoustic responses from tissues responding to CW radiofrequency excitation. Frequency analysis revealed the generation of 2nd harmonic mechanical waves. This discovery of non-linear responses can lead to alternative measurement concepts of CW radiofrequency deposition in matter and tissues. We offer the theoretical mainframe and discuss sensing applications involving the direct measurement of second harmonic responses representative of CW RF energy deposition in matter.

  8. Geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field

    SciTech Connect

    Zhou, Deng

    2015-09-15

    The dispersion relation of geodesic acoustic modes in the tokamak plasma with an equilibrium radial electric field is derived and analyzed. Multiple branches of eigenmodes have been found, similar to the result given by the fluid model with a poloidal mass flow. Frequencies and damping rates of both the geodesic acoustic mode and the sound wave increase with respect to the strength of radial electric field, while the frequency and the damping rate of the lower frequency branch slightly decrease. Possible connection to the experimental observation is discussed.

  9. Generation of terahertz radiation via an electromagnetically induced transparency at ion acoustic frequency region in laser-produced dense plasmas.

    PubMed

    Nakagawa, Makoto; Kodama, Ryosuke; Higashiguchi, Takeshi; Yugami, Noboru

    2009-08-01

    Electromagnetically induced transparency is a well-known quantum phenomena that electromagnetic wave controls the refractive index of medium. It enables us to create a passband for low-frequency electromagnetic wave in a dense plasma even if the plasma is opaque for the electromagnetic wave. This technique can be used to prove the ion acoustic wave because the ion acoustic frequency is lower than the plasma frequency. We have investigated a feasibility of electromagnetic radiation at THz region corresponding to the ion acoustic frequency from a dense plasma. We confirmed that the passband is created at about 7.5 THz corresponding to the ion acoustic frequency in the electron plasma density of 10(21) cm(-3) with a Ti:Sapphire laser with the wavelength of 800 nm and the laser intensity of 10(17) W/cm(2). The estimated radiation power is around 1 MW, which is expected to be useful for nonlinear THz science and applications.

  10. Radiation reaction in strong field QED

    NASA Astrophysics Data System (ADS)

    Ilderton, Anton; Torgrimsson, Greger

    2013-10-01

    We derive radiation reaction from QED in a strong background field. We identify, in general, the diagrams and processes contributing to recoil effects in the average momentum of a scattered electron, using perturbation theory in the Furry picture: we work to lowest nontrivial order in α. For the explicit example of scattering in a plane wave background, we compare QED with classical electrodynamics in the limit ℏ → 0, finding agreement with the Lorentz-Abraham-Dirac and Landau-Lifshitz equations, and with Larmor's formula. The first quantum corrections are also presented.

  11. Detection scheme for acoustic quantum radiation in Bose-Einstein condensates.

    PubMed

    Schützhold, Ralf

    2006-11-10

    Based on doubly detuned Raman transitions between (meta)stable atomic or molecular states and recently developed atom counting techniques, a detection scheme for sound waves in dilute Bose-Einstein condensates is proposed whose accuracy might reach down to the level of a few or even single phonons. This scheme could open up a new range of applications including the experimental observation of quantum radiation phenomena such as the Hawking effect in sonic black-hole analogues or the acoustic analogue of cosmological particle creation. PMID:17155600

  12. Estimation of mechanical properties of gelatin using a microbubble under acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Shirota, Eriko; Ando, Keita

    2015-12-01

    This paper is concerned with observations of the translation of a microbubble (80 μm or 137 μm in radius) in a viscoelastic medium (3 w% gelatin), which is induced by acoustic radiation force originating from 1 MHz focused ultrasound. An optical system using a high-speed camera was designed to visualize the bubble translation and deformation. If the bubble remains its spherical shape under the sonication, the bubble translation we observed can be described by theory based on the Voigt model for linear viscoelastic solids; mechanical properties of the gelatin are calculated from measurements of the terminal displacement under the sonication.

  13. Risk of a second cancer from scattered radiation in acoustic neuroma treatment

    NASA Astrophysics Data System (ADS)

    Yoon, Myonggeun; Lee, Hyunho; Sung, Jiwon; Shin, Dongoh; Park, Sungho; Chung, Weon Kuu; Jahng, Geon-Ho; Kim, Dong Wook

    2014-06-01

    The present study aimed to compare the risk of a secondary cancer from scattered and leakage doses in patients receiving intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) of a secondary cancer were estimated using the corresponding secondary doses measured at various organs by using radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, liver, bowel, bladder, prostate (or ovary), and rectum were 14.6, 1.7, 0.9, 0.8, 0.6, 0.6, and 0.6 cGy, respectively, for IMRT whereas they were 19.1, 1.8, 2.0, 0.6, 0.4, 0.4, and 0.4 cGy, respectively, for VMAT, and 22.8, 4.6, 1.4, 0.7, 0.5, 0.5, and 0.5 cGy, respectively, for SRS. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A lifetime attributable risk evaluation estimated that more than 0.03% of acoustic neuroma (AN) patients would get radiation-induced cancer within 20 years of receiving radiation therapy. The organ with the highest radiation-induced cancer risk after radiation treatment for AN was the thyroid. We found that the LAR could be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.

  14. The effects of acoustic radiation force on contrast agents: Experimental and theoretial analysis

    NASA Astrophysics Data System (ADS)

    Dayton, Paul Alexander

    The goal of this research is to understand the response of ultrasound contrast agents to acoustic radiation force. Ultrasound contrast agents are encapsulated microbubbles similar in size and rheologic behavior to human erythrocytes. A core of either air or a high- molecular weight gas makes these microbubbles extremely compressible and highly echogenic. Clinically, the detection of blood is difficult without contrast agents because the echoes from blood cells are typically 30-40 dB less than tissue echoes. Ultrasound contrast agents have been shown to be extremely useful in assisting delineation of perfused tissue in echocardiography, and are being increasingly used for tumor detection in radiology. The high compressibility of gas-filled contrast agents makes these microbubbles susceptible to translation due to radiation force. Thus, it is important to understand the effects of this force in order to avoid erroneous measurements based on the location and flow velocity of microbubbles. In addition, the ability to displace and concentrate microbubbles may be an advantage in targeted imaging, targeted therapy, or industrial applications where it is desired to localize microbubbles in a region. In this study, experimental and theoretical tools are combined to investigate the interaction between microbubbles and an acoustic pulse. Several unique experimental systems allow visualization and analysis of the radius-time curves of individual microbubbles, the displacement of individual microbubbles in-vitro, and the displacement of microbubbles in-vivo. Theoretical analysis illustrates that the effect of radiation force on microbubbles is directly proportional to the product of the bubble volume and the acoustic pressure gradient. A model designed to simulate the radius-time behavior of individual microbubbles is verified from experimental data, and used to estimate the magnitude of radiation force. The resulting bubble translation is determined using a second model

  15. Field installation of an acoustic slug-detection system

    SciTech Connect

    Dhulesia, H.; Bernicot, M.; Romanet, T.

    1997-02-01

    A pipeline operating in the slug flow regime creates high fluctuations in gas and liquid flow rates at the outlet. The detection of slugs and the estimation of their length and velocity are necessary to minimize the upsets in the operation of downstream process facilities. A new method based on the acoustic principle has been developed by Total and Syminex with two variants--passive and active. The passive method gives the slug length and velocity, whereas the active method also gives the fluid density. The prototype of this system has been installed permanently on a 20-in. multiphase pipeline in Argentina. As this system detects the slugs and determines their characteristics approximately 2 minutes before they arrive at the first-stage separator, the operators take appropriate action in the case of arrival of an excessively long slug and, thus, avoid possible shutdowns. At a later stage, an automatic adjustment of the process control valves will be realized.

  16. Sound propagation in and radiation from acoustically lined flow ducts: A comparison of experiment and theory

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr.; Dean, P. D.; Wynne, G. A.; Burrin, R. H.

    1973-01-01

    The results of an experimental and theoretical study of many of the fundamental details of sound propagation in hard wall and soft wall annular flow ducts are reported. The theory of sound propagation along such ducts and the theory for determining the complex radiation impedance of higher order modes of an annulus are outlined, and methods for generating acoustic duct modes are developed. The results of a detailed measurement program on propagation in rigid wall annular ducts with and without airflow through the duct are presented. Techniques are described for measuring cut-on frequencies, modal phase speed, and radial and annular mode shapes. The effects of flow velocity on cut-on frequencies and phase speed are measured. Comparisons are made with theoretical predictions for all of the effects studies. The two microphone method of impedance is used to measure the effects of flow on acoustic liners. A numerical study of sound propagation in annular ducts with one or both walls acoustically lined is presented.

  17. Field support, data analysis and associated research for the acoustic grenade sounding program

    NASA Technical Reports Server (NTRS)

    Barnes, T. G.; Bullard, E. R.

    1976-01-01

    Temperature and horizontal winds in the 30 to 90 km altitude range of the upper atmosphere, were determined by acoustic grenade soundings conducted at Wallops Island, Virginia and Kourou, French Guiana. Field support provided at these locations included deployment of the large area microphone system, supervision, maintenance and operation of sound ranging stations; and coordination of activities. Data analysis efforts included the analysis of field data to determine upper atmospheric meteorological parameters. Profiles for upper atmospheric temperature, wind and density are provided in plots and tables for each of the acoustic grenade soundings conducted during the contract period. Research efforts were directed toward a systematic comparison of temperature data from acoustic grenade with other meteorological sensor probes in the upper atmosphere.

  18. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    SciTech Connect

    Chen, Tao; Fan, Tingbo; Zhang, Wei; Qiu, Yuanyuan; Tu, Juan E-mail: dzhang@nju.edu.cn; Guo, Xiasheng; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2014-03-21

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focused HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.

  19. Electrostatic charging of acoustically suspended dust grains by ultraviolet radiation and by plasma

    SciTech Connect

    Dyer, T.W.

    1992-01-01

    An experimental apparatus was developed for the study of dust grain charging by photoemission and by immersion in plasma. The technique used to do this involved acoustically suspending the dust grains against gravity while they are exposed to the charging influences. The apparatus consisted of a terminated acoustic plane-wave tube coupled to an assembly of microwave equipment for use in the plasma charging studies. The origin of the acoustic force used to levitate the dust grains is a nonlinear dependence of fluid drag on an object with the flow velocity past the object. The effectiveness of the resulting force for the levitation of dust grains against gravity was inversely proportional to both grain radius and grain density. Grains of various materials including metals and silica with diameters ranging from 5 to 90[mu]m were readily levitated in krypton gas at 100 torr. These dust grain parameters and background gas conditions were standard for all of the grain charging. The interaction between a high intensity traveling acoustic wave with a highly collisional microwave producted plasma was investigated. The dominant effect of the acoustic wave on the plasma occurred in the plasma production rate. The resulting audio frequency plasma density fluctuations then propagated away from the production region in both directions as the plasma diffused out from this region against the background gas. In the dust grain charging studies, the steady state charge acquired by the grains was set by a condition on the electrostatic potential of the grains. This was true in both the photoemission charging experiments and the plasma charging studies. All of the grain charge measurements were made by observing the electrophoresis of the grains through the background gas in an externally applied electric field. The mobility of spherical grains varies proportionally with the ratio q/r. The mobility was independent of radius observed in the experiments.

  20. On the acoustic radiation modes of compact regular polyhedral arrays of independent loudspeakers.

    PubMed

    Pasqual, Alexander Mattioli; Martin, Vincent

    2011-09-01

    Compact spherical loudspeaker arrays can be used to provide control over their directivity pattern. Usually, this is made by adjusting the gains of preprogrammed spatial filters corresponding to a finite set of spherical harmonics, or to the acoustic radiation modes of the loudspeaker array. Unlike the former, the latter are closely related to the radiation efficiency of the source and span the subspace of the directivities it can produce. However, the radiation modes depend on frequency for arbitrary distributions of transducers on the sphere, which yields complex directivity filters. This work focuses on the most common loudspeaker array configurations, those following the regular shape of the Platonic solids. It is shown that the radiation modes of these sources are frequency independent, and simple algebraic expressions are derived for their radiation efficiencies. In addition, since such modes are vibration patterns driven by electrical signals, the transduction mechanism of compact multichannel sources is also investigated, which is an important issue, especially if the transducers interact inside a shared cabinet. For Platonic solid loudspeakers, it is shown that the common enclosure does not lead to directivity filters that depend on frequency.

  1. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    PubMed

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  2. Stabilization and Low-Frequency Oscillation of Capillary Bridges with Modulated Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.

    1996-01-01

    In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.

  3. Inhomogeneous Radiation Boundary Conditions Simulating Incoming Acoustic Waves for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Fang, Jun; Kurbatskii, Konstantin A.

    1996-01-01

    A set of nonhomogeneous radiation and outflow conditions which automatically generate prescribed incoming acoustic or vorticity waves and, at the same time, are transparent to outgoing sound waves produced internally in a finite computation domain is proposed. This type of boundary condition is needed for the numerical solution of many exterior aeroacoustics problems. In computational aeroacoustics, the computation scheme must be as nondispersive ans nondissipative as possible. It must also support waves with wave speeds which are nearly the same as those of the original linearized Euler equations. To meet these requirements, a high-order/large-stencil scheme is necessary The proposed nonhomogeneous radiation and outflow boundary conditions are designed primarily for use in conjunction with such high-order/large-stencil finite difference schemes.

  4. A method for characterizing photon radiation fields

    SciTech Connect

    Whicker, J.J.; Hsu, H.H.; Hsieh, F.H.; Borak, T.B.

    1999-04-01

    Uncertainty in dosimetric and exposure rate measurements can increase in areas where multi-directional and low-energy photons (< 100 keV) exist because of variations in energy and angular measurement response. Also, accurate measurement of external exposures in spatially non-uniform fields may require multiple dosimetry. Therefore, knowledge of the photon fields in the workplace is required for full understanding of the accuracy of dosimeters and instruments, and for determining the need for multiple dosimeters. This project was designed to develop methods to characterize photon radiation fields in the workplace, and to test the methods in a plutonium facility. The photon field at selected work locations was characterized using TLDs and a collimated NaI(Tl) detector from which spatial variations in photon energy distributions were calculated from measured spectra. Laboratory results showed the accuracy and utility of the method. Field measurement results combined with observed work patterns suggested the following: (1) workers are exposed from all directions, but not isotropically, (2) photon energy distributions were directionally dependent, (3) stuffing nearby gloves into the glovebox reduced exposure rates significantly, (4) dosimeter placement on the front of the chest provided for a reasonable estimate of the average dose equivalent to workers` torsos, (5) justifiable conclusions regarding the need for multiple dosimetry can be made using this quantitative method, and (6) measurements of the exposure rates with ionization chambers pointed with open beta windows toward the glovebox provided the highest measured rates, although absolute accuracy of the field measurements still needs to be assessed.

  5. Thermal safety simulations of transient temperature rise during acoustic radiation force-based ultrasound elastography.

    PubMed

    Liu, Yunbo; Herman, Bruce A; Soneson, Joshua E; Harris, Gerald R

    2014-05-01

    Ultrasound transient elastography is a new diagnostic imaging technique that uses acoustic radiation force to produce motion in solid tissue via a high-intensity, long-duration "push" beam. In our previous work, we developed analytical models for calculating transient temperature rise, both in soft tissue and at a bone/soft tissue interface, during a single acoustic radiation force impulse (ARFI) imaging frame. The present study expands on these temperature rise calculations, providing applicable range assessment and error analysis for a single ARFI frame. Furthermore, a "virtual source" approach is described for temperature and thermal dose calculation under multiple ARFI frames. By use of this method, the effect of inter-frame cooling duration on temperature prediction is analyzed, and a thermal buildup phenomenon is revealed. Thermal safety assessment indicates that the thermal dose values, especially at the absorptive bone/soft tissue interface, could approach recommended dose thresholds if the cooling interval of multiple-frame ARFI elastography is too short.

  6. Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies.

    PubMed

    Reboud, Julien; Bourquin, Yannyk; Wilson, Rab; Pall, Gurman S; Jiwaji, Meesbah; Pitt, Andrew R; Graham, Anne; Waters, Andrew P; Cooper, Jonathan M

    2012-09-18

    Ultrasonics offers the possibility of developing sophisticated fluid manipulation tools in lab-on-a-chip technologies. Here we demonstrate the ability to shape ultrasonic fields by using phononic lattices, patterned on a disposable chip, to carry out the complex sequence of fluidic manipulations required to detect the rodent malaria parasite Plasmodium berghei in blood. To illustrate the different tools that are available to us, we used acoustic fields to produce the required rotational vortices that mechanically lyse both the red blood cells and the parasitic cells present in a drop of blood. This procedure was followed by the amplification of parasitic genomic sequences using different acoustic fields and frequencies to heat the sample and perform a real-time PCR amplification. The system does not require the use of lytic reagents nor enrichment steps, making it suitable for further integration into lab-on-a-chip point-of-care devices. This acoustic sample preparation and PCR enables us to detect ca. 30 parasites in a microliter-sized blood sample, which is the same order of magnitude in sensitivity as lab-based PCR tests. Unlike other lab-on-a-chip methods, where the sample moves through channels, here we use our ability to shape the acoustic fields in a frequency-dependent manner to provide different analytical functions. The methods also provide a clear route toward the integration of PCR to detect pathogens in a single handheld system. PMID:22949692

  7. Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies

    PubMed Central

    Reboud, Julien; Bourquin, Yannyk; Wilson, Rab; Pall, Gurman S.; Jiwaji, Meesbah; Pitt, Andrew R.; Graham, Anne; Waters, Andrew P.; Cooper, Jonathan M.

    2012-01-01

    Ultrasonics offers the possibility of developing sophisticated fluid manipulation tools in lab-on-a-chip technologies. Here we demonstrate the ability to shape ultrasonic fields by using phononic lattices, patterned on a disposable chip, to carry out the complex sequence of fluidic manipulations required to detect the rodent malaria parasite Plasmodium berghei in blood. To illustrate the different tools that are available to us, we used acoustic fields to produce the required rotational vortices that mechanically lyse both the red blood cells and the parasitic cells present in a drop of blood. This procedure was followed by the amplification of parasitic genomic sequences using different acoustic fields and frequencies to heat the sample and perform a real-time PCR amplification. The system does not require the use of lytic reagents nor enrichment steps, making it suitable for further integration into lab-on-a-chip point-of-care devices. This acoustic sample preparation and PCR enables us to detect ca. 30 parasites in a microliter-sized blood sample, which is the same order of magnitude in sensitivity as lab-based PCR tests. Unlike other lab-on-a-chip methods, where the sample moves through channels, here we use our ability to shape the acoustic fields in a frequency-dependent manner to provide different analytical functions. The methods also provide a clear route toward the integration of PCR to detect pathogens in a single handheld system. PMID:22949692

  8. Adaptive plasticity in wild field cricket's acoustic signaling.

    PubMed

    Bertram, Susan M; Harrison, Sarah J; Thomson, Ian R; Fitzsimmons, Lauren P

    2013-01-01

    Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets, rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus. Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual context they experience.

  9. Field performance of an acoustic scour-depth monitoring system

    USGS Publications Warehouse

    Mason, Jr., Robert R.; Sheppard, D. Max

    1994-01-01

    The Herbert C. Bonner Bridge over Oregon Inlet serves as the only land link between Bodie and Hatteras Islands, part of the Outer Banks of North Carolina. Periodic soundings over the past 30 years have documented channel migration, local scour, and deposition at several pilings that support the bridge. In September 1992, a data-collection system was installed to permit the off-site monitoring of scour at 16 bridge pilings. The system records channel-bed elevations at 15-minute intervals and transmits the data to a satellite receiver. A cellular phone connection also permits downloading and reviewing of the data as they are being collected. A digitally recording, acoustic fathometer is the main component of the system. In November 1993, current velocity, water-surface elevation, wave characteristics, and water temperature measuring instruments were also deployed at the site. Several performance problems relating to the equipment and to the harsh marine environment have not been resolved, but the system has collected and transmitted reliable scour-depth and water-level data.

  10. Bioacoustic Field Research: A Primer to Acoustic Analyses and Playback Experiments With Primates

    PubMed Central

    FISCHER, JULIA; NOSER, RAHEL; HAMMERSCHMIDT, KURT

    2013-01-01

    Acoustic analyses of primate vocalizations as well as playback experiments are staple methods in primatology. Acoustic analyses have been used to investigate the influence of factors such as individuality, context, sex, age, and size on variation in calls. More recent studies have expanded our knowledge on the effects of phylogenetic relatedness and the structure of primate vocal repertoires in general. Complementary playback experiments allow direct testing of hypotheses regarding the attribution of meaning to calls, the cognitive mechanisms underpinning responses, and/or the adaptive value of primate behavior. After briefly touching on the historical background of this field of research, we first provide an introduction to recording primate vocalizations and discuss different approaches to describe primate calls in terms of their temporal and spectral properties. Second, we present a tutorial regarding the preparation, execution, and interpretation of field playback experiments, including a review of studies that have used such approaches to investigate the responses to acoustic variation in calls including the integration of contextual and acoustic information, recognition of kin and social relationships, and social knowledge. Based on the review of the literature and our own experience, we make a number of recommendations regarding the most common problems and pitfalls. The power of acoustic analyses typically hinges on the quality of the recordings and the number of individuals represented in the sample. Playback experiments require profound knowledge of the natural behavior of the animals for solid interpretation; experiments should be conducted sparingly, to avoid habituation of the subjects to the occurrence of the calls; experimenter-blind designs chosen whenever possible; and researchers should brace themselves for long periods of waiting times until the appropriate moments to do the experiment arise. If all these aspects are considered, acoustic analyses

  11. Dynamics of single inclusions in channels with constrictions in the acoustic field

    NASA Astrophysics Data System (ADS)

    Maksimov, A. Yu.; Gubaidullin, A. A.

    2016-10-01

    The process of mobilization of viscous droplets, trapped in the channel with a sinusoidal constriction under the influence of an external acoustic field have been studied. The dependence of the amplitude of acoustic impact from the frequency has been found. The problem of the free longitudinal oscillations of a droplet in the absence of viscous friction forces in the channels with the constrictions was considered. The influence of surface tension, droplet volume and shape of constrictions on the natural frequency of the longitudinal oscillations of a droplet pinned at the constriction of the capillary were studied.

  12. Radiation field formation and monitoring beyond LEO

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.

    This brief review comprises the main features of radiation field formation due to galactic (GCR) and solar cosmic rays (SCR) beyond low Earth orbit (LEO) in the inner Solar system. We also consider the similarities and differences of radiation environment models applicable to the Moon and Mars missions, the main requirements for radiation monitoring, warning, and forecasting techniques for deep space missions. Existing modulation models for GCR provide a possibility to estimate easily the GCR contribution to the radiation field in the interplanetary space, at the Lunar or Martian surfaces. The situation with SCR contribution is much more complicated. For space weather purposes, time profiles of the 10-30 MeV protons in the most of solar proton events (SPE), unfortunately, are often complicated by several factors, especially by interplanetary shocks driven by Coronal Mass Ejections (CME). In particular, the particle-trapping region around the shock may or may not be the region with the highest intensity of solar energetic particles (SEP), depending on whether shock acceleration continues or diminishes with distance. At distances beyond 1 AU there can be interaction or merging of different transient shocks, and the corotating shocks begin to play a role, possibly by re-accelerating some of the SEPs from transient shocks. Also, the source locations, angular distribution and radial gradient of SEP intensity are very important. In a mission to Mars, for example, the radial distance will vary according to the spacecraft trajectory chosen. The flux of SEPs is expected to vary as a power law with radial distance from the Sun, and a power-law exponent of -3 would be expected from magnetic flux tube geometry. Since the radial distance to Mars is ˜1.5 AU, then the flux at the orbit of Mars would be expected to be about 1/3 of the flux at 1.0 AU along the same spiral path in the interplanetary magnetic field (IMF). A consideration of these expected variations suggests that

  13. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-07-01

    This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of

  14. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    SciTech Connect

    Xiong, Jichuan; Xu, Xiaodong E-mail: christ.glorieux@fys.kuleuven.be; Glorieux, Christ E-mail: christ.glorieux@fys.kuleuven.be; Matsuda, Osamu; Cheng, Liping

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  15. Adaptive Plasticity in Wild Field Cricket’s Acoustic Signaling

    PubMed Central

    Bertram, Susan M.; Harrison, Sarah J.; Thomson, Ian R.; Fitzsimmons, Lauren P.

    2013-01-01

    Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets, rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus. Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual context they experience. PMID:23935965

  16. Characterization of the Acoustic Field in Marine Environments with Anthropogenic Noise

    NASA Astrophysics Data System (ADS)

    Guan, Shane

    Most animals inhabit the aquatic environment are acoustical-oriented, due to the physical characteristics of water that favors sound transmission. Many aquatic animals depend on underwater sound to navigate, communicate, find prey, and avoid predators. The degradation of underwater acoustic environment due to human activities is expected to affected these animals' well-being and survival at the population level. This dissertation presents three original studies on the characteristics and behavior of underwater sound fields in three unique marine environments with anthropogenic noises. The first study examines the soundscape of the Chinese white dolphin habitat in Taiwan. Acoustic recordings were made at two coastal shallow water locations, Yunlin and Waisanding, in 2012. Results show that croaker choruses are dominant sound sources in the 1.2--2.4 kHz frequency band for both locations at night, and noises from container ships in the 150--300 Hz frequency band define the relative higher broadband sound levels at Yunlin. Results also illustrate interrelationships among different biotic, abiotic, and anthropogenic elements that shape the fine-scale soundscape in a coastal environment. The second study investigates the inter-pulse sound field during an open-water seismic survey in coastal shallow waters of the Arctic. The research uses continuous acoustic recordings collected from one bottom-mounted hydrophone deployed in the Beaufort Sea in summer 2012. Two quantitative methods were developed to examine the inter-pulse sound field characteristics and its dependence on source distances. Results show that inter-pulse sound field could raise the ambient noise floor by as much as 9 dB, depending on ambient condition and source distance. The third study examines the inter-ping sound field of simulated mid-frequency active sonar in deep waters off southern California in 2013 and 2014. The study used drifting acoustic recorder buoys to collect acoustic data during sonar

  17. New radiation detectors for field measurements

    SciTech Connect

    Bhattacharjie, A.; Quam, W.

    1993-12-31

    Two new types of radiation detectors are discussed; the first is a large area TLD and the second is a high pressure xenon proportional counter. The large area TLD can be used to measure In situ alpha activity with high spatial resolution and high sensitivity. Some field measurements are presented. The high pressure xenon proportional counter (XGPC) is capable of realtime survey work and monitoring of plutonium (through detection of the 60 keV Americium-241 gamma ray) and uranium. Spectral resolution data from the 8 atmosphere proportional counter are presented. In many applications the counting efficiency penalty due to low stopping power of xenon at higher gamma energies can be offset by increasing gas pressure and using physically long counters.

  18. Scattered acoustic field above a grating of non-parallel rectangular cavities

    NASA Astrophysics Data System (ADS)

    Khanfir, A.; Faiz, A.; Ducourneau, J.; Chatillon, J.; Lami, S. Skali

    2016-01-01

    Geometric or acoustical irregularities induces acoustic scattering. In this paper, a generalization of the model proposed by Khanfir et al. [8] (Journal of Sound and Vibration 332 (4) (2013)) to determine the scattered acoustic field above gratings of parallel rectangular cavities is developed, addressing the case of gratings of non-parallel rectangular cavities. The results provided by the model were compared both to numerical results, obtained with the finite element method, and to experimental ones. The observed agreement between the analytical predictions and the numerical and experimental results supports the validity of the proposed model. The coupling between the different cavities was investigated, in order to attain an explanation for its dependence on frequency and on the spacing between cavities.

  19. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  20. Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena).

    PubMed

    Wisniewska, Danuta M; Ratcliffe, John M; Beedholm, Kristian; Christensen, Christian B; Johnson, Mark; Koblitz, Jens C; Wahlberg, Magnus; Madsen, Peter T

    2015-01-01

    Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high-repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here, we show that, like some bats, harbour porpoises can broaden their biosonar beam during the terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase. Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the melon and implemented to accommodate dynamic spatial relationships with prey and acoustic complexity of surroundings. Despite independent evolution and different means of sound generation and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth flexibility has been an important driver in the evolution of echolocation for prey tracking.

  1. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen.

    PubMed

    Gélat, P; Ter Haar, G; Saffari, N

    2012-12-21

    High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach

  2. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen

    NASA Astrophysics Data System (ADS)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2012-12-01

    High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach

  3. SU-E-T-208: Incidence Cancer Risk From the Radiation Treatment for Acoustic Neuroma Patient

    SciTech Connect

    Kim, D; Chung, W; Shin, D; Yoon, M

    2014-06-01

    Purpose: The present study aimed to compare the incidence risk of a secondary cancer from therapeutic doses in patients receiving intensitymodulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Methods: Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their incidnece excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) were estimated using the corresponding therapeutic doses measured at various organs by radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. Results: When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, normal liver, colon, bladder, prostate (or ovary), and rectum were measured. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A LAR were estimated that more than 0.03% of AN patients would get radiation-induced cancer. Conclusion: The tyroid was highest radiation-induced cancer risk after radiation treatment for AN. We found that LAR can be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.

  4. Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array

    PubMed Central

    Alibakhshi, Mohammad A.; Kracht, Jonathan M.; Cleveland, Robin O.; Filoux, Erwan; Ketterling, Jeffrey A.

    2013-01-01

    Piezopolymer-based hydrophone arrays consisting of 20 elements were fabricated and tested for use in measuring the acoustic field from a shock-wave lithotripter. The arrays were fabricated from piezopolymer films and were mounted in a housing to allow submersion into water. The motivation was to use the array to determine how the shot-to-shot variability of the spark discharge in an electrohydraulic lithotripter affects the resulting focused acoustic field. It was found that the dominant effect of shot-to-shot variability was to laterally shift the location of the focus by up to 5 mm from the nominal acoustic axis of the lithotripter. The effect was more pronounced when the spark discharge was initiated with higher voltages. The lateral beamwidth of individual, instantaneous shock waves were observed to range from 1.5 mm to 24 mm. Due to the spatial variation of the acoustic field, the average of instantaneous beamwidths were observed to be 1 to 2 mm narrower than beamwidths determined from traditional single-point measurements that average the pressure measured at each location before computing beamwidth. PMID:23654419

  5. Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system.

    PubMed

    Disotell, Kevin J; Gregory, James W

    2011-07-01

    A pressure-sensitive paint (PSP) system capable of measuring high-frequency acoustic fields with non-periodic, acoustic-level pressure changes is described. As an optical measurement technique, PSP provides the experimenter with a global distribution of pressure on a painted surface. To demonstrate frequency response and enhanced sensitivity to pressure changes, a PSP system consisting of a polymer∕ceramic matrix binder with platinum tetra(pentafluorophenyl) porphyrin (PtTFPP) as the oxygen probe was applied to a wall inside an acoustic resonance cavity excited at 1.3 kHz. A data acquisition technique based on the luminescent decay lifetime of the oxygen sensors excited by a single pulse of light afforded the ability to capture instantaneous pressure fields with no phase-averaging. Superimposed wave-like structures were observed with a wavelength corresponding to a 4.7% difference from the theoretical value for a sound wave emanating from the speaker. High sound pressure cases upwards of 145 dB (re 20 μPa) exhibited skewed nodal lines attributed to a nonlinear acoustic field. The lowest sound pressure level of 125.4 dB--corresponding to an amplitude of 52.7 Pa, or approximately 0.05% of standard sea-level atmospheric pressure--showed that the paint could resolve the spatial details of the mode shape at the given resonance condition.

  6. Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system

    NASA Astrophysics Data System (ADS)

    Disotell, Kevin J.; Gregory, James W.

    2011-07-01

    A pressure-sensitive paint (PSP) system capable of measuring high-frequency acoustic fields with non-periodic, acoustic-level pressure changes is described. As an optical measurement technique, PSP provides the experimenter with a global distribution of pressure on a painted surface. To demonstrate frequency response and enhanced sensitivity to pressure changes, a PSP system consisting of a polymer/ceramic matrix binder with platinum tetra(pentafluorophenyl) porphyrin (PtTFPP) as the oxygen probe was applied to a wall inside an acoustic resonance cavity excited at 1.3 kHz. A data acquisition technique based on the luminescent decay lifetime of the oxygen sensors excited by a single pulse of light afforded the ability to capture instantaneous pressure fields with no phase-averaging. Superimposed wave-like structures were observed with a wavelength corresponding to a 4.7% difference from the theoretical value for a sound wave emanating from the speaker. High sound pressure cases upwards of 145 dB (re 20 μPa) exhibited skewed nodal lines attributed to a nonlinear acoustic field. The lowest sound pressure level of 125.4 dB—corresponding to an amplitude of 52.7 Pa, or approximately 0.05% of standard sea-level atmospheric pressure—showed that the paint could resolve the spatial details of the mode shape at the given resonance condition.

  7. Experimental and theoretical studies on the movements of two bubbles in an acoustic standing wave field.

    PubMed

    Jiao, Junjie; He, Yong; Leong, Thomas; Kentish, Sandra E; Ashokkumar, Muthupandian; Manasseh, Richard; Lee, Judy

    2013-10-17

    When subjected to an ultrasonic standing-wave field, cavitation bubbles smaller than the resonance size migrate to the pressure antinodes. As bubbles approach the antinode, they also move toward each other and either form a cluster or coalesce. In this study, the translational trajectory of two bubbles moving toward each other in an ultrasonic standing wave at 22.4 kHz was observed using an imaging system with a high-speed video camera. This allowed the speed of the approaching bubbles to be measured for much closer distances than those reported in the prior literature. The trajectory of two approaching bubbles was modeled using coupled equations of radial and translational motions, showing similar trends with the experimental results. We also indirectly measured the secondary Bjerknes force by monitoring the acceleration when bubbles are close to each other under different acoustic pressure amplitudes. Bubbles begin to accelerate toward each other as the distance between them gets shorter, and this acceleration increases with increasing acoustic pressure. The current study provides experimental data that validates the theory on the movement of bubbles and forces acting between them in an acoustic field that will be useful in understanding bubble coalescence in an acoustic field.

  8. Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system.

    PubMed

    Disotell, Kevin J; Gregory, James W

    2011-07-01

    A pressure-sensitive paint (PSP) system capable of measuring high-frequency acoustic fields with non-periodic, acoustic-level pressure changes is described. As an optical measurement technique, PSP provides the experimenter with a global distribution of pressure on a painted surface. To demonstrate frequency response and enhanced sensitivity to pressure changes, a PSP system consisting of a polymer∕ceramic matrix binder with platinum tetra(pentafluorophenyl) porphyrin (PtTFPP) as the oxygen probe was applied to a wall inside an acoustic resonance cavity excited at 1.3 kHz. A data acquisition technique based on the luminescent decay lifetime of the oxygen sensors excited by a single pulse of light afforded the ability to capture instantaneous pressure fields with no phase-averaging. Superimposed wave-like structures were observed with a wavelength corresponding to a 4.7% difference from the theoretical value for a sound wave emanating from the speaker. High sound pressure cases upwards of 145 dB (re 20 μPa) exhibited skewed nodal lines attributed to a nonlinear acoustic field. The lowest sound pressure level of 125.4 dB--corresponding to an amplitude of 52.7 Pa, or approximately 0.05% of standard sea-level atmospheric pressure--showed that the paint could resolve the spatial details of the mode shape at the given resonance condition. PMID:21806232

  9. A gearbox fault diagnosis scheme based on near-field acoustic holography and spatial distribution features of sound field

    NASA Astrophysics Data System (ADS)

    Lu, Wenbo; Jiang, Weikang; Yuan, Guoqing; Yan, Li

    2013-05-01

    Vibration signal analysis is the main technique in machine condition monitoring or fault diagnosis, whereas in some cases vibration-based diagnosis is restrained because of its contact measurement. Acoustic-based diagnosis (ABD) with non-contact measurement has received little attention, although sound field may contain abundant information related to fault pattern. A new scheme of ABD for gearbox based on near-field acoustic holography (NAH) and spatial distribution features of sound field is presented in this paper. It focuses on applying distribution information of sound field to gearbox fault diagnosis. A two-stage industrial helical gearbox is experimentally studied in a semi-anechoic chamber and a lab workshop, respectively. Firstly, multi-class faults (mild pitting, moderate pitting, severe pitting and tooth breakage) are simulated, respectively. Secondly, sound fields and corresponding acoustic images in different gearbox running conditions are obtained by fast Fourier transform (FFT) based NAH. Thirdly, by introducing texture analysis to fault diagnosis, spatial distribution features are extracted from acoustic images for capturing fault patterns underlying the sound field. Finally, the features are fed into multi-class support vector machine for fault pattern identification. The feasibility and effectiveness of our proposed scheme is demonstrated on the good experimental results and the comparison with traditional ABD method. Even with strong noise interference, spatial distribution features of sound field can reliably reveal the fault patterns of gearbox, and thus the satisfactory accuracy can be obtained. The combination of histogram features and gray level gradient co-occurrence matrix features is suggested for good diagnosis accuracy and low time cost.

  10. ACOUSTIC RADIATION FORCE-DRIVEN ASSESSMENT OF MYOCARDIAL ELASTICITY USING THE DISPLACEMENT RATIO RATE (DRR) METHOD

    PubMed Central

    Bouchard, Richard R.; Hsu, Stephen J.; Palmeri, Mark L.; Rouze, Ned C.; Nightingale, Kathryn R.; Trahey, Gregg E.

    2011-01-01

    A noninvasive method of characterizing myocardial stiffness could have significant implications in diagnosing cardiac disease. Acoustic radiation force (ARF)–driven techniques have demonstrated their ability to discern elastic properties of soft tissue. For the purpose of myocardial elasticity imaging, a novel ARF-based imaging technique, the displacement ratio rate (DRR) method, was developed to rank the relative stiffnesses of dynamically varying tissue. The basis and performance of this technique was demonstrated through numerical and phantom imaging results. This new method requires a relatively small temporal (<1 ms) and spatial (tenths of mm2) sampling window and appears to be independent of applied ARF magnitude. The DRR method was implemented in two in vivo canine studies, during which data were acquired through the full cardiac cycle by imaging directly on the exposed epicardium. These data were then compared with results obtained by acoustic radiation force impulse (ARFI) imaging and shear wave velocimetry, with the latter being used as the gold standard. Through the cardiac cycle, velocimetry results portray a range of shear wave velocities from 0.76–1.97 m/s, with the highest velocities observed during systole and the lowest observed during diastole. If a basic shear wave elasticity model is assumed, such a velocity result would suggest a period of increased stiffness during systole (when compared with diastole). Despite drawbacks of the DRR method (i.e., sensitivity to noise and limited stiffness range), its results predicted a similar cyclic stiffness variation to that offered by velocimetry while being insensitive to variations in applied radiation force. PMID:21645966

  11. Antifade sonar employs acoustic field diversity to recover signals from multipath fading

    SciTech Connect

    Lubman, D.

    1996-04-01

    Co-located pressure and particle motion (PM) hydrophones together with four-channel diversity combiners may be used to recover signals from multipath fading. Multipath fading is important in both shallow and deep water propagation and can be an important source of signal loss. The acoustic field diversity concept arises from the notion of conservation of signal energy and the observation that in rooms at least, the total acoustic energy density is the sum of potential energy (scalar field-sound pressure) and kinetic energy (vector field-sound PM) portions. One pressure hydrophone determines acoustic potential energy density at a point. In principle, three PM sensors (displacement, velocity, or acceleration) directed along orthogonal axes describe the kinetic energy density at a point. For a single plane wave, the time-averaged potential and kinetic field energies are identical everywhere. In multipath interference, however, potential and kinetic field energies at a point are partitioned unequally, depending mainly on relative signal phases. Thus, when pressure signals are in deep fade, abundant kinetic field signal energy may be available at that location. Performance benefits require a degree of uncorrelated fading between channels. The expectation of nearly uncorrelated fading is motivated from room theory. Performance benefits for sonar limited by independent Rayleigh fading are suggested by analogy to antifade radio. Average SNR can be improved by several decibels, holding time on target is multiplied manifold, and the bit error rate for data communication is reduced substantially. {copyright} {ital 1996 American Institute of Physics.}

  12. Radiation field formation and monitoring beyond LEO

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.

    This brief review comprises the main features of radiation field formation due to galactic (GCR) and solar cosmic rays (SCR) beyond LEO in the inner Solar system. We also consider the similarities and differences of radiation environment models applicable to the Moon and the Mars missions, the main requirements for radiation monitoring, warning and forecasting techniques for deep space missions. Existing modulation models for GCR provide a possibility to estimate easily the GCR contribution to the radiation field in the interplanetary space, at the lunar or Martian surfaces; the situation with SCR contribution is much more complicated. For space weather purposes, time profiles of the 10-30 MeV protons, unfortunately, are often complicated by several factors, especially by interplanetary shocks driven by Coronal Mass Ejections (CME). In particular, the particle-trapping region around the shock may or may not be the region with the highest SEP intensity, depending on whether shock acceleration continues or diminishes with distance. At distances beyond 1 AU there can be interaction or merging of different transient shocks, and the corotating shocks begin to play a role, possibly by re-accelerating some of the SEPs from transient shocks. Also, the source locations, angular distribution and radial gradient of SEP intensity are very important. In a mission to Mars, for example, the radial distance will vary according to the spacecraft trajectory chosen. The flux of SEPs is expected to vary as a power law with radial distance from the Sun, and a power-law exponent of -3 would be expected from magnetic flux tube geometry. Since the radial distance to Mars is ˜ 1.5 AU, then the flux at the orbit of Mars would be expected to be about 1/3 of the flux at 1.0 AU along the same spiral path. A consideration of these expected variations suggests that the proton prediction problem for Mars is not dramatically different from the Earth. Autonomous sensors on board the spacecraft

  13. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  14. Finite series expansion of a Gaussian beam for the acoustic radiation force calculation of cylindrical particles in water.

    PubMed

    Zhang, Xiaofeng; Song, Zhiguang; Chen, Dongmei; Zhang, Guangbin; Cao, Hui

    2015-04-01

    This paper focuses on studying the interaction between an acoustical Gaussian beam and cylindrical particles. Based on the finite series method, the Gaussian beam is expanded as cylindrical functions and the beam coefficient of a Gaussian beam is obtained. An expression for the acoustic radiation force function that is the radiation force per unit energy density and unit cross-sectional surface area for a cylinder in a Gaussian beam is presented. Numerical results for the radiation force function of a Gaussian beam are presented for rigid cylinders, liquid cylinders, elastic cylinders, and viscoelastic cylinders to illustrate the theory. The radiation force function versus the dimensionless frequency ka (where k is the wave number and a is the radius of the cylinder) are discussed for different beam waists. The simulation results show the differences from those of a plane wave when the beam waist w0≤5λ (where λ is the wave length). The beam waist has no effects on the radiation force function when ka<1, while the beam waist has greater effects when ka>1. The radiation force function reaches the plane wave limit when w0>5λ. The acoustic radiation force function is also determined by the parameters of the particles.

  15. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    PubMed

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  16. Generation and Radiation of Acoustic Waves from a 2-D Shear Layer using the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    In the present work, the generation and radiation of acoustic waves from a 2-D shear layer problem is considered. An acoustic source inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation. The numerical solution is obtained by solving the Euler equations using the space time conservation element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All other conditions are the same except that the Crocco's relation has a slightly different form. In the following, after a brief sketch of the CE/SE method, the numerical results for this problem are presented.

  17. Applications of finite and wave envelope element approximations to acoustic radiation from turbofan engine inlets in flight

    NASA Astrophysics Data System (ADS)

    Parrett, A. V.

    1984-12-01

    The problem of acoustic radiation from turbofan engine inlets in flow has not lent itself fully to analysis by numerical means because of the large domains and high frequencies involved. The use of finite elements and wave envelope elements, elements which simulate decay and wavelike behavior in their interpolation functions were extended from the no-flow case in which they were proven, to cases incorporating mean flow. By employing an irrotational mean flow assumption, the acoustics problem was posed in axisymmetric formulation in terms of acoustic velocity potential, thus minimizing computer solution storage requirements. The results obtained from the numerical procedures agree well with known analytical solutions and static jet engine inflow experimental data. Some discrepancy with flight test data exists but the combined finite element-wave envelope element solution radiation directivity trends are in good agreement with analytical predictions.

  18. Secondary emission and acoustic-phonon scattering induced by strong magnetic fields in multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Sapega, V. F.; Belitsky, V. I.; Ruf, T.; Fuchs, H. D.; Cardona, M.; Ploog, K.

    1992-12-01

    A strong increase of low-frequency Raman scattering has been observed in GaAs/AlxGa1-xAs multiple quantum wells in magnetic fields up to 14 T. The spectra, consisting of background scattering, folded acoustic phonons, and additional features, show resonant behavior with respect to the laser frequency and the strength of the magnetic field. The broad background, usually related to geminate recombination, has its origin in a continuum of Raman processes with the emission of longitudinal-acoustic phonons where crystal momentum is not conserved. Such processes can become dominant when interface fluctuations allow for resonant scattering in individual quantum wells only. Thus phonons with all possible energies contribute to the background scattering efficiency. The observed folded longitudinal-acoustic phonons are in good agreement with calculated frequencies. Additional features, detected in all samples measured, are attributed to local vibrational modes tied to the gaps at the folded Brillouin-zone center and edge. Other peculiarities observed correspond to modes localized at crossings of the folded longitudinal- and transverse-acoustic branches inside the Brillouin zone. The appearance of these local modes is attributed to fluctuations in the well and barrier thicknesses of the quantum wells.

  19. Acoustic structures in the near-field from clustered rocket nozzles

    NASA Astrophysics Data System (ADS)

    Canchero, Andres; Tinney, Charles E.; Murray, Nathan E.; Ruf, Joseph H.

    2014-11-01

    The plume and acoustic field produced by a cluster of two and four rocket nozzles is visualized by way of retroreflective shadowgraphy. Steady state and transient operations (startup/shutdown) were conducted in the fully-anechoic chamber and open jet facility of The University of Texas at Austin. The laboratory scale rocket nozzles comprise thrust-optimized parabolic contours, which during start-up, experience free shock separated flow, restricted shock separated flow and an end-effects regime prior to flowing full. Shadowgraphy images with synchronized surveys of the acoustic loads produced in close vicinity to the rocket clusters and wall static pressure profiles are first compared with several RANS simulations during steady operations. A Proper Orthogonal Decomposition of various regions in the shadowgraphy images is then performed to elucidate the prominent features residing in the supersonic annular flow region, the acoustic near field and the interaction zone that resides between the nozzle plumes. POD modes are used to detect propagation paths of the acoustic waves and shock cell structures in the supersonic shear layer. Spectral peak frequencies on the propagation paths are associated with the shock cell length, which are responsible for generating broadband shock noise. Aerospace Engineering & Engineering Mechanics.

  20. Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field

    NASA Technical Reports Server (NTRS)

    Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)

    2001-01-01

    Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.

  1. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.

    PubMed

    Lamprecht, Andreas; Lakämper, Stefan; Baasch, Thierry; Schaap, Iwan A T; Dual, Jurg

    2016-07-01

    Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 μm beads, resulting in an effective stiffness of 2.6 nN m(-1) for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs. PMID:27302661

  2. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.

    PubMed

    Lamprecht, Andreas; Lakämper, Stefan; Baasch, Thierry; Schaap, Iwan A T; Dual, Jurg

    2016-07-01

    Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 μm beads, resulting in an effective stiffness of 2.6 nN m(-1) for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs.

  3. Applications of whole field interferometry in mechanics and acoustics

    NASA Astrophysics Data System (ADS)

    Molin, Nils-Erik

    1999-07-01

    A description is given of fringe formation in holographic interferometry, in electronic speckle pattern interferometry, in electro-optic or TV holography and for a newly developed system for pulsed TV-holography. A numerical example, which simulates the equations describing the different techniques, is included. A strain measuring system using defocused digital speckle photography is described. Experiments showing mode shapes of musical instruments, transient bending wave propagation in beams and plates as well as sound pressure fields in air are included.

  4. Measurement of Elastic Properties of Tissue by Shear Wave Propagation Generated by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Marie Tabaru,; Takashi Azuma,; Kunio Hashiba,

    2010-07-01

    Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young’s moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young’s modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.

  5. Measurement of Elastic Properties of Tissue by Shear Wave Propagation Generated by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio

    2010-07-01

    Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.

  6. Output of acoustical sources. [effects of structural elements and background flow on immobile multipolar point radiation

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1980-01-01

    Acoustic radiation from a source, here viewed as an immobile point singularity with periodic strength and a given multipolar nature, is affected by the presence of nearly structural elements (e.g., rigid or impedance surfaces) as well as that of a background flow in the medium. An alternative to the conventional manner of calculating the net source output by integrating the energy flux over a distant control surface is described; this involves a direct evaluation of the secondary wavefunction at the position of the primary source and obviates the need for a (prospectively difficult) flux integration. Various full and half-planar surface configurations with an adjacent source are analyzed in detail, and the explicit results obtained, in particular, for the power factor of a dipole brings out a substantial rise in its output as the source nears the sharp edge of a half-plane.

  7. Jitter reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection

    PubMed Central

    Kang, Bong Jin; Yoon, Changhan; Man Park, Jin; Hwang, Jae Youn; Shung, K. Kirk

    2015-01-01

    We demonstrate a jitter noise reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), which promises to be capable of measuring cell mechanics. To reduce the jitter noise induced by Q-switched pulsed laser operated at high repetition frequency, photoacoustic signals from the surface of an ultrasound transducer are aligned by cross-correlation and peak-to-peak detection, respectively. Each method is then employed to measure the displacements of a target sample in an agar phantom and a breast cancer cell due to ARFI application, followed by the quantitative comparison between their performances. The suggested methods for PA-ARFI significantly reduce jitter noises, thus allowing us to measure displacements of a target cell due to ARFI application by less than 3 μm. PMID:26367579

  8. Acoustic wavefield and Mach wave radiation of flashing arcs in strombolian explosion measured by image luminance

    NASA Astrophysics Data System (ADS)

    Genco, Riccardo; Ripepe, Maurizio; Marchetti, Emanuele; Bonadonna, Costanza; Biass, Sebastien

    2014-10-01

    Explosive activity often generates visible flashing arcs in the volcanic plume considered as the evidence of the shock-front propagation induced by supersonic dynamics. High-speed image processing is used to visualize the pressure wavefield associated with flashing arcs observed in strombolian explosions. Image luminance is converted in virtual acoustic signal compatible with the signal recorded by pressure transducer. Luminance variations are moving with a spherical front at a 344.7 m/s velocity. Flashing arcs travel at the sound speed already 14 m above the vent and are not necessarily the evidence of a supersonic explosive dynamics. However, seconds later, the velocity of small fragments increases, and the spherical acousto-luminance wavefront becomes planar recalling the Mach wave radiation generated by large scale turbulence in high-speed jet. This planar wavefront forms a Mach angle of 55° with the explosive jet axis, suggesting an explosive dynamics moving at Mo = 1.22 Mach number.

  9. Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps.

    PubMed

    Chiloyan, Vazrik; Garg, Jivtesh; Esfarjani, Keivan; Chen, Gang

    2015-01-01

    When the separation of two surfaces approaches sub-nanometre scale, the boundary between the two most fundamental heat transfer modes, heat conduction by phonons and radiation by photons, is blurred. Here we develop an atomistic framework based on microscopic Maxwell's equations and lattice dynamics to describe the convergence of these heat transfer modes and the transition from one to the other. For gaps >1 nm, the predicted conductance values are in excellent agreement with the continuum theory of fluctuating electrodynamics. However, for sub-nanometre gaps we find the conductance is enhanced up to four times compared with the continuum approach, while avoiding its prediction of divergent conductance at contact. Furthermore, low-frequency acoustic phonons tunnel through the vacuum gap by coupling to evanescent electric fields, providing additional channels for energy transfer and leading to the observed enhancement. When the two surfaces are in or near contact, acoustic phonons become dominant heat carriers. PMID:25849305

  10. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties.

    PubMed

    James, Kevin R; Dowling, David R

    2008-09-01

    In underwater acoustics, the accuracy of computational field predictions is commonly limited by uncertainty in environmental parameters. An approximate technique for determining the probability density function (PDF) of computed field amplitude, A, from known environmental uncertainties is presented here. The technique can be applied to several, N, uncertain parameters simultaneously, requires N+1 field calculations, and can be used with any acoustic field model. The technique implicitly assumes independent input parameters and is based on finding the optimum spatial shift between field calculations completed at two different values of each uncertain parameter. This shift information is used to convert uncertain-environmental-parameter distributions into PDF(A). The technique's accuracy is good when the shifted fields match well. Its accuracy is evaluated in range-independent underwater sound channels via an L(1) error-norm defined between approximate and numerically converged results for PDF(A). In 50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at frequencies between 100 and 800 Hz, and for ranges from 1 to 8 km, 95% of the approximate field-amplitude distributions generated L(1) values less than 0.52 using only two field calculations. Obtaining comparable accuracy from traditional methods requires of order 10 field calculations and up to 10(N) when N>1.

  11. Radiation burst from a single {gamma}-photon field

    SciTech Connect

    Shakhmuratov, R. N.; Vagizov, F.; Kocharovskaya, O.

    2011-10-15

    The radiation burst from a single {gamma}-photon field interacting with a dense resonant absorber is studied theoretically and experimentally. This effect was discovered for the fist time by P. Helisto et al.[Phys. Rev. Lett. 66, 2037 (1991)] and it was named the ''gamma echo''. The echo is generated by a 180 Degree-Sign phase shift of the incident radiation field, attained by an abrupt change of the position of the absorber with respect to the radiation source during the coherence time of the photon wave packet. Three distinguishing cases of the gamma echo are considered; i.e., the photon is in exact resonance with the absorber, close to resonance (on the slope of the absorption line), and far from resonance (on the far wings of the resonance line). In resonance the amplitude of the radiation burst is two times larger than the amplitude of the input radiation field just before its phase shift. This burst was explained by Helisto et al. as a result of constructive interference of the coherently scattered field with the phase-shifted input field, both having almost the same amplitude. We found that out of resonance the scattered radiation field acquires an additional component with almost the same amplitude as the amplitude of the incident radiation field. The phase of the additional field depends on the optical thickness of the absorber and resonant detuning. Far from resonance this field interferes destructively with the phase-shifted incident radiation field and radiation quenching is observed. Close to resonance the three fields interfere constructively and the amplitude of the radiation burst is three times larger than the amplitude of the input radiation field.

  12. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.

    PubMed

    Guo, Min; Abbott, Derek; Lu, Minhua; Liu, Huafeng

    2016-03-01

    Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with 64 × 128 fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues. PMID:26768475

  13. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing

    PubMed Central

    Yan, Huichen; Xu, Jia; Long, Teng; Zhang, Xudong

    2015-01-01

    Matched field processing (MFP) is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP) model from wave propagation theory by using randomly deployed sensors. In addition, the model’s recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP) algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method. PMID:26457708

  14. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing.

    PubMed

    Yan, Huichen; Xu, Jia; Long, Teng; Zhang, Xudong

    2015-01-01

    Matched field processing (MFP) is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP) model from wave propagation theory by using randomly deployed sensors. In addition, the model's recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP) algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method. PMID:26457708

  15. Vibroacoustics of the piano soundboard: Reduced models, mobility synthesis, and acoustical radiation regime

    NASA Astrophysics Data System (ADS)

    Boutillon, Xavier; Ege, Kerem

    2013-09-01

    In string musical instruments, the sound is radiated by the soundboard, subject to the strings excitation. This vibration of this rather complex structure is described here with models which need only a small number of parameters. Predictions of the models are compared with the results of experiments that have been presented in Ege et al. [Vibroacoustics of the piano soundboard: (non)linearity and modal properties in the low- and mid-frequency ranges, Journal of Sound and Vibration 332 (5) (2013) 1288-1305]. The apparent modal density of the soundboard of an upright piano in playing condition, as seen from various points of the structure, exhibits two well-separated regimes, below and above a frequency flim that is determined by the wood characteristics and by the distance between ribs. Above flim, most modes appear to be localised, presumably due to the irregularity of the spacing and height of the ribs. The low-frequency regime is predicted by a model which consists of coupled sub-structures: the two ribbed areas split by the main bridge and, in most cases, one or two so-called cut-off corners. In order to assess the dynamical properties of each of the subplates (considered here as homogeneous plates), we propose a derivation of the (low-frequency) modal density of an orthotropic homogeneous plate which accounts for the boundary conditions on an arbitrary geometry. Above flim, the soundboard, as seen from a given excitation point, is modelled as a set of three structural wave-guides, namely the three inter-rib spacings surrounding the excitation point. Based on these low- and high-frequency models, computations of the point-mobility and of the apparent modal densities seen at several excitation points match published measurements. The dispersion curve of the wave-guide model displays an acoustical radiation scheme which differs significantly from that of a thin homogeneous plate. It appears that piano dimensioning is such that the subsonic regime of acoustical

  16. Inverse method predicting spinning modes radiated by a ducted fan from free-field measurements.

    PubMed

    Lewy, Serge

    2005-02-01

    In the study the inverse problem of deducing the modal structure of the acoustic field generated by a ducted turbofan is addressed using conventional farfield directivity measurements. The final objective is to make input data available for predicting noise radiation in other configurations that would not have been tested. The present paper is devoted to the analytical part of that study. The proposed method is based on the equations governing ducted sound propagation and free-field radiation. It leads to fast computations checked on Rolls-Royce tests made in the framework of previous European projects. Results seem to be reliable although the system of equations to be solved is generally underdetermined (more propagating modes than acoustic measurements). A limited number of modes are thus selected according to any a priori knowledge of the sources. A first guess of the source amplitudes is obtained by adjusting the calculated maximum of radiation of each mode to the measured sound pressure level at the same angle. A least squares fitting gives the final solution. A simple correction can be made to take account of the mean flow velocity inside the nacelle which shifts the directivity patterns. It consists of modifying the actual frequency to keep the cut-off ratios unchanged. PMID:15759694

  17. Inverse method predicting spinning modes radiated by a ducted fan from free-field measurements

    NASA Astrophysics Data System (ADS)

    Lewy, Serge

    2005-02-01

    In the study the inverse problem of deducing the modal structure of the acoustic field generated by a ducted turbofan is addressed using conventional farfield directivity measurements. The final objective is to make input data available for predicting noise radiation in other configurations that would not have been tested. The present paper is devoted to the analytical part of that study. The proposed method is based on the equations governing ducted sound propagation and free-field radiation. It leads to fast computations checked on Rolls-Royce tests made in the framework of previous European projects. Results seem to be reliable although the system of equations to be solved is generally underdetermined (more propagating modes than acoustic measurements). A limited number of modes are thus selected according to any a priori knowledge of the sources. A first guess of the source amplitudes is obtained by adjusting the calculated maximum of radiation of each mode to the measured sound pressure level at the same angle. A least squares fitting gives the final solution. A simple correction can be made to take account of the mean flow velocity inside the nacelle which shifts the directivity patterns. It consists of modifying the actual frequency to keep the cut-off ratios unchanged. .

  18. [Characteristics of the acoustic field of interfering reflections and the echolocation hearing of the dolphin].

    PubMed

    Riabov, V A

    2008-01-01

    A model of the acoustic field of interfering reflections from steel cylinders was developed. Analysis of the model showed the availability of great potential resources for a decrease of the influence of unwanted echoes and hence for increasing the signal-to-clatter ratio. The conformity of the available models of the echolocation hearing of the dolphin to the acoustic field of the clatter was considered. The participation of mandidle mental foramens in conducting the echo to the cochlea was considered. In this case the hearing aperture is determined by the dimensions of mental foramens, while the hearing base is determined by the distance between the mental foramens of the left and right mandible halves. There are good reasons to believe that the optimal dimensions of the aperture and the base of echolocation hearing of Odontoceti essentially increase the effectiveness of defense of their sonar from reverberation.

  19. Field theory for zero sound and ion acoustic wave in astrophysical matter

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2016-02-01

    We set up a field theory model to describe the longitudinal low-energy modes in high density matter present in white dwarf stars. At the relevant scales, ions—the nuclei of oxygen, carbon, and helium—are treated as heavy pointlike spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective of whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  20. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  1. Acoustic Neuroma Educational Video

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  2. Frequency spectrum of the noise emitted by two interacting cavitation bubbles in strong acoustic fields.

    PubMed

    Jiang, Liang; Liu, Fengbing; Chen, Haosheng; Wang, Jiadao; Chen, Darong

    2012-03-01

    The dynamics and acoustic emission of two interacting cavitation bubbles exposed to strong acoustic fields with a frequency of 515 KHz are investigated numerically in this paper. After comparing the dynamics of a single bubble excited by the given pressure waves, bubbles with ambient radii of 2 and 5 μm were chosen to be studied to discuss the influence of the mutual bubble-bubble interaction on the dynamic behaviors and acoustic emission of the bubbles. The results show that, aside from the external driving pressure waves, the interaction between the bubbles imposes an extra nonlinear effect on the oscillations of the bubbles and that the dynamics of the smaller bubble could be suppressed gradually with the enhancement of this mutual interaction by decreasing the distance between the bubbles. Moreover, the improvement in the oscillation nonlinearity of the bubbles due to the change in the ambient circumstance could readily be observed from the frequency spectra of the bubbles' acoustic emission, which interprets the change by exhibiting an appropriate development of the subharmonics, the ultraharmonics, and the broadband component.

  3. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  4. Site Study Plan for Acoustics, Deaf Smith County Site, Texas: Environmental Field Program: Preliminary draft

    SciTech Connect

    Not Available

    1987-06-01

    The Acoustics site study plan describes a field program which characterizes existing sound levels, determines the area's sound propagation characteristics, and monitors the project-related sound emissions. The plan describes for each study: the need for the study, study design, data management and use, schedule, and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Requirements Document. 37 refs., 9 figs., 3 tabs.

  5. Possible variations of E-layer electromagnetic fields by acoustic waves above earthquake preparation regions

    NASA Astrophysics Data System (ADS)

    Meister, C.-V.; Mayer, B.; Hoffmann, D. H. H.

    2012-04-01

    The many-fluid magnetohydrodynamic theory is applied to describe the modification of the electromagnetic field of the ionospheric E-layer by acoustic-type waves. These waves originate from lower altitudes and may be caused by earthquake preparation processes. In comparison to former works, the different stratification of the positively and negatively charged ionospheric particles and of the neutral constituents is taken into account. There also the influence of the mean electric field on the different hight scales of the plasma parameters is discussed. Besides, the hight scales of the electric and magnetic wave fields are modeled. It is shown that at E-layer altitudes the acoustic waves may be converted into Alfvén waves. The dependence of these waves on the height scales of the plasma parameters of the particles and on the momentum transport between the charged and neutral particles is analysed. First estimates of the temperature variations within the E-layer because of the assumed acoustic-type waves of seismic origin are made.

  6. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields.

    PubMed

    Ahmed, Suzanne; Wang, Wei; Mair, Lamar O; Fraleigh, Robert D; Li, Sixing; Castro, Luz Angelica; Hoyos, Mauricio; Huang, Tony Jun; Mallouk, Thomas E

    2013-12-31

    The recent discovery of fuel-free propulsion of nanomotors using acoustic energy has provided a new avenue for using nanomotors in biocompatible media. Crucial to the application of nanomotors in biosensing and biomedical applications is the ability to remotely control and steer them toward targets of interest, such as specific cells and tissues. We demonstrate in vitro magnetic steering of acoustically powered nanorod motors in a biologically compatible environment. Steering was accomplished by incorporating (40 ± 5) nm thick nickel stripes into the electrochemically grown nanowires. An external magnetic field of 40-45 mT was used to orient the motors, which were acoustically propelled along their long axes. In the absence of a magnetic field, (300 ± 30) nm diameter, (4.3 ± 0.2) μm long nanowires with (40 ± 5) nm thick magnetic stripes exhibit the same self-acoustophoretic behavior, including pattern formation into concentric nanowire circles, aligned spinning chains, and autonomous axial motion, as their non-magnetic counterparts. In a magnetic field, these wires and their paths are oriented as evidenced by their relatively linear trajectories. Coordinated motion of multiple motors and targeting of individual motors toward HeLa cells with micrometer-level precision was demonstrated.

  7. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    NASA Astrophysics Data System (ADS)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  8. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads. PMID:20462180

  9. Experimental Validation of FE/BEM Dynamic Strain Model Under Diffuse Acoustic Field Loading

    NASA Technical Reports Server (NTRS)

    Tsoi, W. Ben; Gardner, Bryce; Cotoni, Vincent

    2010-01-01

    Structural finite element (FE) models naturally output displacement or acceleration response data. However, they can also be used to compute stress, internal forces, and strain response. When coupled with a boundary element model (BEM) of the fluid surrounding the structure, a fully coupled analysis can be performed. Modeling a diffuse acoustic field in the BEM fluid provides an excitation like that found when the structure is placed in a reverberation chamber. Fully coupling the structural FE model to the acoustic BEM model provides a means to predict not only the acceleration response of the panel to diffuse field loading, but also the ability to predict the dynamic stress and strain response. This type of model has been available with current predictive tools, but experimental validation of the prediction of dynamic stress or strain is difficult to find. An aluminum panel was instrumented with accelerometers and strain gages and hung in a reverberation room and subjected to a diffuse acoustic field. This paper presents the comparison of the experimental and predicted results.

  10. Novel reference radiation fields for pulsed photon radiation installed at PTB.

    PubMed

    Klammer, J; Roth, J; Hupe, O

    2012-09-01

    Currently, ∼70 % of the occupationally exposed persons in Germany are working in pulsed radiation fields, mainly in the medical sector. It has been known for a few years that active electronic dosemeters exhibit considerable deficits or can even fail completely in pulsed fields. Type test requirements for dosemeters exist only for continuous radiation. Owing to the need of a reference field for pulsed photon radiation and accordingly to the upcoming type test requirements for dosemeters in pulsed radiation, the Physikalisch-Technische Bundesanstalt has developed a novel X-ray reference field for pulsed photon radiation in cooperation with a manufacturer. This reference field, geared to the main applications in the field of medicine, has been well characterised and is now available for research and type testing of dosemeters in pulsed photon radiation.

  11. Effects of viscosity and acoustic streaming on the interparticle radiation force between rigid spheres in a standing wave

    NASA Astrophysics Data System (ADS)

    Sepehrirahnama, Shahrokh; Chau, Fook Siong; Lim, Kian-Meng

    2016-02-01

    The total acoustic radiation force acting on interacting spheres in a viscous fluid consists of the primary and secondary forces. The primary force pushes rigid spheres to the pressure node due to the incident standing wave. The secondary force is the interparticle force caused by the interaction between spheres in the standing wave. In this study, an algorithm based on the multipole series expansion and Stokeslet method is proposed for calculating the primary and secondary radiation forces acting on a pair of spheres in a viscous fluid. It is concluded that the acoustical interaction between a pair of spheres is considerably stronger in a viscous fluid compared to the inviscid case due to the streaming effects in the viscous fluid. For spheres located far from each other, the interaction becomes considerably weak; thus, the spheres move mainly due to the primary radiation force.

  12. Acoustic Power Absorption and its Relation to Vector Magnetic Field of a Sunspot

    NASA Astrophysics Data System (ADS)

    Gosain, S.; Mathew, S. K.; Venkatakrishnan, P.

    2011-02-01

    The distribution of acoustic power over sunspots shows an enhanced absorption near the umbra - penumbra boundary. Previous studies revealed that the region of enhanced absorption coincides with the region of strongest transverse potential field. The aim of this paper is to i) utilize the high-resolution vector magnetograms derived using Hinode SOT/SP observations and study the relationship between the vector magnetic field and power absorption and ii) study the variation of power absorption in sunspot penumbrae due to the presence of spine-like radial structures. It is found that i) both potential and observed transverse fields peak at a similar radial distance from the center of the sunspot, and ii) the magnitude of the transverse field, derived from Hinode observations, is much larger than the potential transverse field derived from SOHO/MDI longitudinal-field observations. In the penumbra, the radial structures called spines (intra-spines) have stronger (weaker) field strength and are more vertical (horizontal). The absorption of acoustic power in the spine and intra-spine shows different behavior, with the absorption being larger in the spine as compared to the intra-spine.

  13. Near-field sound radiation of fan tones from an installed turbofan aero-engine.

    PubMed

    McAlpine, Alan; Gaffney, James; Kingan, Michael J

    2015-09-01

    The development of a distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is reported. The key objective is to examine a canonical problem: how to predict the pressure field due to a distributed source located near an infinite, rigid cylinder. This canonical problem is a simple representation of an installed turbofan, where the distributed source is based on the pressure pattern generated by a spinning duct mode, and the rigid cylinder represents an aircraft fuselage. The radiation of fan tones can be modelled in terms of spinning modes. In this analysis, based on duct modes, theoretical expressions for the near-field acoustic pressures on the cylinder, or at the same locations without the cylinder, have been formulated. Simulations of the near-field acoustic pressures are compared against measurements obtained from a fan rig test. Also, the installation effect is quantified by calculating the difference in the sound pressure levels with and without the adjacent cylindrical fuselage. Results are shown for the blade passing frequency fan tone radiated at a supersonic fan operating condition. PMID:26428770

  14. Generation of acoustic waves by cw laser radiation at the tip of an optical fiber in water

    NASA Astrophysics Data System (ADS)

    Yusupov, V. I.; Konovalov, A. N.; Ul'yanov, V. A.; Bagratashvili, V. N.

    2016-09-01

    We investigate the specific features of acoustic signals generated in water under the action of cw laser radiation with a power of 3 W at wavelengths of 0.97, 1.56, and 1.9 μm, emerging from an optical fiber. It is established that when a fiber tip without an absorbing coating is used, quasi-periodic pulse signals are generated according to the thermocavitation mechanism due to the formation and collapse of vapor-gas bubbles of millimeter size. In this case, the maximum energy of a broadband (up to 10 MHz) acoustic signal generated only at wavelengths of 1.56 and 1.9 μm is concentrated in the range of 4-20 kHz. It is shown that when there is no absorbing coating, an increase in the laser-radiation absorption coefficient in water leads to an increase in the frequency of generated acoustic pulses, while the maximum pressure amplitudes in them remain virtually constant. If there is an absorbing coating on the laser-fiber tip, a large number of small vapor-gas bubbles are generated at all laser-radiation wavelengths used. This leads to the appearance of a continuous amplitude-modulated acoustic signal, whose main energy is concentrated in the range of 8-15 kHz. It is shown that in this case, increasing the absorption coefficient of laser radiation in water leads to an increase in the power of an acoustic emission signal. The results can be used to explain the high therapeutic efficiency of moderate-power laser-fiber apparatus.

  15. Acoustic radiation force due to a diverging wave: Demonstration and theory

    NASA Astrophysics Data System (ADS)

    Denardo, Bruce C.; Freemyers, Stanley G.; Schock, Michael P.; Sundem, Scott T.

    2014-02-01

    A radiation force is the time-averaged force exerted by any kind of wave on a body. In the case of a divergent traveling acoustic wave, it is known that a relatively small rigid body can experience a radiation force that is directed toward the source. We show that this effect can be readily demonstrated with a styrofoam sphere pendulum near a horizontally directed loudspeaker that is emitting sound of sufficiently high amplitude and low frequency. The attraction is surprising because repulsive forces are exerted by a traveling plane wave and by an outward jetting or "wind" from the loudspeaker. We argue that the attractive force near a source that is small compared to the wavelength can be roughly understood and calculated as a time-averaged Bernoulli effect, if scattering is ignored. The result is within a factor of two of rigorous published results based on scattering calculations, when these results are specialized to the case of a rigid body whose average density is much greater than the density of the fluid. However, repulsion occurs when the average density of the body is less than the density of the fluid, in which case our Bernoulli result completely fails.

  16. Application of acoustic tomography to reconstruct the horizontal flow velocity field in a shallow river

    NASA Astrophysics Data System (ADS)

    Razaz, Mahdi; Kawanisi, Kiyosi; Kaneko, Arata; Nistor, Ioan

    2015-12-01

    A novel acoustic tomographic measurement system capable of resolving sound travel time in extremely shallow rivers is introduced and the results of an extensive field measurements campaign are presented and further discussed. Acoustic pulses were transmitted over a wide frequency band of 20-35 kHz between eight transducers for about a week in a meandering reach of theBāsen River, Hiroshima, Japan. The purpose of the field experiment was validating the concept of acoustic tomography in rivers for visualizing current fields. The particular novelty of the experiment resides in its unusual tomographic features: subbasin scale (100 m × 270 m) and shallowness (0.5-3.0 m) of the physical domain, frequency of the transmitted acoustic signals (central frequency of 30 kHz), and the use of small sampling intervals (105 s). Inverse techniques with no a priori statistical information were used to estimate the depth-average current velocity components from differential travel times. Zeroth-order Tikhonov regularization, in conjunction with L-curve method deployed to stabilize the solution and to determine the weighting factor appearing in the inverse analysis. Concurrent direct environmental measurements were provided in the form of ADCP readings close to the right and left bank. Very good agreement found between along-channel velocities larger than 0.2 m/s obtained from the two techniques. Inverted quantities were, however, underestimated, perhaps due to vicinity of the ADCPs to the banks and strong effect of river geometry on the readings. In general, comparing the visualized currents with direct nodal measurements illustrate the plausibility of the tomographically reconstructed flow structures.

  17. Distributed Acoustic Sensing Technology in a Magmatic Geothermal Field - First Results From a Survey in Iceland

    NASA Astrophysics Data System (ADS)

    Reinsch, Thomas; Jousset, Philippe; Henninges, Jan; Blanck, Hanna

    2016-04-01

    Seismic methods are particularly suited for investigating the Earth's subsurface. Compared to surface-measurements , wellbore measurements can be used to acquire more detailed information about rock properties and possible fluid pathways within a geothermal reservoir. For high temperature geothermal wells, however, ambient temperatures are often far above the operating temperature range of conventional geophones. One way to overcome this limitation is the application of fiber optic sensor systems, where only the passive optical fiber is subjected to downhole conditions. Their applicability is thus determined by the operating temperature range of the optical fiber. Choosing appropriate fibers, such sensor systems can be operated at temperatures far above 200°C. Along an optical fiber, the distributed acoustic sensing technology (DAS) can be used to acquire acoustic signals with a high spatial and temporal resolution. Previous experiments have shown that the DAS technology is well suited for active seismic measurements. Within the framework of the EC funded project IMAGE, a fiber optic cable was deployed in a newly drilled geothermal well (RN-34) within the Reykjanes geothermal field, Iceland. Additionally, a >15 km fiber optic cable, already available at the surface, was connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed at the wellhead as well as along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fiber optic data to conventional seismic records from a dense seismic network deployed on the Reykjanes in the course of the IMAGE project. Here, first results from the seismic survey will be presented.

  18. Measurement and modeling of the acoustic field near an underwater vehicle and implications for acoustic source localization.

    PubMed

    Lepper, Paul A; D'Spain, Gerald L

    2007-08-01

    The performance of traditional techniques of passive localization in ocean acoustics such as time-of-arrival (phase differences) and amplitude ratios measured by multiple receivers may be degraded when the receivers are placed on an underwater vehicle due to effects of scattering. However, knowledge of the interference pattern caused by scattering provides a potential enhancement to traditional source localization techniques. Results based on a study using data from a multi-element receiving array mounted on the inner shroud of an autonomous underwater vehicle show that scattering causes the localization ambiguities (side lobes) to decrease in overall level and to move closer to the true source location, thereby improving localization performance, for signals in the frequency band 2-8 kHz. These measurements are compared with numerical modeling results from a two-dimensional time domain finite difference scheme for scattering from two fluid-loaded cylindrical shells. Measured and numerically modeled results are presented for multiple source aspect angles and frequencies. Matched field processing techniques quantify the source localization capabilities for both measurements and numerical modeling output.

  19. Helicopter far-field acoustic levels as a function of reduced main-rotor advancing blade-tip Mach number

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Smith, Charles D.; Lemasurier, Philip

    1990-01-01

    During the design of a helicopter, the weight, engine, rotor speed, and rotor geometry are given significant attention when considering the specific operations for which the helicopter will be used. However, the noise radiated from the helicopter and its relationship to the design variables is currently not well modeled with only a limited set of full-scale field test data to study. In general, limited field data have shown that reduced main-rotor advancing blade-tip Mach numbers result in reduced far-field noise levels. The status of a recent helicopter noise research project is reviewed. It is designed to provide flight experimental data which may be used to further understand helicopter main-rotor advancing blade-tip Mach number effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a Sikorsky S-76A helicopter operating with both the rotor speed and the flight speed as the control variable. The rotor speed was operated within the range of 107 to 90 percent NR at nominal forward speeds of 35, 100, and 155 knots.

  20. On the applicability of the spherical wave expansion with a single origin for near-field acoustical holography.

    PubMed

    Gomes, Jesper; Hald, Jorgen; Juhl, Peter; Jacobsen, Finn

    2009-03-01

    The spherical wave expansion with a single origin is sometimes used in connection with near-field acoustical holography to determine the sound field on the surface of a source. The radiated field is approximated by a truncated expansion, and the expansion coefficients are determined by matching the sound field model to the measured pressure close to the source. This problem is ill posed, and therefore regularization is required. The present paper investigates the consequence of using only the expansion truncation as regularization approach and compares it with results obtained when additional regularization (the truncated singular value decomposition) is introduced. Important differences between applying the method when using a microphone array surrounding the source completely and an array covering only a part of the source are described. Another relevant issue is the scaling of the wave functions. It is shown that it is important for the additional regularization to work properly that the wave functions are scaled in such a way that their magnitude on the measurement surface decreases with the order. Finally, the method is applied on nonspherical sources using a vibrating plate in both simulations and an experiment, and the performance is compared with the equivalent source method. PMID:19275311

  1. Near-field dipole radiation dynamics through FDTD modeling

    NASA Astrophysics Data System (ADS)

    Radzevicius, Stanley J.; Chen, Chi-Chih; Peters, Leon; Daniels, Jeffrey J.

    2003-02-01

    We use finite-difference time-domain (FDTD) numerical simulations to study horizontal dipole radiation mechanisms and patterns near half-space interfaces. Time snapshots illustrating propagation of wavefronts at an instance in time are included with antenna patterns to provide a visualization tool for understanding antenna radiation properties. Near-field radiation patterns are compared with far-field asymptotic solutions and the effects of electrical properties, antenna height, and observation distance are investigated through numerical simulations. Numerical simulations show excellent agreement with measured data collected over a water-filled tank. Near-field H-plane radiation patterns are broader and contain radiation maxima beyond the critical angle predicted by far-field solutions. A large amplitude E-plane radiation lobe is located directly below the antenna in all simulations, while the two large amplitude sidelobes are less distinct and occur at larger incidence angles than predicted by far-field solutions. Radiation patterns resemble far-field solutions by a distance of 10 wavelengths, except near the critical angle where H-plane radiation maxima and E-plane sidelobes occur at larger incidence angles than predicted by far-field solutions.

  2. Comparison of Different Measurement Technologies for the In-Flight Assessment of Radiated Acoustic Intensity

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Palumbo, Daniel L.; Buehrle, Ralph D.; Williams, Earl G.; Valdivia, Nicolas; Herdic, Peter C.; Sklanka, Bernard

    2005-01-01

    A series of tests was planned and conducted in the Interior Noise Test Facility at Boeing Field, on the NASA Aries 757 flight research aircraft, and in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center. These tests were designed to answer several questions concerning the use of array methods in flight. One focus of the tests was determining whether and to what extent array methods could be used to identify the effects of an acoustical treatment applied to a limited portion of an aircraft fuselage. Another focus of the tests was to verify that the arrays could be used to localize and quantify a known source purposely placed in front of the arrays. Thus the issues related to backside sources and flanking paths present in the complicated sound field were addressed during these tests. These issues were addressed through the use of reference transducers, both accelerometers mounted to the fuselage and microphones in the cabin, that were used to correlate the pressure holograms. measured by the microphone arrays using either SVD methods or partial coherence methods. This correlation analysis accepts only energy that is coherent with the sources sensed by the reference transducers, allowing a noise control engineer to only identify and study those vibratory sources of interest. The remainder of this paper will present a detailed description of the test setups that were used in this test sequence and typical results of the NAH/IBEM analysis used to reconstruct the sound fields. Also, a comparison of data obtained in the laboratory environments and during flights of the 757 aircraft will be made.

  3. Near-field/far-field array manifold of an acoustic vector-sensor near a reflecting boundary.

    PubMed

    Wu, Yue Ivan; Lau, Siu-Kit; Wong, Kainam Thomas

    2016-06-01

    The acoustic vector-sensor (a.k.a. the vector hydrophone) is a practical and versatile sound-measurement device, with applications in-room, open-air, or underwater. It consists of three identical uni-axial velocity-sensors in orthogonal orientations, plus a pressure-sensor-all in spatial collocation. Its far-field array manifold [Nehorai and Paldi (1994). IEEE Trans. Signal Process. 42, 2481-2491; Hawkes and Nehorai (2000). IEEE Trans. Signal Process. 48, 2981-2993] has been introduced into the technical field of signal processing about 2 decades ago, and many direction-finding algorithms have since been developed for this acoustic vector-sensor. The above array manifold is subsequently generalized for outside the far field in Wu, Wong, and Lau [(2010). IEEE Trans. Signal Process. 58, 3946-3951], but only if no reflection-boundary is to lie near the acoustic vector-sensor. As for the near-boundary array manifold for the general case of an emitter in the geometric near field, the far field, or anywhere in between-this paper derives and presents that array manifold in terms of signal-processing mathematics. Also derived here is the corresponding Cramér-Rao bound for azimuth-elevation-distance localization of an incident emitter, with the reflected wave shown to play a critical role on account of its constructive or destructive summation with the line-of-sight wave. The implications on source localization are explored, especially with respect to measurement model mismatch in maximum-likelihood direction finding and with regard to the spatial resolution between coexisting emitters. PMID:27369140

  4. A Correlated Study of the Response of a Satellite to Acoustic Radiation Using Statistical Energy Analysis and Acoustic Test Data

    SciTech Connect

    CAP,JEROME S.; TRACEY,BRIAN

    1999-11-15

    Aerospace payloads, such as satellites, are subjected to vibroacoustic excitation during launch. Sandia's MTI satellite has recently been certified to this environment using a combination of base input random vibration and reverberant acoustic noise. The initial choices for the acoustic and random vibration test specifications were obtained from the launch vehicle Interface Control Document (ICD). In order to tailor the random vibration levels for the laboratory certification testing, it was necessary to determine whether vibration energy was flowing across the launch vehicle interface from the satellite to the launch vehicle or the other direction. For frequencies below 120 Hz this issue was addressed using response limiting techniques based on results from the Coupled Loads Analysis (CLA). However, since the CLA Finite Element Analysis FEA model was only correlated for frequencies below 120 Hz, Statistical Energy Analysis (SEA) was considered to be a better choice for predicting the direction of the energy flow for frequencies above 120 Hz. The existing SEA model of the launch vehicle had been developed using the VibroAcoustic Payload Environment Prediction System (VAPEPS) computer code [1]. Therefore, the satellite would have to be modeled using VAPEPS as well. As is the case for any computational model, the confidence in its predictive capability increases if one can correlate a sample prediction against experimental data. Fortunately, Sandia had the ideal data set for correlating an SEA model of the MTI satellite--the measured response of a realistic assembly to a reverberant acoustic test that was performed during MTI's qualification test series. The first part of this paper will briefly describe the VAPEPS modeling effort and present the results of the correlation study for the VAPEPS model. The second part of this paper will present the results from a study that used a commercial SEA software package [2] to study the effects of in-plane modes and to

  5. Two Years of Industrial Experience in the Use of a Small, Direct Field Acoustic Chamber

    NASA Astrophysics Data System (ADS)

    Saggini, Nicola; Di Pietro, Vincenzo; Poulain, Nicolas; Herzog, Philippe

    2012-07-01

    Within Thales Alenia Space - Italy small satellite Assembly Integration and Test (AIT) plant, the need to develop a suitable facility for spacecraft acoustic noise test has arisen, with additional constraints posed by the necessity of a low impact on the existing building layout, low cost of procurement and operations, while maintaining a high reliability of the system for a theoretical maximum throughput of one test per week over an extended period of time, e.g. six months. The needs have been answered by developing a small (~40 m3 test volume), direct field (DF A T) acoustic test chamber, christened “Alpha Cabin”, where noise generation is achieved by means of commercial audio drivers equipped with custom enclosures. The paper starts with a brief presentation of the main characteristics of the system, but then concentrates on the lessons learnt and return of experience from the tests conducted in more than two years of continuous use. Starting from test article structural responses and their comparison with reverberant chambers, properties of the acoustic field and their implications on the former are analyzed.

  6. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    PubMed

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].

  7. Investigation on the reproduction performance versus acoustic contrast control in sound field synthesis.

    PubMed

    Bai, Mingsian R; Wen, Jheng-Ciang; Hsu, Hoshen; Hua, Yi-Hsin; Hsieh, Yu-Hao

    2014-10-01

    A sound reconstruction system is proposed for audio reproduction with extended sweet spot and reduced reflections. An equivalent source method (ESM)-based sound field synthesis (SFS) approach, with the aid of dark zone minimization is adopted in the study. Conventional SFS that is based on the free-field assumption suffers from synthesis error due to boundary reflections. To tackle the problem, the proposed system utilizes convex optimization in designing array filters with both reproduction performance and acoustic contrast taken into consideration. Control points are deployed in the dark zone to minimize the reflections from the walls. Two approaches are employed to constrain the pressure and velocity in the dark zone. Pressure matching error (PME) and acoustic contrast (AC) are used as performance measures in simulations and experiments for a rectangular loudspeaker array. Perceptual Evaluation of Audio Quality (PEAQ) is also used to assess the audio reproduction quality. The results show that the pressure-constrained (PC) method yields better acoustic contrast, but poorer reproduction performance than the pressure-velocity constrained (PVC) method. A subjective listening test also indicates that the PVC method is the preferred method in a live room.

  8. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    PubMed

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)]. PMID:26723332

  9. The effect of temperature dependent tissue parameters on acoustic radiation force induced displacements

    NASA Astrophysics Data System (ADS)

    Suomi, Visa; Han, Yang; Konofagou, Elisa; Cleveland, Robin O.

    2016-10-01

    Multiple ultrasound elastography techniques rely on acoustic radiation force (ARF) in monitoring high-intensity focused ultrasound (HIFU) therapy. However, ARF is dependent on tissue attenuation and sound speed, both of which are also known to change with temperature making the therapy monitoring more challenging. Furthermore, the viscoelastic properties of tissue are also temperature dependent, which affects the displacements induced by ARF. The aim of this study is to quantify the temperature dependent changes in the acoustic and viscoelastic properties of liver and investigate their effect on ARF induced displacements by using both experimental methods and simulations. Furthermore, the temperature dependent viscoelastic properties of liver are experimentally measured over a frequency range of 0.1–200 Hz at temperatures reaching 80 °C, and both conventional and fractional Zener models are used to fit the data. The fractional Zener model was found to fit better with the experimental viscoelasticity data with respect to the conventional model with up to two orders of magnitude lower sum of squared errors (SSE). The characteristics of experimental displacement data were also seen in the simulations due to the changes in attenuation coefficient and lesion development. At low temperatures before thermal ablation, attenuation was found to affect the displacement amplitude. At higher temperature, the decrease in displacement amplitude occurs approximately at 60–70 °C due to the combined effect of viscoelasticity changes and lesion growth overpowering the effect of attenuation. The results suggest that it is necessary to monitor displacement continuously during HIFU therapy in order to ascertain when ablation occurs.

  10. Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control

    PubMed Central

    Kumar, Shalki; Lily, Kuo; Sen, H. Tutkun; Iordachita, Iulian; Kazanzides, Peter

    2016-01-01

    Objective Acoustic radiation force (ARF)-based approaches to measure tissue elasticity require transmission of a focused high-energy acoustic pulse from a stationary ultrasound probe and ultrasound-based tracking of the resulting tissue displacements to obtain stiffness images or shear wave speed estimates. The method has established benefits in biomedical applications such as tumor detection and tissue fibrosis staging. One limitation, however, is the dependence on applied probe pressure, which is difficult to control manually and prohibits standardization of quantitative measurements. To overcome this limitation, we built a robot prototype that controls probe contact forces for shear wave speed quantification. Methods The robot was evaluated with controlled force increments applied to a tissue-mimicking phantom and in vivo abdominal tissue from three human volunteers. Results The root-mean-square error between the desired and measured forces was 0.07 N in the phantom and higher for the fatty layer of in vivo abdominal tissue. The mean shear wave speeds increased from 3.7 to 4.5 m/s in the phantom and 1.0 to 3.0 m/s in the in vivo fat for compressive forces ranging from 2.5 to 30 N. The standard deviation of shear wave speeds obtained with the robotic approach were low in most cases (< 0.2 m/s) and comparable to that obtained with a semiquantitative landmark-based method. Conclusion Results are promising for the introduction of robotic systems to control the applied probe pressure for ARF-based measurements of tissue elasticity. Significance This approach has potential benefits in longitudinal studies of disease progression, comparative studies between patients, and large-scale multidimensional elasticity imaging. PMID:26552071

  11. Direct opto-acoustic in vitro measurement of the spatial distribution of laser radiation in biological media

    SciTech Connect

    Pelivanov, Ivan M; Belov, Sergej A; Solomatin, Vladimir S; Khokhlova, Tanya D; Karabutov, Aleksander A

    2006-12-31

    The problem of opto-acoustic (AO) diagnostics of light scattering and absorption in biological media is considered. The objects under study were milk, bovine and porcine liver, and bovine muscle tissue. The forward and backward schemes for recording acoustic signals were used in experiments. The spatial distribution of the light intensity was measured for each biological medium from the temporal profile of the excited OA pulse and the absorption coefficient and reduced scattering coefficient were determined. Opto-acoustic signals were excited by a 1064-nm pulsed Nd:YAG laser and a tunable Ti:sapphire laser at 779 nm. It is shown that the proposed method can be used for obtaining a priori information on a biological medium in problems of optical and AO tomography. (special issue devoted to multiple radiation scattering in random media)

  12. Far-field acoustic data for the Texas ASE, Inc. hush house

    NASA Astrophysics Data System (ADS)

    Lee, R. A.

    1982-04-01

    This report supplements AFAMRL-TR-73-110, which describes the data base (NOISEFILE) used in the computer program (NOISEMAP) to predict the community noise exposure resulting from military aircraft operations. The results of field test measurements to define the single-event noise produced on the ground by military aircraft/engines operating in the Texas ASE Inc. hush-house are presented as a function of angle (0 deg to 180 deg from the front of the hush-house) and distance (200 ft to 2500 ft) in various acoustic metrics. All the data are normalized to standard acoustic reference conditions of 59 F temperature and 70% relative humidity. Refer to Volume I of the AFAMRL-TR-73-110 report for discussion of the scope, limitations, and definitions needed to understand and use the data in this report.

  13. Dynamics of a Coagulating Polydisperse Gas Suspension in the Nonlinear Wave Field of an Acoustic Resonator

    NASA Astrophysics Data System (ADS)

    Tukmakov, A. L.

    2015-01-01

    A model of a multivelocity multitemperature polydisperse gas suspension has been constructed with account taken of coagulation. Calculations of the dynamics of an aerosol of a polydisperse composition in an acoustic resonator have been done and the derived regularities have been described. A system of Navier-Stokes equations for a compressible heat-conducting gas was used to describe the motion of a carrier medium. The dynamics of dispersed fractions is described by a system of equations including continuity, momentum, and internal-energy equations. The equations of motion of the carrier medium and dispersed fractions have been written with account of the interphase exchange of momentum and energy. The Lagrangian model has been used to describe the process of coagulation. The change in the dispersity of the gas suspension in the nonlinear field of an acoustic resonator has been analyzed.

  14. On an acoustic field generated by subsonic jet at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Arndt, R. E. A.

    1978-01-01

    An acoustic field generated by subsonic jets at low Reynolds numbers was investigated. This work is motivated by the need to increase the fundamental understanding of the jet noise generation mechanism which is essential to the development of further advanced techniques of noise suppression. The scope of this study consists of two major investigation. One is a study of large scale coherent structure in the jet turbulence, and the other is a study of the Reynolds number dependence of jet noise. With this in mind, extensive flow and acoustic measurements in low Reynolds number turbulent jets (8,930 less than or equal to M less than or equal to 220,000) were undertaken using miniature nozzles of the same configuration but different diameters at various exist Mach numbers (0.2 less than or equal to M less than or equal to 0.9).

  15. Mapping the sound field of an erupting submarine volcano using an acoustic glider.

    PubMed

    Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W

    2011-03-01

    An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds. PMID:21428474

  16. Radiation field associated with Hiroshima and Nagasaki

    SciTech Connect

    Loewe, W.E.

    1984-08-01

    Accuracy of dosimetric estimates can determine the value of the atomic bomb survivor experience in establishing radiation risks. The status of a major revision of this dosimetry, initiated in 1980, is assessed. 3 references, 6 figures.

  17. Miniature probe for mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qu, Yueqiao; Ma, Teng; He, Youmin; Yu, Mingyue; Li, Rui; Zhu, Jiang; Dai, Cuixia; Piao, Zhonglie; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2016-03-01

    Changes in tissue biomechanical properties often signify the onset and progression of diseases, such as in determining the vulnerability of atherosclerotic plaques. Acoustic radiation force optical coherence elastography (ARF-OCE) has been used in the detection of tissue elasticity to obtain high-resolution elasticity maps. We have developed a probe-based ARF-OCE technology that utilizes a miniature 10 MHz ring ultrasonic transducer for excitation and Doppler optical coherence tomography (OCT) for detection. The transducer has a small hole in the center for the OCT light to propagate through. This allows for a confocal stress field and light detection within a small region for high sensitivity and localized excitation. This device is a front-facing probe that is only 3.5 mm in diameter and it is the smallest ARF-OCE catheter to the best of our knowledge. We have tested the feasibility of the probe by measuring the point displacement of an agarose tissue-mimicking phantom using different ARF excitation voltages. Small displacement values ranging from 30 nm to 90 nm have been detected and are shown to be directly proportional to the excitation voltage as expected. We are currently working on obtaining 2D images using a scanning mechanism. We will be testing to capture 2D elastograms of phantoms to further verify feasibility, and eventually characterize the mechanical properties of cardiovascular tissue. With its high portability and sensitivity, this novel technology can be applied to the diagnosis and characterization of vulnerable atherosclerotic plaques.

  18. Pekeris waveguide comparisons of methods for predicting acoustic field amplitude uncertainty caused by a spatially uniform environmental uncertainty (L).

    PubMed

    James, Kevin R; Dowling, David R

    2011-02-01

    Acoustic field calculations in underwater environments are often uncertain because the environmental parameters required for such calculations are uncertain. This letter compares the accuracy of direct simulations, the field shifting approximation, and polynomial chaos expansions for predicting acoustic amplitude uncertainty in 100-m-deep Pekeris waveguides having spatially uniform uncertain water-column sound speed. When this sound speed is Gaussian-distributed with a standard deviation of 1 m/s, direct simulations and polynomial chaos expansions, based on 21 field calculations, are more accurate than the field shifting approximation, based on two field calculations. This ranking reverses as the sound-speed standard deviation increases to 20 m/s.

  19. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.

    PubMed

    Shih, Cho-Chiang; Lai, Ting-Yu; Huang, Chih-Chung

    2016-08-01

    The ability to measure the elastic properties of plaques and vessels is significant in clinical diagnosis, particularly for detecting a vulnerable plaque. A novel concept of combining intravascular ultrasound (IVUS) imaging and acoustic radiation force impulse (ARFI) imaging has recently been proposed. This method has potential in elastography for distinguishing between the stiffness of plaques and arterial vessel walls. However, the intensity of the acoustic radiation force requires calibration as a standard for the further development of an ARFI-IVUS imaging device that could be used in clinical applications. In this study, a dual-frequency transducer with 11MHz and 48MHz was used to measure the association between the biological tissue displacement and the applied acoustic radiation force. The output intensity of the acoustic radiation force generated by the pushing element ranged from 1.8 to 57.9mW/cm(2), as measured using a calibrated hydrophone. The results reveal that all of the acoustic intensities produced by the transducer in the experiments were within the limits specified by FDA regulations and could still displace the biological tissues. Furthermore, blood clots with different hematocrits, which have elastic properties similar to the lipid pool of plaques, with stiffness ranging from 0.5 to 1.9kPa could be displaced from 1 to 4μm, whereas the porcine arteries with stiffness ranging from 120 to 291kPa were displaced from 0.4 to 1.3μm when an acoustic intensity of 57.9mW/cm(2) was used. The in vitro ARFI images of the artery with a blood clot and artificial arteriosclerosis showed a clear distinction of the stiffness distributions of the vessel wall. All the results reveal that ARFI-IVUS imaging has the potential to distinguish the elastic properties of plaques and vessels. Moreover, the acoustic intensity used in ARFI imaging has been experimentally quantified. Although the size of this two-element transducer is unsuitable for IVUS imaging, the

  20. Convergence of intense aerial acoustic waves radiated by a rectangular transverse vibrating plate

    NASA Astrophysics Data System (ADS)

    Nakai, Tomoki; Asami, Takuya; Miura, Hikaru

    2016-07-01

    A stripe-mode rectangular transverse vibrating plate can be used as a sound source that emits intense ultrasonic waves in air by placing a jut driving point outside the vibrating plate. The aim of this research was to use this vibrating plate to focus sound waves in the direction perpendicular to the nodal lines of the vibrating plate, which differs from the conventional direction. In this study, we investigated new methods for focusing the emitted sound waves by arranging reflective plates around the vibrating plate, using a design equation for each node between nodes in the vibrating plate, and placing additional reflective plates at an outer position beyond the convergence point, and found that a powerful acoustic field can be formed at an arbitrary position.

  1. Iterative solution of multiple radiation and scattering problems in structural acoustics using the BL-QMR algorithm

    SciTech Connect

    Malhotra, M.

    1996-12-31

    Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.

  2. EFFECTS OF LASER RADIATION ON MATTER: Spectrum of the barium atom in a laser radiation field

    NASA Astrophysics Data System (ADS)

    Bondar', I. I.; Suran, V. V.

    1990-08-01

    An experimental investigation was made of the influence of a laser radiation field on the spectrum of barium atoms. The investigation was carried out by the method of three-photon ionization spectroscopy using dye laser radiation (ω = 14 800-18 700 cm - 1). The electric field intensity of the laser radiation was 103-106 V/cm. This laser radiation field had a strong influence on a number of bound and autoionizing states. The nature of this influence depended on the ratio of the excitation frequencies of bound and autoionizing states.

  3. Detection of alpha radiation in a beta radiation field

    DOEpatents

    Mohagheghi, Amir H.; Reese, Robert P.

    2001-01-01

    An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.

  4. The use of acoustic fields as a filtration and dewatering aid

    PubMed

    Smythe; Wakeman

    2000-03-01

    An experimental rig has been developed to study the effects of electric and acoustic field combinations on the filtration rate of titanium dioxide suspensions. Ultrasound energy is applied tangentially to the filter medium. Electric field strengths, suspension characteristics and process parameters can all be varied independently. Results from an experimental programme demonstrate that the use of ultrasound across the cake surface can decrease the specific cake flow resistance and increase the filtration rates of low-concentration rutile suspensions (0.1% v/v). Changes in the conductivity induced by ultrasonic irradiation affect the suspension such that the application of an electrical field is enhanced, giving an equivalent electric field strength higher than that applied.

  5. Acoustic anomalies in UPt{3} at high magnetic fields and low temperatures.

    SciTech Connect

    Feller, J. R.; Ketterson, J. B.; Hinks, D. G.; Dasgupta, D.; Sarma, B. K.; Materials Science Division; Northwestern Univ.; Univ. of Wisconsin at Milwaukee

    2000-11-01

    Ultrasound velocity and attenuation measurements were performed on single crystals of the heavy fermion compound UPt{sub 3} in magnetic fields up to 33 T and at temperatures ranging from 2.4 K to below 0.1 K. With longitudinal sound propagated in the crystallographic basal plane, parallel to the applied field, the familiar elastic softening is observed at the metamagnetic transition field H-20.2 T. More complicated structure emerges at low temperatures, including quantum acoustic oscillations and a second velocity minimum at -21.6 T. A weak frequency dependence (dispersion) is observed in the velocity. The ultrasonic data are analyzed using the Landau-Khalatnikov formalism, from which temperature- and field-dependent relaxation times are deduced.

  6. Inertial-acoustic oscillations of black hole accretion discs with large-scale poloidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Yu, Cong; Lai, Dong

    2015-07-01

    We study the effect of large-scale magnetic fields on the non-axisymmetric inertial-acoustic modes (also called p modes) trapped in the innermost regions of accretion discs around black holes (BHs). These global modes could provide an explanation for the high-frequency quasi-periodic oscillations (HFQPOs) observed in BH X-ray binaries. There may be observational evidence for the presence of such large-scale magnetic fields in the discs since episodic jets are observed in the same spectral state when HFQPOs are detected. We find that a large-scale poloidal magnetic field can enhance the corotational instability and increase the growth rate of the purely hydrodynamic overstable p modes. In addition, we show that the frequencies of these overstable p modes could be further reduced by such magnetic fields, making them agree better with observations.

  7. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    PubMed

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz. PMID:26026514

  8. Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)

    PubMed Central

    Wisniewska, Danuta M; Ratcliffe, John M; Beedholm, Kristian; Christensen, Christian B; Johnson, Mark; Koblitz, Jens C; Wahlberg, Magnus; Madsen, Peter T

    2015-01-01

    Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high-repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here, we show that, like some bats, harbour porpoises can broaden their biosonar beam during the terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase. Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the melon and implemented to accommodate dynamic spatial relationships with prey and acoustic complexity of surroundings. Despite independent evolution and different means of sound generation and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth flexibility has been an important driver in the evolution of echolocation for prey tracking. DOI: http://dx.doi.org/10.7554/eLife.05651.001 PMID:25793440

  9. The effects of external acoustic pressure fields on a free-running supercavitating projectile.

    PubMed

    Cameron, Peter J K; Rogers, Peter H; Doane, John W

    2010-12-01

    Proliferation of supercavitating torpedoes has motivated research on countermeasures against them as well as on the fluid phenomenon which makes them possible. The goal of this research was to investigate an envisaged countermeasure, an acoustic field capable of slowing or diverting the weapon by disrupting the cavitation envelope. The research focused on the interactions between high pressure amplitude sound waves and a supercavity produced by a small free-flying projectile. The flight dynamics and cavity geometry measurements were compared to control experiments and theoretical considerations were made for evaluating the effects. Corrugations on the cavity/water interface caused by the pressure signal have been observed and characterized. Results also show that the accuracy of a supercavitating projectile can be adversely affected by the sound signal. This research concludes with results that indicate that it is acoustic cavitation in the medium surrounding the supercavity, caused by the high pressure amplitude sound, that is responsible for the reduced accuracy. A hypothesis has been presented addressing the means by which the acoustic cavitation could cause this effect. PMID:21218872

  10. LCLS Far-Field Spontaneous Radiation

    2004-04-16

    This application (FarFieldDisplay) is a tool for displaying and analyzing far-field spontaneous spectral flux data for the Linac Coherent Light Source (LCLS) Calculated by Roman Tatchyn (Stanford University). This tool allows the user to view sliced spatial and energy distributions of the fat-field photons selected for specific energies or positions transverse to the beam axis,

  11. Near-field radiative thermal transport: From theory to experiment

    SciTech Connect

    Song, Bai Fiorino, Anthony; Meyhofer, Edgar; Reddy, Pramod

    2015-05-15

    Radiative thermal transport via the fluctuating electromagnetic near-field has recently attracted increasing attention due to its fundamental importance and its impact on a range of applications from data storage to thermal management and energy conversion. After a brief historical account of radiative thermal transport, we summarize the basics of fluctuational electrodynamics, a theoretical framework for the study of radiative heat transfer in terms of thermally excited propagating and evanescent electromagnetic waves. Various approaches to modeling near-field thermal transport are briefly discussed, together with key results and proposals for manipulation and utilization of radiative heat flow. Subsequently, we review the experimental advances in the characterization of both near-field heat flow and energy density. We conclude with remarks on the opportunities and challenges for future explorations of radiative heat transfer at the nanoscale.

  12. Scalar field radiation from dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Gohar, H.; Saifullah, K.

    2012-12-01

    We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.

  13. Acoustic radiation force impulse and supersonic shear imaging versus transient elastography for liver fibrosis assessment.

    PubMed

    Sporea, Ioan; Bota, Simona; Jurchis, Ana; Sirli, Roxana; Grădinaru-Tascău, Oana; Popescu, Alina; Ratiu, Iulia; Szilaski, Milana

    2013-11-01

    Our study compared three elastographic methods--transient elastography (TE), acoustic radiation force impulse (ARFI) imaging and supersonic shear imaging (SSI)--with respect to the feasibility of their use in liver fibrosis evaluation. We also compared the performance of ARFI imaging and SSI, with TE as the reference method. The study included 332 patients, with or without hepatopathies, in which liver stiffness was evaluated using TE, ARFI and SSI. Reliable measurements were defined as a median value of 10 (TE, ARFI imaging) or 5 (SSI) liver stiffness measurements with a success rate ≥60% and an interquartile range interval <30%. A significantly higher percentage of reliable measurements were obtained using ARFI than by using TE and SSI: 92.1% versus 72.2% (p < 0.0001) and 92.1% versus 71.3% (p < 0.0001). Higher body mass index and older age were significantly associated with inability to obtain reliable measurements of liver stiffness using TE and SSI. In 55.4% of patients, reliable liver stiffness measurements were obtained using all three elastographic methods, and ARFI imaging and TE were similarly accurate in diagnosing significant fibrosis and cirrhosis, with TE as the reference method.

  14. Assessment of Placental Stiffness Using Acoustic Radiation Force Impulse Elastography in Pregnant Women with Fetal Anomalies

    PubMed Central

    Göya, Cemil; Tunç, Senem; Teke, Memik; Hattapoğlu, Salih

    2016-01-01

    Objective We aimed to evaluate placental stiffness measured by acoustic radiation force impulse (ARFI) elastography in pregnant women in the second trimester with a normal fetus versus those with structural anomalies and non-structural findings. Materials and Methods Forty pregnant women carrying a fetus with structural anomalies diagnosed sonographically at 18–28 weeks of gestation comprised the study group. The control group consisted of 34 healthy pregnant women with a sonographically normal fetus at a similar gestational age. Placental shear wave velocity (SWV) was measured by ARFI elastography and compared between the two groups. Structural anomalies and non-structural findings were scored based on sonographic markers. Placental stiffness measurements were compared among fetus anomaly categories. Doppler parameters of umbilical and uterine arteries were compared with placental SWV measurements. Results All placental SWV measurements, including minimum SWV, maximum SWV, and mean SWV were significantly higher in the study group than the control group ([0.86 ± 0.2, 0.74 ± 0.1; p < 0.001], [1.89 ± 0.7, 1.59 ± 0.5; p = 0.04], and [1.26 ± 0.4, 1.09 ± 0.2; p = 0.01]), respectively. Conclusion Placental stiffness evaluated by ARFI elastography during the second trimester in pregnant women with fetuses with congenital structural anomalies is higher than that of pregnant women with normal fetuses. PMID:26957906

  15. Burton-Miller-type singular boundary method for acoustic radiation and scattering

    NASA Astrophysics Data System (ADS)

    Fu, Zhuo-Jia; Chen, Wen; Gu, Yan

    2014-08-01

    This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller's formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton-Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.

  16. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    PubMed

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters.

  17. Acoustic radiation force impulse imaging of vulnerable plaques: a finite element method parametric analysis

    PubMed Central

    Doherty, Joshua R.; Dumont, Douglas M.; Trahey, Gregg E.; Palmeri, Mark L.

    2012-01-01

    Plaque rupture is the most common cause of complications such as stroke and coronary heart failure. Recent histopathological evidence suggests that several plaque features, including a large lipid core and a thin fibrous cap, are associated with plaques most at risk for rupture. Acoustic Radiation Force Impulse (ARFI) imaging, a recently developed ultrasound-based elasticity imaging technique, shows promise for imaging these features noninvasively. Clinically, this could be used to distinguish vulnerable plaques, for which surgical intervention may be required, from those less prone to rupture. In this study, a parametric analysis using Finite-Element Method (FEM) models was performed to simulate ARFI imaging of five different carotid artery plaques across a wide range of material properties. It was demonstrated that ARFI could resolve the softer lipid pool from the surrounding, stiffer media and fibrous cap and was most dependent upon the stiffness of the lipid pool component. Stress concentrations due to an ARFI excitation were located in the media and fibrous cap components. In all cases, the maximum Von Mises stress was < 1.2 kPa. In comparing these results with others investigating plaque rupture, it is concluded that while the mechanisms may be different, the Von Mises stresses imposed by ARFI are orders of magnitude lower than the stresses associated with blood pressure. PMID:23122224

  18. The ‘sixth sense’ of ultrasound: probing nonlinear elasticity with acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Guzina, Bojan B.; Dontsov, Egor V.; Urban, Matthew W.; Fatemi, Mostafa

    2015-05-01

    Prompted by a recent finding that the magnitude of the acoustic radiation force (ARF) in isotropic tissue-like solids depends linearly on a particular third-order modulus of elasticity—hereon denoted by C, this study investigates the possibility of estimating C from the amplitude of the ARF-generated shear waves. The featured coefficient of nonlinear elasticity, which captures the incipient nonlinear interaction between the volumetric and deviatoric modes of deformation, has so far received only a limited attention in the context of soft tissues due to the fact that the latter are often approximated as (i) fluid-like when considering ultrasound waves, and (ii) incompressible under static deformations. On establishing the analytical and computational platform for the proposed sensing methodology, the study proceeds with applying the prototype technique toward estimating via ARF the third-order modulus C in a series of tissue-mimicking phantoms. To help validate the concept and its implementation, the germane third-order modulus is independently estimated in each phantom via an established technique known as acoustoelasticity. The C-estimates obtained respectively via acoustoelasticity and the new theory of ARF show a significant degree of consistency. The key features of the new sensing methodology are that: (a) it requires no external deformation of a material other than that produced by the ARF, and (b) it estimates the nonlinear C-modulus locally, over the focal region of an ultrasound beam—where the shear waves are being generated.

  19. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    PubMed

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters. PMID:26255624

  20. Testicular microlithiasis and preliminary experience of acoustic radiation force impulse imaging

    PubMed Central

    Osther, Palle Jørn Sloth; Rafaelsen, Søren Rafael

    2016-01-01

    Background Elastography of the testis can be used as a part of multiparametric examination of the scrotum. Purpose To determine the testicular stiffness using acoustic radiation force impulse imaging (ARFI) technique in men with testicular microlithiasis (TML). Material and Methods In 2013, 12 patients with diagnosed testicular microlithiasis in 2008 (mean age, 51 years; age range, 25–76 years) underwent a 5-year follow-up B-mode ultrasonography with three ARFI elastography measurements of each testis. We used a Siemens Acuson S3000 machine. Results No malignancy was found at the 5-year follow-up B-mode and elastography in 2013. However, we found an increase in TML; in the previous ultrasonography in 2008, eight men had bilateral TML, whereas in 2013, 10 men were diagnosed with bilateral TML. The mean elasticity of testicles with TML was 0.82 m/s (interquartile range [IQR], 0.72–0.88 m/s; range, 65–1.08 m/s). Conclusion Elastography velocity of testis with TML seems to be in the same velocity range as in men with normal testis tissue. PMID:27504193

  1. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  2. Radiation tolerant silicon nitride insulated gate field effect transistors

    NASA Technical Reports Server (NTRS)

    Newman, P. A.

    1969-01-01

    Metal-Insulated-Semiconductor Field Effect Transistor /MISFET/ device uses a silicon nitride passivation layer over a thin silicon oxide layer to enhance the radiation tolerance. It is useful in electronic systems exposed to space radiation environment or the effects of nuclear weapons.

  3. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    ERIC Educational Resources Information Center

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  4. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer. PMID:26641312

  5. Reconstruction of radiating sound fields using minimum energy method.

    PubMed

    Bader, Rolf

    2010-01-01

    A method for reconstructing a pressure field at the surface of a radiating body or source is presented using recording data of a microphone array. The radiation is assumed to consist of many spherical radiators, as microphone positions are present in the array. These monopoles are weighted using a parameter alpha, which broadens or narrows the overall radiation directivity as an effective and highly intuitive parameter of the radiation characteristics. A radiation matrix is built out of these weighted monopole radiators, and for different assumed values of alpha, a linear equation solver reconstructs the pressure field at the body's surface. It appears that from these many arbitrary reconstructions, the correct one minimizes the reconstruction energy. The method is tested, localizing the radiation points of a Balinese suling flute, reconstructing complex radiation from a duff frame drum, and determining the radiation directivity for the first seven modes of an Usbek tambourine. Stability in terms of measurement noise is demonstrated for the plain method, and additional highly effective algorithm is added for a noise level up to 0 dB. The stability of alpha in terms of minimal reconstruction energy is shown over the whole range of possible values for alpha. Additionally, the treatment of unwanted room reflections is discussed, still leading to satisfactory results in many cases. PMID:20058977

  6. Far-field acoustic data for the Texas ASE, Inc. Hush-House, supplement

    NASA Astrophysics Data System (ADS)

    Lee, R. A.

    1982-04-01

    This report supplements AFAMRL-TR-73-110, which describes the data base (NOISEFILE) used in the computer program (NOISEMAP) to predict the community noise exposure resulting from military aircraft operations. The results of field test measurements to define the single-event noise produced on the ground by military aircraft/engines operating in the Texas ASE Inc. hush-house are presented as a function of angle (0 to 180 from the front of the hush-house) and distance (200 ft to 2500 ft) in various acoustic metrics.

  7. Force on a heated sphere in a horizontal plane acoustic standing wave field

    NASA Technical Reports Server (NTRS)

    Leung, E. W.; Wang, T. G.

    1985-01-01

    The force on a heated sphere in a horizontal plane acoustic standing wave field is the subject of this investigation. The heated sphere produces a thermal gradient in the resonance chamber. The force on the sphere in a direction perpendicular to that of gravity is measured. This force is enhanced in the region near the pressure node, and is weakened in the region near the pressure antinode. Measurements of the force on a heated sphere with sound pressure levels between 148 and 156 dB are presented.

  8. Study on the bubble transport mechanism in an acoustic standing wave field.

    PubMed

    Xi, Xiaoyu; Cegla, Frederic B; Lowe, Michael; Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2011-12-01

    The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller-Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton's second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of

  9. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  10. 2-D acoustic Laplace-domain waveform inversion of marine field data

    NASA Astrophysics Data System (ADS)

    Ha, Wansoo; Chung, Wookeen; Park, Eunjin; Shin, Changsoo

    2012-07-01

    The Laplace-domain full waveform inversion method can build a macroscale subsurface velocity model that can be used as an accurate initial model for a conventional full waveform inversion. The acoustic Laplace-domain inversion produced is promising for marine field data examples. Although applying an acoustic inversion method to the field data generally requires several pre-processing steps, pre-processing for the Laplace-domain inversion has not been explained in detail. We provide a detailed explanation of how to apply the Laplace-domain waveform inversion to field data through numerical tests with Gulf of Mexico data sets. The pre-processing includes bandpass filtering, muting of the noise before the first arrival, and extraction of the water depth. We choose the range and the interval between the Laplace damping constants empirically by applying a threshold value to the damped time traces and the Laplace-domain wavefields. The observed data are transformed to the Laplace domain using the selected damping; this method yielded a long-wavelength inversion result. The damping constant and the maximum offset affect the penetration depth of the inversion result. The maximum recording time is important for a stable Laplace-transformation and affects the inversion result; however, the latter effect is not significant.

  11. Acoustic field characterization of the Duolith: measurements and modeling of a clinical shock wave therapy device.

    PubMed

    Perez, Camilo; Chen, Hong; Matula, Thomas J; Karzova, Maria; Khokhlova, Vera A

    2013-08-01

    Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from -2 to -11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled.

  12. Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device

    PubMed Central

    Perez, Camilo; Chen, Hong; Matula, Thomas J.; Karzova, Maria; Khokhlova, Vera A.

    2013-01-01

    Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from −2 to −11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled. PMID:23927207

  13. Compensation for source nonstationarity in multireference, scan-based near-field acoustical holography

    NASA Astrophysics Data System (ADS)

    Kwon, Hyu-Sang; Kim, Yong-Joe; Bolton, J. Stuart

    2003-01-01

    Multireference, scan-based near-field acoustical holography is a useful measurement tool that can be applied when an insufficient number of microphones is available to make measurements on a complete hologram surface simultaneously. The scan-based procedure can be used to construct a complete hologram by joining together subholograms captured using a relatively small, roving scan array and a fixed reference array. For the procedure to be successful, the source levels must remain stationary for the time taken to record the complete hologram; that is unlikely to be the case in practice, however. Usually, the reference signal levels measured during each scan differ from each other with the result that spatial noise is added to the hologram. A procedure to suppress the effects of source level, and hence reference level, variations is proposed here. The procedure is based on a formulation that explicitly features the acoustical transfer functions between the sources and both the reference and scanning, field microphones. When it is assumed that source level changes do not affect the sources' directivity, a nonstationarity compensation procedure can be derived that is based on measured transfer functions between the reference and field microphones. It has been verified both experimentally and in numerical simulations that the proposed procedure can help suppress spatially distributed noise caused by the type of source level nonstationarity that is characteristic of realistic sources.

  14. Dosimetry in the space radiation field.

    PubMed

    Reitz, G; Beaujean, R; Heckeley, N; Obe, G

    1993-09-01

    The results of dosimetric measurements are presented which were performed as part of a German experiment package flown onboard the Russian space station MIR. These results are compared to those of previous missions: the first United States Spacelab mission and the first German Spacelab mission. Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and thermoluminescence dosimeters were exposed in different sections of the Russian space station. The equivalent dose for the astronauts was calculated from the measurements to be 3.9 mSv. Before and after the flight venous blood was taken from the astronauts. Chromosomal aberrations in peripheral lymphocytes were analyzed. It was found that the radiation exposure during the spaceflight leads to an elevation of dicentric chromosomes, indicating a radiation burden of the astronauts.

  15. Dust acoustic shock wave in electronegative dusty plasma: Roles of weak magnetic field

    SciTech Connect

    Ghosh, Samiran; Ehsan, Z.; Murtaza, G.

    2008-02-15

    The effects of nonsteady dust charge variations and weak magnetic field on small but finite amplitude nonlinear dust acoustic wave in electronegative dusty plasma are investigated. The dynamics of the nonlinear wave are governed by a Korteweg-de Vries Burger equation that possesses dispersive shock wave. The weak magnetic field is responsible for the dispersive term, whereas nonsteady dust charge variation is responsible for dissipative term, i.e., the Burger term. The coefficient of dissipative term depends only on the obliqueness of the magnetic field. It is found that for parallel propagation the dynamics of the nonlinear wave are governed by the Burger equation that possesses monotonic shock wave. The relevances of the findings to cometary dusty plasma, e.g., Comet Halley are briefly discussed.

  16. Computation of unsteady transonic flows through rotating and stationary cascades. 3: Acoustic far-field analysis

    NASA Technical Reports Server (NTRS)

    Slutsky, S.; Fischer, D.; Erdos, J. I.

    1977-01-01

    A small perturbation type analysis has been developed for the acoustic far field in an infinite duct extending upstream and downstream of an axial turbomachinery stage. The analysis is designed to interface with a numerical solution of the near field of the blade rows and, thereby, to provide the necessary closure condition to complete the statement of infinite duct boundary conditions for the subject problem. The present analysis differs from conventional inlet duct analyses in that a simple harmonic time dependence was not assumed, since a transient signal is generated by the numerical near-field solution and periodicity is attained only asymptotically. A description of the computer code developed to carry out the necessary convolutions numerically is included, as well as the results of a sample application using an impulsively initiated harmonic signal.

  17. Single layer planar near-field acoustic holography for compact sources and a parallel reflector

    NASA Astrophysics Data System (ADS)

    Zea, Elias; Lopez Arteaga, Ines

    2016-10-01

    We consider the problem of planar near-field acoustic holography (PNAH) and introduce a new reconstruction method that can be used to process single layer pressure measurements performed in the presence of a reflective surface that is parallel to the measurement plane. The method is specially tailored for compact sources, or for problems in which the scattered field due to the source can be neglected. The approach consists in formulating a seismic model (WRW model) in wavenumber-space and employ it for sound source reconstructions. The proposed method is validated with numerical and experimental data, and, although the most accurate results are obtained when an estimate of the surface impedance is known beforehand, we show that it can substantially improve the reconstruction performance with respect to that of free-field PNAH.

  18. Monitoring of radiation fields in a waste tank model: Virtual radiation dosimetry

    SciTech Connect

    Tulenko, J.S.

    1995-12-31

    The University of Florida (UF) has developed a coupled radiation computation and three-dimensional modeling simulation code package. This package combines the Deneb Robotics` IGRIP three-dimensional solid modeling robotic simulation code with the UF developed VRF (Virtual Radiation Field) Monte Carlo based radiation computation code. The code package allows simulated radiation dose monitors to be placed anywhere on simulated robotic equipment to record the radiation doses which would be sustained when carrying out tasks in radiation environments. Comparison with measured values in the Hanford Waste Tank C-106 shows excellent results. The code shows promise of serving as a major tool in the design and operation of robotic equipment in radiation environments to ensure freedom from radiation caused failure.

  19. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure

    NASA Astrophysics Data System (ADS)

    Wang, Tian; Ke, Manzhu; Li, Weiping; Yang, Qian; Qiu, Chunyin; Liu, Zhengyou

    2016-09-01

    In this work, we give direct demonstration of acoustic radiation force and acoustic torque on particles exerted by an acoustic vortex beam, which is realized by an acoustic artificial structure plate instead of traditional transducer arrays. First, the first order acoustic vortex beam, which has the distinctive features of a linear and continuous phase variation from -π to π around its propagation axis and a magnitude null at its core, is obtained through one single acoustic source incident upon a structured brass plate with Archimedean spiral grating engraved on the back surface. Second, annular self-patterning of polystyrene particles with a radius of 90 μm is realized in the gradient field of this acoustic vortex beam. In addition, we further exhibit acoustic angular momentum transfer to an acoustic absorptive matter, which is verified by a millimeter-sized polylactic acid disk self-rotating in water in the acoustic field of the generated vortex beam.

  20. Variable ultrasound trigger delay for improved magnetic resonance acoustic radiation force imaging

    NASA Astrophysics Data System (ADS)

    Mougenot, Charles; Waspe, Adam; Looi, Thomas; Drake, James M.

    2016-01-01

    Magnetic resonance acoustic radiation force imaging (MR-ARFI) allows the quantification of microscopic displacements induced by ultrasound pulses, which are proportional to the local acoustic intensity. This study describes a new method to acquire MR-ARFI maps, which reduces the measurement noise in the quantification of displacement as well as improving its robustness in the presence of motion. Two MR-ARFI sequences were compared in this study. The first sequence ‘variable MSG’ involves switching the polarity of the motion sensitive gradient (MSG) between odd and even image frames. The second sequence named ‘static MSG’ involves a variable ultrasound trigger delay to sonicate during the first or second MSG for odd and even image frames, respectively. As previously published, the data acquired with a variable MSG required the use of reference data acquired prior to any sonication to process displacement maps. In contrary, data acquired with a static MSG were converted to displacement maps without using reference data acquired prior to the sonication. Displacement maps acquired with both sequences were compared by performing sonications for three different conditions: in a polyacrylamide phantom, in the leg muscle of a freely breathing pig and in the leg muscle of pig under apnea. The comparison of images acquired at even image frames and odd image frames indicates that the sequence with a static MSG provides a significantly better steady state (p  <  0.001 based on a Student’s t-test) than the images acquired with a variable MSG. In addition no reference data prior to sonication were required to process displacement maps for data acquired with a static MSG. The absence of reference data prior to sonication provided a 41% reduction of the spatial distribution of noise (p  <  0.001 based on a Student’s t-test) and reduced the sensitivity to motion for displacements acquired with a static MSG. No significant differences were expected and

  1. Parameter-dependence of the acoustic rotation effect of a metamaterial-based field rotator (Presentation Video)

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Cheng, JianChun; Liang, Bin

    2015-05-01

    The field rotator is a fascinating device capable to rotate the wave front by a certain angle, which can be regarded as a special kind of illusion. We have theoretically designed and experimentally realized an acoustic field rotator by exploiting acoustic metamaterials with extremely anisotropic parameters. A nearly perfect agreement is observed between the numerical simulation and experimental results. We have also studied the acoustic property of the acoustic rotator, and investigated how various structural parameters affect the performances of such devices, including the operating frequency range and rotation angle, which are of particularly significance for the application. The inspection of the operating frequency range shows the device can work within a considerably broad band as long as the effective medium approximation is valid. The influence of the configuration of the metamaterial unit has also been investigated, illustrating the increase of anisotropy of metamaterial helps to enhance the rotator effect, which can be conveniently attained by elongating each rectangle inserted to the units. Furthermore, we have analyzed the underlying physics to gain a deep insight to the rotation mechanism, and discussed the application of such devices for non-plane wave and the potential of extending the scheme to three-dimensional cases. The realization of acoustic field rotator has opened up a new avenue for the versatile manipulations on acoustic waves and our findings are of significance to their design and characterization, which may pave the way for the practical application of such devices.

  2. Sound field separation technique based on equivalent source method and its application in nearfield acoustic holography.

    PubMed

    Bi, Chuan-Xing; Chen, Xin-Zhao; Chen, Jian

    2008-03-01

    A technique for separating sound fields using two closely spaced parallel measurement surfaces and based on equivalent source method is proposed. The method can separate wave components crossing two measurement surfaces in opposite directions, which makes nearfield acoustic holography (NAH) applications in a field where there exist sources on the two sides of the hologram surface, in a reverberant field or in a scattered field, possible. The method is flexible in applications, simple in computation, and very easy to implement. The measurement surfaces can be arbitrarily shaped, and they are not restricted to be regular as in the traditional field separation technique. And, because the method performs field separation calculations directly in the spatial domain-not in the wave number domain--it avoids the errors and limitations (the window effects, etc.) associated with the traditional field separation technique based on the spatial Fourier transform method. In the paper, a theoretical description is first given, and the performance of the proposed field separation technique and its application in NAH are then evaluated through experiments.

  3. The Geomagnetic Field and Radiation in Near-Earth Orbits

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    1999-01-01

    This report shows, in detail, how the geomagnetic field interacts with the particle flux of the radiation belts to create a hazard to spacecraft and humans in near-Earth orbit. It illustrates the geometry of the geomagnetic field lines, especially around the area where the field strength is anomalously low in the South Atlantic Ocean. It discusses how the field will probably change in the future and the consequences that may have on hazards in near space.

  4. Gravitational radiation from preheating with many fields

    SciTech Connect

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier E-mail: larry@gravity.phys.uwm.edu

    2010-08-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.

  5. Wayward Field Lines Challenge Solar Radiation Models

    NASA Video Gallery

    This video compares the two models for particle distribution over the course of just three hours after an SEP event. The white line represents a magnetic field line, the general path that the SEPs ...

  6. Radiation (absorbing) boundary conditions for electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Bevensee, R. M.; Pennock, S. T.

    1987-01-01

    An important problem in finite difference or finite element computation of the electromagnetic field obeying the space-time Maxwell equations with self-consistent sources is that of truncating the outer numerical boundaries properly to avoid spurious numerical reflection. Methods for extrapolating properly the fields just beyond a numerical boundary in free space have been treated by a number of workers. This report avoids plane wave assumptions and derives boundary conditions more directly related to the source distribution within the region. The Panofsky-Phillips' relations, which enable one to extrapolate conveniently the vector field components parallel and perpendicular to a radial from the coordinate origin chosen near the center of the charge-current distribution are used to describe the space-time fields.

  7. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  8. Electron trajectories in pulsed radiation fields

    SciTech Connect

    Einwohner, T.; Lippmann, B.A.

    1987-05-01

    The work reported here analyzes the dynamical behavior of an electron, initially at rest, when subjected to a radiation pulse of arbitrary, but integrable, shape. This is done by a general integration procedure that has been programmed in VAXIMA. Upon choosing a specific shape for the pulse, VAXIMA finds both the space-time trajectory and the four-momentum of the electron. These are obtained in analytic or numerical form - or both - at the choice of the user. Several examples of analytical and numerical solutions, for different pulse shapes, are given.

  9. Nonlinear electron acoustic cyclotron waves in presence of uniform magnetic field

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Roychoudhury, Rajkumar; Chakrabarti, Nikhil

    2013-04-15

    Nonlinear electron acoustic cyclotron waves (EACW) are studied in a quasineutral plasma in presence of uniform magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary charge neutral inhomogeneous background. In long wavelength limit, it is shown that the linear electron acoustic wave is modified by the uniform magnetic field similar to that of electrostatic ion cyclotron wave. Nonlinear equations for these waves are solved by using Lagrangian variables. Results show that the spatial solitary wave-like structures are formed due to nonlinearities and dispersions. These structures transiently grow to larger amplitude unless dispersive effect is actively operative and able to arrest this growth. We have found that the wave dispersion originated from the equilibrium inhomogeneity through collective effect and is responsible for spatiotemporal structures. Weak dispersion is not able to stop the wave collapse and singular structures of EACW are formed. Relevance of the results in the context of laboratory and space plasmas is discussed.

  10. The acoustic field of singing humpback whales in the vertical plane

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.; Pack, Adam A.; Lammers, Marc O.; Herman, Louis; Andrews, Kimberly; Deakos, Mark

    2003-04-01

    A vertical array of five hydrophones was used to measure the acoustic field of singing humpback whales. Once a singer was located, two swimmers with snorkel gear were deployed to determine the orientation of the whale and to position the boat so that the array could be deployed in front of the whale at a minimum standoff distance of 10 m. The spacing of the hydrophones was 7 m with the deepest hydrophone deployed at depth of 35 m. An 8-channel TASCAM recorder having a bandwidth of 24 kHz was used to record the hydrophone signals. The location of the singer was determined by computing the time of arrival differences between the hydrophone signals. The maximum source level varied between individual units in a song, with values between 180 and 190 dB. The acoustic field determined by considering the relative intensity of higher frequency harmonics in the signals indicate that the sounds are projected in the horizontal direction with the singer's head canted downward 45 to 60°. High-frequency harmonics extended beyond 24 kHz, suggesting that humpback whales may have an upper frequency limit of hearing as high as 24 kHz.

  11. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    PubMed

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.

  12. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    NASA Astrophysics Data System (ADS)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  13. Fission Product Transmutation in Mixed Radiation Fields

    SciTech Connect

    Harmon, Frank; Burgett, Erick; Starovoitova, Valeriia; Tsveretkov, Pavel

    2015-01-15

    Work under this grant addressed a part of the challenge facing the closure of the nuclear fuel cycle; reducing the radiotoxicity of lived fission products (LLFP). It was based on the possibility that partitioning of isotopes and accelerator-based transmutation on particular LLFP combined with geological disposal may lead to an acceptable societal solution to the problem of management. The feasibility of using photonuclear processes based on the excitation of the giant dipole resonance (GDR) by bremsstrahlung radiation as a cost effective transmutation method was accessed. The nuclear reactions of interest: (γ,xn), (n,γ), (γ,p) can be induced by bremsstrahlung radiation produced by high power electron accelerators. The driver of these processes would be an accelerator that produces a high energy and high power electron beam of ~ 100 MeV. The major advantages of such accelerators for this purpose are that they are essentially available “off the shelf” and potentially would be of reasonable cost for this application. Methods were examined that used photo produced neutrons or the bremsstrahlung photons only, or use both photons and neutrons in combination for irradiations of selected LLFP. Extrapolating the results to plausible engineering scale transmuters it was found that the energy cost for 129I and 99Tc transmutation by these methods are about 2 and 4%, respectively, of the energy produced from 1000MWe.

  14. Two-field radiation hydrodynamics in n spatial dimensions

    NASA Astrophysics Data System (ADS)

    Larecki, Wieslaw; Banach, Zbigniew

    2016-03-01

    The two-field radiation hydrodynamics in n spatial dimensions is derived from the kinetic theory of radiation. Both the full-moment (frequency-independent) and spectral (frequency-dependent) formulations of radiation hydrodynamics are considered. The derivation is based on the entropy principle of extended thermodynamics of gases. In the case of the full-moment hydrodynamics, the formulation of the entropy principle introduced by Boillat and Ruggeri (1997 Contin. Mech. Thermodyn. 9 205) is adapted and this suffices to determine the radiation pressure tensor. In the full-moment formulation, the equations of radiation hydrodynamics take the same form for all possible types of radiation statistics. In the spectral formulation, the different radiation pressure tensors are assigned to Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann statistics, and consequently the different hydrodynamic equations are obtained for each of those statistics types. In order to derive the equations of the spectral radiation hydrodynamics, the relations for the radiation pressure tensor implied by the entropy principle must be supplemented by the additional conditions. Considering the limit of small heat flux, we arrive at the linearized equations of radiation hydrodynamics which assume the same form in both the full-moment and spectral formulations.

  15. Field calibration studies for ionisation chambers in mixed high-energy radiation fields.

    PubMed

    Theis, C; Forkel-Wirth, D; Fuerstner, M; Mayer, S; Otto, Th; Roesler, S; Vincke, H

    2007-01-01

    The monitoring of ambient doses at work places around high-energy accelerators is a challenging task due the complexity of the mixed stray radiation fields encountered. At CERN, mainly Centronics IG5 high-pressure ionisation chambers are used to monitor radiation exposure in mixed fields. The monitors are calibrated in the operational quantity ambient dose equivalent H*(10) using standard, source-generated photon- and neutron fields. However, the relationship between ionisation chamber reading and ambient dose equivalent in a mixed high-energy radiation field can only be assessed if the spectral response to every component and the field composition is known. Therefore, comprehensive studies were performed at the CERN-EU high-energy reference field facility where the spectral fluence for each particle type has been assessed with Monte Carlo simulations. Moreover, studies have been performed in an accessible controlled radiation area in the vicinity of a beam loss point of CERN's proton synchrotron. The comparison of measurements and calculations has shown reasonable agreement for most exposure conditions. The results indicate that conventionally calibrated ionisation chambers can give satisfactory response in terms of ambient dose equivalent in stray radiation fields at high-energy accelerators in many cases. These studies are one step towards establishing a method of 'field calibration' of radiation protection instruments in which Monte Carlo simulations will be used to establish a correct correlation between the response of specific detectors to a given high-energy radiation field.

  16. Evaluating the Feasibility of Acoustic Radiation Force Impulse Shear Wave Elasticity Imaging of the Uterine Cervix With an Intracavity Array: A Simulation Study

    PubMed Central

    Feltovich, Helen; Homyk, Andrew D.; Carlson, Lindsey C.; Hall, Timothy J.

    2015-01-01

    The uterine cervix softens, shortens, and dilates throughout pregnancy in response to progressive disorganization of its layered collagen microstructure. This process is an essential part of normal pregnancy, but premature changes are associated with preterm birth. Clinically, there are no reliable noninvasive methods to objectively measure cervical softening or assess cervical microstructure. The goal of these preliminary studies was to evaluate the feasibility of using an intracavity ultrasound array to generate acoustic radiation force impulse (ARFI) excitations in the uterine cervix through simulation, and to optimize the acoustic radiation force (ARF) excitation for shear wave elasticity imaging (SWEI) of the tissue stiffness. The cervix is a unique soft tissue target for SWEI because it has significantly greater acoustic attenuation (α = 1.3 to 2.0 dB·cm−1·MHz−1) than other soft tissues, and the pathology being studied tends to lead to an increase in tissue compliance, with healthy cervix being relatively stiff compared with other soft tissues (E ≈ 25 kPa). Additionally, the cervix can only be accessed in vivo using a transvaginal or catheter-based array, which places additional constraints on the excitation focal characteristics that can be used during SWEI. Finite element method (FEM) models of SWEI show that larger-aperture, catheter-based arrays can utilize excitation frequencies up to 7 MHz to generate adequate focal gain up to focal depths 10 to 15 mm deep, with higher frequencies suffering from excessive amounts of near-field acoustic attenuation. Using full-aperture excitations can yield ~40% increases in ARFI-induced displacements, but also restricts the depth of field of the excitation to ~0.5 mm, compared with 2 to 6 mm, which limits the range that can be used for shear wave characterization of the tissue. The center-frequency content of the shear wave particle velocity profiles ranges from 1.5 to 2.5 kHz, depending on the focal

  17. Design of an optimal wave-vector filter for enhancing the resolution of reconstructed source field by near-field acoustical holography (NAH)

    PubMed

    Kim; Ih

    2000-06-01

    In near-field acoustical holography using the boundary element method, the reconstructed field often diverges due to the presence of small measurement errors. In order to handle this instability in the inverse problem, the reconstruction process should include some form of regularization for enhancing the resolution of source images. The usual method of regularization has been the truncation of wave vectors associated with small singular values, although the determination of an optimal truncation order is difficult. In this article, an iterative inverse solution technique is suggested in which the mean-square error prediction is used. A statistical estimation of the minimum mean-square error between measured pressures and the model solution is required for yielding the optimal number of iterations. The continuous curve of an optimal wave-vector filter is designed, for suppressing the high-order modes that can produce large reconstruction errors. Experimental results from a baffled radiator reveal that the reconstruction errors can be reduced by this form of regularization, by at least 48% compared to those without any regularization. In comparison to results using the optimal truncation method of regularization, the new scheme is shown to give further reductions of truncation error of between 7% and 39%, for the example in this article. PMID:10875374

  18. The effect of magnetic field-free space on the acoustic behavior of budgerigars (Melopsittacus undulafus)

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Chang; Jin, Hai-Qiang; Lin, Yun-Fang; Chen, Hao; Yang, Xin-Yu; Zeng, Xiao-Ping; Zhou, Xun

    1998-07-01

    The effect of magnetic field-free space (MFFS) on the acoustic behavior of budgerigar (Melopsittacus undulafus) is obvious. The daily frequency of their cries in uniform MFFS (UMFFS) and non-uniform MFFS (NMFFS) decreases by 44.7±10.0% as compared with that in the geomagnetic field (GMF) on the average. The occupation rate of protesting cries (R op) in NMFFS decreases by 8.5% 20.3% as compared with that in GMF on the average and shows an adaptability variation. In 75% of the observation days, the R op in UMFFS increases by 16.2% 23.3% as compared with that in GMF. As for the effect of MFFS on the rhythmic habits of budgerigars, only the ending time of crying is affected to certain extent, 67 minutes earlier than in GMF on the average.

  19. Flow and acoustic field due to an inclined plate with a downstream splitter

    NASA Technical Reports Server (NTRS)

    Kim, C. M.; Conlisk, A. T.

    1993-01-01

    In the present work, the high Reynolds number flow past an inclined plate with a splitter plate placed in its wake is considered numerically. A numerical conformal mapping technique is employed to transform the two-plate system into the same number of cylinders: the flow field is assumed to be two-dimensional. The vortex shedding from the inclined plate is modelled using the discrete vortex method. It is shown that the splitter plate has a profound effect on the development of the flow over a range of values of a suitably defined offset parameter and for a range of positions of the leading edge of the splitter plate. The acoustic field is also calculated and the spectrum reflects the flow results.

  20. Near field acoustic holography based on the equivalent source method and pressure-velocity transducers.

    PubMed

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing; Chen, Xin-Zhao

    2009-09-01

    The advantage of using the normal component of the particle velocity rather than the sound pressure in the hologram plane as the input of conventional spatial Fourier transform based near field acoustic holography (NAH) and also as the input of the statistically optimized variant of NAH has recently been demonstrated. This paper examines whether there might be a similar advantage in using the particle velocity as the input of NAH based on the equivalent source method (ESM). Error sensitivity considerations indicate that ESM-based NAH is less sensitive to measurement errors when it is based on particle velocity input data than when it is based on measurements of sound pressure data, and this is confirmed by a simulation study and by experimental results. A method that combines pressure- and particle velocity-based reconstructions in order to distinguish between contributions to the sound field generated by sources on the two sides of the hologram plane is also examined.