Sample records for acoustic field scattered

  1. Sound field reproduction as an equivalent acoustical scattering problem.

    PubMed

    Fazi, Filippo Maria; Nelson, Philip A

    2013-11-01

    Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.

  2. Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers

    DTIC Science & Technology

    2015-09-30

    and far-field acoustic multiple scattering from two- and now three-dimensional aggregations of omnidirectional point scatterers to determine the...an aggregation of omnidirectional point scatterers [1]. If ψ(r) is the harmonic acoustic pressure field at frequency ω at the point r and ψ0(r) is... scattered field and is given by the sum in (1), N is the number of scatterers , gn is the scattering coefficient of the nth scatterer , ψn(rn) is the field

  3. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    PubMed

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].

  4. Acoustic scattering reduction using layers of elastic materials

    NASA Astrophysics Data System (ADS)

    Dutrion, Cécile; Simon, Frank

    2017-02-01

    Making an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles. These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This paper examines the possibility of designing an acoustic cloak using a bi-layer elastic cylindrical shell to eliminate the acoustic field scattered from a rigid cylinder hit by plane waves. This field depends on the dimensional and mechanical characteristics of the elastic layers. It is computed by a semi-analytical code modelling the vibrations of the coating under plane wave excitation. Optimization by genetic algorithm is performed to determine the characteristics of a bi-layer material minimizing the scattering. Considering an external fluid consisting of air, realistic configurations of elastic coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or over a larger frequency band.

  5. Acoustical scattering by multilayer spherical elastic scatterer containing electrorheological layer.

    PubMed

    Cai, Liang-Wu; Dacol, Dacio K; Orris, Gregory J; Calvo, David C; Nicholas, Michael

    2011-01-01

    A computational procedure for analyzing acoustical scattering by multilayer concentric spherical scatterers having an arbitrary mixture of acoustic and elastic materials is proposed. The procedure is then used to analyze the scattering by a spherical scatterer consisting of a solid shell and a solid core encasing an electrorheological (ER) fluid layer, and the tunability in the scattering characteristics afforded by the ER layer is explored numerically. Tunable scatterers with two different ER fluids are analyzed. One, corn starch in peanut oil, shows that a significant increase in scattering cross-section is possible in moderate frequencies. Another, fine poly-methyl methacrylate (PMMA) beads in dodecane, shows only slight change in scattering cross-sections overall. But, when the shell is thin, a noticeable local resonance peak can appear near ka=1, and this resonance can be turned on or off by the external electric field.

  6. Acoustic far-field of shroud-lip-scattered instability modes of supersonic co-flowing jets

    NASA Astrophysics Data System (ADS)

    Samanta, Arnab; Freund, Jonathan B.

    2013-11-01

    We consider the acoustic radiation of instability modes in dual-stream jets, with the inner nozzle buried within the outer shroud, particularly the upstream scattering into acoustic modes that occurs at the shroud lip. For supersonic core jets, several families of instability waves are possible, beyond the regular Kelvin-Helmholtz (K-H) mode, with very different modal shapes and propagation characteristics, which are candidates for changing the sound character of very high-speed jets. The co-axial shear layers are modeled as vortex sheets, with the Wiener-Hopf method used to compute these modes coupled with an asymptotic solution for the far-field radiation. A broadband mode spectra as well as single propagating modes are considered as incident and scattered waves. The resulting far-field directivity patterns are quantified, to show the efficiency of some of these radiation mechanisms, particularly in the upstream direction, which is not directly affected by the Mach-wave-like sound that is radiated from these modes irrespective of any scattering surface. A full Kutta condition, which provides the usual boundary condition at the shroud lip, is altered to examine how vortex shedding, perhaps controllable at the lip, affects the radiated sound.

  7. Scattering Of Nonplanar Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Gillman, Judith M.; Farassat, F.; Myers, M. K.

    1995-01-01

    Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.

  8. Acoustic scattering from phononic crystals with complex geometry.

    PubMed

    Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J

    2016-05-01

    This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique.

  9. Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid.

    PubMed

    Mitri, Farid G

    2015-10-01

    Based on the partial-wave series expansion (PWSE) method in spherical coordinates, a formal analytical solution for the acoustic scattering of a zeroth-order Bessel acoustic beam centered on a rigid fixed (oblate or prolate) spheroid is provided. The unknown scattering coefficients of the spheroid are determined by solving a system of linear equations derived for the Neumann boundary condition. Numerical results for the modulus of the backscattered pressure (θ = π) in the near field and the backscattering form function in the far field for both prolate and oblate spheroids are presented and discussed, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle of the Bessel beam, and the dimensionless frequency. The plots display periodic oscillations (versus the dimensionless frequency) because of the interference of specularly reflected waves in the backscattering direction with circumferential Franz' waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3-D directivity patterns illustrate the near- and far-field axisymmetric scattering. Investigations in underwater acoustics, particle levitation, scattering, and the detection of submerged elongated objects and other related applications utilizing Bessel waves would benefit from the results of the present study.

  10. Scattered acoustic field above a grating of parallel rectangular cavities

    NASA Astrophysics Data System (ADS)

    Khanfir, A.; Faiz, A.; Ducourneau, J.; Chatillon, J.; Skali Lami, S.

    2013-02-01

    The aim of this research project was to predict the sound pressure above a wall facing composed of N parallel rectangular cavities. The diffracted acoustic field is processed by generalizing the Kobayashi Potential (KP) method used for determining the electromagnetic field diffracted by a rectangular cavity set in a thick screen. This model enables the diffracted field to be expressed in modal form. Modal amplitudes are subsequently calculated using matrix equations obtained by enforcing boundary conditions. Solving these equations allows the determination of the total reflected acoustic field above the wall facing. This model was compared with experimental results obtained in a semi-anechoic room for a single cavity, a periodic array of three rectangular cavities and an aperiodic grating of nine rectangular cavities of different size and spacing. These facings were insonified by an incident spherical acoustic field, which was decomposed into plane waves. The validity of this model is supported by the agreement between the numerical and experimental results observed.

  11. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  12. Scattering theory derivation of a 3D acoustic cloaking shell.

    PubMed

    Cummer, Steven A; Popa, Bogdan-Ioan; Schurig, David; Smith, David R; Pendry, John; Rahm, Marco; Starr, Anthony

    2008-01-18

    Through acoustic scattering theory we derive the mass density and bulk modulus of a spherical shell that can eliminate scattering from an arbitrary object in the interior of the shell--in other words, a 3D acoustic cloaking shell. Calculations confirm that the pressure and velocity fields are smoothly bent and excluded from the central region as for previously reported electromagnetic cloaking shells. The shell requires an anisotropic mass density with principal axes in the spherical coordinate directions and a radially dependent bulk modulus. The existence of this 3D cloaking shell indicates that such reflectionless solutions may also exist for other wave systems that are not isomorphic with electromagnetics.

  13. Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-12-01

    Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.

  14. Acoustic Scattering from Corners, Edges and Circular Cones

    NASA Astrophysics Data System (ADS)

    Elschner, Johannes; Hu, Guanghui

    2018-05-01

    Consider the time-harmonic acoustic scattering from a bounded penetrable obstacle imbedded in an isotropic homogeneous medium. The obstacle is supposed to possess a circular conic point or an edge point on the boundary in three dimensions and a planar corner point in two dimensions. The opening angles of cones and edges are allowed to be any number in {(0,2π)π}. We prove that such an obstacle scatters any incoming wave non-trivially (that is, the far field patterns cannot vanish identically), leading to the absence of real non-scattering wavenumbers. Local and global uniqueness results for the inverse problem of recovering the shape of penetrable scatterers are also obtained using a single incoming wave. Our approach relies on the singularity analysis of the inhomogeneous Laplace equation in a cone.

  15. Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.

    PubMed

    Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C

    2010-05-01

    A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.

  16. Numerical solution of acoustic scattering by finite perforated elastic plates

    PubMed Central

    2016-01-01

    We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates. PMID:27274685

  17. Numerical solution of acoustic scattering by finite perforated elastic plates.

    PubMed

    Cavalieri, A V G; Wolf, W R; Jaworski, J W

    2016-04-01

    We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k 0 based on the plate length. However, at low k 0 , finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k 0 . The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k 0 for perforated elastic plates.

  18. Transmission and scattering of acoustic energy in turbulent flows

    NASA Astrophysics Data System (ADS)

    Gaitonde, Datta; Unnikrishnan, S.

    2017-11-01

    Sound scattering and transmission in turbulent jets are explored through a control volume analysis of a Large-Eddy Simulation. The fluctuating momentum flux across any control surface is first split into its rotational turbulent ((ρu)'H) and the irrotational-isentropic acoustic ((ρu)'A) components using momentum potential theory (MPT). The former has low spatio-temporal coherence, while the latter exhibits a persistent wavepacket form. The energy variable, specifically, total fluctuating enthalpy, is also split into its turbulent and acoustic modes, HH' and HA' respectively. Scattering of acoustic energy is then (ρu)'HHA' , and transmission is (ρu)'AHA' . This facilitates a quantitative comparison of scattering versus transmission in the presence of acoustic energy sources, also obtained from MPT, in any turbulent scenario. The wavepacket converts stochastic sound sources into coherent sound radiation. Turbulent eddies are not only sources of sound, but also play a strong role in scattering, particularly near the lipline. The net acoustic flux from the jet is the transport of HA' by the wavepacket, whose axisymmetric and higher azimuthal modes contribute to downstream and sideline radiation respectively.

  19. Acoustic scattering by benthic shells: Dominant scattering mechanisms and applications

    NASA Astrophysics Data System (ADS)

    Stanton, Timothy K.; Chu, Dezhang

    2004-10-01

    When benthic shells occur in sufficiently large numbers, they can dominate acoustic backscattering by the seafloor, especially at angles of incidence away from normal. In order to use sound as a tool to remotely detect and quantify the shells, the scattering properties of the shells need to be understood, both in free-space as well as when placed on the seafloor. Through laboratory experimentation, it has been determined that the edges of certain types of shells (such as bivalves and sand dollars) can dominate the scattering over an important range of grazing angles. The surfaces of these shells and others dominate under other conditions. The dominant scattering effects are discussed in the context of interpreting acoustic backscatter data in terms of meaningful parameters such as numerical density of the shells.

  20. Acoustic Scattering Models of Zooplankton and Microstructure

    DTIC Science & Technology

    1999-09-30

    1998, a remotely operated vehicle was used to deploy acoustic transducers so that the acoustic scattering by siphonophores , a gas-bearing animal, could...their high frequency acoustics systems. 4) In addition, we have identified two types of zooplankton ( siphonophores and pteropods) that have high...Benfield, P.H. Wiebe, and D. Chu, 1999. “In situ measurements of acoustic target strengths of siphonophores ,” Proceedings of the 2nd EAA

  1. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2015-09-30

    of buried mines and improve SONAR performance in shallow water. OBJECTIVES 1) Determination of the correct physical model of acoustic propagation... acoustic parameters in the ocean. APPROACH 1) Finite Element Modeling for Range Dependent Waveguides: Finite element modeling is applied to a...roughness measurements for reverberation modeling . GLISTEN data provide insight into the role of biology on acoustic propagation and scattering

  2. Acoustic Scattering Classification of Zooplankton and Microstructure

    DTIC Science & Technology

    2002-09-30

    the scattering in different areas. In some cases, siphonophores dominated the scattering; in other cases, euphausiids were the dominant scatterers...juvenile form of siphonophores ) through the use of BIOMAPER-II acoustics and video systems. Because of their fragility, these organisms are...scattering strength, total biomass, siphonophore abundance, and water temperature, throughout the water column in a one-hour section of a transect

  3. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2013-09-30

    of predictive models that can account for the all of the physical processes and variability of acoustic propagation and scattering in ocean...collaboration with Dr. Nicholas Chotiros, particularly for theoretical development of bulk acoustic /sediment modeling and laser roughness measurements...G. Potty and J. Miller. Measurement and modeling of Scholte wave dispersion in coastal waters. In Proc. of Third Int. Conf. on Ocean Acoustics

  4. Scattering of Acoustic Energy from Rough Deep Ocean Seafloor: a Numerical Modeling Approach.

    NASA Astrophysics Data System (ADS)

    Robertsson, Johan Olof Anders

    1995-01-01

    The highly heterogeneous and anelastic nature of deep ocean seafloor results in complex reverberation as acoustic energy incident from the overlaying water column interacts and scatters from it. To gain a deeper understanding of the mechanisms causing the reverberation in sonar and seafloor scattering experiments, we have developed numerical simulation techniques that are capable of modeling the principal physical properties of complex seafloor structures. A new viscoelastic finite-difference technique for modeling anelastic wave propagation in 2-D and 3-D heterogeneous media, as well as a computationally optimally efficient method for quantifying the anelastic properties in terms of viscoelastic mechanics are presented. A method for reducing numerical dispersion using a Galerkin-wavelet formulation that enables large computational savings is also presented. The widely different regimes of wave propagation occurring in ocean acoustic problems motivate the use of hybrid simulation techniques. HARVEST (Hybrid Adaptive Regime Visco-Elastic Simulation Technique) combines solutions from Gaussian beams, viscoelastic finite-differences, and Kirchhoff extrapolation, to simulate large offset scattering problems. Several scattering hypotheses based on finite -difference simulations of short-range acoustic scattering from realistic seafloor models are presented. Anelastic sediments on the seafloor are found to have a significant impact on the backscattered field from low grazing angle scattering experiments. In addition, small perturbations in the sediment compressional velocity can also dramatically alter the backscattered field due to transitions between pre- and post-critical reflection regimes. The hybrid techniques are employed to simulate deep ocean acoustic reverberation data collected in the vicinity of the northern mid-Atlantic ridge. In general, the simulated data compare well to the real data. Noise partly due to side-lobes in the beam-pattern of the receiver

  5. On the far-field computation of acoustic radiation forces.

    PubMed

    Martin, P A

    2017-10-01

    It is known that the steady acoustic radiation force on a scatterer due to incident time-harmonic waves can be calculated by evaluating certain integrals of velocity potentials over a sphere surrounding the scatterer. The goal is to evaluate these integrals using far-field approximations and appropriate limits. Previous derivations are corrected, clarified, and generalized. Similar corrections are made to textbook derivations of optical theorems.

  6. A boundary integral approach to the scattering of nonplanar acoustic waves by rigid bodies

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Myers, M. K.; Farassat, F.

    1990-01-01

    The acoustic scattering of an incident wave by a rigid body can be described by a singular Fredholm integral equation of the second kind. This equation is derived by solving the wave equation using generalized function theory, Green's function for the wave equation in unbounded space, and the acoustic boundary condition for a perfectly rigid body. This paper will discuss the derivation of the wave equation, its reformulation as a boundary integral equation, and the solution of the integral equation by the Galerkin method. The accuracy of the Galerkin method can be assessed by applying the technique outlined in the paper to reproduce the known pressure fields that are due to various point sources. From the analysis of these simpler cases, the accuracy of the Galerkin solution can be inferred for the scattered pressure field caused by the incidence of a dipole field on a rigid sphere. The solution by the Galerkin technique can then be applied to such problems as a dipole model of a propeller whose pressure field is incident on a rigid cylinder. This is the groundwork for modeling the scattering of rotating blade noise by airplane fuselages.

  7. Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging

    NASA Astrophysics Data System (ADS)

    Haynes, Mark Spencer

    Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self

  8. Implementing and testing a panel-based method for modeling acoustic scattering from CFD input

    NASA Astrophysics Data System (ADS)

    Swift, S. Hales

    Exposure of sailors to high levels of noise in the aircraft carrier deck environment is a problem that has serious human and economic consequences. A variety of approaches to quieting exhausting jets from high-performance aircraft are undergoing development. However, testing of noise abatement solutions at full-scale may be prohibitively costly when many possible nozzle treatments are under consideration. A relatively efficient and accurate means of predicting the noise levels resulting from engine-quieting technologies at personnel locations is needed. This is complicated by the need to model both the direct and the scattered sound field in order to determine the resultant spectrum and levels. While the direct sound field may be obtained using CFD plus surface integral methods such as the Ffowcs-Williams Hawkings method, the scattered sound field is complicated by its dependence on the geometry of the scattering surface--the aircraft carrier deck, aircraft control surfaces and other nearby structures. In this work, a time-domain boundary element method, or TD-BEM, (sometimes referred to in terms of source panels) is proposed and developed that takes advantage of and offers beneficial effects for the substantial planar components of the aircraft carrier deck environment and uses pressure gradients as its input. This method is applied to and compared with analytical results for planar surfaces, corners and spherical surfaces using an analytic point source as input. The method can also accept input from CFD data on an acoustic data surface by using the G1A pressure gradient formulation to obtain pressure gradients on the surface from the flow variables contained on the acoustic data surface. The method is also applied to a planar scattering surface characteristic of an aircraft carrier flight deck with an acoustic data surface from a supersonic jet large eddy simulation, or LES, as input to the scattering model. In this way, the process for modeling the complete

  9. Extrinsic extinction cross-section in the multiple acoustic scattering by fluid particles

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-04-01

    Cross-sections (and their related energy efficiency factors) are physical parameters used in the quantitative analysis of different phenomena arising from the interaction of waves with a particle (or multiple particles). Earlier works with the acoustic scattering theory considered such quadratic (i.e., nonlinear) quantities for a single scatterer, although a few extended the formalism for a pair of scatterers but were limited to the scattering cross-section only. Therefore, the standard formalism applied to viscous particles is not suitable for the complete description of the cross-sections and energy balance of the multiple-particle system because both absorption and extinction phenomena arise during the multiple scattering process. Based upon the law of the conservation of energy, this work provides a complete comprehensive analysis for the extrinsic scattering, absorption, and extinction cross-sections (i.e., in the far-field) of a pair of viscous scatterers of arbitrary shape, immersed in a nonviscous isotropic fluid. A law of acoustic extinction taking into consideration interparticle effects in wave propagation is established, which constitutes a generalized form of the optical theorem in multiple scattering. Analytical expressions for the scattering, absorption, and extinction cross-sections are derived for plane progressive waves with arbitrary incidence. The mathematical expressions are formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. The analysis shows that the multiple scattering cross-section depends upon the expansion coefficients of both scatterers in addition to an interference factor that depends on the interparticle distance. However, the extinction cross-section depends on the expansion coefficients of the scatterer located in a particular system of coordinates, in addition to the

  10. The relative effects of particles and turbulence on acoustic scattering from deep-sea hydrothermal vent plumes.

    PubMed

    Xu, Guangyu; Di Iorio, Daniela

    2011-10-01

    Acoustic methods are applied to the investigation and monitoring of a vigorous hydrothermal plume within the Main Endeavor vent field at the Endeavor segment of the Juan de Fuca Ridge. Forward propagation and scattering from suspended particulates using Rayleigh scattering theory is shown to be negligible (log-amplitude variance σ(χ) (2)~10(-7)) compared to turbulence induced by temperature fluctuations (σ(χ) (2)~0.1). The backscattering from turbulence is then quantified using the forward scattering derived turbulence level, which gives a volume backscattering strength of s(V)=6.5 × 10(-8) m(-1). The volume backscattering cross section from particulates can range from s(V)=3.3 × 10(-6) to 7.2 × 10(-10) m(-1) depending on the particle size. These results show that forward scatter acoustic methods in hydrothermal vent applications can be used to quantify turbulence and its effect on backscatter measurements, which can be a dominant factor depending on the particle size and its location within the plume. © 2011 Acoustical Society of America

  11. Topics in electromagnetic, acoustic, and potential scattering theory

    NASA Astrophysics Data System (ADS)

    Nuntaplook, Umaporn

    With recent renewed interest in the classical topics of both acoustic and electromagnetic aspects for nano-technology, transformation optics, fiber optics, metamaterials with negative refractive indices, cloaking and invisibility, the topic of time-independent scattering theory in quantum mechanics is becoming a useful field to re-examine in the above contexts. One of the key areas of electromagnetic theory scattering of plane electromagnetic waves --- is based on the properties of the refractive indices in the various media. It transpires that the refractive index of a medium and the potential in quantum scattering theory are intimately related. In many cases, understanding such scattering in radially symmetric media is sufficient to gain insight into scattering in more complex media. Meeting the challenge of variable refractive indices and possibly complicated boundary conditions therefore requires accurate and efficient numerical methods, and where possible, analytic solutions to the radial equations from the governing scalar and vector wave equations (in acoustics and electromagnetic theory, respectively). Until relatively recently, researchers assumed a constant refractive index throughout the medium of interest. However, the most interesting and increasingly useful cases are those with non-constant refractive index profiles. In the majority of this dissertation the focus is on media with piecewise constant refractive indices in radially symmetric media. The method discussed is based on the solution of Maxwell's equations for scattering of plane electromagnetic waves from a dielectric (or "transparent") sphere in terms of the related Helmholtz equation. The main body of the dissertation (Chapters 2 and 3) is concerned with scattering from (i) a uniform spherical inhomogeneity embedded in an external medium with different properties, and (ii) a piecewise-uniform central inhomogeneity in the external medium. The latter results contain a natural generalization of

  12. Evanescent acoustic waves: Production and scattering by resonant targets

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.

    Small targets with acoustic resonances which may be excited by incident acoustic planewaves are shown to possess high-Q modes ("organ-pipe" modes) which may be suitable for ocean-based calibration and ranging purposes. The modes are modeled using a double point-source model; this, along with acoustic reciprocity and inversion symmetry, is shown to adequately model the backscattering form functions of the modes at low frequencies. The backscattering form-functions are extended to apply to any bistatic acoustic experiment using the targets when the target response is dominated by the modes in question. An interface between two fluids which each approximate an unbounded half-space has been produced in the laboratory. The fluids have different sound speeds. When sound is incident on this interface at beyond the critical angle from within the first fluid, the second fluid is made to evince a region dominated by evanescent acoustic energy. Such a system is shown to be an possible laboratory-based proxy for a flat sediment bottom in the ocean, or sloped (unrippled) bottom in littoral environments. The evanescent sound field is characterized and shown to have complicated features despite the simplicity of its production. Notable among these features is the presence of dips in the soundfield amplitude, or "quasi-nulls". These are proposed to be extremely important when considering the return from ocean-based experiments. The soundfield features are also shown to be accurately predicted and characterized by wavenumber-integration software. The targets which exhibit organ-pipe modes in the free-field are shown to also be excited by the evanescent waves, and may be used as soundfield probes when the target returns are well characterized. Alternately, if the soundfield is well-known, the target parameters may be extracted from back- or bistatic-scattering experiments in evanescent fields. It is shown that the spatial decay rate as measured by a probe directly in the evanescent

  13. Prediction of submarine scattered noise by the acoustic analogy

    NASA Astrophysics Data System (ADS)

    Testa, C.; Greco, L.

    2018-07-01

    The prediction of the noise scattered by a submarine subject to the propeller tonal noise is here addressed through a non-standard frequency-domain formulation that extends the use of the acoustic analogy to scattering problems. A boundary element method yields the scattered pressure upon the hull surface by the solution of a boundary integral equation, whereas the noise radiated in the fluid domain is evaluated by the corresponding boundary integral representation. Propeller-induced incident pressure field on the scatterer is detected by combining an unsteady three-dimensional panel method with the Bernoulli equation. For each frequency of interest, numerical results concern with sound pressure levels upon the hull and in the flowfield. The validity of the results is established by a comparison with a time-marching hydrodynamic panel method that solves propeller and hull jointly. Within the framework of potential-flow hydrodynamics, it is found out that the scattering formulation herein proposed is appropriate to successfully capture noise magnitude and directivity both on the hull surface and in the flowfield, yielding a computationally efficient solution procedure that may be useful in preliminary design/multidisciplinary optimization applications.

  14. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre

    PubMed Central

    Beugnot, Jean-Charles; Lebrun, Sylvie; Pauliat, Gilles; Maillotte, Hervé; Laude, Vincent; Sylvestre, Thibaut

    2014-01-01

    Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves. These Rayleigh-type surface waves travel the wire surface at a specific velocity of 3,400 m s−1 and backscatter the light with a Doppler shift of about 6 GHz. As these acoustic resonances are sensitive to surface defects or features, surface acoustic wave Brillouin scattering opens new opportunities for various sensing applications, but also in other domains such as microwave photonics and nonlinear plasmonics. PMID:25341638

  15. Intrinsic acoustical cross sections in the multiple scattering by a pair of rigid cylindrical particles in 2D

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-08-01

    The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the

  16. An exploration in acoustic radiation force experienced by cylindrical shells via resonance scattering theory.

    PubMed

    Rajabi, Majid; Behzad, Mehdi

    2014-04-01

    In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A single-scattering correction for the seismo-acoustic parabolic equation.

    PubMed

    Collins, Michael D

    2012-04-01

    An efficient single-scattering correction that does not require iterations is derived and tested for the seismo-acoustic parabolic equation. The approach is applicable to problems involving gradual range dependence in a waveguide with fluid and solid layers, including the key case of a sloping fluid-solid interface. The single-scattering correction is asymptotically equivalent to a special case of a single-scattering correction for problems that only have solid layers [Küsel et al., J. Acoust. Soc. Am. 121, 808-813 (2007)]. The single-scattering correction has a simple interpretation (conservation of interface conditions in an average sense) that facilitated its generalization to problems involving fluid layers. Promising results are obtained for problems in which the ocean bottom interface has a small slope.

  18. Acoustic Dirac degeneracy and topological phase transitions realized by rotating scatterers

    NASA Astrophysics Data System (ADS)

    Wen, Xinhua; Qiu, Chunyin; Lu, Jiuyang; He, Hailong; Ke, Manzhu; Liu, Zhengyou

    2018-03-01

    The artificial crystals for classical waves provide a good platform to explore the topological physics proposed originally in condensed matter systems. In this paper, acoustic Dirac degeneracy is realized by simply rotating the scatterers in sonic crystals, where the degeneracy is induced accidentally by modulating the scattering strength among the scatterers during the rotation process. This gives a flexible way to create a topological phase transition in acoustic systems. Edge states are further observed along the interface separating the two topologically distinct gapped sonic crystals.

  19. Near-specular acoustic scattering from a buried submarine mud volcano.

    PubMed

    Gerig, Anthony L; Holland, Charles W

    2007-12-01

    Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected.

  20. Acoustic field modulation in regenerators

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  1. Investigating acoustic-induced deformations in a foam using multiple light scattering.

    PubMed

    Erpelding, M; Guillermic, R M; Dollet, B; Saint-Jalmes, A; Crassous, J

    2010-08-01

    We have studied the effect of an external acoustic wave on bubble displacements inside an aqueous foam. The signature of the acoustic-induced bubble displacements is found using a multiple light scattering technique, and occurs as a modulation on the photon correlation curve. Measurements for various sound frequencies and amplitudes are compared to analytical predictions and numerical simulations. These comparisons finally allow us to elucidate the nontrivial acoustic displacement profile inside the foam; in particular, we find that the acoustic wave creates a localized shear in the vicinity of the solid walls holding the foam, as a consequence of inertial contributions. This study of how bubbles "dance" inside a foam as a response to sound turns out to provide new insights on foam acoustics and sound transmission into a foam, foam deformation at high frequencies, and analysis of light scattering data in samples undergoing nonhomogeneous deformations.

  2. Acoustic scattering from mud volcanoes and carbonate mounds.

    PubMed

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.

  3. Numerical method to compute acoustic scattering effect of a moving source.

    PubMed

    Song, Hao; Yi, Mingxu; Huang, Jun; Pan, Yalin; Liu, Dawei

    2016-01-01

    In this paper, the aerodynamic characteristic of a ducted tail rotor in hover has been numerically studied using CFD method. An analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field and used as Neumann boundary condition on a rigid scattering surface. In order to predict the aerodynamic noise, a hybrid method combing computational aeroacoustics with an acoustic thin-body boundary element method has been proposed. The aerodynamic results and the calculated sound pressure levels (SPLs) are compared with the known method for validation. Simulation results show that the duct can change the value of SPLs and the sound directivity. Compared with the isolate tail rotor, the SPLs of the ducted tail rotor are smaller at certain azimuth.

  4. Acoustic and elastic multiple scattering and radiation from cylindrical structures

    NASA Astrophysics Data System (ADS)

    Amirkulova, Feruza Abdukadirovna

    Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance and is required in a wide variety of physical contexts such as the implementation of "invisibility" cloaks, the effective parameter characterization, and the fabrication of dynamically tunable structures, etc. The dissertation develops fast, rapidly convergent iterative techniques to expedite the solution of MS problems. The formulation of MS problems reduces to a system of linear algebraic equations using Graf's theorem and separation of variables. The iterative techniques are developed using Neumann expansion and Block Toeplitz structure of the linear system; they are very general, and suitable for parallel computations and a large number of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the theoretical predictions are compared to computations obtained by COMSOL. To formulate the MS problem, the transition matrix is obtained by analyzing an acoustic and an elastic single scattering of incident waves by elastic isotropic and anisotropic solids. The mathematical model of wave scattering from multilayered cylindrical and spherical structures is developed by means of an exact solution of dynamic 3D elasticity theory. The recursive impedance matrix algorithm is derived for radially heterogeneous anisotropic solids. An explicit method for finding the impedance in piecewise uniform, transverse-isotropic material is proposed; the solution is compared to elasticity theory solutions involving Buchwald potentials. Furthermore, active exterior cloaking devices are modeled for acoustic and elastic media using multipole sources. A cloaking device can render an object invisible to some incident waves as seen by some external observer. The active cloak is generated by a discrete set of multipole sources that destructively interfere with an

  5. The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.

    PubMed

    Ogam, Erick; Fellah, Z E A; Baki, Paul

    2013-03-01

    The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].

  6. Experimental Demonstration of Underwater Acoustic Scattering Cancellation

    PubMed Central

    Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2015-01-01

    We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85. PMID:26282067

  7. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaeva, Anastasiia V., E-mail: niko200707@mail.ru; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of anmore » obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.« less

  8. A Fourier-based total-field/scattered-field technique for three-dimensional broadband simulations of elastic targets near a water-sand interface.

    PubMed

    Shao, Yu; Wang, Shumin

    2016-12-01

    The numerical simulation of acoustic scattering from elastic objects near a water-sand interface is critical to underwater target identification. Frequency-domain methods are computationally expensive, especially for large-scale broadband problems. A numerical technique is proposed to enable the efficient use of finite-difference time-domain method for broadband simulations. By incorporating a total-field/scattered-field boundary, the simulation domain is restricted inside a tightly bounded region. The incident field is further synthesized by the Fourier transform for both subcritical and supercritical incidences. Finally, the scattered far field is computed using a half-space Green's function. Numerical examples are further provided to demonstrate the accuracy and efficiency of the proposed technique.

  9. Acoustic scattering on spheroidal shapes near boundaries

    NASA Astrophysics Data System (ADS)

    Miloh, Touvia

    2016-11-01

    A new expression for the Lamé product of prolate spheroidal wave functions is presented in terms of a distribution of multipoles along the axis of the spheroid between its foci (generalizing a corresponding theorem for spheroidal harmonics). Such an "ultimate" singularity system can be effectively used for solving various linear boundary-value problems governed by the Helmholtz equation involving prolate spheroidal bodies near planar or other boundaries. The general methodology is formally demonstrated for the axisymmetric acoustic scattering problem of a rigid (hard) spheroid placed near a hard/soft wall or inside a cylindrical duct under an axial incidence of a plane acoustic wave.

  10. Effects of orientation on acoustic scattering from Antarctic krill at 120 kHz

    NASA Astrophysics Data System (ADS)

    McGehee, D. E.; O'Driscoll, R. L.; Traykovski, L. V. Martin

    Backscattering measurements of 14 live individual Antarctic krill ( Euphausia superba) were made at a frequency of 120 kHz in a chilled insulated tank at the Long Marine Laboratory in Santa Cruz, CA. Individual animals were suspended in front of the transducers, were only loosely constrained, had substantial freedom to move, and showed more or less random orientation. One thousand echoes were collected per animal. Orientation data were recorded on video. The acoustic data were analyzed and target strengths determined from each echo. A method was developed for estimating the three-dimensional orientation of the krill based on the video images and was applied to five of them, giving their target strengths as functions of orientation. Scattering models based on a simplified distorted-wave Born approximation (DWBA) method were developed for five animals and compared with the measurements. Both measured and modeled scattering patterns showed that 120 kHz acoustic scattering levels are highly dependent on animal orientation. Use of these scattering patterns with orientation data from shipboard studies of E. superba gave mean scattering levels approximately 12 dB lower than peak levels. These results underscore the need for better in situ behavioral data to properly interpret acoustic survey results. A generic E. superba DWBA scattering model is proposed that is scalable by animal length. With good orientation information, this model could significantly improve the precision and accuracy of krill acoustic surveys.

  11. Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements

    NASA Astrophysics Data System (ADS)

    Qu, Fenglong; Yang, Jiaqing; Zhang, Bo

    2018-01-01

    Consider the inverse scattering problem of time-harmonic acoustic waves by a 3D bounded elastic obstacle which may contain embedded impenetrable obstacles inside. We propose a novel and simple technique to show that the elastic obstacle can be uniquely recovered by the acoustic far-field pattern at a fixed frequency, disregarding its contents. Our method is based on constructing a well-posed modified interior transmission problem on a small domain and makes use of an a priori estimate for both the acoustic and elastic wave fields in the usual H 1-norm. In the case when there is no obstacle embedded inside the elastic body, our method gives a much simpler proof for the uniqueness result obtained previously in the literature (Natroshvili et al 2000 Rend. Mat. Serie VII 20 57-92 Monk and Selgas 2009 Inverse Problems Imaging 3 173-98).

  12. Analysis of scattering by spheres having a negative acoustical refractive index

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2005-04-01

    Electromagnetic waves having oppositely directed phase and group velocities propagate in metamaterials having a negative permeability and negative permittivity [J. B. Pendry and D. R. Smith, Phys. Today 57(6), 37-44 (2004)]. Such materials are predicted to have unusual electromagnetic scattering properties [R. Ruppin, Solid State Commun. 116, 411-415 (2000)]. If it is possible to fabricate acoustical materials having a simultaneously negative effective elastic modulus and density (in a dynamical sense), the mechanical energy flux will have the opposite direction as the wave-vector associated with phase evolution. Rays descriptive of the energy flux refracted by such hypothetical materials at interfaces with ordinary fluids would be characterized by a negative acoustical refractive index. Partial-wave-series calculations of high frequency scattering by fluid spheres having an acoustical refractive index at (or close to) 1 reveal backscattering enhancements associated with glory rays which, unlike ordinary spheres [P. L. Marston and D. S. Langley, J. Acoust. Soc. Am. 73, 1464-1475 (1983)], require only a single internal chord. Generalized Lamb waves on elastic shells having opposite phase and group velocities also cause enhanced backscattering associated with unusual rays [G. Kaduchak, D. H. Hughes, and P. L. Marston, J. Acoust. Soc. Am. 96, 3704-3714 (1994)].

  13. Distribution of an Acoustic Scattering Layer, Petermann Fjord, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Heffron, E.; Mayer, L. A.; Jakobsson, M.; Hogan, K.; Jerram, K.

    2017-12-01

    The Petermann 2015 Expedition was a comprehensive paleoceanographic and paleoclimatological study of the marine-terminating Petermann Glacier and its outlet system in Northwest Greenland carried out July-August 2015. The purpose was the reconstruction of glacial history and current glacial processes in Petermann Fjord to better understand the fate of the Petermann Glacier and its floating ice tongue that acts as a critical buttressing force to the outlet glacier draining about 4% of the Greenland Ice Sheet. Seafloor mapping was a critical component of the study and an EM122 multibeam sonar was utilized for this purpose; additionally, water column data were acquired with this sonar and an EK80 split-beam echosounder. During the expedition, the mapping team noted an acoustic scattering layer in the EK80 and EM122 water column data which was observed to change depth in a spatially consistent manner that appeared to be related to location. Initial onboard processing revealed what appears to be a strong spatial coherence in the layer distribution that corresponds to our understanding of the complex circulation pattern in the study area, including inflow of warmer Atlantic waters and outflow of subglacial waters. This initial processing was limited to observations at 46 discrete locations that corresponded to CTD stations, a very small subset of the 4800 line kilometers of data collected by each sonar. Both sonars were run 24 hours per day over the 30-day expedition, providing continuous time-varying acoustic coverage of the study area. Post-cruise additional data has been processed to extract the acoustic returns from the scattering layer using a combination of commercial sonar processing software and specialized MATLAB and Python routines. 3-D surfaces have been generated from the extracted points in order to visualize the continuous spatial and temporal distribution of the scattering layer across the entire study area. Multiple crossings of the same location at

  14. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.

    PubMed

    Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong

    2014-02-01

    Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Piezoelectric substrate effect on electron-acoustic phonon scattering in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Ansari, Mohd Meenhaz; Ashraf, SSZ

    2018-05-01

    We have studied the effect of piezoelectric scattering as a function of electron temperature and distance between the sample and the substrate on electron-acoustic phonon scattering rate in Bilayer Graphene sitting on a piezoelectric substrate. We obtain approximate analytical result by neglecting the chiral nature of carriers and then proceed to obtain unapproximated numerical results for the scattering rate incorporating chirality of charge carriers. We find that on the incorporation of full numerical computation the magnitude as well as the power exponent both is affected with the power exponent changed from T3 to T3.31 in the low temperature range and to T6.98 dependence in the temperature range (>5K). We also find that the distance between the sample and substrate begins to strongly affect the scattering rate at temperatures above 10K. These calculation not only suggest the influencing effect of piezoelectric substrate on the transport properties of Dirac Fermions at very low temperatures but also open a channel to study low dimension structures by probing piezoelectric acoustical phonons.

  16. Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Krynkin, A.; Garcia-Raffi, L. M.; Umnova, O.; Sánchez-Pérez, J. V.

    2013-01-01

    An acoustic metamaterial made of a two-dimensional (2D) periodic array of multi-resonant acoustic scatterers is analyzed both experimentally and theoretically. The building blocks consist of a combination of elastic beams of low-density polyethylene foam (LDPF) with cavities of known area. Elastic resonances of the beams and acoustic resonances of the cavities can be excited by sound producing several attenuation peaks in the low frequency range. Due to this behavior the periodic array with long wavelength multi-resonant structural units can be classified as a locally multi-resonant acoustic metamaterial (LMRAM) with strong dispersion of its effective properties.The results presented in this paper could be used to design effective tunable acoustic filters for the low frequency range.

  17. Including scattering within the room acoustics diffusion model: An analytical approach.

    PubMed

    Foy, Cédric; Picaut, Judicaël; Valeau, Vincent

    2016-10-01

    Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.

  18. Acoustic vibrations contribute to the diffuse scatter produced by ribosome crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polikanov, Yury S.; Moore, Peter B.

    2015-09-26

    The diffuse scattering pattern produced by frozen crystals of the 70S ribosome fromThermus thermophilusis as highly structured as it would be if it resulted entirely from domain-scale motions within these particles. However, the qualitative properties of the scattering pattern suggest that acoustic displacements of the crystal lattice make a major contribution to it.

  19. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water.

    PubMed

    Simão, André G; Guimarães, Luiz G

    2016-01-01

    The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert's period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium.

  20. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 2; Scattering Plots

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.

  1. Photoacoustic tomography based on the Green's function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Jie; Department of Automation, Nanjing Polytechnic Institute, 210048 Nanjing; Tao, Chao, E-mail: taochao@nju.edu.cn

    2015-06-08

    Acoustically inhomogeneous mediums with multiple scattering are often the nightmare of photoacoustic tomography. In order to break this limitation, a photoacoustic tomography scheme combining ultrasound interferometry and time reversal is proposed to achieve images in acoustically scattering medium. An ultrasound interferometry is developed to determine the unknown Green's function of strong scattering tissue. Using the determined Greens' function, a time-reversal process is carried out to restore images behind an acoustically inhomogeneous layer from the scattering photoacoustic signals. This method effectively decreases the false contrast, noise, and position deviation of images induced by the multiple scattering. Phantom experiment is carried outmore » to validate the method. Therefore, the proposed method could have potential value in extending the biomedical applications of photoacoustic tomography in acoustically inhomogeneous tissue.« less

  2. A boundary integral equation method using auxiliary interior surface approach for acoustic radiation and scattering in two dimensions.

    PubMed

    Yang, S A

    2002-10-01

    This paper presents an effective solution method for predicting acoustic radiation and scattering fields in two dimensions. The difficulty of the fictitious characteristic frequency is overcome by incorporating an auxiliary interior surface that satisfies certain boundary condition into the body surface. This process gives rise to a set of uniquely solvable boundary integral equations. Distributing monopoles with unknown strengths over the body and interior surfaces yields the simple source formulation. The modified boundary integral equations are further transformed to ordinary ones that contain nonsingular kernels only. This implementation allows direct application of standard quadrature formulas over the entire integration domain; that is, the collocation points are exactly the positions at which the integration points are located. Selecting the interior surface is an easy task. Moreover, only a few corresponding interior nodal points are sufficient for the computation. Numerical calculations consist of the acoustic radiation and scattering by acoustically hard elliptic and rectangular cylinders. Comparisons with analytical solutions are made. Numerical results demonstrate the efficiency and accuracy of the current solution method.

  3. Acoustic scattering from a finite cylindrical shell with evenly spaced stiffeners: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Liétard, R.; Décultot, D.; Maze, G.; Tran-van-Nhieu, M.

    2005-10-01

    The influence of evenly spaced ribs (internal rings) on the acoustic scattering from a finite cylindrical shell is examined over the dimensionless frequency range 1scattering and scattering from Bloch-Floquet waves) are investigated. Fast Fourier Transform (FFT) processing on different segments of time signals allows us to distinguish influences of these phenomena. Further, comparison is made between frequency based results and numerical results provided by, respectively, a theoretical model using the thin shell theory [Tran-Van-Nhieu, J. Acoust. Soc. Am. 110, 2858-2866 (2001)] and a simple scattering/interference calculation.

  4. Time-frequency analysis of acoustic scattering from elastic objects

    NASA Astrophysics Data System (ADS)

    Yen, Nai-Chyuan; Dragonette, Louis R.; Numrich, Susan K.

    1990-06-01

    A time-frequency analysis of acoustic scattering from elastic objects was carried out using the time-frequency representation based on a modified version of the Wigner distribution function (WDF) algorithm. A simple and efficient processing algorithm was developed, which provides meaningful interpretation of the scattering physics. The time and frequency representation derived from the WDF algorithm was further reduced to a display which is a skeleton plot, called a vein diagram, that depicts the essential features of the form function. The physical parameters of the scatterer are then extracted from this diagram with the proper interpretation of the scattering phenomena. Several examples, based on data obtained from numerically simulated models and laboratory measurements for elastic spheres and shells, are used to illustrate the capability and proficiency of the algorithm.

  5. Thomson-Scattering Study of the Subharmonic Decay of Ion-Acoustic Waves Driven by the Brillouin Instability

    NASA Astrophysics Data System (ADS)

    Bandulet, H. C.; Labaune, C.; Lewis, K.; Depierreux, S.

    2004-07-01

    Thomson scattering (TS) has been used to investigate the two-ion decay instability of ion acoustic waves generated by stimulated Brillouin scattering in an underdense CH plasma. Two complementary TS diagnostics, spectrally and spatially resolved, demonstrate the occurrence of the subharmonic decay of the primary ion acoustic wave into two secondary waves. The study of the laser intensity dependence shows that the secondary ion acoustic waves are correlated with the SBS reflectivity saturation, at a level of a few percent.

  6. Efficient Solution of Three-Dimensional Problems of Acoustic and Electromagnetic Scattering by Open Surfaces

    NASA Technical Reports Server (NTRS)

    Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian

    2011-01-01

    We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.

  7. Scattering of acoustic evanescent waves by circular cylinders: Partial wave series solution

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    Evanescent acoustical waves occur in a variety of situations such as when sound is incident on a fluid interface beyond the critical angle and when flexural waves on a plate are subsonic with respect to the surrounding fluid. The scattering by circular cylinders at normal incidence was calculated to give insight into the consequences on the scattering of the evanescence of the incident wave. To analyze the scattering, it is necessary to express the incident wave using a modified expansion involving cylindrical functions. For plane evanescent waves, the expansion becomes a double summation with products of modified and ordinary Bessel functions. The resulting modified series is found for the scattering by a fluid cylinder in an unbounded medium. The perfectly soft and rigid cases are also examined. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on the transverse coordinate. The associated exponential dependence of the scattering on the location of a scatterer was previously demonstrated [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  8. Acoustic dynamics of supercooled indomethacin probed by Brillouin light scattering.

    PubMed

    De Panfilis, S; Pogna, E A A; Virga, A; Scopigno, T

    2014-07-21

    Acoustics dynamics of the molecular glass-former indomethacin (IMC) have been investigated by Brillouin light scattering (BLS) at GHz frequencies. Elastic response of the system has been tracked from the melting temperature down to the glass transition through the supercooled liquid. Both the structural arrest and the vibrational dynamics are described by modeling the experimentally determined dynamic structure factor within the framework of the Langevin equation, through a simplified choice of memory function which allows one to determine sound velocity and the acoustic attenuation coefficient as a function of temperature. The density fluctuation spectra in the glassy phase, as probed by BLS, are compared with time-domain results from photoacoustics experiments. The arising scenario is discussed in the context of current literature reporting inelastic X-ray scattering and BLS in platelet geometry. The link between the probed elastic properties and the non-ergodicity factor of the glass phase is finally scrutinized.

  9. Measurement and modeling of the acoustic field near an underwater vehicle and implications for acoustic source localization.

    PubMed

    Lepper, Paul A; D'Spain, Gerald L

    2007-08-01

    The performance of traditional techniques of passive localization in ocean acoustics such as time-of-arrival (phase differences) and amplitude ratios measured by multiple receivers may be degraded when the receivers are placed on an underwater vehicle due to effects of scattering. However, knowledge of the interference pattern caused by scattering provides a potential enhancement to traditional source localization techniques. Results based on a study using data from a multi-element receiving array mounted on the inner shroud of an autonomous underwater vehicle show that scattering causes the localization ambiguities (side lobes) to decrease in overall level and to move closer to the true source location, thereby improving localization performance, for signals in the frequency band 2-8 kHz. These measurements are compared with numerical modeling results from a two-dimensional time domain finite difference scheme for scattering from two fluid-loaded cylindrical shells. Measured and numerically modeled results are presented for multiple source aspect angles and frequencies. Matched field processing techniques quantify the source localization capabilities for both measurements and numerical modeling output.

  10. Low frequency acoustic and electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Maccamy, R. C.

    1986-01-01

    This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k/2/ log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.

  11. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.

    PubMed

    Rajabi, M; Hasheminejad, Seyyed M

    2009-12-01

    The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.

  12. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    PubMed

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  13. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  14. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    NASA Astrophysics Data System (ADS)

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-02-01

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.

  15. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo

    2015-02-02

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in ordermore » to evaluate their potential use as temperature sensors for acoustic phonons.« less

  16. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  17. Frustrated total internal reflection acoustic field sensor

    DOEpatents

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  18. Quantitative Evaluations of the Effects of the Seabed Sediments on Scattering and Propagation of Acoustics Energy in Shallow Oceans

    DTIC Science & Technology

    1999-09-30

    Dec. (1998) Yamamoto, T., “ A poroelastic model of highly permeable rocks,” Geophysics, revised August 1999a. Yamamoto, T., “ Acoustical imaging of...scattering mechanisms (volume fluctuation, bottom and sub-bottom roughness) on the acoustic propagation and scattering, and the effects of poroelastic ...properties of the sediments on the propagation of acoustic waves. OBJECTIVES To develop a universal (forward/inverse) model for the seafloor roughness

  19. Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction

    NASA Technical Reports Server (NTRS)

    Lee, Seongkyu; Brentner, Kenneth S.; Farassat, Fereidoun

    2007-01-01

    The scattering of rotor noise is an area that has received little attention over the years, yet the limited work that has been done has shown that both the directivity and intensity of the acoustic field may be significantly modified by the presence of scattering bodies. One of the inputs needed to compute the scattered acoustic field is the acoustic pressure gradient on a scattering surface. Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. These formulations are presented in this paper. The first formulation is derived by taking the gradient of Farassat's retarded-time Formulation 1A. Although this formulation is relatively simple, it requires numerical time differentiation of the acoustic integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. The acoustic pressure gradient predicted by these new formulations is validated through comparison with the acoustic pressure gradient determined by a purely numerical approach for two model rotors. The agreement between analytic formulations and numerical method is excellent for both stationary and moving observers case.

  20. Development of an Autonomous Broadband Acoustic Scattering System for Remote Characterization of Zooplankton

    DTIC Science & Technology

    2008-01-01

    backscatter at a single narrowband frequency, and some AUVs carry single-frequency sidescan sonars (and this technology has been adapted for gliders), the...broadband acoustic scattering system by adapting existing technology that has been recently developed at WHOI for a monostatic Doppler sonar module...broadband acoustic backscattering system: 1) Modifications to the monostatic Doppler sonar module, recently developed at WHOI for turbulence studies

  1. Direct Field Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Larkin, Paul; Goldstein, Bob

    2008-01-01

    This paper presents an update to the methods and procedures used in Direct Field Acoustic Testing (DFAT). The paper will discuss some of the recent techniques and developments that are currently being used and the future publication of a reference standard. Acoustic testing using commercial sound system components is becoming a popular and cost effective way of generating a required acoustic test environment both in and out of a reverberant chamber. This paper will present the DFAT test method, the usual setup and procedure and the development and use of a closed-loop, narrow-band control system. Narrow-band control of the acoustic PSD allows all standard techniques and procedures currently used in random control to be applied to acoustics and some examples are given. The paper will conclude with a summary of the development of a standard practice guideline that is hoped to be available in the first quarter of next year.

  2. Effect of centerbody scattering on propeller noise

    NASA Technical Reports Server (NTRS)

    Glegg, Stewart A. L.

    1991-01-01

    This paper describes how the effect of acoustic scattering from the hub or centerbody of a propeller will affect the far-field noise levels. A simple correction to Gutin's formula for steady loading noise is given. This is a maximum for the lower harmonics but has a negligible effect on the higher frequency components that are important subjectively. The case of a blade vortex interaction is also considered, and centerbody scattering is shown to have a significant effect on the acoustic far field.

  3. Nonlinear scattering of acoustic waves by natural and artificially generated subsurface bubble layers in sea.

    PubMed

    Ostrovsky, Lev A; Sutin, Alexander M; Soustova, Irina A; Matveyev, Alexander L; Potapov, Andrey I; Kluzek, Zigmund

    2003-02-01

    The paper describes nonlinear effects due to a biharmonic acoustic signal scattering from air bubbles in the sea. The results of field experiments in a shallow sea are presented. Two waves radiated at frequencies 30 and 31-37 kHz generated backscattered signals at sum and difference frequencies in a bubble layer. A motorboat propeller was used to generate bubbles with different concentrations at different times, up to the return to the natural subsurface layer. Theoretical consideration is given for these effects. The experimental data are in a reasonably good agreement with theoretical predictions.

  4. Modeling and analysis of multiple scattering of acoustic waves in complex media: application to the trabecular bone.

    PubMed

    Wojcik, J; Litniewski, J; Nowicki, A

    2011-10-01

    The integral equations that describe scattering in the media with step-rise changing parameters have been numerically solved for the trabecular bone model. The model consists of several hundred discrete randomly distributed elements. The spectral distribution of scattering coefficients in subsequent orders of scattering has been presented. Calculations were carried on for the ultrasonic frequency ranging from 0.5 to 3 MHz. Evaluation of the contribution of the first, second, and higher scattering orders to total scattering of the ultrasounds in trabecular bone was done. Contrary to the approaches that use the μCT images of trabecular structure to modeling of the ultrasonic wave propagation condition, the 3D numerical model consisting of cylindrical elements mimicking the spatial matrix of trabeculae, was applied. The scattering, due to interconnections between thick trabeculae, usually neglected in trabecular bone models, has been included in calculations when the structure backscatter was evaluated. Influence of the absorption in subsequent orders of scattering is also addressed. Results show that up to 1.5 MHz, the influence of higher scattering orders on the total scattered field characteristic can be neglected while for the higher frequencies, the relatively high amplitude interference peaks in higher scattering orders clearly occur. © 2011 Acoustical Society of America

  5. Characteristics of a wake-vortex tracking system based on acoustic refractive scattering

    DOT National Transportation Integrated Search

    1977-03-31

    The theory of acoustic-ray bending by aircraft-generated vortices is developed in a form convenient for application to a practical vortex tracking system. The maximum scattering angle 0= is proportional to the vortex circulation divided by the averag...

  6. Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon

    NASA Astrophysics Data System (ADS)

    Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-03-01

    Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.

  7. Acoustic integrated extinction.

    PubMed

    Norris, Andrew N

    2015-05-08

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122 , 3206-3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  8. Fourth-order acoustic torque in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  9. Dynamics of levitated objects in acoustic vortex fields.

    PubMed

    Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W

    2017-08-02

    Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.

  10. Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics

    DTIC Science & Technology

    2016-08-01

    APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...mechanism on which to base on-chip nonlinear optical devices compatible with a rapidly growing silicon photonics toolbox.3–9 While silicon on insulator

  11. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Ariza, A.; Landeira, J. M.; Escánez, A.; Wienerroither, R.; Aguilar de Soto, N.; Røstad, A.; Kaartvedt, S.; Hernández-León, S.

    2016-05-01

    Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400-500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500-600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s - 1 and the long-range ones at 11.5 ± 3.8 cm s - 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.

  12. FDTD scattered field formulation for scatterers in stratified dispersive media.

    PubMed

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  13. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited).

    PubMed

    Follett, R K; Delettrez, J A; Edgell, D H; Henchen, R J; Katz, J; Myatt, J F; Froula, D H

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10 21 cm -3 , which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  14. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs

    NASA Astrophysics Data System (ADS)

    Gélat, Pierre; ter Haar, Gail; Saffari, Nader

    2011-09-01

    The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.

  15. Scattering Theory for the Acoustic Wave Equation in an Arbitrary Exterior Domain

    DTIC Science & Technology

    1976-08-30

    65) will be further studied in the follow-up article. REFERENCES 1. C.H. Wilcox, Scattering Theory for the d - Alembert Equation in Exterior Domains...Exterior Domain Naval Research Lab Washington D C 30 Aug 76 254060 NRL Report 8030 Scattering Theory for the Acoustic Wave SEquation in an Arbitrary...STATEMENT (of the .b.Ia te ntere., d in loc k 10. If diferegn from R pr)A. 16 SUPPLEMENTARY NOTES IS KEY WORDS (Co.n.v onl r*eers Od*e ifftoneemy and

  16. Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico: determination of dominant zooplankton and micronekton scatterers

    NASA Astrophysics Data System (ADS)

    Ressler, Patrick H.

    2002-11-01

    A 153 kHz narrowband acoustic Doppler current profiler (ADCP) was used to measure volume backscattering strength ( Sv) during a deepwater oceanographic survey of cetacean and seabird habitat in the northeastern Gulf of Mexico. Sv was positively related to zooplankton and micronekton biomass (wet displacement volume) in 'sea-truth' net hauls made with a 1 m 2 Multiple Opening-Closing Net Environmental Sensing System (MOCNESS). A subset of these MOCNESS tows was used to explore the relationship between the numerical densities of various taxonomic categories of zooplankton and the ADCP backscatter signal. Crustaceans, small fish, and fragments of non-gas-bearing siphonophores in the net samples all showed significant, positive correlations with the acoustic signal, while other types of gelatinous zooplankton, pteropod and atlantid molluscs, and gas-filled siphonophore floats showed no significant correlation with Sv. Previously published acoustic scattering models for zooplankton were used to calculate expected scattering for several general zooplankton types and sizes for comparison with the field data. Even though gelatinous material often made up a large fraction of the total biomass, crustaceans, small fish, and pteropods were most likely the important scatterers. Since only crustacean and small fish densities were significantly correlated with Sv, it is suggested that Sv at 153 kHz can be used as a relative proxy for the abundance of these organisms in the Gulf of Mexico.

  17. The near-field acoustic levitation of high-mass rotors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Z. Y.; Lü, P.; Geng, D. L.

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  18. The near-field acoustic levitation of high-mass rotors.

    PubMed

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  19. Scattering measurements on natural and model trees

    NASA Technical Reports Server (NTRS)

    Rogers, James C.; Lee, Sung M.

    1990-01-01

    The acoustical back scattering from a simple scale model of a tree has been experimentally measured. The model consisted of a trunk and six limbs, each with 4 branches; no foliage or twigs were included. The data from the anechoic chamber measurements were then mathematically combined to construct the effective back scattering from groups of trees. Also, initial measurements have been conducted out-of-doors on a single tree in an open field in order to characterize its acoustic scattering as a function of azimuth angle. These measurements were performed in the spring, prior to leaf development. The data support a statistical model of forest scattering; the scattered signal spectrum is highly irregular but with a remarkable general resemblance to the incident signal spectrum. Also, the scattered signal's spectra showed little dependence upon scattering angle.

  20. Magnetothermoelectric effects in graphene and their dependence on scatterer concentration, magnetic field, and band gap

    NASA Astrophysics Data System (ADS)

    Kundu, Arpan; Alrefae, Majed A.; Fisher, Timothy S.

    2017-03-01

    Using a semiclassical Boltzmann transport equation approach, we derive analytical expressions for electric and thermoelectric transport coefficients of graphene in the presence and absence of a magnetic field. Scattering due to acoustic phonons, charged impurities, and vacancies is considered in the model. Seebeck (Sxx) and Nernst (N) coefficients are evaluated as functions of carrier density, temperature, scatterer concentration, magnetic field, and induced band gap, and the results are compared to experimental data. Sxx is an odd function of Fermi energy, while N is an even function, as observed in experiments. The peak values of both coefficients are found to increase with the decreasing scatterer concentration and increasing temperature. Furthermore, opening a band gap decreases N but increases Sxx. Applying a magnetic field introduces an asymmetry in the variation of Sxx with Fermi energy across the Dirac point. The formalism is more accurate and computationally efficient than the conventional Green's function approach used to model transport coefficients and can be used to explore transport properties of other materials with Dirac cones such as Weyl semimetals.

  1. Acoustic near-field characteristics of a conical, premixed flame

    NASA Astrophysics Data System (ADS)

    Lee, Doh-Hyoung; Lieuwen, Tim C.

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  2. Acoustic near-field characteristics of a conical, premixed flame.

    PubMed

    Lee, Doh-Hyoung; Lieuwen, Tim C

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  3. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra tomore » show the improvements in plasma characterization.« less

  4. Imaging of acoustic fields using optical feedback interferometry.

    PubMed

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry

    2014-12-01

    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.

  5. Acoustic scattering of a cylindrical quasi-Gaussian beam with arbitrary incidence focused on a rigid elliptical cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org

    2015-11-14

    Using the partial-wave series expansion method in cylindrical coordinates, a formal analytical solution for the acoustical scattering of a 2D cylindrical quasi-Gaussian beam with an arbitrary angle of incidence θ{sub i}, focused on a rigid elliptical cylinder in a non-viscous fluid, is developed. The cylindrical focused beam expression is an exact solution of the Helmholtz equation. The scattering coefficients for the elliptical cylinder are determined by forcing the expression of the total (incident + scattered) field to satisfy the Neumann boundary condition for a rigid immovable surface, and performing the product of matrices involving an inversion procedure. Computations for the matrices elementsmore » require a single numerical integration procedure for each partial-wave mode. Numerical results are performed with particular emphasis on the focusing properties of the incident beam and its angle of incidence with respect to the major axis a of the ellipse as well as the aspect ratio a/b where b is the minor axis (assuming a > b). The method is validated and verified against previous results obtained via the T-matrix for plane waves. The present analysis is the first to consider an acoustical beam on an elliptic cylinder of variable cross-section as opposed to plane waves of infinite extent. Other 2D non-spherical and Chebyshev surfaces are mentioned that may be examined throughout this analytical formalism assuming a small deformation parameter ε.« less

  6. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model

    NASA Astrophysics Data System (ADS)

    Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo

    2018-04-01

    PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.

  7. Dynamic acoustic field activated cell separation (DAFACS).

    PubMed

    Skotis, G D; Cumming, D R S; Roberts, J N; Riehle, M O; Bernassau, A L

    2015-02-07

    Advances in diagnostics, cell and stem cell technologies drive the development of application-specific tools for cell and particle separation. Acoustic micro-particle separation offers a promising avenue for high-throughput, label-free, high recovery, cell and particle separation and isolation in regenerative medicine. Here, we demonstrate a novel approach utilizing a dynamic acoustic field that is capable of separating an arbitrary size range of cells. We first demonstrate the method for the separation of particles with different diameters between 6 and 45 μm and secondly particles of different densities in a heterogeneous medium. The dynamic acoustic field is then used to separate dorsal root ganglion cells. The shearless, label-free and low damage characteristics make this method of manipulation particularly suited for biological applications. Advantages of using a dynamic acoustic field for the separation of cells include its inherent safety and biocompatibility, the possibility to operate over large distances (centimetres), high purity (ratio of particle population, up to 100%), and high efficiency (ratio of separated particles over total number of particles to separate, up to 100%).

  8. The Fast Scattering Code (FSC): Validation Studies and Program Guidelines

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Dunn, Mark H.

    2011-01-01

    The Fast Scattering Code (FSC) is a frequency domain noise prediction program developed at the NASA Langley Research Center (LaRC) to simulate the acoustic field produced by the interaction of known, time harmonic incident sound with bodies of arbitrary shape and surface impedance immersed in a potential flow. The code uses the equivalent source method (ESM) to solve an exterior 3-D Helmholtz boundary value problem (BVP) by expanding the scattered acoustic pressure field into a series of point sources distributed on a fictitious surface placed inside the actual scatterer. This work provides additional code validation studies and illustrates the range of code parameters that produce accurate results with minimal computational costs. Systematic noise prediction studies are presented in which monopole generated incident sound is scattered by simple geometric shapes - spheres (acoustically hard and soft surfaces), oblate spheroids, flat disk, and flat plates with various edge topologies. Comparisons between FSC simulations and analytical results and experimental data are presented.

  9. Scattering Cross Section of Sound Waves by the Modal Element Method

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1994-01-01

    #he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.

  10. Time-domain Brillouin scattering assisted by diffraction gratings

    NASA Astrophysics Data System (ADS)

    Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi

    2018-02-01

    Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.

  11. The frequency-difference and frequency-sum acoustic-field autoproducts.

    PubMed

    Worthmann, Brian M; Dowling, David R

    2017-06-01

    The frequency-difference and frequency-sum autoproducts are quadratic products of solutions of the Helmholtz equation at two different frequencies (ω + and ω - ), and may be constructed from the Fourier transform of any time-domain acoustic field. Interestingly, the autoproducts may carry wave-field information at the difference (ω + - ω - ) and sum (ω + + ω - ) frequencies even though these frequencies may not be present in the original acoustic field. This paper provides analytical and simulation results that justify and illustrate this possibility, and indicate its limitations. The analysis is based on the inhomogeneous Helmholtz equation and its solutions while the simulations are for a point source in a homogeneous half-space bounded by a perfectly reflecting surface. The analysis suggests that the autoproducts have a spatial phase structure similar to that of a true acoustic field at the difference and sum frequencies if the in-band acoustic field is a plane or spherical wave. For multi-ray-path environments, this phase structure similarity persists in portions of the autoproduct fields that are not suppressed by bandwidth averaging. Discrepancies between the bandwidth-averaged autoproducts and true out-of-band acoustic fields (with potentially modified boundary conditions) scale inversely with the product of the bandwidth and ray-path arrival time differences.

  12. Application of optical interferometry in focused acoustic field measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yuebing; Sun, Min; Cao, Yonggang; Zhu, Jiang

    2018-07-01

    Optical interferometry has been successfully applied in measuring acoustic pressures in plane-wave fields and spherical-wave fields. In this paper, the "effective" refractive index for focused acoustic fields was developed, through numerical simulation and experiments, the feasibility of the optical method in measuring acoustic fields of focused transducers was proved. Compared with the results from a membrane hydrophone, it was concluded that the optical method has good spatial resolution and is suitable for detecting focused fields with fluctuant distributions. The influences of a few factors (the generated lamb wave, laser beam directivity, etc.) were analyzed, and corresponding suggestions were proposed for effective application of this technology.

  13. Brillouin-scattering measurements of surface-acoustic-wave velocities in silicon at high temperatures

    NASA Astrophysics Data System (ADS)

    Stoddart, P. R.; Comins, J. D.; Every, A. G.

    1995-06-01

    Brillouin-scattering measurements of the angular dependence of surface-acoustic-wave velociites at high temperatures are reported. The measurements have been performed on the (001) surface of a silicon single crystal at temperatures up to 800 °C, allowing comparison of the results with calculated velocities based on existing data for the elastic constants and thermal expansion of silicon in this temperature range. The change in surface-acoustic-wave velocity with temperature is reproduced well, demonstrating the value of this technique for the characterization of the high-temperature elastic properties of opaque materials.

  14. Three-dimensional broadband acoustic illusion cloak for sound-hard boundaries of curved geometry

    PubMed Central

    Kan, Weiwei; Liang, Bin; Li, Ruiqi; Jiang, Xue; Zou, Xin-ye; Yin, Lei-lei; Cheng, Jianchun

    2016-01-01

    Acoustic illusion cloaks that create illusion effects by changing the scattered wave have many potential applications in a variety of scenarios. However, the experimental realization of generating three-dimensional (3D) acoustic illusions under detection of broadband signals still remains challenging despite the paramount importance for practical applications. Here we report the design and experimental demonstration of a 3D broadband cloak that can effectively manipulate the scattered field to generate the desired illusion effect near curved boundaries. The designed cloak simply comprises positive-index anisotropic materials, with parameters completely independent of either the cloaked object or the boundary. With the ability of manipulating the scattered field in 3D space and flexibility of applying to arbitrary geometries, our method may take a major step toward the real world application of acoustic cloaks and offer the possibilities of building advanced acoustic devices with versatile functionalities. PMID:27833141

  15. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    PubMed

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  16. Relationship between the Amplitude and Phase of a Signal Scattered by a Point-Like Acoustic Inhomogeneity

    NASA Astrophysics Data System (ADS)

    Burov, V. A.; Morozov, S. A.

    2001-11-01

    Wave scattering by a point-like inhomogeneity, i.e., a strong inhomogeneity with infinitesimal dimensions, is described. This type of inhomogeneity model is used in investigating the point-spread functions of different algorithms and systems. Two approaches are used to derive the rigorous relationship between the amplitude and phase of a signal scattered by a point-like acoustic inhomogeneity. The first approach is based on a Marchenko-type equation. The second approach uses the scattering by a scatterer whose size decreases simultaneously with an increase in its contrast. It is shown that the retarded and advanced waves are scattered differently despite the relationship between the phases of the corresponding scattered waves.

  17. Phenomenological Study of Interaction between Solar Acoustic Waves and Sunspots from Measured Scattered Wavefunctions

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui; Liang, Zhi-Chao

    2012-08-01

    The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their

  18. Finite-element analysis of scattering parameters of surface acoustic wave bandpass filter formed on barium titanate thin film

    NASA Astrophysics Data System (ADS)

    Timoshenko; Kalinchuk; Shirokov

    2018-04-01

    The frequency dependence of scattering parameters of interdigital surface acoustic wave transducers placed on ferroelectric barium titanate (BaTiO3) epitaxial film in c-phase coated over magnesium oxide has been studied using the finite-element method (FEM) approach along with the perfectly matched layer (PML) technique. The interdigital transducer which has a comb-like structure with aluminum electrodes excites the mechanical wave. The distance between the fingers allows tuning the frequency properties of the wave propagation. The magnesium oxide is taken as the substrate. The two-dimensional model of two-port surface acoustic wave filter is created to calculate scattering parameters and to show how to design the fixture in COMSOLTM. Some practical computational challenges of finite element modeling of SAW devices in COMSOLTM are shown. The effect of lattice misfit strain on acoustic properties of heterostructures of BaTiO3 epitaxial film in c-phase at room temperature is discussed in present article for two low-frequency surface acoustic resonances.

  19. Modal element method for scattering of sound by absorbing bodies

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1992-01-01

    The modal element method for acoustic scattering from 2-D body is presented. The body may be acoustically soft (absorbing) or hard (reflecting). The infinite computational region is divided into two subdomains - the bounded finite element domain, which is characterized by complicated geometry and/or variable material properties, and the surrounding unbounded homogeneous domain. The acoustic pressure field is represented approximately in the finite element domain by a finite element solution, and is represented analytically by an eigenfunction expansion in the homogeneous domain. The two solutions are coupled by the continuity of pressure and velocity across the interface between the two subdomains. Also, for hard bodies, a compact modal ring grid system is introduced for which computing requirements are drastically reduced. Analysis for 2-D scattering from solid and coated (acoustically treated) bodies is presented, and several simple numerical examples are discussed. In addition, criteria are presented for determining the number of modes to accurately resolve the scattered pressure field from a solid cylinder as a function of the frequency of the incoming wave and the radius of the cylinder.

  20. Upcoming new international measurement standards in the field of building acoustics

    NASA Astrophysics Data System (ADS)

    Goydke, Hans

    2002-11-01

    The extensively completed revision of most of the ISO measurement standards in building acoustics mainly initiated by the European Commissions demand for harmonized standards emphasized the insight that the main goal to avoid trade barriers between the countries can only be reached when the standards sufficiently and comprehensively cover the field when they are related to the actual state of the art and when they are sufficiently related to practice. In modern architecture one can observe the rapid change in the use of building materials, for instance regarding the use of glass. Lightweight constructions as well as heavyweight building elements with additional linings are increasingly in common use and unquestionably there are consequences to be considered regarding the ascertainment of sound insulation properties. Besides others, International Standardization is unsatisfactory regarding the assessment of noise in buildings from waste water installations, in the low frequency area and in general regarding the expression of uncertainty of measurements. Intensity measurements in building acoustics, rainfall noise assessment, estimation of sound insulation, impulse response measurement methods, assessment of sound scattering are examples of upcoming standards.

  1. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  2. On the Scattering of Sound by a Rectilinear Vortex

    NASA Astrophysics Data System (ADS)

    HOWE, M. S.

    1999-11-01

    A re-examination is made of the two-dimensional interaction of a plane, time-harmonic sound wave with a rectilinear vortex of small core diameter at low Mach number. Sakov [1] and Ford and Smith [2] have independently resolved the “infinite forward scatter” paradox encountered in earlier applications of the Born approximation to this problem. The first order scattered field (Born approximation) has nulls in the forward and back scattering directions, but the interaction of the wave with non-acoustically compact components of the vortex velocity field causes wavefront distortion, and the phase of the incident wave to undergo a significant variation across a parabolic domain whose axis extends along the direction of forward scatter from the vortex core. The transmitted wave crests of the incident wave become concave and convex, respectively, on opposite sides of the axis of the parabola, and focusing and defocusing of wave energy produces corresponding increases and decreases in wave amplitude. Wave front curvature decreases with increasing distance from the vortex core, with the result that the wave amplitude and phase are asymptotically equal to the respective values they would have attained in the absence of the vortex. The transverse acoustic dipole generated by translational motion of the vortex at the incident wave acoustic particle velocity, and the interaction of the incident wave with acoustically compact components of the vortex velocity field, are responsible for a system of cylindrically spreading, scattered waves outside the parabolic domain.

  3. Conformal mapping for the Helmholtz equation: acoustic wave scattering by a two dimensional inclusion with irregular shape in an ideal fluid.

    PubMed

    Liu, Gang; Jayathilake, Pahala G; Khoo, Boo Cheong; Han, Feng; Liu, Dian Kui

    2012-02-01

    The complex variables method with mapping function was extended to solve the linear acoustic wave scattering by an inclusion with sharp/smooth corners in an infinite ideal fluid domain. The improved solutions of Helmholtz equation, shown as Bessel function with mapping function as the argument and fractional order Bessel function, were analytically obtained. Based on the mapping function, the initial geometry as well as the original physical vector can be transformed into the corresponding expressions inside the mapping plane. As all the physical vectors are calculated in the mapping plane (η,η), this method can lead to potential vast savings of computational resources and memory. In this work, the results are validated against several published works in the literature. The different geometries of the inclusion with sharp corners based on the proposed mapping functions for irregular polygons are studied and discussed. The findings show that the variation of angles and frequencies of the incident waves have significant influence on the bistatic scattering pattern and the far-field form factor for the pressure in the fluid. © 2012 Acoustical Society of America

  4. Microwave-field-driven acoustic modes in DNA.

    PubMed Central

    Edwards, G S; Davis, C C; Saffer, J D; Swicord, M L

    1985-01-01

    The direct coupling of a microwave field to selected DNA molecules is demonstrated using standard dielectrometry. The absorption is resonant with a typical lifetime of 300 ps. Such a long lifetime is unexpected for DNA in aqueous solution at room temperature. Resonant absorption at fundamental and harmonic frequencies for both supercoiled circular and linear DNA agrees with an acoustic mode model. Our associated acoustic velocities for linear DNA are very close to the acoustic velocity of the longitudinal acoustic mode independently observed on DNA fibers using Brillouin spectroscopy. The difference in acoustic velocities for supercoiled circular and linear DNA is discussed in terms of solvent shielding of the nonbonded potentials in DNA. Images FIGURE 5 FIGURE 6 FIGURE 7 PMID:3893557

  5. Methods And Systems For Using Reference Images In Acoustic Image Processing

    DOEpatents

    Moore, Thomas L.; Barter, Robert Henry

    2005-01-04

    A method and system of examining tissue are provided in which a field, including at least a portion of the tissue and one or more registration fiducials, is insonified. Scattered acoustic information, including both transmitted and reflected waves, is received from the field. A representation of the field, including both the tissue and the registration fiducials, is then derived from the received acoustic radiation.

  6. Hidden acoustic information revealed by intentional nonlinearity

    NASA Astrophysics Data System (ADS)

    Dowling, David R.

    2017-11-01

    Acoustic waves are omnipresent in modern life and are well described by the linearized equations of fluid dynamics. Once generated, acoustic waves carry and collect information about their source and the environment through which they propagate, respectively, and this information may be retrieved by analyzing recordings of these waves. Because of this, acoustics is the primary means for observation, surveillance, reconnaissance, and remote sensing in otherwise opaque environments, such as the Earth's oceans and crust, and the interior of the human body. For such information-retrieval tasks, acoustic fields are nearly always interrogated within their recorded frequency range or bandwidth. However, this frequency-range restriction is not general; acoustic fields may also carry (hidden) information at frequencies outside their bandwidth. Although such a claim may seem counter intuitive, hidden acoustic-field information can be revealed by re-introducing a marquee trait of fluid dynamics: nonlinearity. In particular, an intentional quadratic nonlinearity - a form of intra-signal heterodyning - can be used to obtain acoustic field information at frequencies outside a recorded acoustic field's bandwidth. This quadratic nonlinearity enables a variety of acoustic remote sensing applications that were long thought to be impossible. In particular, it allows the detrimental effects of sparse recordings and random scattering to be suppressed when the original acoustic field has sufficient bandwidth. In this presentation, the topic is developed heuristically, with a just brief exposition of the relevant mathematics. Hidden acoustic field information is then revealed from simulated and measured acoustic fields in simple and complicated acoustic environments involving frequencies from a few Hertz to more than 100 kHz, and propagation distances from tens of centimeters to hundreds of kilometers. Sponsored by ONR, NAVSEA, and NSF.

  7. Refraction and scattering of sound by a shear layer

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amiet, R. K.

    1980-01-01

    The angle and amplitude changes for acoustic waves refracted by a circular open jet shear layer were determined. The generalized refraction theory was assessed experimentally for on axis and off axis acoustic source locations as source frequency varied from 1 kHz to 10 kHz and free stream Mach number varied from 0.1 to 0.4. Angle and amplitude changes across the shear layer show good agreement with theory. Experiments confirm that the refraction theory is independent of shear layer thickness, acoustic source frequency, and source type. A generalized theory is, thus, available for correcting far field noise data acquired in open jet test facilities. The effect of discrete tone scattering by the open jet turbulent shear layer was also studied. Scattering effects were investigated over the same Mach number range as frequency varied from 5 kHz to 15 kHz. Attenuation of discrete tone amplitude and tone broadening were measured as a function of acoustic source position and radiation angle. Scattering was found to be stronger at angles close to the open jet axis than at 90 deg, and becomes stronger as the acoustic source position shifts downstream. A scattering analysis provided an estimate of the onset of discrete tone scattering.

  8. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  9. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Coupled NASTRAN/boundary element formulation for acoustic scattering

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Henderson, Francis M.; Schuetz, Luise S.

    1987-01-01

    A coupled finite element/boundary element capability is described for calculating the sound pressure field scattered by an arbitrary submerged 3-D elastic structure. Structural and fluid impedances are calculated with no approximation other than discretization. The surface fluid pressures and normal velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior field. Far field pressures are then evaluated from the surface solution using the Helmholtz exterior integral equation. The overall approach is illustrated and validated using a known analytic solution for scattering from submerged spherical shells.

  11. NORSTAR Project: Norfolk public schools student team for acoustical research

    NASA Technical Reports Server (NTRS)

    Fortunato, Ronald C.

    1987-01-01

    Development of the NORSTAR (Norfolk Public Student Team for Acoustical Research) Project includes the definition, design, fabrication, testing, analysis, and publishing the results of an acoustical experiment. The student-run program is based on a space flight organization similar to the Viking Project. The experiment will measure the scattering transfer of momentum from a sound field to spheres in a liquid medium. It is hoped that the experimental results will shed light on a difficult physics problem - the difference in scattering cross section (the overall effect of the sound wave scattering) for solid spheres and hollow spheres of differing wall thicknesses.

  12. Impacts of underwater turbulence on acoustical and optical signals and their linkage.

    PubMed

    Hou, Weilin; Jarosz, Ewa; Woods, Sarah; Goode, Wesley; Weidemann, Alan

    2013-02-25

    Acoustical and optical signal transmission underwater is of vital interest for both civilian and military applications. The range and signal to noise during the transmission, as a function of system and water optical properties, in terms of absorption and scattering, determines the effectiveness of deployed electro-optical (EO) technology. The impacts from turbulence have been demonstrated to affect system performance comparable to those from particles by recent studies. This paper examines the impacts from underwater turbulence on both acoustic scattering and EO imaging degradation, and establishes a framework that can be used to correlate these. It is hypothesized here that underwater turbulence would influence the acoustic scattering cross section and the optical turbulence intensity coefficient in a similar manner. Data from a recent field campaign, Skaneateles Optical Turbulence Exercise (SOTEX, July, 2010) is used to examine the above relationship. Results presented here show strong correlation between the acoustic scattering cross-sections and the intensity coefficient related to the modulation transfer function of an EO imaging system. This significant finding will pave ways to utilize long range acoustical returns to predict EO system performance.

  13. Nondestructive acoustic electric field probe apparatus and method

    DOEpatents

    Migliori, Albert

    1982-01-01

    The disclosure relates to a nondestructive acoustic electric field probe and its method of use. A source of acoustic pulses of arbitrary but selected shape is placed in an oil bath along with material to be tested across which a voltage is disposed and means for receiving acoustic pulses after they have passed through the material. The received pulses are compared with voltage changes across the material occurring while acoustic pulses pass through it and analysis is made thereof to determine preselected characteristics of the material.

  14. Non-contact transportation using near-field acoustic levitation

    PubMed

    Ueha; Hashimoto; Koike

    2000-03-01

    Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described.

  15. Mie scattering off coated microbubbles

    NASA Astrophysics Data System (ADS)

    Nelissen, Radboud; Koene, Elmer; Hilgenfeldt, Sascha; Versluis, Michel

    2002-11-01

    The acoustic behavior of coated microbubbles depends on parameters of the shell coating, which are in turn dependent on bubble size. More intimate knowledge of this size dependence is required for an improved modeling of a distribution of coated microbubbles such as found in ultrasound contrast agents (UCA). Here a setup is designed to simultaneously measure the optical and acoustic response of an ultrasound-driven single bubble contained in a capillary or levitated by the pressure field of a focused transducer. Optical detection is done by Mie scattering through an inverted microscope. Acoustical detection of the single bubble by a receiving transducer is made possible because of the large working distance of the microscope. For Mie scattering investigation of excited bubbles, two regimes can be distinguished, which require different detection techniques: Conventional wide-angle detection through the microscope objective is sufficient for bubbles of radius exceeding 10 mum. For smaller bubbles, two narrow-aperture detectors are used to reconstruct the bubble dynamics from the complex angle-dependence of the scattered light.

  16. Acoustic and electromagnetic wave interaction in the detection and identification of buried objects

    NASA Astrophysics Data System (ADS)

    Lawrence, Daniel Edward

    2002-09-01

    In order to facilitate the development of a hybrid acoustic and electromagnetic (EM) system for buried object detection, a number of analytical solutions and a novel numerical technique are developed to analyze the complex interaction between acoustic and EM scattering. The essence of the interaction lies in the fact that identifiable acoustic properties of an object, such as acoustic resonances, can be observed in the scattered EM Doppler spectrum. Using a perturbation approach, analytical solutions are derived for the EM scattering from infinitely long circular cylinders, both metallic and dielectric, under acoustic vibration in a homogeneous background medium. Results indicate that both the shape variation and dielectric constant contribute to the scattered EM Doppler spectrum. To model the effect of a cylinder beneath an acoustically excited half-space, a new analytical solution is presented for EM scattering from a cylinder beneath a slightly rough surface. The solution is achieved by using plane-wave expansion of the fields and an iterative technique to account for the multiple interactions between the cylinder and rough surface. Following a similar procedure, a novel solution for elastic-wave scattering from a solid cylinder embedded in a solid half-space is developed and used to calculate the surface displacement. Simulations indicate that only a finite range of spatial surface frequencies, corresponding to surface roughness on the order of the EM wavelength; affect the EM scattering from buried objects and suggest that object detection can be improved if the acoustic excitation induces surface roughness outside this range. To extend the study to non-canonical scenarios, a novel numerical approach is introduced in which time-varying impedance boundary conditions (IBCs) are used in conjunction with the method of moments (MoM) to model the EM scattering from vibrating metallic objects of arbitrary shape. It is shown that the standard IBC provides a first

  17. Acoustical Scattering, Propagation, and Attenuation Caused by Two Abundant Pacific Schooling Species: Humboldt Squid and Hake

    DTIC Science & Technology

    2015-09-30

    an area important for acoustical testing and tactical exercises, the most abundant species by biomass is Pacific hake, Merluccius productus, a fish...scattering characteristics of the animal especially if the animal has eaten hard- shelled mollusc prey. Figure 7. A dorsal scan (similar to an x-ray) of a...kHz echogram. 11 In order to generate abundance and biomass estimates for organisms using active acoustics, one assumption that can be made is

  18. Induced clustering of Escherichia coli by acoustic fields.

    PubMed

    Gutiérrez-Ramos, Salomé; Hoyos, Mauricio; Ruiz-Suárez, J C

    2018-03-16

    Brownian or self-propelled particles in aqueous suspensions can be trapped by acoustic fields generated by piezoelectric transducers usually at frequencies in the megahertz. The obtained confinement allows the study of rich collective behaviours like clustering or spreading dynamics in microgravity-like conditions. The acoustic field induces the levitation of self-propelled particles and provides secondary lateral forces to capture them at nodal planes. Here, we give a step forward in the field of confined active matter, reporting levitation experiments of bacterial suspensions of Escherichia coli. Clustering of living bacteria is monitored as a function of time, where different behaviours are clearly distinguished. Upon the removal of the acoustic signal, bacteria rapidly spread, impelled by their own swimming. Nevertheless, long periods of confinement result in irreversible bacteria entanglements that could act as seeds for levitating bacterial aggregates.

  19. Support Minimized Inversion of Acoustic and Elastic Wave Scattering

    NASA Astrophysics Data System (ADS)

    Safaeinili, Ali

    Inversion of limited data is common in many areas of NDE such as X-ray Computed Tomography (CT), Ultrasonic and eddy current flaw characterization and imaging. In many applications, it is common to have a bias toward a solution with minimum (L^2)^2 norm without any physical justification. When it is a priori known that objects are compact as, say, with cracks and voids, by choosing "Minimum Support" functional instead of the minimum (L^2)^2 norm, an image can be obtained that is equally in agreement with the available data, while it is more consistent with what is most probably seen in the real world. We have utilized a minimum support functional to find a solution with the smallest volume. This inversion algorithm is most successful in reconstructing objects that are compact like voids and cracks. To verify this idea, we first performed a variational nonlinear inversion of acoustic backscatter data using minimum support objective function. A full nonlinear forward model was used to accurately study the effectiveness of the minimized support inversion without error due to the linear (Born) approximation. After successful inversions using a full nonlinear forward model, a linearized acoustic inversion was developed to increase speed and efficiency in imaging process. The results indicate that by using minimum support functional, we can accurately size and characterize voids and/or cracks which otherwise might be uncharacterizable. An extremely important feature of support minimized inversion is its ability to compensate for unknown absolute phase (zero-of-time). Zero-of-time ambiguity is a serious problem in the inversion of the pulse-echo data. The minimum support inversion was successfully used for the inversion of acoustic backscatter data due to compact scatterers without the knowledge of the zero-of-time. The main drawback to this type of inversion is its computer intensiveness. In order to make this type of constrained inversion available for common use, work

  20. Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

    NASA Technical Reports Server (NTRS)

    Agarwal, Anurag; Morris, Philip J.

    2000-01-01

    A parallel numerical simulation of the radiation of sound from an acoustic source inside a 2-D jet is presented in this paper. This basic benchmark problem is used as a test case for scattering problems that are presently being solved by using the Impedance Mismatch Method (IMM). In this technique, a solid body in the domain is represented by setting the acoustic impedance of each medium, encountered by a wave, to a different value. This impedance discrepancy results in reflected and scattered waves with appropriate amplitudes. The great advantage of the use of this method is that no modifications to a simple Cartesian grid need to be made for complicated geometry bodies. Thus, high order finite difference schemes may be applied simply to all parts of the domain. In the IMM, the total perturbation field is split into incident and scattered fields. The incident pressure is assumed to be known and the equivalent sources for the scattered field are associated with the presence of the scattering body (through the impedance mismatch) and the propagation of the incident field through a non-uniform flow. An earlier version of the technique could only handle uniform flow in the vicinity of the source and at the outflow boundary. Scattering problems in non-uniform mean flow are of great practical importance (for example, scattering from a high lift device in a non-uniform mean flow or the effects of a fuselage boundary layer). The solution to this benchmark problem, which has an acoustic wave propagating through a non-uniform mean flow, serves as a test case for the extensions of the IMM technique.

  1. Field-Deployable Acoustic Digital Systems for Noise Measurement

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  2. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. Inmore » the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.« less

  3. Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.

    1990-01-01

    Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.

  4. Neutrophil-inspired propulsion in a combined acoustic and magnetic field.

    PubMed

    Ahmed, Daniel; Baasch, Thierry; Blondel, Nicolas; Läubli, Nino; Dual, Jürg; Nelson, Bradley J

    2017-10-03

    Systems capable of precise motion in the vasculature can offer exciting possibilities for applications in targeted therapeutics and non-invasive surgery. So far, the majority of the work analysed propulsion in a two-dimensional setting with limited controllability near boundaries. Here we show bio-inspired rolling motion by introducing superparamagnetic particles in magnetic and acoustic fields, inspired by a neutrophil rolling on a wall. The particles self-assemble due to dipole-dipole interaction in the presence of a rotating magnetic field. The aggregate migrates towards the wall of the channel due to the radiation force of an acoustic field. By combining both fields, we achieved a rolling-type motion along the boundaries. The use of both acoustic and magnetic fields has matured in clinical settings. The combination of both fields is capable of overcoming the limitations encountered by single actuation techniques. We believe our method will have far-reaching implications in targeted therapeutics.Devising effective swimming and propulsion strategies in microenvironments is attractive for drug delivery applications. Here Ahmed et al. demonstrate a micropropulsion strategy in which a combination of magnetic and acoustic fields is used to assemble and propel colloidal particles along channel walls.

  5. Hybrid mode-scattering/sound-absorbing segmented liner system and method

    NASA Technical Reports Server (NTRS)

    Walker, Bruce E. (Inventor); Hersh, Alan S. (Inventor); Rice, Edward J. (Inventor)

    1999-01-01

    A hybrid mode-scattering/sound-absorbing segmented liner system and method in which an initial sound field within a duct is steered or scattered into higher-order modes in a first mode-scattering segment such that it is more readily and effectively absorbed in a second sound-absorbing segment. The mode-scattering segment is preferably a series of active control components positioned along the annulus of the duct, each of which includes a controller and a resonator into which a piezoelectric transducer generates the steering noise. The sound-absorbing segment is positioned acoustically downstream of the mode-scattering segment, and preferably comprises a honeycomb-backed passive acoustic liner. The invention is particularly adapted for use in turbofan engines, both in the inlet and exhaust.

  6. Weak scattering of scalar and electromagnetic random fields

    NASA Astrophysics Data System (ADS)

    Tong, Zhisong

    This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum

  7. An iterative fullwave simulation approach to multiple scattering in media with randomly distributed microbubbles

    NASA Astrophysics Data System (ADS)

    Joshi, Aditya; Lindsey, Brooks D.; Dayton, Paul A.; Pinton, Gianmarco; Muller, Marie

    2017-05-01

    Ultrasound contrast agents (UCA), such as microbubbles, enhance the scattering properties of blood, which is otherwise hypoechoic. The multiple scattering interactions of the acoustic field with UCA are poorly understood due to the complexity of the multiple scattering theories and the nonlinear microbubble response. The majority of bubble models describe the behavior of UCA as single, isolated microbubbles suspended in infinite medium. Multiple scattering models such as the independent scattering approximation can approximate phase velocity and attenuation for low scatterer volume fractions. However, all current models and simulation approaches only describe multiple scattering and nonlinear bubble dynamics separately. Here we present an approach that combines two existing models: (1) a full-wave model that describes nonlinear propagation and scattering interactions in a heterogeneous attenuating medium and (2) a Paul-Sarkar model that describes the nonlinear interactions between an acoustic field and microbubbles. These two models were solved numerically and combined with an iterative approach. The convergence of this combined model was explored in silico for 0.5 × 106 microbubbles ml-1, 1% and 2% bubble concentration by volume. The backscattering predicted by our modeling approach was verified experimentally with water tank measurements performed with a 128-element linear array transducer. An excellent agreement in terms of the fundamental and harmonic acoustic fields is shown. Additionally, our model correctly predicts the phase velocity and attenuation measured using through transmission and predicted by the independent scattering approximation.

  8. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    PubMed

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  9. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    NASA Astrophysics Data System (ADS)

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  10. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  11. Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui

    2017-01-01

    Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm-1.

  12. A comparison of finite element and analytic models of acoustic scattering from rough poroelastic interfaces.

    PubMed

    Bonomo, Anthony L; Isakson, Marcia J; Chotiros, Nicholas P

    2015-04-01

    The finite element method is used to model acoustic scattering from rough poroelastic surfaces. Both monostatic and bistatic scattering strengths are calculated and compared with three analytic models: Perturbation theory, the Kirchhoff approximation, and the small-slope approximation. It is found that the small-slope approximation is in very close agreement with the finite element results for all cases studied and that perturbation theory and the Kirchhoff approximation can be considered valid in those instances where their predictions match those given by the small-slope approximation.

  13. Determination of near and far field acoustics for advanced propeller configurations

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Jaeger, S. M.; Kim, J. H.

    1989-01-01

    A method has been studied for predicting the acoustic field of the SR-3 transonic propfan using flow data generated by two versions of the NASPROP-E computer code. Since the flow fields calculated by the solvers include the shock-wave system of the propeller, the nonlinear quadrupole noise source term is included along with the monopole and dipole noise sources in the calculation of the acoustic near field. Acoustic time histories in the near field are determined by transforming the azimuthal coordinate in the rotating, blade-fixed coordinate system to the time coordinate in a nonrotating coordinate system. Fourier analysis of the pressure time histories is used to obtain the frequency spectra of the near-field noise.

  14. On noninvasive assessment of acoustic fields acting on the fetus

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Kazakov, V. V.

    2014-05-01

    The aim of this study is to verify a noninvasive technique for assessing the characteristics of acoustic fields in the audible range arising in the uterus under the action of maternal voice, external sounds, and vibrations. This problem is very important in view of actively developed methods for delivery of external sounds to the uterus: music, maternal voice recordings, sounds from outside the mother's body, etc., that supposedly support development of the fetus at the prenatal stage psychologically and cognitively. However, the parameters of acoustic signals have been neither measured nor normalized, which may be dangerous for the fetus and hinder actual assessment of their impact on fetal development. The authors show that at frequencies below 1 kHz, acoustic pressure in the uterus may be measured noninvasively using a hydrophone placed in a soft capsule filled with liquid. It was found that the acoustic field at frequencies up to 1 kHz arising in the uterus under the action of an external sound field has amplitude-frequency parameters close to those of the external field; i.e., the external field penetrates the uterus with hardly any difficulty.

  15. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitudemore » and direction, which may enable more accurate noninvasive determination of tissue properties.« less

  16. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    NASA Astrophysics Data System (ADS)

    Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  17. An improved method for the calculation of Near-Field Acoustic Radiation Modes

    NASA Astrophysics Data System (ADS)

    Liu, Zu-Bin; Maury, Cédric

    2016-02-01

    Sensing and controlling Acoustic Radiation Modes (ARMs) in the near-field of vibrating structures is of great interest for broadband noise reduction or enhancement, as ARMs are velocity distributions defined over a vibrating surface, that independently and optimally contribute to the acoustic power in the acoustic field. But present methods only provide far-field ARMs (FFARMs) that are inadequate for the acoustic near-field problem. The Near-Field Acoustic Radiation Modes (NFARMs) are firstly studied with an improved numerical method, the Pressure-Velocity method, which rely on the eigen decomposition of the acoustic transfers between the vibrating source and a conformal observation surface, including sound pressure and velocity transfer matrices. The active and reactive parts of the sound power are separated and lead to the active and reactive ARMs. NFARMs are studied for a 2D baffled beam and for a 3D baffled plate, and so as differences between the NFARMS and the classical FFARMs. Comparisons of the NFARMs are analyzed when varying frequency and observation distance to the source. It is found that the efficiencies and shapes of the optimal active ARMs are independent on the distance while that of the reactive ones are distinctly related on.

  18. Letters: Comment on "Effects of multi-scattering on the performance of a single-beam acoustic manipulation device".

    PubMed

    Mitri, F G

    2013-11-01

    The concern addressed in the present commentary is to point out the omission of the azimuthal component Fφ of the axial acoustic radiation force provided in M. Azarpeyvand, M. A. Alibakhshi, R. Self, "Effects of multi-scattering on the performance of a single-beam acoustic manipulation device," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 8, pp. 1741-1749, 2012, which may suggest a miscalculation of the radiation force function Ym and its related numerical computations.

  19. Fast Scattering Code (FSC) User's Manual: Version 2

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Dun, M. H.; Pope, D. Stuart

    2006-01-01

    The Fast Scattering Code (version 2.0) is a computer program for predicting the three-dimensional scattered acoustic field produced by the interaction of known, time-harmonic, incident sound with aerostructures in the presence of potential background flow. The FSC has been developed for use as an aeroacoustic analysis tool for assessing global effects on noise radiation and scattering caused by changes in configuration (geometry, component placement) and operating conditions (background flow, excitation frequency).

  20. Sound extinction by fish schools: forward scattering theory and data analysis.

    PubMed

    Raveau, M; Feuillade, C

    2015-02-01

    A model used previously to study collective back scattering from fish schools [Feuillade et al., J. Acoust. Soc. Am. 99(1), 196-208 (1996)], is used to analyze the forward scattering properties of these objects. There is an essential physical difference between back and forward scattering from fish schools. Strong frequency dependent interference effects, which affect the back scattered field amplitude, are absent in the forward scattering case. This is critically important for data analysis. There is interest in using back scattering and transmission data from fish schools to study their size, the species and abundance of fish, and fish behavior. Transmission data can be processed to determine the extinction of the field by a school. The extinction of sound depends on the forward scattering characteristics of the school, and data inversion to provide information about the fish should be based upon a forward scattering paradigm. Results are presented of an analysis of transmission data obtained in September 1995 during an experiment performed in the Gulf of Lion in the Mediterranean Sea [Diachok, J. Acoust. Soc. Am. 105(4), 2107-2128 (1999)]. The analysis shows that using forward scattering leads to significantly larger estimates of fish abundance than previous analysis based upon back scattering approaches.

  1. Stimulated Brillouin scatter in a magnetized ionospheric plasma.

    PubMed

    Bernhardt, P A; Selcher, C A; Lehmberg, R H; Rodriguez, S P; Thomason, J F; Groves, K M; McCarrick, M J; Frazer, G J

    2010-04-23

    High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f(CI)) or an electrostatic ion cyclotron (EIC) wave just above f(CI) can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency.

  2. A fixed energy fixed angle inverse scattering in interior transmission problem

    NASA Astrophysics Data System (ADS)

    Chen, Lung-Hui

    2017-06-01

    We study the inverse acoustic scattering problem in mathematical physics. The problem is to recover the index of refraction in an inhomogeneous medium by measuring the scattered wave fields in the far field. We transform the problem to the interior transmission problem in the study of the Helmholtz equation. We find an inverse uniqueness on the scatterer with a knowledge of a fixed interior transmission eigenvalue. By examining the solution in a series of spherical harmonics in the far field, we can determine uniquely the perturbation source for the radially symmetric perturbations.

  3. Numerical Analysis of the Acoustic Field of Tip-Clearance Flow

    NASA Astrophysics Data System (ADS)

    Alavi Moghadam, S. M.; M. Meinke Team; W. Schröder Team

    2015-11-01

    Numerical simulations of the acoustic field generated by a shrouded axial fan are studied by a hybrid fluid-dynamics-acoustics method. In a first step, large-eddy simulations are performed to investigate the dynamics of tip clearance flow for various tip gap sizes and to determine the acoustic sources. The simulations are performed for a single blade out of five blades with periodic boundary conditions in the circumferential direction on a multi-block structured mesh with 1.4 ×108 grid points. The turbulent flow is simulated at a Reynolds number of 9.36 ×105 at undisturbed inflow condition and the results are compared with experimental data. The diameter and strength of the tip vortex increase with the tip gap size, while simultaneously the efficiency of the fan decreases. In a second step, the acoustic field on the near field is determined by solving the acoustic perturbation equations (APE) on a mesh for a single blade consisting of approx. 9.8 ×108 grid points. The overall agreement of the pressure spectrum and its directivity with measurements confirm the correct identification of the sound sources and accurate prediction of the acoustic duct propagation. The results show that the longer the tip gap size the higher the broadband noise level. Senior Scientist, Institute of Aerodynamics, RWTH Aachen University.

  4. Coupled BE/FE/BE approach for scattering from fluid-filled structures

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.

    1990-01-01

    NASHUA is a coupled finite element/boundary element capability built around NASTRAN for calculating the low frequency far-field acoustic pressure field radiated or scattered by an arbitrary, submerged, three-dimensional, elastic structure subjected to either internal time-harmonic mechanical loads or external time-harmonic incident loadings. Described here are the formulation and use of NASHUA for solving such structural acoustics problems when the structure is fluid-filled. NASTRAN is used to generate the structural finite element model and to perform most of the required matrix operations. Both fluid domains are modeled using the boundary element capability in NASHUA, whose matrix formulation (and the associated NASTRAN DMAP) for evacuated structures can be used with suitable interpretation of the matrix definitions. After computing surface pressures and normal velocities, far-field pressures are evaluated using an asymptotic form of the Helmholtz exterior integral equation. The proposed numerical approach is validated by comparing the acoustic field scattered from a submerged fluid-filled spherical thin shell to that obtained with a series solution, which is also derived here.

  5. Detecting Human Activity Using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors

    DTIC Science & Technology

    2011-09-01

    Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors by Sarah H. Walker and Geoffrey H. Goldman...Adelphi, MD 20783-1197 ARL-TR-5729 September 2011 Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors...DD-MM-YYYY) September 2011 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Detecting Human Activity using Acoustic

  6. Two-dimensional water acoustic waveguide based on pressure compensation method

    NASA Astrophysics Data System (ADS)

    Zheng, Mingye; Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2018-02-01

    A two-dimensional (2D) waveguide is a basic facility for experiment measurement due to a much more simplified wave field pattern than that in free space. A waveguide for airborne sound is easily achieved with almost any solid plates. However, the design of a 2D water acoustic waveguide is still challenging because of unavailable solids with a sufficient large impedance difference from water. In this work, a new method of constructing a 2D water acoustic waveguide is proposed based on pressure compensation and has been verified by numerical simulation. A prototype of the water acoustic waveguide is fabricated and complemented by an acoustic pressure scanning system; the measured scattered pressure fields by air and aluminum cylinders both agree quite well with numerical simulations. Most acoustic pressure fields within a frequency range 7 kHz-15 kHz can be measured in this waveguide when the required scanning region is smaller than the aluminum plate area (1800 mm × 800 mm).

  7. Investigation of Acoustic Fields for the Cassini Spacecraft: Reverberant Versus Launch Environments

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Himelblau, Harry

    2000-01-01

    The characterization and understanding of the acoustic field within a launch vehicle's payload fairing (PLF) is critical to the qualification of a spacecraft and ultimately to the success of its mission. Acoustic measurements taken recently for the Cassini mission have allowed unique opportunities to advance the aerospace industry's knowledge in this field. Prior to its launch, the expected liftoff acoustic environment of the spacecraft was investigated in a full-scale acoustic test of a Titan IV PLF and Cassini simulator in a reverberant test chamber. A major goal of this acoustic ground test was to quantify and verify the noise reduction performance of special barrier blankets that were designed especially to reduce the Cassirii acoustic environment. This paper will describe both the ground test and flight measurements, and compare the Cassini acoustic environment measured during launch with that measured earlier in the ground test. Special emphasis will be given to the noise reduction performance of the barrier blankets and to the acoustic coherence measured within the PLF.

  8. Acoustic discrimination of Southern Ocean zooplankton

    NASA Astrophysics Data System (ADS)

    Brierley, Andrew S.; Ward, Peter; Watkins, Jonathan L.; Goss, Catherine

    Acoustic surveys in the vicinity of the sub-Antarctic island of South Georgia during a period of exceptionally calm weather revealed the existence of a number of horizontally extensive yet vertically discrete scattering layers in the upper 250 m of the water column. These layers were fished with a Longhurst-Hardy plankton recorder (LHPR) and a multiple-opening 8 m 2 rectangular mid-water trawl (RMT8). Analysis of catches suggested that each scattering layer was composed predominantly of a single species (biovolume>95%) of either the euphausiids Euphausia frigida or Thysanöessa macrura, the hyperiid amphipod Themisto gaudichaudii, or the eucalaniid copepod Rhincalanus gigas. Instrumentation on the nets allowed their trajectories to be reconstructed precisely, and thus catch data to be related directly to the corresponding acoustic signals. Discriminant function analysis of differences between mean volume backscattering strength at 38, 120 and 200 kHz separated echoes originating from each of the dominant scattering layers, and other signals identified as originating from Antarctic krill ( Euphausia superba), with an overall correct classification rate of 77%. Using echo intensity data alone, gathered using hardware commonly employed for fishery acoustics, it is therefore possible to discriminate in situ between several zooplanktonic taxa, taxa which in some instances exhibit similar gross morphological characteristics and have overlapping length- frequency distributions. Acoustic signals from the mysid Antarctomysis maxima could also be discriminated once information on target distribution was considered, highlighting the value of incorporating multiple descriptors of echo characteristics into signal identification procedures. The ability to discriminate acoustically between zooplankton taxa could be applied to provide improved acoustic estimates of species abundance, and to enhance field studies of zooplankton ecology, distribution and species interactions.

  9. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.

    PubMed

    Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F

    2015-09-01

    The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Scattering of sound waves by a compressible vortex

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz

    1991-01-01

    Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.

  11. Born approximation for scattering by evanescent waves: Comparison with exact scattering by an infinite fluid cylinder

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2004-05-01

    In some situations, evanescent waves can be an important component of the acoustic field within the sea bottom. For this reason (as well as to advance the understanding of scattering processes) it can be helpful to examine the modifications to scattering theory resulting from evanescence. Modifications to ray theory were examined in a prior approximation [P. L. Marston, J. Acoust. Soc. Am. 113, 2320 (2003)]. The new research concerns the modifications to the low-frequency Born approximation and confirmation by comparison with the exact two-dimensional scattering by a fluid cylinder. In the case of a circular cylinder having the same density as the surroundings but having a compressibility contrast with the surroundings, the Born approximation with a nonevanescent incident wave gives only monopole scattering. When the cylinder has a density contrast and the same compressibility as the surroundings the regular Born approximation gives only dipole scattering (with the dipole oriented along to the incident wavevector). In both cases when the Born approximation is modified to include the evanescence of the incident wave, an additional dipole scattering term is evident. In each case the new dipole is oriented along to the decay axis of the evanescent wave. [Research supported by ONR.

  12. Acoustic holograms of active regions

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi

    2008-10-01

    We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.

  13. Stimulated Brillouin Scatter in a Magnetized Ionospheric Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhardt, P. A.; Selcher, C. A.; Lehmberg, R. H.

    2010-04-23

    High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f{sub CI}) or an electrostatic ion cyclotron (EIC) wave just above f{sub CI} can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves aremore » excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency.« less

  14. APL - North Pacific Acoustic Laboratory

    DTIC Science & Technology

    2011-09-01

    including marine mammals ) measurements in the NE Pacific Ocean. The Laboratory consists of the legacy SOSUS hydrophone receiver network in the...exposure in the marine environment. Philippine Sea- Ambient noise levels measured during the 2010-2011 Philippine Sea experiment on the Scripps...sound speed perturbations and the characteristics of the ambient acoustic noise field. Scattering and diffraction resulting from internal waves and

  15. String scattering amplitudes and deformed cubic string field theory

    NASA Astrophysics Data System (ADS)

    Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi

    2018-01-01

    We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.

  16. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.

    PubMed

    Demi, L; van Dongen, K W A; Verweij, M D

    2011-03-01

    Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation. © 2011 Acoustical Society of America

  17. Bubbles in an acoustic field: an overview.

    PubMed

    Ashokkumar, Muthupandian; Lee, Judy; Kentish, Sandra; Grieser, Franz

    2007-04-01

    Acoustic cavitation is the fundamental process responsible for the initiation of most of the sonochemical reactions in liquids. Acoustic cavitation originates from the interaction between sound waves and bubbles. In an acoustic field, bubbles can undergo growth by rectified diffusion, bubble-bubble coalescence, bubble dissolution or bubble collapse leading to the generation of primary radicals and other secondary chemical reactions. Surface active solutes have been used in association with a number of experimental techniques in order to isolate and understand these activities. A strobe technique has been used for monitoring the growth of a single bubble by rectified diffusion. Multibubble sonoluminescence has been used for monitoring the growth of the bubbles as well as coalescence between bubbles. The extent of bubble coalescence has also been monitored using a newly developed capillary technique. An overview of the various experimental results has been presented in order to highlight the complexities involved in acoustic cavitation processes, which on the other hand arise from a simple, mechanical interaction between sound waves and bubbles.

  18. Field Measurement of the Acoustic Nonlinearity Parameter in Turbine Blades

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.; Na, Jeong K.; Yost, William T.; Kessel, Gregory L.

    2000-01-01

    Nonlinear acoustics techniques were used to measure fatigue in turbine blades in a power generation plant. The measurements were made in the field using a reference based measurement technique, and a reference sample previously measured in the laboratory. The acoustic nonlinearity parameter showed significant increase with fatigue in the blades, as indicated by service age and areas of increased stress. The technique shows promise for effectively measuring fatigue in field applications and predicting subsequent failures.

  19. A search for lower-hybrid-drift fluctuations in a field-reversed configuration using CO2 heterodyne scattering

    NASA Astrophysics Data System (ADS)

    Carlson, Arthur W.

    1987-05-01

    An upper bound of (ñe/ne) <10-4 for frequencies and wavenumbers relevant to the lower-hybrid-drift (LHD) instability is set on fluctuations in field-reversed configurations (FRC's) produced by TRX-2 [Fusion Techn. 9, 48 (1986)]. LHD is a well-studied microinstability that is often invoked to explain particle loss rates in FRC's. The conventional technique of CO2 laser scattering with heterodyne detection is here modified to compensate for severe refraction. The calibration of the system is verified by scattering from acoustic waves in salt. The measured bound is two orders of magnitude below both the fluctuation level usually predicted and the level needed to account for observed particle loss rates. Electron collisionality is identified as the most likely LHD stabilization mechanism. Some alternative explanations of anomalous loss rates are discussed.

  20. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  1. Problems in nonlinear acoustics: Scattering of sound by sound, parametric receiving arrays, nonlinear effects in asymmetric sound beams and pulsed finite amplitude sound beams

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark F.

    1989-08-01

    Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.

  2. Scattering of Acoustic Waves from Ocean Boundaries

    DTIC Science & Technology

    2014-09-30

    of buried mines and improve SONAR performance in shallow water. OBJECTIVES 1) Determination of the correct physical model of acoustic propagation...Nicholas Chotiros, particularly for theoretical development of bulk acoustic /sediment modeling and laser roughness measurements. REFERENCES C...PUBLICATIONS 1. M. Isakson, and N. Chotiros. Finite Element Modeling of Acoustic

  3. The Fast Multipole Method and Fourier Convolution for the Solution of Acoustic Scattering on Regular Volumetric Grids

    PubMed Central

    Hesford, Andrew J.; Waag, Robert C.

    2010-01-01

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased. PMID:20835366

  4. The fast multipole method and Fourier convolution for the solution of acoustic scattering on regular volumetric grids

    NASA Astrophysics Data System (ADS)

    Hesford, Andrew J.; Waag, Robert C.

    2010-10-01

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.

  5. The Fast Multipole Method and Fourier Convolution for the Solution of Acoustic Scattering on Regular Volumetric Grids.

    PubMed

    Hesford, Andrew J; Waag, Robert C

    2010-10-20

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.

  6. Dynamic Reconstruction Algorithm of Three-Dimensional Temperature Field Measurement by Acoustic Tomography

    PubMed Central

    Li, Yanqiu; Liu, Shi; Inaki, Schlaberg H.

    2017-01-01

    Accuracy and speed of algorithms play an important role in the reconstruction of temperature field measurements by acoustic tomography. Existing algorithms are based on static models which only consider the measurement information. A dynamic model of three-dimensional temperature reconstruction by acoustic tomography is established in this paper. A dynamic algorithm is proposed considering both acoustic measurement information and the dynamic evolution information of the temperature field. An objective function is built which fuses measurement information and the space constraint of the temperature field with its dynamic evolution information. Robust estimation is used to extend the objective function. The method combines a tunneling algorithm and a local minimization technique to solve the objective function. Numerical simulations show that the image quality and noise immunity of the dynamic reconstruction algorithm are better when compared with static algorithms such as least square method, algebraic reconstruction technique and standard Tikhonov regularization algorithms. An effective method is provided for temperature field reconstruction by acoustic tomography. PMID:28895930

  7. Investigation of air-assisted sprays submitted to high frequency transverse acoustic fields: Droplet clustering

    NASA Astrophysics Data System (ADS)

    Ficuciello, A.; Blaisot, J. B.; Richard, C.; Baillot, F.

    2017-06-01

    An experimental investigation of the effects of a high amplitude transverse acoustic field on coaxial jets is presented in this paper. Water and air are used as working fluids at ambient pressure. The coaxial injectors are placed on the top of a semi-open resonant cavity where the acoustic pressure fluctuations of the standing wave can reach a maximum peak-to-peak amplitude of 12 kPa at the forcing frequency of 1 kHz. Several test conditions are considered in order to quantify the influence of injection conditions, acoustic field amplitude, and injector position with respect to the standing wave acoustic field. A high speed back-light visualization technique is used to characterize the jet response. Image processing is used to obtain valuable information about the jet behavior. It is shown that the acoustic field drastically affects the atomization process for all atomization regimes. The position of the injector in the acoustic field determines the jet response, and a droplet-clustering phenomenon is highlighted in multi-point injection conditions and quantified by determining discrete droplet location distributions. A theoretical model based on nonlinear acoustics related to the spatial distribution of the radiation pressure exerted on an object explains the behavior observed.

  8. Modal ring method for the scattering of sound

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1993-01-01

    The modal element method for acoustic scattering can be simplified when the scattering body is rigid. In this simplified method, called the modal ring method, the scattering body is represented by a ring of triangular finite elements forming the outer surface. The acoustic pressure is calculated at the element nodes. The pressure in the infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The two solution forms are coupled by the continuity of pressure and velocity on the body surface. The modal ring method effectively reduces the two-dimensional scattering problem to a one-dimensional problem capable of handling very high frequency scattering. In contrast to the boundary element method or the method of moments, which perform a similar reduction in problem dimension, the model line method has the added advantage of having a highly banded solution matrix requiring considerably less computer storage. The method shows excellent agreement with analytic results for scattering from rigid circular cylinders over a wide frequency range (1 is equal to or less than ka is less than or equal to 100) in the near and far fields.

  9. Controlled and in situ target strengths of the jumbo squid Dosidicus gigas and identification of potential acoustic scattering sources.

    PubMed

    Benoit-Bird, Kelly J; Gilly, William F; Au, Whitlow W L; Mate, Bruce

    2008-03-01

    This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies.

  10. Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.

    PubMed

    Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T

    2003-02-01

    The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.

  11. Changes in zooplankton habitat, behavior, and acoustic scattering characteristics across glider-resolved fronts in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Powell, Jesse R.; Ohman, Mark D.

    2015-05-01

    We report cross-frontal changes in the characteristics of plankton proxy variables measured by autonomous Spray ocean gliders operating within the Southern California Current System (SCCS). A comparison of conditions across the 154 positive frontal gradients (i.e., where density of the surface layer decreased in the offshore direction) identified from six years of continuous measurements showed that waters on the denser side of the fronts typically showed higher Chl-a fluorescence, shallower euphotic zones, and higher acoustic backscatter than waters on the less dense side. Transitions between these regions were relatively abrupt. For positive fronts the amplitude of Diel Vertical Migration (DVM), inferred from a 3-beam 750 kHz acoustic Doppler profiler, increased offshore of fronts and covaried with optical transparency of the water column. Average interbeam variability in acoustic backscatter also changed across many positive fronts within 3 depth strata (0-150 m, 150-400 m, and 400-500 m), revealing a front-related change in the acoustic scattering characteristics of the assemblages. The extent of vertical stratification of distinct scattering assemblages was also more pronounced offshore of positive fronts. Depth-stratified zooplankton samples collected by Mocness nets corroborated the autonomous measurements, showing copepod-dominated assemblages and decreased zooplankton body sizes offshore and euphausiid-dominated assemblages with larger median body sizes inshore of major frontal features.

  12. Direct imaging of small scatterers using reduced time dependent data

    NASA Astrophysics Data System (ADS)

    Cakoni, Fioralba; Rezac, Jacob D.

    2017-06-01

    We introduce qualitative methods for locating small objects using time dependent acoustic near field waves. These methods have reduced data collection requirements compared to typical qualitative imaging techniques. In particular, we only collect scattered field data in a small region surrounding the location from which an incident field was transmitted. The new methods are partially theoretically justified and numerical simulations demonstrate their efficacy. We show that these reduced data techniques give comparable results to methods which require full multistatic data and that these time dependent methods require less scattered field data than their time harmonic analogs.

  13. Customization of the acoustic field produced by a piezoelectric array through interelement delays

    PubMed Central

    Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.

    2008-01-01

    A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369

  14. Developments in Acoustic Metamaterials for Acoustic Ground Cloaks

    NASA Astrophysics Data System (ADS)

    Kerrian, Peter Adam

    The objective of acoustic cloaking is to eliminate both the back scattered and forward scattered acoustic fields by redirecting the incident wave around an object. Acoustic ground cloaks, which conceal an object on a rigid reflecting surface, utilize a linear coordinate transformation to map the flat surface to a void by compressing space into two cloaking regions consisting of a homogeneous anisotropic acoustic metafluid. Transformation acoustics allows for the realization of a coordinate transformation through a reinterpretation of the scale factors as a new material in the original coordinate system. Previous work has demonstrated at least three types of unit cells exhibit homogeneous anisotropic mass density and homogeneous isotropic bulk modulus: alternating layers of homogeneous isotropic fluids, perforated plates and solid inclusions. The primary focus of this dissertation is to demonstrate underwater anisotropic mass density with a solid inclusion unit cell and realize an underwater perforated plate acoustic ground cloak. An in depth analysis into the methods used to characterize the effective material parameters of solid inclusion unit cells with water as the background fluid was performed for both single inclusion unit cells as well as multi-inclusion unit cells. The degree of density anisotropy obtainable for a rigid single inclusion unit cell is limited by the size of the inclusion. However, a greater degree of anisotropy can be achieved by introducing additional inclusions into the unit cell design. For example, including a foam material that is less dense than the background fluid, results in an anisotropic density tensor with one component greater than and one component less than the value of the background fluid. The results of a parametric study determined that for a multi-inclusion unit cell, the effective material parameters can be controlled by the dimensions of the rigid inclusion as well as the material parameters and dimensions of the foam

  15. Active acoustic classification via transient resonance scattering

    NASA Astrophysics Data System (ADS)

    Gaunaurd, Guillermo C.

    1992-12-01

    The echoes reflected by a sound ping emerging from active sonar when it interacts with a target in its path can be remotely sensed by a receiver. The presented approach capitalizes on an air inverse scattering method that exploits the presence of certain resonance features in these echoes returned by targets to classify them. Classifying underwater objects is important to naval programs such as mine countermeasures (MC) and anti-submarine warfare (ASW) to preclude wasting of ordnance on false targets. Although the classification of complex shapes is still a formidable task, considerable progress has been made in classifying simple shapes such as spheroidal or cylindrical shells. The briefly overviewed methodology has emphasized the extraction, isolation, and labeling of resonance features hidden within the echo, but little has been said about how these could be used to classify a target. A couple of simple examples illustrate exactly how these resonances can be linked to the physical characteristics of the target, allowing for its unambiguous characterization. The procedure, although illustrated with active acoustics (i.e., sonar), can be extended to any active return from any sensor, including radar.

  16. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images.

    PubMed

    Hesford, Andrew J; Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C

    2014-08-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast.

  17. Interaction of acoustic levitation field with liquid reflecting surface

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Xie, W. J.; Wei, B.

    2010-01-01

    Single-axis acoustic levitation of substances, such as foam, water, polymer, and aluminum, is achieved by employing various liquids as the sound reflectors. The interaction of acoustic levitation field with liquid reflecting surface is investigated theoretically by considering the deformation of the liquid surface under acoustic radiation pressure. Numerical calculations indicate that the deformation degree of the reflecting surface shows a direct proportion to the acoustic radiation power. Appropriate deformation is beneficial whereas excessive deformation is unfavorable to enhance the levitation capability. Typically, the levitation capability with water reflector is smaller than that with the concave rigid reflector but slightly larger than that with the planar rigid reflector at low emitter vibration intensity. Liquid reflectors with larger surface tension and higher density behave more closely to the planar rigid reflector.

  18. Propagation and scattering of acoustic-vorticity waves in annular swirling flows

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir Viktorovich

    1997-08-01

    The dissertation presents a fundamental extension of unsteady aerodynamic theory developed to predict fluctuating forces on aircraft structural components. These excitations may result from a variety of upstream flow non-uniformities such as atmospheric turbulence, airframe tip vortices and wakes, engine inlet distortions and secondary flows. In the frame of reference of a downstream aircraft component, an upstream flow non- uniformity appears as a propagating vorticity wave (a gust). Classical treatment of gust interaction problems developed for uniform, potential upstream mean flows is based on the fact that it is possible to consider separately incident or scattered acoustic, entropic and vortical modes of unsteady flow motion. A purely vortical gust remains 'frozen' as it convects with the flow. The coupling between different unsteady components may occur only at the surface of a solid structure, or in the close vicinity of a lifting body. The classical approach, however, is not justified for an aircraft engine system where the internal turbomachinery flow is non-uniform and non-potential as it exhibits a strong swirling motion. In such a flow, acting centrifugal and Coriolis forces couple the various unsteady modes which thus can no longer be determined independently of each other. The new developed theory follows the decomposition of unsteady velocity field into vortical and potential components. In spite of the modal coupling, this decomposition elucidates the physical phenomena associated with unsteady swirling motion by indicating the degree of interaction between the various modes. It paves the way for generalizing the classical definition of a gust for vortical swirling flows. The concept of a generalized gust is developed based on the eigenmode pseudospectral analysis of the coupled equations of unsteady swirling motion. This analysis reveals two distinct regions of eigenvalues corresponding to pressure-dominated nearly-sonic and vorticity- dominated

  19. Ultrasonic superlensing jets and acoustic-fork sheets

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-05-01

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on ;hyper; or ;super; lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical 'snail-fork' shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices.

  20. Acoustic radiation force on a multilayered sphere in a Gaussian standing field

    NASA Astrophysics Data System (ADS)

    Wang, Haibin; Liu, Xiaozhou; Gao, Sha; Cui, Jun; Liu, Jiehui; He, Aijun; Zhang, Gutian

    2018-03-01

    We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications. Project supported by National Key R&D Program (Grant No. 2016YFF0203000), the National Natural Science Foundation of China (Grant Nos. 11774167 and 61571222), the Fundamental Research Funds for the Central Universities of China (Grant No. 020414380001), the Key Laboratory of Underwater Acoustic Environment, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SSHJ-KFKT-1701), and the AQSIQ Technology R&D Program of China (Grant No. 2017QK125).

  1. Analyzing panel acoustic contributions toward the sound field inside the passenger compartment of a full-size automobile.

    PubMed

    Wu, Sean F; Moondra, Manmohan; Beniwal, Ravi

    2015-04-01

    The Helmholtz equation least squares (HELS)-based nearfield acoustical holography (NAH) is utilized to analyze panel acoustic contributions toward the acoustic field inside the interior region of an automobile. Specifically, the acoustic power flows from individual panels are reconstructed, and relative contributions to sound pressure level and spectrum at any point of interest are calculated. Results demonstrate that by correlating the acoustic power flows from individual panels to the field acoustic pressure, one can correctly locate the panel allowing the most acoustic energy transmission into the vehicle interior. The panel on which the surface acoustic pressure amplitude is the highest should not be used as indicative of the panel responsible for the sound field in the vehicle passenger compartment. Another significant advantage of this HELS-based NAH is that measurements of the input data only need to be taken once by using a conformal array of microphones in the near field, and ranking of panel acoustic contributions to any field point can be readily performed. The transfer functions between individual panels of any vibrating structure to the acoustic pressure anywhere in space are calculated not measured, thus significantly reducing the time and effort involved in panel acoustic contributions analyses.

  2. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions.

    PubMed

    Cristiglio, Viviana; Grillo, Isabelle; Fomina, Margarita; Wien, Frank; Shalaev, Evgenyi; Novikov, Alexey; Brassamin, Séverine; Réfrégiers, Matthieu; Pérez, Javier; Hennet, Louis

    2017-01-01

    The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Acoustic and Seismic Fields of Hydraulic Jumps at Varying Froude Numbers

    NASA Astrophysics Data System (ADS)

    Ronan, Timothy J.; Lees, Jonathan M.; Mikesell, T. Dylan; Anderson, Jacob F.; Johnson, Jeffrey B.

    2017-10-01

    Mechanisms that produce seismic and acoustic wavefields near rivers are poorly understood because of a lack of observations relating temporally dependent river conditions to the near-river seismoacoustic fields. This controlled study at the Harry W. Morrison Dam (HWMD) on the Boise River, Idaho, explores how temporal variation in fluvial systems affects surrounding acoustic and seismic fields. Adjusting the configuration of the HWMD changed the river bathymetry and therefore the form of the standing wave below the dam. The HWMD was adjusted to generate four distinct wave regimes that were parameterized through their dimensionless Froude numbers (Fr) and observations of the ambient seismic and acoustic wavefields at the study site. To generate detectable and coherent signals, a standing wave must exceed a threshold Fr value of 1.7, where a nonbreaking undular jump turns into a breaking weak hydraulic jump. Hydrodynamic processes may partially control the spectral content of the seismic and acoustic energies. Furthermore, spectra related to reproducible wave conditions can be used to calibrate and verify fluvial seismic and acoustic models.

  4. Continued Analysis of High-Frequency Broadband Acoustic Scattering from Non-Linear Internal Waves during SW06

    DTIC Science & Technology

    2010-09-30

    1) to understanding and quantifying the contribution to acoustic backscattering from the seasonal pycnocline, 2) to investigate the statistics...echoes from relatively small zooplankton, such as pteropods or copepods, potentially in the presence of microstructure or in mixed zooplankton assemblages...Lavery et al., 2007) have shown that the predicted scattering from zooplankton is dominated by copepods, amphipods, and pteropods , depending on the

  5. Synchronized LES for acoustic near-field analysis of a supersonic jet

    NASA Astrophysics Data System (ADS)

    S, Unnikrishnan; Gaitonde, Datta; The Ohio State University Team

    2014-11-01

    We develop a novel method using simultaneous, synchronized Large Eddy Simulations (LES) to examine the manner in which the plume of a supersonic jet generates the near acoustic field. Starting from a statistically stationary state, at each time-step, the first LES (Baseline) is used to obtain native perturbations, which are then localized in space, scaled to small values and injected into the second LES (Twin). At any subsequent time, the difference between the two simulations can be processed to discern how disturbances from any particular zone in the jet are modulated and filtered by the non-linear core to form the combined hydrodynamic and acoustic near field and the fully acoustic farfield. Unlike inverse techniques that use correlations between jet turbulence and far-field signals to infer causality, the current forward analysis effectively tags and tracks native perturbations as they are processed by the jet. Results are presented for a Mach 1.3 cold jet. Statistical analysis of the baseline and perturbation boost provides insight into different mechanisms of disturbance propagation, amplification, directivity, generation of intermittent wave-packet like events and the direct and indirect effect of different parts of the jet on the acoustic field. Office of Naval Research.

  6. On the relationship between acoustic energy density flux near the jet axis and far field acoustic intensity

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    1973-01-01

    By measurement and analysis, the relationship between the distribution of the outflow of acoustic energy over the jet boundary and the far-field intensity is considered. The physical quantity used is the gradient of the pressure evaluated on a geometrical plane at the smallest possible radial distance from the jet axis, but outside the vortical region, in the area where the homogeneous wave equation is reasonably well satisfied. The numerical and experimental procedures involved have been checked out by using a known source. Results indicate that the acoustic power output per unit length of the jet, in the region from which the sound emanates, peaks at approximately 9 diameters downstream. The acoustic emission for a jet Strouhal number of about 0.3 exceeds the emission for all other Strouhal numbers nearly everywhere along the measurement plane. However, the far-field peak intensity distribution obtained from the contribution of each station was found to depend on the spatial extent of the region where sound emanates from the jet, which, in turn, depends more on the far-field angle than on the Strouhal number.

  7. Blind source separation based on time-frequency morphological characteristics for rigid acoustic scattering by underwater objects

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Li, Xiukun

    2016-06-01

    Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.

  8. Experimental observation of spontaneous depolarized guided acoustic-wave Brillouin scattering in side cores of a multicore fiber

    NASA Astrophysics Data System (ADS)

    Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro; Set, Sze Yun; Yamashita, Shinji

    2018-06-01

    Spontaneous depolarized guided acoustic-wave Brillouin scattering (GAWBS) was experimentally observed in one of the side cores of an uncoated multicore fiber (MCF). The frequency bandwidth in the side core was up to ∼400 MHz, which is 0.5 times that in the central core. The GAWBS spectrum of the side core of the MCF included intrinsic peaks, which had different acoustic resonance frequencies from those of the central core. In addition, the spontaneous depolarized GAWBS in the central/side core was unaffected by that in the other core. These results will lead to the development of polarization/phase modulators using an MCF.

  9. Prediction and near-field observation of skull-guided acoustic waves

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  10. Prediction and near-field observation of skull-guided acoustic waves.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  11. Method and apparatus for generating acoustic energy

    DOEpatents

    Guerrero, Hector N.

    2002-01-01

    A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.

  12. Study of magnetofluidic laser scattering under rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Pai, Chintamani; Shalini, M.; Varma, Vijaykumar B.; Radha, S.; Nagarajan, R.; Ramanujan, Raju V.

    2018-04-01

    Magnetic field driven self-assembly of magnetic nanoparticles provides wireless programmable approach for tunable magnetofluidic laser scattering. In this work, we study magnetofluidic laser scattering from a commercial aqueous magnetic fluid (EMG 707) under an external rotating magnetic field. A set-up is developed to generate rotating magnetic field for the purpose. Self-assembled magnetic nanoparticle structures in the form of chains and bundles are formed along the magnetic field. This creates a linear streak formation in the forward laser scattering. Rotating magnetic field produces rotating linear streak. We report our initial results of rotating linear streaks at 3 rpm, 6 rpm and 10 rpm and our analysis of the patterns. The studies are useful for developing magnetic fluid based optical devices.

  13. Wide-field imaging through scattering media by scattered light fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yulan; Li, Xun

    2017-08-01

    To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.

  14. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  15. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Hu, B.; Lerch, J. E.; Chavan, A. H.; Weber, J. K. R.; Tamalonis, A.; Suthar, K. J.; DiChiara, A. D.

    2017-09-01

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analyses. Our results show that this style of transducer produces a strong acoustic beam with a total divergence angle of 10°, a near-field point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.

  16. Adaptive acoustic energy delivery to near and far fields using foldable, tessellated star transducers

    NASA Astrophysics Data System (ADS)

    Zou, Chengzhe; Harne, Ryan L.

    2017-05-01

    Methods of guiding acoustic energy arbitrarily through space have long relied on digital controls to meet performance needs. Yet, more recent attention to adaptive structures with unique spatial configurations has motivated mechanical signal processing (MSP) concepts that may not be subjected to the same functional and performance limitations as digital acoustic beamforming counterparts. The periodicity of repeatable structural reconfiguration enabled by origami-inspired tessellated architectures turns attention to foldable platforms as frameworks for MSP development. This research harnesses principles of MSP to study a tessellated, star-shaped acoustic transducer constituent that provides on-demand control of acoustic energy guiding via folding-induced shape reconfiguration. An analytical framework is established to probe the roles of mechanical and acoustic geometry on the far field directivity and near field focusing of sound energy. Following validation by experiments and verification by simulations, parametric studies are undertaken to uncover relations between constituent topology and acoustic energy delivery to arbitrary points in the free field. The adaptations enabled by folding of the star-shaped transducer reveal capability for restricting sound energy to angular regions in the far field while also introducing means to modulate sound energy by three orders-of-magnitude to locations near to the transducer surface. In addition, the modeling philosophy devised here provides a valuable approach to solve general sound radiation problems for foldable, tessellated acoustic transducer constituents of arbitrary geometry.

  17. Geometric and boundary element method simulations of acoustic reflections from rough, finite, or non-planar surfaces

    NASA Astrophysics Data System (ADS)

    Rathsam, Jonathan

    This dissertation seeks to advance the current state of computer-based sound field simulations for room acoustics. The first part of the dissertation assesses the reliability of geometric sound-field simulations, which are approximate in nature. The second part of the dissertation uses the rigorous boundary element method (BEM) to learn more about reflections from finite reflectors: planar and non-planar. Acoustical designers commonly use geometric simulations to predict sound fields quickly. Geometric simulation of reflections from rough surfaces is still under refinement. The first project in this dissertation investigates the scattering coefficient, which quantifies the degree of diffuse reflection from rough surfaces. The main result is that predicted reverberation time varies inversely with scattering coefficient if the sound field is nondiffuse. Additional results include a flow chart that enables acoustical designers to gauge how sensitive predicted results are to their choice of scattering coefficient. Geometric acoustics is a high-frequency approximation to wave acoustics. At low frequencies, more pronounced wave phenomena cause deviations between real-world values and geometric predictions. Acoustical designers encounter the limits of geometric acoustics in particular when simulating the low frequency response from finite suspended reflector panels. This dissertation uses the rigorous BEM to develop an improved low-frequency radiation model for smooth, finite reflectors. The improved low frequency model is suggested in two forms for implementation in geometric models. Although BEM simulations require more computation time than geometric simulations, BEM results are highly accurate. The final section of this dissertation uses the BEM to investigate the sound field around non-planar reflectors. The author has added convex edges rounded away from the source side of finite, smooth reflectors to minimize coloration of reflections caused by interference from

  18. Detection of acoustic waves by NMR using a radiofrequency field gradient.

    PubMed

    Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J; Franconi, Jean Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D

    2003-03-01

    A B(1) field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 13;31; RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.

  19. Acoustic Scattering from Munitions in the Underwater Environment: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Williams, K.; Kargl, S. G.; Espana, A.

    2017-12-01

    Acoustical scattering from elastic targets has been a subject of research for several decades. However, the introduction of those targets into the ocean environment brings new complexities to quantitative prediction of that scattering. The goal of our work has been to retain as much of the target physics as possible while also handling the propagation to and from the target in the multi-path ocean environment. Testing of the resulting predictions has been carried out via ocean experiments in which munitions are deployed on and within the sediment. We will present the overall philosophy used in the modeling and then compare model results to measurements. A 60 cm long 30 cd diameter aluminum cylinder will be used as a canonical example and then a sample of results for a variety of munitions will be shown. Finally, we will discuss the use of both the models and measurements in assessing the ability of sonar to discriminate munitions from other man-made targets. The difficulty of this challenge will be made apparent via results from a recent experiment in which both munitions and man-made "clutter" were deployed on a rippled sand interface.

  20. Droplet Vaporization In A Levitating Acoustic Field

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and

  1. Research on Acoustical Scattering, Diffraction Catastrophes, Optics of Bubbles, Photoacoustics, and Acoustical Phase Conjugation.

    DTIC Science & Technology

    1987-09-15

    optical levitation of bubbles; D. Acoustical and optical diffraction catastrophes (theory and optical simulation of transverse cusps, experiments with...35 C. Optical Levitation of Bubbles in Water by the Radiation Pressure of a Laser Beam: An Acoustically Quiet Levitator ...radiation pressure of a laser beam: an acoustically quiet levitator ," J. Acoust . Soc. Am. (submitted July 1987). C. Books (and sections thereof) Published

  2. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy.

    PubMed

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-06-27

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction.

  3. Fresnel field interaction applied to scattering from a vegetation layer

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Chen, M. F.; Lee, K. K.

    1987-01-01

    Models for scattering from a vegetation layer treated as a collection of discrete scatterers usually assume far field interaction among scatterers. In a real vegetation medium such as a deciduous forest or a soybean field it is not always true that each leaf is in the far field of other leaves. This paper examines the additional effect when scatterers are permitted to be in the Fresnel zone of one another. Both disc-shaped and needle-shaped leaves are considered. It is found that in general this causes the backscattering coefficient to be lower for the disk-shaped leaves and may be higher or lower for the needle-shaped leaves depending upon polarization, incidence angle, and frequency than those computed under the assumption of conventional far field interaction.

  4. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, B.; Lerch, J. E.; Chavan, A. H.

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analyses. Our results show that this style of transducer produces a strong acoustic beam with a totalmore » divergence angle of 10 degree, a near-field point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments« less

  5. Full acoustic and thermal characterization of HIFU field in the presence of a ribcage model

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Le, Nhan; Nabi, Ghulam; Huang, Zhihong

    2017-03-01

    In the treatment of abdominal organs using high intensity focused ultrasound (HIFU), the patient's ribs are in the pathway of the HIFU beams which could result in acoustic distortion, occasional skin burns and insufficient energy delivered to the target organs. To provide full characterization of HIFU field with the influence of ribcage, the ribcage phantom reconstructed from a patient's CT images was created by tissue mimicking materials and its effect on acoustic field was characterized. The effect of the ribcage on acoustic field has been provided in acoustic pressure distribution, acoustic power and focal temperature. Measurement result shows focus splitting with one main focus and two secondary intensity maxima. With the presence of ribcage phantom, the acoustic pressure was reduced by 48.3% and another two peak values were observed near the main focus, reduced by 65.0% and 71.7% respectively. The acoustic power was decreased by 47.5% to 52.5%. With these characterization results, the form of the focus, the acoustic power, acoustic pressure and temperature rise are provided before the transcostal HIFU treatment, which are significant to determine the energy delivery dose. In conclusion, this ribcage model and characterization technique will be useful for the further study in the abdominal HIFU treatment.

  6. Direct-field acoustic testing of a flight system : logistics, challenges, and results.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit

    2010-10-01

    Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, themore » test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.« less

  7. A blueprint for computational analysis of acoustical scattering from orchestral panel arrays

    NASA Astrophysics Data System (ADS)

    Burns, Thomas

    2005-09-01

    Orchestral panel arrays have been a topic of interest to acousticians, and it is reasonable to expect optimal design criteria to result from a combination of musician surveys, on-stage empirical data, and computational modeling of various configurations. Preparing a musicians survey to identify specific mechanisms of perception and sound quality is best suited for a clinically experienced hearing scientist. Measuring acoustical scattering from a panel array and discerning the effects from various boundaries is best suited for the experienced researcher in engineering acoustics. Analyzing a numerical model of the panel arrays is best suited for the tools typically used in computational engineering analysis. Toward this end, a streamlined process will be described using PROENGINEER to define a panel array geometry in 3-D, a commercial mesher to numerically discretize this geometry, SYSNOISE to solve the associated boundary element integral equations, and MATLAB to visualize the results. The model was run (background priority) on an SGI Altix (Linux) server with 12 CPUs, 24 Gbytes of RAM, and 1 Tbyte of disk space. These computational resources are available to research teams interested in this topic and willing to write and pursue grants.

  8. Real-time, in situ monitoring of nanoporation using electric field-induced acoustic signal

    NASA Astrophysics Data System (ADS)

    Zarafshani, Ali; Faiz, Rowzat; Samant, Pratik; Zheng, Bin; Xiang, Liangzhong

    2018-02-01

    The use of nanoporation in reversible or irreversible electroporation, e.g. cancer ablation, is rapidly growing. This technique uses an ultra-short and intense electric pulse to increase the membrane permeability, allowing non-permeant drugs and genes access to the cytosol via nanopores in the plasma membrane. It is vital to create a real-time in situ monitoring technique to characterize this process and answer the need created by the successful electroporation procedure of cancer treatment. All suggested monitoring techniques for electroporation currently are for pre-and post-stimulation exposure with no real-time monitoring during electric field exposure. This study was aimed at developing an innovative technology for real-time in situ monitoring of electroporation based on the typical cell exposure-induced acoustic emissions. The acoustic signals are the result of the electric field, which itself can be used in realtime to characterize the process of electroporation. We varied electric field distribution by varying the electric pulse from 1μ - 100ns and varying the voltage intensity from 0 - 1.2ܸ݇ to energize two electrodes in a bi-polar set-up. An ultrasound transducer was used for collecting acoustic signals around the subject under test. We determined the relative location of the acoustic signals by varying the position of the electrodes relative to the transducer and varying the electric field distribution between the electrodes to capture a variety of acoustic signals. Therefore, the electric field that is utilized in the nanoporation technique also produces a series of corresponding acoustic signals. This offers a novel imaging technique for the real-time in situ monitoring of electroporation that may directly improve treatment efficiency.

  9. Bounds on complex polarizabilities and a new perspective on scattering by a lossy inclusion

    NASA Astrophysics Data System (ADS)

    Milton, Graeme W.

    2017-09-01

    Here, we obtain explicit formulas for bounds on the complex electrical polarizability at a given frequency of an inclusion with known volume that follow directly from the quasistatic bounds of Bergman and Milton on the effective complex dielectric constant of a two-phase medium. We also describe how analogous bounds on the orientationally averaged bulk and shear polarizabilities at a given frequency can be obtained from bounds on the effective complex bulk and shear moduli of a two-phase medium obtained by Milton, Gibiansky, and Berryman, using the quasistatic variational principles of Cherkaev and Gibiansky. We also show how the polarizability problem and the acoustic scattering problem can both be reformulated in an abstract setting as "Y problems." In the acoustic scattering context, to avoid explicit introduction of the Sommerfeld radiation condition, we introduce auxiliary fields at infinity and an appropriate "constitutive law" there, which forces the Sommerfeld radiation condition to hold. As a consequence, we obtain minimization variational principles for acoustic scattering that can be used to obtain bounds on the complex backwards scattering amplitude. Some explicit elementary bounds are given.

  10. Detection of acoustic waves by NMR using a radiofrequency field gradient

    NASA Astrophysics Data System (ADS)

    Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J.; Franconi, Jean-Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D.

    2003-03-01

    A B1 field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 1 3¯3 1¯ RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.

  11. Label-free hyperspectral dark-field microscopy for quantitative scatter imaging

    NASA Astrophysics Data System (ADS)

    Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong

    2017-03-01

    A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.

  12. Acoustic attraction, repulsion and radiation force cancellation on a pair of rigid particles with arbitrary cross-sections in 2D: Circular cylinders example

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-11-01

    The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers

  13. Acoustic Anomalies and Phase Transition Behaviors of Lead-Free Piezoelectric (Na1/2Bi1/2)TiO₃-xBaTiO₃ Single Crystals as Revealed by Brillouin Light Scattering.

    PubMed

    Lee, Byoung Wan; Oh, Soo Han; Ko, Jae-Hyeon; Li, Xiaobing; Luo, Haosu

    2018-06-12

    The elastic properties of unpoled and prepoled (Na 1/2 Bi 1/2 )TiO₃- x BaTiO₃ (NBT- x BT) single crystals near the morphotropic phase boundary were investigated as a function of temperature using Brillouin light scattering. The acoustic mode frequency and the related acoustic damping of unpoled NBT- x BT showed very broad minimum and maximum, respectively, consistent with typical relaxor behaviors. The frequency softening of the longitudinal acoustic mode together with the increase in acoustic damping was largest along the <100> direction, indicating that polarization fluctuations were most substantial along this crystallographic direction. The difference in acoustic behaviors between the unpoled NBT- x BTs with x = 0.05 and 0.08 were negligible, which means that the NBT- x BT system exhibits typical relaxor properties over a certain composition range of at least 5~8%. The obtained relaxation time of polar nanoregions in the paraelectric phase showed a gradual slowing-down character without any critical divergent behavior. The prepoling of NBT- x BT along the <100> direction induced drastic changes in both mode frequency and damping at ~110 °C when the poling field was larger than 1.4 kV/mm, corresponding to the depoling process from macroscopic/mesoscopic ferroelectric order to ergodic relaxor state upon heating. Phase coexistence of ferroelectric and relaxor states was observed at the intermediate poling field of 1.4 kV/mm.

  14. Acoustic radiosity for computation of sound fields in diffuse environments

    NASA Astrophysics Data System (ADS)

    Muehleisen, Ralph T.; Beamer, C. Walter

    2002-05-01

    The use of image and ray tracing methods (and variations thereof) for the computation of sound fields in rooms is relatively well developed. In their regime of validity, both methods work well for prediction in rooms with small amounts of diffraction and mostly specular reflection at the walls. While extensions to the method to include diffuse reflections and diffraction have been made, they are limited at best. In the fields of illumination and computer graphics the ray tracing and image methods are joined by another method called luminous radiative transfer or radiosity. In radiosity, an energy balance between surfaces is computed assuming diffuse reflection at the reflective surfaces. Because the interaction between surfaces is constant, much of the computation required for sound field prediction with multiple or moving source and receiver positions can be reduced. In acoustics the radiosity method has had little attention because of the problems of diffraction and specular reflection. The utility of radiosity in acoustics and an approach to a useful development of the method for acoustics will be presented. The method looks especially useful for sound level prediction in industrial and office environments. [Work supported by NSF.

  15. Sound field simulation and acoustic animation in urban squares

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  16. Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes

    DTIC Science & Technology

    2013-09-30

    email: swinney@chaos.utexas.edu John Wilkin Department of Marine and Coastal Sciences, Rutgers University New Brunswick, NJ 08901-8521 phone...Doppler-shift field scattered by an object moving in a stratified medium, J. Acoust. Soc. Am., 113, 223-244, 2003. [11] Tang , D. J., J. N. Moum, J. F

  17. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.

    PubMed

    Karlsen, Jonas T; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δ(s) and δ(t) relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  18. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas T.; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δs and δt relative to the particle radius a , but it assumes the particle to be small in comparison to the acoustic wavelength λ . This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  19. ADE-FDTD Scattered-Field Formulation for Dispersive Materials

    PubMed Central

    Kong, Soon-Cheol; Simpson, Jamesina J.; Backman, Vadim

    2009-01-01

    This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems. PMID:19844602

  20. ADE-FDTD Scattered-Field Formulation for Dispersive Materials.

    PubMed

    Kong, Soon-Cheol; Simpson, Jamesina J; Backman, Vadim

    2008-01-01

    This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems.

  1. Oscillations of a deformed liquid drop in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Apfel, Robert E.

    1995-07-01

    The oscillations of an axially symmetric liquid drop in an acoustic standing wave field in air have been studied using the boundary integral method. The interaction between the drop oscillation and sound field has been included in this analysis. Our computations focus on the frequency shift of small-amplitude oscillations of an acoustically deformed drop typical of a drop levitated in air. In the presence or absence of gravity, the trend and the magnitude of the frequency shift have been given in terms of drop size, drop deformation, and the strength of the sound field. Our calculations are compared with experiments performed on the United States Microgravity Laboratory (USML-1) and with ground-based measurements, and are found to be in good agreement within the accuracy of the experimental data.

  2. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  3. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  4. Characteristic of Secondary Flow Caused by Local Density Change in Standing Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Tonsho, Kazuyuki; Hirosawa, Takuya; Kusakawa, Hiroshi; Kuwahara, Takuo; Tanabe, Mitsuaki

    Secondary flow is a flow which is caused by the interference between standing acoustic fields and local density change. The behavior of the secondary flow depends on the location of the given local density change in the standing acoustic fields. When the density change is given at the middle of a velocity node and the neighboring velocity anti-node (middle point) or when it is given at the velocity anti-node in standing acoustic fields, the secondary flow shows particular behavior. Characteristic of the secondary flow at the two positions was predicted by numerical simulations. It was examined from these simulations whether the driving mechanism of the flow can be explained by the kind of acoustic radiation force that has been proposed so far. The predicted secondary flow was verified by experiments. For both the simulations and experiments, the standing acoustic fields generated in a cylinder are employed. In the experiments, the acoustic fields are generated by two loud speakers that are vibrated in same phase in a chamber. The employed resonance frequency is about 1000 Hz. The chamber is filled with air of room temperature and atmospheric pressure. In the numerical simulations and experiments, the local density change is given by heating or cooling. Because the secondary flow is influenced by buoyancy, the numerical simulations were done without taking gravity force into account and a part of the experiments were done by the microgravity condition using a drop tower. As a result of the simulations, at the middle point, the heated air was blown toward the node and the cooled air was blown toward the anti-node. It is clarified that the secondary flow is driven by the expected kind of acoustic radiation force. At the anti-node, both the heated and cooled air expands perpendicular to the traveling direction of the sound wave. The driving mechanism of the secondary flow can not be explained by the acoustic radiation force, and a detailed analysis is done. Through the

  5. Theoretical and experimental examination of near-field acoustic levitation.

    PubMed

    Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa

    2002-04-01

    A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense.

  6. Theoretical and experimental examination of near-field acoustic levitation

    NASA Astrophysics Data System (ADS)

    Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa

    2002-04-01

    A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense.

  7. Localization of a small change in a multiple scattering environment without modeling of the actual medium.

    PubMed

    Rakotonarivo, S T; Walker, S C; Kuperman, W A; Roux, P

    2011-12-01

    A method to actively localize a small perturbation in a multiple scattering medium using a collection of remote acoustic sensors is presented. The approach requires only minimal modeling and no knowledge of the scatterer distribution and properties of the scattering medium and the perturbation. The medium is ensonified before and after a perturbation is introduced. The coherent difference between the measured signals then reveals all field components that have interacted with the perturbation. A simple single scatter filter (that ignores the presence of the medium scatterers) is matched to the earliest change of the coherent difference to localize the perturbation. Using a multi-source/receiver laboratory setup in air, the technique has been successfully tested with experimental data at frequencies varying from 30 to 60 kHz (wavelength ranging from 0.5 to 1 cm) for cm-scale scatterers in a scattering medium with a size two to five times bigger than its transport mean free path. © 2011 Acoustical Society of America

  8. Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire

    NASA Astrophysics Data System (ADS)

    Jean, Cyril; Belliard, Laurent; Cornelius, Thomas W.; Thomas, Olivier; Pennec, Yan; Cassinelli, Marco; Toimil-Molares, Maria Eugenia; Perrin, Bernard

    2016-10-01

    The monochromatic and geometrically anisotropic acoustic field generated by 400 nm and 120 nm diameter copper nanowires simply dropped on a 10 $\\mu$m silicon membrane is investigated in transmission using three-dimensional time-resolved femtosecond pump-probe experiments. Two pump-probe time-resolved experiments are carried out at the same time on both side of the silicon substrate. In reflection, the first radial breathing mode of the nanowire is excited and detected. In transmission, the longitudinal and shear waves are observed. The longitudinal signal is followed by a monochromatic component associated with the relaxation of the nanowire's first radial breathing mode. Finite Difference Time Domain (FDTD) simulations are performed and accurately reproduce the diffracted field. A shape anisotropy resulting from the large aspect ratio of the nanowire is detected in the acoustic field. The orientation of the underlying nanowires is thus acoustically deduced.

  9. Acoustic classification of zooplankton

    NASA Astrophysics Data System (ADS)

    Martin Traykovski, Linda V.

    1998-11-01

    Work on the forward problem in zooplankton bioacoustics has resulted in the identification of three categories of acoustic scatterers: elastic-shelled (e.g. pteropods), fluid-like (e.g. euphausiids), and gas-bearing (e.g. siphonophores). The relationship between backscattered energy and animal biomass has been shown to vary by a factor of ~19,000 across these categories, so that to make accurate estimates of zooplankton biomass from acoustic backscatter measurements of the ocean, the acoustic characteristics of the species of interest must be well-understood. This thesis describes the development of both feature based and model based classification techniques to invert broadband acoustic echoes from individual zooplankton for scatterer type, as well as for particular parameters such as animal orientation. The feature based Empirical Orthogonal Function Classifier (EOFC) discriminates scatterer types by identifying characteristic modes of variability in the echo spectra, exploiting only the inherent characteristic structure of the acoustic signatures. The model based Model Parameterisation Classifier (MPC) classifies based on correlation of observed echo spectra with simplified parameterisations of theoretical scattering models for the three classes. The Covariance Mean Variance Classifiers (CMVC) are a set of advanced model based techniques which exploit the full complexity of the theoretical models by searching the entire physical model parameter space without employing simplifying parameterisations. Three different CMVC algorithms were developed: the Integrated Score Classifier (ISC), the Pairwise Score Classifier (PSC) and the Bayesian Probability Classifier (BPC); these classifiers assign observations to a class based on similarities in covariance, mean, and variance, while accounting for model ambiguity and validity. These feature based and model based inversion techniques were successfully applied to several thousand echoes acquired from broadband (~350 k

  10. Acoustic communications for cabled seafloor observatories

    NASA Astrophysics Data System (ADS)

    Freitag, L.; Stojanovic, M.

    2003-04-01

    Cabled seafloor observatories will provide scientists with a continuous presence in both deep and shallow water. In the deep ocean, connecting sensors to seafloor nodes for power and data transfer will require cables and a highly-capable ROV, both of which are potentially expensive. For many applications where very high bandwidth is not required, and where a sensor is already designed to operate on battery power, the use of acoustic links should be considered. Acoustic links are particularly useful for large numbers of low-bandwidth sensors scattered over tens of square kilometers. Sensors used to monitor the chemistry and biology of vent fields are one example. Another important use for acoustic communication is monitoring of AUVs performing pre-programmed or adaptive sampling missions. A high data rate acoustic link with an AUV allows the observer on shore to direct the vehicle in real-time, providing for dynamic event response. Thus both fixed and mobile sensors motivate the development of observatory infrastructure that provides power-efficient, high bandwidth acoustic communication. A proposed system design that can provide the wireless infrastructure, and further examples of its use in networks such as NEPTUNE, are presented.

  11. Acoustic assessment of sound scattering zooplankton in warm- and cold-core eddies in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Zimmerman, Robert Allen

    Zooplankton and micronekton which cause a density discontinuity with the surrounding seawater reflect acoustic energy. This acoustic backscatter intensity (ABI) was measured using a vessel mounted 153 kHz acoustic Doppler current profiler. The ABI was used to describe vertical migration and distribution of sound scatterers in several mesoscale hydrographic features commonly found in the Gulf of Mexico: cold-core rings (CCRs), warm-core Loop Current eddies (LCEs) and the Loop Current (LC). The present paradigm contends that cold- core (cyclonic) features are mesoscale areas of enhanced production due to an influx of new nitrogen to surface waters as a result of divergent flow. The null hypothesis which was tested in this study was that the acoustic signatures of these features were not significantly different from one another. Clear diel differences in all of the features and a robust, positive correlation between ABI and plankton and micronekton wet displacement volume collected in MOCNESS tows in the upper 100 m of the water column were observed. During the day, ABI in CCRs was significantly greater than in LCEs and in the LC with regards to the upper 200 m. However, ABI in the LCEs and LC were not significantly different from each other. During the night, the ABI in the upper 50 m of the CCRs was significantly greater than that in the LCEs and the LC. However, there were no differences between features when ABI at night was summed for the entire upper 200 m, due to substantial vertical migrations of organisms into the upper 200 m of the water column at night. Two LCEs were revisited at an age of 8-9 months after their initial acoustic transects. The null hypothesis that there would be no significant difference in integrated ABI when the LCEs were resampled was rejected: both LCEs showed a reduction in integrated ABI over the upper 200 m. Further investigations into the faunal changes of these features are warranted, but the ADCP should continue to be a useful

  12. Acoustic field in unsteady moving media

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Maestrello, L.; Ting, L.

    1995-01-01

    In the interaction of an acoustic field with a moving airframe the authors encounter a canonical initial value problem for an acoustic field induced by an unsteady source distribution, q(t,x) with q equivalent to 0 for t less than or equal to 0, in a medium moving with a uniform unsteady velocity U(t)i in the coordinate system x fixed on the airframe. Signals issued from a source point S in the domain of dependence D of an observation point P at time t will arrive at point P more than once corresponding to different retarded times, Tau in the interval (0, t). The number of arrivals is called the multiplicity of the point S. The multiplicity equals 1 if the velocity U remains subsonic and can be greater when U becomes supersonic. For an unsteady uniform flow U(t)i, rules are formulated for defining the smallest number of I subdomains V(sub i) of D with the union of V(sub i) equal to D. Each subdomain has multiplicity 1 and a formula for the corresponding retarded time. The number of subdomains V(sub i) with nonempty intersection is the multiplicity m of the intersection. The multiplicity is at most I. Examples demonstrating these rules are presented for media at accelerating and/or decelerating supersonic speed.

  13. Linac head scatter factor for asymmetric radiation field

    NASA Astrophysics Data System (ADS)

    Soubra, Mazen Ahmed

    1997-11-01

    The head scatter factor, Sh is an important dosimetric quantity used in radiation therapy dose calculation. It is empirically determined and its field size dependence reflects changes in photon scatter from components in the linac treatment head. In this work a detailed study of the physical factors influencing the determination of Sh was performed with particular attention given to asymmetric field geometries. Ionization measurements for 6 and 18 MV photon beams were made to examine the factors which determine Sh. These include: phantom size and material, collimator backscatter, non-lateral electronic equilibrium (LEE) conditions, electron contamination, collimator-exchange, photon energy, flattening filter and off-axis distance (OAD). Results indicated that LEE is not required for Sh measurements if electron contamination is minimized. Brass caps or polystyrene miniphantoms can both be used in Sh measurements provided the phantom thickness is large enough to stop contaminant electrons. Backscatter radiation effects into the monitor chamber were found to be negligible for the Siemens linac. It was found that the presence and shape of the flattening filter had a significant effect on the empirically determined value of Sh was also shown to be a function of OAD, particularly for small fields. For fields larger than 12×12 cm2/ Sh was independent of OAD. A flattening filter mass model was introduced to explain qualitatively the above results. A detailed Monte Carlo simulation of the Siemens KD2 linac head in 6 MV mode was performed to investigate the sources of head scatter which contribute to the measured Sh. The simulated head components include the flattening filter, the electron beam stopper, the primary collimator, the photon monitor chamber and the secondary collimators. The simulations showed that the scatter from the head of the Siemens linac is a complex function of the head components. On the central axis the flattening filter played the dominant role in

  14. Analysis of forward scattering of an acoustical zeroth-order Bessel beam from rigid complicated (aspherical) structures

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chai, Yingbin; Gong, Zhixiong; Marston, Philip L.

    2017-10-01

    The forward scattering from rigid spheroids and endcapped cylinders with finite length (even with a large aspect ratio) immersed in a non-viscous fluid under the illumination of an idealized zeroth-order acoustical Bessel beam (ABB) with arbitrary angles of incidence is calculated and analyzed in the implementation of the T-matrix method (TTM). Based on the present method, the incident coefficients of expansion for the incident ABB are derived and simplifying methods are proposed for the numerical accuracy and computational efficiency according to the geometrical symmetries. A home-made MATLAB software package is constructed accordingly, and then verified and validated for the ABB scattering from rigid aspherical obstacles. Several numerical examples are computed for the forward scattering from both rigid spheroids and finite cylinder, with particular emphasis on the aspect ratios, the half-cone angles of ABBs, the incident angles and the dimensionless frequencies. The rectangular patterns of target strength in the (β, θs) domain (where β is the half-cone angle of the ABB and θs is the scattered polar angle) and local/total forward scattering versus dimensionless frequency are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by rigid spheroids and finite cylinders. The ray diagrams in geometrical models for the scattering in the forward half-space and the optical cross-section theorem help to interpret the scattering mechanisms of ABBs. This research work may provide an alternative for the partial wave series solution under certain circumstances interacting with ABBs for complicated obstacles and benefit some related works in optics and electromagnetics.

  15. Influence of topological transitions in a quantizing magnetic field and anisotropy of current carrier scattering by acoustic phonons on the longitudinal electrical conductivity of layered crystals with open fermi surfaces

    NASA Astrophysics Data System (ADS)

    Gorskii, P. V.

    2011-03-01

    It is demonstrated that the dependence of Fermi's energy on the magnetic field causes a set of the Shubnikov - de Haas (SDH) oscillation frequencies to change, and their relative contribution to the total longitudinal conductivity of layered crystals depends on whether the scattering of current carriers is isotropic or anisotropic. Owing to the topological transition in a strong magnetic field, Fermi's surface (FS) is transformed from open into closed one and is compressed in the magnetic field direction. Therefore, in an ultraquantum limit, disregarding the Dingle factor, the longitudinal electrical conductivity of the layered crystal tends to zero as a reciprocal square of the magnetic field for the isotropic scattering and as a reciprocal cube of the magnetic field for the anisotropic scattering. All calculations are performed in the approximation of relaxation time considered to be constant versus the quantum numbers for the isotropic scattering and proportional to the longitudinal velocity of current carriers for the anisotropic scattering.

  16. Concentric layered Hermite scatterers

    NASA Astrophysics Data System (ADS)

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  17. Large Aperture Acoustic Arrays in Support of Reverberation Studies

    DTIC Science & Technology

    1990-04-01

    Acoustic Reverberation Special Research Program (SRP). Approach We propose the development of several acoustic arrays in preparation for a FY92 experiment...hydrophone array to measure the directional spectrum of seafloor scattered wavefields. Approach As part of the ONT-sponsored, 1987 SVLA experiment, we...scattered energy. Approach Two methods will be described by which vertical and horizontal acoustic arrays can be deployed together for making bottom

  18. Universal dimer–dimer scattering in lattice effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less

  19. Universal dimer–dimer scattering in lattice effective field theory

    DOE PAGES

    Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean; ...

    2017-03-14

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less

  20. Acoustic and Electrical Fields of Fish and Marine Mammals

    DTIC Science & Technology

    1975-05-19

    dolphins Relation of electrical and acoustic signals in fish Magnetic field of the electric discharge of catfish ( Malapterurus electricus ... Malapterurus .Tectricus). IN: Voprosy gidrobioniki, Moscow, Nauka, 1974, 10-12. The authors report on their experiments with recording the

  1. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Faqi; Zeng, Deping; He, Min

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the sphericalmore » cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.« less

  2. Acoustical monitoring of fish behavior in a tank

    NASA Astrophysics Data System (ADS)

    Conti, Stephan G.; Maurer, Benjamin D.; Roux, Philippe; Fauvel, Christian; Demer, David A.; Waters, Kendall R.

    2004-10-01

    In recent publications, it has been demonstrated that the total scattering cross section of fish moving in a tank can be estimated from ensembles of reverberation time series. However, the reproducibility of these measurements is influenced by parameters such as the motion or the behavior of the fish. In this work, we propose to observe acoustically the behavior of fish in a tank, and to measure their average speed. The total scattering cross section of live fish (sardines, sea bass and bocaccio) in a tank was measured repeatedly over multiple days. The species used in this study have different behaviors, which are reflected in the acoustical measurements. Depending on the behavior of the fish, such as the average displacement between two acoustic pings or the aggregation type, the total scattering cross section is different. Correlation between the acoustical measurements and the day and night behavior of the fish is demonstrated. Interpretation of such measurements can lead to monitoring acoustically and nonintrusively the behavior of fish in tanks.

  3. Lorentz violation, gravitoelectromagnetic field and Bhabha scattering

    NASA Astrophysics Data System (ADS)

    Santos, A. F.; Khanna, Faqir C.

    2018-01-01

    Lorentz symmetry is a fundamental symmetry in the Standard Model (SM) and in General Relativity (GR). This symmetry holds true for all models at low energies. However, at energies near the Planck scale, it is conjectured that there may be a very small violation of Lorentz symmetry. The Standard Model Extension (SME) is a quantum field theory that includes a systematic description of Lorentz symmetry violations in all sectors of particle physics and gravity. In this paper, SME is considered to study the physical process of Bhabha Scattering in the Gravitoelectromagnetism (GEM) theory. GEM is an important formalism that is valid in a suitable approximation of general relativity. A new nonminimal coupling term that violates Lorentz symmetry is used in this paper. Differential cross-section for gravitational Bhabha scattering is calculated. The Lorentz violation contributions to this GEM scattering cross-section are small and are similar in magnitude to the case of the electromagnetic field.

  4. Acoustic radiation force expansions in terms of partial wave phase shifts for scattering: Applications

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2016-11-01

    When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.

  5. Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence.

    PubMed

    Dellavale, Damián; Urteaga, Raúl; Bonetto, Fabián J

    2010-01-01

    The acoustic field in the liquid within a spherical solid shell is calculated. The proposed model takes into account Stoke's wave equation in the viscous fluid, the membrane theory to describe the solid shell motion and the energy loss through the external couplings of the system. A point source at the resonator center is included to reproduce the acoustic emission of a sonoluminescence bubble. Particular calculations of the resulting acoustic field are performed for viscous liquids of interest in single bubble sonoluminescence. The model reveals that in case of radially symmetric modes of low frequency, the quality factor is mainly determined by the acoustic energy flowing through the mechanical coupling of the resonator. Alternatively, for high frequency modes the quality factor is mainly determined by the viscous dissipation in the liquid. Furthermore, the interaction between the bubble acoustic emission and the resonator modes is analyzed. It was found that the bubble acoustic emission produces local maxima in the resonator response. The calculated amplitudes and relative phases of the harmonics constituting the bubble acoustic environment can be used to improve multi-frequency driving in sonoluminescence.

  6. Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, K. A.; Speirs, D. C.; Trines, R. M. G. M.

    2013-10-15

    We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount ofmore » seed pre-pulse produced.« less

  7. Examination of the Structural Response of the Orion European Service Module to Reverberant and Direct Field Acoustic Testing

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Hughes, William O.; Larko, Jeffrey M.; Bittinger, Samantha A.; Le-Plenier, Cyprien; Fogt, Vincent A.; Ngan, Ivan; Thirkettle, Anthony C.; Skinner, Mitch; Larkin, Paul

    2017-01-01

    The NASA Orion Multi-Purpose Crew Vehicle (MPCV), comprised of the Service Module, the Crew Module, and the Launch Abort System, is the next generation human spacecraft designed and built for deep space exploration. Orion will launch on NASAs new heavy-lift rocket, the Space Launch System. The European Space Agency (ESA) is responsible for providing the propulsion sub-assembly of the Service Module to NASA, called the European Service Module (ESM). The ESM is being designed and built by Airbus Safran Launchers for ESA. Traditionally, NASA has utilized reverberant acoustic testing for qualification of spaceflight hardware. The ESM Structural Test Article (E-STA) was tested at the NASA Plum Brook Stations (PBS) Reverberant Acoustic Test Facility in April-May 2016. However, Orion is evaluating an alternative acoustic test method, using direct field acoustic excitation, for the MPCVs Service Module and Crew Module. Lockheed Martin is responsible for the Orion proof-of-concept direct field acoustic test program. The E-STA was exposed to direct field acoustic testing at NASA PBS in February 2017. This paper compares the dynamic response of the E-STA structure and its components to both the reverberant and direct field acoustic test excitations. Advantages and disadvantages of direct field acoustic test excitation method are discussed.

  8. Measurements and modeling of acoustic scattering from partially and completely buried spherical shells

    NASA Astrophysics Data System (ADS)

    Tesei, A.; Maguer, A.; Fox, W. L. J.; Lim, R.; Schmidt, H.

    2002-11-01

    The use of low-frequency sonars (2-15 kHz) is explored to better exploit scattering features of buried targets that can contribute to their detection and classification. Compared to conventional mine countermeasure sonars, sound penetrates better into the sediment at these frequencies, and the excitation of structural waves in the targets is enhanced. The main contributions to target echo are the specular reflection, geometric diffraction effects, and the structural response, with the latter being particularly important for man-made elastic objects possessing particular symmetries such as bodies of revolution. The resonance response derives from elastic periodic phenomena such as surface circumferential waves revolving around the target. The GOATS'98 experiment, conducted jointly by SACLANTCEN and MIT off the island of Elba, involved controlled monostatic measurements of scattering by spherical shells which were partially and completely buried in sand, and suspended in the water column. The analysis mainly addresses a study of the effect of burial on the dynamics of backscattered elastic waves, which can be clearly identified in the target responses, and is based on the comparison of measurements with appropriate scattering models. Data interpretation results are in good agreement with theory. This positive result demonstrates the applicability of low-frequency methodologies based on resonance analysis to the classification of buried objects. copyright 2002 Acoustical Society of America.

  9. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    NASA Astrophysics Data System (ADS)

    Lipkens, Bart; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    2015-10-01

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  10. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipkens, Bart, E-mail: blipkens@wne.edu; Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. Anmore » often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the

  11. Formation of high-order acoustic Bessel beams by spiral diffraction gratings

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Picó, R.; Sánchez-Morcillo, V.; Romero-García, V.; García-Raffi, L. M.; Staliunas, K.

    2016-11-01

    The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically, and experimentally reported in this paper. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow for obtaining Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.

  12. Field studies in architectural acoustics using Tablet PCs

    NASA Astrophysics Data System (ADS)

    Boye, Daniel

    2005-04-01

    Core requirements for the sciences within the liberal arts curriculum challenge students to become directly involved in scientific study. These requirements seek to develop scientifically literate leaders and members of society. Formal laboratory periods are not usually associated with these courses. Thus, conceptual discovery and quantitative experimentation must take place outside of the classroom. Physics 115: Musical Technology at Davidson College is such a course and contains a section dealing with architectural acoustics. Field studies in the past have been an awkward and cumbersome activity, especially for non-science majors. The emerging technology of Tablet PCs overcomes many of the problems of mobile data acquisition and analysis, and allows the students to determine the locations of the rooms to be studied. The impulse method for determining reverberation time is used and compared with calculations based on room size and absorption media. The use of Tablet PCs and the publicly available freeware Audacity in field studies investigating architectural acoustics will be discussed. [Work supported in part by the Associated Colleges of the South through their Technology Fellowship program.

  13. Comparison of acoustic recorders and field observers for monitoring tundra bird communities

    USGS Publications Warehouse

    Vold, Skyler T.; Handel, Colleen M.; McNew, Lance B.

    2017-01-01

    Acoustic recorders can be useful for studying bird populations but their efficiency and accuracy should be assessed in pertinent ecological settings before use. We investigated the utility of an acoustic recorder for monitoring abundance of tundra‐breeding birds relative to point‐count surveys in northwestern Alaska, USA, during 2014. Our objectives were to 1) compare numbers of birds and species detected by a field observer with those detected simultaneously by an acoustic recorder; 2) evaluate how detection probabilities for the observer and acoustic recorder varied with distance of birds from the survey point; and 3) evaluate whether avian guild‐specific detection rates differed between field observers and acoustic recorders relative to habitat. Compared with the observer, the acoustic recorder detected fewer species (βMethod = −0.39 ± 0.07) and fewer individuals (βMethod = −0.56 ± 0.05) in total and for 6 avian guilds. Discrepancies were attributed primarily to differences in effective area surveyed (91% missed by device were >100 m), but also to nonvocal birds being missed by the recorder (55% missed <100 m were silent). The observer missed a few individuals and one species detected by the device. Models indicated that relative abundance of various avian guilds was associated primarily with maximum shrub height and less so with shrub cover and visual obstruction. The absence of a significant interaction between survey method (observer vs. acoustic recorder) and any habitat characteristic suggests that traditional point counts and acoustic recorders would yield similar inferences about ecological relationships in tundra ecosystems. Pairing of the 2 methods could increase survey efficiency and allow for validation and archival of survey results.

  14. An efficient model for coupling structural vibrations with acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Ting, LU

    1993-01-01

    The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.

  15. Sound field diffusivity in NASA Langley Research Center hardwalled acoustic facilities

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    Cross correlation measurements were performed to determine the quality of the sound fields in the ANRL reverberation room and the ANRL transmission loss facility. The results indicate the level of sound field diffuseness which may be attained in these hardwalled acoustic facilities.

  16. Recovery of burner acoustic source structure from far-field sound spectra

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Jones, J. D.

    1984-01-01

    A method is presented that permits the thermal-acoustic efficiency spectrum in a long turbulent burner to be recovered from the corresponding far-field sound spectrum. An acoustic source/propagation model is used based on the perturbation solution of the equations describing the unsteady one-dimensional flow of an inviscid ideal gas with a distributed heat source. The technique is applied to a long cylindrical hydrogen-flame burner operating over power levels of 4.5-22.3 kW. The results show that the thermal-acoustic efficiency at a given frequency, defined as the fraction of the total burner power converted to acoustic energy at that frequency, is rather insensitive to burner power, having a maximum value on the order of 10 to the -4th at 150 Hz and rolling off steeply with increasing frequency. Evidence is presented that acoustic agitation of the flame at low frequencies enhances the mixing of the unburned fuel and air with the hot products of combustion. The paper establishes the potential of the technique as a useful tool for characterizing the acoustic source structure in any burner, such as a gas turbine combustor, for which a reasonable acoustic propagation model can be postulated.

  17. Acoustics of finite asymmetric exotic beams: Examples of Airy and fractional Bessel beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-12-01

    The purpose of this investigation is to examine the properties of finite asymmetric exotic scalar (acoustic) beams with unusual properties using the angular spectrum decomposition in plane waves. Such beams possess intrinsic uncommon characteristics that make them attractive from the standpoint of particle manipulation, handling and rotation, and possibly other applications in particle clearing and separation. Assuming a specific apodization function at the acoustic source, the angular spectrum function is calculated and used to synthesize the radiated pressure field (i.e., excluding evanescent waves that decay away from the source) in the forward direction of wave motion (i.e., away from the source). Moreover, a generalized hybrid method combining the angular spectrum approach with the multipole expansion formalism in spherical coordinates is developed, which is applicable to any finite beam of arbitrary wavefront. The improved approach allows adequate computation of the resonance scattering, radiation force, and spin torque components on an object of arbitrary shape, located on or off the axis of the incident beam in space. Considering the illustrative example of a viscous fluid sphere submerged in a non-viscous liquid and illuminated by finite asymmetric beams such as the Airy and the Bessel vortex beam with fractional order, numerical computations for the scattering, radiation force, and torque components are performed with an emphasis on the distance from the source, the arbitrary location of the particle ,and the asymmetric nature of the incident field. Moreover, beamforming calculations are presented with supplementary animations for the pressure field distribution in space, with an emphasis on the intrinsic properties of the selected beams. The numerical predictions illustrate the scattering, radiation force, and spin torque properties depending on the beam parameters and the distance separating the sphere from the source. This study provides a generalized

  18. Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity

    NASA Astrophysics Data System (ADS)

    Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.

    2018-03-01

    The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.

  19. Detecting Fragmentation of Kidney Stones in Lithotripsy by Means of Shock Wave Scattering

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, Oleg A.; Trusov, Leonid A.; Owen, Neil R.; Bailey, Michael R.; Cleveland, Robin O.

    2006-05-01

    Although extracorporeal shock wave lithotripsy (a procedure of kidney stone comminution using focused shock waves) has been used clinically for many years, a proper monitoring of the stone fragmentation is still undeveloped. A method considered here is based on recording shock wave scattering signals with a focused receiver placed far from the stone, outside the patient body. When a fracture occurs in the stone or the stone becomes smaller, the elastic waves in the stone will propagate differently (e.g. shear waves will not cross a fracture) which, in turn, will change the scattered acoustic wave in the surrounding medium. Theoretical studies of the scattering phenomenon are based on a linear elastic model to predict shock wave scattering by a stone, with and without crack present in it. The elastic waves in the stone and the nearby liquid were modeled using a finite difference time domain approach. The subsequent acoustic propagation of the scattered waves into the far-field was calculated using the Helmholtz-Kirchhoff integral. Experimental studies were conducted using a research electrohydraulic lithotripter that produced the same acoustic output as an unmodified Dornier HM3 clinical lithotripter. Artificial stones, made from Ultracal-30 gypsum and acrylic, were used as targets. The stones had cylindrical shape and were positioned co-axially with the lithotripter axis. The scattered wave was measured by focused broadband PVDF hydrophone. It was shown that the size of the stone noticeably changed the signature of the reflected wave.

  20. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  1. Acoustic Tomography in the Canary Basin: Meddies and Tides

    NASA Astrophysics Data System (ADS)

    Dushaw, Brian D.; Gaillard, Fabienne; Terre, Thierry

    2017-11-01

    An acoustic propagation experiment over 308 km range conducted in the Canary Basin in 1997-1998 was used to assess the ability of ocean acoustic tomography to measure the flux of Mediterranean water and Meddies. Instruments on a mooring adjacent to the acoustic path measured the southwestward passage of a strong Meddy in temperature, salinity, and current. Over 9 months of transmissions, the acoustic arrival pattern was an initial broad stochastic pulse varying in duration by 250-500 ms, followed eight stable, identified-ray arrivals. Small-scale sound speed fluctuations from Mediterranean water parcels littered around the sound channel axis caused acoustic scattering. Internal waves contributed more modest acoustic scattering. Based on simulations, the main effect of a Meddy passing across the acoustic path is the formation of many early-arriving, near-axis rays, but these rays are thoroughly scattered by the small-scale Mediterranean-water fluctuations. A Meddy decreases the deep-turning ray travel times by 10-30 ms. The dominant acoustic signature of a Meddy is therefore the expansion of the width of the initial stochastic pulse. While this signature appears inseparable from the other effects of Mediterranean water in this region, the acoustic time series indicates the steady passage of Mediterranean water across the acoustic path. Tidal variations caused by the mode-1 internal tides were measured by the acoustic travel times. The observed internal tides were partly predicted using a recent global model for such tides derived from satellite altimetry.

  2. Multimodal far-field acoustic radiation pattern: An approximate equation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1977-01-01

    The far-field sound radiation theory for a circular duct was studied for both single mode and multimodal inputs. The investigation was intended to develop a method to determine the acoustic power produced by turbofans as a function of mode cut-off ratio. With reasonable simplifying assumptions the single mode radiation pattern was shown to be reducible to a function of mode cut-off ratio only. With modal cut-off ratio as the dominant variable, multimodal radiation patterns can be reduced to a simple explicit expression. This approximate expression provides excellent agreement with an exact calculation of the sound radiation pattern using equal acoustic power per mode.

  3. Complete Sets of Radiating and Nonradiating Parts of a Source and Their Fields with Applications in Inverse Scattering Limited-Angle Problems

    PubMed Central

    Louis, A. K.

    2006-01-01

    Many algorithms applied in inverse scattering problems use source-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting source problem does not have a unique solution, since certain parts of the source totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special sets of functions, which include all radiating and all nonradiating parts of the source. These sets are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060

  4. Driven acoustic oscillations within a vertical magnetic field

    NASA Technical Reports Server (NTRS)

    Hindman, Bradley W.; Zweibel, Ellen G.; Cally, P. S.

    1995-01-01

    The effects of a vertical magnetic field on p-mode frequencies, line widths, and eigenfunctions, are examined. A solar model, consisting of a neutrally stable polytropic interior matched to an isothermal chromosphere, is applied. The p-modes are produced by a spatially distributed driver. The atmosphere is threaded by a constant vertical magnetic field. The frequency shifts due to the vertical magnetic field are found to be much smaller than the shifts caused by horizontal fields of similar strength. A large vertical field of 2000 G produces shifts of several nHz. It is found that the frequency shifts decrease with increasing frequency and increase with field strength. The coupling of the acoustic fast mode to the escaping slow modes is inefficient. Constant vertical magnetic field models are therefore incapable of explaining the high level of absorption observed in sunspots and plage.

  5. An active acoustic tripwire for simultaneous detection and localization of multiple underwater intruders.

    PubMed

    Folegot, Thomas; Martinelli, Giovanna; Guerrini, Piero; Stevenson, J Mark

    2008-11-01

    An algorithm allowing simultaneous detection and localization of multiple submerged targets crossing an acoustic tripwire based on forward scattering is described and then evaluated based upon data collected at sea. This paper quantifies the agreement between the theoretical performance and the results obtained from processing data gathered at sea for crossings at several depths and ranges. Targets crossing the acoustic field produce shadows on each side of the barrier, for specific sensors and for specific acoustic paths. In post-processing, a model is invoked to associate expected paths with the observed shadows. This process allows triangulation of the target's position inside the acoustic field. Precise localization is achieved by taking advantage of the multipath propagation structure of the received signal, together with the diversity of the source and receiver locations. Environmental robustness is demonstrated using simulations and can be explained by the use of an array of sources spatially distributed through the water column.

  6. Scattering of classical and quantum particles by impulsive fields

    NASA Astrophysics Data System (ADS)

    Balasin, Herbert; Aichelburg, Peter C.

    2018-05-01

    We investigate the scattering of classical and quantum particles in impulsive backgrounds fields. These fields model short outbursts of radiation propagating with the speed of light. The singular nature of the problem will be accounted for by the use of Colombeau’s generalized function which however give rise to ambiguities. It is the aim of the paper to show that these ambiguities can be overcome by implementing additional physical conditions, which in the non-singular case would be satisfied automatically. As example we discuss the scattering of classical, Klein–Gordon and Dirac particles in impulsive electromagnetic fields.

  7. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.

    PubMed

    Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F

    2018-05-01

    The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A multifrequency MUSIC algorithm for locating small inhomogeneities in inverse scattering

    NASA Astrophysics Data System (ADS)

    Griesmaier, Roland; Schmiedecke, Christian

    2017-03-01

    We consider an inverse scattering problem for time-harmonic acoustic or electromagnetic waves with sparse multifrequency far field data-sets. The goal is to localize several small penetrable objects embedded inside an otherwise homogeneous background medium from observations of far fields of scattered waves corresponding to incident plane waves with one fixed incident direction but several different frequencies. We assume that the far field is measured at a few observation directions only. Taking advantage of the smallness of the scatterers with respect to wavelength we utilize an asymptotic representation formula for the far field to design and analyze a MUSIC-type reconstruction method for this setup. We establish lower bounds on the number of frequencies and receiver directions that are required to recover the number and the positions of an ensemble of scatterers from the given measurements. Furthermore we briefly sketch a possible application of the reconstruction method to the practically relevant case of multifrequency backscattering data. Numerical examples are presented to document the potentials and limitations of this approach.

  9. A study of nondiffracting Lommel beams propagating in a medium containing spherical scatterers

    NASA Astrophysics Data System (ADS)

    Belafhal, A.; Ez-zariy, L.; Hricha, Z.

    2016-11-01

    By means of the expansion of the nondiffracting beams on plane waves with help of the Whittaker integral, an exact analytical expression of the far-field form function of the scattering of the acoustic and optical nondiffracting Lommel beams propagating in a medium containing spherical particles, considered as rigid and single spheres, is investigated in this work. The form function of the scattering of the high order Bessel beam by a rigid and isolated sphere is deduced, from our finding, as a special case. The effects of the wave number-sphere radius product (ka) , the polar angle (φ) , the propagation half-cone angle (β) and the scattering angle (θ) on the far-field form function of the scattered wave have been analyzed and discussed numerically. The numerical results show that the illumination of a rigid sphere by Lommel beams produces asymmetrical scattering.

  10. The PAC-MAN model: Benchmark case for linear acoustics in computational physics

    NASA Astrophysics Data System (ADS)

    Ziegelwanger, Harald; Reiter, Paul

    2017-10-01

    Benchmark cases in the field of computational physics, on the one hand, have to contain a certain complexity to test numerical edge cases and, on the other hand, require the existence of an analytical solution, because an analytical solution allows the exact quantification of the accuracy of a numerical simulation method. This dilemma causes a need for analytical sound field formulations of complex acoustic problems. A well known example for such a benchmark case for harmonic linear acoustics is the ;Cat's Eye model;, which describes the three-dimensional sound field radiated from a sphere with a missing octant analytically. In this paper, a benchmark case for two-dimensional (2D) harmonic linear acoustic problems, viz., the ;PAC-MAN model;, is proposed. The PAC-MAN model describes the radiated and scattered sound field around an infinitely long cylinder with a cut out sector of variable angular width. While the analytical calculation of the 2D sound field allows different angular cut-out widths and arbitrarily positioned line sources, the computational cost associated with the solution of this problem is similar to a 1D problem because of a modal formulation of the sound field in the PAC-MAN model.

  11. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    PubMed

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  12. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    PubMed

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Towards the optimisation of acoustic fields for ablative therapies of tumours in the upper abdomen

    NASA Astrophysics Data System (ADS)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2013-08-01

    The efficacy of high intensity focused ultrasound (HIFU) for the non-invasive treatment of cancer has been demonstrated for a range of different cancers including those of the liver, kidney, prostate and breast. As a non-invasive focused therapy, HIFU offers considerable advantages over other techniques such as chemotherapy and surgical resection, in terms of its non-invasiveness and low risk of harmful side effects. There is, however, a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to induce tissue necrosis at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. As such, a common side effect of focusing ultrasound in regions located behind the rib cage is the overheating of bone and surrounding tissue, which can lead to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy are deposited. This is likely to rely on a treatment planning procedure in which optimal source velocity distributions are obtained so as to maximise a dose quantity at the treatment sites, whilst ensuring that this quantity does not exceed a specified threshold at other field locations, particularly on the surface of the ribs. Previously, a boundary element approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. This work describes the reformulation of the boundary element equations as a least-squares minimisation problem with non-linear constraints. The methodology was subsequently tested at an excitation frequency of 100 kHz on a spherical multi-element array in the presence

  14. Numerical solution of inverse scattering for near-field optics.

    PubMed

    Bao, Gang; Li, Peijun

    2007-06-01

    A novel regularized recursive linearization method is developed for a two-dimensional inverse medium scattering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous medium located on a substrate from data accessible through photon scanning tunneling microscopy experiments. Based on multiple frequency scattering data, the method starts from the Born approximation corresponding to weak scattering at a low frequency, and each update is obtained by continuation on the wavenumber from solutions of one forward problem and one adjoint problem of the Helmholtz equation.

  15. The Radiated Field Generated by a Monopole Source in a Short, Rigid, Rectangular Duct. Degree awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lakota, Barbara Anne

    1998-01-01

    This thesis develops a method to model the acoustic field generated by a monopole source placed in a moving rectangular duct. The walls of the duct are assumed to be infinitesimally thin and the source is placed at the center of the duct. The total acoustic pressure is written in terms of the free-space pressure, or incident pressure, and the scattered pressure. The scattered pressure is the augmentation to the incident pressure due to the presence of the duct. It satisfies a homogeneous wave equation and is discontinuous across the duct walls. Utilizing an integral representation of the scattered pressure, a set of singular boundary integral equations governing the unknown jump in scattered pressure is derived. This equation is solved by the method of collocation after representing the jump in pressure as a double series of shape functions. The solution obtained is then substituted back into the integral representation to determine the scattered pressure, and the total acoustic pressure at any point in the field. A few examples are included to illustrate the influence of various geometric and kinematic parameters on the radiated sound field.

  16. Improving Classroom Acoustics (ICA): A Three-Year FM Sound Field Classroom Amplification Study.

    ERIC Educational Resources Information Center

    Rosenberg, Gail Gegg; Blake-Rahter, Patricia; Heavner, Judy; Allen, Linda; Redmond, Beatrice Myers; Phillips, Janet; Stigers, Kathy

    1999-01-01

    The Improving Classroom Acoustics (ICA) special project was designed to determine if students' listening and learning behaviors improved as a result of an acoustical environment enhanced through the use of FM sound field classroom amplification. The 3-year project involved 2,054 students in 94 general education kindergarten, first-, and…

  17. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  18. Acoustic Scattering by Near-Surface Inhomogeneities in Porous Media

    DTIC Science & Technology

    1990-02-21

    surfaces [8]. Recently, this empirical model has been replaced by a more rigorous mi- crostructural model [9]. Here, the acoustical characteristics of...boundaries. A discussion of how ground acoustic characteristics are modelled then follows, with the chapter being concluded by a brief summary. 3.1...of ground acoustic char- acteristics, with particular emphasis on the Four parameter model of Atten- borough, that will be used extensively later. 48

  19. An approximate inverse scattering technique for reconstructing blockage profiles in water pipelines using acoustic transients.

    PubMed

    Jing, Liwen; Li, Zhao; Wang, Wenjie; Dubey, Amartansh; Lee, Pedro; Meniconi, Silvia; Brunone, Bruno; Murch, Ross D

    2018-05-01

    An approximate inverse scattering technique is proposed for reconstructing cross-sectional area variation along water pipelines to deduce the size and position of blockages. The technique allows the reconstructed blockage profile to be written explicitly in terms of the measured acoustic reflectivity. It is based upon the Born approximation and provides good accuracy, low computational complexity, and insight into the reconstruction process. Numerical simulations and experimental results are provided for long pipelines with mild and severe blockages of different lengths. Good agreement is found between the inverse result and the actual pipe condition for mild blockages.

  20. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jin-Han, E-mail: J.H.Xie@ed.ac.uk; Vanneste, Jacques

    2014-10-15

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, andmore » viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.« less

  1. A sparse equivalent source method for near-field acoustic holography.

    PubMed

    Fernandez-Grande, Efren; Xenaki, Angeliki; Gerstoft, Peter

    2017-01-01

    This study examines a near-field acoustic holography method consisting of a sparse formulation of the equivalent source method, based on the compressive sensing (CS) framework. The method, denoted Compressive-Equivalent Source Method (C-ESM), encourages spatially sparse solutions (based on the superposition of few waves) that are accurate when the acoustic sources are spatially localized. The importance of obtaining a non-redundant representation, i.e., a sensing matrix with low column coherence, and the inherent ill-conditioning of near-field reconstruction problems is addressed. Numerical and experimental results on a classical guitar and on a highly reactive dipole-like source are presented. C-ESM is valid beyond the conventional sampling limits, making wide-band reconstruction possible. Spatially extended sources can also be addressed with C-ESM, although in this case the obtained solution does not recover the spatial extent of the source.

  2. Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,

    Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocitymore » of (9200 {+-} 600) m/s.« less

  3. Inverse medium scattering from periodic structures with fixed-direction incoming waves

    NASA Astrophysics Data System (ADS)

    Gibson, Peter; Hu, Guanghui; Zhao, Yue

    2018-07-01

    This paper is concerned with inverse time-harmonic acoustic and electromagnetic scattering from an infinite biperiodic medium (diffraction grating) in three dimensions. In the acoustic case, we prove that the near-field data of fixed-direction plane waves incited at multiple frequencies uniquely determine a refractive index function which depends on two variables. An analogous uniqueness result holds for time-harmonic Maxwell’s system if the inhomogeneity is periodic in one direction and remains invariant along the other two directions. Uniqueness for recovering (non-periodic) compactly supported contrast functions are also presented.

  4. Contrast Enhancement for Thermal Acoustic Breast Cancer Imaging via Resonant Stimulation

    DTIC Science & Technology

    2010-03-01

    thermal acoustic signals tend to be weak. However, when the tumor is excited into resonance via EM stimulation, the effective acoustic scattering...the effective acoustic scattering cross-section may increase by a factor in excess of 100 based on predic tions for microsphere-based ultrasound...not apply, the heat conduction effects should be taken into consideration in calculating the pre ssure wave generated by electrom agnetic illum

  5. Acoustic Reflection and Transmission of 2-Dimensional Rotors and Stators, Including Mode and Frequency Scattering Effects

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1999-01-01

    A reduced order modeling scheme has been developed for the unsteady acoustic and vortical coupling between blade rows of a turbomachine. The essential behavior of the system is governed by modal scattering coefficients (i.e., reflection and transmission coefficients) of the rotor, stator, inlet and nozzle, which are calculated as if they were connected to non-reflecting ducts. The objective of this report is to identify fundamental behavior of these scattering coefficients for a better understanding of the role of blade row reflection and transmission in noise generation. A 2D flat plate unsteady cascade model is used for the analysis with the expectation that the general behavior presented herein will carry over to models that include more realistic flow and geometry. It is shown that stators scatter input waves into many modes at the same frequency whereas rotors scatter on frequency, or harmonic order. Important cases are shown here the rotor reflection coefficient is greater than unity; a mode at blade passing frequency (BPF) traveling from the stator with unit sound power is reflected by the rotor with more than unit power at 2xBPF and 3xBPE Analysis is presented to explain this unexpected phenomenon. Scattering curves are presented in a format chosen for design use and for physical interpretation. To aid in interpretation of the curves, formulas are derived for special condition where waveforms are parallel to perpendicular to the rotor.

  6. Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.

    PubMed

    Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang

    2015-10-27

    Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.

  7. Correspondence between sound propagation in discrete and continuous random media with application to forest acoustics.

    PubMed

    Ostashev, Vladimir E; Wilson, D Keith; Muhlestein, Michael B; Attenborough, Keith

    2018-02-01

    Although sound propagation in a forest is important in several applications, there are currently no rigorous yet computationally tractable prediction methods. Due to the complexity of sound scattering in a forest, it is natural to formulate the problem stochastically. In this paper, it is demonstrated that the equations for the statistical moments of the sound field propagating in a forest have the same form as those for sound propagation in a turbulent atmosphere if the scattering properties of the two media are expressed in terms of the differential scattering and total cross sections. Using the existing theories for sound propagation in a turbulent atmosphere, this analogy enables the derivation of several results for predicting forest acoustics. In particular, the second-moment parabolic equation is formulated for the spatial correlation function of the sound field propagating above an impedance ground in a forest with micrometeorology. Effective numerical techniques for solving this equation have been developed in atmospheric acoustics. In another example, formulas are obtained that describe the effect of a forest on the interference between the direct and ground-reflected waves. The formulated correspondence between wave propagation in discrete and continuous random media can also be used in other fields of physics.

  8. Modes of self-organization of diluted bubbly liquids in acoustic fields: One-dimensional theory.

    PubMed

    Gumerov, Nail A; Akhatov, Iskander S

    2017-02-01

    The paper is dedicated to mathematical modeling of self-organization of bubbly liquids in acoustic fields. A continuum model describing the two-way interaction of diluted polydisperse bubbly liquids and acoustic fields in weakly-nonlinear approximation is studied analytically and numerically in the one-dimensional case. It is shown that the regimes of self-organization of monodisperse bubbly liquids can be controlled by only a few dimensionless parameters. Two basic modes, clustering and propagating shock waves of void fraction (acoustically induced transparency), are identified and criteria for their realization in the space of parameters are proposed. A numerical method for solving of one-dimensional self-organization problems is developed. Computational results for mono- and polydisperse systems are discussed.

  9. Global boundary flattening transforms for acoustic propagation under rough sea surfaces.

    PubMed

    Oba, Roger M

    2010-07-01

    This paper introduces a conformal transform of an acoustic domain under a one-dimensional, rough sea surface onto a domain with a flat top. This non-perturbative transform can include many hundreds of wavelengths of the surface variation. The resulting two-dimensional, flat-topped domain allows direct application of any existing, acoustic propagation model of the Helmholtz or wave equation using transformed sound speeds. Such a transform-model combination applies where the surface particle velocity is much slower than sound speed, such that the boundary motion can be neglected. Once the acoustic field is computed, the bijective (one-to-one and onto) mapping permits the field interpolation in terms of the original coordinates. The Bergstrom method for inverse Riemann maps determines the transform by iterated solution of an integral equation for a surface matching term. Rough sea surface forward scatter test cases provide verification of the method using a particular parabolic equation model of the Helmholtz equation.

  10. Spatial filtering of audible sound with acoustic landscapes

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun; Cheng, Jianchun

    2017-07-01

    Acoustic metasurfaces manipulate waves with specially designed structures and achieve properties that natural materials cannot offer. Similar surfaces work in audio frequency range as well and lead to marvelous acoustic phenomena that can be perceived by human ears. Being intrigued by the famous Maoshan Bugle phenomenon, we investigate large scale metasurfaces consisting of periodic steps of sizes comparable to the wavelength of audio frequency in both time and space domains. We propose a theoretical method to calculate the scattered sound field and find that periodic corrugated surfaces work as spatial filters and the frequency selective character can only be observed at the same side as the incident wave. The Maoshan Bugle phenomenon can be well explained with the method. Finally, we demonstrate that the proposed method can be used to design acoustical landscapes, which transform impulsive sound into famous trumpet solos or other melodious sound.

  11. A COMPARISON OF TRANSIENT INFINITE ELEMENTS AND TRANSIENT KIRCHHOFF INTEGRAL METHODS FOR FAR FIELD ACOUSTIC ANALYSIS

    DOE PAGES

    WALSH, TIMOTHY F.; JONES, ANDREA; BHARDWAJ, MANOJ; ...

    2013-04-01

    Finite element analysis of transient acoustic phenomena on unbounded exterior domains is very common in engineering analysis. In these problems there is a common need to compute the acoustic pressure at points outside of the acoustic mesh, since meshing to points of interest is impractical in many scenarios. In aeroacoustic calculations, for example, the acoustic pressure may be required at tens or hundreds of meters from the structure. In these cases, a method is needed for post-processing the acoustic results to compute the response at far-field points. In this paper, we compare two methods for computing far-field acoustic pressures, onemore » derived directly from the infinite element solution, and the other from the transient version of the Kirchhoff integral. Here, we show that the infinite element approach alleviates the large storage requirements that are typical of Kirchhoff integral and related procedures, and also does not suffer from loss of accuracy that is an inherent part of computing numerical derivatives in the Kirchhoff integral. In order to further speed up and streamline the process of computing the acoustic response at points outside of the mesh, we also address the nonlinear iterative procedure needed for locating parametric coordinates within the host infinite element of far-field points, the parallelization of the overall process, linear solver requirements, and system stability considerations.« less

  12. Polymer coating of glass microballoons levitated in a focused acoustic field

    NASA Technical Reports Server (NTRS)

    Young, A. T.; Lee, M. C.; Feng, I.-A.; Elleman, D. D.; Wang, T. G.

    1982-01-01

    Inertial confinement fusion (ICF) glass microballoons (GMBs) levitated in a focusing radiator acoustic device can be coated with liquid materials by deploying the liquid into the levitation field with a stepped-horn atomizer. The GMB can be forced to the center of the coating liquid with a strong acoustically generated centering force. Water solutions of organic polymers, UV-curable liquid organic monomers, and paraffin waxes have been used to prepare solid coatings on the surface of GMBs using this technique.

  13. Interaction of electromagnetic and acoustic waves in a stochastic atmosphere

    NASA Technical Reports Server (NTRS)

    Bhatnagar, N.; Peterson, A. M.

    1979-01-01

    In the Stanford radio acoustic sounding system (RASS) an electromagnetic signal is made to scatter from a moving acoustic pulse train. Under a Bragg-scatter condition maximum electromagnetic scattering occurs. The scattered radio signal contains temperature and wind information as a function of the acoustic-pulse position. In this investigation RASS performance is assessed in an atmosphere characterized by the presence of turbulence and mean atmospheric parameters. The only assumption made is that the electromagnetic wave is not affected by stochastic perturbations in the atmosphere. It is concluded that the received radio signal depends strongly on the intensity of turbulence for altitudes of the acoustic pulse greater than the coherence length of propagation. The effect of mean vertical wind and mean temperature on the strength of the received signal is also demonstrated to be insignificant. Mean horizontal winds, however, shift the focus of the reflected electromagnetic energy from its origin, resulting in a decrease in received signal level when a monostatic radio-frequency (RF) system is used. For a bistatic radar configuration with space diversified receiving antennas, the shifting of the acoustic pulse makes possible the remote measurement of the horizontal wind component.

  14. Stimulated Brillouin scattering in the field of a two-dimensionally localized pumping wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solikhov, D. K., E-mail: davlat56@mail.ru; Dvinin, S. A., E-mail: dvinin@phys.msu.ru

    2016-06-15

    Stimulated Brillouin scattering of electromagnetic waves in the field of a two-dimensionally localized pump wave at arbitrary scattering angles in the regime of forward scattering is analyzed. Spatial variations in the amplitudes of interacting waves are studied for different values of the pump field and different dimensions of the pump wave localization region. The intensity of scattered radiation is determined as a function of the scattering angle and the dimensions of the pump wave localization region. It is shown that the intensity increases with increasing scattering angle.

  15. Acoustic Scattering Models of Zooplankton and Microstructures

    DTIC Science & Technology

    1998-09-30

    scattering by the seafloor. SCATTERING BY GAS-BEARING ZOOPLANKTON. In earlier work we showed that the scattering by gas-bearing zooplankton ( siphonophores ... siphonophores and pteropods) that have high enough target strengths and occur in sufficiently high numbers that they could interfere with the performance of

  16. Field Demonstration of a Broadband Acoustical Backscattering System Mounted on a REMUS-100 for Inferences of Zooplankton Size and Abundancy

    DTIC Science & Technology

    2011-09-30

    the Rayleigh-to-geometric scattering transition is within the frequency band of the WHOI broadband system (e.g., copepods ), and either larger fluid...that numerical abundance of zooplankton was dominated by small copepods that were relatively evenly distributed throughout the water-column...indication in either the MONESS or the VPR that the acoustic scattering layer was correlated to an increased abundance of zooplankton. Small copepods

  17. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  18. Prediction of the Acoustic Field Associated with Instability Wave Source Model for a Compressible Jet

    NASA Technical Reports Server (NTRS)

    Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.

  19. Design of the Coordinate Transformation Function for Cylindrical Acoustic Cloaks with a Quantity of Discrete Layers

    NASA Astrophysics Data System (ADS)

    Cai, Li; Wen, Ji-Hong; Yu, Dian-Long; Lu, Zhi-Miao; Wen, Xi-Sen

    2014-09-01

    Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential applications such as sound transparency and insulation. The frequency response of acoustic cloaks with a quantity of discrete homogeneous layers is analyzed by the acoustic scattering theory. The effect of coordinate transformation function on the acoustic total scattering cross section is discussed to achieve low scattering with only a few layers of anisotropic metamaterials. Also, the physics of acoustic wave interaction with the interfaces between the discrete layers inside the cloak shell is discussed. These results provide a better way of designing a multilayered acoustic cloak with fewer layers.

  20. High-Field Quasiballistic Transport in Short Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Javey, Ali; Guo, Jing; Paulsson, Magnus; Wang, Qian; Mann, David; Lundstrom, Mark; Dai, Hongjie

    2004-03-01

    Single walled carbon nanotubes with Pd Ohmic contacts and lengths ranging from several microns down to 10nm are investigated by electron transport experiments and theory. The mean-free path (MFP) for acoustic phonon scattering is estimated to be lap˜300 nm, and that for optical phonon scattering is lop˜15 nm. Transport through very short (˜10 nm) nanotubes is free of significant acoustic and optical phonon scattering and thus ballistic and quasiballistic at the low- and high-bias voltage limits, respectively. High currents of up to 70 μA can flow through a short nanotube. Possible mechanisms for the eventual electrical breakdown of short nanotubes at high fields are discussed. The results presented here have important implications to high performance nanotube transistors and interconnects.

  1. Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept

    NASA Astrophysics Data System (ADS)

    Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.

    2016-10-01

    This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.

  2. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    DOE PAGES

    Hu, B.; Lerch, J. E.; Chavan, A. H.; ...

    2017-09-04

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analysis. Our results show that this style of transducer produces a strong acoustic beam with a totalmore » divergence angle of 10 degrees, a nearfield point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.« less

  3. Characterization of the acoustic field generated by a horn shaped ultrasonic transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, B.; Lerch, J. E.; Chavan, A. H.

    A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analysis. Our results show that this style of transducer produces a strong acoustic beam with a totalmore » divergence angle of 10 degrees, a nearfield point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.« less

  4. Negative radiation forces on spheres illuminated by acoustic Bessel beams.

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Thiessen, David B.

    2007-11-01

    An analytical solution for the scattering of an acoustic Bessel beam by a sphere centered on the beam has made it possible to explore the way the acoustic radiation force on elastic and fluid spheres depends on beam and material parameters. Situations have been previously noted where, even in the absence of absorption, the radiation force of the beam on the sphere is opposite the direction of beam propagation [1]. In extensions of that work, conditions have been identified for such a force reversal on solid spheres and elastic shells. Negative radiation forces may be useful for manipulation of objects in reduced gravity and of biological cells (with single beam acoustic tweezers). The finite element method (FEM) has been used to evaluate the total acoustic field in the region near the sphere. This makes it possible to evaluate the radiation force from numerical integration of an appropriate projection of the Brillouin radiation stress tensor. FEM and analytical results agree for plane wave and Bessel beam illumination. 1. P. L. Marston, J. Acoust. Soc. Am. 120, 3518-3524 (2006).

  5. Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid

    PubMed Central

    Sapozhnikov, Oleg A.; Bailey, Michael R.

    2013-01-01

    A theoretical approach is developed to calculate the radiation force of an arbitrary acoustic beam on an elastic sphere in a liquid or gas medium. First, the incident beam is described as a sum of plane waves by employing conventional angular spectrum decomposition. Then, the classical solution for the scattering of a plane wave from an elastic sphere is applied for each plane-wave component of the incident field. The net scattered field is expressed as a superposition of the scattered fields from all angular spectrum components of the incident beam. With this formulation, the incident and scattered waves are superposed in the far field to derive expressions for components of the radiation stress tensor. These expressions are then integrated over a spherical surface to analytically describe the radiation force on an elastic sphere. Limiting cases for particular types of incident beams are presented and are shown to agree with known results. Finally, the analytical expressions are used to calculate radiation forces associated with two specific focusing transducers. PMID:23363086

  6. Acoustic Parametric Array for Identifying Standoff Targets

    NASA Astrophysics Data System (ADS)

    Hinders, M. K.; Rudd, K. E.

    2010-02-01

    An integrated simulation method for investigating nonlinear sound beams and 3D acoustic scattering from any combination of complicated objects is presented. A standard finite-difference simulation method is used to model pulsed nonlinear sound propagation from a source to a scattering target via the KZK equation. Then, a parallel 3D acoustic simulation method based on the finite integration technique is used to model the acoustic wave interaction with the target. Any combination of objects and material layers can be placed into the 3D simulation space to study the resulting interaction. Several example simulations are presented to demonstrate the simulation method and 3D visualization techniques. The combined simulation method is validated by comparing experimental and simulation data and a demonstration of how this combined simulation method assisted in the development of a nonlinear acoustic concealed weapons detector is also presented.

  7. Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Weyna, S.

    2014-08-01

    Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above "cut-off" frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.

  8. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique.

    PubMed

    Mukdadi, Osama; Shandas, Robin

    2004-01-01

    Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.

  9. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.

    PubMed

    Ogam, Erick; Depollier, Claude; Fellah, Z E A

    2010-09-01

    Gas-saturated porous skeleton materials such as geomaterials, polymeric and metallic foams, or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss are still few. Accurate acoustic methods of characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we develop an acoustic method for the recovery of the material parameters of a rigid-frame, air-saturated polymeric foam cylinder. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field shows that it is also dependent on the intrinsic acoustic parameters of the porous cylinder, namely, porosity, tortuosity, and flow resistivity (permeability). The inverse problem of the recovery of the flow resistivity and porosity is solved by seeking the minima of the objective functions consisting of the sum of squared residuals of the differences between the experimental and theoretical scattered field data.

  10. Panel acoustic contribution analysis.

    PubMed

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  11. The Effects of Sand Sediment Volume Heterogeneities on Sound Propagation and Scattering

    DTIC Science & Technology

    2012-09-30

    modulus of a poroelastic medium,” J. Acoust . Soc. Am. 127, 3372–3384 (2010). 3. K. L. Williams, “An effective density fluid model for acoustic ...previously developed at APL- UW for the study of high-frequency acoustics . These models include perturbation models applied to scattering from the...scattering levels that may mask target detection. RELATED PROJECTS 1. “ Acoustic Color of mines and mine-like objects: Finite Element modeling (FEM

  12. Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.

    PubMed

    Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre

    2012-01-01

    The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer. © 2012 Acoustical Society of America.

  13. Research on Acoustical and Optical Scattering, Optics of Bubbles, Diffraction Catastrophes, Laser Generation of Sound, and Shock Induced Cavitation

    DTIC Science & Technology

    1984-09-01

    Crichton and E. H, Trinh. 19. KEY WOROS (Canttnum on rmr^tmm aid* It nacmmmarf and Idantily br block numbar) Acoustic scattering. Inverse...295 (1984). 6. P. L. Marston and J. H. Crichton , "Radiation torque on a sphere illuminated with circularly polarized light," Journal of the...Optical Society of America Bl, 528-529 (1984). 7. P. L. Marston and J. H. Crichton , "Radiation torque on a sphere caused by a circularly polarized

  14. Predicting scattering scanning near-field optical microscopy of mass-produced plasmonic devices

    NASA Astrophysics Data System (ADS)

    Otto, Lauren M.; Burgos, Stanley P.; Staffaroni, Matteo; Ren, Shen; Süzer, Özgün; Stipe, Barry C.; Ashby, Paul D.; Hammack, Aeron T.

    2018-05-01

    Scattering scanning near-field optical microscopy enables optical imaging and characterization of plasmonic devices with nanometer-scale resolution well below the diffraction limit. This technique enables developers to probe and understand the waveguide-coupled plasmonic antenna in as-fabricated heat-assisted magnetic recording heads. In order to validate and predict results and to extract information from experimental measurements that is physically comparable to simulations, a model was developed to translate the simulated electric field into expected near-field measurements using physical parameters specific to scattering scanning near-field optical microscopy physics. The methods used in this paper prove that scattering scanning near-field optical microscopy can be used to determine critical sub-diffraction-limited dimensions of optical field confinement, which is a crucial metrology requirement for the future of nano-optics, semiconductor photonic devices, and biological sensing where the near-field character of light is fundamental to device operation.

  15. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    PubMed

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  16. Near-field acoustical holography of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Wall, Alan T.; Gee, Kent L.; Neilsen, Tracianne; Krueger, David W.; Sommerfeldt, Scott D.; James, Michael M.

    2010-10-01

    Noise radiated from high-performance military jet aircraft poses a hearing-loss risk to personnel. Accurate characterization of jet noise can assist in noise prediction and noise reduction techniques. In this work, sound pressure measurements were made in the near field of an F-22 Raptor. With more than 6000 measurement points, this is the most extensive near-field measurement of a high-performance jet to date. A technique called near-field acoustical holography has been used to propagate the complex pressure from a two- dimensional plane to a three-dimensional region in the jet vicinity. Results will be shown and what they reveal about jet noise characteristics will be discussed.

  17. Scattering and; Delay, Scale, and Sum Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, S K

    How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes anmore » object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine the direction of arrival of a

  18. Field tests of acoustic telemetry for a portable coastal observatory

    USGS Publications Warehouse

    Martini, M.; Butman, B.; Ware, J.; Frye, D.

    2006-01-01

    Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.

  19. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties.

    PubMed

    James, Kevin R; Dowling, David R

    2008-09-01

    In underwater acoustics, the accuracy of computational field predictions is commonly limited by uncertainty in environmental parameters. An approximate technique for determining the probability density function (PDF) of computed field amplitude, A, from known environmental uncertainties is presented here. The technique can be applied to several, N, uncertain parameters simultaneously, requires N+1 field calculations, and can be used with any acoustic field model. The technique implicitly assumes independent input parameters and is based on finding the optimum spatial shift between field calculations completed at two different values of each uncertain parameter. This shift information is used to convert uncertain-environmental-parameter distributions into PDF(A). The technique's accuracy is good when the shifted fields match well. Its accuracy is evaluated in range-independent underwater sound channels via an L(1) error-norm defined between approximate and numerically converged results for PDF(A). In 50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at frequencies between 100 and 800 Hz, and for ranges from 1 to 8 km, 95% of the approximate field-amplitude distributions generated L(1) values less than 0.52 using only two field calculations. Obtaining comparable accuracy from traditional methods requires of order 10 field calculations and up to 10(N) when N>1.

  20. Simulation of Acoustic Scattering from a Trailing Edge

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Brentner, Kenneth S.; Lockard, David P.; Lilley, Geoffrey M.

    1999-01-01

    Three model problems were examined to assess the difficulties involved in using a hybrid scheme coupling flow computation with the the Ffowcs Williams and Hawkings equation to predict noise generated by vortices passing over a sharp edge. The results indicate that the Ffowcs Williams and Hawkings equation correctly propagates the acoustic signals when provided with accurate flow information on the integration surface. The most difficult of the model problems investigated inviscid flow over a two-dimensional thin NACA airfoil with a blunt-body vortex generator positioned at 98 percent chord. Vortices rolled up downstream of the blunt body. The shed vortices possessed similarities to large coherent eddies in boundary layers. They interacted and occasionally paired as they convected past the sharp trailing edge of the airfoil. The calculations showed acoustic waves emanating from the airfoil trailing edge. Acoustic directivity and Mach number scaling are shown.

  1. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tao; Fan, Tingbo; Jiangsu Province Institute for Medical Equipment Testing, Nanjing 210012

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focusedmore » HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.« less

  2. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  3. A modeling approach to predict acoustic nonlinear field generated by a transmitter with an aluminum lens.

    PubMed

    Fan, Tingbo; Liu, Zhenbo; Chen, Tao; Li, Faqi; Zhang, Dong

    2011-09-01

    In this work, the authors propose a modeling approach to compute the nonlinear acoustic field generated by a flat piston transmitter with an attached aluminum lens. In this approach, the geometrical parameters (radius and focal length) of a virtual source are initially determined by Snell's refraction law and then adjusted based on the Rayleigh integral result in the linear case. Then, this virtual source is used with the nonlinear spheroidal beam equation (SBE) model to predict the nonlinear acoustic field in the focal region. To examine the validity of this approach, the calculated nonlinear result is compared with those from the Westervelt and (Khokhlov-Zabolotskaya-Kuznetsov) KZK equations for a focal intensity of 7 kW/cm(2). Results indicate that this approach could accurately describe the nonlinear acoustic field in the focal region with less computation time. The proposed modeling approach is shown to accurately describe the nonlinear acoustic field in the focal region. Compared with the Westervelt equation, the computation time of this approach is significantly reduced. It might also be applicable for the widely used concave focused transmitter with a large aperture angle.

  4. Robust multiscale field-only formulation of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2017-01-01

    We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components of the electric E and magnetic H fields and with the scalar functions (r .E ) and (r .H ) where r is a position vector, the problem can be cast as having to solve a set of scalar Helmholtz equations for the field components that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a direct solution for the surface values of E and H rather than having to work with surface currents or surface charge densities as intermediate quantities in existing methods. Consequently, our formulation is free of the well-known numerical instability that occurs in the zero-frequency or long-wavelength limit in traditional surface integral solutions of Maxwell's equations and our numerical results converge uniformly to the static results in the long-wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as classically convergent integrals and does not require the evaluation of principal value integrals or any knowledge of the solid angle. Therefore, standard quadrature and higher order surface elements can readily be used to improve numerical precision for the same number of degrees of freedom. In addition, near and far field values can be calculated with equal precision, and multiscale problems in which the scatterers possess characteristic length scales that are both large and small relative to the wavelength can be easily accommodated. From this we obtain results for the scattering and transmission of electromagnetic waves at dielectric boundaries that are valid for any ratio of the local surface curvature to the wave number. This is a generalization of the familiar Fresnel formula and Snell's law, valid at planar dielectric boundaries, for the scattering and transmission

  5. A mesh-free approach to acoustic scattering from multiple spheres nested inside a large sphere by using diagonal translation operators.

    PubMed

    Hesford, Andrew J; Astheimer, Jeffrey P; Greengard, Leslie F; Waag, Robert C

    2010-02-01

    A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method.

  6. Distributed acoustic sensing technique and its field trial in SAGD well

    NASA Astrophysics Data System (ADS)

    Han, Li; He, Xiangge; Pan, Yong; Liu, Fei; Yi, Duo; Hu, Chengjun; Zhang, Min; Gu, Lijuan

    2017-10-01

    Steam assisted gravity drainage (SAGD) is a very promising way for the development of heavy oil, extra heavy oil and tight oil reservoirs. Proper monitoring of the SAGD operations is essential to avoid operational issues and improve efficiency. Among all the monitoring techniques, micro-seismic monitoring and related interpretation method can give useful information about the steam chamber development and has been extensively studied. Distributed acoustic sensor (DAS) based on Rayleigh backscattering is a newly developed technique that can measure acoustic signal at all points along the sensing fiber. In this paper, we demonstrate a DAS system based on dual-pulse heterodyne demodulation technique and did field trial in SAGD well located in Xinjiang Oilfield, China. The field trail results validated the performance of the DAS system and indicated its applicability in steam-chamber monitoring and hydraulic monitoring.

  7. Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array

    PubMed Central

    Alibakhshi, Mohammad A.; Kracht, Jonathan M.; Cleveland, Robin O.; Filoux, Erwan; Ketterling, Jeffrey A.

    2013-01-01

    Piezopolymer-based hydrophone arrays consisting of 20 elements were fabricated and tested for use in measuring the acoustic field from a shock-wave lithotripter. The arrays were fabricated from piezopolymer films and were mounted in a housing to allow submersion into water. The motivation was to use the array to determine how the shot-to-shot variability of the spark discharge in an electrohydraulic lithotripter affects the resulting focused acoustic field. It was found that the dominant effect of shot-to-shot variability was to laterally shift the location of the focus by up to 5 mm from the nominal acoustic axis of the lithotripter. The effect was more pronounced when the spark discharge was initiated with higher voltages. The lateral beamwidth of individual, instantaneous shock waves were observed to range from 1.5 mm to 24 mm. Due to the spatial variation of the acoustic field, the average of instantaneous beamwidths were observed to be 1 to 2 mm narrower than beamwidths determined from traditional single-point measurements that average the pressure measured at each location before computing beamwidth. PMID:23654419

  8. Reciprocity relationships in vector acoustics and their application to vector field calculations.

    PubMed

    Deal, Thomas J; Smith, Kevin B

    2017-08-01

    The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.

  9. Range-dependence of acoustic channel with traveling sinusoidal surface wave.

    PubMed

    Choo, Youngmin; Seong, Woojae; Lee, Keunhwa

    2014-04-01

    Range-dependence of time-varying acoustic channels caused by a traveling surface wave is investigated through water tank experiments and acoustic propagation analysis schemes. As the surface wave travels, surface reflected signals fluctuate and the fluctuation varies with source-receiver horizontal range. Amplitude fluctuations of surface reflected signals increase with increasing horizontal range whereas the opposite occurs in delay fluctuations. The scattered pressure field at a fixed time shows strong dependence on the receiver position because of caustics and shadow zones formed by the surface. The Doppler shifts of surface reflected signals also depend on the horizontal range. Comparison between measurement data and model results indicates the Doppler shift relies on the delay fluctuation under current experimental conditions.

  10. Inverse scattering theory: Inverse scattering series method for one dimensional non-compact support potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jie, E-mail: yjie2@uh.edu; Lesage, Anne-Cécile; Hussain, Fazle

    2014-12-15

    The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptoticmore » form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.« less

  11. Shape oscillations of acoustically levitated drops in water: Early research with Bob Apfel on modulated radiation pressure

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2004-05-01

    In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.

  12. Scattering of turbulent-jet wavepackets by a swept trailing edge.

    PubMed

    Piantanida, Selene; Jaunet, Vincent; Huber, Jérôme; Wolf, William R; Jordan, Peter; Cavalieri, André V G

    2016-12-01

    Installed jet noise is studied by means of a simplified configuration comprising a flat plate in the vicinity of a round jet. The effects of Mach number, jet-plate radial distance, and trailing-edge sweep angle are explored. Acoustic measurements are performed using a traversable 18-microphone azimuthal array, providing pressure data at 360 points on a cylindrical surface surrounding the jet-plate system. Key observations include a decrease, with increasing Mach number, of the relative level of the scattered field in comparison to the uninstalled jet; an exponential dependence of the scattered sound pressure level on the radial jet-plate separation; and considerable sideline noise reductions with increasing sweep angle, with which there is an overall reduction in acoustic efficiency. The measurements are compared with results obtained using a kinematic wavepacket source model, whose radiation is computed in two ways. A TGF for a semi-infinite flat plate is used to provide a low-order approximation of the scattering effect. Use of a more computationally intensive boundary element method provides additional precision. Good agreement between model predictions and experiment, encouraging from the perspective of low-cost prediction strategies, demonstrates that the models comprise the essential sound generation mechanisms.

  13. New wrinkles on black hole perturbations: Numerical treatment of acoustic and gravitational waves

    NASA Astrophysics Data System (ADS)

    Tenyotkin, Valery

    2009-06-01

    This thesis develops two main topics. A full relativistic calculation of quasinormal modes of an acoustic black hole is carried out. The acoustic black hole is formed by a perfect, inviscid, relativistic, ideal gas that is spherically accreting onto a Schwarzschild black hole. The second major part is the calculation of sourceless vector (electromagnetic) and tensor (gravitational) covariant field evolution equations for perturbations on a Schwarzschild background using the relatively recent [Special characters omitted.] decomposition method. Scattering calculations are carried out in Schwarzschild coordinates for electromagnetic and gravitational cases as validation of the method and the derived equations.

  14. A Unified Treatment of the Acoustic and Elastic Scattered Waves from Fluid-Elastic Media

    NASA Astrophysics Data System (ADS)

    Denis, Max Fernand

    In this thesis, contributions are made to the numerical modeling of the scattering fields from fluid-filled poroelastic materials. Of particular interest are highly porous materials that demonstrate strong contrast to the saturating fluid. A Biot's analysis of porous medium serves as the starting point of the elastic-solid and pore-fluid governing equations of motion. The longitudinal scattering waves of the elastic-solid mode and the pore-fluid mode are modeled by the Kirchhoff-Helmholtz integral equation. The integral equation is evaluated using a series approximation, describing the successive perturbation of the material contrasts. To extended the series' validity into larger domains, rational fraction extrapolation methods are employed. The local Pade□ approximant procedure is a technique that allows one to extrapolate from a scattered field of small contrast into larger values, using Pade□ approximants. To ensure the accuracy of the numerical model, comparisons are made with the exact solution of scattering from a fluid sphere. Mean absolute error analyses, yield convergent and accurate results. In addition, the numerical model correctly predicts the Bragg peaks for a periodic lattice of fluid spheres. In the case of trabecular bones, the far-field scattering pressure attenuation is a superposition of the elastic-solid mode and the pore-fluid mode generated waves from the surrounding fluid and poroelastic boundaries. The attenuation is linearly dependent with frequency between 0.2 and 0.6MHz. The slope of the attenuation is nonlinear with porosity, and does not reflect the mechanical properties of the trabecular bone. The attenuation shows the anisotropic effects of the trabeculae structure. Thus, ultrasound can possibly be employed to non-invasively predict the principal structural orientation of trabecular bones.

  15. Mapping the sound field of an erupting submarine volcano using an acoustic glider.

    PubMed

    Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W

    2011-03-01

    An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds. © 2011 Acoustical Society of America

  16. Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure

    NASA Astrophysics Data System (ADS)

    Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo

    2017-11-01

    Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.

  17. a Search for Lower-Hybrid Drift Fluctuations in a Field-Reversed Configuration by Means of Carbon Dioxide Heterodyne Scattering.

    NASA Astrophysics Data System (ADS)

    Carlson, Arthur William

    A measurement is reported which sets an upper bound on LHD-like density fluctuations in an FRC which is two orders of magnitude below the predicted levels. Particle loss from FRC's is known to occur anomalously fast, and this is usually attributed to effects of the LHD instability. If LHD waves are present, they can be measured using heterodyne detection of CO(,2) laser light scattered from the associated density fluctuations. In the present case, the usual scattering system was successfully modified to compensate for severe refraction of the beams by the plasma. This system was calibrated by detection of an electrooptically modulated CO(,2) laser beam, and by detection of light scattered from acoustic waves in salt. The plasma measurements made on the TRX-2 field-reversed theta-pinch covered all parameters at which LHD fluctuations might be expected to occur, namely wavenumbers from 30 to 240 cm('-1), frequencies from 10 to 300 MHz, and radii from one centimeter inside the separatrix to two centimeters outside. The lack of detectable scattered light under any of these conditions indicates ((delta)n/n) < 1 x 10('-4), compared to predictions of ((delta)n/n) ('(TURN)) 1 x 10('-2) based on mode coupling theory, ion -trapping theory, and observed transport rates. Several mechanisms are discussed which may stabilize LHD in these plasmas. Several alternate explanations of the observed anomalous transport rates in FRC's are also discussed.

  18. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  19. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    NASA Astrophysics Data System (ADS)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  20. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, Alexey V., E-mail: a-bulanov@me.com; V.I. Il’ichev Pacific Oceanological Institute, Vladivostok, Russia 690041; Nagorny, Ivan G., E-mail: ngrn@mail.ru

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission inmore » fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.« less

  1. The Effects of Sand Sediment Volume Heterogeneities on Sound Propagation and Scattering

    DTIC Science & Technology

    2011-09-01

    previously developed at APL- UW for the study of high-frequency acoustics . These models include perturbation models applied to scattering from the...shell shapes (Figure 1). The acoustic modeling to this point has utilized Ivakin’s unified approach to volume and roughness scattering [3...sediments: A modeling approach and application to a shelly sand-mud environment,” in the Proceeding of the European Conference on Underwater Acoustics

  2. Sound scattering by several zooplankton groups. I. Experimental determination of dominant scattering mechanisms.

    PubMed

    Stanton, T K; Chu, D; Wiebe, P H; Martin, L V; Eastwood, R L

    1998-01-01

    The acoustic scattering properties of live individual zooplankton from several gross anatomical groups have been investigated. The groups involve (1) euphausiids (Meganyctiphanes norvegica) whose bodies behave acoustically as a fluid material, (2) gastropods (Limacina retroversa) whose bodies include a hard elastic shell, and (3) siphonophores (Agalma okeni or elegans and Nanomia cara) whose bodies contain a gas inclusion (pneumatophore). The animals were collected from ocean waters off New England (Slope Water, Georges Bank, and the Gulf of Maine). The scattering properties were measured over parts or all of the frequency range 50 kHz to 1 MHz in a laboratory-style pulse-echo setup in a large tank at sea using live fresh specimens. Individual echoes as well as averages and ping-to-ping fluctuations of repeated echoes were studied. The material type of each group is shown to strongly affect both the overall echo level and pattern of the target strength versus frequency plots. In this first article of a two-part series, the dominant scattering mechanisms of the three animal types are determined principally by examining the structure of both the frequency spectra of individual broadband echoes and the compressed pulse (time series) output. Other information is also used involving the effect on overall levels due to (1) animal orientation and (2) tissue in animals having a gas inclusion (siphonophores). The results of this first paper show that (1) the euphausiids behave as weakly scattering fluid bodies and there are major contributions from at least two parts of the body to the echo (the number of contributions depends upon angle of orientation and shape), (2) the gastropods produce echoes from the front interface and possibly from a slow-traveling circumferential (Lamb) wave, and (3) the gas inclusion of the siphonophore dominates the echoes, but the tissue plays a role in the scattering and is especially important when analyzing echoes from individual animals on a

  3. Interior near-field acoustical holography in flight.

    PubMed

    Williams, E G; Houston, B H; Herdic, P C; Raveendra, S T; Gardner, B

    2000-10-01

    In this paper boundary element methods (BEM) are mated with near-field acoustical holography (NAH) in order to determine the normal velocity over a large area of a fuselage of a turboprop airplane from a measurement of the pressure (hologram) on a concentric surface in the interior of the aircraft. This work represents the first time NAH has been applied in situ, in-flight. The normal fuselage velocity was successfully reconstructed at the blade passage frequency (BPF) of the propeller and its first two harmonics. This reconstructed velocity reveals structure-borne and airborne sound-transmission paths from the engine to the interior space.

  4. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    PubMed

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network

  5. Near Field Ocean Surface Waves Acoustic Radiation Observation and Modeling

    NASA Astrophysics Data System (ADS)

    Ardhuin, F.; Peureux, C.; Royer, J. Y.

    2016-12-01

    The acoustic noise generation by nonlinearly interacting surface gravity waves has been studied for a long time both theoretically and experimentally [Longuet-Higgins 1951]. The associated far field noise is continuously measured by a vast network of seismometers at the ocean bottom and on the continents. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean.The pressure field at depths less than an acoustic wave length to the surface is made of evanescent modes which vanish away from their sources (near field) [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, where pressure measurements are performed at the ocean bottom (ca. 100 m) and at 300 m water depth respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modeling framework help assessing its performances and can be used to help future model improvements.References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.

  6. Electromagnetic field scattering by a triangular aperture.

    PubMed

    Harrison, R E; Hyman, E

    1979-03-15

    The multiple Laplace transform has been applied to analysis and computation of scattering by a double triangular aperture. Results are obtained which match far-field intensity distributions observed in experiments. Arbitrary polarization components, as well as in-phase and quadrature-phase components, may be determined, in the transform domain, as a continuous function of distance from near to far-field for any orientation, aperture, and transformable waveform. Numerical results are obtained by application of numerical multiple inversions of the fully transformed solution.

  7. Aureole radiance field about a source in a scattering-absorbing medium.

    PubMed

    Zachor, A S

    1978-06-15

    A technique is described for computing the aureole radiance field about a point source in a medium that absorbs and scatters according to an arbitrary phase function. When applied to an isotropic source in a homogenous medium, the method uses a double-integral transform which is evaluated recursively to obtain the aureole radiances contributed by successive scattering orders, as in the Neumann solution of the radiative transfer equation. The normalized total radiance field distribution and the variation of flux with field of view and range are given for three wavelengths in the uv and one in the visible, for a sea-level model atmosphere assumed to scatter according to a composite of the Rayleigh and modified Henyey-Greenstein phase functions. These results have application to the detection and measurement of uncollimated uv and visible sources at short ranges in the lower atmosphere.

  8. Q-Space Scattering Power Laws and the Interior Fields of Particles

    DTIC Science & Technology

    2016-02-12

    SECURITY CLASSIFICATION OF: This work studied the relationship between light scattered by particles of any shape and the interior field of that...Release; Distribution Unlimited UU UU UU UU 12-02-2016 7-Jul-2014 6-Apr-2015 Final Report: Q-space Scattering Power Laws and the Interior Fields of...the Army position, policy or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S

  9. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 1; Analysis and Results

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.

  10. A mesh-free approach to acoustic scattering from multiple spheres nested inside a large sphere by using diagonal translation operators

    PubMed Central

    Hesford, Andrew J.; Astheimer, Jeffrey P.; Greengard, Leslie F.; Waag, Robert C.

    2010-01-01

    A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method. PMID:20136208

  11. Generation and development of small-amplitude disturbances in a laminar boundary layer in the presence of an acoustic field

    NASA Technical Reports Server (NTRS)

    Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.

    1985-01-01

    A low-turbulence subsonic wind tunnel was used to study the influence of acoustic disturbances on the development of small sinusoidal oscillations (Tollmien-Schlichting waves) which constitute the initial phase of turbulent transition. It is found that acoustic waves propagating opposite to the flow generate vibrations of the model (plate) in the flow. Neither the plate vibrations nor the acoustic field itself have any appreciable influence on the stability of the laminar boundary layer. The influence of an acoustic field on laminar boundary layer disturbances is limited to the generation of Tollmien-Schlichting waves at the leading-edge of the plate.

  12. Rapid calculation of acoustic fields from arbitrary continuous-wave sources.

    PubMed

    Treeby, Bradley E; Budisky, Jakub; Wise, Elliott S; Jaros, Jiri; Cox, B T

    2018-01-01

    A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution integral is solved analytically, and the remaining integrals are expressed in the form of the spatial Fourier transform. This allows the acoustic pressure for all spatial positions to be calculated in a single step using two fast Fourier transforms. The model is demonstrated through several numerical examples, including single element rectangular and spherically focused bowl transducers, and multi-element linear and hemispherical arrays.

  13. Effect of temperature on Acoustic Evaluation of standing trees and logs: Part 2: Field Investigation

    Treesearch

    Shan Gao; Xiping Wang; Lihai Wang; R. Bruce Allison

    2013-01-01

    The objectives of this study were to investigate the effect of seasonal temperature changes on acoustic velocity measured on standing trees and green logs and to develop models for compensating temperature differences because acoustic measurements are performed in different climates and seasons. Field testing was conducted on 20 red pine (Pinus resinosa...

  14. Acoustic experience shapes female mate choice in field crickets

    PubMed Central

    Bailey, Nathan W; Zuk, Marlene

    2008-01-01

    Female choice can drive the evolution of extravagant male traits. In invertebrates, the influence of prior social experience on female choice has only recently been considered. To better understand the evolutionary implications of experience-mediated plasticity in female choice, we investigated the effect of acoustic experience during rearing on female responsiveness to male song in the field cricket Teleogryllus oceanicus. Acoustic experience has unique biological relevance in this species: a morphological mutation has rendered over 90 per cent of males on the Hawaiian island of Kauai silent in fewer than 20 generations, impeding females' abilities to locate potential mates. Females reared in silent conditions mimicking Kauai were less discriminating of male calling song and more responsive to playbacks, compared with females that experienced song during rearing. Our results to our knowledge, are the first demonstration of long-term effects of acoustic experience in an arthropod, and suggest that female T. oceanicus may be able to compensate for the reduced availability of long-range male sexual signals by increasing their responsiveness to the few remaining signallers. Understanding the adaptive significance of experience-mediated plasticity in female choice provides insight into processes that facilitate rapid evolutionary change and shape sexual selection pressure in natural populations. PMID:18700205

  15. An assessment of the DORT method on simple scatterers using boundary element modelling.

    PubMed

    Gélat, P; Ter Haar, G; Saffari, N

    2015-05-07

    The ability to focus through ribs overcomes an important limitation of a high-intensity focused ultrasound (HIFU) system for the treatment of liver tumours. Whilst it is important to generate high enough acoustic pressures at the treatment location for tissue lesioning, it is also paramount to ensure that the resulting ultrasonic dose on the ribs remains below a specified threshold, since ribs both strongly absorb and reflect ultrasound. The DORT (décomposition de l'opérateur de retournement temporel) method has the ability to focus on and through scatterers immersed in an acoustic medium selectively without requiring prior knowledge of their location or geometry. The method requires a multi-element transducer and is implemented via a singular value decomposition of the measured matrix of inter-element transfer functions. The efficacy of a method of focusing through scatterers is often assessed by comparing the specific absorption rate (SAR) at the surface of the scatterer, and at the focal region. The SAR can be obtained from a knowledge of the acoustic pressure magnitude and the acoustic properties of the medium and scatterer. It is well known that measuring acoustic pressures with a calibrated hydrophone at or near a hard surface presents experimental challenges, potentially resulting in increased measurement uncertainties. Hence, the DORT method is usually assessed experimentally by measuring the SAR at locations on the surface of the scatterer after the latter has been removed from the acoustic medium. This is also likely to generate uncertainties in the acoustic pressure measurement. There is therefore a strong case for assessing the efficacy of the DORT method through a validated theoretical model. The boundary element method (BEM) applied to exterior acoustic scattering problems is well-suited for such an assessment. In this study, BEM was used to implement the DORT method theoretically on locally reacting spherical scatterers, and to assess its focusing

  16. Acoustic behavior of a rigidly backed poroelastic layer with periodic resonant inclusions by a multiple scattering approach.

    PubMed

    Weisser, Thomas; Groby, Jean-Philippe; Dazel, Olivier; Gaultier, François; Deckers, Elke; Futatsugi, Sideto; Monteiro, Luciana

    2016-02-01

    The acoustic response of a rigidly backed poroelastic layer with a periodic set of elastic cylindrical inclusions embedded is studied. A semi-analytical approach is presented, based on Biot's 1956 theory to account for the deformation of the skeleton, coupling mode matching technique, Bloch wave representation, and multiple scattering theory. This model is validated by comparing the derived absorption coefficients to finite element simulations. Numerical results are further exposed to investigate the influence of the properties of the inclusions (type, material properties, size) of this structure, while a modal analysis is performed to characterize the dynamic behaviors leading to high acoustic absorption. Particularly, in the case of thin viscoelastic membranes, an absorption coefficient larger than 0.8 is observed on a wide frequency band. This property is found to be due to the coupling between the first volume mode of the inclusion and the trapped mode induced by the periodic array and the rigid backing, for a wavelength in the air smaller than 11 times the material thickness.

  17. The Effects of Internal Waves on Acoustic Normal Modes.

    DTIC Science & Technology

    1984-12-01

    amplitudes derived by suppressing azimuthal acoustic fluctuations are still valid as long as each range function is interpreted as a sum over all the...thatp HTp HTv + CvS(!!)(..)(25 The hydrodynamic equations appropriate to an ocean are Du p b + p(fxuL) + Vp - = V-A + F (2.6a) Do + pv.u 0(2.6b) pT Ln+ V... interpreted their scattering coefficients as representing contributions from the internal wave field with hori- zontal wave numbers equal to the

  18. Acoustic and elastic waves in metamaterials for underwater applications

    NASA Astrophysics Data System (ADS)

    Titovich, Alexey S.

    Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson

  19. Acoustic source localization in mixed field using spherical microphone arrays

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua; Wang, Tong

    2014-12-01

    Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.

  20. A frequency domain linearized Navier-Stokes method including acoustic damping by eddy viscosity using RANS

    NASA Astrophysics Data System (ADS)

    Holmberg, Andreas; Kierkegaard, Axel; Weng, Chenyang

    2015-06-01

    In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic field in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynold's stress, due to the acoustic field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-ε turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is. A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.

  1. Numerical Calculation and Measurement of Nonlinear Acoustic Fields in Ultrasound Diagnosis

    NASA Astrophysics Data System (ADS)

    Kawagishi, Tetsuya; Saito, Shigemi; Mine, Yoshitaka

    2002-05-01

    In order to develop a tool for designing on the ultrasonic probe and its peripheral devices for tissue-harmonic-imaging systems, a study is carried out to compare the calculation and observation results of nonlinear acoustic fields for a diagnostic ultrasound system. The pulsed ultrasound with a center frequency of 2.5 MHz is emanated from a weakly focusing sector probe with a 6.5 mm aperture radius and a 50 mm focal length into an agar phantom with an attenuation coefficient of about 0.6 dB/cm/MHz or 1.2 dB/cm/MHz. The nonlinear acoustic field is measured using a needle-type hydrophone. The calculation is based on the Khokhlov-Zabolotskaya-Kuznetsov(KZK) equation which is modified so that the frequency dependence of the attenuation coefficient is the same as that in biological tissue. This equation is numerically solved with the implicit backward method employing the iterative method. The measured and calculated amplitude spectra show good agreement with each other.

  2. Quantitative assessment of acoustic intensity in the focused ultrasound field using hydrophone and infrared imaging.

    PubMed

    Yu, Ying; Shen, Guofeng; Zhou, Yufeng; Bai, Jingfeng; Chen, Yazhu

    2013-11-01

    With the popularity of ultrasound therapy in clinics, characterization of the acoustic field is important not only to the tolerability and efficiency of ablation, but also for treatment planning. A quantitative method was introduced to assess the intensity distribution of a focused ultrasound beam using a hydrophone and an infrared camera with no prior knowledge of the acoustic and thermal parameters of the absorber or the configuration of the array elements. This method was evaluated in both theoretical simulations and experimental measurements. A three-layer model was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the sonication and the consequent temperature elevation. Experiments were carried out to measure the acoustic pressure with the hydrophone and the temperature elevation with the infrared camera. The percentage differences between the derived results and the simulation are <4.1% for on-axis intensity and <21.1% for -6-dB beam width at heating times up to 360 ms in the focal region of three phased-array ultrasound transducers using two different absorbers. The proposed method is an easy, quick and reliable approach to calibrating focused ultrasound transducers with satisfactory accuracy. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.

    PubMed

    Ahmed, Suzanne; Wang, Wei; Bai, Lanjun; Gentekos, Dillon T; Hoyos, Mauricio; Mallouk, Thomas E

    2016-04-26

    Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave end of these rods is inconsistent with a scattering mechanism that we proposed earlier for acoustic propulsion, but is consistent with an acoustic streaming model developed more recently by Nadal and Lauga ( Phys. Fluids 2014 , 26 , 082001 ). Longer rods were slower at constant power, and their speed was proportional to the square of the power density, in agreement with the acoustic streaming model. The streaming model was further supported by a correlation between the disassembly of spinning chains of rods and a sharp decrease in the axial speed of autonomously moving motors within the levitation plane of the cylindrical acoustic cell. However, with bimetallic rods containing metals of different densities, a consistent polarity of motion was observed with the lighter metal end leading. Speed comparisons between single-metal rods of different densities showed that those of lower density are propelled faster. So far, these density effects are not explained in the streaming model. The directionality of bimetallic rods in acoustic fields is intriguing and offers some new possibilities for designing motors in which shape, material, and chemical asymmetry might be combined for enhanced functionality.

  4. The application of standard definitions of sound to the fields of underwater acoustics and acoustical oceanography

    NASA Astrophysics Data System (ADS)

    Carey, William M.

    2004-05-01

    Recent societal concerns have focused attention on the use of sound as a probe to investigate the oceans and its use in naval sonar applications. The concern is the impact the use of sound may have on marine mammals and fishes. The focus has changed the fields of acoustical oceanography (AO) and underwater acoustics (UW) because of the requirement to communicate between disciplines. Multiple National Research Council publications, Dept. of Navy reports, and several monographs have been written on this subject, and each reveals the importance as well as the misapplication of ASA standards. The ANSI-ASA standards are comprehensive, however not widely applied. The clear definition of standards and recommendations of their use is needed for both scientists and government agencies. Traditionally the U.S. Navy has been responsible for UW standards and calibration; the ANSI-ASA standards have been essential. However, recent changes in the Navy and its laboratory structure may necessitate a more formal recognition of ANSI-ASA standards and perhaps incorporation of UW-AO in the Bureau of Standards. A separate standard for acoustical terminology, reference levels, and notation used in the UW-AO is required. Since the problem is global, a standard should be compatible and cross referenced with the International Standard (CEI/IEC 27-3).

  5. Demonstrating the saturation of stimulated Brillouin scattering by ion acoustic decay using fully kinetic simulations

    DOE PAGES

    Chapman, T.; Winjum, B. J.; Brunner, S.; ...

    2015-09-01

    The saturation of stimulated Brillouin scattering (SBS) by the decay to turbulence of the ion acoustic wave (IAW) that participates in the three-wave SBS interaction is demonstrated using a quasi-noiseless one-dimensional numerical solution to the Vlasov-Maxwell system of equations. This simulation technique permits careful examination of the decay process and its role in the complex evolution of SBS. Here, the IAW decay process is shown to be an effective SBS saturation mechanism. In our example, the instantaneous plasma reflectivity saturates at ~30% and drops to ~0% as a direct consequence of IAW decay. A contrasting example where the reflectivity ismore » controlled by dephasing due to the nonlinear frequency of the IAW is also discussed.« less

  6. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2015-09-30

    Scattering from Rock and Rock Outcrops Derek R. Olson The Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State...In terms of target detection and classification, scattering from exposed rock on the seafloor, (i.e., individual rocks and rock outcrops) presents...levels, and other statistical measures of acoustic scattering from rocks and rock outcrops is therefore critical. Unfortunately (and curiously

  7. Risk of a second cancer from scattered radiation in acoustic neuroma treatment

    NASA Astrophysics Data System (ADS)

    Yoon, Myonggeun; Lee, Hyunho; Sung, Jiwon; Shin, Dongoh; Park, Sungho; Chung, Weon Kuu; Jahng, Geon-Ho; Kim, Dong Wook

    2014-06-01

    The present study aimed to compare the risk of a secondary cancer from scattered and leakage doses in patients receiving intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) of a secondary cancer were estimated using the corresponding secondary doses measured at various organs by using radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, liver, bowel, bladder, prostate (or ovary), and rectum were 14.6, 1.7, 0.9, 0.8, 0.6, 0.6, and 0.6 cGy, respectively, for IMRT whereas they were 19.1, 1.8, 2.0, 0.6, 0.4, 0.4, and 0.4 cGy, respectively, for VMAT, and 22.8, 4.6, 1.4, 0.7, 0.5, 0.5, and 0.5 cGy, respectively, for SRS. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A lifetime attributable risk evaluation estimated that more than 0.03% of acoustic neuroma (AN) patients would get radiation-induced cancer within 20 years of receiving radiation therapy. The organ with the highest radiation-induced cancer risk after radiation treatment for AN was the thyroid. We found that the LAR could be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.

  8. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  9. Layered Organization in the Coastal Ocean: Acoustical Data Acquisition Analyses and Synthesis

    DTIC Science & Technology

    2009-11-04

    associated with such trophic exchange processes as are enabled by the presence of the seasonal chlorophyll maximum and horizontal patchiness. The presence...dependence of acoustic volume scattering strength in a coastal environment during different seasons allows designers to do a better job and operations...completed well before sunrise, even as early as 0300 PDT (local time). Sunrise was typically at ca. 0630 PDT during the LOCO field seasons . Our joint

  10. Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Zheng, Jian; Li, Zhichao; Ding, Yongkun; Yang, Dong; Hu, Guangyue; Zhao, Bin

    2015-09-01

    A simple model, based on energy and pressure equilibrium, is proposed to deal with the effect of external magnetic fields on the plasma parameters inside the laser path, which shows that the electron temperature can be significantly enhanced as the intensity of the external magnetic fields increases. With the combination of this model and a 1D three-wave coupling code, the effect of external magnetic fields on the reflectivities of stimulated scattering processes is studied. The results indicate that a magnetic field with an intensity of tens of Tesla can decrease the reflectivities of stimulated scattering processes by several orders of magnitude.

  11. An acoustic switch.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2014-01-01

    The benefits derived from the development of acoustic transistors which act as switches or amplifiers have been reported in the literature. Here we propose a model of acoustic switch. We theoretically demonstrate that the device works: the input signal is totally restored at the output when the switch is on whereas the output signal nulls when the switch is off. The switch, on or off, depends on a secondary acoustic field capable to manipulate the main acoustic field. The model relies on the attenuation effect of many oscillating bubbles on the main travelling wave in the liquid, as well as on the capacity of the secondary acoustic wave to move the bubbles. This model evidences the concept of acoustic switch (transistor) with 100% efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Negative radiation forces and the asymmetry of scattered radiation: spheres in Bessel beams

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2011-11-01

    The discovery that acoustical and optical, radiation forces computed on spheres placed on the axis of acoustical and optical Bessel beams may be opposite the direction of beam propagation makes it appropriate to reexamine the relationship between radiation forces and the asymmetry of the scattered radiation. For all of the previously identified acoustical cases in which the force was negative and the scattering pattern was also computed, it was found that the backscattering was suppressed and the forward scattering relatively enhanced (see e.g.). In the present research the acoustic radiation force on an arbitrary isotropic sphere is related to the asymmetry in the scattering and the extinction introduced by the sphere for the case of a helical Bessel beam of arbitrary order. The analysis confirms that conditions are more favorable for generating negative forces when the asymmetry is such that the backscattering is suppressed relative to the forward scattering. It is also found, however, that absorption of power by the sphere gives rise to a positive force contribution, a term which has been neglected in the corresponding optical analysis.

  13. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  14. Analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Arun, E-mail: arunshuklaujn@gmail.com; Jat, K. L.

    2015-07-31

    An analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma has been reported. In the present analytical investigation, the lattice displacement, acousto-optical polarization, susceptibility, acousto-optical gain constant arising due to the induced nonlinear current density and acousto-optical process are deduced in an acoustically perturbed Brillouin active magnetized semiconductor plasma using the hydrodynamical model of plasma and coupled mode scheme. The influence of wave number and magnetic field has been explored. The analysis has been applied to centrosymmetric crystal. Numerical estimates are made for n-type InSb crystal duly irradiated by a frequency doubled 10.6 µm CO{sub 2} laser. It is foundmore » that lattice displacement, susceptibility and acousto-optical gain increase linearly with incident wave number and applied dc magnetic field, while decrease with scattering angle. The gain also increases with electric amplitude of incident laser beam. Results are found to be well in agreement with available literature.« less

  15. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.

    PubMed

    Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring; Bruus, Henrik

    2012-11-21

    We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles and the Stokes drag force from the induced acoustic streaming flow. These forces are calculated numerically in two steps. First, the thermoacoustic equations are solved to first order in the imposed ultrasound field taking into account the micrometer-thin but crucial thermoviscous boundary layer near the rigid walls. Second, the products of the resulting first-order fields are used as source terms in the time-averaged second-order equations, from which the net acoustic forces acting on the particles are determined. The resulting acoustophoretic particle velocities are quantified for experimentally relevant parameters using a numerical particle-tracking scheme. The model shows the transition in the acoustophoretic particle motion from being dominated by streaming-induced drag to being dominated by radiation forces as a function of particle size, channel geometry, and material properties.

  16. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads.

  17. Non-blind acoustic invisibility by dual layers of homogeneous single-negative media

    PubMed Central

    Gao, He; Zhu, Yi-fan; Fan, Xu-dong; Liang, Bin; Yang, Jing; Cheng, Jian-Chun

    2017-01-01

    Non-blind invisibility cloaks allowing the concealed object to sense the outside world have great application potentials such as in high-precision sensing or underwater camouflage. However the existing designs based on coordinate transformation techniques need complicated spatially-varying negative index or intricate multi-layered configurations, substantially increasing the difficulty in practical realization. Here we report on the non-blind acoustic invisibility for a circular object in free space with simple distribution of cloak parameters. The mechanism is that, instead of utilizing the transformation acoustics technique, we develop the analytical formulae for fast prediction of the scattering from the object and then use an evolutionary optimization to retrieve the desired cloak parameters for minimizing the scattered field. In this way, it is proven possible to break through the fundamental limit of complementary condition that must be satisfied by the effective parameters of the components in transformation acoustics-based cloaks. Numerical results show that the resulting cloak produces a non-bflind invisibility as perfect as in previous designs, but only needs two layers with homogenous single-negative parameters. With full simplification in parameter distribution and broken symmetry in complementary relationship, our scheme opens new route to free-space non-blind invisibility, taking a significant step towards real-world application of cloaking devices. PMID:28195227

  18. Non-blind acoustic invisibility by dual layers of homogeneous single-negative media

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhu, Yi-Fan; Fan, Xu-Dong; Liang, Bin; Yang, Jing; Cheng, Jian-Chun

    2017-02-01

    Non-blind invisibility cloaks allowing the concealed object to sense the outside world have great application potentials such as in high-precision sensing or underwater camouflage. However the existing designs based on coordinate transformation techniques need complicated spatially-varying negative index or intricate multi-layered configurations, substantially increasing the difficulty in practical realization. Here we report on the non-blind acoustic invisibility for a circular object in free space with simple distribution of cloak parameters. The mechanism is that, instead of utilizing the transformation acoustics technique, we develop the analytical formulae for fast prediction of the scattering from the object and then use an evolutionary optimization to retrieve the desired cloak parameters for minimizing the scattered field. In this way, it is proven possible to break through the fundamental limit of complementary condition that must be satisfied by the effective parameters of the components in transformation acoustics-based cloaks. Numerical results show that the resulting cloak produces a non-bflind invisibility as perfect as in previous designs, but only needs two layers with homogenous single-negative parameters. With full simplification in parameter distribution and broken symmetry in complementary relationship, our scheme opens new route to free-space non-blind invisibility, taking a significant step towards real-world application of cloaking devices.

  19. Burton-Miller-type singular boundary method for acoustic radiation and scattering

    NASA Astrophysics Data System (ADS)

    Fu, Zhuo-Jia; Chen, Wen; Gu, Yan

    2014-08-01

    This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller's formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton-Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.

  20. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.

    PubMed

    Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla

    2010-02-01

    Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.

  1. Near-field spectral shift of a zero-order Bessel beam scattered from a spherical particle

    NASA Astrophysics Data System (ADS)

    Chen, Feinan; Li, Jia; Belafhal, Abdelmajid; Chafiq, Abdelghani; Sun, Xiaobing

    2018-06-01

    Within the accuracy of the first-order Born approximation, expressions are derived for the near-zone spectrum of a zero-order Bessel beam scattered from a spherical particle whose correlation function satisfies a Gaussian distribution. The dependence of the spectral shift and spectral switch of the scattered field on the effective size of the scattering potential (ESSP) are determined by numerical simulations. It is shown that the spectral shift of the scattered field does not occur along the longitudinal propagation direction. Furthermore, when the medium’s ESSP is comparable with the central wavelength of the beam, the spectrum of the scattered field loses the Gaussian distribution and exhibits a blue shift as the reference point sufficiently far away from central origin. These results may have prospective applications in guiding tiny particles when the near-zone spectrums of scattered beams are captured and analyzed.

  2. An Examination of the Resonant Acoustic Mixers Flow Field

    DTIC Science & Technology

    2013-12-01

    AFRL-RW-EG-TR-2013-108 AN EXAMINATION OF THE RESONANT ACOUSTIC MIXER’S FLOW FIELD Douglas V. Nance AFRL/RWWC 101 W. Eglin Blvd...Simulation…………………………………………………………9 3.0 Results…………………………………………………………………………………….12 3.1 Flow Field Structure During the Mixing Process…………………………………13 3.2...mixing flow field. As a matter of post-processing, the progression of eddy sizes is determined by wavenumber transformation. The computer code of

  3. Two-dimensional simulations of stimulated Brillouin scattering in laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Amin, M. R.; Capjack, C. E.; Frycz, P.; Rozmus, W.; Tikhonchuk, V. T.

    1993-07-01

    A system of electromagnetic and ion acoustic wave equations coupled via the ponderomotive force are solved numerically in a two-dimensional planar geometry. The competition between forward, side, and backward Brillouin scattering of the finite size laser beam is studied for the first time without the standard paraxial optics approximation. Simulations reveal a strong dependence of the scattered light characteristics on the geometry of the interaction region, the shape of the pump beam, and the ion acoustic wave damping. The main effects include side and forward scattering enhancement and a stimulation of collimated backward scattered radiation.

  4. Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors

    NASA Technical Reports Server (NTRS)

    Dhawan, R.; Gunther, M. F.; Claus, R. O.

    1991-01-01

    Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.

  5. Acoustic Scattering Classification of Zooplankton and Microstructure

    DTIC Science & Technology

    2001-09-30

    As part of this investigation, we have been observing concentrations of siphonulae, a larval form of the gas-bearing zooplankton siphonophore . The...situ measurements of acoustic target strengths of siphonophores , a gas-bearing zooplankter,” ICES J. Mar. Sci. 58: 740-749. Warren, J.D., T.K

  6. The Characterization of Military Aircraft Jet Noise Using Near-Field Acoustical Holography Methods

    NASA Astrophysics Data System (ADS)

    Wall, Alan Thomas

    The noise emissions of jets from full-scale engines installed on military aircraft pose a significant hearing loss risk to military personnel. Noise reduction technologies and the development of operational procedures that minimize noise exposure to personnel are enhanced by the accurate characterization of noise sources within a jet. Hence, more than six decades of research have gone into jet noise measurement and prediction. In the past decade, the noise-source visualization tool near-field acoustical holography (NAH) has been applied to jets. NAH fits a weighted set of expansion wave functions, typically planar, cylindrical, or spherical, to measured sound pressures in the field. NAH measurements were made of a jet from an installed engine on a military aircraft. In the present study, the algorithm of statistically optimized NAH (SONAH) is modified to account for the presence of acoustic reflections from the concrete surface over which the jet was measured. The three dimensional field in the jet vicinity is reconstructed, and information about sources is inferred from reconstructions at the boundary of the turbulent jet flow. Then, a partial field decomposition (PFD) is performed, which represents the total field as the superposition of multiple, independent partial fields. This is the most direct attempt to equate partial fields with independent sources in a jet to date.

  7. Segmented Liner to Control Mode Scattering

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.

    2013-01-01

    The acoustic performance of duct liners can be improved by segmenting the treatment. In a segmented liner treatment, one stage of liner reduces the target sound and scatters energy into other acoustic modes, which are attenuated by a subsequent stage. The Curved Duct Test Rig is an experimental facility in which sound incident on the liner can be generated in a specific mode and the scatter of energy into other modes can be quantified. A series of experiments is performed in which the baseline configuration is asymmetric, that is, a liner is on one side wall of the test duct and the wall opposite is acoustically hard. Segmented liner treatment is achieved by progressively replacing sections of the hard wall opposite with liner in the axial direction, from 25% of the wall surface to 100%. It is found that the energy scatter from the (0,0) to the (0,1) mode reduces as the percentage of opposite wall treatment increases, and the frequency of peak attenuation shifts toward higher frequency. Similar results are found when the incident mode is of order (0,1) and scatter is into the (0,0) mode. The propagation code CDUCT-LaRC is used to predict the effect of liner segmenting on liner performance. The computational results show energy scatter and the effect of liner segmentation that agrees with the experimental results. The experiments and computations both show that segmenting the liner treatment is effective to control the scatter of incident mode energy into other modes. CDUCT-LaRC is shown to be a valuable tool to predict trends of liner performance with liner configuration.

  8. Experimental and theoretical studies on the movements of two bubbles in an acoustic standing wave field.

    PubMed

    Jiao, Junjie; He, Yong; Leong, Thomas; Kentish, Sandra E; Ashokkumar, Muthupandian; Manasseh, Richard; Lee, Judy

    2013-10-17

    When subjected to an ultrasonic standing-wave field, cavitation bubbles smaller than the resonance size migrate to the pressure antinodes. As bubbles approach the antinode, they also move toward each other and either form a cluster or coalesce. In this study, the translational trajectory of two bubbles moving toward each other in an ultrasonic standing wave at 22.4 kHz was observed using an imaging system with a high-speed video camera. This allowed the speed of the approaching bubbles to be measured for much closer distances than those reported in the prior literature. The trajectory of two approaching bubbles was modeled using coupled equations of radial and translational motions, showing similar trends with the experimental results. We also indirectly measured the secondary Bjerknes force by monitoring the acceleration when bubbles are close to each other under different acoustic pressure amplitudes. Bubbles begin to accelerate toward each other as the distance between them gets shorter, and this acceleration increases with increasing acoustic pressure. The current study provides experimental data that validates the theory on the movement of bubbles and forces acting between them in an acoustic field that will be useful in understanding bubble coalescence in an acoustic field.

  9. Driving morphological changes in magnetic nanoparticle structures through the application of acoustic waves and magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Ann; Miansari, Morteza; Friend, James

    The growing interest in acoustic manipulation of particles in micro to nanofluidics using surface acoustic waves (SAW), together with the many applications of magnetic nanoparticles-whether individual or in arrays-underpins our discovery of how these forces can be used to rapidly, easily, and irreversibly form 1D chains and 2D films. These films and chains are currently difficult to produce yet offer many advantages over individual nanoparticles in suspension. Making use of the scale of the structures formed, 10-9 to 10-5 m, and by taking a balance of the relevant external and interparticle forces, the underlying mechanisms responsible for the phenomena become apparent. For 1D chains, the magnetic field alone is sufficient, though applying an acoustic field drives a topology change from loosely connected chains to loops of 10 -100 particles. Adding the acoustic field drives a transition from these looped structures to dense 2D arrays via interparticle Bjerknes forces. Inter-particle drainage of the surrounding fluid leaves these structures intact after removal of the externally applied forces. Clear morphology transitions are present and depend on the relative amplitude of the incident Brownian, Bjerknes, and magnetic forces. UCSD: Frontiers of Innovation Scholars Program (U-1024).

  10. Modeling of Focused Acoustic Field of a Concave Multi-annular Phased Array Using Spheroidal Beam Equation

    NASA Astrophysics Data System (ADS)

    Yu, Li-Li; Shou, Wen-De; Hui, Chun

    2012-02-01

    A theoretical model of focused acoustic field for a multi-annular phased array on concave spherical surface is proposed. In this model, the source boundary conditions of the spheroidal beam equation (SBE) for multi-annular phased elements are studied. Acoustic field calculated by the dynamic focusing model of SBE is compared with numerical results of the O'Neil and Khokhlov—Zabolotskaya—Kuznetsov (KZK) model, respectively. Axial dynamic focusing and the harmonic effects are presented. The results demonstrate that the dynamic focusing model of SBE is good valid for a concave multi-annular phased array with a large aperture angle in the linear or nonlinear field.

  11. Investigation on the reproduction performance versus acoustic contrast control in sound field synthesis.

    PubMed

    Bai, Mingsian R; Wen, Jheng-Ciang; Hsu, Hoshen; Hua, Yi-Hsin; Hsieh, Yu-Hao

    2014-10-01

    A sound reconstruction system is proposed for audio reproduction with extended sweet spot and reduced reflections. An equivalent source method (ESM)-based sound field synthesis (SFS) approach, with the aid of dark zone minimization is adopted in the study. Conventional SFS that is based on the free-field assumption suffers from synthesis error due to boundary reflections. To tackle the problem, the proposed system utilizes convex optimization in designing array filters with both reproduction performance and acoustic contrast taken into consideration. Control points are deployed in the dark zone to minimize the reflections from the walls. Two approaches are employed to constrain the pressure and velocity in the dark zone. Pressure matching error (PME) and acoustic contrast (AC) are used as performance measures in simulations and experiments for a rectangular loudspeaker array. Perceptual Evaluation of Audio Quality (PEAQ) is also used to assess the audio reproduction quality. The results show that the pressure-constrained (PC) method yields better acoustic contrast, but poorer reproduction performance than the pressure-velocity constrained (PVC) method. A subjective listening test also indicates that the PVC method is the preferred method in a live room.

  12. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  13. Quantum Analogies in the Interaction between Acoustic Waves and Bubble Clouds

    NASA Astrophysics Data System (ADS)

    Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Analogies between quantum mechanical and acoustical propagation phenomena have a great interest in academic research due to their ability to shed light on some complex quantum effects, which are impossible to visualize directly in the macroscopic world. In this talk, we describe a number of these analogies concerning the acoustic behavior of bubble clouds. Firstly, we show that the structure of the collective oscillation modes of a spherical bubble cloud resembles that of the atomic orbitals of a hydrogen atom. Secondly, we present an analogy between some perturbation methods used in quantum-electrodynamics and the computation of the acoustic response of the randomly distributed bubble cloud by considering the contribution to the total scattered pressure of the multiple scattering paths that take place inside the clouds. As an application of this analogy, we obtain the scattering cross-section of a diluted cloud, which remarkably mimics the quantum scattering of an neutron wave when passing through an atomic nucleus. Finally, we numerically reproduce the behavior of an electron in a covalent bond between two hydrogen atoms by simulating the acoustic wave propagation through two neighboring spherical bubble assemblages. Funded by the Spanish Ministry of Economy and Competitiveness through Grants DPI2011-28356-C03-01 and DPI2011-28356-C03-02.

  14. Stimulated Brillouin scattering of laser in semiconductor plasma embedded with nano-sized grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Giriraj, E-mail: grsharma@gmail.com; Dad, R. C.; Ghosh, S.

    2015-07-31

    A high power laser propagating through semiconductor plasma undergoes Stimulated Brillouin scattering (SBS) from the electrostrictively generated acoustic perturbations. We have considered that nano-sized grains (NSGs) ions are embedded in semiconductor plasma by means of ion implantation. The NSGs are bombarded by the surrounding plasma particles and collect electrons. By considering a negative charge on the NSGs, we present an analytically study on the effects of NSGs on threshold field for the onset of SBS and Brillouin gain of generated Brillouin scattered mode. It is found that as the charge on the NSGs builds up, the Brillouin gain is significantlymore » raised and the threshold pump field for the onset of SBS process is lowered.« less

  15. Performance of an underwater acoustic volume array using time-reversal focusing

    NASA Astrophysics Data System (ADS)

    Root, Joseph A.; Rogers, Peter H.

    2002-11-01

    Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3 x3 x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications. copyright 2002 Acoustical Society of America.

  16. An Acoustical Comparison of Sub-Scale and Full-Scale Far-Field Measurements for the Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Haynes, Jared; Kenny, R. Jeremy

    2010-01-01

    Recently, members of the Marshall Space Flight Center (MSFC) Fluid Dynamics Branch and Wyle Labs measured far-field acoustic data during a series of three Reusable Solid Rocket Motor (RSRM) horizontal static tests conducted in Promontory, Utah. The test motors included the Technical Evaluation Motor 13 (TEM-13), Flight Verification Motor 2 (FVM-2), and the Flight Simulation Motor 15 (FSM-15). Similar far-field data were collected during horizontal static tests of sub-scale solid rocket motors at MSFC. Far-field acoustical measurements were taken at multiple angles within a circular array centered about the nozzle exit plane, each positioned at a radial distance of 80 nozzle-exit-diameters from the nozzle. This type of measurement configuration is useful for calculating rocket noise characteristics such as those outlined in the NASA SP-8072 "Acoustic Loads Generated by the Propulsion System." Acoustical scaling comparisons are made between the test motors, with particular interest in the Overall Sound Power, Acoustic Efficiency, Non-dimensional Relative Sound Power Spectrum, and Directivity. Since most empirical data in the NASA SP-8072 methodology is derived from small rockets, this investigation provides an opportunity to check the data collapse between a sub-scale and full-scale rocket motor.

  17. Auralization of concert hall acoustics using finite difference time domain methods and wave field synthesis

    NASA Astrophysics Data System (ADS)

    Hochgraf, Kelsey

    Auralization methods have been used for a long time to simulate the acoustics of a concert hall for different seat positions. The goal of this thesis was to apply the concept of auralization to a larger audience area that the listener could walk through to compare differences in acoustics for a wide range of seat positions. For this purpose, the acoustics of Rensselaer's Experimental Media and Performing Arts Center (EMPAC) Concert Hall were simulated to create signals for a 136 channel wave field synthesis (WFS) system located at Rensselaer's Collaborative Research Augmented Immersive Virtual Environment (CRAIVE) Laboratory. By allowing multiple people to dynamically experience the concert hall's acoustics at the same time, this research gained perspective on what is important for achieving objective accuracy and subjective plausibility in an auralization. A finite difference time domain (FDTD) simulation on a three-dimensional face-centered cubic grid, combined at a crossover frequency of 800 Hz with a CATT-Acoustic(TM) simulation, was found to have a reverberation time, direct to reverberant sound energy ratio, and early reflection pattern that more closely matched measured data from the hall compared to a CATT-Acoustic(TM) simulation and other hybrid simulations. In the CRAIVE lab, nine experienced listeners found all hybrid auralizations (with varying source location, grid resolution, crossover frequency, and number of loudspeakers) to be more perceptually plausible than the CATT-Acoustic(TM) auralization. The FDTD simulation required two days to compute, while the CATT-Acoustic(TM) simulation required three separate TUCT(TM) computations, each taking four hours, to accommodate the large number of receivers. Given the perceptual advantages realized with WFS for auralization of a large, inhomogeneous sound field, it is recommended that hybrid simulations be used in the future to achieve more accurate and plausible auralizations. Predictions are made for a

  18. Dynamics of acoustically levitated disk samples.

    PubMed

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gammaacoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  19. Dynamics of acoustically levitated disk samples

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King’s theory, and a larger force can be obtained for thin disks. When the disk aspect ratio γ is larger than a critical value γ*(≈1.9) and the disk radius a is smaller than the critical value a*(γ) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples (γ⩽γ*) can be formulated by the shape factor f(γ,a) when a⩽a*(γ) . It is found experimentally that a necessary condition of the acoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval Hn . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  20. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  1. 3-D Acoustic Scattering from 2-D Rough Surfaces Using A Parabolic Equation Model

    DTIC Science & Technology

    2013-12-01

    Frequency Acoustic Propagation in Shallow Water.” Journal of Oceanic Engineering, September 2011: 1–10. Liu, Jin Yuan, Chen Fen Huang, and Ping Chang...loss values at a constant depth. .............................52  xi LIST OF ACRONYMS AND ABBREVIATIONS FD Finite Difference MMPE Monterey...2013). First, at each range step ( xi ), the 3-D field is transformed from cross-range spatial variable (y) to cross-range wavenumber variable (ky

  2. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  3. The Effect of Fabric Position to the Distribution of Acoustic Pressure Field in Ultrasonic Bath

    NASA Astrophysics Data System (ADS)

    Gürses, B. O.; Özdemir, A. O.; Tonay, Ö.; Şener, M.; Perinçek, S.

    2017-10-01

    Nowadays, the use of ultrasonic energy in textile wet processes at industrial-scale is limited. It is largely due to the lack of understanding about design, operational and performance characteristics of the ultrasonic bath, suitable for textile treatments. In the context of this study, the effect of fabric position, as one of the design parameter, to the distribution of acoustic pressure field in ultrasonic bath was investigated. The ultrasonic bath in the size 20×30 cm2 with one transducer at frequency 40 kHz was used in experiments. The cotton fabric with 1 mm thickness was moved along vertical and horizontal directions of the ultrasonic bath. The acoustic field and cavitation volume density in the bath is analyzed by COMSOL Multiphysic. The cavitation volume density is calculated by comparing the pressure points in the bath with cavitation threshold pressure. Consequently, it was found that the position of the textile material in the ultrasonic bath is one of the most important factors to achieve the uniform and maximum acoustic cavitation field. So, it should be taken into consideration during the design of industrial-scale ultrasonic bath used in textile wet processes.

  4. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber.

    PubMed

    Cheng, Tonglei; Liao, Meisong; Gao, Weiqing; Duan, Zhongchao; Suzuki, Takenobu; Ohishi, Yasutake

    2012-12-17

    A new way to suppress stimulated Brillouin scattering by using an all-solid chalcogenide-tellurite photonic bandgap fiber is presented in the paper. The compositions of the chalcogenide and the tellurite glass are As(2)Se(3) and TeO(2)-ZnO-Li(2)O-Bi(2)O(3). The light and the acoustic wave are confined in the fiber by photonic bandgap and acoustic bandgap mechanism, respectively. When the pump wavelength is within the photonic bandgap and the acoustic wave generated by the pump light is outside the acoustic bandgap, the interaction between the optical and the acoustic modes is very weak, thus stimulated Brillouin scattering is suppressed in the photonic bandgap fiber.

  5. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  6. Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field

    NASA Technical Reports Server (NTRS)

    Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)

    2001-01-01

    Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.

  7. Investigation into the bistatic evolution of the acoustic scattering from a cylindrical shell using time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique

    2018-01-01

    The time and frequency analyses of the acoustic scattering by an elastic cylindrical shell in bistatic method show that the arrival times of the echoes and the resonance frequencies of the elastic waves propagating in and around the cylindrical shell are a function of the bistatic angle, β, between the emitter and receiver transducers. The aim of this work is to explain the observed results in time and frequency domains using time-frequency analysis and graphical interpretations. The performance of four widely used time-frequency representations, the Smoothed Pseudo Wigner-Ville (SPWV), the Spectrogram (SP), the reassignment SPWV, and the reassignment SP, are studied. The investigation into the evolution of the time-frequency plane as a function of the bistatic angle β shows that there are the waves propagating in counter-clockwise direction (labeled wave+) and the waves which propagate in clockwise direction (labeled waves-). In this paper the A, S0, and A1 circumferential waves are investigated. The graphical interpretations are used to explain the formation mechanism of these waves and the acoustic scattering in monostatic and bistatic configurations. The delay between the echoes of the waves+ and those of the waves- is expressed in the case of the circumnavigating wave (Scholte-Stoneley wave). This study shows that the observed waves at β = 0 ° and β = 18 0 ° are the result of the constructive interferences between the waves+ and the waves-. A comparative study of the physical properties (group velocity dispersion and cut-off frequency) of the waves+, the waves- and the waves observed in monostatic configuration is conducted. Furthermore, it is shown that the ability of the time-frequency representation to highlight the waves+ and the waves- is very useful, for example, for the detection and the localization of defaults, the classification purposes, etc.

  8. Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kipp, C. R.; Bernhard, R. J.

    1985-01-01

    A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.

  9. Rapid computation of the amplitude and phase of tightly focused optical fields distorted by scattering particles

    PubMed Central

    Ranasinghesagara, Janaka C.; Hayakawa, Carole K.; Davis, Mitchell A.; Dunn, Andrew K.; Potma, Eric O.; Venugopalan, Vasan

    2014-01-01

    We develop an efficient method for accurately calculating the electric field of tightly focused laser beams in the presence of specific configurations of microscopic scatterers. This Huygens–Fresnel wave-based electric field superposition (HF-WEFS) method computes the amplitude and phase of the scattered electric field in excellent agreement with finite difference time-domain (FDTD) solutions of Maxwell’s equations. Our HF-WEFS implementation is 2–4 orders of magnitude faster than the FDTD method and enables systematic investigations of the effects of scatterer size and configuration on the focal field. We demonstrate the power of the new HF-WEFS approach by mapping several metrics of focal field distortion as a function of scatterer position. This analysis shows that the maximum focal field distortion occurs for single scatterers placed below the focal plane with an offset from the optical axis. The HF-WEFS method represents an important first step toward the development of a computational model of laser-scanning microscopy of thick cellular/tissue specimens. PMID:25121440

  10. Comment on "Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus" [J. Acoust. Soc. Am. 132, 2887-2895 (2012)].

    PubMed

    Marston, Philip L

    2014-03-01

    The phase and group velocities of elastic guided waves are important in the physical interpretation of high frequency scattering by fluid-loaded elastic shells. Outside the context of scattering, those properties are also important for understanding the energy flow in acoustic metamaterials. In a recent investigation of acoustic metamaterials exhibiting anomalous wave propagation [J. Acoust. Soc. Am. 132, 2887-2895 (2012)] criticism of negative group velocity terminology was generalized to elastic waves guided on ordinary materials. Some context and justification for retaining the identification of negative group velocities associated with a type of backscattering enhancement for shells are explained here. The phase evolution direction is determined by the boundary conditions.

  11. Sediment Acoustics: Wideband Model, Reflection Loss and Ambient Noise Inversion

    DTIC Science & Technology

    2010-01-01

    DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sediment acoustics : Wideband model , reflection loss and...Physically sound models of acoustic interaction with the ocean floor including penetration, reflection and scattering in support of MCM and ASW needs...OBJECTIVES (1) Consolidation of the BIC08 model of sediment acoustics , its verification in a variety of sediment types, parameter reduction and

  12. Acoustic and other factors relating to the use of sound field systems in classrooms

    NASA Astrophysics Data System (ADS)

    Carey, Anne; Shield, Bridget; Dockrell, Julie; Rigby, Kate

    2005-04-01

    A study has been made of thirty-five primary school classrooms which have Sound Field Systems (SFS) installed. Acoustic surveys of the classrooms have been undertaken and detailed observations made of the physical characteristics of each room such as its construction and design, plus any acoustic treatment. The positioning and type, e.g., column or separate speakers, of SFS installed were also noted. Details of the procedures for purchasing, installing, and maintaining the SFS were obtained where possible, together with information concerning training of teachers in their use. Results from these surveys suggest that in many cases SFS are installed in rooms where their performance may be compromised because of inadequate acoustic conditions. Additionally problems may arise due to inappropriate installation, choice of system, poor maintenance, or lack of training. The effectiveness of acoustic treatment such as absorption applied to ceilings and walls has also been investigated in a range of classrooms and its impact on the use of SFS considered.

  13. A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries

    PubMed Central

    Seo, Jung Hee; Mittal, Rajat

    2010-01-01

    A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129

  14. Geophysical Remote Sensing Using the HF Pumped Stimulated Brillouin Scatter (SBS) Emission Lines Produced by HAARP

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Selcher, C. A.

    2009-12-01

    An ordinary or extraordinary mode electromagnetic wave can decay into a low frequency electrostatic wave and a scattered electromagnetic wave by a process called stimulated Brillouin scatter (SBS). The low frequency wave can be either an ion acoustic wave (IA) or an electrostatic ion cyclotron (EIC) wave. The first detection ion acoustic waves by this process during ionospheric modification with high power radio waves was reported by Norin et al. (2009) using the HAARP transmitter in Alaska. The first detection of the electrostatic ion cyclotron waves is reported here using HAARP during the March 2009 campaign. Subsequent experiments have provided additional verification of the SBS process and quantitative interpretation of the scattered wave frequency offsets to yield measurements of the electron temperatures in the heated ionosphere by Bernhardt et al. (2009). Using the SBS technique to generate ion acoustic waves, electron temperatures between 3000 and 4000 K were measured over the HAARP facility. The matching conditions for decay of the high frequency pump wave show that in addition to the production of an ion-acoustic wave, an electrostatic ion cyclotron wave can produced by the generalized SBS processes only if the pump waves makes a large angle with the magnetic field. When the EIC mode is produced, it is seen as a narrow of stimulated electromagnetic emissions at the ion cyclotron frequency. Occasionally, multiple lines are seen and analyzed to yield the relative abundance of oxygen, and molecular ions in the lower ionosphere. This ion mass spectrometer interpretation of the SBS data is new to the field of ionosphere remote sensing. In addition, based on the matching condition theory, the first profiles of the scattered wave amplitude are produced using the stimulated Brillouin scatter (SBS) matching conditions. These profiles are consistent with maximum ionospheric interactions at the upper-hybrid resonance height and at a region just below the plasma

  15. Ultraviolet refractometry using field-based light scattering spectroscopy

    PubMed Central

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622

  16. A new theoretical basis for numerical simulations of nonlinear acoustic fields

    NASA Astrophysics Data System (ADS)

    Wójcik, Janusz

    2000-07-01

    Nonlinear acoustic equations can be considerably simplified. The presented model retains the accuracy of a more complex description of nonlinearity and a uniform description of near and far fields (in contrast to the KZK equation). A method has been presented for obtaining solutions of Kuznetsov's equation from the solutions of the model under consideration. Results of numerical calculations, including comparative ones, are presented.

  17. Far-field acoustic data for the Texas ASE, Inc. hush house

    NASA Astrophysics Data System (ADS)

    Lee, R. A.

    1982-04-01

    This report supplements AFAMRL-TR-73-110, which describes the data base (NOISEFILE) used in the computer program (NOISEMAP) to predict the community noise exposure resulting from military aircraft operations. The results of field test measurements to define the single-event noise produced on the ground by military aircraft/engines operating in the Texas ASE Inc. hush-house are presented as a function of angle (0 deg to 180 deg from the front of the hush-house) and distance (200 ft to 2500 ft) in various acoustic metrics. All the data are normalized to standard acoustic reference conditions of 59 F temperature and 70% relative humidity. Refer to Volume I of the AFAMRL-TR-73-110 report for discussion of the scope, limitations, and definitions needed to understand and use the data in this report.

  18. Study on the bubble transport mechanism in an acoustic standing wave field.

    PubMed

    Xi, Xiaoyu; Cegla, Frederic B; Lowe, Michael; Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2011-12-01

    The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller-Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton's second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of

  19. The role of electric field in microfluidic heating induced by standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Zheng, Tengfei; Wang, Chaohui; Hu, Qiao; Wei, Shoupeng

    2018-06-01

    The heating mechanism of standing surface acoustic waves (SSAWs) on a LiNbO3 substrate has been experimentally studied. Three devices with different substrates were used to heat the drops with NaCl concentrations ranging from 0 to 1 g/l, respectively. The device with a glass substrate was used to shield acoustic waves. The device with an Au layer between the LiNbO3 substrate and the droplet was used to shield the alternating current field. The results show that the thermal effect induced by SSAWs on the LiNbO3 substrate is composed of the acoustothermal effect due to SSAWs and the electric field thermal effect (Joule heat) due to the alternating current field. The electric field thermal effect which is ignored in SSAW devices previously plays an important role in the thermal effect induced by SSAWs. These results provide a meaningful insight into the mechanism of SSAW-based heating, which is of great help to guide the effective use of the SSAW-based heating technique for various applications.

  20. Determination of Acoustic Cavitation Probabilities and Thresholds Using a Single Focusing Transducer to Induce and Detect Acoustic Cavitation Events: I. Method and Terminology.

    PubMed

    Haller, Julian; Wilkens, Volker; Shaw, Adam

    2018-02-01

    A method to determine acoustic cavitation probabilities in tissue-mimicking materials (TMMs) is described that uses a high-intensity focused ultrasound (HIFU) transducer for both inducing and detecting the acoustic cavitation events. The method was evaluated by studying acoustic cavitation probabilities in agar-based TMMs with and without scatterers and for different sonication modes like continuous wave, single pulses (microseconds to milliseconds) and repeated burst signals. Acoustic cavitation thresholds (defined here as the peak rarefactional in situ pressure at which the acoustic cavitation probability reaches 50%) at a frequency of 1.06 MHz were observed between 1.1 MPa (for 1 s of continuous wave sonication) and 4.6 MPa (for 1 s of a repeated burst signal with 25-cycle burst length and 10-ms burst period) in a 3% (by weight) agar phantom without scatterers. The method and its evaluation are described, and general terminology useful for standardizing the description of insonation conditions and comparing results is provided. In the accompanying second part, the presented method is used to systematically study the acoustic cavitation thresholds in the same material for a range of sonication modes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Note: Versatile sample stick for neutron scattering experiments in high electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch; White, J. S.; Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne

    2014-02-15

    We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.

  2. Scatter Theories and Their Application to Lunar Radar Return

    NASA Technical Reports Server (NTRS)

    Hayre, H. S.

    1961-01-01

    The research work being done under this NASA grant is divided into the following three categories: (1) An estimate of the radar return for the NASA Aerobee rocket shot at White Sands Missile Range. (WSMR) (2) Development of new scatter theories, modification and correlation of existing scatter theories, and application of the theories to moon-echo data for estimation of the surface features of the moon. (3) Acoustic modeling of the lunar surface and correlation of the theoretical with both full scale and acoustical experimental results.

  3. An effective field theory for forward scattering and factorization violation

    DOE PAGES

    Rothstein, Ira Z.; Stewart, Iain W.

    2016-08-03

    Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward scattering where |t| << s. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear, or ultrasoft gluons. We derive a complete basis of operators whichmore » describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator basis is derived using tree level and one-loop matching calculations from full QCD to both SCET II and SCET I. The one-loop amplitude’s rapidity renormalization involves mixing of color octet operators and yields gluon Reggeization at the amplitude level. The rapidity renormalization group equation for the leading soft and collinear functions in the forward scattering cross section are each given by the BFKL equation. Various properties of Glauber gluon exchange in the context of both forward scattering and hard scattering factorization are described. For example, we derive an explicit rule for when eikonalization is valid, and provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure that we are not

  4. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Behzad, Mehdi

    2014-10-01

    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.

  5. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.

    PubMed

    Sumiya, Miwa; Fujioka, Emyo; Motoi, Kazuya; Kondo, Masaru; Hiryu, Shizuko

    2017-01-01

    Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats' flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat's wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations

  6. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging

    PubMed Central

    Sumiya, Miwa; Fujioka, Emyo; Motoi, Kazuya; Kondo, Masaru; Hiryu, Shizuko

    2017-01-01

    Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats’ flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat’s wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations

  7. Field Assessment of Acoustic-Doppler Based Discharge Measurements

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2002-01-01

    The use of equipment based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun a field validation of the instruments currently (2002) available for making discharge measurements from a moving boat in streams of various sizes. Instruments manufactured by SonTek/YSI2 and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made by the use of a Price AA current meter and standard USGS procedures with the acoustic instruments at each site during data collection. The discharges measured with the acoustic instruments were compared with the discharges measured with Price AA meters and the current USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating. Additional analysis of the data collected indicates that the coefficient of variation of the discharge measurements consistently was less for the RD Instruments, Inc. Rio Grandes than it was for the SonTek/YSI RiverSurveyors. The bottom-tracking referenced measurement had a lower coefficient of variation than the differentially corrected global positioning system referenced measurements. It was observed that the higher frequency RiverSurveyors measured a moving bed more often than the lower frequency Rio Grandes. The detection of a moving bed caused RiverSurveyors to be consistently biased low when referenced to bottom tracking. Differentially corrected global positioning system data may be used to remove the bias observed in the bottom-tracking referenced measurements.

  8. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  9. Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction

    PubMed Central

    Wang, Le; Xu, Xiaoji G.

    2015-01-01

    Scattering-type scanning near-field optical microscopy provides access to super-resolution spectroscopic imaging of the surfaces of a variety of materials and nanostructures. In addition to chemical identification, it enables observations of nano-optical phenomena, such as mid-infrared plasmons in graphene and phonon polaritons in boron nitride. Despite the high lateral spatial resolution, scattering-type near-field optical microscopy is not able to provide characteristics of near-field responses in the vertical dimension, normal to the sample surface. Here, we present an accurate and fast reconstruction method to obtain vertical characteristics of near-field interactions. For its first application, we investigated the bound electromagnetic field component of surface phonon polaritons on the surface of boron nitride nanotubes and found that it decays within 20 nm with a considerable phase change in the near-field signal. The method is expected to provide characterization of the vertical field distribution of a wide range of nano-optical materials and structures. PMID:26592949

  10. The acoustic field of singing humpback whales in the vertical plane

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.; Pack, Adam A.; Lammers, Marc O.; Herman, Louis; Andrews, Kimberly; Deakos, Mark

    2003-04-01

    A vertical array of five hydrophones was used to measure the acoustic field of singing humpback whales. Once a singer was located, two swimmers with snorkel gear were deployed to determine the orientation of the whale and to position the boat so that the array could be deployed in front of the whale at a minimum standoff distance of 10 m. The spacing of the hydrophones was 7 m with the deepest hydrophone deployed at depth of 35 m. An 8-channel TASCAM recorder having a bandwidth of 24 kHz was used to record the hydrophone signals. The location of the singer was determined by computing the time of arrival differences between the hydrophone signals. The maximum source level varied between individual units in a song, with values between 180 and 190 dB. The acoustic field determined by considering the relative intensity of higher frequency harmonics in the signals indicate that the sounds are projected in the horizontal direction with the singer's head canted downward 45 to 60°. High-frequency harmonics extended beyond 24 kHz, suggesting that humpback whales may have an upper frequency limit of hearing as high as 24 kHz.

  11. Relaxation of sound fields in rooms of diffusely reflecting boundaries and its application in acoustical radiosity simulation.

    PubMed

    Zhang, Honghu

    2006-04-01

    The acoustical radiosity method is a computationally expensive acoustical simulation algorithm that assumes an enclosure with ideal diffuse reflecting boundaries. Miles observed that for such an enclosure, the sound energy decay of every point on the boundaries will gradually converge to exponential manner with a uniform decay rate. Therefore, the ratio of radiosity between every pair of points on the boundaries will converge to a constant, and the radiosity across the boundaries will approach a fixed distribution during the sound decay process, where radiosity is defined as the acoustic power per unit area leaving (or being received by) a point on a boundary. We call this phenomenon the "relaxation" of the sound field. In this paper, we study the relaxation in rooms of different shapes with different boundary absorptions. Criteria based on the relaxation of the sound field are proposed to terminate the costly and unnecessary radiosity computation in the later phase, which can then be replaced by a fast regression step to speed up the acoustical radiosity simulation.

  12. A compact neutron scatter camera for field deployment

    DOE PAGES

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less

  13. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  14. Acoustic measurement method of the volume flux of a seafloor hydrothermal plume

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2011-12-01

    Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a

  15. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    NASA Astrophysics Data System (ADS)

    Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.

    2018-03-01

    The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  16. Interference Fringes of Solar Acoustic Waves around Sunspots

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Zhao, Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-01

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  17. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    NASA Astrophysics Data System (ADS)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  18. Identification of acoustic waves in ZnO materials by Brillouin light scattering for SAW device applications

    NASA Astrophysics Data System (ADS)

    Zerdali, M.; Bechiri, F.; Hamzaoui, S.; Teherani, F. H.; Rogers, D. J.; Sandana, V. E.; Bove, P.; Djemia, P.; Roussigné, Y.

    2017-03-01

    Brillouin light scattering (BLS) was conducted on melt-grown ZnO bulk crystals and ZnO thin films grown by pulsed laser deposition. The bulk ZnO crystals presented both longitudinal and transverse bulk acoustic waves. Theoretical calculations agreed well with there being one piezoelectric longitudinal branch and two transverse branches. BLS measurements conducted on ZnO thin films also revealed Rayleigh surface acoustic waves (R-SAW) guided by only the surface of the layer and Sezawa modes, guided by the film thickness. Measurements were conducted for three incidence angles in order to investigate different SAW wave numbers. Higher frequency features were identified as being related to a new class of guided longitudinal (LG) SAW modes which are not usually detected for ZnO thin films. The LG-SAW modes were observed for two incidence angles (θ=45° and 55°) corresponding to frequencies of 17.88 and 20.75 GHz, respectively. BLS measurements enable us to estimate the LG-SAW velocity as 6500 m/s. This value is three times higher than that of the currently used R-SAW. Theoretical simulations were coherent with the presence of LG modes in the ZnO layers. Such LG-SAW modes are promising for the development of novel, higher-speed SAW devices operating in the GHz-band and which could be readily incorporated in Si-based integrated circuitry.

  19. Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2018-01-01

    We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.

  20. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    van Capel, P. J. S.; Turchinovich, D.; Porte, H. P.; Lahmann, S.; Rossow, U.; Hangleiter, A.; Dijkhuis, J. I.

    2011-08-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlated with electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured spectral intensity of the detected Brillouin signal corresponds to a maximum strain amplitude of generated acoustic pulses of 2%. This value coincides with the static lattice-mismatch-induced strain in In0.2Ga0.8N/GaN, demonstrating the total release of static strain in MQWs via impulsive THz acoustic emission. This confirms the ultrafast dynamical screening mechanism in MQWs as a highly efficient method for impulsive strain generation.

  1. Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates.

    PubMed

    Mitri, F G

    2015-09-01

    The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A Search for Signatures of Ion Acoustic Shoulders in the SERSIO sounding rocket data set

    NASA Astrophysics Data System (ADS)

    Ellis, A. T.; Lessard, M. R.; Kintner, P. M.; Lynch, K. A.; Klatt, E.; Oksavik, K.

    2004-12-01

    Although first predicted in the early 1960's, enhanced Ion Acoustic Shoulders have only been observed by incoherent scatter radars since the late 1980's. The signature of an IAS is seen as a positive and negative frequency shift about the center radar frequency. These features occur at altitudes of 150 to over 600 km, peaking at 500 km, with spatial extent (perpendicular to the magnetic field) the order of 10 km. The occurrence distribution shows a maximum in the pre-midnight region, with a secondary peak on the dayside (Rietveld et al 1995). Observations of strong (1000 mA/m2), localized currents by EISCAT have led to theories based on current-driven instabilities as the source of these waves (Forme, 1993; St.-Maurice et al., 1996). The SERSIO (Svalbard EISCAT Rocket Study of Ion Outflows) sounding rocket mission was launched into CME-driven dayside aurora on the 22nd of January 2004 at 0857 UT (0436 MLT) from Ny-Alesund (78o 55' 11" N, 11o 56' 60" E) and reached an apogee of 782 km. During the flight, the EISCAT incoherent scatter radar network supported the mission by monitoring altitude profiles of electron and ion density, velocity and temperature. From Longyearbyen, located approximately 50 km south east of Ny-Alesund and near the trajectory of SERSIO, the 32m ESR dish was tracking the ionospheric footprint of the payload while the 42 m dish was making local field-aligned measurements. The data from these radars clearly indicated the presence of enhanced ion acoustic shoulders, suggesting that SERSIO flew through a 'field' of Ion Acoustic Shoulders. In fact, the plasma wave environment observed by SERSIO was composed of traditional VLF hiss and Broad Band ELF hiss with wavelengths less than the order of 6m. Here we present the result of our search for Ion Acoustic Shoulders in the SERSIO data set.

  3. Simulation the Effect of Internal Wave on the Acoustic Propagation

    NASA Astrophysics Data System (ADS)

    Ko, D. S.

    2005-05-01

    An acoustic radiation transport model with the Monte Carlo solution has been developed and applied to study the effect of internal wave induced random oceanic fluctuations on the deep ocean acoustic propagation. Refraction in the ocean sound channel is performed by means of bi-cubic spline interpolation of discrete deterministic ray paths in the angle(energy)-range-depth coordinates. Scattering by random internal wave fluctuations is accomplished by sampling a power law scattering kernel applying the rejection method. Results from numerical experiments show that the mean positions of acoustic rays are significantly displaced tending toward the sound channel axis due to the asymmetry of the scattering kernel. The spreading of ray depths and angles about the means depends strongly on frequency. The envelope of the ray displacement spreading is found to be proportional to the square root of range which is different from "3/2 law" found in the non-channel case. Suppression of the spreading is due to the anisotropy of fluctuations and especially due to the presence of sound channel itself.

  4. Recent Progress in Brillouin Scattering Based Fiber Sensors

    PubMed Central

    Bao, Xiaoyi; Chen, Liang

    2011-01-01

    Brillouin scattering in optical fiber describes the interaction of an electro-magnetic field (photon) with a characteristic density variation of the fiber. When the electric field amplitude of an optical beam (so-called pump wave), and another wave is introduced at the downshifted Brillouin frequency (namely Stokes wave), the beating between the pump and Stokes waves creates a modified density change via the electrostriction effect, resulting in so-called the stimulated Brillouin scattering. The density variation is associated with a mechanical acoustic wave; and it may be affected by local temperature, strain, and vibration which induce changes in the fiber effective refractive index and sound velocity. Through the measurement of the static or dynamic changes in Brillouin frequency along the fiber one can realize a distributed fiber sensor for local temperature, strain and vibration over tens or hundreds of kilometers. This paper reviews the progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement. These kinds of sensors can be used in civil structural monitoring of pipelines, bridges, dams, and railroads for disaster prevention. Analogous to the static Bragg grating, one can write a moving Brillouin grating in fibers, with the lifetime of the acoustic wave. The length of the Brillouin grating can be controlled by the writing pulses at any position in fibers. Such gratings can be used to measure changes in birefringence, which is an important parameter in fiber communications. Applications for this kind of sensor can be found in aerospace, material processing and fine structures. PMID:22163842

  5. Recent progress in Brillouin scattering based fiber sensors.

    PubMed

    Bao, Xiaoyi; Chen, Liang

    2011-01-01

    Brillouin scattering in optical fiber describes the interaction of an electro-magnetic field (photon) with a characteristic density variation of the fiber. When the electric field amplitude of an optical beam (so-called pump wave), and another wave is introduced at the downshifted Brillouin frequency (namely Stokes wave), the beating between the pump and Stokes waves creates a modified density change via the electrostriction effect, resulting in so-called the stimulated Brillouin scattering. The density variation is associated with a mechanical acoustic wave; and it may be affected by local temperature, strain, and vibration which induce changes in the fiber effective refractive index and sound velocity. Through the measurement of the static or dynamic changes in Brillouin frequency along the fiber one can realize a distributed fiber sensor for local temperature, strain and vibration over tens or hundreds of kilometers. This paper reviews the progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement. These kinds of sensors can be used in civil structural monitoring of pipelines, bridges, dams, and railroads for disaster prevention. Analogous to the static Bragg grating, one can write a moving Brillouin grating in fibers, with the lifetime of the acoustic wave. The length of the Brillouin grating can be controlled by the writing pulses at any position in fibers. Such gratings can be used to measure changes in birefringence, which is an important parameter in fiber communications. Applications for this kind of sensor can be found in aerospace, material processing and fine structures.

  6. Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, M.; School of Physics, Sambalpur University, Jyotivihar, Burla 768 019; Panda, R. N.

    In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we findmore » that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.« less

  7. Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.

    PubMed

    Keller, Ole

    2005-08-01

    On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.

  8. A Finite-Element Method Model of Soft Tissue Response to Impulsive Acoustic Radiation Force

    PubMed Central

    Palmeri, Mark L.; Sharma, Amy C.; Bouchard, Richard R.; Nightingale, Roger W.; Nightingale, Kathryn R

    2010-01-01

    Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson’s ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue’s dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers. PMID:16382621

  9. Profiling of back-scattered electrons in opposed magnetic field of a Twin Electron Beam Gun

    NASA Astrophysics Data System (ADS)

    Sethi, S.; Gupta, Anchal; Dileep Kumar, V.; Mukherjee, Jaya; Gantayet, L. M.

    2012-11-01

    Electron gun is extensively used in material processing, physical vapour deposition and atomic vapour based laser processes. In these processes where the electron beam is incident on the substrate, a significant fraction of electron beam gets back-scattered from the target surface. The trajectory of this back scattered electron beam depends on the magnetic field in the vicinity. The fraction of back-scattered depends on the atomic number of the target metal and can be as high as ~40% of the incident beam current. These back-scattered electrons can cause undesired hot spots and also affect the overall process. Hence, the study of the trajectory of these back-scattered electrons is important. This paper provides the details of experimentally mapped back-scattered electrons of a 2×20kW Twin Electron Beam Gun (TEBG) in opposed magnetic field i.e. with these guns placed at 180° to each other.

  10. The Derivation of the Gradient of the Acoustic Pressure on a Moving Surface for Application to the Fast Scattering Code (FSC)

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    2005-01-01

    In this paper we develop an analytic expression for calculation of the the acoustic pressure from a rotating blade on a moving surface for application to the Fast Scattering Code (FSC). The analytic result is intended to be used in the helicopter noise prediction code PSU-WOPWOP. One of the goals of the derivation is obtaining a result that will not use any more information than are needed for the prediction of the thickness and loading noise. The result derived here achieves this goal and its incorporation in PSU-WOPWOP is straight forward and attainable.

  11. Thomson scattering in magnetic fields. [of white dwarf stars

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara

    1989-01-01

    The equation of transfer in Thomson scattering atmospheres with magnetic fields is solved using Monte Carlo methods. Two cases, a plane parallel atmosphere with a magnetic field perpendicular to the atmosphere, and a dipole star, are investigated. The wavelength dependence of polarization from plane-parallel atmosphere is qualitatively similar to that observed in the magnetic white dwarf Grw+70 deg 8247, and the field strength determined by the calculation, 320 MG, is quantitatively similar to that determined from the line spectrum. The dipole model does not resemble the data as well as the single plane-parallel atmosphere.

  12. Acoustic field of a pulsating cylinder in a rarefied gas: Thermoviscous and curvature effects

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Manela, A.

    2017-09-01

    We study the acoustic field of a circular cylinder immersed in a rarefied gas and subject to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The problem is analyzed in the entire range of gas rarefaction rates and excitation frequencies, considering both single cylinder and coaxial cylinders setups. Numerical calculations are carried out via the direct simulation Monte Carlo method, applying a noniterative algorithm to impose the boundary heat-flux condition. Analytical predictions are obtained in the limits of ballistic- and continuum-flow conditions. Comparing with a reference inviscid continuum solution, the results illustrate the specific impacts of gas rarefaction and boundary curvature on the acoustic source efficiency. Inspecting the far-field properties of the generated disturbance, the continuum-limit solution exhibits an exponential decay of the signal with the distance from the source, reflecting thermoviscous effects, and accompanied by an inverse square-root decay, characteristic of the inviscid problem. Stronger attenuation is observed in the ballistic limit, where boundary curvature results in "geometric reduction" of the molecular layer affected by the source, and the signal vanishes at a distance of few acoustic wavelengths from the cylinder. The combined effects of mechanical and thermal excitations are studied to seek for optimal conditions to monitor the vibroacoustic signal. The impact of boundary curvature becomes significant in the ballistic-flow regime, where the optimal heat-flux amplitude required for sound reduction decreases with the distance from the source and is essentially a function of the acoustic-wavelength-scaled distance only.

  13. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array

    NASA Astrophysics Data System (ADS)

    Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-01-01

    In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.

  14. Constructing acoustic timefronts using random matrix theory.

    PubMed

    Hegewisch, Katherine C; Tomsovic, Steven

    2013-10-01

    In a recent letter [Hegewisch and Tomsovic, Europhys. Lett. 97, 34002 (2012)], random matrix theory is introduced for long-range acoustic propagation in the ocean. The theory is expressed in terms of unitary propagation matrices that represent the scattering between acoustic modes due to sound speed fluctuations induced by the ocean's internal waves. The scattering exhibits a power-law decay as a function of the differences in mode numbers thereby generating a power-law, banded, random unitary matrix ensemble. This work gives a more complete account of that approach and extends the methods to the construction of an ensemble of acoustic timefronts. The result is a very efficient method for studying the statistical properties of timefronts at various propagation ranges that agrees well with propagation based on the parabolic equation. It helps identify which information about the ocean environment can be deduced from the timefronts and how to connect features of the data to that environmental information. It also makes direct connections to methods used in other disordered waveguide contexts where the use of random matrix theory has a multi-decade history.

  15. A finite difference analysis of the field present behind an acoustically impenetrable two-layer barrier.

    PubMed

    Hurrell, Andrew M

    2008-06-01

    The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface.

  16. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determinedmore » by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.« less

  17. Anomalous acoustic dispersion in architected microlattice metamaterials

    NASA Astrophysics Data System (ADS)

    KröDel, Sebastian; Palermo, Antonio; Daraio, Chiara

    The ability to control dispersion in acoustic metamaterials is crucial to realize acoustic filtering and rectification devices as well as perfect imaging using negative refractive index materials. Architected microlattice metamaterials immersed in fluid constitute a versatile platform for achieving such control. We investigate architected microlattice materials able to exploit locally resonant modes of their fundamental building blocks that couple with propagating acoustic waves. Using analytical, numerical and experimental methods we find that such lattice materials show a hybrid dispersion behavior governed by Biot's theory for long wavelengths and multiple scattering theory when wave frequency is close to the resonances of the building block. We identify the relevant geometric parameters to alter and control the group and phase velocities in this class of acoustic metamaterials. Furthermore, we fabricate small-scale acoustic metamaterial samples using high precision SLA additive manufacturing and test the resulting materials experimentally using a customized ultrasonic setup. This work paves the way for new acoustic devices based on microlattice metamaterials.

  18. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques.

    PubMed

    Till, Ugo; Gaucher-Delmas, Mireille; Saint-Aguet, Pascale; Hamon, Glenn; Marty, Jean-Daniel; Chassenieux, Christophe; Payré, Bruno; Goudounèche, Dominique; Mingotaud, Anne-Françoise; Violleau, Frédéric

    2014-12-01

    Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.

  19. Optical probing of electric fields with an electro-acoustic effect toward integrated circuit diagnosis.

    PubMed

    Jin, Ru-Long; Yang, Han; Zhao, Di; Chen, Qi-Dai; Yan, Zhao-Xu; Yi, Mao-Bin; Sun, Hong-Bo

    2010-02-15

    Electro-optic probing of electric fields has been considered as a promising approach for integrated circuit diagnosis. However, the method is subject to relatively weak voltage sensitivity. In this Letter, we solve the problems with electro-acoustic effect. In contrast to the general electro-optic effect, the light phase modulation induced by the acoustic effect is 2 orders of magnitude stronger at its resonant frequency, as we observed in a GaAs thin film probe. Furthermore, this what we believe to be a novel method shows a highly reproducible linearity between the detected signals and the input voltages, which facilitates the voltage calibration.

  20. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  1. Measuring the radiation force of megahertz ultrasound acting on a solid spherical scatterer

    NASA Astrophysics Data System (ADS)

    Nikolaeva, A. V.; Tsysar, S. A.; Sapozhnikov, O. A.

    2016-01-01

    The paper considers the problem of precise measurement of the acoustic radiation force of an ultrasonic beam on targets in the form of solid spherical scatterers. Using known analytic relations, a numerical model is developed to perform calculations for different sizes of spherical scatterers and arbitrary frequencies of the incident acoustic wave. A novel method is proposed for measuring the radiation force, which is based on the principle of acoustic echolocation. The radiation force is measured experimentally in a wide range of incident wave intensities using two chosen methods differing in the way the location of the target is controlled.

  2. Calculation of far-field scattering from nonspherical particles using a geometrical optics approach

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1991-01-01

    A numerical method was developed using geometrical optics to predict far-field optical scattering from particles that are symmetric about the optic axis. The diffractive component of scattering is calculated and combined with the reflective and refractive components to give the total scattering pattern. The phase terms of the scattered light are calculated as well. Verification of the method was achieved by assuming a spherical particle and comparing the results to Mie scattering theory. Agreement with the Mie theory was excellent in the forward-scattering direction. However, small-amplitude oscillations near the rainbow regions were not observed using the numerical method. Numerical data from spheroidal particles and hemispherical particles are also presented. The use of hemispherical particles as a calibration standard for intensity-type optical particle-sizing instruments is discussed.

  3. Evaluation of optimal reservoir prospectivity using acoustic-impedance model inversion: A case study of an offshore field, western Niger Delta, Nigeria

    NASA Astrophysics Data System (ADS)

    Oyeyemi, Kehinde D.; Olowokere, Mary T.; Aizebeokhai, Ahzegbobor P.

    2017-12-01

    The evaluation of economic potential of any hydrocarbon field involves the understanding of the reservoir lithofacies and porosity variations. This in turns contributes immensely towards subsequent reservoir management and field development. In this study, integrated 3D seismic data and well log data were employed to assess the quality and prospectivity of the delineated reservoirs (H1-H5) within the OPO field, western Niger Delta using a model-based seismic inversion technique. The model inversion results revealed four distinct sedimentary packages based on the subsurface acoustic impedance properties and shale contents. Low acoustic impedance model values were associated with the delineated hydrocarbon bearing units, denoting their high porosity and good quality. Application of model-based inverted velocity, density and acoustic impedance properties on the generated time slices of reservoirs also revealed a regional fault and prospects within the field.

  4. Effect of polarization field on mean free path of phonons in indium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Sushant Kumar

    2016-05-06

    The effect of built-in-polarization field on mean free path of acoustic phonons in bulk wurtzite indium nitride (InN) has been theoretically investigated. The elastic constant of the material gets modified due to the existence of polarization field. As a result velocity and Debye frequency of phonons get enhanced. The various scattering rates of phonons are suppressed by the effect of polarization field, which implies an enhanced combined relaxation time. Thus phonons travel freely for a longer distance between two successive scatterings. This would enhance the thermal transport properties of the material when built-in-polarization field taken into account. Hence by themore » application of electric field the transport properties of such materials can be controlled as and when desired.« less

  5. Controllable asymmetric transmission via gap-tunable acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Bingyi; Jiang, Yongyuan

    2018-04-01

    In this work, we utilize the acoustic gradient metasurface (AGM) of a bilayer configuration to realize the controllable asymmetric transmission. Relying on the adjustable gap between the two composing layers, the metasurface could switch from symmetric transmission to asymmetric transmission at a certain gap value. The underlying mechanism is attributed to the interference between the forward diffracted waves scattered by the surface bound waves at two air-AGM interfaces, which is apparently influenced by the interlayer distance. We further utilize the hybrid acoustic elements to construct the desired gradient metasurface with a tunable gap and validate the controllable asymmetric transmission with full-wave simulations. Our work provides the solution for actively controlling the transmission property of an acoustic element, which shows potential application in acoustic communication as a dynamic tunable acoustic diode.

  6. Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements

    NASA Astrophysics Data System (ADS)

    Arndt, Christoph M.; Severin, Michael; Dem, Claudiu; Stöhr, Michael; Steinberg, Adam M.; Meier, Wolfgang

    2015-04-01

    A gas turbine model combustor for partially premixed swirl flames was equipped with an optical combustion chamber and operated with CH4 and air at atmospheric pressure. The burner consisted of two concentric nozzles for separately controlled air flows and a ring of holes 12 mm upstream of the nozzle exits for fuel injection. The flame described here had a thermal power of 25 kW, a global equivalence ratio of 0.7, and exhibited thermo-acoustic instabilities at a frequency of approximately 400 Hz. The phase-dependent variations in the flame shape and relative heat release rate were determined by OH* chemiluminescence imaging; the flow velocities by stereoscopic particle image velocimetry (PIV); and the major species concentrations, mixture fraction, and temperature by laser Raman scattering. The PIV measurements showed that the flow field performed a "pumping" mode with varying inflow velocities and extent of the inner recirculation zone, triggered by the pressure variations in the combustion chamber. The flow field oscillations were accompanied by variations in the mixture fraction in the inflow region and at the flame root, which in turn were mainly caused by the variations in the CH4 concentration. The mean phase-dependent changes in the fluxes of CH4 and N2 through cross-sectional planes of the combustion chamber at different heights above the nozzle were estimated by combining the PIV and Raman data. The results revealed a periodic variation in the CH4 flux by more than 150 % in relation to the mean value, due to the combined influence of the oscillating flow velocity, density variations, and CH4 concentration. Based on the experimental results, the feedback mechanism of the thermo-acoustic pulsations could be identified as a periodic fluctuation of the equivalence ratio and fuel mass flow together with a convective delay for the transport of fuel from the fuel injector to the flame zone. The combustor and the measured data are well suited for the validation of

  7. A general radiation model for sound fields and nearfield acoustical holography in wedge propagation spaces.

    PubMed

    Hoffmann, Falk-Martin; Fazi, Filippo Maria; Williams, Earl G; Fontana, Simone

    2017-09-01

    In this work an expression for the solution of the Helmholtz equation for wedge spaces is derived. Such propagation spaces represent scenarios for many acoustical problems where a free field assumption is not eligible. The proposed sound field model is derived from the general solution of the wave equation in cylindrical coordinates, using sets of orthonormal basis functions. The latter are modified to satisfy several boundary conditions representing the reflective behaviour of wedge-shaped propagation spaces. This formulation is then used in the context of nearfield acoustical holography (NAH) and to obtain the expression of the Neumann Green function. The model and its suitability for NAH is demonstrated through both numerical simulations and measured data, where the latter was acquired for the specific case of a loudspeaker on a hemi-cylindrical rigid baffle.

  8. Research of microwave scattering properties of snow fields

    NASA Technical Reports Server (NTRS)

    Angelakos, D. J.

    1978-01-01

    The results obtained in the research program of microwave scattering properties of snow fields are presented. Experimental results are presented showing backscatter dependence on frequency (5.8-8.0 GHz), angle of incidence (0-60 degrees), snow wetness (time of day), and frequency modulation (0-500 MHz). Theoretical studies are being made of the inverse scattering problem yielding some preliminary results concerning the determination of the dielectric constant of the snow layer. The experimental results lead to the following conclusions: snow layering affects backscatter, layer response is significant up to 45 degrees of incidence, wetness modifies snow layer effects, frequency modulation masks the layer response, and for the proper choice of probing frequency and for nominal snow depths, it appears to be possible to measure the effective dielectric constant and the corresponding water content of a snow pack.

  9. Performance of an underwater acoustic volume array using time-reversal focusing.

    PubMed

    Root, Joseph A; Rogers, Peter H

    2002-11-01

    Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3x3x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications.

  10. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.

  11. Tunable Transmission and Deterministic Interface states in Double-zero-index Acoustic Metamaterials.

    PubMed

    Zhao, Wei; Yang, Yuting; Tao, Zhi; Hang, Zhi Hong

    2018-04-20

    Following the seminal work by Dubois et al. (Nat. Commun. 8, 14871 (2017)), we study a double-zero-index acoustic metamaterial with triangular lattice. By varying the height and diameter of air scatterers inside a parallel-plate acoustic waveguide, acoustic dispersion of the first-order waveguide mode can be manipulated and various interesting properties are explored. With accidental degeneracy of monopolar and dipolar modes, we numerically prove the double-zero-index properties of this novel acoustic metamaterial. Acoustic waveguides with tunable and asymmetric transmission are realized with this double-zero-index acoustic metamaterial embedded. Band inversion occurs if the bulk acoustic band diagram of this acoustic metamaterial is tuned. Deterministic interface states are found to exist on the interface between two acoustic metamaterials with inverted band diagrams.

  12. A new, simple electrostatic-acoustic hybrid levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Loeb, H.; Gross, D.

    1990-01-01

    Battelle has developed a hybrid levitator by combining the known single-axis acoustic standing wave levitator with a coaxial DC electric field. The resulting Coulomb forces on the charged liquid or solid sample support its weight and, together with the acoustic force, center the sample. Liquid samples with volumes approximately less than 100 micro-liters are deployed from a syringe reservoir into the acoustic pressure node. The sample is charged using a miniature high voltage power supply (approximately less than 20 kV) connected to the syringe needle. As the electric field, generated by a second miniature power supply, is increased, the acoustic intensity is reduced. The combination of both fields allows stable levitation of samples larger than either single technique could position on the ground. Decreasing the acoustic intensity reduces acoustic convection and sample deformation. Neither the electrostatic nor the acoustic field requires sample position sensing or active control. The levitator, now used for static and dynamic fluid physics investigations on the ground, can be easily modified for space operations.

  13. Acoustic temperature measurement in a rocket noise field.

    PubMed

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.

  14. Saturn systems holddown acoustic efficiency and normalized acoustic power spectrum.

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1972-01-01

    Saturn systems field acoustic data are used to derive mid- and far-field prediction parameters for rocket engine noise. The data were obtained during Saturn vehicle launches at the Kennedy Space Center. The data base is a sorted set of acoustic data measured during the period 1961 through 1971 for Saturn system launches SA-1 through AS-509. The model assumes hemispherical radiation from a simple source located at the intersection of the longitudinal axis of each booster and the engine exit plane. The model parameters are evaluated only during vehicle holddown. The acoustic normalized power spectrum and efficiency for each system are isolated as a composite from the data using linear numerical methods. The specific definitions of each allows separation. The resulting power spectra are nondimensionalized as a function of rocket engine parameters. The nondimensional Saturn system acoustic spectrum and efficiencies are compared as a function of Strouhal number with power spectra from other systems.

  15. The effects of external acoustic pressure fields on a free-running supercavitating projectile.

    PubMed

    Cameron, Peter J K; Rogers, Peter H; Doane, John W

    2010-12-01

    Proliferation of supercavitating torpedoes has motivated research on countermeasures against them as well as on the fluid phenomenon which makes them possible. The goal of this research was to investigate an envisaged countermeasure, an acoustic field capable of slowing or diverting the weapon by disrupting the cavitation envelope. The research focused on the interactions between high pressure amplitude sound waves and a supercavity produced by a small free-flying projectile. The flight dynamics and cavity geometry measurements were compared to control experiments and theoretical considerations were made for evaluating the effects. Corrugations on the cavity/water interface caused by the pressure signal have been observed and characterized. Results also show that the accuracy of a supercavitating projectile can be adversely affected by the sound signal. This research concludes with results that indicate that it is acoustic cavitation in the medium surrounding the supercavity, caused by the high pressure amplitude sound, that is responsible for the reduced accuracy. A hypothesis has been presented addressing the means by which the acoustic cavitation could cause this effect.

  16. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  17. Vector Acoustics, Vector Sensors, and 3D Underwater Imaging

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2007-12-01

    Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.

  18. Effects of atmospheric variations on acoustic system performance

    NASA Technical Reports Server (NTRS)

    Nation, Robert; Lang, Stephen; Olsen, Robert; Chintawongvanich, Prasan

    1993-01-01

    Acoustic propagation over medium to long ranges in the atmosphere is subject to many complex, interacting effects. Of particular interest at this point is modeling low frequency (less than 500 Hz) propagation for the purpose of predicting ranges and bearing accuracies at which acoustic sources can be detected. A simple means of estimating how much of the received signal power propagated directly from the source to the receiver and how much was received by turbulent scattering was developed. The correlations between the propagation mechanism and detection thresholds, beamformer bearing estimation accuracies, and beamformer processing gain of passive acoustic signal detection systems were explored.

  19. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fairly extensive measurements have been conducted of the turbulent flow around various surfaces as a basis for a study of the acoustic characteristics involved. In the experiments the flow from a nozzle was directed upon various two-dimensional surface configurations such as the three-flap model. A turbulent flow field description is given and an estimate of the acoustic characteristics is provided. The developed equations are based upon fundamental theories for simple configurations having simple flows. Qualitative estimates are obtained regarding the radiation pattern and the velocity power law. The effect of geometry and turbulent flow distribution on the acoustic emission from simple configurations are discussed.

  20. Sound field inside acoustically levitated spherical drop

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2007-05-01

    The sound field inside an acoustically levitated small spherical water drop (radius of 1mm) is studied under different incident sound pressures (amplitude p0=2735-5643Pa). The transmitted pressure ptr in the drop shows a plane standing wave, which varies mainly in the vertical direction, and distributes almost uniformly in the horizontal direction. The maximum of ptr is always located at the lowermost point of the levitated drop. Whereas the secondary maximum appears at the uppermost point if the incident pressure amplitude p0 is higher than an intermediate value (3044Pa), in which there exists a pressure nodal surface in the drop interior. The value of the maximum ptr lies in a narrow range of 2489-3173Pa, which has a lower limit of 2489Pa when p0=3044Pa. The secondary maximum of ptr is rather small and only remarkable at high incident pressures.