Science.gov

Sample records for acoustic frequency range

  1. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  2. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  3. Acoustic Behavior of Halobacterium salinarum Gas Vesicles in the High-Frequency Range: Experiments and Modeling.

    PubMed

    Cherin, Emmanuel; Melis, Johan M; Bourdeau, Raymond W; Yin, Melissa; Kochmann, Dennis M; Foster, F Stuart; Shapiro, Mikhail G

    2017-03-01

    Gas vesicles (GVs) are a new and unique class of biologically derived ultrasound contrast agents with sub-micron size whose acoustic properties have not been fully elucidated. In this study, we investigated the acoustic collapse pressure and behavior of Halobacterium salinarum gas vesicles at transmit center frequencies ranging from 12.5 to 27.5 MHz. The acoustic collapse pressure was found to be above 550 kPa at all frequencies, nine-fold higher than the critical pressure observed under hydrostatic conditions. We illustrate that gas vesicles behave non-linearly when exposed to ultrasound at incident pressure ranging from 160 kPa to the collapse pressure and generate second harmonic amplitudes of -2 to -6 dB below the fundamental in media with viscosities ranging from 0.89 to 8 mPa·s. Simulations performed using a Rayleigh-Plesset-type model accounting for buckling and a dynamic finite-element analysis suggest that buckling is the mechanism behind the generation of harmonics. We found good agreement between the level of second harmonic relative to the fundamental measured at 20 MHz and the Rayleigh-Plesset model predictions. Finite-element simulations extended these findings to a non-spherical geometry, confirmed that the acoustic buckling pressure corresponds to the critical pressure under hydrostatic conditions and support the hypothesis of limited gas flow across the GV shell during the compression phase in the frequency range investigated. From simulations, estimates of GV bandwidth-limited scattering indicate that a single GV has a scattering cross section comparable to that of a red blood cell. These findings will inform the development of GV-based contrast agents and pulse sequences to optimize their detection with ultrasound.

  4. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  5. Acoustic absorption measurement of human hair and skin within the audible frequency range.

    PubMed

    Katz, B F

    2000-11-01

    Utilizing the two-microphone impedance tube method, the acoustic absorption of human skin and hair is measured in the frequency range 1-6 kHz. Various locations on a number of human subjects are measured to determine if the presence of bone or an air pocket affects the acoustic absorption of human skin. The absorption coefficient of human hair is also measured. Additional techniques are utilized to minimize errors due to sample mounting methods. Techniques are employed to minimize potential errors in sensor and sample locations. The results of these measurements are compared to relevant historical papers on similar investigations. Results for skin measurements compare well with previous work. Measured hair absorption data do not agree with previous work in the area but do coincide with expected trends, which previous works do not.

  6. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

    2009-07-01

    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  7. Low Frequency Acoustic Detection Research in Support of Human Detection Range Prediction

    DTIC Science & Technology

    1979-10-01

    Perception of Objects at a Distance by Extraordinary Means .............................. 37 EFFECTIVE MASKING BANDWIDTH STUDY ........................ 41...AUDITORY SPECTRAL FILTERING AND MONAURAL PHASE PERCEPTION , Journal of the Acoustical Society of America 41, 458-479, 1967. 23 saw v -- - 2.3M and A%, si... PERCEPTION , Journal of the Acoustical Society of America 19, 780-797, 1947. 24 Scharf, B., CRITICAL BANDS AND THE LOUDNESS OF COMPLEX SOUNDS NEAR

  8. Empirical dependence of acoustic transmission scintillation statistics on bandwidth, frequency, and range in New Jersey continental shelf.

    PubMed

    Andrews, Mark; Chen, Tianrun; Ratilal, Purnima

    2009-01-01

    The scintillation statistics of broadband acoustic transmissions are determined as a function of signal bandwidth B, center frequency f(c), and range with experimental data in the New Jersey continental shelf. The received signal intensity is shown to follow the Gamma distribution implying that the central limit theorem has led to a fully saturated field from independent multimodal propagation contributions. The Gamma distribution depends on the mean intensity and the number of independent statistical fluctuations or coherent cells micro of the received signal. The latter is calculated for the matched filter, the Parseval sum, and the bandpassed center frequency, all of which are standard ocean acoustic receivers. The number of fluctuations mu of the received signal is found to be an order of magnitude smaller than the time-bandwidth product TB of the transmitted signal, and to increase monotonically with relative bandwidth Bfc. A computationally efficient numerical approach is developed to predict the mean intensity and the corresponding broadband transmission loss of a fluctuating, range-dependent ocean waveguide by range and depth averaging the output of a time-harmonic stochastic propagation model. This model enables efficient and accurate estimation of transmission loss over wide areas, which has become essential in wide-area sonar imaging applications.

  9. SmEdA vibro-acoustic modelling in the mid-frequency range including the effect of dissipative treatments

    NASA Astrophysics Data System (ADS)

    Hwang, H. D.; Maxit, L.; Ege, K.; Gerges, Y.; Guyader, J.-L.

    2017-04-01

    Vibro-acoustic simulation in the mid-frequency range is of interest for automotive and truck constructors. The dissipative treatments used for noise and vibration control such as viscoelastic patches and acoustic absorbing materials must be taken into account in the problem. The Statistical modal Energy distribution Analysis (SmEdA) model consists in extending Statistical Energy Analysis (SEA) to the mid-frequency range by establishing power balance equations between the modes of the different subsystems. The modal basis of uncoupled-subsystems that can be estimated by the finite element method in the mid-frequency range is used as input data. SmEdA was originally developed by considering constant modal damping factors for each subsystem. However, this means that it cannot describe the local distribution of dissipative materials. To overcome this issue, a methodology is proposed here to take into account the effect of these materials. This methodology is based on the finite element models of the subsystems that include well-known homogenized material models of dissipative treatments. The Galerkin method with subsystem normal modes is used to estimate the modal damping loss factors. Cross-modal coupling terms which appear in the formulation due to the dissipative materials are assumed to be negligible. An approximation of the energy sharing between the subsystems damped by dissipative materials is then described by SmEdA. The different steps of the method are validated experimentally by applying it to a laboratory test case composed of a plate-cavity system with different configurations of dissipative treatments. The comparison between the experimental and the simulation results shows good agreement in the mid-frequency range.

  10. A fast full frequency range measurement of nonlinear distortions in the vibration of acoustic transducers and acoustically driven membranes

    NASA Astrophysics Data System (ADS)

    Aerts, J. R. M.; Dirckx, J. J. J.

    2007-11-01

    Recently, a new method was proposed to measure nonlinear distortions in weak nonlinear systems using specially designed broadband excitation signals (odd random phase multisines). During one single experiment, the output response level, the noise level and the level of the nonlinear distortions are simultaneously measured. We implement this method in an opto-acoustic set-up which allows us to measure vibrations with high accuracy. To demonstrate the method, we present results obtained on the membrane of an earphone speaker and a latex membrane. On the earphone good agreement is found between measurements of the produced sound field and the actual membrane vibration using heterodyne interferometry. The results show that heterodyne vibrometry can be used to detect nonlinear distortions which are up to 80 dB below the output level in an acoustically driven system.

  11. Variational derivation of the dispersion relation of kinetic coherent modes in the acoustic frequency range in tokamaks

    SciTech Connect

    Nguyen, C.; Garbet, X.; Smolyakov, A. I.

    2008-11-15

    In the present paper, we compare two modes with frequencies belonging to the acoustic frequency range: the geodesic acoustic mode (GAM) and the Beta Alfven eigenmode (BAE). For this, a variational gyrokinetic energy principle coupled to a Fourier sidebands expansion is developed. High order finite Larmor radius and finite orbit width effects are kept. Their impact on the mode structures and on the Alfven spectrum is calculated and discussed. We show that in a local analysis, the degeneracy of the electrostatic GAM and the BAE dispersion relations is verified to a high order and based in particular on a local poloidal symmetry of the two modes. When a more global point of view is taken, and the full radial structures of the modes are computed, differences appear. The BAE structure is shown to have an enforced localization, and to possibly connect to a large magnetohydrodynamic structure. On the contrary, the GAM is seen to have a wavelike, nonlocalized structure, as long as standard slowly varying monotonic profiles are considered.

  12. Low-frequency sound speed and attenuation in sandy seabottom from long-range broadband acoustic measurements.

    PubMed

    Wan, Lin; Zhou, Ji-Xun; Rogers, Peter H

    2010-08-01

    A joint China-U.S. underwater acoustics experiment was conducted in the Yellow Sea with a very flat bottom and a strong and sharp thermocline. Broadband explosive sources were deployed both above and below the thermocline along two radial lines up to 57.2 km and a quarter circle with a radius of 34 km. Two inversion schemes are used to obtain the seabottom sound speed. One is based on extracting normal mode depth functions from the cross-spectral density matrix. The other is based on the best match between the calculated and measured modal arrival times for different frequencies. The inverted seabottom sound speed is used as a constraint condition to extract the seabottom sound attenuation by three methods. The first method involves measuring the attenuation coefficients of normal modes. In the second method, the seabottom sound attenuation is estimated by minimizing the difference between the theoretical and measured modal amplitude ratios. The third method is based on finding the best match between the measured and modeled transmission losses (TLs). The resultant seabottom attenuation, averaged over three independent methods, can be expressed as alpha=(0.33+/-0.02)f(1.86+/-0.04)(dB/m kHz) over a frequency range of 80-1000 Hz.

  13. Understanding and Utilizing Waveguide Invariant Range-frequency Striations in Ocean Acoustic Waveguides

    DTIC Science & Technology

    2011-02-01

    slope of the line connecting non-SRBR modes is sig- nif cantly different than the slope of the line connecting the SRBR modes. Thus, the non-SRBR modes...maximum range that one expects to see the source. All results presented in this chapter used Eqs. (3.8) and (3.9) with r = 5000 m, c1 = 1500 m/s, and c2...present work, ∆f was determined by using Eqs. (3.21) and (3.18) with c1 = 1500 m/s, c2 = 1800 m/s, r = 1000 meters, resulting in ∆f ≈ 81 Hz. ∆r was

  14. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  15. Low Frequency Acoustics

    DTIC Science & Technology

    2016-06-13

    with NOAA , ONR is providing technical services that will help establish a baseline for assessment of long- term VLF acoustic trends in selected...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 sponsored by NOAA , was added to the...with NOAA (NMFS) and other parties has dealt with ocean acoustics related to issues stimulated by the Marine Mammal Protection Act. A focal point has

  16. Acoustic-seismic coupling for a wide range of angles of incidence and frequencies using signals of jet-aircraft overflights

    NASA Astrophysics Data System (ADS)

    Liebsch, Mattes; Altmann, Jürgen

    2016-12-01

    We present the excitation of soil vibration at the surface and at depths to 0.6 m caused by the sound of jet-aircraft overflights. By evaluating a multitude of overflight events we show that the coupling coefficient between soil velocity and sound pressure is only dependent on the angle of incidence of the acoustic wave and the frequency and thus can be averaged over the events. While previous publications presented only pointwise measurements we present signals for a wide range of angles of incidence and frequencies. In the seismic signal we found frequency bands of increased and decreased soil velocity caused by interference of the directly excited seismic wave with waves propagating in the ground and reflected at an underground boundary and at the surface. We use this seismic response to the broadband acoustic excitation to estimate soil characteristics e.g. P-wave velocity and depth of the boundary. The behaviour at depths > 0 m can be explained by an additional reflection at the surface. Here the reflection coefficient from theory was used successfully. The reflection coefficient of the P wave at that boundary - where insufficient information is available for its derivation from theory - was estimated from amplitude ratios at the surface.

  17. Acoustic resonance frequency locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  18. Surface acoustic wave frequency comb

    NASA Astrophysics Data System (ADS)

    Matsko, A. B.; Savchenkov, A. A.; Ilchenko, V. S.; Seidel, D.; Maleki, L.

    2012-02-01

    We investigate opto-mechanical oscillation (OMO) and subsequent generation of acoustic wave frequency combs in monolithic crystalline whispering gallery mode (WGM) resonators. The OMO is observed in resonators made of electro-optic (lithium tantalate), non-electro-optic birefringent (magnesium fluoride), and non-birefringent (calcium fluoride) materials. The phenomenon manifests itself as generation of optical harmonics separated by the eigenfrequency of a surface acoustic wave (SAW) mechanical mode of the same WGM resonator. We show that the light escaping the resonator and demodulated on a fast photodiode produces a spectrally pure radio frequency (RF) signal. For instance, we demonstrate generation of 200 MHz signals with instantaneous linewidth of 0.2 Hz.

  19. Reduced length fibre Bragg gratings for high frequency acoustic sensing

    NASA Astrophysics Data System (ADS)

    Davis, Claire; Robertson, David; Brooks, Chris; Norman, Patrick; Rosalie, Cedric; Rajic, Nik

    2014-12-01

    In-fibre Bragg gratings (FBGs) are now well established for applications in acoustic sensing. The upper frequency response limit of the Bragg grating is determined by its gauge length, which has typically been limited to about 1 mm for commercially available Type 1 gratings. This paper investigates the effect of FBG gauge length on frequency response for sensing of acoustic waves. The investigation shows that the ratio of wavelength to FBG length must be at least 8.8 in order to reliably resolve the strain response without significant gain roll-off. Bragg gratings with a gauge length of 200 µm have been fabricated and their capacity to measure low amplitude high frequency acoustic strain fields in excess of 2 MHz is experimentally demonstrated. The ultimate goal of this work is to enhance the sensitivity of acoustic damage detection techniques by extending the frequency range over which acoustic waves may be reliably measured using FBGs.

  20. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    PubMed

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing.

  1. Long Range Acoustic Communication in Deep Water

    DTIC Science & Technology

    2014-09-30

    Acoustic communication at long range in the ocean is challenging due to the substantial propagation loss, multipath delay spread , and channel...20 Hz in the upward refracting Arctic acoustic channel. However, the seafloor topography in the region of the Chukchi Plateau is very uneven over...which the depth was 600 m and thus the seafloor affected every mode of the ACOUS signal except for mode 1 which was confined to the upper 200 m. In April

  2. Development of the seafloor acoustic ranging system

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Fujimoto, H.

    2007-12-01

    We have developed a seafloor acoustic ranging system, which simulates an operation with the DONET (Development of Dense Ocean-floor Network System for Earthquake and Tsunami) cable, to monitor seafloor crustal movement. The seafloor acoustic ranging system was based on the precise acoustic transponder (PXP). We have a few problems for the improvement of the resolution. One thing is the variation of sound speed. Another is the bending of ray path. A PXP measures horizontal distances on the seafloor from the round trip travel times of acoustic pulses between pairs of PXP. The PXP was equipped with the pressure, temperature gauge and tilt-meter. The variation of sound speed in seawater has a direct effect on the measurement. Therefore we collect the data of temperature and pressure. But we don't collect the data of salinity because of less influence than temperature and pressure. Accordingly a ray path of acoustic wave tends to be bent upward in the deep sea due to the Snell's law. As the acoustic transducer of each PXPs held about 3.0m above the seafloor, the baseline is too long for altitude from the seafloor. In this year we carried out the experiment for the seafloor acoustic ranging system. We deployed two PXPs at about 750m spacing on Kumano-nada. The water depth is about 2050m. We collected the 660 data in this experiment during one day. The round trip travel time show the variation with peak-to-peak amplitude of about 0.03msec. It was confirmed to explain the majority in this change by the change in sound speed according to the temperature and pressure. This results shows the resolution of acoustic measurements is +/-2mm. Acknowledgement This study is supported by 'DONET' of Ministry of Education, Culture, Sports, Science and Technology.

  3. Frequency effects on the scale and behavior of acoustic streaming.

    PubMed

    Dentry, Michael B; Yeo, Leslie Y; Friend, James R

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U∼P1/2∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers-and hence low jet Reynolds numbers ReJ-where a linear relationship between the beam power and streaming velocity exists: U∼P∼ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  4. Frequency effects on the scale and behavior of acoustic streaming

    NASA Astrophysics Data System (ADS)

    Dentry, Michael B.; Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U ˜P1/2˜ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers—and hence low jet Reynolds numbers ReJ—where a linear relationship between the beam power and streaming velocity exists: U ˜P˜ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  5. Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Li, Shengcai

    2015-09-01

    The acoustical scattering cross section is a paramount parameter determining the scattering ability of cavitation bubbles when they are excited by the incident acoustic waves. This parameter is strongly related with many important applications of acoustic cavitation including facilitating the reaction of chemical process, boosting bubble sonoluminescence, and performing non-invasive therapy and drug delivery. In present paper, both the analytical and numerical solutions of acoustical scattering cross section of gas bubbles under dual-frequency excitation are obtained. The validity of the analytical solution is shown with demonstrating examples. The nonlinear characteristics (e.g., harmonics, subharmonics and ultraharmonics) of the scattering cross section curve under dual-frequency approach are investigated. Compared with single-frequency approach, the dual-frequency approach displays more resonances termed as "combination resonances" and could promote the acoustical scattering cross section significantly within a much broader range of bubble sizes due to the generation of more resonances. The influence of several paramount parameters (e.g., acoustic pressure amplitude, power allocations between two acoustic components, and the ratio of the frequencies) in the dual-frequency system on the predictions of scattering cross section has been discussed.

  6. The Production and Recognition of Acoustic Frequency Cues in Chickadees

    NASA Astrophysics Data System (ADS)

    Lohr, Bernard Stephen

    1995-01-01

    The production and recognition of songs with appropriate species-typical features underlies a songbird's success in defending a breeding territory. The ability to recognize a song that is characteristic of one's own species presents an interesting problem, given the variety of types of information often encoded in song. Information in song may involve cues for individual identity, neighbor/stranger recognition, reproductive status, and motivational state. This thesis is concerned with the use of acoustic frequency as a cue for species-recognition of birdsong, and the various forms of frequency production and perception that may provide such cues. Carolina chickadees (Parus carolinensis) sing songs characterized by a succession of unmodulated, pure -tonal notes that alternate between high (approximately 5400-7000 Hz) and low (approximately 3000-4200 Hz) frequencies. Mechanisms of acoustic frequency perception in male territorial Carolina chickadees were evaluated using playback experiments designed to vary specific note frequencies, note frequency ranges, and the frequency range of the entire song type. Note frequency ranges provide the primary acoustic frequency cues for song recognition in this species. A gap between note frequency ranges exists in this species. Tones in this intermediate frequency range do not receive responses in the context of territorial song recognition. This kind of gap in frequency perception has not been demonstrated for other songbirds. Song playback experiments also were designed to vary systematically the contours (inter-note frequency sequences) of notes in song. Note frequency ranges provide the principal cues for song recognition, while the contour between note frequencies plays a supplementary role. The presence of a single descending interval between notes in the appropriate note frequency ranges of Carolina chickadee song generates full species-typical responses to song. Additionally, response to a descending contour between note

  7. Frequency Spreading in Underwater Acoustic Signal Transmission.

    DTIC Science & Technology

    1980-04-15

    acoustic signal transmitted and received underwater J-2 J.2 Signal spectrum computing block diagram. J-3 Chapter I. Frequency spreading 1.0 Introduction... transmitted frequency can be expected in the received signal [1] - [18]. This frequency spreading behavior is the result of the amplitude and phase...result of phase modulation of the transmitted sinusoid by the moving surface, and the separation between the spectral lines at the receiving point is

  8. Wideband flat frequency response of thermo-acoustic emission

    NASA Astrophysics Data System (ADS)

    Hu, Hanping; Wang, Yandong; Wang, Zedong

    2012-08-01

    Many advantages of thermo-acoustic (TA) ultrasound over the conventional electro-acoustic ultrasound are mainly attributed to its unique nature—constant (flat) amplitude-frequency response over a wide frequency range. However, realization of the TA flat frequency response itself has so far remained unclear due to the lack of theoretical investigation. In this work, using analysis of thermal-mechanical coupling and thermal wave penetration depth for TA emission in gas, the mechanism and regularities of flat frequency response are clarified. The limits of both frequency and space for the existence of flat frequency response of TA ultrasound are revealed. In addition, the performance evaluation and selection techniques for both TA material and its backing are presented. Therefore, the most important feature of TA ultrasound from a technical standpoint is studied more completely.

  9. Toward an adjustable nonlinear low frequency acoustic absorber

    NASA Astrophysics Data System (ADS)

    Mariani, R.; Bellizzi, S.; Cochelin, B.; Herzog, P.; Mattei, P. O.

    2011-10-01

    A study of the targeted energy transfer (TET) phenomenon between an acoustic resonator and a thin viscoelastic membrane has recently been presented in the paper [R. Bellet et al., Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber, Journal of Sound and Vibration 329 (2010) 2768-2791], providing a new path to passive sound control in the low frequency domain where no efficient dissipative device exists. This paper presents experimental results showing that a loudspeaker used as a suspended piston working outside its range of linearity can also be used as a nonlinear acoustic absorber. The main advantage of this technology of absorber is the perspective to adjust independently the device parameters (mass, nonlinear stiffness and damping) according to the operational conditions. To achieve this purpose, quasi-static and dynamic tests have been performed on three types of commercial devices (one with structural modifications), in order to define the constructive characteristics that it should present. An experimental setup has been developed using a one-dimensional acoustic linear system coupled through a box (acting as a weak spring) to a loudspeaker used as a suspended piston acting as an essentially nonlinear oscillator. The tests carried out on the whole vibro-acoustic system have showed the occurrence of the acoustic TET from the acoustic media to the suspended piston and demonstrated the efficiency of this new kind of absorber at low frequencies over a wide frequency range. Moreover, the experimental analyses conducted with different NES masses have confirmed that it is possible to optimize the noise absorption with respect to the excitation level of the acoustic resonator.

  10. Low frequency acoustic and electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Maccamy, R. C.

    1983-01-01

    This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k(2) log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.

  11. Low frequency acoustic and electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Maccamy, R. C.

    1986-01-01

    This paper deals with two classes of problems arising from acoustics and electromagnetics scattering in the low frequency stations. The first class of problem is solving Helmholtz equation with Dirichlet boundary conditions on an arbitrary two dimensional body while the second one is an interior-exterior interface problem with Helmholtz equation in the exterior. Low frequency analysis show that there are two intermediate problems which solve the above problems accurate to 0(k/2/ log k) where k is the frequency. These solutions greatly differ from the zero frequency approximations. For the Dirichlet problem numerical examples are shown to verify the theoretical estimates.

  12. Determining low-frequency source location from acoustic phase measurements

    NASA Astrophysics Data System (ADS)

    Poole, Travis L.; Frisk, George V.

    2002-11-01

    For low-frequency cw sound sources in shallow water, the time rate-of-change of the measured acoustic phase is well approximated by the time rate-of-change of the source-receiver separation distance. An algorithm for determining a locus of possible source locations based on this idea has been developed. The locus has the general form of a hyperbola, which can be used to provide a bearing estimation at long ranges, and an estimate of source location at short ranges. The algorithm uses only acoustic phase data and receiver geometry as input, and can be used even when the source frequency is slightly unstable and/or imprecisely known. The algorithm has been applied to data from low-frequency experiments (20-300 Hz), both for stable and unstable source frequencies, and shown to perform well. [Work supported by ONR and WHOI Academic Programs Office.

  13. Ultrahigh Frequency Lensless Ultrasonic Transducers for Acoustic Tweezers Application

    PubMed Central

    Hsu, Hsiu-Sheng; Li, Ying; Lee, Changyang; Lin, Anderson; Zhou, Qifa; Kim, Eun Sok; Shung, Kirk Koping

    2014-01-01

    Similar to optical tweezers, a tightly focused ultrasound microbeam is needed to manipulate microparticles in acoustic tweezers. The development of highly sensitive ultrahigh frequency ultrasonic transducers is crucial for trapping particles or cells with a size of a few microns. As an extra lens would cause excessive attenuation at ultrahigh frequencies, two types of 200-MHz lensless transducer design were developed as an ultrasound microbeam device for acoustic tweezers application. Lithium niobate single crystal press-focused (PF) transducer and zinc oxide self-focused transducer were designed, fabricated and characterized. Tightly focused acoustic beams produced by these transducers were shown to be capable of manipulating single microspheres as small as 5 μm two-dimensionally within a range of hundreds of micrometers in distilled water. The size of the trapped microspheres is the smallest ever reported in the literature of acoustic PF devices. These results suggest that these lensless ultrahigh frequency ultrasonic transducers are capable of manipulating particles at the cellular level and that acoustic tweezers may be a useful tool to manipulate a single cell or molecule for a wide range of biomedical applications. PMID:23042219

  14. Asymmetric acoustic transmission in multiple frequency bands

    SciTech Connect

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  15. Giant frequency down-conversion of the dancing acoustic bubble

    PubMed Central

    Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.

    2016-01-01

    We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave. PMID:27857217

  16. Giant frequency down-conversion of the dancing acoustic bubble

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.

    2016-11-01

    We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave.

  17. Broadband fractal acoustic metamaterials for low-frequency sound attenuation

    NASA Astrophysics Data System (ADS)

    Song, Gang Yong; Cheng, Qiang; Huang, Bei; Dong, Hui Yuan; Cui, Tie Jun

    2016-09-01

    We fabricate and experimentally characterize a broadband fractal acoustic metamaterial that can serve to attenuate the low-frequency sounds at selective frequencies ranging from 225 to 1175 Hz. The proposed metamaterials are constructed by the periodic Hilbert fractal elements made of photosensitive resin via 3D printing. In analogy to electromagnetic fractal structures, it is shown that multiple resonances can also be excited in the acoustic counterpart due to their self-similar properties, which help to attenuate the acoustic energy in a wide spectrum. The confinement of sound waves in such subwavelength element is evidenced by both numerical and experimental results. The proposed metamaterial may provide possible alternative for various applications such as the noise attenuation and the anechoic materials.

  18. High-frequency attenuation measurements using an acoustic microscope.

    PubMed

    Gracewski, S M; Waag, R C; Schenk, E A

    1988-06-01

    An acoustic microscope was used to measure excess attenuation of aqueous solutions of sugars and proteins at 1.0 GHz. Interference pattern spacing and peak amplitude reduction of V(z) curves, obtained with these solutions as the acoustic microscope coupling liquid, were related to the solution wavespeed and attenuation, respectively. Consistent with published results for lower frequencies, solutions with molecular weight greater than 10,000 had a higher specific absorption than those with a molecular weight less than 1000 and within these two molecular weight ranges specific absorption was independent of concentration.

  19. Bubble dynamics under acoustic excitation with multiple frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Y. N.; Zhang, Y. N.; Li, S. C.

    2015-01-01

    Because of its magnificent mechanical and chemical effects, acoustic cavitation plays an important role in a broad range of biomedical, chemical and mechanical engineering problems. Particularly, irradiation of the multiple frequency acoustic wave could enhance the effects of cavitation. The advantages of employment of multi-frequency ultrasonic field include decreasing the cavitation thresholds, promoting cavitation nuclei generation, increasing the mass transfer and improving energy efficiency. Therefore, multi-frequency ultrasonic systems are employed in a variety of applications, e.g., to enhance the intensity of sonoluminenscence, to increase efficiency of sonochemical reaction, to improve the accuracy of ultrasound imaging and the efficiency of tissue ablation. Compared to single-frequency systems, a lot of new features of bubble dynamics exist in multi-frequency systems, such as special properties of oscillating bubbles, unique resonances in the bubble response curves, and unusual chaotic behaviours. In present paper, the underlying mechanisms of the cavitation effects under multi-frequency acoustical excitation are also briefly introduced.

  20. Acoustical Evaluation of Combat Arms Firing Range, Schriever AFB, Colorado

    DTIC Science & Technology

    2014-08-19

    with AFOSH Standard 48-20, due to acoustical reflections. Therefore, it was recommended that acoustical absorption be added to these side walls to...and side walls from the red line back to the rear wall, as well as the the rear wall, with acoustical absorption material. Quilted fiberglass, or...Consultative Letter 3. DATES COVERED (From – To) April – June 2014 4. TITLE AND SUBTITLE Acoustical Evaluation of Combat Arms Firing Range

  1. Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields

    NASA Astrophysics Data System (ADS)

    Johnson, Spencer Joseph

    nonlinear scattering of sound by sound as the acoustic waves propagate into the far-field. With improvements in the sensitivity of radio frequency (RF) receivers, spectral content previously below the measurable noise floor, such as the nonlinear content produced by acousto-EM scattering, can now be examined and analyzed. Through the use of a high dynamic range nonlinear measurement system based on analog cancellation, the ability to experimentally investigate the effects of nonlinear interaction between acoustic and EM waves previously unattainable is enabled. To further the understanding of the effects of acousto-EM scattering and verify experimental results, a mathematical description of the periodic change in the medium characteristics due to the propagation of a high powered acoustic wave through a medium that modulates an EM signal proportional to the acoustic frequency is developed.

  2. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    PubMed

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  3. MRI acoustic noise: sound pressure and frequency analysis.

    PubMed

    Counter, S A; Olofsson, A; Grahn, H F; Borg, E

    1997-01-01

    The large gradient coils used in MRI generate, simultaneously with the pulsed radiofrequency (RF) wave, acoustic noise of high intensity that has raised concern regarding hearing safety. The sound pressure levels (SPLs) and power spectra of MRI acoustic noise were measured at the position of the human head in the isocenter of five MRI systems and with 10 different pulse sequences used in clinical MR scanning. Each protocol, including magnetization-prepared rapid gradient echo (MP-RAGE; 113 dB SPL linear), fast gradient echo turbo (114 dB SPL linear), and spin echo T1/2 mm (117 dB SPL linear), was found to have the high SPLs, rapid pulse rates, amplitude-modulated pulse envelopes, and multipeaked spectra. Since thickness and SPL were inversely related, the T1-weighted images generated more intense acoustic noise than the proton-dense T2-weighted measures. The unfiltered linear peak values provided more accurate measurements of the SPL and spectral content of the MRI acoustic noise than the commonly used dB A-weighted scale, which filters out the predominant low frequency components. Fourier analysis revealed predominantly low frequency energy peaks ranging from .05 to approximately 1 kHz, with a steep high frequency cutoff for each pulse sequence. Ear protectors of known attenuation ratings are recommended for all patients during MRI testing.

  4. Bottom Interaction in Long Range Acoustic Propagation

    DTIC Science & Technology

    2009-09-30

    the implications for seafloor receptions in shallower water. OBJECTIVES On previous NPAL (North Pacific Acoustic Laboratory) tests acoustic...south, east, and west from the DVLA in comparable water depths). Water depth along the 3200km path to the furthest transmission station varied between...been carried out on all of the available OBS hydrophone and geophone data. The geophone (South OBS, East OBS and West OBS) and DVLA (lower most

  5. Extreme low frequency acoustic measurement system

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor)

    2013-01-01

    The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.

  6. Extreme Low Frequency Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor)

    2017-01-01

    The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.

  7. Reducing extrinsic damping of surface acoustic waves at gigahertz frequencies

    NASA Astrophysics Data System (ADS)

    Gelda, Dhruv; Sadhu, Jyothi; Ghossoub, Marc G.; Ertekin, Elif; Sinha, Sanjiv

    2016-04-01

    High-frequency surface acoustic waves (SAWs) in the gigahertz range can be generated using absorption from an ultrafast laser in a patterned metallic grating on a substrate. Reducing the attenuation at these frequencies can yield better sensors as well as enable them to better probe phonon and electron-phonon interactions near surfaces. It is not clear from existing experiments which mechanisms dominate damping at high frequencies. We calculate damping times of SAWs due to various mechanisms in the 1-100 GHz range to find that mechanical loading of the grating on the substrate dominates dissipation by radiating energy from the surface into the bulk. To overcome this and enable future measurements to probe intrinsic damping, we propose incorporating distributed acoustic Bragg reflectors in the experimental structure. Layers of alternating materials with contrasting acoustic impedances embedded a wavelength away from the surface serve to reflect energy back to the surface. Using numerical simulations, we show that a single Bragg reflector is sufficient to increase the energy density at the surface by more than five times. We quantify the resulting damping time to find that it is longer than the intrinsic damping time. The proposed structure can enable future measurements of intrinsic damping in SAWs at ˜100 GHz.

  8. Frequency-dependent acoustic properties of gassy marine sediments

    NASA Astrophysics Data System (ADS)

    Best, Angus I.; Tuffin, Michael D. J.; Dix, Justin K.; Bull, Jonathan M.

    2003-10-01

    Acoustic velocity and attenuation were measured during two in-situ experiments in gassy intertidal muds in Southampton Water, United Kingdom. The horizontal transmission results gave frequency-independent velocity (1431 m/s) and attenuation (4 dB/m) over the frequency range 600 to 3000 Hz, representative of the soft (non-gassy) muds shallower than about 1 m. The results from a vertical transmission experiment straddling the top of the gassy zone (about 1 m depth) showed strong frequency-dependent velocity and attenuation over 600 to 3000 Hz. They showed velocity and attenuation maxima predicted by the Anderson and Hampton model, associated with gas bubble resonance. Moreover, attenuation maxima shifted in frequency with water depth over a tidal cycle that was monitored, suggesting variations in gas bubble size with hydrostatic pressure. X-ray CT images on a sealed core from the site revealed vertically-aligned, centimeter-scale, gas-filled cracks in the muddy sediments. Ultrasonic (300 to 700 kHz) velocities and attenuations were higher in the gassy zone than in the nongassy parts of the core. Overall, the results give a fascinating insight into the acoustical behavior of gassy sediments that could be used to extract sediment physical properties information from seabed acoustic reflection data. [Work supported by NERC].

  9. Long Range Acoustic Propagation Project (LRAPP)

    DTIC Science & Technology

    1977-09-30

    measurement systems used in LRAPP-sponsored environmental acoustic exercises . All appropriate activity reports and summaries were prepared and... activities who were processing data from the two major exercises . All appropriate activity reports and sunuuaries were prepared and submitted to the...initiated the preliminary planning for at-sea exercises scheduled later in the fiscal year. All appropriate activity reports and summaries wore prepared

  10. Long Range Acoustic Communication in Deep Water

    DTIC Science & Technology

    2013-09-30

    ocean is challenging due to the substantial propagation loss, multipath delay spread , and channel variability. Analysis of deep-water data collected...were exploited. In addition, a robust algorithm (double differentially coded spread spectrum) was demonstrated recently using the LRAC10 data [10...Spray gliders with a commercial acoustic modem for data retrieval from subsurface moorings and seafloor systems installed with a similar modem in deep

  11. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    SciTech Connect

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao E-mail: wangzhibiao@haifu.com.cn; Song, Dan; Lei, Guangrong; Lin, Zhou; Zhang, Dong E-mail: wangzhibiao@haifu.com.cn; Wu, Junru

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  12. Frequency Domain Calculations Of Acoustic Propagation

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Two complex geometry problems are solved using the linearized Euler equations. The impedance mismatch method1 is used to impose the solid surfaces without the need to use a body-fitted grid. The problem is solved in the frequency domain to avoid long run times. Although the harmonic assumption eliminates all time dependence, a pseudo-time term is added to allow conventional iterative methods to be employed. A Jameson type, Runge-Kutta scheme is used to advance the solution in pseudo time. The spatial operator is based on a seven-point, sixth-order finite difference. Constant coefficient, sixth-derivative artificial dissipation is used throughout the domain. A buffer zone technique employing a complex frequency to damp all waves near the boundaries is used to minimize reflections. The results show that the method is capable of capturing the salient features of the scattering, but an excessive number of grid points are required to resolve the phenomena in the vicinity of the solid bodies because the wavelength of the acoustics is relatively short compared with the size of the bodies. Smoothly transitioning into the immersed boundary condition alleviates the difficulties, but a fine mesh is still required.

  13. High frequency acoustic wave scattering from turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Narra, Venkateswarlu

    This thesis describes an experimental investigation of high frequency acoustic wave scattering from turbulent premixed flames. The objective of this work was to characterize the scattered incoherent acoustic field and determine its parametric dependence on frequency, flame brush thickness, incident and measurement angles, mean velocity and flame speed. The experimental facility consists of a slot burner with a flat flame sheet that is approximately 15 cm wide and 12 cm tall. The baseline cold flow characteristics and flame sheet statistics were extensively characterized. Studies were performed over a wide range of frequencies (1-24 kHz) in order to characterize the role of the incident acoustic wave length. The spectrum of the scattered acoustic field showed distinct incoherent spectral sidebands on either side of the driving frequency. The scattered incoherent field was characterized in terms of the incoherent field strength and spectral bandwidth and related to the theoretical predictions. The role of the flame front wrinkling scale, i.e., flame brush thickness, was also studied. Flame brush thickness was varied independent of the mean velocity and flame speed by using a variable turbulence generator. Results are reported for five flame brush thickness cases, ranging from 1.2 mm to 5.2 mm. Some dependence of scattered field characteristics on flame brush thickness was observed, but the magnitude of the effect was much smaller than expected from theoretical considerations. The spatial dependence of the scattered field was investigated by measuring the scattered field at four measurement angles and exciting the flame at four incident angles. Theory predicts that these variations influence the spatial scale of the acoustic wave normal to the flame, a result confirmed by the measurements. Measurements were performed for multiple combinations of mean velocities and flame speeds. The scattered field was observed to depend strongly on the flame speed. Further analysis

  14. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.

    PubMed

    Titze, Ingo; Riede, Tobias; Mau, Ted

    2016-06-01

    Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size), range of fundamental frequency is facilitated by (1) laryngeal muscles that control elongation and by (2) nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid), so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers), increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations.

  15. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species

    PubMed Central

    Titze, Ingo; Riede, Tobias; Mau, Ted

    2016-01-01

    Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size), range of fundamental frequency is facilitated by (1) laryngeal muscles that control elongation and by (2) nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid), so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers), increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations. PMID:27309543

  16. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments

    SciTech Connect

    C.N. Corrado; J.E. Bondaryk; V. Godino

    1998-08-01

    The Nuclear Regulatory Commission has a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and Ieaktightness of metal containment vessels and steel liners of concrete containment in nuclear power plants. One of the program objectives is to identify a technique(s) for inspection of inaccessible portions of the containment pressure boundary. Acoustic imaging has been identified as one of these potential techniques. A numerical feasibility study investigated the use of high-frequency bistatic acoustic imaging techniques for inspection of inaccessible portions of the metallic pressure boundary of nuclear power plant containment. The range-dependent version of the OASES Code developed at the Massachusetts Institute of Technology was utilized to perform a series of numerical simulations. OASES is a well developed and extensively tested code for evaluation of the acoustic field in a system of stratified fluid and/or elastic layers. Using the code, an arbitrary number of fluid or solid elastic layers are interleaved, with the outer layers modeled as halfspaces. High frequency vibrational sources were modeled to simulate elastic waves in the steel. The received field due to an arbitrary source array can be calculated at arbitrary depth and range positions. In this numerical study, waves that reflect and scatter from surface roughness caused by modeled degradations (e.g., corrosion) are detected and used to identify and map the steel degradation. Variables in the numerical study included frequency, flaw size, interrogation distance, and sensor incident angle.Based on these analytical simulations, it is considered unlikely that acoustic imaging technology can be used to investigate embedded steel liners of reinforced concrete containment. The thin steel liner and high signal losses to the concrete make this application difficult. Results for portions of steel containment

  17. Acoustics of fish shelters: frequency response and gain properties.

    PubMed

    Lugli, Marco

    2012-11-01

    Many teleosts emit sounds from cavities beneath stones and other types of submerged objects, yet the acoustical properties of fish shelters are virtually unexplored. This study examines the gain properties of shelters commonly used by Mediterranean gobies as hiding places and/or nest sites in the field (flat stones, shells belonging to five bivalve species), or within aquarium tanks (tunnel-shaped plastic covers, concrete blocks, concrete cylinder pipe, halves of terracotta flower pots). All shelters were acoustically stimulated using a small underwater buzzer, placed inside or around the shelter to mimic a fish calling from the nest site, and different types of driving stimuli (white noise, pure tones, and artificial pulse trains). Results showed the presence of significant amplitude gain (3-18 dB) at frequencies in the range 100-150 Hz in all types of natural shelters but one (Mytilus), terracotta flower pots, and concrete blocks. Gain was higher for stones and artificial shelters than for shells. Gain peak amplitude increased with the weight of stones and shells. Conclusions were verified by performing analogous acoustical tests on flat stones in the stream. Results draw attention to the use of suitable shelters for proper recording of sounds produced by fishes kept within laboratory aquaria.

  18. Frequency comparative study of coal-fired fly ash acoustic agglomeration.

    PubMed

    Liu, Jianzhong; Wang, Jie; Zhang, Guangxue; Zhou, Junhu; Cen, Kefa

    2011-01-01

    Particulate pollution is main kind of atmospheric pollution. The fine particles are seriously harmful to human health and environment. Acoustic agglomeration is considered as a promising pretreatment technology for fine particle agglomeration. The mechanisms of acoustic agglomeration are very complex and the agglomeration efficiency is affected by many factors. The most important and controversial factor is frequency. Comparative studies between high-frequency and low-frequency sound source to agglomerate coal-fired fly ash were carried out to investigate the influence of frequency on agglomeration efficiency. Acoustic agglomeration theoretical analysis, experimental particle size distributions (PSDs) and orthogonal design were examined. The results showed that the 20 kHz high-frequency sound source was not suitable to agglomerate coal-fired fly ash. Only within the size ranging from 0.2 to 0.25 microm the particles agglomerated to adhere together, and the agglomerated particles were smaller than 2.5 microm. The application of low-frequency (1000-1800 Hz) sound source was proved as an advisable pretreatment with the highest agglomeration efficiency of 75.3%, and all the number concentrations within the measuring range decreased. Orthogonal design L16 (4)3 was introduced to determine the optimum frequency and optimize acoustic agglomeration condition. According to the results of orthogonal analysis, frequency was the dominant factor of coal-fired fly ash acoustic agglomeration and the optimum frequency was 1400 Hz.

  19. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies

    NASA Astrophysics Data System (ADS)

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-09-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.

  20. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies

    PubMed Central

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-01-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. PMID:27633351

  1. High-Frequency Acoustic Impedance Imaging of Cancer Cells.

    PubMed

    Fadhel, Muhannad N; Berndl, Elizabeth S L; Strohm, Eric M; Kolios, Michael C

    2015-10-01

    Variations in the acoustic impedance throughout cells and tissue can be used to gain insight into cellular microstructures and the physiologic state of the cell. Ultrasound imaging can be used to create a map of the acoustic impedance, on which fluctuations can be used to help identify the dominant ultrasound scattering source in cells, providing information for ultrasound tissue characterization. The physiologic state of a cell can be inferred from the average acoustic impedance values, as many cellular physiologic changes are linked to an alteration in their mechanical properties. A recently proposed method, acoustic impedance imaging, has been used to measure the acoustic impedance maps of biological tissues, but the method has not been used to characterize individual cells. Using this method to image cells can result in more precise acoustic impedance maps of cells than obtained previously using time-resolved acoustic microscopy. We employed an acoustic microscope using a transducer with a center frequency of 375 MHz to calculate the acoustic impedance of normal (MCF-10 A) and cancerous (MCF-7) breast cells. The generated acoustic impedance maps and simulations suggest that the position of the nucleus with respect to the polystyrene substrate may have an effect on the measured acoustic impedance value of the cell. Fluorescence microscopy and confocal microscopy were used to correlate acoustic impedance images with the position of the nucleus within the cell. The average acoustic impedance statistically differed between normal and cancerous breast cells (1.636 ± 0.010 MRayl vs. 1.612 ± 0.006 MRayl), indicating that acoustic impedance could be used to differentiate between normal and cancerous cells.

  2. Improvement of low-frequency characteristics of piezoelectric speakers based on acoustic diaphragms.

    PubMed

    Kim, Hye Jin; Yang, Woo Seok; No, Kwangsoo

    2012-09-01

    The vibrational characteristics of 3 types of the acoustic diaphragms are investigated to enhance the output acoustic performance of the piezoelectric ceramic speaker in a low-frequency range. In other to achieve both a higher output sound pressure level and wider frequency range of the piezoelectric speaker, we have proposed a rubber/resin bi-layer acoustic diaphragm. The theoretical square-root dependence of the fundamental resonant frequency on the thickness and Young's modulus of the acoustic diaphragm was verified by finite-element analysis simulation and laser scanning vibrometer measurement. The simulated resonant frequencies for each diaphragm correspond well to the measured results. From the simulated and measured resonant frequency results, it is found that the fundamental resonant frequency of the piezoelectric ceramic speaker can be designed by adjusting the thickness ratio of the rubber/resin bi-layer acoustic diaphragm. Compared with a commercial piezoelectric speaker, the fabricated piezoelectric ceramic speaker with the rubber/resin bi-layer diaphragm has at least 10 dB higher sound pressures in the low-frequency range of less than 1 kHz.

  3. Long range acoustic imaging of the continental shelf environment: the Acoustic Clutter Reconnaissance Experiment 2001.

    PubMed

    Ratilal, Purnima; Lai, Yisan; Symonds, Deanelle T; Ruhlmann, Lilimar A; Preston, John R; Scheer, Edward K; Garr, Michael T; Holland, Charles W; Goff, John A; Makris, Nicholas C

    2005-04-01

    An active sonar system is used to image wide areas of the continental shelf environment by long-range echo sounding at low frequency. The bistatic system, deployed in the STRATAFORM area south of Long Island in April-May of 2001, imaged a large number of prominent clutter events over ranges spanning tens of kilometers in near real time. Roughly 3000 waveforms were transmitted into the water column. Wide-area acoustic images of the ocean environment were generated in near real time for each transmission. Between roughly 10 to more than 100 discrete and localized scatterers were registered for each image. This amounts to a total of at least 30000 scattering events that could be confused with those from submerged vehicles over the period of the experiment. Bathymetric relief in the STRATAFORM area is extremely benign, with slopes typically less than 0.5 degrees according to high resolution (30 m sampled) bathymetric data. Most of the clutter occurs in regions where the bathymetry is locally level and does not coregister with seafloor features. No statistically significant difference is found in the frequency of occurrence per unit area of repeatable clutter inside versus outside of areas occupied by subsurface river channels.

  4. High sensitivity of p-modes near the acoustic cutoff frequency to solar model parameters

    NASA Technical Reports Server (NTRS)

    Guenther, D. B.

    1991-01-01

    The p-mode frequencies of low l have been calculated for solar models with initial helium mass fraction varying from Y = 0.2753-0.2875. The differences in frequency of the p-modes in the frequency range, 2500-4500 microHz, do not exceed 1-5 microHz among the models. But in the vicinity of the acoustic cutoff frequency, near 5000 microHz the p-mode frequency differences are enhanced by a factor of 4. The enhanced sensitivity of p-modes near the acoustic cutoff frequency was further tested by calculating and comparing p-mode frequencies of low l for two solar models one incorporating the Eddington T-tau relation and the other the Krishna Swamy T-tau relation. Again, it is found that p-modes with frequencies near the acoustic cutoff frequency show a significant increase in sensitivity to the different T-tau relations, compared to lower frequency p-modes. It is noted that frequencies above the acoustic cutoff frequency are complex, hence, cannot be modeled by the adiabatic pulsation code (assumes real eigenfrequencies) used in these calculations.

  5. Coupled vibro-acoustic model updating using frequency response functions

    NASA Astrophysics Data System (ADS)

    Nehete, D. V.; Modak, S. V.; Gupta, K.

    2016-03-01

    Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.

  6. Low- and high-frequency nonlinear acoustic phenomena in a magnesite.

    PubMed

    Nazarov, V E; Kolpakov, A B

    2014-02-01

    The results of experimental and theoretical studies of nonlinear acoustic phenomena (amplitude-dependent losses, resonant frequency shifts, damping of weak ultrasonic pulses and their carrier frequency phase delay under action of a powerful low-frequency pumping wave as well as amplitude-phase self-action of the finite-amplitude ultrasonic pulses) in a magnesite rod are presented. Analytical description of the observed phenomena was carried out within the frameworks of the phenomenological state equations that contain low-frequency hysteretic nonlinearity and both high-frequency dissipative and elastic nonlinearity. From comparison of experimental and analytical amplitude-frequency dependences of nonlinear phenomena, the values of magnesite acoustic nonlinearity parameters were determined. The frequency dependences have been discovered for hysteretic (in a range 3.6-17.2 kHz) as well as dissipative and elastic nonlinearity (in a range 50-370 kHz).

  7. Development and optimization of acoustic bubble structures at high frequencies.

    PubMed

    Lee, Judy; Ashokkumar, Muthupandian; Yasui, Kyuichi; Tuziuti, Toru; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

    2011-01-01

    At high ultrasound frequencies, active bubble structures are difficult to capture due to the decrease in timescale per acoustic cycle and size of bubbles with increasing frequencies. However the current study demonstrates an association between the spatial distribution of visible bubbles and that of the active bubble structure established in the path of the propagating acoustic wave. By monitoring the occurrence of these visible bubbles, the development of active bubbles can be inferred for high frequencies. A series of still images depicting the formation of visible bubble structures suggest that a strong standing wave field exists at early stages of wave propagation and weakens by the increase in the attenuation of the acoustic wave, caused by the formation of large coalesced bubbles. This attenuation is clearly demonstrated by the occurrence of a force which causes bubbles to be driven toward the liquid surface and limit standing wave fields to near the surface. This force is explained in terms of the acoustic streaming and traveling wave force. It is found that a strong standing wave field is established at 168 kHz. At 448 kHz, large coalesced bubbles can significantly attenuate the acoustic pressure amplitude and weaken the standing wave field. When the frequency is increased to 726 kHz, acoustic streaming becomes significant and is the dominant force behind the disruption of the standing wave structure. The disruption of the standing wave structure can be minimized under certain pulse ON and OFF ratios.

  8. Mid-frequency sound propagation through internal waves at short range with synoptic oceanographic observations.

    PubMed

    Rouseff, Daniel; Tang, Dajun; Williams, Kevin L; Wang, Zhongkang; Moum, James N

    2008-09-01

    Preliminary results are presented from an analysis of mid-frequency acoustic transmission data collected at range 550 m during the Shallow Water 2006 Experiment. The acoustic data were collected on a vertical array immediately before, during, and after the passage of a nonlinear internal wave on 18 August, 2006. Using oceanographic data collected at a nearby location, a plane-wave model for the nonlinear internal wave's position as a function of time is developed. Experimental results show a new acoustic path is generated as the internal wave passes above the acoustic source.

  9. Acoustic beam splitting at low GHz frequencies in a defect-free phononic crystal

    NASA Astrophysics Data System (ADS)

    Guo, Yuning; Brick, Delia; Großmann, Martin; Hettich, Mike; Dekorsy, Thomas

    2017-01-01

    The directional waveguiding in a 2D phononic crystal is simulated based on the analysis of equifrequency contours. This approach is utilized to investigate acoustic beam splitting in a defect-free nanostructure in the low GHz range. We find relaxed limitations regarding the source parameters compared to similar approaches in the sonic regime. Finally, we discuss the possibility to design an acoustic interferometer device at the nanoscale at GHz frequencies.

  10. Low-Frequency Acoustic Signals Propagation in Buried Pipelines

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, A. L.; Lapshin, B. M.

    2016-01-01

    The article deals with the issues concerning acoustic signals propagation in the large-diameter oil pipelines caused by mechanical action on the pipe body. Various mechanisms of signals attenuation are discussed. It is shown that the calculation of the attenuation caused only by internal energy loss, i.e, the presence of viscosity, thermal conductivity and liquid pipeline wall friction lead to low results. The results of experimental studies, carried out using the existing pipeline with a diameter of 1200 mm. are shown. It is experimentally proved that the main mechanism of signal attenuation is the energy emission into the environment. The numerical values of attenuation coefficients that are 0,14- 0.18 dB/m for the pipeline of 1200 mm in diameter, in the frequency range from 50 Hz to 500 Hz, are determined.

  11. Multiple-frequency surface acoustic wave devices as sensors

    NASA Astrophysics Data System (ADS)

    Ricco, Antonio J.; Martin, Stephen J.

    We have designed, fabricated, and tested a multiple-frequency acoustic wave (MUFAW) device on ST-cut quartz with nominal surface acoustic wave (SAW) center frequencies of 16, 40, 100, and 250 MHz. The four frequencies are obtained by patterning four sets of input and output interdigital transducers of differing periodicities on a single substrate. Such a device allows the frequency dependence of AW sensor perturbations to be examined, aiding in the elucidation of the operative interaction mechanism(s). Initial measurements of the SAW response to the vacuum deposition of a thin nickel film show the expected frequency dependence of mass sensitivity in addition to the expected frequency independence of the magnitude of the acoustoelectric effect. By measuring changes in both wave velocity and attenuation at multiple frequencies, extrinsic perturbations such as temperature and pressure changes are readily differentiated from one another and from changes in surface mass.

  12. San Clemente Island Undersea Range Acoustic Experiment, July 2002

    DTIC Science & Technology

    2006-05-31

    sonic amplifier, FM modulator, VHF transmitter, and antenna (see Figure 15). Ocean acoustic pressure waves create movement in the sonobuoy hydrophone...The hydrophone creates a resultant voltage out, the preamp amplifies the hydrophone voltage, the sonic 16 amplifier shapes and pre-whitens the...frequency will create distorted signals, or a non-linear output. The FM bandwidth approximations are determined by: • 2 x peak deviation + 2 x highest

  13. Acoustic properties of a porous glass (vycor) at hypersonic frequencies.

    PubMed

    Levelut, C; Pelous, J

    2007-10-17

    Brillouin scattering experiments have been performed from 5 to 1600 K in vycor, a porous silica glass. The acoustic velocity and attenuation at hypersonic frequencies are compared to those of bulk silica and others porous silica samples. The experimental evidence for the influence of porosity on the scattering by acoustic waves is compared to calculations. The correlation between internal friction and thermal conductivity at low temperature is discussed.

  14. Fluctuations in High Frequency Acoustic Propagation

    DTIC Science & Technology

    2001-09-30

    S. Kim, G. Edelmann , W.S. Hodgkiss, W.A. Kuperman, H.C. Song, and T. Akal, “Spatial resolution of time reversal arrays in shallow water,” J...Acoust. Soc. Am. 110(2): 820-829 (2001). G.F. Edelmann , T.Akal, W.S. Hodgkiss, S. Kim, W.A. Kuperman, and H.C. Song, “An initial demonstration of

  15. Applications of swept-frequency acoustic interferometry technique in chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.; Lizon, D.; Hasse, R.

    1996-09-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range completely noninvasively from outside a container (e.g., pipe, tank, reactor vessel, etc.,). These acoustic parameters, along with their frequency-dependence, can be used to identify various chemicals. This technique can be adapted for a range of chemical diagnostic applications, particularly, in process control where monitoring of acoustic properties of chemicals may provide appropriate feedback information. Both experimental data and theoretical modeling are presented. Examples of several novel applications of the SFAI technique are discussed.

  16. Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego

    2015-01-01

    The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.

  17. High Frequency Acoustic Propagation using Level Set Methods

    DTIC Science & Technology

    2007-01-01

    solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...curvature can be extracted at any point of the front from the level set function (provided the normal and curvature are well-defined at that point ), and... points per wavelength to resolve the wave). Ray tracing is therefore the current standard for high frequency propagation modeling. LSM may provide

  18. Observations of clustering inside oceanic bubble clouds and the effect on short-range acoustic propagation.

    PubMed

    Weber, Thomas C

    2008-11-01

    It has recently been shown [Weber, T. C. et al. (2007). "Acoustic propagation through clustered bubble clouds," IEEE J. Ocean. Eng. 32, 513-523] that gas bubble clustering plays a role in determining the acoustic field characteristics of bubbly fluids. In particular, it has been shown that clustering changes the bubble-induced attenuation as well as the ping-to-ping variability in the acoustic field. The degree to which bubble clustering exists in nature, however, is unknown. This paper describes a method for quantifying bubble clustering using a high frequency (400 kHz) multibeam sonar, and reports on observations of near-surface bubble clustering during a storm (14.6 m/s wind speed) in the Gulf of Maine. The multibeam sonar data are analyzed to estimate the pair correlation function, a measure of bubble clustering. In order to account for clustering in the mean acoustic field, a modification to the effective medium wave number is made. With this modification, the multibeam sonar observations are used to predict the effect of clustering on the attenuation of the mean field for short-range propagation (1 m) at frequencies between 10 and 350 kHz. Results for this specific case show that clustering can cause the attenuation to change by 20%-80% over this frequency range.

  19. The feasibility of measuring ocean pH by long-range acoustics

    NASA Astrophysics Data System (ADS)

    Worcester, Peter F.

    1989-04-01

    Low frequency (<1000 Hz) sound absorption in the ocean depends exponentially on ocean pH. While the absolute amplitudes measured in long-range (order of 1000 km) acoustic transmission experiments depend in a complex manner on ocean structure and are difficult to interpret without ambiguity, measurements of differential absorption as a function of frequency contain significant information. For surface-reflected rays (RSR) there is the additional factor of frequency-dependent reflectivity. In principle, a comparison of transmitted and received acoustic spectra can be inverted to obtain ocean pH and surface roughness. Calculations performed with preliminary data from a 750-km path in the North Pacific give qualitative agreement with theory (higher frequencies are attenuated more than lower frequencies) but are inadequate for quantitative comparisons (the experiment was not optimized for differential attenuation measurements). Our conclusion is that it is possible, but not easy, to obtain quantitative information on ocean pH and surface roughness from measurements of differential attenuation with frequency along resolved ray paths. To obtain an accuracy of 0.05 in pH with a 750-km transmission at 550+/-100 Hz would require about 100 independent samples for the North Pacific (pH~7.7) and 60 independent samples for the Atlantic (pH~8.0) in order to achieve adequate averaging of amplitude fluctuations induced by internal waves and ambient acoustic noise.

  20. The Effects of Sediment Properties on Low Frequency Acoustic Propagation

    DTIC Science & Technology

    2013-09-30

    Ballroom Music Spillover into a Beluga Whale Aquarium Exhibit,” Advances in Acoustics and Vibration, 2012 (doi:10.1155/2012/402130) [ refereed]. 12...speeds, and attenuation profiles utilizing the broadband Combustive Sound Source (CSS) developed at the Applied Research Laboratories (ARL), University...Adjoint based inversion The adjoint inversion method has been used to measure both the range independent ocean sound speed environment and acoustic

  1. Acoustic angiography: a new high frequency contrast ultrasound technique for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Shelton, Sarah E.; Lindsey, Brooks D.; Gessner, Ryan; Lee, Yueh; Aylward, Stephen; Lee, Hyunggyun; Cherin, Emmanuel; Foster, F. Stuart; Dayton, Paul A.

    2016-05-01

    Acoustic Angiography is a new approach to high-resolution contrast enhanced ultrasound imaging enabled by ultra-broadband transducer designs. The high frequency imaging technique provides signal separation from tissue which does not produce significant harmonics in the same frequency range, as well as high resolution. This approach enables imaging of microvasculature in-vivo with high resolution and signal to noise, producing images that resemble x-ray angiography. Data shows that acoustic angiography can provide important information about the presence of disease based on vascular patterns, and may enable a new paradigm in medical imaging.

  2. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Zhang, Yuning; Li, Shengcai

    2017-03-01

    The multi-frequency acoustic excitation has been employed to enhance the effects of oscillating bubbles in sonochemistry for many years. In the present paper, nonlinear dynamic oscillations of bubble under dual-frequency acoustic excitation are numerically investigated within a broad range of parameters. By investigating the power spectra and the response curves of oscillating bubbles, two unique features of bubble oscillations under dual-frequency excitation (termed as "combination resonance" and "simultaneous resonance") are revealed and discussed. Specifically, the amplitudes of the combination resonances are quantitatively compared with those of other traditional resonances (e.g. main resonances, harmonics). The influences of several paramount parameters (e.g., the bubble radius, the acoustic pressure amplitude, the energy allocation between two component waves) on nonlinear bubble oscillations are demonstrated.

  3. High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

    DTIC Science & Technology

    2006-09-30

    with Michael Porter and the ONR High Frequency Initiative and the ONR PLUSNet program. REFERENCES M. B. Porter and H. P. Bucker, “Gaussian...Harrison and Michael Porter , “A passive fathometer for determining bottom depth and imaging seabed layering using ambient noise”, J. Acoust. Soc. Am., 120

  4. Optimization of acoustic scattering from dual-frequency driven microbubbles at the difference frequency.

    PubMed

    Wyczalkowski, Matthew; Szeri, Andrew J

    2003-06-01

    The second harmonic radiation of acoustically driven bubbles is a useful discriminant for their presence in clinical ultrasound applications. It is useful because the scatter from a bubble at a frequency different from the driving can have a contrast-to-tissue ratio better than at the drive frequency. In this work a technique is developed to optimize the scattering from a microbubble at a frequency different from the driving. This is accomplished by adjusting the relative phase and amplitudes of the components of a dual-frequency incident ultrasound wave form. The investigation is focused primarily on the example of dual-mode driving at frequencies of 1 MHz and 3 MHz, with the scattering optimized at 2 MHz. Bubble radii of primary interest are 0.5 to 2 microm and driving amplitudes to 0.5 atm. Bubbles in this size range are sensitive to modulation of driving. It is shown that an optimal forcing scheme can increase the target response eightfold or more. This suggests new applications in imaging and in bubble detection.

  5. Detection of fouling in coal gasification ducts using acoustic ranging

    SciTech Connect

    Noteboom, J.W. . Technology and Service Div.)

    1992-09-01

    Acoustic ranging as a technology for pipe inspection under atmospheric conditions has been applied in the field for some years now. Under contract of the Electric Power Research Institute, the Dutch Electricity Generating Companies and Generating Board (Sep) the potential of this technology for online application in high pressure gasifier plants was investigated. Experiments were performed to test the feasibility of acoustic ranging technology to detect, locate and size deposits in grey water lines and in high-temperature, high pressure gas-filled transfer pipes. Two test loops were constructed. The interaction between pipewall and water medium as well as a strong dependence of the amount of dissolved gas on the sound velocity discourages practical application in water lines. However, under ideal conditions larger obstructions can be detected. Tests conducted in high pressure (up to 40 bar) and high temperature (up to 320[degrees]C) gas pipes have been successful and there appears to be no major problem in using this technique for pipe fouling monitoring in gasifiers. An effective acoustic pulse exciter was developed under the program. Equipment specifications for application in a gasifier transfer pipe are included in this report.

  6. Theoretical detection threshold of the proton-acoustic range verification technique

    SciTech Connect

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei; Xiang, Liangzhong

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic

  7. Theoretical detection threshold of the proton-acoustic range verification technique

    PubMed Central

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-01-01

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range

  8. Microfluidic particle manipulation using high frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Ai, Ye; Collins, David J.

    2016-11-01

    Precise manipulation of particles and biological cells remains a very active research area in microfluidics. Among various force fields applied for microfluidic manipulations, acoustic waves have superior propagating properties in solids and fluids, which can readily enable non-contact cell manipulation in long operating distances. Exploiting acoustic waves for fluid and cell manipulation in microfluidics has led to a newly emerging research area, acoustofluidics. In this work, I will present particle and cell manipulation in microfluidics using high frequency surface acoustic waves (SAW). In particular, I will discuss a unique design of a focused IDT (FIDT) structure, which is able to generate a highly localized SAW field on the order of 20 µm wide. This highly focused acoustic beam has an effective manipulation area size that is comparable to individual micron-sized particles. Here, I demonstrate the use of this highly localized SAW field for single particle level sorting with sub-millisecond pulses and selective capture of particles. Based on the presented studies on acoustic particle manipulation, I envision that the merging of acoustics and microfluidics could enable various particle and cell manipulations needed in microfluidic applications. We acknowledge the support received from Singapore University of Technology and Design (SUTD)-Massachusetts Institute of Technology (MIT) International Design Center (IDG11300101) and SUTD Startup Research Grant (SREP13053) awarded to Y.A.

  9. A new multichannel spatial diversity technique for long-range acoustic communications in shallow water

    NASA Astrophysics Data System (ADS)

    Beaujean, Pierre-Philippe J.; Bernault, Emmanuel P.

    2002-11-01

    A new multichannel spatial diversity technique has been developed for underwater acoustic communications in very shallow waters. This technique combines a novel synchronization method with maximum-likelihood symbol estimation. It was tested with a multichannel Mills-Cross receiver using various numbers of elements. The FAU general purpose acoustic modem source transmitted messages using four types of frequency-hopped multiple-frequency-chirp-keying (FH-MFSK) modulation: 4 hops at 221 coded bits per second (cps), 2 hops at 442 cps, or no hopping at 1172 cps. These types of modulation allowed for robust data transmission in adverse environment. The modem operated between 16 and 32 kHz at 192-dB source level, at ranges from 1 to 5 km in 40 ft of water. Using only four channels of the Mills-Cross receiver array, messages coded at 1172 cps were received with a frame error rate (FER) of 0% at a range of 3 km. In the same four-channel configuration, messages coded at 221 cps were received with no frame error at 5 km. The experimental results matched the performance predictions from the Crepeaus model. This reliable and computation-efficient method can be implemented on new generations of embedded acoustic modems, such as the four-channel FAU acoustic modem, and can provide significant improvements in communication performance.

  10. Acoustic trapping with a high frequency linear phased array.

    PubMed

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K Kirk

    2012-11-19

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  11. Acoustic trapping with a high frequency linear phased array

    PubMed Central

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-01-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array. PMID:23258939

  12. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500-2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  13. Acoustic propagation through anisotropic internal wave fields: transmission loss, cross-range coherence, and horizontal refraction.

    PubMed

    Oba, Roger; Finette, Steven

    2002-02-01

    Results of a computer simulation study are presented for acoustic propagation in a shallow water, anisotropic ocean environment. The water column is characterized by random volume fluctuations in the sound speed field that are induced by internal gravity waves, and this variability is superimposed on a dominant summer thermocline. Both the internal wave field and resulting sound speed perturbations are represented in three-dimensional (3D) space and evolve in time. The isopycnal displacements consist of two components: a spatially diffuse, horizontally isotropic component and a spatially localized contribution from an undular bore (i.e., a solitary wave packet or solibore) that exhibits horizontal (azimuthal) anisotropy. An acoustic field is propagated through this waveguide using a 3D parabolic equation code based on differential operators representing wide-angle coverage in elevation and narrow-angle coverage in azimuth. Transmission loss is evaluated both for fixed time snapshots of the environment and as a function of time over an ordered set of snapshots which represent the time-evolving sound speed distribution. Horizontal acoustic coherence, also known as transverse or cross-range coherence, is estimated for horizontally separated points in the direction normal to the source-receiver orientation. Both transmission loss and spatial coherence are computed at acoustic frequencies 200 and 400 Hz for ranges extending to 10 km, a cross-range of 1 km, and a water depth of 68 m. Azimuthal filtering of the propagated field occurs for this environment, with the strongest variations appearing when propagation is parallel to the solitary wave depressions of the thermocline. A large anisotropic degradation in horizontal coherence occurs under the same conditions. Horizontal refraction of the acoustic wave front is responsible for the degradation, as demonstrated by an energy gradient analysis of in-plane and out-of-plane energy transfer. The solitary wave packet is

  14. Analysis of passive acoustic ranging of helicopters from the joint acoustic propagation experiment

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Morgan, John C.

    1993-01-01

    For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station (WES) have been performing research dealing with the application of sensors for detection of military targets. The WES research has included the use of seismic, acoustic, magnetic, and other sensors to detect, track, and classify military ground targets. Most of the WES research has been oriented toward the employment of such sensors in a passive mode. Techniques for passive detection are of particular interest in the Army because of the advantages over active detection. Passive detection methods are not susceptible to interception, detection, jamming, or location of the source by the threat. A decided advantage for using acoustic and seismic sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of low flying helicopters at long distances without visual contact. This study was conducted to analyze the passive acoustic ranging (PAR) concept using a more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

  15. Effect of pulse duration on the acoustic frequency emissions during the laser-induced breakdown of atmospheric air.

    PubMed

    Manikanta, E; Vinoth Kumar, L; Venkateshwarlu, P; Leela, Ch; Kiran, P Prem

    2016-01-20

    Acoustic shock waves (ASWs) in the frequency range of 30-120 kHz generated during laser-induced breakdown (LIB) of ambient air using 7 ns and 30 ps pulse durations are studied. The specific frequency range and peak amplitudes are observed to be different for nanosecond (ns) and picosecond (ps) LIB. The ASW frequencies for ps-LIB lie between 90 and 120 kHz with one dominant peak, whereas for ns-LIB, two dominant peaks with frequencies in the 30-70 kHz and 80-120 kHz range are observed. These frequencies are observed to be laser pulse intensity dependent. With increasing energy of ns laser pulses, acoustic frequencies move toward the audible frequency range. The variation in the acoustic parameters, such as peak-to-peak pressures, signal energy, frequency and acoustic pulse widths as a function of laser energy, for two different pulse durations are presented in detail and compared. The acoustic emissions are observed to be higher for ns-LIB than ps-LIB, indicating higher conversion efficiency of optical energy into mechanical energy.

  16. The Suppression of Dominant Acoustic Frequencies in MRI

    NASA Astrophysics Data System (ADS)

    Shou, Xingxian; Brown, Robert

    2011-03-01

    Patient discomfort and brain imaging distortion are serious MRI acoustic noise problems arising from the rapid switching on and off of gradient coils in the presence of the strong Larmor magnetic field. A study is made of dominant frequencies in the acoustic noise spectrum and, motivated by both spring and string ideas, we propose the cancellation of selected frequencies by appropriate gradient pulse sequence design. From both simulations and experiments, vibrations resulting from an impulsive force associated with a ramping up of a gradient pulse are shown to be cancelled upon the application of another impulsive force coming from the appropriately timed ramping down of that pulse. A method for the suppression of multiple-frequency contributions involving a series of gradient pulses with variable timings is developed and confirmed by experiment. Whether we refer to reduction in terms of dB (about 30-40 dB per peak), or to the verdict of a listener, the conclusion is that a marked reduction in sound can be achieved when at least three of the dominant frequency peaks are suppressed. A variety of pulse profiles and timing combinations can be used to attenuate important contributions to the acoustic spectrum. Supported by the Ohio Third Frontier Program.

  17. A frequency selective acoustic transducer for directional Lamb wave sensing.

    PubMed

    Senesi, Matteo; Ruzzene, Massimo

    2011-10-01

    A frequency selective acoustic transducer (FSAT) is proposed for directional sensing of guided waves. The considered FSAT design is characterized by a spiral configuration in wavenumber domain, which leads to a spatial arrangement of the sensing material producing output signals whose dominant frequency component is uniquely associated with the direction of incoming waves. The resulting spiral FSAT can be employed both for directional sensing and generation of guided waves, without relying on phasing and control of a large number of channels. The analytical expression of the shape of the spiral FSAT is obtained through the theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. Testing is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The discrete array approximates the continuous spiral FSAT geometry, and provides the flexibility to test several configurations. The experimental results demonstrate the strong frequency dependent directionality of the spiral FSAT and suggest its application for frequency selective acoustic sensors, to be employed for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health.

  18. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

    DTIC Science & Technology

    2015-09-30

    range of wind -driven conditions. The model will focus on signal coherence, and second-order amplitude and Doppler statistics. A second long-term goal...surface scattering in the literature are rare. The physics of very high frequency (VHF) scattering is expected to be strongly dependent on wind speed...Doppler and coherence of VHF acoustic signals scattered from a rough ocean surface driven by a range of wind speeds. The second is to investigate the

  19. Membrane-constrained acoustic metamaterials for low frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaole; Zhao, Hui; Luo, Xudong; Huang, Zhenyu

    2016-01-01

    We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

  20. Lexical frequency and acoustic reduction in spoken Dutch

    NASA Astrophysics Data System (ADS)

    Pluymaekers, Mark; Ernestus, Mirjam; Baayen, R. Harald

    2005-10-01

    This study investigates the effects of lexical frequency on the durational reduction of morphologically complex words in spoken Dutch. The hypothesis that high-frequency words are more reduced than low-frequency words was tested by comparing the durations of affixes occurring in different carrier words. Four Dutch affixes were investigated, each occurring in a large number of words with different frequencies. The materials came from a large database of face-to-face conversations. For each word containing a target affix, one token was randomly selected for acoustic analysis. Measurements were made of the duration of the affix as a whole and the durations of the individual segments in the affix. For three of the four affixes, a higher frequency of the carrier word led to shorter realizations of the affix as a whole, individual segments in the affix, or both. Other relevant factors were the sex and age of the speaker, segmental context, and speech rate. To accommodate for these findings, models of speech production should allow word frequency to affect the acoustic realizations of lower-level units, such as individual speech sounds occurring in affixes.

  1. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2011-09-01

    scattering in ocean environments with special emphasis on propagation in shallow water waveguides and scattering from ocean sediments. 3 ) Development of...TYPE 3 . DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE High Frequency Acoustic Reflection and Transmission in Ocean Sediments...REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 3

  2. Propagation of waves of acoustic frequencies in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1973-01-01

    The propagation of waves of acoustic frequencies in curved ducts is studied for the first four modes. The analysis makes use of Bessel functions to construct curves of wave number in the duct versus imposed wave number. The results apply to ducts of arbitrary width and arbitrary radii of curvature. The characteristics of motion in a bend are compared with propagation of waves in a straight duct, and important differences in the behavior of waves are noted.

  3. THE ACOUSTIC CUTOFF FREQUENCY OF THE SUN AND THE SOLAR MAGNETIC ACTIVITY CYCLE

    SciTech Connect

    Jimenez, A.; Palle, P. L.; Garcia, R. A.

    2011-12-20

    The acoustic cutoff frequency-the highest frequency for acoustic solar eigenmodes-is an important parameter of the solar atmosphere as it determines the upper boundary of the p-mode resonant cavities. At frequencies beyond this value, acoustic disturbances are no longer trapped but are traveling waves. Interference among them gives rise to higher-frequency peaks-the pseudomodes-in the solar acoustic spectrum. The pseudomodes are shifted slightly in frequency with respect to p-modes, making possible the use of pseudomodes to determine the acoustic cutoff frequency. Using data from the GOLF and VIRGO instruments on board the Solar and Heliospheric Observatory spacecraft, we calculate the acoustic cutoff frequency using the coherence function between both the velocity and intensity sets of data. By using data gathered by these instruments during the entire lifetime of the mission (1996 until the present), a variation in the acoustic cutoff frequency with the solar magnetic activity cycle is found.

  4. Range-Dependent Acoustic Propagation in Shallow Water with Elastic Bottom Effects

    DTIC Science & Technology

    2014-09-30

    JASA. This article documents the incorporation of seismic-like sources into the PE propagation model work important for ocean acoustic signals...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Range-Dependent Acoustic Propagation in Shallow Water...quantitative forward modeling in range dependent, bottom-interacting acoustic propagation including sediment anisotropy and anelasticty. OBJECTIVES

  5. Long-range spin Seebeck effect and acoustic spin pumping.

    PubMed

    Uchida, K; Adachi, H; An, T; Ota, T; Toda, M; Hillebrands, B; Maekawa, S; Saitoh, E

    2011-10-01

    Imagine that a metallic wire is attached to a part of a large insulator, which itself exhibits no magnetization. It seems impossible for electrons in the wire to register where the wire is positioned on the insulator. Here we found that, using a Ni₈₁Fe₁₉/Pt bilayer wire on an insulating sapphire plate, electrons in the wire recognize their position on the sapphire. Under a temperature gradient in the sapphire, surprisingly, the voltage generated in the Pt layer is shown to reflect the wire position, although the wire is isolated both electrically and magnetically. This non-local voltage is due to the coupling of spins and phonons: the only possible carrier of information in this system. We demonstrate this coupling by directly injecting sound waves, which realizes the acoustic spin pumping. Our finding provides a persuasive answer to the long-range nature of the spin Seebeck effect, and it opens the door to 'acoustic spintronics' in which sound waves are exploited for constructing spin-based devices.

  6. A frequency domain blind deconvolution algorithm in acoustics

    NASA Astrophysics Data System (ADS)

    Gramann, Mark R.; Erling, Josh G.; Roan, Michael J.

    2003-10-01

    It is common in acoustics to measure a signal that has been corrupted by an unknown filtering function during propagation from an unknown source. Blind deconvolution is a technique for learning and applying the inverse of the unknown channel impulse response in order to recover the original source signal. One approach to accomplishing this task is based on an adaptive nonlinear algorithm using mutual information as a cost function [A. J. Bell and T. J. Sejnowski, Neural Comput. 7, 1129-1159 (1995)]. A new frequency domain implementation of this algorithm is presented which greatly reduces computational cost. The frequency domain approach allows adaptive learning rates to be applied individually to each frequency bin of the inverse filter. This technique can lead to improved convergence times for filters with a large spread of frequency response magnitudes. Preliminary results suggest that a factor of two reduction in convergence time and a factor of ten reduction in computational cost can be attained. Experimental results for several simple acoustical systems are presented comparing the performance of the pre-existing time domain algorithm and the new frequency domain implementation. [Work supported by Dr. David Drumheller, ONR Code 333, Contract No. N00014-00-G-0058.

  7. Shifting fundamental frequency in simulated electric-acoustic listening.

    PubMed

    Brown, Christopher A; Scherrer, Nicole M; Bacon, Sid P

    2010-09-01

    Previous experiments have shown significant improvement in speech intelligibility under both simulated [Brown, C. A., and Bacon, S. P. (2009a). J. Acoust. Soc. Am. 125, 1658-1665; Brown, C. A., and Bacon, S. P. (2010). Hear. Res. 266, 52-59] and real [Brown, C. A., and Bacon, S. P. (2009b). Ear Hear. 30, 489-493] electric-acoustic stimulation when the target speech in the low-frequency region was replaced with a tone modulated in frequency to track the changes in the target talker's fundamental frequency (F0), and in amplitude with the amplitude envelope of the target speech. The present study examined the effects in simulation of applying these cues to a tone lower in frequency than the mean F0 of the target talker. Results showed that shifting the frequency of the tonal carrier downward by as much as 75 Hz had no negative impact on the benefit to intelligibility due to the tone, and that even a shift of 100 Hz resulted in a significant benefit over simulated electric-only stimulation when the sensation level of the tone was comparable to that of the tones shifted by lesser amounts.

  8. Low frequency acoustic pulse propagation in temperate forests.

    PubMed

    Albert, Donald G; Swearingen, Michelle E; Perron, Frank E; Carbee, David L

    2015-08-01

    Measurements of acoustic pulse propagation for a 30-m path were conducted in an open field and in seven different forest stands in the northeastern United States consisting of deciduous, evergreen, or mixed tree species. The waveforms recorded in forest generally show the pulse elongation characteristic of propagation over a highly porous ground surface, with high frequency scattered arrivals superimposed on the basic waveform shape. Waveform analysis conducted to determine ground properties resulted in acoustically determined layer thicknesses of 4-8 cm in summer, within 2 cm of the directly measured thickness of the litter layers. In winter the acoustic thicknesses correlated with the site-specific snow cover depths. Effective flow resistivity values of 50-88 kN s m(-4) were derived for the forest sites in summer, while lower values typical for snow were found in winter. Reverberation times (T60) were typically around 2 s, but two stands (deciduous and pruned spruce planted on a square grid) had lower values of about 1.2 s. One site with a very rough ground surface had very low summer flow resistivity value and also had the longest reverberation time of about 3 s. These measurements can provide parameters useful for theoretical predictions of acoustic propagation within forests.

  9. Frequency overlap between electric and acoustic stimulation and speech-perception benefit in patients with combined electric and acoustic stimulation

    PubMed Central

    Zhang, Ting; Spahr, Anthony J.; Dorman, Michael F.

    2010-01-01

    Objectives Our aim was to assess, for patients with a cochlear implant in one ear and low-frequency acoustic hearing in the contralateral ear, whether reducing the overlap in frequencies conveyed in the acoustic signal and those analyzed by the cochlear implant speech processor would improve speech recognition. Design The recognition of monosyllabic words in quiet and sentences in noise was evaluated in three listening configurations: electric stimulation alone, acoustic stimulation alone, and combined electric and acoustic stimulation. The acoustic stimuli were either unfiltered or low-pass (LP) filtered at 250 Hz, 500 Hz, or 750 Hz. The electric stimuli were either unfiltered or high-pass (HP) filtered at 250 Hz, 500 Hz or 750 Hz. In the combined condition the unfiltered acoustic signal was paired with the unfiltered electric signal, the 250 LP acoustic signal was paired with the 250 Hz HP electric signal, the 500 Hz LP acoustic signal was paired with the 500 Hz HP electric signal and the 750 Hz LP acoustic signal was paired with the 750 Hz HP electric signal. Results For both acoustic and electric signals performance increased as the bandwith increased. The highest level of performance in the combined condition was observed in the unfiltered acoustic plus unfiltered electric condition. Conclusions Reducing the overlap in frequency representation between acoustic and electric stimulation does not increase speech understanding scores for patients who have residual hearing in the ear contralateral to the implant. We find that acoustic information below 250 Hz significantly improves performance for patients who combine electric and acoustic stimulation and accounts for the majority of the speech-perception benefit when acoustic stimulation is combined with electric stimulation. PMID:19915474

  10. Range compensation for backscattering measurements in the difference-frequency nearfield of a parametric sonar.

    PubMed

    Foote, Kenneth G

    2012-05-01

    Measurement of acoustic backscattering properties of targets requires removal of the range dependence of echoes. This process is called range compensation. For conventional sonars making measurements in the transducer farfield, the compensation removes effects of geometrical spreading and absorption. For parametric sonars consisting of a parametric acoustic transmitter and a conventional-sonar receiver, two additional range dependences require compensation when making measurements in the nonlinearly generated difference-frequency nearfield: an apparently increasing source level and a changing beamwidth. General expressions are derived for range compensation functions in the difference-frequency nearfield of parametric sonars. These are evaluated numerically for a parametric sonar whose difference-frequency band, effectively 1-6 kHz, is being used to observe Atlantic herring (Clupea harengus) in situ. Range compensation functions for this sonar are compared with corresponding functions for conventional sonars for the cases of single and multiple scatterers. Dependences of these range compensation functions on the parametric sonar transducer shape, size, acoustic power density, and hydrography are investigated. Parametric range compensation functions, when applied with calibration data, will enable difference-frequency echoes to be expressed in physical units of volume backscattering, and backscattering spectra, including fish-swimbladder-resonances, to be analyzed.

  11. 33 CFR 86.01 - Frequencies and range of audibility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Frequencies and range of... Frequencies and range of audibility. The fundamental frequency of the signal shall lie within the range 70-525 Hz. The range of audibility of the signal from a whistle shall be determined by those...

  12. 33 CFR 86.01 - Frequencies and range of audibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Frequencies and range of... Frequencies and range of audibility. The fundamental frequency of the signal shall lie within the range 70-525 Hz. The range of audibility of the signal from a whistle shall be determined by those...

  13. 33 CFR 86.01 - Frequencies and range of audibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Frequencies and range of... Frequencies and range of audibility. The fundamental frequency of the signal shall lie within the range 70-525 Hz. The range of audibility of the signal from a whistle shall be determined by those...

  14. 33 CFR 86.01 - Frequencies and range of audibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Frequencies and range of... Frequencies and range of audibility. The fundamental frequency of the signal shall lie within the range 70-525 Hz. The range of audibility of the signal from a whistle shall be determined by those...

  15. 33 CFR 86.01 - Frequencies and range of audibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Frequencies and range of... Frequencies and range of audibility. The fundamental frequency of the signal shall lie within the range 70-525 Hz. The range of audibility of the signal from a whistle shall be determined by those...

  16. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  17. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  18. WE-EF-303-09: Proton-Acoustic Range Verification in Proton Therapy

    SciTech Connect

    Ahmad, M; Xing, L; Xiang, L

    2015-06-15

    Purpose: We investigated proton-acoustic signals detection for range verification with current ultrasound instruments in typical clinical scenarios. Using simulations that included a realistic noise model, we determined the theoretical minimum dose required to generate detectable proton-acoustic signals. Methods: An analytical model was used to calculate the dose distributions and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. The acoustic waves propagating from the Bragg peak were modeled by the general 3D pressure wave equation and convolved with Gaussian kernels to simulate various proton pulse widths (0.1 – 10 ms). A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth band-pass filter, and ii) randomly generated noise based on a model of thermal noise in the transducer. The signal-to-noise ratio was calculated, determining the minimum number of protons and dose required per pulse. The maximum spatial resolution was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer center frequency (70–380 kHz). The minimum number of protons were on the order of 0.6–6 million per pulse, leading to 3–110 mGy dose per pulse at the Bragg peak, depending on the spot size. The acoustic signal consisted of lower frequencies for wider pulses, leading to lower noise levels, but also worse spatial resolution. The resolution was 1-mm for a 0.1-µs pulse width, but increased to 5-mm for a 10-µs pulse width. Conclusion: We have established minimum dose detection limits for proton-acoustic range validation. These limits correspond to a best case scenario with a large detector with no losses and only detector thermal noise. Feasible proton-acoustic range detection will require at least 10{sup 7} protons per pulse and pulse widths ≤ 1-µs.

  19. Characteristics of different frequency ranges in scanning electron microscope images

    SciTech Connect

    Sim, K. S. Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S.

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  20. Low-Frequency Shallow Water Acoustics (20 to 500 Hz),

    DTIC Science & Technology

    1986-05-01

    Shear Wave Velocities and Gradients in Depth The effects of sediment rigidity can also be important for long-range sound...Gershfeld65 used viscoelastic theory to compare the effect of vary- ing shear wave velocity on the angular loss rate as a function of sediment type...1983). 12. H.P. Bucker, J.A. Whitney, and D.L. Keir, "Use of Stoneley waves to determine the shear velocity in ocean sediments," J. Acoust . Soc. Am.

  1. High-resolution acoustic imaging at low frequencies using 3D-printed metamaterials

    NASA Astrophysics Data System (ADS)

    Laureti, S.; Hutchins, D. A.; Davis, L. A. J.; Leigh, S. J.; Ricci, M.

    2016-12-01

    An acoustic metamaterial has been constructed using 3D printing. It contained an array of air-filled channels, whose size and shape could be varied within the design and manufacture process. In this paper we analyze both numerically and experimentally the properties of this polymer metamaterial structure, and demonstrate its use for the imaging of a sample with sub-wavelength dimensions in the audible frequency range.

  2. Range-Dependent Acoustic Propagation in Shallow Water with Elastic Bottom Effects

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Range-Dependent Acoustic Propagation in Shallow Water...bottom-interacting acoustic propagation including sediment anisotropy and anelasticty. OBJECTIVES The specific objectives of this research...are to develop practical theoretical and software tools for employing a fully elastic version of two-way coupled modes for modeling seismo- acoustic

  3. Surface Acoustic Wave Microwave Oscillator and Frequency Synthesizer.

    DTIC Science & Technology

    1980-06-01

    AD-A086 336 TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/ A /5 SURFACE ACOUSTIC WAVE MICROWA VE OSC ILLATOR AND FR EQUENCY SYNTME--ETC(U...DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703 HISAŕ 78 UNCLASSIFIED 6 URTSfaceIO A si WHS ae Micowvef scilltr nermepteOt󈧫 BEFORE COEPETINFOR RE~~~ a ...D OKUI UBRj~ ~~n SpaReT ParkWCAIO OP T05HIS A .11eu.0t13..... IINCLASSTFTF[ gCUNTY CLASSIFICATION OF THIS PAOI(Whin DEla AIRIm Fminimum frequency step

  4. Imaging capability of the higher-frequency subsystem of a dual-frequency acoustic lens sonar system

    NASA Astrophysics Data System (ADS)

    Lopes, Joseph L.; Paustian, Iris C.; Marciniak, Robert; Van Tol, Dave; Folds, Donald L.

    2000-07-01

    An experimental dual-frequency acoustic lens sonar system, designed to detect both buried and non-buried objects is described with emphasis on the higher frequency subsystem. The lower frequency subsystem (35 - 100 kHz) forms conical beams with beam widths near 5 degree(s) using discrete transducer elements in the lens focal plane for both transmission and reception. The higher frequency (1 - 2 MHz) lens system is designed to be contained within the volume of the lower frequency subsystem to create a compact dual-frequency system. The higher frequency system consists of three 20-cm long cylindrical lenses designed to form fan-shaped beams over a 20 degree(s) field of view. The retina is positioned 34 cm from the entrance aperture. A test array containing several discrete elements with 1.0-mm pitch has been designed for initial testing. The final system will use a retina with 80 - 100 elements. The imaging system is designed to generate images with cross-range resolutions from 0.1 degree(s) to 0.25 degree(s), and is designed to be tested in both bistatic or monostatic modes. In the monostatic mode, results of spatial multiplexing of beams in the ratio of 3, 4, and 5 will be compared. The system is designed to make a thorough parametric evaluation of imaging in the 1 - 2 MHz range over a wide range of angular resolutions and to relate design parameters to operational performance for forward looking systems.

  5. Comparison of Numerical Models for Vibro-Acoustic Analysis of Structural Panels in Low Modal Density Range Engaging Air Layers

    NASA Astrophysics Data System (ADS)

    Chimeno-Manguan, M.; Martinz-Calvo, B.; Roibas-Millan, E.; Fajardo, P.; Simon, F.; Lopez-Diez, J.

    2012-07-01

    During launch, satellite and their equipment are subjected to loads of random nature and with a wide frequency range. Their vibro-acoustic response is an important issue to be analysed, for example for folded solar arrays and antennas. The main issue at low modal density is the modelling combinations engaging air layers, structures and external fluid. Depending on the modal density different methodologies, as FEM, BEM and SEA should be considered. This work focuses on the analysis of different combinations of the methodologies previously stated used in order to characterise the vibro-acoustic response of two rectangular sandwich structure panels isolated and engaging an air layer between them under a diffuse acoustic field. Focusing on the modelling of air layers, different models are proposed. To illustrate the phenomenology described and studied, experimental results from an acoustic test on an ARA-MKIII solar array in folded configuration are presented along with numerical results.

  6. Multi-frequency acoustic derivation of particle size using 'off-the-shelf" ADCPs.

    NASA Astrophysics Data System (ADS)

    Haught, D. R.; Wright, S. A.; Venditti, J. G.; Church, M. A.

    2015-12-01

    Suspended sediment particle size in rivers is of great interest due to its influence on riverine and coastal morphology, socio-economic viability, and ecological health and restoration. Prediction of suspended sediment transport from hydraulics remains a stubbornly difficult problem, particularly for the washload component, which is controlled by sediment supply from the drainage basin. This has led to a number of methods for continuously monitoring suspended sediment concentration and mean particle size, the most popular currently being hydroacoustic methods. Here, we explore the possibility of using theoretical inversion of the sonar equation to derive an estimate of mean particle size and standard deviation of the grain size distribution (GSD) using three 'off-the-shelf' acoustic Doppler current profiles (ADCP) with frequencies of 300, 600 and 1200 kHz. The instruments were deployed in the sand-bedded reach of the Fraser River, British Columbia. We use bottle samples collected in the acoustic beams to test acoustics signal inversion methods. Concentrations range from 15-300 mg/L and the suspended load at the site is ~25% sand, ~75 % silt/clay. Measured mean particle radius from samples ranged from 10-40 microns with relative standard deviations ranging from 0.75 to 2.5. Initial results indicate the acoustically derived mean particle radius compares well with measured particle radius, using a theoretical inversion method adapted to the Fraser River sediment.

  7. Applications of swept-frequency acoustic interferometer for nonintrusive detection and identification of chemical warfare compounds

    SciTech Connect

    Sinha, D.N.; Springer, K.; Han, W.; Lizon, D.; Kogan, S.

    1997-12-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a nonintrusive liquid characterization technique developed specifically for detecting and identifying chemical warfare (CW) compounds inside sealed munitions. The SFAI technique can rapidly (less than 20 seconds) and accurately determine sound speed and sound attenuation of a liquid inside a container over a wide frequency range (1 kHz-15 MHz). From the frequency-dependent sound attenuation measurement, liquid density is determined. These three physical properties are used to uniquely identify the CW compounds. In addition, various chemical relaxation processes in liquids and particle size distribution in emulsions can also be determined from the frequency-dependent attenuation measurement. The SFAI instrument is battery-operated and highly portable (< 6 lb.). The instrument has many potential application in industry ranging from sensitive detection (ppm level) of contamination to process control. The theory of the technique will be described and examples of several chemical industry applications will be presented.

  8. Mother-lamb acoustic recognition in sheep: a frequency coding.

    PubMed Central

    Searby, Amanda; Jouventin, Pierre

    2003-01-01

    Ewes of the domestic sheep ( Ovis aries ) display selective maternal investment by restricting care to their own offspring and rejecting alien young. This trait relies on individual recognition processes between ewes and lambs. Whereas identification at the udder is only olfactory, distance recognition is performed through visual and acoustic cues. We studied the effectiveness and modalities of mutual acoustic recognition between ewes and lambs by spectrographic analysis of their vocal signatures and by playbacks of modified calls in the field. Our results show that ewes and their lambs can recognize each other based solely on their calls. The coding of identity within the vocal signatures, previously unknown in sheep, is similar in lamb and ewe: it uses the mean frequency and the spectral energy distribution of the call, namely the timbre of the call. These results point out a simple signature system in sheep that uses only the frequency domain. This engenders a signal with low information content, as opposed to some highly social birds and mammal species that may integrate information both in the temporal and spectral domains. The simplicity of this system is linked to the roles played by vision and olfaction that corroborate the information brought by the vocal signature. PMID:12964977

  9. Microfluidic pumping through miniaturized channels driven by ultra-high frequency surface acoustic waves

    SciTech Connect

    Shilton, Richie J.; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-18

    Surface acoustic waves (SAWs) are an effective means to pump fluids through microchannel arrays within fully portable systems. The SAW-driven acoustic counterflow pumping process relies on a cascade phenomenon consisting of SAW transmission through the microchannel, SAW-driven fluid atomization, and subsequent coalescence. Here, we investigate miniaturization of device design, and study both SAW transmission through microchannels and the onset of SAW-driven atomization up to the ultra-high-frequency regime. Within the frequency range from 47.8 MHz to 754 MHz, we show that the acoustic power required to initiate SAW atomization remains constant, while transmission through microchannels is most effective when the channel widths w ≳ 10 λ, where λ is the SAW wavelength. By exploiting the enhanced SAW transmission through narrower channels at ultra-high frequencies, we discuss the relevant frequency-dependent length scales and demonstrate the scaling down of internal flow patterns and discuss their impact on device miniaturization strategies.

  10. Modulational excitation of low-frequency dust acoustic waves in the Earth's lower ionosphere

    SciTech Connect

    Kopnin, S. I.; Popel, S. I.; Yu, M. Y.

    2007-04-15

    During the observation of Perseid, Leonid, Gemenid, and Orionid meteor showers, stable low-frequency lines in the frequency range of 20-60 Hz were recorded against the radio-frequency noise background. A physical mechanism for this effect is proposed, and it is established that the effect itself is related to the modulational interaction between electromagnetic and dust acoustic waves. The dynamics of the components of a complex (dusty) ionospheric plasma with dust produced from the evolution of meteoric material is described. The conditions for the existence of dust acoustic waves in the ionosphere are considered, and the waves are shown to dissipate energy mainly in collisions of neutral particles with charged dust grains. The modulational instability of electromagnetic waves in a complex (dusty) ionospheric plasma is analyzed and is found to be driven by the nonlinear Joule heating, the ponderomotive force, and the processes governing dust charging and dynamics. The conditions for the onset of the modulational instability of electromagnetic waves, as well as its growth rate and threshold, are determined for both daytime and nighttime. It is shown that low-frequency perturbations generated in the modulational interaction are related to dust acoustic waves.

  11. Dark acoustic metamaterials as super absorbers for low-frequency sound.

    PubMed

    Mei, Jun; Ma, Guancong; Yang, Min; Yang, Zhiyu; Wen, Weijia; Sheng, Ping

    2012-03-27

    The attenuation of low-frequency sound has been a challenging task because the intrinsic dissipation of materials is inherently weak in this regime. Here we present a thin-film acoustic metamaterial, comprising an elastic membrane decorated with asymmetric rigid platelets that aims to totally absorb low-frequency airborne sound at selective resonance frequencies ranging from 100-1,000 Hz. Our samples can reach almost unity absorption at frequencies where the relevant sound wavelength in air is three orders of magnitude larger than the membrane thickness. At resonances, the flapping motion of the rigid platelets leads naturally to large elastic curvature energy density at their perimeter regions. As the flapping motions couple only minimally to the radiation modes, the overall energy density in the membrane can be two-to-three orders of magnitude larger than the incident wave energy density at low frequencies, forming in essence an open cavity.

  12. Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation

    NASA Technical Reports Server (NTRS)

    Kim, H. J.; Durbin, P. A.

    1988-01-01

    Vortex shedding and instability wave frequencies have been measured in the wakes of spheres in the Reynolds number range 500 less than Re less than 60,000. The effect of acoustic excitation was examined and an interaction between the two frequency modes was found at the lower Reynolds numbers; through this interaction, external forcing at the instability frequency could change the vortex shedding frequency. The development of the mean wake was manipulated by forcing near to the dominant shear layer instability frequency. With this forcing, the separated shear layer moved closer to the surface of the sphere and the reversed flow region of the wake was shortened. Concomitantly, the base pressure decreased and drag increased.

  13. Long-range inversions for ocean acoustic tomography

    NASA Astrophysics Data System (ADS)

    Malanotte-Rizzoli, Paola

    1985-01-01

    Ocean acoustic tomography was proposed by Munk and Wunsch (1979) as a method for making measurements of ocean variability over large areas. After the successful demonstration of the feasibility of the idea in the 1981 three-dimensional mesoscale experiment (Ocean Tomography Group, 1982) the tomography group has proposed a new experiment to be carried out in 1986 in the eastern Pacific Ocean on ranges as long as the subtropical gyre scale. In this paper the gyre-scale experiment is simulated in the model ocean, using Holland's eddy-resolving general circulation quasi-geostrophic model. The paper addresses the following issues: (1) measurement of the heat content vertical profile horizontally averaged along the tomographic section; (2) adequacy of the linearized inverse over very long ranges and the need for its improvement; (3) possible improvements in the specification of the field statistics to obtain more accurate estimates and to measure properties like average pycnocline trends; (4) relationship of possible range-dependent information from the inversion to the assigned noise level. The results of the modeling simulation can be summarized as follows: (1) The linearized stochastic inversion needs to be improved for gyre-scale ranges providing estimates of the average heat content that have warm or cold biases. Iteration is used and shown to provide good estimates of the average heat content. (2) A smaller number of iterations is necessary if the initial estimate is improved. This can be done by including a spatial mean in the horizontal covariance function for regions of the ocean where the energy level in the mean and in the long length scales may be even more important than the mesoscale energy peak. (3) General trends like average pycnocline slopes can be estimated very well by including an inhomogeneous covariance in the inversion. (4) The estimates of the mean heat content values and of the average slopes are rather insensitive to the specified noise level

  14. Communication: High-frequency acoustic excitations and boson peak in glasses: A study of their temperature dependence

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Baldi, G.; Giordano, V. M.; Orsingher, L.; Rols, S.; Scarponi, F.; Monaco, G.

    2010-07-01

    The results of a combined experimental study of the high-frequency acoustic dynamics and of the vibrational density of states (VDOS) as a function of temperature in a glass of sorbitol are reported here. The excess in the VDOS at ˜4.5 meV over the Debye, elastic continuum prediction (boson peak) is found to be clearly related to anomalies observed in the acoustic dispersion curve in the mesoscopic wavenumber range of few nm-1. The quasiharmonic temperature dependence of the acoustic dispersion curves offers a natural explanation for the observed scaling of the boson peak with the elastic medium properties.

  15. Multi-frequency acoustic metasurface for extraordinary reflection and sound focusing

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Fan; Fan, Xu-Dong; Liang, Bin; Yang, Jing; Yang, Jun; Yin, Lei-lei; Cheng, Jian-Chun

    2016-12-01

    We theoretically and numerically present the design of multi-frequency acoustic metasurfaces (MFAMs) with simple structure that can work not only at fundamental frequency, but also at their harmonic frequencies, which breaks the single frequency limitation in conventional resonance-based acoustic metasurfaces. The phase matched condition for achromatic manipulation is discussed. We demonstrate achromatic extraordinary reflection and sound focusing at 1700Hz, 3400Hz, and 5100Hz, that is, they have the same reflection direction and the same focusing position. This significant feature may pave the way to new type of acoustic metasurface, and will also extend acoustic metasurface applications to strongly nonlinear source cases.

  16. Nonlinear Effects in Long Range Underwater Acoustic Propagation

    DTIC Science & Technology

    1985-11-01

    John Willlam Strutt ) (1896). The Theorw of So*d, 2d and revised ed. (Dover Publications, Inc., New York, 1945). Rogers, Peter H. (1977). "Weak-Shock... Williams (1974), this level Is within the amplitude limits of weak-shock theory. Pestorius (1973) developed a computer based version of the weak-shock...linear geometrical acoustics developed in this fashion. Rayleigh (1 896,S 289) examined the problem of acoustic propagation in a windy atmosphere

  17. 47 CFR 15.202 - Certified operating frequency range.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Certified operating frequency range. 15.202 Section 15.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.202 Certified operating frequency range. Client devices that operate in a...

  18. 47 CFR 15.202 - Certified operating frequency range.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Certified operating frequency range. 15.202 Section 15.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.202 Certified operating frequency range. Client devices that operate in a...

  19. 47 CFR 15.202 - Certified operating frequency range.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Certified operating frequency range. 15.202 Section 15.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.202 Certified operating frequency range. Client devices that operate in a...

  20. 47 CFR 15.202 - Certified operating frequency range.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Certified operating frequency range. 15.202 Section 15.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.202 Certified operating frequency range. Client devices that operate in a...

  1. 47 CFR 15.202 - Certified operating frequency range.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Certified operating frequency range. 15.202 Section 15.202 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.202 Certified operating frequency range. Client devices that operate in a...

  2. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the... level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a device designed to conduct its radio frequency emissions via connecting wires or cables, e.g., a...

  3. Ray dynamics in a long-range acoustic propagation experiment

    NASA Astrophysics Data System (ADS)

    Beron-Vera, Francisco J.; Brown, Michael G.; Colosi, John A.; Tomsovic, Steven; Virovlyansky, Anatoly L.; Wolfson, Michael A.; Zaslavsky, George M.

    2003-09-01

    A ray-based wave-field description is employed in the interpretation of broadband basin-scale acoustic propagation measurements obtained during the Acoustic Thermometry of Ocean Climate program's 1994 Acoustic Engineering Test. Acoustic observables of interest are wavefront time spread, probability density function (PDF) of intensity, vertical extension of acoustic energy in the reception finale, and the transition region between temporally resolved and unresolved wavefronts. Ray-based numerical simulation results that include both mesoscale and internal-wave-induced sound-speed perturbations are shown to be consistent with measurements of all the aforementioned observables, even though the underlying ray trajectories are predominantly chaotic, that is, exponentially sensitive to initial and environmental conditions. Much of the analysis exploits results that relate to the subject of ray chaos; these results follow from the Hamiltonian structure of the ray equations. Further, it is shown that the collection of the many eigenrays that form one of the resolved arrivals is nonlocal, both spatially and as a function of launch angle, which places severe restrictions on theories that are based on a perturbation expansion about a background ray.

  4. Ray dynamics in a long-range acoustic propagation experiment.

    PubMed

    Beron-Vera, Francisco J; Brown, Michael G; Colosi, John A; Tomsovic, Steven; Virovlyansky, Anatoly L; Wolfson, Michael A; Zaslavsky, George M

    2003-09-01

    A ray-based wave-field description is employed in the interpretation of broadband basin-scale acoustic propagation measurements obtained during the Acoustic Thermometry of Ocean Climate program's 1994 Acoustic Engineering Test. Acoustic observables of interest are wavefront time spread, probability density function (PDF) of intensity, vertical extension of acoustic energy in the reception finale, and the transition region between temporally resolved and unresolved wavefronts. Ray-based numerical simulation results that include both mesoscale and internal-wave-induced sound-speed perturbations are shown to be consistent with measurements of all the aforementioned observables, even though the underlying ray trajectories are predominantly chaotic, that is, exponentially sensitive to initial and environmental conditions. Much of the analysis exploits results that relate to the subject of ray chaos; these results follow from the Hamiltonian structure of the ray equations. Further, it is shown that the collection of the many eigenrays that form one of the resolved arrivals is nonlocal, both spatially and as a function of launch angle, which places severe restrictions on theories that are based on a perturbation expansion about a background ray.

  5. Development of high frequency focused transducers for single beam acoustic tweezers

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Sheng

    Contactless particle trapping and manipulation have found many potential applications in diverse fields, especially in biological and medical research. Among the various methods, optical tweezers is the most well-known and extensively investigated technique. However, there are some limitations for particle manipulation based on optical tweezers. Due to the conceptual similarity with the optical tweezers and recent advances in high frequency ultrasonic transducer, a single beam acoustic tweezer using high frequency (≥ 20 MHz) focused transducer has recently been considered, and its feasibility was theoretically and experimentally investigated. This dissertation mainly describes the development of high frequency focused ultrasonic transducers for single beam acoustic tweezers applications. Three different types of transducers were fabricated. First, a 60 MHz miniature focused transducer (<1 mm) was made using press-focusing technique. The single beam acoustic trapping experiment was performed to manipulate 15 microm polystyrene microspheres using this transducer. In vitro ultrasonic biomicroscopy imaging on the rabbit eye was also obtained with this device. Second approach is to build a 200 MHz self-focused ZnO transducer by sputtering ZnO film on a curved surface of the aluminum backing material. An individual 10 microm microsphere was effectively manipulated in two dimensions by this type of transducer. Another ultrahigh frequency focused transducer based on silicon lens design has also been developed, where a 330 MHz silicon lens transducer was fabricated and evaluated. Microparticle trapping experiment was carried out to demonstrate that silicon lens transducer can manipulate a single microsphere as small as 5 microm. The realization of single beam acoustic tweezers using high frequency focused transducers can offer wide range of applications in biomedical and chemical sciences including intercellular kinetics studies and cell stimulation. Additionally, we

  6. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  7. Surface acoustic wave coding for orthogonal frequency coded devices

    NASA Technical Reports Server (NTRS)

    Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)

    2011-01-01

    Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.

  8. Inelastic ultraviolet scattering from high frequency acoustic modes in glasses.

    PubMed

    Masciovecchio, C; Gessini, A; Di Fonzo, S; Comez, L; Santucci, S C; Fioretto, D

    2004-06-18

    The dynamic structure factor of vitreous silica and glycerol has been measured as a function of temperature and of the momentum transfer up to Q=0.105 nm(-1) using a novel experimental technique, the inelastic ultraviolet scattering. As in the case of Brillouin light scattering and ultrasonic measurements, the temperature dependence of the acoustic attenuation shows a plateau below the glass transition whose amplitude scales as Q2. Moreover, a slight temperature dependence of attenuation has been found in vitreous silica at about 130 K, which seems to be reminiscent of the peak measured at lower Qs. These two findings strongly support the idea that anharmonicity is responsible for sound attenuation at ultrasonic and hypersonic frequencies. Finally, we demonstrate that the attenuation mechanism should show a change of regime between 0.105 and 1 nm(-1).

  9. Development of high precision digital driver of acoustic-optical frequency shifter for ROG

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Kong, Mei; Xu, Yameng

    2016-10-01

    We develop a high precision digital driver of the acoustic-optical frequency shifter (AOFS) based on the parallel direct digital synthesizer (DDS) technology. We use an atomic clock as the phase-locked loop (PLL) reference clock, and the PLL is realized by a dual digital phase-locked loop. A DDS sampling clock up to 320 MHz with a frequency stability as low as 10-12 Hz is obtained. By constructing the RF signal measurement system, it is measured that the frequency output range of the AOFS-driver is 52-58 MHz, the center frequency of the band-pass filter is 55 MHz, the ripple in the band is less than 1 dB@3MHz, the single channel output power is up to 0.3 W, the frequency stability is 1 ppb (1 hour duration), and the frequency-shift precision is 0.1 Hz. The obtained frequency stability has two orders of improvement compared to that of the analog AOFS-drivers. For the designed binary frequency shift keying (2-FSK) and binary phase shift keying (2-PSK) modulation system, the demodulating frequency of the input TTL synchronous level signal is up to 10 kHz. The designed digital-bus coding/decoding system is compatible with many conventional digital bus protocols. It can interface with the ROG signal detecting software through the integrated drive electronics (IDE) and exchange data with the two DDS frequency-shift channels through the signal detecting software.

  10. Shifting Gravel and the Acoustic Detection Range of Killer Whale Calls

    NASA Astrophysics Data System (ADS)

    Bassett, C.; Thomson, J. M.; Polagye, B. L.; Wood, J.

    2012-12-01

    In environments suitable for tidal energy development, strong currents result in large bed stresses that mobilize sediments, producing sediment-generated noise. Sediment-generated noise caused by mobilization events can exceed noise levels attributed to other ambient noise sources at frequencies related to the diameters of the mobilized grains. At a site in Admiralty Inlet, Puget Sound, Washington, one year of ambient noise data (0.02 - 30 kHz) and current velocity data are combined. Peak currents at the site exceed 3.5 m/s. During slack currents, vessel traffic is the dominant noise source. When currents exceed 0.85 m/s noise level increases between 2 kHz and 30 kHz are correlated with near-bed currents and bed stress estimates. Acoustic spectrum levels during strong currents exceed quiescent slack tide conditions by 20 dB or more between 2 and 30 kHz. These frequencies are consistent with sound generated by the mobilization of gravel and pebbles. To investigate the implications of sediment-generated noise for post-installation passive acoustic monitoring of a planned tidal energy project, ambient noise conditions during slack currents and strong currents are combined with the characteristics of Southern Resident killer whale (Orcinus orca) vocalizations and sound propagation modeling. The reduction in detection range is estimated for common vocalizations under different ambient noise conditions. The importance of sediment-generated noise for passive acoustic monitoring at tidal energy sites for different marine mammal functional hearing groups and other sediment compositions are considered.

  11. Wavevector-Frequency Analysis with Applications to Acoustics

    DTIC Science & Technology

    1994-01-01

    transformation of the Green’s function solution on all space and time variables, a simple algebraic expression is obtained that relates the wavevector...wavevector-frequency response of the system. This is in contrast to the algebraic relationship obtained in the wavevector-frequency domain for the space...both ranges of wavevector magnitudes, this input-output relationship for the composite plate-fluid system has the algebraic form (see equation (3-59

  12. Measurements of Low-Frequency Acoustic Attenuation in Soils.

    DTIC Science & Technology

    2007-11-02

    Engineering Research Laboratory to design an acoustic subsurface imaging system, a set of experiments was conducted in which the attenuation and the velocity...support of the U.S. Army Construction Engineering Research Laboratory’s efforts to design an acoustic subsurface imaging system which would ideally be...of acoustic waves such as those generated by a subsurface imaging system. An experiment reported in the literature characterized the acoustic

  13. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits.

    PubMed

    Balram, Krishna C; Davanço, Marcelo I; Song, Jin Dong; Srinivasan, Kartik

    2016-05-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains.

  14. Noncontact microrheology at acoustic frequencies using frequency-modulated atomic force microscopy.

    PubMed

    Gavara, Núria; Chadwick, Richard S

    2010-08-01

    We report an atomic force microscopy (AFM) method for assessing elastic and viscous properties of soft samples at acoustic frequencies under non-contact conditions. The method can be used to measure material properties via frequency modulation and is based on hydrodynamics theory of thin gaps we developed here. A cantilever with an attached microsphere is forced to oscillate tens of nanometers above a sample. The elastic modulus and viscosity of the sample are estimated by measuring the frequency-dependence of the phase lag between the oscillating microsphere and the driving piezo at various heights above the sample. This method features an effective area of pyramidal tips used in contact AFM but with only piconewton applied forces. Using this method, we analyzed polyacrylamide gels of different stiffness and assessed graded mechanical properties of guinea pig tectorial membrane. The technique enables the study of microrheology of biological tissues that produce or detect sound.

  15. Mid-frequency acoustic propagation in shallow water on the New Jersey shelf: mean intensity.

    PubMed

    Tang, Dajun; Henyey, Frank S; Wang, Zhongkang; Williams, Kevin L; Rouseff, Daniel; Dahl, Peter H; Quijano, Jorge; Choi, Jee Woong

    2008-09-01

    Mid-frequency (1-10 kHz) sound propagation was measured at ranges 1-9 km in shallow water in order to investigate intensity statistics. Warm water near the bottom results in a sound speed minimum. Environmental measurements include sediment sound speed and water sound speed and density from a towed conductivity-temperature-depth chain. Ambient internal waves contribute to acoustic fluctuations. A simple model involving modes with random phases predicts the mean transmission loss to within a few dB. Quantitative ray theory fails due to near axial focusing. Fluctuations of the intensity field are dominated by water column variability.

  16. Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Hou, Hong

    2016-06-01

    This paper investigates ultralow frequency acoustic properties and energy recovery of tetragonal folding beam phononic crystal (TFBPC) and its complementary structure. The dispersion curve relationships, transmission spectra and displacement fields of the eigenmodes are studied with FEA in detail. Compared with the traditional three layer phononic crystal (PC) structure, this structure proposed in this paper not only unfold bandgaps (BGs) in lower frequency range (below 300 Hz), but also has lighter weight because of beam structural cracks. We analyze the relevant physical mechanism behind this phenomenon, and discuss the effects of the tetragonal folding beam geometric parameters on band structure maps. FEM proves that the multi-cell structures with different arrangements have different acoustic BGs when compared with single cell structure. Harmonic frequency response and piezoelectric properties of TFBPC are specifically analyzed. The results confirm that this structure does have the recovery ability for low frequency vibration energy in environment. These conclusions in this paper could be indispensable to PC practical applications such as BG tuning and could be applied in portable devices, wireless sensor, micro-electro mechanical systems which can recycle energy from vibration environment as its own energy supply.

  17. Swept frequency acoustic interferometry technique for chemical weapons verification and monitoring

    SciTech Connect

    Sinha, D.N.; Anthony, B.W.; Lizon, D.C.

    1995-03-01

    Nondestructive evaluation (NDE) techniques are important for rapid on-site verification and monitoring of chemical munitions, such as artillery shells and bulk containers. Present NDE techniques provide only limited characterizations of such munitions. This paper describes the development of a novel noninvasive technique, swept-frequency acoustic interferometry (SFAI), that significantly enhances the capability of munitions characterizations. The SFAI technique allows very accurate and simultaneous determination of sound velocity and attenuation of chemical agents over a large frequency range inside artillery shells, in addition to determining agent density. The frequency-dependent sound velocity and attenuation can, in principle, provide molecular relaxation properties of the chemical agent. The same instrument also enables a direct fill-level measurement in bulk containers. Industrial and other applications of this general-purpose technique are also discussed.

  18. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.

    PubMed

    Zhou, Ji-Xun; Zhang, Xue-Zhen

    2012-12-01

    Several physics-based seabed geoacoustic models (including the Biot theory) predict that compressional wave attenuation α(2) in sandy marine sediments approximately follows quadratic frequency dependence at low frequencies, i.e., α(2)≈kf(n) (dB/m), n=2. A recent paper on broadband geoacoustic inversions from low frequency (LF) field measurements, made at 20 locations around the world, has indicated that the frequency exponent of the effective sound attenuation n≈1.80 in a frequency band of 50-1000 Hz [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)]. Carey and Pierce hypothesize that the discrepancy is due to the inversion models' neglect of shear wave effects [J. Acoust. Soc. Am. 124, EL271-EL277 (2008)]. The broadband geoacoustic inversions assume that the seabottom is an equivalent fluid and sound waves interact with the bottom at small grazing angles. The shear wave velocity and attenuation in the upper layer of ocean bottoms are estimated from the LF field-inverted effective bottom attenuations using a near-grazing bottom reflection expression for the equivalent fluid model, derived by Zhang and Tindle [J. Acoust. Soc. Am. 98, 3391-3396 (1995)]. The resultant shear wave velocity and attenuation are consistent with the SAX99 measurement at 25 Hz and 1000 Hz. The results are helpful for the analysis of shear wave effects on long-range sound propagation in shallow water.

  19. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    SciTech Connect

    Han, Jianning; Wen, Tingdun; Yang, Peng; Zhang, Lu

    2014-05-15

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.

  20. Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-based structures

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Yuan, Baoguo; Cheng, Ying; Liu, Xiaojun

    2016-02-01

    We have realized the acoustic rainbow trapping in the low frequency region (200-500 Hz) through micro Mie resonance-based structures. The structure has eight channels with a high refractive index obtained by coiling space, that can excite strong interactions with incident waves and support various orders of multipoles due to the Mie resonances of the microstructure. By utilizing the structure, the precise spatial modulation of the acoustic wave is demonstrated both theoretically and experimentally. The effect of trapping broadband acoustic waves and spatially separating different frequency components are ascribed to the monopolar Mie resonances of the structures. The trapping frequency is derived and the trapping positions can be tuned arbitrarily. With enhanced wave-structure interactions and tailored frequency responses, such micro structures show precise spectral-spatial control of acoustic waves and open a diverse venue for high performance acoustic wave detection, sensing, filtering, and a nondestructive test.

  1. Acoustically mediated long-range interaction among multiple spherical particles exposed to a plane standing wave

    NASA Astrophysics Data System (ADS)

    Zhang, Shenwei; Qiu, Chunyin; Wang, Mudi; Ke, Manzhu; Liu, Zhengyou

    2016-11-01

    In this work, we study the acoustically mediated interaction forces among multiple well-separated spherical particles trapped in the same node or antinode plane of a standing wave. An analytical expression of the acoustic interaction force is derived, which is accurate even for the particles beyond the Rayleigh limit. Interestingly, the multi-particle system can be decomposed into a series of independent two-particle systems described by pairwise interactions. Each pairwise interaction is a long-range interaction, as characterized by a soft oscillatory attenuation (at the power exponent of n = -1 or -2). The vector additivity of the acoustic interaction force, which is not well expected considering the nonlinear nature of the acoustic radiation force, is greatly useful for exploring a system consisting of a large number of particles. The capability of self-organizing a big particle cluster can be anticipated through such acoustically controllable long-range interaction.

  2. Cruise Report: Long-Range Ocean Acoustic Propagation EXperiment (LOAPEX)

    DTIC Science & Technology

    2005-04-01

    starboard side was used. Both ends of the slip line shown ran through the crane hook to keep them vertical; a strip of masking tape was put around the...2150-3550 m nominal) with a 20-element, 700-in long array (3570- 4270 m nominal) to span the lower caustics in the acoustic arrival pattern with a...during the cruise. The critical equipment belonging to the ship included the stem A-frame, starboard A-frame, both of the ship’s cranes , CTD/rosette

  3. Device for acoustic pulse echo experiments in the subterahertz range

    NASA Astrophysics Data System (ADS)

    Legrand, R.; Huynh, A.; Vincent, S.; Perrin, B.; Lemaître, A.

    2017-01-01

    We present experimental results on the light-to-sound transduction by a superlattice embedded in an optical microcavity, using picosecond ultrasonics. Experiments on the ability to generate and detect phonons at 0.3 and 0.6 THz were performed at low temperature. Finally, we demonstrate that such a device can detect the acoustic burst that it has generated and which has propagated through the substrate, been reflected on the backside of the substrate, and has returned to the device. We study the efficiency of this detection by varying independently the laser wavelength of the pump and probe, by means of asynchronous optical sampling.

  4. Acoustic positioning using a tetrahedral ultrashort baseline array of an acoustic modem source transmitting frequency-hopped sequences.

    PubMed

    Beaujean, Pierre-Philippe J; Mohamed, Asif I; Warin, Raphael

    2007-01-01

    Acoustic communications and positioning are vital aspects of unmanned underwater vehicle operations. The usage of separate units on each vehicle has become an issue in terms of frequency bandwidth, space, power, and cost. Most vehicles rely on acoustic modems transmitting frequency-hopped multiple frequency-shift keyed sequences for command-and-control operations, which can be used to locate the vehicle with a good level of accuracy without requiring extra signal transmission. In this paper, an ultrashort baseline acoustic positioning technique has been designed, simulated, and tested to locate an acoustic modem source in three dimensions using a tetrahedral, half-wavelength acoustic antenna. The position estimation is performed using the detection sequence contained in each message, which is a series of frequency-hopped pulses. Maximum likelihood estimation of azimuth and elevation estimation is performed using a varying number of pulse and various signal-to-noise ratios. Simulated and measured position estimation error match closely, and indicate that the accuracy of this system improves dramatically as the number of pulses processed increases, given a fixed signal-to-noise ratio.

  5. High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

    DTIC Science & Technology

    2008-09-30

    has done in close collaboration with Michael Porter and Paul Hursky (HLS Research) also supported by ONR. We have also been collaborating with Steve... Michael Porter , “A passive fathometer technique for imaging seabed layering using ambient noise”, J. Acoust. Soc. Am., 120, 1315-1323, (September...Siderius and Michael Porter , “Modeling broadband ocean acoustic transmissions with time- varying sea surfaces”, J. Acoust. Soc. Am., 124 (1), 137-150

  6. New acoustooptic effect: Constant high diffraction efficiency in wide range of acoustic power

    NASA Astrophysics Data System (ADS)

    Antonov, S. N.; Vainer, A. V.; Proklov, V. V.; Rezvov, Yu. G.

    2009-06-01

    A new effect, viz., acoustooptic Bragg diffraction without the overmodulation mode, in which the efficiency of the Bragg order attains its maximal value (close to 100%) upon an increase in the intensity of an acoustic wave and then remains practically unchanged, is predicted theoretically and observed experimentally. The effect takes place in the case of considerable bending of phase fronts of the acoustic field in the acoustooptic diffraction plane and attains its maximal value at a relatively low frequency of sound, a small width of a piezoelectric transducer, strong acoustic anisotropy of the medium, and a large distance between the light beam and the piezoelectric transducer.

  7. Characterization and Design of Spiral Frequency Steerable Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Repale, Rohan

    Structural Health Monitoring (SHM) is an emerging research area devoted to improving the safety and maintainability of civil structures. Guided wave structural testing method is an effective approach used for SHM of plate-like structures using piezoelectric transducers. These transducers are attached to the surface of the structure and are capable of sensing its health by using surface waves. Transducers with beam steering i.e. electronic scanning capabilities can perform surface interrogation with higher precision and ease. A frequency steerable acoustic transducer (FSAT) is capable of beam steering and directional surface wave sensing to detect and localize damage in structures. The objective of this research is to further explore the possibilities of FSAT technology by designing and testing new FSAT designs. The beam steering capability of FSAT can be controlled by manipulating its design parameters. These design parameters therefore play a significant role in FSAT's performance. Studying the design parameters and documenting the performance improvements based on parameter variation is the primary goal of this research. Design and characterization of spiral FSAT was performed and results were simulated. Array FSAT documented results were validated. Modified designs were modeled based on design parameter variations. Characterization of these designs was done and their performance was recorded. Plate simulation results confirm direct relationship between design parameters and beam steering. A set of guidelines for future designs was also proposed. Two designs developed based on the set guidelines were sent to our collaborator Genziko Inc. for fabrication.

  8. Acoustic localization of breakdown in radio frequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Lane, Peter

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  9. High-frequency acoustic for nanostructure wetting characterization.

    PubMed

    Li, Sizhe; Lamant, Sebastien; Carlier, Julien; Toubal, Malika; Campistron, Pierre; Xu, Xiumei; Vereecke, Guy; Senez, Vincent; Thomy, Vincent; Nongaillard, Bertrand

    2014-07-01

    Nanostructure wetting is a key problem when developing superhydrophobic surfaces. Conventional methods do not allow us to draw conclusions about the partial or complete wetting of structures on the nanoscale. Moreover, advanced techniques are not always compatible with an in situ, real time, multiscale (from macro to nanoscale) characterization. A high-frequency (1 GHz) acoustic method is used for the first time to characterize locally partial wetting and the wetting transition between nanostructures according to the surface tension of liquids (the variation is obtained by ethanol concentration modification). We can see that this method is extremely sensitive both to the level of liquid imbibition and to the impalement dynamic. We thus demonstrate the possibility to evaluate the critical surface tension of a liquid for which total wetting occurs according to the aspect ratio of the nanostructures. We also manage to identify intermediate states according to the height of the nanotexturation. Finally, our measurements revealed that the drop impalement depending on the surface tension of the liquid also depends on the aspect ratio of the nanostructures. We do believe that our method may lead to new insights into nanoscale wetting characterization by accessing the dynamic mapping of the liquid imbibition under the droplet.

  10. Echo-acoustic flow dynamically modifies the cortical map of target range in bats

    NASA Astrophysics Data System (ADS)

    Bartenstein, Sophia K.; Gerstenberg, Nadine; Vanderelst, Dieter; Peremans, Herbert; Firzlaff, Uwe

    2014-08-01

    Echolocating bats use the delay between their sonar emissions and the reflected echoes to measure target range, a crucial parameter for avoiding collisions or capturing prey. In many bat species, target range is represented as an orderly organized map of echo delay in the auditory cortex. Here we show that the map of target range in bats is dynamically modified by the continuously changing flow of acoustic information perceived during flight (‘echo-acoustic flow’). Combining dynamic acoustic stimulation in virtual space with extracellular recordings, we found that neurons in the auditory cortex of the bat Phyllostomus discolor encode echo-acoustic flow information on the geometric relation between targets and the bat’s flight trajectory, rather than echo delay per se. Specifically, the cortical representation of close-range targets is enlarged when the lateral passing distance of the target decreases. This flow-dependent enlargement of target representation may trigger adaptive behaviours such as vocal control or flight manoeuvres.

  11. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    NASA Astrophysics Data System (ADS)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  12. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.

    PubMed

    Ergün, A Sanlı

    2011-10-01

    Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well.

  13. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... § 15.33 Frequency range of radiated measurements. (a) For an intentional radiator, the spectrum shall... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... lower. (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the...

  14. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... § 15.33 Frequency range of radiated measurements. (a) For an intentional radiator, the spectrum shall... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... lower. (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the...

  15. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... § 15.33 Frequency range of radiated measurements. (a) For an intentional radiator, the spectrum shall... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... lower. (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the...

  16. 47 CFR 15.33 - Frequency range of radiated measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... § 15.33 Frequency range of radiated measurements. (a) For an intentional radiator, the spectrum shall... kHz, up to at least the frequency shown in this paragraph: (1) If the intentional radiator operates... lower. (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the...

  17. Relative acoustic frequency response of induced methane, carbon dioxide and air gas bubble plumes, observed laterally.

    PubMed

    Kubilius, Rokas; Pedersen, Geir

    2016-10-01

    There is an increased need to detect, identify, and monitor natural and manmade seabed gas leaks. Fisheries echosounders are well suited to monitor large volumes of water and acoustic frequency response [normalized acoustic backscatter, when a measure at one selected frequency is used as a denominator, r(f)] is commonly used to identify echoes from fish and zooplankton species. Information on gas plume r(f) would be valuable for automatic detection of subsea leaks and for separating bubble plumes from natural targets such as swimbladder-bearing fish. Controlled leaks were produced with a specially designed instrument frame suspended in mid-water in a sheltered fjord. The frame was equipped with echosounders, stereo-camera, and gas-release nozzles. The r(f) of laterally observed methane, carbon dioxide, and air plumes (0.040-29 l/min) were measured at 70, 120, 200, and 333 kHz, with bubble sizes determined optically. The observed bubble size range (1-25 mm) was comparable to that reported in the literature for natural cold seeps of methane. A negative r(f) with increasing frequency was observed, namely, r(f) of about 0.7, 0.6, and 0.5 at 120, 200, and 333 kHz when normalized to 70 kHz. Measured plume r(f) is also compared to resolved, single bubble target strength-based, and modeled r(f).

  18. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations.

  19. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

    NASA Astrophysics Data System (ADS)

    Ivry, Yachin; Wang, Nan; Durkan, Colm

    2014-03-01

    Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.

  20. Eleutherodactylus frogs show frequency but no temporal partitioning: implications for the acoustic niche hypothesis

    PubMed Central

    2014-01-01

    Individuals in acoustic communities compete for the use of the sound resource for communication, a problem that can be studied as niche competition. The acoustic niche hypothesis presents a way to study the partitioning of the resource, but the studies have to take into account the three dimensions of this niche: time, acoustic frequency, and space. I used an Automated Digital Recording System to determine the partitioning of time and acoustic frequency of eight frogs of the genus Eleutherodactylus from Puerto Rico. The calling activity was measured using a calling index. The community exhibited no temporal partitioning since most species called at the same time, between sunset and midnight. The species partitioned the acoustic frequency of their signals, which, in addition to the microhabitat partitioning, can provide some insight into how these species deal with the problem. This data also suggest that monitoring projects with this group should take place only before midnight to avoid false negatives. PMID:25101228

  1. Excellent low-frequency sound absorption of radial membrane acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Hou, Hong; Yu, Lie

    2017-01-01

    This paper proposes a new radial membrane acoustic metamaterial (RMAM) structure, wherein a layer membrane substrate is covered with a rigid ring (polymethyl methacrylate frame and aluminum lump). The dispersion relationships, transmission spectra and displacement fields of the eigenmodes of this radial membrane acoustic metamaterial are studied with FEM. In contrast to the traditional radial phononic crystals (RPCs), the proposed structures can open bandgaps (BGs) in lower frequency range (0-300 Hz). Simulation results show that the physical mechanism behind the bandgaps is the coupling effects between the rotational vibration of aluminum lump and the transverse vibration of membrane. Geometrical parameters which can adjust the bandgaps’ widths or positions are analyzed. Finally, we investigate the axial sound transmission loss of this acoustic metamaterial structure, and discuss the effects of factor loss, membrane thickness and the number of layers of unit cell on the axial sound transmission loss. Dynamic effective density proves the accuracy of the FEM results. This kind of structure has potential application in pipe or circular ring structure for damping/noise reduction.

  2. Anisotropy in high-frequency broadband acoustic backscattering in the presence of turbulent microstructure and zooplankton.

    PubMed

    Leong, Doris; Ross, Tetjana; Lavery, Andone

    2012-08-01

    High-frequency broadband (120-600 kHz) acoustic backscattering measurements have been made in the vicinity of energetic internal waves. The transducers on the backscattering system could be adjusted so as to insonify the water-column either vertically or horizontally. The broadband capabilities of the system allowed spectral classification of the backscattering. The distribution of spectral shapes is significantly different for scattering measurements made with the transducers oriented horizontally versus vertically, indicating that scattering anisotropy is present. However, the scattering anisotropy could not be unequivocally explained by either turbulent microstructure or zooplankton, the two primary sources of scattering expected in internal waves. Daytime net samples indicate a predominance of short-aspect-ratio zooplankton. Using zooplankton acoustic scattering models, a preferential orientation of the observed zooplankton cannot explain the measured anisotropy. Yet model predictions of scattering from anisotropic turbulent microstructure, with inputs from coincident microstructure measurements, were not consistent with the observations. Possible explanations include bandwidth limitations that result in many spectra that cannot be unambiguously attributed to turbulence or zooplankton based on spectral shape. Extending the acoustic bandwidth to cover the range from 50 kHz to 2 MHz could help improve identification of the dominant sources of backscattering anisotropy.

  3. Freddie Mercury-acoustic analysis of speaking fundamental frequency, vibrato, and subharmonics.

    PubMed

    Herbst, Christian T; Hertegard, Stellan; Zangger-Borch, Daniel; Lindestad, Per-Åke

    2017-04-01

    Freddie Mercury was one of the twentieth century's best-known singers of commercial contemporary music. This study presents an acoustical analysis of his voice production and singing style, based on perceptual and quantitative analysis of publicly available sound recordings. Analysis of six interviews revealed a median speaking fundamental frequency of 117.3 Hz, which is typically found for a baritone voice. Analysis of voice tracks isolated from full band recordings suggested that the singing voice range was 37 semitones within the pitch range of F#2 (about 92.2 Hz) to G5 (about 784 Hz). Evidence for higher phonations up to a fundamental frequency of 1,347 Hz was not deemed reliable. Analysis of 240 sustained notes from 21 a-cappella recordings revealed a surprisingly high mean fundamental frequency modulation rate (vibrato) of 7.0 Hz, reaching the range of vocal tremor. Quantitative analysis utilizing a newly introduced parameter to assess the regularity of vocal vibrato corroborated its perceptually irregular nature, suggesting that vibrato (ir)regularity is a distinctive feature of the singing voice. Imitation of subharmonic phonation samples by a professional rock singer, documented by endoscopic high-speed video at 4,132 frames per second, revealed a 3:1 frequency locked vibratory pattern of vocal folds and ventricular folds.

  4. A Fisheries Application of a Dual-Frequency Identification Sonar Acoustic Camera

    SciTech Connect

    Moursund, Russell A.; Carlson, Thomas J.; Peters, Rock D.

    2003-06-01

    The uses of an acoustic camera in fish passage research at hydropower facilities are being explored by the U.S. Army Corps of Engineers. The Dual-Frequency Identification Sonar (DIDSON) is a high-resolution imaging sonar that obtains near video-quality images for the identification of objects underwater. Developed originally for the Navy by the University of Washington?s Applied Physics Laboratory, it bridges the gap between existing fisheries assessment sonar and optical systems. Traditional fisheries assessment sonars detect targets at long ranges but cannot record the shape of targets. The images within 12 m of this acoustic camera are so clear that one can see fish undulating as they swim and can tell the head from the tail in otherwise zero-visibility water. In the 1.8 MHz high-frequency mode, this system is composed of 96 beams over a 29-degree field of view. This high resolution and a fast frame rate allow the acoustic camera to produce near video-quality images of objects through time. This technology redefines many of the traditional limitations of sonar for fisheries and aquatic ecology. Images can be taken of fish in confined spaces, close to structural or surface boundaries, and in the presence of entrained air. The targets themselves can be visualized in real time. The DIDSON can be used where conventional underwater cameras would be limited in sampling range to < 1 m by low light levels and high turbidity, and where traditional sonar would be limited by the confined sample volume. Results of recent testing at The Dalles Dam, on the lower Columbia River in Oregon, USA, are shown.

  5. High-frequency acoustic charge transport in GaAs nanowires.

    PubMed

    Büyükköse, S; Hernández-Mínguez, A; Vratzov, B; Somaschini, C; Geelhaar, L; Riechert, H; van der Wiel, W G; Santos, P V

    2014-04-04

    The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short wavelength of the acoustic modulation, smaller than the length of the nanowire, allows the trapping of photo-generated electrons and holes at the spatially separated energy minima and maxima of conduction and valence bands, respectively, and their transport along the nanowire with a well defined acoustic velocity towards indium-doped recombination centers.

  6. Realization of acoustic wave directivity at low frequencies with a subwavelength Mie resonant structure

    NASA Astrophysics Data System (ADS)

    Lu, Gengxi; Ding, Erliang; Wang, Yangyang; Peng, Xiuyuan; Cui, Jun; Liu, Xiaozhou; Liu, Xiaojun

    2017-03-01

    We realized high-efficiency acoustic directivity at low frequencies based on monopolar Mie resonance. This is caused by micro structures that have a high refractive index relative to the background medium. The structures can strongly control the radiation pattern though the acoustic wavelength is much larger than its dimensions. We herein discuss how to enhance the directivity through modifying the structure's parameters. Furthermore, our structure is proposed for use in obtaining an acoustic collimated beam without sidelobes. The structure characteristics and applications are demonstrated both theoretically and experimentally. Potential applications of our structures include acoustic device miniaturization, noise control, and medical ultrasonics.

  7. Spin noise spectroscopy from acoustic to GHz frequencies

    NASA Astrophysics Data System (ADS)

    Hübner, Jens

    2010-03-01

    Performing perturbation free measurements on semiconductor quantum systems has long been banished to textbooks on quantum mechanics. The emergent technique of spin noise spectroscopy is challenging this restriction. Empowered only by the ever present intrinsic spin fluctuation dynamics in thermal equilibrium, spin noise spectroscopy is capable to directly deduce several physical properties of carriers spins in semiconductors from these fluctuations. Originating from spin noise measurements on alkali metal vapors in quantum optics [1] the method has become a powerful technique to unravel the intrinsic spin dynamics in semiconductors [2]. In this talk I will present the recent progress of spin noise spectroscopy and how it is used to monitor the spin dynamic in semiconductor quantum wells at thermal equilibrium and as a consequence thereof directly detect the spatial dynamics of the carriers being marked with their own spin on a microscopic scale [3]. Further I will present measurements of how the non-perturbative nature of spin noise spectroscopy gives valuable insight into the delicate dependence of the spin relaxation time of electrons on doping density and temperature in semiconductors n-doped in the vicinity of the metal-insulator transition where hyperfine and intra-band depolarization compete [4]. Also the measurement bandwidth can be extended to GHz frequencies by ultrafast optical probing [5] yielding in conjunction with depth resolved spin noise measurements insights into the origin of inhomogeneous spin dephasing effects at high magnetic fields [5]. Additionally I will present how spin noise spectroscopy can be employed to spatially depth resolve doping profiles with optical resolution [6] and give a summary on easy to implement techniques of spin noise spectroscopy at acoustic frequencies in alkali metal vapors. [4pt] [1] E. Aleksandrov and V. Zapassky, Zh. Eksp. Teor. Fiz. 81, 132 (1981); S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. L. Smith

  8. Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields

    DTIC Science & Technology

    2014-01-01

    Kirchhoff’s theorem, typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in...two noncollinear ultrasonic baffled piston sources. The theory is extended to the modeling of the sound beams generated by parametric transducer arrays ...typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in the near-field by

  9. High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

    DTIC Science & Technology

    2007-09-30

    close collaboration with Michael Porter and Paul Hursky (HLS Research) with support from the ONR Ocean Acoustics Program and the ONR PLUSNet Project...Siderius, Chris Harrison and Michael Porter , “A passive fathometer for determining bottom depth and imaging seabed layering using ambient noise”, J...noise processing for estimation of seabed layering”, J. Acoust. Soc. Am., (2007) [submitted, refereed]. [8] Martin Siderius and Michael Porter , “Modeling

  10. Sound source localization by hearing preservation patients with and without symmetrical low-frequency acoustic hearing.

    PubMed

    Loiselle, Louise H; Dorman, Michael F; Yost, William A; Gifford, René H

    2015-01-01

    The aim of this article was to study sound source localization by cochlear implant (CI) listeners with low-frequency (LF) acoustic hearing in both the operated ear and in the contralateral ear. Eight CI listeners had symmetrical LF acoustic hearing and 4 had asymmetrical LF acoustic hearing. The effects of two variables were assessed: (i) the symmetry of the LF thresholds in the two ears and (ii) the presence/absence of bilateral acoustic amplification. Stimuli consisted of low-pass, high-pass, and wideband noise bursts presented in the frontal horizontal plane. Localization accuracy was 23° of error for the symmetrical listeners and 76° of error for the asymmetrical listeners. The presence of a unilateral CI used in conjunction with bilateral LF acoustic hearing does not impair sound source localization accuracy, but amplification for acoustic hearing can be detrimental to sound source localization accuracy.

  11. Validation and demonstration of an isolated acoustic recording technique to estimate spontaneous swallow frequency.

    PubMed

    Crary, Michael A; Sura, Livia; Carnaby, Giselle

    2013-03-01

    Spontaneous swallowing is considered a reflexive, pharyngeal clearance mechanism. Reductions in spontaneous swallow frequency may be a sensitive index for dysphagia and related morbidities. This study evaluated an acoustic recording technique as a measure to estimate spontaneous swallow frequency. Initially, a multichannel physiologic (surface electromyography, swallow apnea, cervical auscultation) recording technique was validated and subsequently compared to an isolated acoustic (microphone) recording technique on a sample of younger (25 ± 2.8 years) and older (68 ± 5.3 years) healthy adult participants. Sensitivity (94 %), specificity (99 %), and classification accuracy (98 %) were high for swallow identification from the multichannel physiologic recording technique. Interjudge reliability was high (k = 0.94, 95 % CI = 0.92-0.96). No significant differences in spontaneous swallow frequency were observed between the multichannel physiologic recordings and the acoustic recordings (0.85 vs. 0.81 swallows per minute). Furthermore, these two techniques were highly correlated (r = 0.95). Interjudge reliability for swallow identification via acoustic recordings was high (k = 0.96, 95 % CI = 0.94-0.99). Preliminary evaluation of the temporal stability of spontaneous swallow frequency measured from acoustic recordings indicated that time samples as short as 5 min produce viable results. Age differences were identified in spontaneous swallow frequency rates, with older participants swallowing less frequently than younger participants (0.47 vs. 1.02 swallows per minute). Collectively, these results indicate that an isolated acoustic recording technique is a valid approach to estimate spontaneous swallow frequency.

  12. Technique for extending the frequency range of digital dividers

    NASA Technical Reports Server (NTRS)

    Long, W. C.; Middleton, J. H. (Inventor)

    1973-01-01

    A technique for extending the frequency range of a presettable digital divider is described. The conventional digital divider consists of several counter stages with the count of each stage compared to a preselected number. When the counts for all stages are equal to the preselected numbers, an output pulse is generated and all stages are reset. For high input frequencies, the least significant stage of the divider has to be reset in a very short time. This limits the frequency that can be handled by the conventional digital divider. This invention provides a technique in which the second least significant and higher stages are reset and the least significant stage is permitted to free-run. Hence, the time in which the reset operation can be performed is increased thereby extending the frequency range of the divider.

  13. A multi-frequency method for ultrasonic ranging.

    PubMed

    Queirós, Ricardo; Corrêa Alegria, Francisco; Silva Girão, Pedro; Cruz Serra, António

    2015-12-01

    This paper presents a method for ultrasonic ranging based on the cross-correlation of two multi-frequency signals. The stimulus signal is composed by multiple sine-wave bursts/segments, each containing a different frequency and an integer number of periods. The frequency of each sine-wave burst is different from that of the adjacent bursts, but it is very close to the transducer resonant frequency. The time-of-flight (TOF) is estimated by finding the maximum of the cross-correlation. Interpolation is used to increase the measurement resolution. The experimental error corresponding to two standard deviations, for a range up to 1 m, is less than 0.3 mm.

  14. Acoustical Evaluation of Combat Arms Firing Range, Malmstrom AFB, Montana

    DTIC Science & Technology

    2015-01-23

    Occupational and Environmental Health Dept/OEC 2510 Fifth St. Wright-Patterson AFB, OH 45433-7913 8. PERFORMING ORGANIZATION REPORT NUMBER AFRL-SA...consultative letter recommends installing sound absorbing material to reduce the reverberant field. 15. SUBJECT TERMS Impulse noise, impact noise...progression. The frequency of the audio grams will need to be determined locally by the Occupational and Environmental Health Working Group. To reduce the

  15. MO-F-CAMPUS-J-01: Acoustic Range Verification of Proton Beams: Simulation of Heterogeneity and Clinical Proton Pulses

    SciTech Connect

    Jones, K; Sehgal, C; Avery, S

    2015-06-15

    Purpose: Through simulation, to assess acoustic-based range verification of proton beams (protoacoustics) under clinical conditions. Methods: Pressure waves generated by the energy deposition of a 150 MeV, 8 mm FWHM pulsed pencil proton beam were numerically simulated through two Methods: 1) For a homogeneous water medium, an analytical wave-equation solution was used to calculate the time-dependent pressure measured at detector points surrounding the proton Bragg peak. 2) For heterogeneity studies, a CT tissue image was used to calculate the proton dose deposition and define the acoustic properties of the voxels through which numerical pressure wave propagation was simulated with the k-Wave matlab toolbox. The simulations were used to assess the dependence of the acoustic amplitude and range-verification accuracy on proton pulse rise time and tissue heterogeneity. Results: As the proton pulse rise time is increased from 1 to 40 µs, the amplitude of the expected acoustic emission decreases (a 60% drop distal to the Bragg peak), the central frequency of the expected signal decreases (from 45 to 6 kHz), and the accuracy of the range-verification decreases (from <1 mm to 16 mm at 5 cm distal to the Bragg peak). For a 300 nA pulse, the expected pressure range is on the order of 0.1 Pa, which is observable with commercial detectors. For the heterogeneous medium, our test case shows that pressure waves emitted by an anterior pencil beam directed into the abdomen and detected posteriorly can determine the Bragg peak range to an accuracy of <2mm for a 1 µs proton pulse. Conclusion: For proton pulses with fast rise-times, protoacoustics is a promising potential method for monitoring penetration depth through heterogeneous tissue. The loss of range-verification accuracy with increasing rise-times, however, suggests the need for comparisons to modeling to improve accuracy for slower cyclotron proton sources.

  16. Relations between acoustic cavitation and skin resistance during intermediate- and high-frequency sonophoresis.

    PubMed

    Rich, Kyle T; Hoerig, Cameron L; Rao, Marepalli B; Mast, T Douglas

    2014-11-28

    Enhanced skin permeability is known to be achieved during sonophoresis due to ultrasound-induced cavitation. However, the mechanistic role of cavitation during sonophoresis has been extensively investigated only for low-frequency (LFS, <100 kHz) applications. Here, mechanisms of permeability-enhancing stable and inertial cavitation were investigated by passively monitoring subharmonic and broadband emissions arising from cavitation isolated within or external to porcine skin in vitro during intermediate- (IFS, 100-700 kHz) and high-frequency sonophoresis (HFS, >1 MHz). The electrical resistance of skin, a surrogate measure of the permeability of skin to a variety of compounds, was measured to quantify the reduction and subsequent recovery of the skin barrier during and after exposure to pulsed (1 second pulse, 20% duty cycle) 0.41 and 2.0 MHz ultrasound over a range of acoustic powers (0-21.7 W) for 30 min. During IFS, significant skin resistance reductions and acoustic emissions from cavitation were measured exclusively when cavitation was isolated outside of the skin. Time-dependent skin resistance reductions measured during IFS correlated significantly with subharmonic and broadband emission levels. During HFS, significant skin resistance reductions were accompanied by significant acoustic emissions from cavitation measured during trials that isolated cavitation activity either outside of skin or within skin. Time-dependent skin resistance reductions measured during HFS correlated significantly greater with subharmonic than with broadband emission levels. The reduction of the skin barrier due to sonophoresis was reversible in all trials; however, effects incurred during IFS recovered more slowly and persisted over a longer period of time than HFS. These results quantitatively demonstrate the significance of cavitation during sonophoresis and suggest that the mechanisms and post-treatment longevity of permeability enhancement due to IFS and HFS treatments are

  17. EnEx-RANGE - Robust autonomous Acoustic Navigation in Glacial icE

    NASA Astrophysics Data System (ADS)

    Heinen, Dirk; Eliseev, Dmitry; Henke, Christoph; Jeschke, Sabina; Linder, Peter; Reuter, Sebastian; Schönitz, Sebastian; Scholz, Franziska; Weinstock, Lars Steffen; Wickmann, Stefan; Wiebusch, Christopher; Zierke, Simon

    2017-03-01

    Within the Enceladus Explorer Initiative of the DLR Space Administration navigation technologies for a future space mission are in development. Those technologies are the basis for the search for extraterrestrial life on the Saturn moon Enceladus. An autonomous melting probe, the EnEx probe, aims to extract a liquid sample from a water reservoir below the icy crust. A first EnEx probe was developed and demonstrated in a terrestrial scenario at the Bloodfalls, Taylor Glacier, Antarctica in November 2014. To enable navigation in glacier ice two acoustic systems were integrated into the probe in addition to conventional navigation technologies. The first acoustic system determines the position of the probe during the run based on propagation times of acoustic signals from emitters at reference positions at the glacier surface to receivers in the probe. The second system provides information about the forefield of the probe. It is based on sonographic principles with phased array technology integrated in the probe's melting head. Information about obstacles or sampling regions in the probe's forefield can be acquired. The development of both systems is now continued in the project EnEx-RANGE. The emitters of the localization system are replaced by a network of intelligent acoustic enabled melting probes. These localize each other by means of acoustic signals and create the reference system for the EnEx probe. This presentation includes the discussion of the intelligent acoustic network, the acoustic navigation systems of the EnEx probe and results of terrestrial tests.

  18. An acoustic startle-based method of assessing frequency discrimination in mice.

    PubMed

    Clause, Amanda; Nguyen, Tuan; Kandler, Karl

    2011-08-30

    The acoustic startle response (ASR) is a reflexive contraction of skeletal muscles in response to a loud, abrupt acoustic stimulus. ASR magnitude is reduced if the startle stimulus is preceded by a weaker acoustic or non-acoustic stimulus, a phenomenon known as prepulse inhibition (PPI). PPI has been used to test various aspects of sensory discrimination in both animals and humans. Here we show that PPI of the ASR is an advantageous method of assessing frequency discrimination. We describe the apparatus and its performance testing frequency discrimination in young CD1 mice. Compared to classical conditioning paradigms, PPI of the ASR is less time consuming, produces robust results, and can be used without training even in young animals. This approach can be used to investigate the neuronal mechanisms underlying frequency discrimination, its maturation during development, and its relationship to tonotopic organization.

  19. WE-D-BRF-02: Acoustic Signal From the Bragg Peak for Range Verification in Proton Therapy

    SciTech Connect

    Reinhardt, S; Assmann, W; Fink, A; Thirolf, P; Parodi, K; Kellnberger, S; Omar, M; Ntziachristos, V; Gaebisch, C; Moser, M; Dollinger, G; Sergiadis, G

    2014-06-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams. Aim of this work is to study the feasibility of determining the ion range with sub-mm accuracy by use of high frequency ultrasonic (US) transducers and to image the Bragg peak by tomography. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity, length and repetition rate. The acoustic signal of single proton pulses was measured by different PZT-based US detectors (3.5 MHz and 10 MHz central frequencies). For tomography a 64 channel US detector array was used and moved along the ion track by a remotely controlled motor stage. Results: A clear signal of the Bragg peak was visible for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Range measurements were reproducible within +/− 20 micrometer and agreed well with Geant4 simulations. The tomographic reconstruction does not only allow to measure the ion range but also the beam spot size at the Bragg peak position. Conclusion: Range verification by acoustic means is a promising new technique for treatment modalities where the tumor can be localized by US imaging. Further improvement of sensitivity is required to account for higher attenuation of the US signal in tissue, as well as lower energy density in the Bragg peak in realistic treatment cases due to higher particle energy and larger spot sizes. Nevertheless, the acoustic range verification approach could offer the possibility of combining anatomical US imaging with Bragg Peak imaging in the near future. The work was funded by the DFG cluster of excellence Munich Centre for Advanced Photonics (MAP)

  20. Long-range acoustic scattering from a shallow-water mud-volcano cluster.

    PubMed

    Holland, Charles W; Preston, John R; Abraham, Douglas A

    2007-10-01

    Analysis of reverberation measurements in the Straits of Sicily shows high intensity, discrete, scattered returns 10-20 dB above background reverberation. These returns are due to scattering from mud volcanoes. The reverberation from the mud volcanoes at ranges of 15-22 km is reasonably consistent over these spatial scales (i.e., kilometers) and temporal scales of several hours; measurements separated by 4 years are also similar. Statistical characterization indicates that the reverberation associated with a mud-volcano cluster is strongly non-Rayleigh and that the reverberation can be characterized by a single (shape) parameter, roughly independent of frequency. The non-Rayleigh statistics, with a concomitant increase in the probability of false alarm, indicate that mud volcanoes are a likely source of clutter. Mean target strengths were estimated at 1-11 dB over 160-1400 Hz and are consistent with target strengths measured during a different year at short (direct-path) ranges. Accumulated evidence points to small (order 10 m diameter and several meters high) carbonate chimneys on the mud-volcano edifice as the scattering mechanism as opposed to the edifice itself or scattering from gas bubbles in the water column. Thus, the results represent acoustic scattering from mud volcanoes in a quiescent state.

  1. Frequency tracking in acoustic trapping for improved performance stability and system surveillance.

    PubMed

    Hammarström, Björn; Evander, Mikael; Wahlström, Jacob; Nilsson, Johan

    2014-03-07

    This work proposes and demonstrates an acoustic trapping system where the trapping frequency is automatically determined and can be used to analyse changes in the acoustic trap. Critical for the functionality of this system is the use of a kerfed transducer that removes spurious resonances. This makes it possible to determine the optimal trapping frequency by analysing electrical impedance. It is demonstrated that the novel combination of a kerfed transducer and acoustic trapping in glass capillaries creates a high Q-value resonator. This narrows the frequency bandwidth but allows excellent performance, as confirmed by a ten-fold increase in the flow retention speed when compared to previously reported values. Importantly, the use of automatic frequency tracking allows the use of such a narrow bandwidth resonator without compromising system stability. As changes in temperature, buffer-properties, and the amount of captured particles will affect the properties of the acoustic resonator, corresponding changes in resonance frequency will occur. It is shown that such frequency changes can be accurately tracked using the setup. Therefore, monitoring the frequency over time adds a new feature to acoustic trapping, where experimental progress can be monitored and the amount of trapped material can be quantified.

  2. Experimental Limits on Gravitational Waves in the MHz frequency Range

    SciTech Connect

    Lanza, Robert Jr.

    2015-03-01

    This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10-21 Hz-1/2 level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10-21Hz-1/2 at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.

  3. LOAPEX: The Long-Range Ocean Acoustic Propagation EXperiment

    DTIC Science & Technology

    2009-01-01

    C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M . Chiodi , “Seaglider: A long range autonomous...Propagation EXperiment James A. Mercer, John A. Colosi, Bruce M . Howe, Matthew A. Dzieciuch, Ralph Stephen, and Peter F. Worcester Abstract—This paper...from various depths to a pair of vertical hydrophone arrays covering 3500 m of the water column, and to several bottom-mounted horizontal line arrays

  4. Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs

    DTIC Science & Technology

    2015-05-26

    FINAL REPORT Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs SERDP...2015 Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXO’s W912HQ-12-C-0049 MR...the acoustic response of the environment as well as the environment’s effect on the acoustic response of munitions [1]. Simulation tools and

  5. Frequency-shift vibro-acoustic modulation driven by low-frequency broadband excitations in a bistable cantilever oscillator

    NASA Astrophysics Data System (ADS)

    He, Qingbo; Xu, Yanyan; Lu, Siliang; Shao, Yong

    2017-03-01

    This paper reports a frequency-shift vibro-acoustic modulation (VAM) effect in a bistable microcracked cantilever oscillator. Low-frequency broadband excitations induced a VAM effect with a shifted modulation frequency through involving a microcracked metal beam in a bistable oscillator model. We used nonlinear dynamics equations and principles to describe the mechanism of a bistable oscillator whose natural frequency varied as the oscillation amplitude increased. We demonstrated this frequency-shift VAM effect using a prototype bistable oscillator model designed to efficiently detect microcracks in solid materials via the VAM effect using ambient vibration excitations.

  6. Frequency Scaling for Evaluation of Shale and Mudstone Properties from Acoustic Velocities

    NASA Astrophysics Data System (ADS)

    Suarez-Rivera, R.; Willson, S. M.; Nakagawa, S.; Magnar-Ness, O.

    2001-12-01

    In subsurface oil and gas exploration, seismic wave (stress wave) measurement is one of the most important tools for determining the properties of overburden and predicting reservoir conditions such as pore pressure, fracture gradient, and stress distribution. To achieve detailed and reliable knowledge of the reservoir, an integrated analysis can be performed on the seismic properties of rocks measured at different scales ranging from laboratory core, boreholes (well logging) and reservoir itself (surface seismic). However, particularly for sedimentary rocks containing a large amount of clay minerals, such integration is not a straightforward task because of velocity dispersion that makes waves of different frequencies travel at different velocities. The ultimate goal of this study is to devise a methodology for frequency scaling based on laboratory measurements of wave propagation at different frequency ranges. To this end, we have examined the mechanical and acoustic (seismic) properties of strongly dispersive sedimentary rocks. Shales were selected as principal rocks of interest for their predominance in the overburden and the direct impact on the well construction cost. Two types of shales were cored from outcrops(Pierre I and Mancos) and tested under varying conditions of loading (hydrostatic versus uniaxial-strain), orientation to bedding (parallel, perpendicular and oblique). Wave measurements were conducted under four ranges of frequency: Static and quasi-static (seismic frequency, approximately 7 Hz) data was obtained from high-accuracy, low-speed stress-strain measurements, and sonic data (0.4 kHz-9 kHz) was obtained from gas-confined resonant bar tests. For ultrasonic data (150 kHz-1 MHz), a frequency-domain phase analysis was applied to compute frequency-dependent phase and group velocities. Over these ranges, both Pierre and Mancos shales showed a smooth and monotonic increase in compressional and shear wave velocities with frequency. Strong velocity

  7. Long-range Acoustic Interactions in Insect Swarms: An Adaptive Gravity Model

    NASA Astrophysics Data System (ADS)

    Gorbonos, Dan; Ianconescu, Reuven; Puckett, James G.; Ni, Rui; Ouellette, Nicholas T.; Gov, Nir S.

    The collective motion of groups of animals emerges from the net effect of the interactions between individual members of the group. In many cases, such as birds, fish, or ungulates, these interactions are mediated by sensory stimuli that predominantly arise from nearby neighbors. But not all stimuli in animal groups are short range. Here, we consider mating swarms of midges, which interact primarily via long-range acoustic stimuli. We exploit the similarity in form between the decay of acoustic and gravitational sources to build a model for swarm behavior. By accounting for the adaptive nature of the midges' acoustic sensing, we show that our ``adaptive gravity'' model makes mean-field predictions that agree well with experimental observations of laboratory swarms. Our results highlight the role of sensory mechanisms and interaction range in collective animal behavior. The adaptive interactions that we present here open a new class of equations of motion, which may appear in other biological contexts.

  8. Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface.

    PubMed

    Senne, J; Song, A; Badiey, M; Smith, K B

    2012-09-01

    The present paper examines the temporal evolution of acoustic fields by modeling forward propagation subject to sea surface dynamics with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Surface waves are generated from surface wave spectra, and stepped in time using a Runge-Kutta integration technique applied to linear evolution equations. This evolving, range-dependent surface information is combined with other environmental parameters and input to the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. This merged acoustic model is validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the model is able to approximate the ensemble-averaged acoustic intensity at ranges of about a kilometer for acoustic signals of around 15 kHz. Furthermore, the model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds.

  9. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-09-01

    In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.

  10. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    PubMed

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  11. Improving range resolution with a frequency-hopping technique

    NASA Technical Reports Server (NTRS)

    Stitt, G. R.; Bowhill, S. A.

    1986-01-01

    Range resolution of a conventional pulsed Doppler radar is determined by the scattering volume defined by the transmitted pulse shape. To increase the resolution, the length of the pulse must be reduced. Reducing the pulse length also reduces the transmitted power and hense the signal to noise ratio unless the peak power capability of the transmitter is greatly increased. Improved range resolution may also be attained through the use of various pulse coding methods, but such methods are sometimes difficult to implement from a hardware standpoint. The frequency-hopping (F-H) technique described increases the range resolution of pulse Doppler MST (mesosphere stratosphere troposphere) radar without the need for extensive modifications to the radar transmitter. This technique consists of sending a repeated sequence of pulses, each pulse in the sequence being transmitted at a unique radio frequency that is under the control of a microcomputer. This technique is discussed along with other radar parameters.

  12. High-frequency surface acoustic wave device based on thin-film piezoelectric interdigital transducers

    SciTech Connect

    Sarin Kumar, A.K.; Paruch, P.; Triscone, J.-M.; Daniau, W.; Ballandras, S.; Pellegrino, L.; Marre, D.; Tybell, T.

    2004-09-06

    Using high-quality epitaxial c-axis Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} films grown by off-axis magnetron sputtering onto metallic (001) Nb-doped SrTiO{sub 3} substrates, a nonconventional thin-film surface acoustic wave device based on periodic piezoelectric transducers was realized. The piezoelectric transducers consist of a series of ferroelectric domains with alternating polarization states. The artificial modification of the ferroelectric domain structure is performed by using an atomic force microscope tip as a source of electric field, allowing local switching of the polarization. Devices with 1.2 and 0.8 {mu}m wavelength, defined by the modulation period of the polarization, and corresponding to central frequencies in the range 1.50-3.50 GHz have been realized and tested.

  13. A Void Fraction Characterisation by Low Frequency Acoustic Velocity Measurements in Microbubble Clouds

    NASA Astrophysics Data System (ADS)

    Cavaro, Matthieu

    Low frequency acoustic velocity measurements have been applied for the characterization of microbubble clouds generated in water. This method, based on the Wood's model (1941) links the acoustic velocity throughout a two-phase medium to its void fraction value. Low frequency means below resonance frequencies of the bubbles inside the cloud. An original bench was developed to allow the qualification of this method. The experiments conducted allowed us to characterize void fraction values between 10-3 and 10-7. The radii of the studied microbubbles are between a few micrometers and a hundred micrometers.

  14. High-frequency acoustic waves are not sufficient to heat the solar chromosphere.

    PubMed

    Fossum, Astrid; Carlsson, Mats

    2005-06-16

    One of the main unanswered questions in solar physics is why the Sun's outer atmosphere is hotter than its surface. Theory predicts abundant production of high-frequency (10-50 mHz) acoustic waves in subsurface layers of the Sun, and such waves are believed by many to constitute the dominant heating mechanism of the chromosphere (the lower part of the outer solar atmosphere) in non-magnetic regions. Such high-frequency waves are difficult to detect because of high-frequency disturbances in Earth's atmosphere (seeing) and other factors. Here we report the detection of high-frequency waves, and we use numerical simulations to show that the acoustic energy flux of these waves is too low, by a factor of at least ten, to balance the radiative losses in the solar chromosphere. Acoustic waves therefore cannot constitute the dominant heating mechanism of the solar chromosphere.

  15. 3D frequency-domain finite-difference modeling of acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Operto, S.; Virieux, J.

    2006-12-01

    -memory computers. The MUMPS solver is based on a multifrontal method for LU factorization. We used the METIS algorithm to perform re-ordering of the matrix coefficients before factorization. Four grid points per minimum wavelength is used for discretization. We applied our algorithm to the 3D SEG/EAGE synthetic onshore OVERTHRUST model of dimensions 20 x 20 x 4.65 km. The velocities range between 2 and 6 km/s. We performed the simulations using 192 processors with 2 Gbytes of RAM memory per processor. We performed simulations for the 5 Hz, 7 Hz and 10 Hz frequencies in some fractions of the OVERTHRUST model. The grid interval was 100 m, 75 m and 50 m respectively. The grid dimensions were 207x207x53, 275x218x71 and 409x109x102 respectively corresponding to 100, 80 and 25 percents of the model respectively. The time for factorization is 20 mn, 108 mn and 163 mn respectively. The time for resolution was 3.8, 9.3 and 10.3 s per source. The total memory used during factorization is 143, 384 and 449 Gbytes respectively. One can note the huge memory requirement for factorization and the efficiency of the direct method to compute solutions for a large number of sources. This highlights the respective drawback and merit of the frequency-domain approach with respect to the time- domain counterpart. These results show that 3D acoustic frequency-domain wave propagation modeling can be performed at low frequencies using direct solver on large clusters of Pcs. This forward modeling algorithm may be used in the future as a tool to image the first kilometers of the crust by frequency-domain full-waveform inversion. For larger problems, we will use the out-of-core memory during factorization that has been implemented by the authors of MUMPS.

  16. Localized ultrahigh frequency acoustic fields induced micro-vortices for submilliseconds microfluidic mixing

    NASA Astrophysics Data System (ADS)

    Cui, Weiwei; Zhang, Hao; Zhang, Hongxiang; Yang, Yang; He, Meihang; Qu, Hemi; Pang, Wei; Zhang, Daihua; Duan, Xuexin

    2016-12-01

    We present an acoustic microfluidic mixing approach via acousto-mechanically induced micro-vortices sustained by localized ultrahigh frequency (UHF) acoustic fields. A micro-fabricated solid-mounted thin-film piezoelectric resonator (SMR) with a frequency of 1.54 GHz has been integrated into microfluidic systems. Experimental and simulation results show that UHF-SMR triggers strong acoustic field gradients to produce efficient and highly localized acoustic streaming vortices, providing a powerful source for microfluidic mixing. Homogeneous mixing with 87% mixing efficiency at a Peclet number of 35520 within 1 ms has been achieved. The proposed strategy shows a great potential for microfluidic mixing and enhanced molecule transportation in minimized analytical systems.

  17. Frequency-range discriminations: special and general abilities in zebra finches (Taeniopygia guttata) and humans (Homo sapiens).

    PubMed

    Weisman, R; Njegovan, M; Sturdy, C; Phillmore, L; Coyle, J; Mewhort, D

    1998-09-01

    The acoustic frequency ranges in birdsongs and human speech can provide important pitch cues for recognition. Zebra finches and humans were trained to sort contiguous frequencies into 3 or 8 ranges, based on associations between the ranges and reward. The 3-range task was conducted separately in 3 spectral regions. Zebra finches discriminated 3 ranges in the medium and high spectral regions faster than in the low region and discriminated 8 ranges with precision. Humans discriminated 3 ranges in all 3 spectral regions to the same modest standard and acquired only a crude discrimination of the lowest and highest of 8 ranges. The results indicate that songbirds have a special sensitivity to the pitches in conspecific songs and, relative to humans, have a remarkable general ability to sort pitches into ranges.

  18. Transcranial measurements of the acoustic field produced by a low frequency focused ultrasound system

    NASA Astrophysics Data System (ADS)

    Voie, Arne; Fisher, David; Ahadi, Golnaz; Hölscher, Thilo

    2012-11-01

    The purpose of this study was to ascertain the effects of the skull on the location, shape and power of the acoustic field produced by a 150 mm radius hemispherical array operating at 220 kHz. We wanted to determine whether phase aberrations were significant at this frequency, the amount of attenuation, and whether CT data could be predictive of the trans-skull field. The effects of five calvaria were evaluated. Acoustic field data and CT scans for each skull specimen were imported into MATLAB® for measurements and visualization in two and three dimensions. We examined the effects of skull density, porosity, thickness, and sonication incident angles, and estimated the relative contributions of longitudinal and shear transmission to the total transmitted power. Power transmission through the skulls varied between 4% and 23% (mean: 12%). The range of focal position shifts was from 0.50 mm to 4.32 mm (mean: 1.95 mm). The 3 dB dimensions of the focused ultrasound (FUS) intensity focal volume increased on average by 39% (low: 4%, high: 122%). The 6 dB pressure focal volume increased by an average of 130 ± 75%. In general, the main effects of the skulls were power reduction, field dispersion and slight shift of focal peak location.

  19. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    PubMed Central

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  20. Imaging of 3D Ocean Turbulence Microstructure Using Low Frequency Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Minakov, Alexander; Kolyukhin, Dmitriy; Keers, Henk

    2015-04-01

    In the past decade the technique of imaging the ocean structure with low-frequency signal (Hz), produced by air-guns and typically employed during conventional multichannel seismic data acquisition, has emerged. The method is based on extracting and stacking the acoustic energy back-scattered by the ocean temperature and salinity micro- and meso-structure (1 - 100 meters). However, a good understanding of the link between the scattered wavefield utilized by the seismic oceanography and physical processes in the ocean is still lacking. We describe theory and the numerical implementation of a 3D time-dependent stochastic model of ocean turbulence. The velocity and temperature are simulated as homogeneous Gaussian isotropic random fields with the Kolmogorov-Obukhov energy spectrum in the inertial subrange. Numerical modeling technique is employed for sampling of realizations of random fields with a given spatial-temporal spectral tensor. The model used is shown to be representative for a wide range of scales. Using this model, we provide a framework to solve the forward and inverse acoustic scattering problem using marine seismic data. Our full-waveform inversion method is based on the ray-Born approximation which is specifically suitable for the modelling of small velocity perturbations in the ocean. This is illustrated by showing a good match between synthetic seismograms computed using ray-Born and synthetic seismograms produced with a more computationally expensive finite-difference method.

  1. Experimental Characterization of Centrifugal Pumps as AN Acoustic Source at the Blade-Passing Frequency

    NASA Astrophysics Data System (ADS)

    Rzentkowski, G.; Zbroja, S.

    2000-05-01

    Centrifugal pumps represent the primary source of acoustic energy in industrial piping. For hydraulically similar pumps, the amount of emitted energy may vary significantly between different designs and it is generally not known. The available information, typically presented as a magnitude of pressure pulsations measured at the pump discharge, is not free of resonance effects associated with the piping acoustics and, in some aspects, may be seriously misleading. In this paper, we formulate an experimental method to examine the pump acoustic characteristics at the blade-passing frequency. First, we assess the resonance effects in the test-loop. Next, we decompose the measured signal into the components associated with the pump action and with the loop acoustics by means of a simple pump model which is based on a linear superposition of pressure wave transmission and excitation. We apply this technique to examine the acoustics of a single-stage, double-volute centrifugal pump. We estimate the strength of source variables and establish the pump characteristics as an acoustic source. The results indicate that (i) the source variables represent a jump in the acoustic field and are nearly free of resonance effects in the test-loop and that (ii) the pump may act either as a pressure or as a velocity source. Based on this analysis, we postulate that the pressure wave traveling in the direction of pump discharge should be used to define the pump pulsation level for valid comparison between different designs and for acoustic modelling of piping systems.

  2. Acoustic characteristics of the low-frequency nest call of discomfort of the house mouse ( Mus musculus) early ontogenesis

    NASA Astrophysics Data System (ADS)

    Egorova, M. A.; Akimov, A. G.

    2010-05-01

    Acoustic characteristics of the low-frequency nest call signaling discomfort of mouse pups are considered. The spectral temporal analysis of the call is realized for house mouse pups. In the structure of some calls, the frequency modulation and components of the noise are established. Signal duration varies from 20 to 170 ms. A statistically significant decrease of call duration and its fundamental frequency is shown from the 6th to 29th day of the mouse pups’ lives. The most stable parameters of the call-the harmonic structure, low-frequency range (up to 20 kHz), and location of the fundamental frequency between 4 and 8 kHz are recognized.

  3. Towards a reference cavitating vessel Part III—design and acoustic pressure characterization of a multi-frequency sonoreactor

    NASA Astrophysics Data System (ADS)

    Wang, Lian; Memoli, Gianluca; Hodnett, Mark; Butterworth, Ian; Sarno, Dan; Zeqiri, Bajram

    2015-08-01

    A multi-frequency cavitation vessel (RV-multi) has been commissioned at the National Physical Laboratory (NPL, UK), with the aim of establishing a standard source of acoustic cavitation in water, with reference to which details of the cavitation process can be studied and cavitation measurement techniques evaluated. The vessel is a cylindrical cavity with a maximum capacity up to 17 L, and is designed to work at six frequency ranges, from 21 kHz to 136 kHz, under controlled temperature conditions. This paper discusses the design of RV-multi and reports experiments carried out to establish the reproducibility of the acoustic pressure field established within the vessel and its operating envelope, including sensitivity to aspects such as water depth and temperature. The acoustic field distribution was determined along the radial and depth directions within the vessel using a miniature hydrophone, for two input voltage levels under low power transducer excitation conditions (e.g. below the cavitation threshold). Particular care was taken in determining peak acoustic pressure locations, as these are critical for accompanying cavitation studies. Perturbations of the vessel by the measuring hydrophone were also monitored with a bottom-mounted pressure sensor.

  4. Acoustic shadow-zone arrivals at long range in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    van Uffelen, Lora J.

    Deep acoustic shadow-zone arrivals were first observed on horizontal, bottom-mounted receiving arrays in the North Pacific Ocean in the late 1990s. These receptions revealed significant acoustic energy penetrating an estimated 500-1000 m into geometric shadow zones below cusps (caustics) of predicted timefronts, much more than predicted by diffraction theory. Two vertical line array receivers deployed in close proximity in the North Pacific as part of the SPICEX experiment, together virtually spanning the water column, show the vertical structure of the shadow-zone arrivals for transmissions from broadband 250-Hz acoustic sources moored at the sound channel axis (750 m) and slightly above the surface conjugate depth (3000 m) at ranges of 500 and 1000 km. Chapter II compares a daily average of acoustic timefronts with parabolic equation simulations based on a sound-speed profile measured nearly concurrently with the acoustic data acquisition. Simulations incorporating a range-independent sound-speed profile confirmed the presence of deep shadow-zone arrivals. Receptions from off-axis sources also revealed acoustic energy scattering back up toward the axis at the end of the timefront, referred to as axial shadow-zone arrivals. Simulations incorporating sound-speed fluctuations consistent with the Garrett-Munk internal-wave energy spectrum at full strength accurately predict the vertical extent of and energy contained in both axial and deep shadow-zone arrivals. Chapter III extends the analysis to include acoustic receptions from June to November 2004. Incoherent monthly averages of acoustic timefronts indicate that lower cusps associated with acoustic rays with shallow upper turning points (UTPs), where sound-speed structure is most variable and seasonally dependent, deepen from June to October as the summer thermocline develops. Surface-reflected rays, or those with near-surface UTPs, exhibit less scattering due to internal waves than in later months, when the UTP

  5. Frequency effect on streaming phenomenon induced by Rayleigh surface acoustic wave in microdroplets

    NASA Astrophysics Data System (ADS)

    Alghane, M.; Fu, Y. Q.; Chen, B. X.; Li, Y.; Desmulliez, M. P. Y.; Walton, A. J.

    2012-10-01

    Acoustic streaming of ink particles inside a water microdroplet generated by a surface acoustic wave (SAW) has been studied numerically using a finite volume numerical method and these results have been verified using experimental measurements. Effects of SAW excitation frequency, droplet volume, and radio-frequency (RF) power are investigated, and it has been shown that SAW excitation frequency influences the SAW attenuation length, lSAW, and hence the acoustic energy absorbed by liquid. It has also been observed that an increase of excitation frequency generally enhances the SAW streaming behavior. However, when the frequency exceeds a critical value that depends on the RF power applied to the SAW device, weaker acoustic streaming is observed resulting in less effective acoustic mixing inside the droplet. This critical value is characterised by a dimensionless ratio of droplet radius to SAW attenuation length, i.e., Rd/lSAW. With a mean value of Rd/lSAW ≈ 1, a fast and efficient mixing can be induced, even at the lowest RF power of 0.05 mW studied in this paper. On the other hand, for the Rd/lSAW ratios much larger than ˜1, significant decreases in streaming velocities were observed, resulting in a transition from regular (strong) to irregular (weak) mixing/flow. This is attributed to an increased absorption rate of acoustic wave energy that leaks into the liquid, resulting in a reduction of the acoustic energy radiated away from the SAW interaction region towards the droplet free surface. It has been demonstrated in this study that a fast and efficient mixing process with a smaller RF power could be achieved if the ratio of Rd/lSAW ≤ 1 in the SAW-droplet based microfluidics.

  6. Acoustic characterization of echogenic liposomes: Frequency-dependent attenuation and backscatter

    PubMed Central

    Kopechek, Jonathan A.; Haworth, Kevin J.; Raymond, Jason L.; Douglas Mast, T.; Perrin, Stephen R.; Klegerman, Melvin E.; Huang, Shaoling; Porter, Tyrone M.; McPherson, David D.; Holland, Christy K.

    2011-01-01

    Ultrasound contrast agents (UCAs) are used clinically to aid detection and diagnosis of abnormal blood flow or perfusion. Characterization of UCAs can aid in the optimization of ultrasound parameters for enhanced image contrast. In this study echogenic liposomes (ELIPs) were characterized acoustically by measuring the frequency-dependent attenuation and backscatter coefficients at frequencies between 3 and 30 MHz using a broadband pulse-echo technique. The experimental methods were initially validated by comparing the attenuation and backscatter coefficients measured from 50-μm and 100-μm polystyrene microspheres with theoretical values. The size distribution of the ELIPs was measured and found to be polydisperse, ranging in size from 40 nm to 6 μm in diameter, with the highest number observed at 65 nm. The ELIP attenuation coefficients ranged from 3.7 ± 1.0 to 8.0 ± 3.3 dB/cm between 3 and 25 MHz. The backscatter coefficients were 0.011 ± 0.006 (cm str)−1 between 6 and 9 MHz and 0.023 ± 0.006 (cm str)−1 between 13 and 30 MHz. The measured scattering-to-attenuation ratio ranged from 8% to 22% between 6 and 25 MHz. Thus ELIPs can provide enhanced contrast over a broad range of frequencies and the scattering properties are suitable for various ultrasound imaging applications including diagnostic and intravascular ultrasound. PMID:22088022

  7. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  8. THE PSYCHOPHYSICS OF LOW-FREQUENCY ACOUSTIC HEARING IN ELECTRIC AND ACOUSTIC STIMULATION (EAS) AND BIMODAL PATIENTS

    PubMed Central

    Gifford, Rene H.; Dorman, Michael F.

    2013-01-01

    This paper provides a review of the current literature on psychophysical properties of low-frequency hearing, both before and after implantation, with a focus on frequency selectivity, nonlinear cochlear processing, and speech perception in temporally modulated maskers for bimodal listeners as well as patients with hearing preservation in the implanted ear and receiving combined electric and acoustic stimulation (EAS). In this paper we review our work, the work of others, and report results not previously published for speech perception in steady-state and temporally fluctuating maskers; the degree of masking release and frequency resolution for 11 bimodal, 6 hearing preservation patients; and 5 control subjects with normal hearing. The results demonstrate that a small masking release is possible with acoustic hearing in just one ear, with the degree of masking release being correlated with the low-frequency pure tone average in the non-implanted ear; furthermore, frequency selectivity as defined by the width of the auditory filter was not correlated with the degree of masking release. Descriptions of the clinical utility of hearing preservation in the implanted ear for improving speech perception in complex listening environments, as well as directions for the future, are discussed. PMID:24244874

  9. Frequency-dependent damping in propagating slow magneto-acoustic waves

    SciTech Connect

    Prasad, S. Krishna; Banerjee, D.; Van Doorsselaere, T.

    2014-07-10

    Propagating slow magneto-acoustic waves are often observed in polar plumes and active region fan loops. The observed periodicities of these waves range from a few minutes to a few tens of minutes and their amplitudes were found to decay rapidly as they travel along the supporting structure. Previously, thermal conduction, compressive viscosity, radiation, density stratification, and area divergence were identified to be some of the causes for change in the slow wave amplitude. Our recent studies indicate that the observed damping in these waves is frequency-dependent. We used imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly to study this dependence in detail and for the first time via observations we attempted to deduce a quantitative relation between the damping length and frequency of these oscillations. We developed a new analysis method to obtain this relation. The observed frequency dependence does not seem to agree with the current linear wave theory and it was found that the waves observed in the polar regions show a different dependence from those observed in the on-disk loop structures despite the similarity in their properties.

  10. Frequency selectivity of chemi-acoustic amplification in a constant volume gas

    SciTech Connect

    Riley, M.E.

    1984-06-01

    The fact that chemical reactions can amplify disturbances suggests that the cellular structure of gaseous detonations is a result of frequency selective amplification of random initial fluctuations. Unfortunately, previous studies have shown a minimal frequency dependence in the chemi-acoustic growth rate. The calculations in this paper demonstrate that the amplification process is strongly frequency dependent in a uniform gas. These results encourage a new exploration of the perturbation-theoretic analysis of detonation waves.

  11. High-overtone Self-Focusing Acoustic Transducers for High Frequency Ultrasonic Doppler

    PubMed Central

    Zhu, Jie; Lee, Chuangyuan; Kim, Eun Sok; Wu, Dawei; Hu, Changhong; Zhou, Qifa; Shung, K. Kirk.; Wang, Gaofeng; Yu, Hongyu

    2010-01-01

    This work reports the potential use of high-overtone self-focusing acoustic transducers for high frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz. PMID:20206371

  12. West Coast Naval Training Range Demonstration of Glider-Based Passive Acoustic Monitoring

    DTIC Science & Technology

    2013-09-30

    frequency Acoustic Recording Package ( HARP ) described by Wiggins and Hildebrand (2007). Figure 1. The ZRay flying wing autonomous underwater...towed array from SPAWAR SSC Pacific. The Wave Glider included a HARP data logger connected to a wide-band hydrophone towed from the submerged wing...Both the ZRay and the Wave Glider were operated near an array of three bottom-mounted HARPs deployed in the southern California Bight as part of the

  13. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  14. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

    SciTech Connect

    Ivry, Yachin E-mail: cd229@eng.cam.ac.uk; Wang, Nan; Durkan, Colm E-mail: cd229@eng.cam.ac.uk

    2014-03-31

    Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.

  15. Multi-cavity coupling acoustic metamaterials with low-frequency broad band gaps based on negative mass density

    NASA Astrophysics Data System (ADS)

    Yang, Chuanhui; Wu, Jiu Hui; Cao, Songhua; Jing, Li

    2016-08-01

    This paper studies a novel kind of low-frequency broadband acoustic metamaterials with small size based on the mechanisms of negative mass density and multi-cavity coupling. The structure consists of a closed resonant cavity and an open resonant cavity, which can be equivalent to a homogeneous medium with effective negative mass density in a certain frequency range by using the parameter inversion method. The negative mass density makes the anti-resonance area increased, which results in broadened band gaps greatly. Owing to the multi-cavity coupling mechanism, the local resonances of the lower frequency mainly occur in the closed cavity, while the local resonances of the higher frequency mainly in the open cavity. Upon the interaction between the negative mass density and the multi-cavity coupling, there exists two broad band gaps in the range of 0-1800 Hz, i.e. the first-order band gap from 195 Hz to 660 Hz with the bandwidth of 465 Hz and the second-order band gap from 1157 Hz to 1663 Hz with the bandwidth of 506 Hz. The acoustic metamaterials with small size presented in this paper could provide a new approach to reduce the low-frequency broadband noises.

  16. Use of high frequency acoustics to study the spatial distributions of bubbles

    NASA Astrophysics Data System (ADS)

    Terrill, Eric; Melville, Ken

    2002-11-01

    It is well understood that the presence of bubbles in the ocean can dramatically change the sound speed, attenuation, and scattering of underwater sound over a range of frequencies. Over the last few decades, rational theories have been developed and tested that describe the complex dispersion of sound through spatially homogeneous bubbly mixtures as a function of the sizes and densities of bubbles. However, it is clear that in the ocean, the size distribution of the bubbles will evolve with a number of different temporal and spatial scales as a result of both the physics which govern their formation (breaking wind waves, breaking waves in the surf, rain generated bubbles, or ship wakes) and the physical processes which control their lifetimes: turbulent mixing, bubble rise speed, and gas dissolution. One approach to measuring their distribution in space is the application of O(1) MHz range-gated sonars which can resolve scales of O(1) cm. These high frequencies are also advantageous to work with since the scattering cross section of the bubbles is approximately proportional to the second moment of the size distribution. Results of field measurement efforts to characterize the spatial scales of bubbles from O(1) m to O(1) cm will be presented and discussed. [Work supported by the ONR Underwater Acoustics and Marine Optics programs.

  17. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    SciTech Connect

    Mazumdar, A.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Ballot, J.; Antia, H. M.; Basu, S.; Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Mathur, S.; García, R. A.; Verner, G. A.; Chaplin, W. J.; Sanderfer, D. T.; Seader, S. E.; Smith, J. C.

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  18. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    PubMed

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  19. Range-azimuth decouple beamforming for frequency diverse array with Costas-sequence modulated frequency offsets

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Wen-Qin; Shao, Huaizong

    2016-12-01

    Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the standard FDA in focusing the transmit energy, especially in the range dimension.

  20. Double-channel, frequency-steered acoustic transducer with 2-D imaging capabilities.

    PubMed

    Baravelli, Emanuele; Senesi, Matteo; Ruzzene, Massimo; De Marchi, Luca; Speciale, Nicolò

    2011-07-01

    A frequency-steerable acoustic transducer (FSAT) is employed for imaging of damage in plates through guided wave inspection. The FSAT is a shaped array with a spatial distribution that defines a spiral in wavenumber space. Its resulting frequency-dependent directional properties allow beam steering to be performed by a single two-channel device, which can be used for the imaging of a two-dimensional half-plane. Ad hoc signal processing algorithms are developed and applied to the localization of acoustic sources and scatterers when FSAT arrays are used as part of pitch-catch and pulse-echo configurations. Localization schemes rely on the spectrogram analysis of received signals upon dispersion compensation through frequency warping and the application of the frequency-angle map characteristic of FSAT. The effectiveness of FSAT designs and associated imaging schemes are demonstrated through numerical simulations and experiments. Preliminary experimental validation is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The presented results demonstrate the frequency-dependent directionality of the spiral FSAT and suggest its application for frequency-selective acoustic sensors, for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health.

  1. Robustness against distortion of fundamental frequency cues in simulated electro-acoustic hearing.

    PubMed

    Vermeulen, Arthur; Verschuur, Carl

    2016-07-01

    Speech recognition by cochlear implant users can be improved by adding an audible low frequency acoustic signal to electrical hearing; the resulting improvement is deemed "electro-acoustic stimulation (EAS) benefit." However, a crucial low frequency cue, fundamental frequency (F0), can be distorted via the impaired auditory system. In order to understand how F0 distortions may affect EAS benefit, normal-hearing listeners were presented monaurally with vocoded speech (frequencies >250 Hz) and an acoustical signal (frequencies <250 Hz) with differing manipulations of the F0 signal, specifically: a pure tone with the correct mean F0 but with smaller variations around this mean, or a narrowband of white noise centered around F0, at varying bandwidths; a pure tone down-shifted in frequency by 50 Hz but keeping overall frequency modulations. Speech-recognition thresholds improved when tones with reduced frequency modulation were presented, and improved significantly for noise bands maintaining F0 information. A down-shifted tone, or only a tone to indicate voicing, showed no EAS benefit. These results confirm that the presence of the target's F0 is beneficial for EAS hearing in a noisy environment, and they indicate that the benefit is robust to F0 distortion, as long as the mean F0 and frequency modulations of F0 are preserved.

  2. Noninvasive identification of fluids by swept-frequency acoustic interferometry

    DOEpatents

    Sinha, Dipen N.

    1998-01-01

    A method for rapid, noninvasive identification and monitoring of chemicals in sealed containers or containers where direct access to the chemical is not possible is described. Multiple ultrasonic acoustic properties (up to four) of a fluid are simultaneously determined. The present invention can be used for chemical identification and for determining changes in known chemicals from a variety of sources. It is not possible to identify all known chemicals based on the measured parameters, but known classes of chemicals in suspected containers, such as in chemical munitions, can be characterized. In addition, a large number of industrial chemicals can be identified.

  3. Cell property determination from the acoustic microscope generated voltage versus frequency curves.

    PubMed Central

    Kundu, T; Bereiter-Hahn, J; Karl, I

    2000-01-01

    Among the methods for the determination of mechanical properties of living cells acoustic microscopy provides some extraordinary advantages. It is relatively fast, of excellent spatial resolution and of minimal invasiveness. Sound velocity is a measure of the stiffness or Young's modulus of the cell. Attenuation of cytoplasm is a measure of supramolecular interactions. These parameters are of crucial interest for studies of cell motility, volume regulations and to establish the functional role of the various elements of the cytoskeleton. Using a phase and amplitude sensitive modulation of a scanning acoustic microscope (Hillman et al., 1994, J. Alloys Compounds. 211/212:625-627) longitudinal wave speed, attenuation and thickness profile of a biological cell are obtained from the voltage versus frequency or V(f) curves. A series of pictures, for instance in the frequency range 980-1100 MHz with an increment of 20 MHz, allows the experimental generation of V(f) curves for each pixel while keeping the lens-specimen distance unchanged. Both amplitude and phase values of the V(f) curves are used for obtaining the cell properties and the cell thickness profile. The theoretical analysis shows that the thin liquid layer, between the cell and the substrate, has a strong influence on the reflection coefficient and should not be ignored during the analysis. Cell properties, cell profile and the thickness of the thin liquid layer are obtained from the V(f) curves by the simplex inversion algorithm. The main advantages of this new method are that imaging can be done near the focal plane, therefore an optimal signal to noise ratio is achieved, no interference with Rayleigh waves occurs, and the method requires only an approximate estimate of the material properties of the solid substratum where the cells are growing on. PMID:10777725

  4. Paternal kin recognition in the high frequency / ultrasonic range in a solitary foraging mammal

    PubMed Central

    2012-01-01

    Background Kin selection is a driving force in the evolution of mammalian social complexity. Recognition of paternal kin using vocalizations occurs in taxa with cohesive, complex social groups. This is the first investigation of paternal kin recognition via vocalizations in a small-brained, solitary foraging mammal, the grey mouse lemur (Microcebus murinus), a frequent model for ancestral primates. We analyzed the high frequency/ultrasonic male advertisement (courtship) call and alarm call. Results Multi-parametric analyses of the calls’ acoustic parameters and discriminant function analyses showed that advertisement calls, but not alarm calls, contain patrilineal signatures. Playback experiments controlling for familiarity showed that females paid more attention to advertisement calls from unrelated males than from their fathers. Reactions to alarm calls from unrelated males and fathers did not differ. Conclusions 1) Findings provide the first evidence of paternal kin recognition via vocalizations in a small-brained, solitarily foraging mammal. 2) High predation, small body size, and dispersed social systems may select for acoustic paternal kin recognition in the high frequency/ultrasonic ranges, thus limiting risks of inbreeding and eavesdropping by predators or conspecific competitors. 3) Paternal kin recognition via vocalizations in mammals is not dependent upon a large brain and high social complexity, but may already have been an integral part of the dispersed social networks from which more complex, kin-based sociality emerged. PMID:23198727

  5. Performance Evaluation of a Prototype Underwater Short-Range Acoustic Telemetry Modem

    DTIC Science & Technology

    2010-09-01

    9 Figure 6. Multipath propagation of eigenrays at a range of 500 m plotted by Bellhop ray trace. From [4...travels with a unique path, as illustrated by Figure 6. Each ray arriving at the receiver is called an eigenray . Since each eigenray has a unique path...propagation of eigenrays at a range of 500 m plotted by Bellhop ray trace. From [4] We can model the underwater acoustic communication channel as

  6. Ranging with frequency-shifted feedback lasers: from μm-range accuracy to MHz-range measurement rate

    NASA Astrophysics Data System (ADS)

    Kim, J. I.; Ogurtsov, V. V.; Bonnet, G.; Yatsenko, L. P.; Bergmann, K.

    2016-12-01

    We report results on ranging based on frequency-shifted feedback (FSF) lasers with two different implementations: (1) An Ytterbium-fiber system for measurements in an industrial environment with accuracy of the order of 1 μm, achievable over a distance of the order of meters with potential to reach an accuracy of better than 100 nm; (2) A semiconductor laser system for a high rate of measurements with an accuracy of 2 mm @ 1 MHz or 75 μm @ 1 kHz and a limit of the accuracy of ≥10 μm. In both implementations, the distances information is derived from a frequency measurement. The method is therefore insensitive to detrimental influence of ambient light. For the Ytterbium-fiber system, a key feature is the injection of a single-frequency laser, phase modulated at variable frequency Ω, into the FSF-laser cavity. The frequency Ω_{max} at which the detector signal is maximal yields the distance. The semiconductor FSF-laser system operates without external injection seeding. In this case, the key feature is frequency counting that allows convenient choice of either accuracy or speed of measurements simply by changing the duration of the interval during which the frequency is measured by counting.

  7. Propagation of high frequency jet noise using geometric acoustics

    NASA Technical Reports Server (NTRS)

    Khavaran, A.; Krejsa, E. A.

    1993-01-01

    Spherical directivity of noise radiated from a convecting quadrupole source embedded in an arbitrary spreading jet is obtained by ray-tracing methods of geometrical acoustics. The six propagation equations are solved in their general form in a rectangular coordinate system. The noise directivity in the far field is calculated by applying an iteration scheme that finds the required radiation angles at the source resulting in propagation through a given observer point. Factors influencing the zone of silence are investigated. The caustics of geometrical acoustics and the exact locations where it forms is demonstrated by studying the variation in ray tube area obtained from transport equation. For a ring source convecting along the center-axis of an axisymmetric jet, the polar directivity of the radiated noise is obtained by an integration with respect to azimuthal directivity of compact quadrupole sources distributed on the ring. The Doppler factor is shown to vary slightly from point to point on the ring. Finally the scaling of the directivity pattern with power -3 of Doppler factor is investigated and compared with experimental data.

  8. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    NASA Astrophysics Data System (ADS)

    Droit, C.; Martin, G.; Ballandras, S.; Friedt, J.-M.

    2010-05-01

    We demonstrate the wireless conversion of frequency modulation to amplitude modulation by radio frequency resonators as means of accurately determining the resonance frequency of passive acoustoelectronic sensors. The emitted frequency modulated radio frequency pulses are generated by a pulsed radar for probing a surface acoustic wave based sensor. The sharp sign transition of the amplitude modulated received signal provides a signal on which a feedback loop is locked to monitor the resonance signal. The strategy is demonstrated using a full software implementation on a generic hardware, resulting in 2 Hz resolution at 1 s integration time limited by the proportional feedback loop.

  9. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.

    PubMed

    Droit, C; Martin, G; Ballandras, S; Friedt, J-M

    2010-05-01

    We demonstrate the wireless conversion of frequency modulation to amplitude modulation by radio frequency resonators as means of accurately determining the resonance frequency of passive acoustoelectronic sensors. The emitted frequency modulated radio frequency pulses are generated by a pulsed radar for probing a surface acoustic wave based sensor. The sharp sign transition of the amplitude modulated received signal provides a signal on which a feedback loop is locked to monitor the resonance signal. The strategy is demonstrated using a full software implementation on a generic hardware, resulting in 2 Hz resolution at 1 s integration time limited by the proportional feedback loop.

  10. The Effects of Sediment Properties on Low Frequency Acoustic Propagation

    DTIC Science & Technology

    2014-09-30

    RI: We have acquired a geophone/hydrophone array under a DURIP grant ( Seafloor Shear Measurement Using Interface Waves, Miller and Potty PIs...low frequency sound absorption, leading to wider spread of low frequency sounds. 6 Figure 4: Left panel shows the absorption (in dB) at 10 km

  11. Multimode VCSEL model for wide frequency-range RIN simulation

    NASA Astrophysics Data System (ADS)

    Perchoux, Julien; Rissons, Angélique; Mollier, Jean-Claude

    2008-01-01

    In this paper, we present an equivalent circuit model for oxide-confined AlGaAs/GaAs VCSEL with the noise contribution adapted to optomicrowave links applications. This model is derived from the multimode rate equations. In order to understand the modal competition process, we restrain our description to a two-modes rate equations system affected by the spectral hole-burning. The relative intensity noise (RIN) measurements which were achieved on a prober in Faraday cage confirm the low frequency enhancement described by the model. We validate our model for a wide frequency-range [1 MHz-10 GHz] and high bias level up to six times the threshold current.

  12. Heating by waves in the ion cyclotron frequency range

    SciTech Connect

    Koch, R.

    1996-03-01

    The main aspects of heating with the fast wave in the ion cyclotron range of frequencies (ICRF) are reviewed. First, the ion cyclotron resonance mechanism, fundamental and harmonics, is examined. Then the properties of fast wave dispersion are reviewed, and the principles of minority and higher cylcotron harmonic heating are discussed. An elementary coupling model is worked out in order to outline the computation of the electrical properties of ICRF antennas. Using the simple model, the antenna radiation pattern inside the plasma is computed and the effect of phasing on the k spectrum and on the antenna radiation properties is illustrated. The quasi linear-Fokker-Planck computation of the deformation of distribution functions due to Radio-Frequency (RF) and tail formation are briefly discussed. 11 refs., 5 figs.

  13. Acoustic properties of pistonphones at low frequencies in the presence of pressure leakage and heat conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; He, Wen; He, Longbiao; Rong, Zuochao

    2015-12-01

    The wide concern on absolute pressure calibration of acoustic transducers at low frequencies prompts the development of the pistonphone method. At low frequencies, the acoustic properties of pistonphones are governed by the pressure leakage and the heat conduction effects. However, the traditional theory for these two effects applies a linear superposition of two independent correction models, which differs somewhat from their coupled effect at low frequencies. In this paper, acoustic properties of pistonphones at low frequencies in full consideration of the pressure leakage and heat conduction effects have been quantitatively studied, and the explicit expression for the generated sound pressure has been derived. With more practical significance, a coupled correction expression for these two effects of pistonphones has been derived. In allusion to two typical pistonphones, the NPL pistonphone and our developed infrasonic pistonphone, comparisons were done for the coupled correction expression and the traditional one, whose results reveal that the traditional one produces maximum insufficient errors of about 0.1 dB above the lower limiting frequencies of two pistonphones, while at lower frequencies, excessive correction errors with an explicit limit of about 3 dB are produced by the traditional expression. The coupled correction expression should be adopted in the absolute pressure calibration of acoustic transducers at low frequencies. Furthermore, it is found that the heat conduction effect takes a limiting deviation of about 3 dB for the pressure amplitude and a small phase difference as frequency decreases, while the pressure leakage effect remarkably drives the pressure amplitude to attenuate and the phase difference tends to be 90° as the frequency decreases. The pressure leakage effect plays a more important role on the low frequency property of pistonphones.

  14. Spectral element method for elastic and acoustic waves in frequency domain

    NASA Astrophysics Data System (ADS)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei; Liu, Na; Liu, Qing Huo

    2016-12-01

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  15. Experimental determination of the viscous flow permeability of porous materials by measuring reflected low frequency acoustic waves

    NASA Astrophysics Data System (ADS)

    Berbiche, A.; Sadouki, M.; Fellah, Z. E. A.; Ogam, E.; Fellah, M.; Mitri, F. G.; Depollier, C.

    2016-01-01

    An acoustic reflectivity method is proposed for measuring the permeability or flow resistivity of air-saturated porous materials. In this method, a simplified expression of the reflection coefficient is derived in the Darcy's regime (low frequency range), which does not depend on frequency and porosity. Numerical simulations show that the reflection coefficient of a porous material can be approximated by its simplified expression obtained from its Taylor development to the first order. This approximation is good especially for resistive materials (of low permeability) and for the lower frequencies. The permeability is reconstructed by solving the inverse problem using waves reflected by plastic foam samples, at different frequency bandwidths in the Darcy regime. The proposed method has the advantage of being simple compared to the conventional methods that use experimental reflected data, and is complementary to the transmissivity method, which is more adapted to low resistive materials (high permeability).

  16. A general low frequency acoustic radiation capability for NASTRAN

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Henderson, F. M.; Schroeder, E. A.; Lipman, R. R.

    1986-01-01

    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads.

  17. [Spectral analysis of nitrofurantoin in the terahertz frequency range].

    PubMed

    Kang, Xu-Sheng; Hou, Di-Bo; Zhang, Guang-Xin; Chen, Xi-Ai; Yue, Fei-Heng; Huang, Ping-Jie; Zhou, Ze-Kui

    2012-07-01

    The present article measured the absorption coefficient spectra and refractive index spectra of nitrofurantoin original drug, which is one kind of nitrofuran drugs, in the terahertz frequency range from 0.2 to 1.8 THz using terahertz time-domain spectroscopy. The results showed that there exist a number of characteristic absorption peaks of nitrofurantoin with different intensity in the range and the absorption coefficient spectra can be used to identify nitrofurantoin. The article also simulated absorption coefficient spectra of nitrofurantoin molecule within 0.2 - 1.8 THz using density functional theory by Gaussian software, and vibrational modes of some peaks in the experimental absorption coefficient spectra were analyzed and identified. The results show that the experimental absorption peaks at 1.25 and 1.60 THz correspond with the theoretical peaks at 1.30 and 1.67 THz, and these experimental peaks were caused by intramolecular vibrational modes of nitrofurantoin.

  18. Dielectric permittivity of biological tissues in the microwave frequency range

    NASA Astrophysics Data System (ADS)

    Behari, J.; Alex, Z. C.; Zaidi, Zahid H.

    1994-09-01

    The accurate knowledge of complex dielectric behavior of biological tissues at microwave frequency is of great importance in the biomedical field for its diagnostic and therapeutic uses. This information is also essential for studying the mechanism underlying the absorption of electromagnetic energy and also the emission by tissues. In the present work, in vitro complex dielectric permittivity of liver and muscle were measured in the frequency range 0.6 GHz to 1.2 GHz using a network analyzer. An open ended coaxial cable method was used and the complex dielectric permittivity was measured from the actual terminal admittance of the sample. The system was calibrated with three standard samples. The measurements were conducted at room temperature. The calculated values of (Epsilon) ' varied from 53 to 48 for liver and from 49 to 46 for muscle. The corresponding (Epsilon) ' varied from 29 to 38 and 30 to 34 respectively. The relaxation frequency and degree of dispersion were also calculated and estimation of bound water content made in each case.

  19. Wide tracking range, auto ranging, low jitter phase lock loop for swept and fixed frequency systems

    DOEpatents

    Kerner, Thomas M.

    2001-01-01

    The present invention provides a wide tracking range phase locked loop (PLL) circuit that achieves minimal jitter in a recovered clock signal, regardless of the source of the jitter (i.e. whether it is in the source or the transmission media). The present invention PLL has automatic harmonic lockout detection circuitry via a novel lock and seek control logic in electrical communication with a programmable frequency discriminator and a code balance detector. (The frequency discriminator enables preset of a frequency window of upper and lower frequency limits to derive a programmable range within which signal acquisition is effected. The discriminator works in combination with the code balance detector circuit to minimize the sensitivity of the PLL circuit to random data in the data stream). In addition, the combination of a differential loop integrator with the lock and seek control logic obviates a code preamble and guarantees signal acquisition without harmonic lockup. An adaptive cable equalizer is desirably used in combination with the present invention PLL to recover encoded transmissions containing a clock and/or data. The equalizer automatically adapts to equalize short haul cable lengths of coaxial and twisted pair cables or wires and provides superior jitter performance itself. The combination of the equalizer with the present invention PLL is desirable in that such combination permits the use of short haul wires without significant jitter.

  20. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting.

    PubMed

    Collins, David J; Neild, Adrian; Ai, Ye

    2016-02-07

    High-speed sorting is an essential process in a number of clinical and research applications, where single cells, droplets and particles are segregated based on their properties in a continuous flow. With recent developments in the field of microscale actuation, there is increasing interest in replicating the functions available to conventional fluorescence activated cell sorting (FACS) flow cytometry in integrated on-chip systems, which have substantial advantages in cost and portability. Surface acoustic wave (SAW) devices are ideal for many acoustofluidic applications, and have been used to perform such sorting at rates on the order of kHz. Essential to the accuracy of this sorting, however, is the dimensions of the region over which sorting occurs, where a smaller sorting region can largely avoid inaccurate sorting across a range of sample concentrations. Here we demonstrate the use of flow focusing and a highly focused SAW generated by a high-frequency (386 MHz), 10 μm wavelength set of focused interdigital transducers (FIDTs) on a piezoelectric lithium niobate substrate, yielding an effective sorting region only ~25 μm wide, with sub-millisecond pulses generated at up to kHz rates. Furthermore, because of the use of high frequencies, actuation of particles as small as 2 μm can be realized. Such devices represent a substantial step forward in the evolution of highly localized forces for lab-on-a-chip microfluidic applications.

  1. Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation

    PubMed Central

    Siegert, M. E.; Römer, H.; Hartbauer, M.

    2014-01-01

    SUMMARY We examined acoustic masking in a chirping katydid species of the Mecopoda elongata complex due to interference with a sympatric Mecopoda species where males produce continuous trills at high amplitudes. Frequency spectra of both calling songs range from 1 to 80 kHz; the chirper species has more energy in a narrow frequency band at 2 kHz and above 40 kHz. Behaviourally, chirper males successfully phase-locked their chirps to playbacks of conspecific chirps under masking conditions at signal-to-noise ratios (SNRs) of −8 dB. After the 2 kHz band in the chirp had been equalised to the level in the masking trill, the breakdown of phase-locked synchrony occurred at a SNR of +7 dB. The remarkable receiver performance is partially mirrored in the selective response of a first-order auditory interneuron (TN1) to conspecific chirps under these masking conditions. However, the selective response is only maintained for a stimulus including the 2 kHz component, although this frequency band has no influence on the unmasked TN1 response. Remarkably, the addition of masking noise at 65 dB sound pressure level (SPL) to threshold response levels of TN1 for pure tones of 2 kHz enhanced the sensitivity of the response by 10 dB. Thus, the spectral dissimilarity between masker and signal at a rather low frequency appears to be of crucial importance for the ability of the chirping species to communicate under strong masking by the trilling species. We discuss the possible properties underlying the cellular/synaptic mechanisms of the ‘novelty detector’. PMID:24307713

  2. Acoustic metamaterial panels based on multi frequency vibration absorbers

    NASA Astrophysics Data System (ADS)

    Shi, Chao; Sun, Hongwei; Hu, Xiaolei; Gu, Jinliang

    2016-04-01

    Presented here is a new metamaterial panel based on multi-frequency vibration absorbers for broadband vibration absorption. The proposed metamaterial panel consists of a uniform isotropic panel and small two-mass spring-mass-damper subsystem many locations along the panel to act as multi-frequency vibration absorbers. The existence of two stopbands is demonstrated using a model based on averaging material properties over a cell length and a model based on finite element modeling and the Bloch-Floquet theory for periodic structures. For a finite metamaterial panel, because these two idealized models can not be used for finite panels and/or elastic waves having short wavelengths, a finite-element method is used for detailed modeling and analysis. The concepts of negative effective stiffness is explained in detail. For an incoming wave with a frequency in one of the two stopbands, the absorbers are excited to vibrate in their optical modes to create shear forces to straighten the panel and stop the wave propagation. For an incoming wave with a frequency outside of but between the two stopbands, it can be efficiently damped out by the damper with these mass of each absorber. Hence, the two stopbands are connected in to a wide stopband. Numerical examples validate the concept and show that the structures boundary conditions do not have significant influence on the absorption of high-frequency waves. However, for absorption of low-frequency waves, the structures boundary conditions and resonance frequencies and the location and spatial distribution of absorbers need to be considered in design, and it is better to use heavier masses for absorbers.

  3. Acoustic metamaterial structures based on multi-frequency vibration absorbers

    NASA Astrophysics Data System (ADS)

    Pai, P. Frank; Peng, Hao

    2014-03-01

    This paper presents a new metamaterial beam based on multi-frequency vibration absorbers for broadband vibration absorption. The proposed metamaterial beam consists of a uniform isotropic beam and small two-mass spring-mass- damper subsystems at many locations along the beam to act as multi-frequency vibration absorbers. For an infinite metamaterial beam, governing equations of a unit cell are derived using the extended Hamilton principle. The existence of two stopbands is demonstrated using a model based on averaging material properties over a cell length and a model based on finite element modeling and the Bloch-Floquet theory for periodic structures. For a finite metamaterial beam, because these two idealized models cannot be used for finite beams and/or elastic waves having short wavelengths, a finite-element method is used for detailed modeling and analysis. The concepts of negative effective mass and effective stiffness and how the spring-mass-damper subsystem creates two stopbands are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed metamaterial beam is based on the concept of conventional mechanical vibration absorbers. For an incoming wave with a frequency in one of the two stopbands, the absorbers are excited to vibrate in their optical modes to create shear forces to straighten the beam and stop the wave propagation. For an incoming wave with a frequency outside of but between the two stopbands, it can be efficiently damped out by the damper with the second mass of each absorber. Hence, the two stopbands are connected into a wide stopband. Numerical examples validate the concept and show that the structure's boundary conditions do not have significant influence on the absorption of high-frequency waves. However, for absorption of low-frequency waves, the structure's boundary conditions and resonance frequencies and the location and spatial distribution of absorbers need to be considered in design, and it

  4. Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study

    ERIC Educational Resources Information Center

    Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.

    2012-01-01

    Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…

  5. A Frequency Domain Approach to Pretest Analysis Model Correlation and Model Updating for the Mid-Frequency Range

    DTIC Science & Technology

    2009-02-01

    range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The corresponding...frequency range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The...predictions. The averaging process is consistent with the averaging done in statistical energy analysis for stochastic systems. The FEM will always

  6. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

    DTIC Science & Technology

    2014-09-30

    months into this 36 month project, and work in this initial phase has focused on laboratory measurements of high frequency surface scattering and...continuously measured with a wire wave gauge placed slightly downstream of the acoustic transducers. The transducers themselves were placed in the...16 bit data acquisition system sampling at 4 MHz. Figure 1. Geometry for the high frequency scattering experiment in the wind-wave simulator

  7. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    DTIC Science & Technology

    2016-07-27

    mode shape Properties of DMD • Isolates response of flow at forcing frequency and harmonics • Single modes can reconstruct convective processes (POD...impact wave detaches and convective velocity. 4822 Hz Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16333 13 PAN Acoustic...amount of variability from the flow field ( convective velocity or ligament separation) to detect a single, strong natural frequency associated with

  8. Low-frequency acoustic atomization with oscillatory flow around micropillars in a microfluidic device

    SciTech Connect

    Cheung, Yin Nee E-mail: mtnwong@ntu.edu.sg; Wong, Teck Neng E-mail: mtnwong@ntu.edu.sg; Nguyen, Nam Trung

    2014-10-06

    This letter reports a low frequency acoustic atomization technique with oscillatory extensional flow around micropillars. Large droplets passing through two micropillars are elongated. Small droplets are then produced through the pinch-off process at the spindle-shape ends. As the actuation frequency increases, the droplet size decreases with increasing monodispersity. This method is suitable for in-situ mass production of fine droplets in a multi-phase environment without external pumping. Small particles encapsulation was demonstrated with the current technique.

  9. A programmable acoustic recording tag and first results from free-ranging northern elephant seals

    NASA Astrophysics Data System (ADS)

    Burgess, W. C.; Tyack, P. L.; Le Boeuf, B. J.; Costa, D. P.

    A hydrophone-equipped tag recorded exposure to noise, as well as physiological and behavioral sounds, on free-ranging northern elephant seals ( Mirounga angustirostris). The compact acoustic probe (CAP) consisted of the hydrophone, a thermistor, and a pressure transducer in a 36 cm long, 10 cm diameter cylindrical hydrodynamic housing capable of withstanding 2000 m depth. The enclosed logging electronics included a programmable "TattleTale 7" data acquisition engine and a 340 Mb hard disk. A custom low-power operating system supported multi-channel interrupt-driven sampling at 5 kHz. The complete tag weighed 0.9 kg in water and displaced 2.1 l. During five deployments on juveniles translocated from and returning to Año Nuevo, California, CAP tags measured dive pattern, ambient and vessel noise exposure, oceanographic ranging (RAFOS) and thermometry (ATOC) beacons, acoustic signatures of swim stroke, surface respiration, and cardiac function, and possible vocalizations.

  10. Simulation study of high-frequency energetic particle driven geodesic acoustic mode

    SciTech Connect

    Wang, Hao Ido, Takeshi; Osakabe, Masaki; Todo, Yasushi

    2015-09-15

    High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τ{sub cx}) is sufficiently shorter than the slowing down time (τ{sub s}) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency.

  11. Beam paths of flexural Lamb waves at high frequency in the first band within phononic crystal-based acoustic lenses

    SciTech Connect

    Zhao, J.; Boyko, O.; Bonello, B.

    2014-12-15

    This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.

  12. Eulerian Simulation of Acoustic Waves Over Long Range in Realistic Environments

    NASA Astrophysics Data System (ADS)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    In this paper, we describe a new method for computation of long-range acoustics. The approach is a hybrid of near and far-field methods, and is unique in its Eulerian treatment of the far-field propagation. The near-field generated by any existing method to project an acoustic solution onto a spherical surface that surrounds a source. The acoustic field on this source surface is then extended to an arbitrarily large distance in an inhomogeneous far-field. This would normally require an Eulerian solution of the wave equation. However, conventional Eulerian methods have prohibitive grid requirements. This problem is overcome by using a new method, ``Wave Confinement'' (WC) that propagates wave-identifying phase fronts as nonlinear solitary waves that live on grid indefinitely. This involves modification of wave equation by the addition of a nonlinear term without changing the basic conservation properties of the equation. These solitary waves can then be used to ``carry'' the essential integrals of the acoustic wave. For example, arrival time, centroid position and other properties that are invariant as the wave passes a grid point. Because of this property the grid can be made as coarse as necessary, consistent with overall accuracy to resolve atmospheric/ground variations. This work is being funded by the U.S. Army under a Small Business Innovation Research (SBIR) program (contract number: # W911W6-12-C-0036). The authors would like to thank Dr. Frank Caradonna and Dr. Ben W. Sim for this support.

  13. Hazard from intense low-frequency acoustic impulses. Final report

    SciTech Connect

    Price, G.R.

    1986-10-01

    It was predicted that because the ear is spectrally tuned, it should be most affected by intense impulses with spectral peaks near the frequency where it is tuned best (3.0 kHz for the human ear) and progressively less affected by impulses at lower frequencies. This prediction is counter to all the DRCs for impulse noise; therefore, an adequate test is essential. In order to augment the data on hearing loss to low-spectral-frequency impulses, three groups of cats (eight, nine, and ten animals) were exposed on one occasion to 50 impulses from a 105-mm howitzer at peak SPLs of 153, 159, and 166 dB. Threshold shifts were measured electrophysiologically on the day of exposure (CTS) and following a 2-month recovery period (PTS). Maximum PTSs appeared at 4 kHz (even though the spectral peak of the impulse had been at about 100 Hz), and CTSs recovered into PTSs about half as large. Furthermore, the group data, even small CTSs tended to have a permanent component. These data raise the question as to whether or not any threshold shift persisting an hour or two after exposure to high levels should be considered tolerable. When compared with data from rifle fire exposures, the data confirmed the earlier prediction that as the spectral frequency drops, hazard declines at the rate of a little more than 3 dB/oct, contrary to the rating by existing DRCs.

  14. Long-range acoustic interactions in insect swarms: an adaptive gravity model

    NASA Astrophysics Data System (ADS)

    Gorbonos, Dan; Ianconescu, Reuven; Puckett, James G.; Ni, Rui; Ouellette, Nicholas T.; Gov, Nir S.

    2016-07-01

    The collective motion of groups of animals emerges from the net effect of the interactions between individual members of the group. In many cases, such as birds, fish, or ungulates, these interactions are mediated by sensory stimuli that predominantly arise from nearby neighbors. But not all stimuli in animal groups are short range. Here, we consider mating swarms of midges, which are thought to interact primarily via long-range acoustic stimuli. We exploit the similarity in form between the decay of acoustic and gravitational sources to build a model for swarm behavior. By accounting for the adaptive nature of the midges’ acoustic sensing, we show that our ‘adaptive gravity’ model makes mean-field predictions that agree well with experimental observations of laboratory swarms. Our results highlight the role of sensory mechanisms and interaction range in collective animal behavior. Additionally, the adaptive interactions that we present here open a new class of equations of motion, which may appear in other biological contexts.

  15. Oscillating two stream instability of electromagnetic pump in the ion cyclotron range of frequency in a plasma

    SciTech Connect

    Ahmad, Nafis; Tripathi, V. K.; Rafat, M.; Husain, Mudassir M.

    2009-06-15

    An analytical formalism of oscillating two stream instability of a large amplitude electromagnetic wave in the ion cyclotron range of frequency in a plasma is developed. The instability produces electrostatic ion cyclotron sidebands and a driven low frequency mode. The nonlinear coupling arises primarily due to the motion of ions and is strong when the pump frequency is close to ion cyclotron frequency and the oscillatory ion velocity is a significant fraction of acoustic speed. For propagation perpendicular to the ambient magnetic field, the X-mode pump wave produces flute type perturbation with maximum growth rate at some specific wavelengths, which are three to four times larger than the ion Larmor radius. For propagation at oblique angles to ambient magnetic field, the ion cyclotron O-mode, the growth rate increases with the wave number of the low frequency mode.

  16. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water.

    PubMed

    Ferkous, Hamza; Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-09-01

    In the present work, comprehensive experimental and numerical investigations of the effects of frequency and acoustic intensity on the sonochemical degradation of naphthol blue black (NBB) in water have been carried out. The experiments have been examined at three frequencies (585, 860 and 1140 kHz) and over a wide range of acoustic intensities. The observed experimental results have been discussed using a more realistic approach that combines the single bubble sonochemistry and the number of active bubbles. The single bubble yield has been predicted using a model that combines the bubble dynamics with chemical kinetics consisting of series of chemical reactions (73 reversible reactions) occurring inside an air bubble during the strong collapse. The experimental results showed that the sonochemical degradation rate of NBB increased substantially with increasing acoustic intensity and decreased with increasing ultrasound frequency. The numerical simulations revealed that NBB degraded mainly through the reaction with hydroxyl radical (OH), which is the dominant oxidant detected in the bubble during collapse. The production rate of OH radical inside a single bubble followed the same trend as that of NBB degradation rate. It increased with increasing acoustic intensity and decreased with increasing frequency. The enhancing effect of acoustic intensity toward the degradation of NBB was attributed to the rise of both the individual chemical bubble yield and the number of active bubbles with increasing acoustic intensity. The reducing effect of frequency was attributed to the sharp decrease in the chemical bubble yield with increasing frequency, which would not compensated by the rise of the number of active bubbles with the increase in ultrasound frequency.

  17. Transport induced by ion cyclotron range of frequencies waves

    SciTech Connect

    Zhang, Debing Xu, Yingfeng; Wang, Shaojie

    2014-11-15

    The Vlasov equation, which includes the effect of the ion cyclotron range of frequencies (ICRF) waves, can be written as the Fokker-Planck equation which describes the quasilinear transport in phase space by using the Lie-transform method. The radial transport fluxes of particle, energy and parallel momentum driven by ICRF waves in the slab geometry have been derived. The results show that the ICRF-induced radial redistributions of particle, energy and parallel momentum are driven by the inhomogeneity in energy of the equilibrium distribution function, and related to the correlation between the excursion in the real space and the excursion in energy. For the case with strong asymmetry of k{sub y} spectrum, the ICRF-induced radial transport driven by the energy inhomogeneity dominates the ICRF-induced radial transport driven by the spatial inhomogeneity.

  18. High precision spectroscopy and imaging in THz frequency range

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.

    2014-03-01

    Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.

  19. Hazard from intense low-frequency acoustic impulses.

    PubMed

    Price, G R

    1986-10-01

    It was predicted that because the ear is spectrally tuned, it should be most affected by intense impulses with spectral peaks near the frequency where it is tuned best (3.0 kHz for the human ear) and progressively less affected by impulses at lower frequencies [G.R. Price, Scand. Audiol. Suppl. 16, 111-121 (1982)]. This prediction is counter to all the DRCs for impulse noise; therefore an adequate test is essential. In order to augment the data on hearing loss to low-spectral-frequency impulses, three groups of cats (eight, nine, and ten animals) were exposed on one occasion to 50 impulses from a 105-mm howitzer at peak SPLs of 153, 159, and 166 dB. Threshold shifts were measured electrophysiologically on the day of exposure (CTS) and following a 2-month recovery period (PTS). Maximum PTSs appeared at 4 kHz (even though the spectral peak of the impulse had been at about 100 Hz), and CTSs recovered into PTSs about half as large. Furthermore, for group data, even small CTSs tended to have a permanent component. These data raise the question as to whether or not any threshold shift persisting an hour or two after exposure to high levels should be considered tolerable. When compared with data from rifle fire exposures, the data confirmed the earlier prediction that as the spectral frequency drops, hazard declines at the rate of a little more than 3 dB/oct, contrary to the rating by existing DRCs.

  20. Investigating the relationship between average speaker fundamental frequency and acoustic vowel space size.

    PubMed

    Weirich, Melanie; Simpson, Adrian

    2013-10-01

    The purpose of this study is to investigate the potential relationship between speaking fundamental frequency and acoustic vowel space size, thus testing a possible perceptual source of sex-specific differences in acoustic vowel space size based on the greater inter-harmonic spacing and a poorer definition of the spectral envelope of higher pitched voices. Average fundamental frequencies and acoustic vowel spaces of 56 female German speakers are analyzed. Several parameters are used to quantify the size and shape of the vowel space defined by /iː ε aː [symbol: see text] uː/ such as the area of the polygon spanned by the five vowels, the absolute difference in F1 or F2 between /iː/ and /uː/ or /aː/, and the Euclidian distance between /iː/ and /aː/. In addition, the potential impact of nasality on the vowel space size is examined. Results reveal no significant correlation between fundamental frequency and vowel space size suggesting other factors must be responsible for the larger female acoustic vowel space.

  1. Brightened single-bubble sonoluminescence by phase-adjusted high-frequency acoustic pulse.

    PubMed

    Ogi, Hirotsugu; Matsuda, Atsushi; Wada, Kayo; Hirao, Masahiko

    2003-05-01

    This paper experimentally and numerically studies the effect of a high-frequency acoustic pulse on brightening single-bubble sonoluminescence (SBSL). A polyvinylidene fluoride point-focusing transducer was driven by a 700-W pulse generator to superimpose the acoustic pulse on the sonoluminescing bubble. The center frequency of the pulse was 10 MHz and the duration was 0.15 micros. The pulse was triggered every 100 cycles of the low-frequency standing wave used to make SBSL. The intensity of SBSL was measured as a function of time lag of superimposed pulse. Only the pulse that arrived at the bubble at the early growing stage could increase the brightness. This trend was confirmed with a numerical calculation based on the Rayleigh-Plesset equation. The increased brightness reached 300% of those of the classical SBSL flashes when the time lag was correctly adjusted.

  2. Brightened single-bubble sonoluminescence by phase-adjusted high-frequency acoustic pulse

    NASA Astrophysics Data System (ADS)

    Ogi, Hirotsugu; Matsuda, Atsushi; Wada, Kayo; Hirao, Masahiko

    2003-05-01

    This paper experimentally and numerically studies the effect of a high-frequency acoustic pulse on brightening single-bubble sonoluminescence (SBSL). A polyvinylidene fluoride point-focusing transducer was driven by a 700-W pulse generator to superimpose the acoustic pulse on the sonoluminescing bubble. The center frequency of the pulse was 10 MHz and the duration was 0.15 μs. The pulse was triggered every 100 cycles of the low-frequency standing wave used to make SBSL. The intensity of SBSL was measured as a function of time lag of superimposed pulse. Only the pulse that arrived at the bubble at the early growing stage could increase the brightness. This trend was confirmed with a numerical calculation based on the Rayleigh-Plesset equation. The increased brightness reached 300% of those of the classical SBSL flashes when the time lag was correctly adjusted.

  3. Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)

    PubMed Central

    Wisniewska, Danuta M; Ratcliffe, John M; Beedholm, Kristian; Christensen, Christian B; Johnson, Mark; Koblitz, Jens C; Wahlberg, Magnus; Madsen, Peter T

    2015-01-01

    Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high-repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here, we show that, like some bats, harbour porpoises can broaden their biosonar beam during the terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase. Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the melon and implemented to accommodate dynamic spatial relationships with prey and acoustic complexity of surroundings. Despite independent evolution and different means of sound generation and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth flexibility has been an important driver in the evolution of echolocation for prey tracking. DOI: http://dx.doi.org/10.7554/eLife.05651.001 PMID:25793440

  4. Novel Acoustic Technology for Studying Free-Ranging Shark Social Behaviour by Recording Individuals' Interactions

    PubMed Central

    Guttridge, Tristan L.; Gruber, Samuel H.; Krause, Jens; Sims, David W.

    2010-01-01

    Group behaviours are widespread among fish but comparatively little is known about the interactions between free-ranging individuals and how these might change across different spatio-temporal scales. This is largely due to the difficulty of observing wild fish groups directly underwater over long enough time periods to quantify group structure and individual associations. Here we describe the use of a novel technology, an animal-borne acoustic proximity receiver that records close-spatial associations between free-ranging fish by detection of acoustic signals emitted from transmitters on other individuals. Validation trials, held within enclosures in the natural environment, on juvenile lemon sharks Negaprion brevirostris fitted with external receivers and transmitters, showed receivers logged interactions between individuals regularly when sharks were within 4 m (∼4 body lengths) of each other, but rarely when at 10 m distance. A field trial lasting 17 days with 5 juvenile lemon sharks implanted with proximity receivers showed one receiver successfully recorded association data, demonstrating this shark associated with 9 other juvenile lemon sharks on 128 occasions. This study describes the use of acoustic underwater proximity receivers to quantify interactions among wild sharks, setting the scene for new advances in understanding the social behaviours of marine animals. PMID:20174465

  5. Detection of fouling in coal gasification ducts using acoustic ranging. Final report

    SciTech Connect

    Noteboom, J.W.

    1992-09-01

    Acoustic ranging as a technology for pipe inspection under atmospheric conditions has been applied in the field for some years now. Under contract of the Electric Power Research Institute, the Dutch Electricity Generating Companies and Generating Board (Sep) the potential of this technology for online application in high pressure gasifier plants was investigated. Experiments were performed to test the feasibility of acoustic ranging technology to detect, locate and size deposits in grey water lines and in high-temperature, high pressure gas-filled transfer pipes. Two test loops were constructed. The interaction between pipewall and water medium as well as a strong dependence of the amount of dissolved gas on the sound velocity discourages practical application in water lines. However, under ideal conditions larger obstructions can be detected. Tests conducted in high pressure (up to 40 bar) and high temperature (up to 320{degrees}C) gas pipes have been successful and there appears to be no major problem in using this technique for pipe fouling monitoring in gasifiers. An effective acoustic pulse exciter was developed under the program. Equipment specifications for application in a gasifier transfer pipe are included in this report.

  6. Range and Frequency of Africanized Honey Bees in California (USA)

    PubMed Central

    Kono, Yoshiaki; Kohn, Joshua R.

    2015-01-01

    Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California’s central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee. PMID:26361047

  7. Range and Frequency of Africanized Honey Bees in California (USA).

    PubMed

    Kono, Yoshiaki; Kohn, Joshua R

    2015-01-01

    Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California's central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee.

  8. Studies of depredating sperm whales (Physeter macrocephalus) off Sitka, AK, using videocameras, tags, and long-range passive acoustic tracking

    NASA Astrophysics Data System (ADS)

    Mathias, Delphine

    This dissertation uses videocameras, tags and acoustic recorders to investigate the diving and acoustic behavior of sperm whales in the Gulf of Alaska during natural and depredation foraging conditions. First, underwater videocamera footage of a sperm whale attacking a fisherman's longline at 100 m depth was used to examine its acoustic behavior at close range and to estimate its size both acoustically and visually. Second, bioacoustic tagging data demonstrated that the same individuals displayed different acoustic behaviors during natural and depredation foraging states. Two broad categories of depredation, "shallow" and "deep," were also identified. These results suggest that passive acoustic monitoring at close ranges may yield useful metrics for quantifying depredation activity. Third, the behavioral reactions of depredating sperm whales to a variety of acoustic playbacks generated at relatively low source levels were investigated using bioacoustic tags. Finally, bioacoustic and satellite tag data were used to develop passive acoustic techniques for tracking sperm whales with a short-aperture two-element vertical array. When numeric sound propagation models were exploited, localization ranges up to 35 km were obtained. The tracking methods were also used to estimate the source levels of sperm whale "clicks" and "creaks", predict the maximum detection range of the signals as a function of sea state, and measure the drift of several whales away from a visual decoy.

  9. Generation of infrasonic waves by low-frequency dust acoustic perturbations in the Earth's lower ionosphere

    SciTech Connect

    Kopnin, S. I.; Popel, S. I.

    2008-06-15

    It is shown that, during Perseid, Geminid, Orionid, and Leonid meteor showers, the excitation of low-frequency dust acoustic perturbations by modulational instability in the Earth's ionosphere can lead to the generation of infrasonic waves. The processes accompanying the propagation of these waves are considered, and the possibility of observing the waves from the Earth's surface is discussed, as well as the possible onset of acoustic gravitational vortex structures in the region of dust acoustic perturbations. The generation of such structures during Perseid, Geminid, Orionid, and Leonid meteor showers can show up as an increase in the intensity of green nightglow by an amount on the order of 10% and can be attributed to the formation of nonlinear (vortex) structures at altitudes of 110-120 km.

  10. Dynamical energy analysis for built-up acoustic systems at high frequencies.

    PubMed

    Chappell, D J; Giani, S; Tanner, G

    2011-09-01

    Standard methods for describing the intensity distribution of mechanical and acoustic wave fields in the high frequency asymptotic limit are often based on flow transport equations. Common techniques are statistical energy analysis, employed mostly in the context of vibro-acoustics, and ray tracing, a popular tool in architectural acoustics. Dynamical energy analysis makes it possible to interpolate between standard statistical energy analysis and full ray tracing, containing both of these methods as limiting cases. In this work a version of dynamical energy analysis based on a Chebyshev basis expansion of the Perron-Frobenius operator governing the ray dynamics is introduced. It is shown that the technique can efficiently deal with multi-component systems overcoming typical geometrical limitations present in statistical energy analysis. Results are compared with state-of-the-art hp-adaptive discontinuous Galerkin finite element simulations.

  11. [Research on Time-frequency Characteristics of Magneto-acoustic Signal of Different Thickness Medium Based on Wave Summing Method].

    PubMed

    Zhang, Shunqi; Yin, Tao; Ma, Ren; Liu, Zhipeng

    2015-08-01

    Functional imaging method of biological electrical characteristics based on magneto-acoustic effect gives valuable information of tissue in early tumor diagnosis, therein time and frequency characteristics analysis of magneto-acoustic signal is important in image reconstruction. This paper proposes wave summing method based on Green function solution for acoustic source of magneto-acoustic effect. Simulations and analysis under quasi 1D transmission condition are carried out to time and frequency characteristics of magneto-acoustic signal of models with different thickness. Simulation results of magneto-acoustic signal were verified through experiments. Results of the simulation with different thickness showed that time-frequency characteristics of magneto-acoustic signal reflected thickness of sample. Thin sample, which is less than one wavelength of pulse, and thick sample, which is larger than one wavelength, showed different summed waveform and frequency characteristics, due to difference of summing thickness. Experimental results verified theoretical analysis and simulation results. This research has laid a foundation for acoustic source and conductivity reconstruction to the medium with different thickness in magneto-acoustic imaging.

  12. Developments and field tests of low-frequency portable acoustic transducers for a mobile exploration and time lapse experiment of a sea-bottom reservoir

    NASA Astrophysics Data System (ADS)

    Tsuruga, K.; Kasahara, J.; Hasada, Y.; Kondo, H.

    2013-12-01

    Depth, scale and resolutions of geophysical explorations for mineral resources are controlled by transmitted seismic energy and wavelength (frequency range). Most explorations in marine have been conducted by survey ship system with arrayed acoustic sources whose dominant frequency range is about 10 to 500 Hz. On the other hand, for shallow parts of sea bottom structure survey, some sub-bottom profilers with frequency range around 3.5kHz are used. To monitor a time lapse of a sea bottom reservoir such as an oil, gas, or methane hydrate reservoir as well as to exploit a mobile survey near a sea bottom by AUVs, it is necessary to use a broadband portable acoustic transducer with a dominant frequency range of 500 Hz to 5 kHz. We have been developing several types of portable acoustic transducers and a transmitting and recording system which is accurately controlled by a GPS clock (Tsuruga et al., 2012). In this pater, we report the new broadband acoustic portable transducers which have larger power than the original cylindrical acoustic transducers in a low frequency range (<5 kHz), partly funded by JOGMEC, and show the preliminary results of field tests at the shallow sea bottom around 32 m deep by means of the transducers and hydrophone receivers array. Each transducer repeatedly transmitted Chirp signals with a unit period of 500 msec in two frequency ranges of 0.5k-4.5kHz and 4k-16kHz . We stacked 500-ms data by 28 times to obtain a transfer function of each source-receiver pair in the time and frequency domains. The preliminary results suggest as the follows: (i) it is successful to broaden the frequency bandwidth (i.e., 2k-10kHz) by extending a geometrical resonance length of a cylindrical acoustic transducers, and (ii) the observation at the sea bottom with accurately controlled timing systems of transmitter and data-logger is very useful to identify the stable and/or unstable seismic phases, that is, waves propagating in a underground and/or in a sea water as

  13. The Effects of Sediment Properties on Low Frequency Acoustic Propagation

    DTIC Science & Technology

    2015-09-30

    tested as part of another DURIP grant. WORK COMPLETED Former graduate student , Jennifer Giard, designed and performed a field test in... student Chris Norton built a ‘sand box’ to perform high-resolution surface wave inversions. The PIs are preparing for 3 the upcoming Seabed Experiment...being pursued currently. Current PhD student Charles White is focusing on the mode conversion effects in range dependent environments. Graduate

  14. Bendable Electro-Acoustic Transducer Fabricated Utilizing Frequency Dispersion of Elastic Modulus

    NASA Astrophysics Data System (ADS)

    Miyoshi, Tetsu; Ohga, Juro

    2013-09-01

    To realize the speaker diaphragm that can be united with a flexible display without deteriorating lightweight properties and flexibility, a novel bendable electro-acoustic transducer (BEAT) based on 0-3-type piezoelectric composites has been developed. To overcome the trade-off between flexibility and the transmission efficiency of vibration energy, a viscoelastic polymer that has local maximum points in the loss factor as well as large frequency dispersion in the storage modulus near room temperature was employed as the matrix of the piezoelectric composite layer. Against the comparatively slow (10 Hz or less) deformation from the outside, the viscoelastic matrix is viscous enough to prevent cracking and delamination. On the other hand, in the audible range (20 Hz to 20 kHz), the matrix is elastic enough to transmit piezoelectric vibration energy, maintaining a moderately large loss factor as well as a high sound velocity. For the first time, we successfully demonstrated a rollable speaker that can continue to generate a high-quality sound while being rolled and unrolled repeatedly onto a cylinder with a curvature radius of 4 mm.

  15. Input impedance matching of acoustic transducers operating at off-resonant frequencies.

    PubMed

    Son, Kyu Tak; Lee, Chin C

    2010-12-01

    The input impedance matching technique of acoustic transducers at off-resonant frequencies is reported. It uses an inherent impedance property of transducers and thus does not need an external electric matching circuit or extra acoustic matching section. The input electrical equivalent circuit includes a radiation component and a dielectric capacitor. The radiation component consists of a radiation resistance and a radiation reactance. The total reactance is the sum of the radiation reactance and the dielectric capacitive reactance. This reactance becomes zero at two frequencies where the impedance is real. The transducer size can be properly chosen so that the impedance at one of the zero-crossing frequencies is close to 50 Ω, the output impedance of signal generators. At this off-resonant operating frequency, the reflection coefficient of the transducer is minimized without using any matching circuit. Other than the size, the impedance can also be fine tuned by adjusting the thickness of material that bonds the transducer plate to the substrates. The acoustic impedance of the substrate and that of the bonding material can also be used as design elements in the transducer structure to achieve better transducer matching. Lead titanate piezoelectric plates were bonded on Lucite, liquid crystal polymer (LCP), and bismuth (Bi) substrates to produce various transducer structures. Their input impedance was simulated using a transducer model and compared with measured values to illustrate the matching principle.

  16. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    NASA Astrophysics Data System (ADS)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  17. Characterization of compressed earth blocks using low frequency guided acoustic waves.

    PubMed

    Ben Mansour, Mohamed; Ogam, Erick; Fellah, Z E A; Soukaina Cherif, Amel; Jelidi, Ahmed; Ben Jabrallah, Sadok

    2016-05-01

    The objective of this work was to analyze the influence of compaction pressure on the intrinsic acoustic parameters (porosity, tortuosity, air-flow resistivity, viscous, and thermal characteristic lengths) of compressed earth blocks through their identification by solving an inverse acoustic wave transmission problem. A low frequency acoustic pipe (60-6000 Hz of length 22 m, internal diameter 3.4 cm) was used for the experimental characterization of the samples. The parameters were identified by the minimization of the difference between the transmissions coefficients data obtained in the pipe with that from an analytical interaction model in which the compressed earth blocks were considered as having rigid frames. The viscous and thermal effects in the pores were accounted for by employing the Johnson-Champoux-Allard-Lafarge model. The results obtained by inversion for high-density compressed earth blocks showed some discordance between the model and experiment especially for the high frequency limit of the acoustic characteristics studied. This was as a consequence of applying high compaction pressure rendering them very highly resistive therefore degrading the signal-to-noise ratios of the transmitted waves. The results showed that the airflow resistivity was very sensitive to the degree of the applied compaction pressure used to form the blocks.

  18. Numerical and experimental analysis of high frequency acoustic microscopy and infrared reflectance system for early detection of melanoma

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios; Apostolidis, Georgios; Georgoulias, Panagiotis

    2016-03-01

    Melanoma is a very malicious type of cancer as it metastasizes early and hence its late diagnosis leads to death. Consequently, early diagnosis of melanoma and its removal is considered the most effective way of treatment. We present a design of a high frequency acoustic microscopy and infrared reflectance system for the early detection of melanoma. Specifically, the identification of morphological changes related to carcinogenesis is required. In this work, we simulate of the propagation of the ultrasonic waves of the order of 100 MHz as well as of electromagnetic waves of the order of 100 THz in melanoma structures targeting to the estimation and optimization of the basic characteristics of the systems. The simulation results of the acoustic microscopy subsystem aim to provide information such as the geometry of the transducer, the center frequency of operation, the focal length where the power transmittance is optimum and the spot size in focal length. As far as the infrared is concerned the optimal frequency range and the spot illumination size of the external probe is provided. This information is next used to assemble a properly designed system which is applied to melanoma phantoms as well as real skin lesions. Finally, the measurement data are visualized to reveal the information of the experimented structures, proving noteworthy accuracy.

  19. Depression Diagnoses and Fundamental Frequency-Based Acoustic Cues in Maternal Infant-Directed Speech

    ERIC Educational Resources Information Center

    Porritt, Laura L.; Zinser, Michael C.; Bachorowski, Jo-Anne; Kaplan, Peter S.

    2014-01-01

    F[subscript 0]-based acoustic measures were extracted from a brief, sentence-final target word spoken during structured play interactions between mothers and their 3- to 14-month-old infants and were analyzed based on demographic variables and DSM-IV Axis-I clinical diagnoses and their common modifiers. F[subscript 0] range (?F[subscript 0]) was…

  20. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope

    NASA Astrophysics Data System (ADS)

    Zhao, Ya-Jun; Cheng, Qian; Qian, Meng-Lu

    2010-05-01

    Based on the interaction mechanism between tip and sample in the contact mode of a scanning probe acoustic microscope (SPAM), an active mass of the sample is introduced in the mass-spring model. The tip motion and frequency response of the sample vibration mode in the SPAM are calculated by the Lagrange equation with dissipation function. For the silicon tip and glass assemblage in the SPAM the frequency response is simulated and it is in agreement with the experimental result. The living myoblast cells on the glass slide are imaged at resonance frequencies of the SPAM system, which are 20kHz, 30kHz and 120kHz. It is shown that good contrast of SPAM images could be obtained when the system is operated at the resonance frequencies of the system in high and low-frequency regions.

  1. Role of acoustic phonons in frequency dependent electronic thermal conductivity of graphene

    NASA Astrophysics Data System (ADS)

    Bhalla, Pankaj

    2017-03-01

    We study the effect of the electron-phonon interaction on the finite frequency dependent electronic thermal conductivity of two dimensional graphene. We calculate it for various acoustic phonons present in graphene and characterized by different dispersion relations using the memory function approach. It is found that the electronic thermal conductivity κe (T) in the zero frequency limit follows different power law for the longitudinal/transverse and the flexural acoustic phonons. For the longitudinal/transverse phonons, κe (T) ∼T-1 at the low temperature and saturates at the high temperature. These signatures qualitatively agree with the results calculated by solving the Boltzmann equation analytically and numerically. Similarly, for the flexural phonons, we find that κe (T) shows T 1 / 2 law at the low temperature and then saturates at the high temperature. In the finite frequency regime, we observe that the real part of the electronic thermal conductivity, Re [κe (ω , T) ] follows ω-2 behavior at the low frequency and becomes frequency independent at the high frequency.

  2. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  3. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  4. Classifying multi-frequency fisheries acoustic data using a robust probabilistic classification technique.

    PubMed

    Anderson, C I H; Horne, J K; Boyle, J

    2007-06-01

    A robust probabilistic classification technique, using expectation maximization of finite mixture models, is used to analyze multi-frequency fisheries acoustic data. The number of clusters is chosen using the Bayesian Information Criterion. Probabilities of membership to clusters are used to classify each sample. The utility of the technique is demonstrated using two examples: the Gulf of Alaska representing a low-diversity, well-known system; and the Mid-Atlantic Ridge, a species-rich, relatively unknown system.

  5. Identification of Damaged Wheat Kernels and Cracked-Shell Hazelnuts with Impact Acoustics Time-Frequency Patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with ...

  6. Aerial low-frequency hearing in captive and free-ranging harbour seals (Phoca vitulina) measured using auditory brainstem responses.

    PubMed

    Lucke, Klaus; Hastie, Gordon D; Ternes, Kerstin; McConnell, Bernie; Moss, Simon; Russell, Deborah J F; Weber, Heike; Janik, Vincent M

    2016-12-01

    The hearing sensitivity of 18 free-ranging and 10 captive harbour seals (Phoca vitulina) to aerial sounds was measured in the presence of typical environmental noise through auditory brainstem response measurements. A focus was put on the comparative hearing sensitivity at low frequencies. Low- and mid-frequency thresholds appeared to be elevated in both captive and free-ranging seals, but this is likely due to masking effects and limitations of the methodology used. The data also showed individual variability in hearing sensitivity with probable age-related hearing loss found in two old harbour seals. These results suggest that the acoustic sensitivity of free-ranging animals was not negatively affected by the soundscape they experienced in the wild.

  7. Microstructure Imaging Using Frequency Spectrum Spatially Resolved Acoustic Spectroscopy F-Sras

    NASA Astrophysics Data System (ADS)

    Sharples, S. D.; Li, W.; Clark, M.; Somekh, M. G.

    2010-02-01

    Material microstructure can have a profound effect on the mechanical properties of a component, such as strength and resistance to creep and fatigue. SRAS—spatially resolved acoustic spectroscopy—is a laser ultrasonic technique which can image microstructure using highly localized surface acoustic wave (SAW) velocity as a contrast mechanism, as this is sensitive to crystallographic orientation. The technique is noncontact, nondestructive, rapid, can be used on large components, and is highly tolerant of acoustic aberrations. Previously, the SRAS technique has been demonstrated using a fixed frequency excitation laser and a variable grating period (к-vector) to determine the most efficiently generated SAWs, and hence the velocity. Here, we demonstrate an implementation which uses a fixed grating period with a broadband laser excitation source. The velocity is determined by analyzing the measured frequency spectrum. Experimental results using this "frequency spectrum SRAS" (f-SRAS) method are presented. Images of microstructure on an industrially relevant material are compared to those obtained using the previous SRAS method ("k-SRAS"), excellent agreement is observed. Moreover, f-SRAS is much simpler and potentially much more rapid than k-SRAS as the velocity can be determined at each sample point in one single laser shot, rather than scanning the grating period.

  8. The influence of environmental parameters on the optimal frequency in a shallow underwater acoustic channel

    NASA Astrophysics Data System (ADS)

    Zarnescu, George

    2015-02-01

    In a shallow underwater acoustic channel the delayed replicas of a transmitted signal are mainly due to the interactions with the sea surface and the bottom layer. If a specific underwater region on the globe is considered, for which the sedimentary layer structure is constant across the transmission distance, then the variability of the amplitude-delay profile is determined by daily and seasonal changes of the sound speed profile (SSP) and by weather changes, such as variations of the wind speed. Such a parameter will influence the attenuation at the surface, the noise level and the profile of the sea surface. The temporal variation of the impulse response in a shallow underwater acoustic channel determines the variability of the optimal transmission frequency. If the ways in which the optimal frequency changes can be predicted, then an adaptive analog transceiver can be easily designed for an underwater acoustic modem or it can be found when a communication link has high throughput. In this article it will be highlighted the way in which the amplitude-delay profile is affected by the sound speed profile, wind speed and channel depth and also will be emphasized the changes of the optimal transmission frequency in a configuration, where the transmitter and receiver are placed on the seafloor and the bathymetry profile will be considered flat, having a given composition.

  9. Analysis of concert hall acoustics via visualizations of time-frequency and spatiotemporal responses.

    PubMed

    Pätynen, Jukka; Tervo, Sakari; Lokki, Tapio

    2013-02-01

    Acousticians and other practitioners alike often describe acoustic conditions in performance spaces with standard objective parameters. Apart from a few exceptions, the parameters are calculated by integrating the sound energy of the impulse responses over time; this makes them inadequate for researching the acoustics in detail, especially in the early part of the room impulse response. This paper proposes a method based on time-frequency and spatiotemporal presentations to overcome the lack of detail in the standard analysis. In brief, the proposed methods visualize the cumulative development of the sound field as a function of frequency or direction by forward-integrating the energy in the impulse response in short time frames. Analysis on the measurements from six concert halls concentrates particularly on interpreting the results in light of the seat dip effect. Earlier research has concluded that the seat dip effect is reduced by reflection from low overhead surfaces. In contrast, the current results indicate that the seat dip attenuation in the frequency response is corrected the best when the hall provides most lateral reflections. These findings suggest that the proposed analysis is suitable for explaining concert hall acoustics in detail.

  10. Ion acoustic HF radar echoes at high latitudes and far ranges

    NASA Astrophysics Data System (ADS)

    Lacroix, P. J.; Moorcroft, D. R.

    2001-12-01

    Using data taken over 18 months with the Iceland East (CUT-LASS/Iceland) Super Dual Auroral Radar Network (SuperDARN) HF radar we have made a statistical study of a class of echoes which occur at ranges typically associated with F region echoes, but which have Doppler speeds near the ion acoustic speed Cs typical of E region echoes [Milan et al., 1997]. Comparison of the seasonal, diurnal, and range distributions of these echoes with the predictions of propagation models show that these are, indeed, E region echoes, differing in morphology from similar echoes at nearer ranges mainly because of the propagation conditions which are required to observe them. For the particular radar geometry of this study, conventional theory predicts that the effects of ionospheric gradients will result in phase velocities (radar Doppler velocities) which differ significantly from Cs, in disagreement with these observations. However, the observations are consistent with a new nonlinear theory of St.-Maurice and Hamza [2001].

  11. A wide-frequency-range air-jet shaker

    NASA Technical Reports Server (NTRS)

    Herr, Robert W

    1957-01-01

    This paper presents a description of a simple air-jet shaker. Its force can be calibrated statically and appears to be constant with frequency. It is relatively easy to use, and it has essentially massless characteristics. This shaker is applied to define the unstable branch of a frequency-response curve obtained for a nonlinear spring with a single degree of freedom.

  12. Combined failure acoustical diagnosis based on improved frequency domain blind deconvolution

    NASA Astrophysics Data System (ADS)

    Pan, Nan; Wu, Xing; Chi, YiLin; Liu, Xiaoqin; Liu, Chang

    2012-05-01

    According to gear box combined failure extraction in complex sound field, an acoustic fault detection method based on improved frequency domain blind deconvolution was proposed. Follow the frequency-domain blind deconvolution flow, the morphological filtering was firstly used to extract modulation features embedded in the observed signals, then the CFPA algorithm was employed to do complex-domain blind separation, finally the J-Divergence of spectrum was employed as distance measure to resolve the permutation. Experiments using real machine sound signals was carried out. The result demonstrate this algorithm can be efficiently applied to gear box combined failure detection in practice.

  13. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.

    PubMed

    Brewin, M P; Pike, L C; Rowland, D E; Birch, M J

    2008-08-01

    The purpose of this study was to characterize the ultrasonic properties of agar-based tissue-mimicking materials (TMMs) at ultrasound frequencies centered around 20 MHz. The TMM acoustic properties measured are the amplitude attenuation coefficient alpha (dB cm(-1)MHz(-1)), the speed of sound (ms(-1)) and the backscattered power spectral density (distribution of power per unit frequency normalized to the total received power) characteristics of spectral slope (dB MHz(-1)), y-axis intercept (dB) and reflected power (dB). The acoustic properties are measured over a temperature range of 22 to 37 degrees C. An intercomparison of results between two independent ultrasound measurement laboratories is also presented. A longitudinal study of the acoustic properties over a period of two years is also detailed, and the effect of water immersion on the acoustic properties of TMM is measured. In addition, the physical parameters of mass density rho (kg m(-3)) and specific heat capacity C (J kg(-1) K(-1)) are included. The measurement techniques used were based on the substitution technique using both broadband and narrowband pulses centered on 20 MHz. Both the attenuation coefficient and speed of sound (both group and phase) showed good agreement with the expected values of 0.5 dB cm(-1) MHz(-1) and 1540 ms(-1), respectively, with average values over the three-year period of 0.49 dBcm(-1)MHz1 (SD +/- 0.05) and 1540.9 ms(-1) (SD +/- 8.7). These results also showed agreement between the two independent measurement laboratories. Speed of sound and attenuation coefficient were shown to change with temperature with rates of + 2.1 m s(-1) degrees C(-1) and -0.005 dB cm(-1) MHz(-1) degrees C(-1), respectively. Attenuation changed linearly with frequency at the high frequency range of 17 to 23 MHz, and speed of sound was found to be independent of frequency in this range. The spectral slope of relative backscattered power for the material increased with frequency at typically 1.5 d

  14. Effects of an elastic mass on frequency response characteristics of an ultra-thin piezoelectric micro-acoustic actuator.

    PubMed

    Kim, Hye Jin; Yang, Woo Seok; No, Kwangsoo

    2013-08-01

    This paper presents an optimized method to improve the sound quality of ultra-thin piezoelectric micro-acoustic actuators. To achieve flat and smooth frequency response characteristics of the piezoelectric acoustic actuators, we have proposed an elastic mass attached to the acoustic diaphragm. The effects of the elastic mass on frequency response characteristics of the piezoelectric acoustic actuator were investigated by finite element analysis simulation and laser scanning vibrometer measurement. Based on the modal and vibrational characteristics, it was found that the fabricated piezoelectric acoustic actuator has a significant dip of 1.32 kHz and peak of 2.24 kHz, which correspond respectively to the (1,3) and (3,1) resonant modes of the acoustic diaphragm. However, by attaching an elastic mass to the acoustic diaphragm with a shape similar to the (3,1) mode, the resonant frequencies corresponding to the (1,3) and (3,1) modes shifted to higher frequencies and the vibrational displacements at each mode were dramatically reduced by about 40%. As a result, the dip at (1,3) mode was greatly improved by 13 dB and total harmonic distortion was dramatically reduced from 80.83% to 8.71%. This paper shows that the optimized elastic mass can allow flat and smooth frequency response characteristics by improving the significant peak and dip.

  15. On the location of frequencies of maximum acoustic-to-seismic coupling

    SciTech Connect

    Sabatier, J.M.; Bass, H.E.; Elliott, G.R.

    1986-10-01

    Measurements of the acoustic-to-seismic transfer function (ratio of the normal soil particle velocity at a depth d to the acoustic pressure at the surface) for outdoor ground surfaces quite typically reveal a series of maxima and minima. In a publication (Sabatier et al., J. Acoust. Soc. Am. 80, 646--649 (1986)), the location and magnitude of these maxima are measured and predicted for several outdoor ground surfaces using a layered poroelastic model of the ground surface. In this paper, the seismic transfer function for a desert site is compared to the seismic transfer function for holes dug in the desert floor which were filled with pumice (volcanic rock). The hole geometry was rectangular and the hole depths varied from 0.25--2.0 m. The p- and s-wave speeds, densities, porosities, and flow resistivities for the desert floor and pumice were all measured. By varying the hole depth and the fill material, the maxima in the seismic transfer function can be shifted in frequency and the locations of the maxima compare reasonably with that of a hard-backed layer calculation. The area or extent of the acoustic-to-seismic coupling for pumice was determined to be less than 1 m/sup 2/.

  16. Acoustic emission signals frequency-amplitude characteristics of sandstone after thermal treated under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Kong, Biao; Wang, Enyuan; Li, Zenghua; Wang, Xiaoran; Niu, Yue; Kong, Xiangguo

    2017-01-01

    Thermally treated sandstone deformation and fracture produced abundant acoustic emission (AE) signals. The AE signals waveform contained plentiful precursor information of sandstone deformation and fracture behavior. In this paper, uniaxial compression tests of sandstone after different temperature treatments were conducted, the frequency-amplitude characteristics of AE signals were studied, and the main frequency distribution at different stress level was analyzed. The AE signals frequency-amplitude characteristics had great difference after different high temperature treatment. Significant differences existed of the main frequency distribution of AE signals during thermal treated sandstone deformation and fracture. The main frequency band of the largest waveforms proportion was not unchanged after different high temperature treatments. High temperature caused thermal damage to the sandstone, and sandstone deformation and fracture was obvious than the room temperature. The number of AE signals was larger than the room temperature during the initial loading stage. The low frequency AE signals had bigger proportion when the stress was 0.1, and the maximum value of the low frequency amplitude was larger than high frequency signals. With the increase of stress, the low and high frequency AE signals were gradually increase, which indicated that different scales ruptures were broken in sandstone. After high temperature treatment, the number of high frequency AE signals was significantly bigger than the low frequency AE signals during the latter loading stage, this indicates that the small scale rupture rate of recurrence and frequency were more than large scale rupture. The AE ratio reached the maximum during the sandstone instability failure period, and large scale rupture was dominated in the failure process. AE amplitude increase as the loading increases, the deformation and fracture of sandstone was increased gradually. By comparison, the value of the low frequency

  17. Stability of Low-Frequency Residual Hearing in Patients Who Are Candidates for Combined Acoustic Plus Electric Hearing

    ERIC Educational Resources Information Center

    Yao, Wai Na; Turner, Christopher W.; Gantz, Bruce J.

    2006-01-01

    The purpose of this study was to investigate the stability over time of low-frequency auditory thresholds to better determine if the new technique of using a short-electrode cochlear implant that preserves residual low-frequency acoustic hearing can be a long-term solution for those with severe-to-profound hearing loss at high frequencies. The…

  18. 47 CFR 18.309 - Frequency range of measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... frequency generated in the device or 25 MHz, whichever is lower Tenth harmonic or 1,000 MHz, whichever is... harmonic. Above 1,000 ......do Tenth harmonic or highest detectable emission. (b) For conducted...

  19. 47 CFR 18.309 - Frequency range of measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... frequency generated in the device or 25 MHz, whichever is lower Tenth harmonic or 1,000 MHz, whichever is... harmonic. Above 1,000 ......do Tenth harmonic or highest detectable emission. (b) For conducted...

  20. 47 CFR 18.309 - Frequency range of measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... frequency generated in the device or 25 MHz, whichever is lower Tenth harmonic or 1,000 MHz, whichever is... harmonic. Above 1,000 ......do Tenth harmonic or highest detectable emission. (b) For conducted...

  1. 47 CFR 18.309 - Frequency range of measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... frequency generated in the device or 25 MHz, whichever is lower Tenth harmonic or 1,000 MHz, whichever is... harmonic. Above 1,000 ......do Tenth harmonic or highest detectable emission. (b) For conducted...

  2. 47 CFR 18.309 - Frequency range of measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... frequency generated in the device or 25 MHz, whichever is lower Tenth harmonic or 1,000 MHz, whichever is... harmonic. Above 1,000 ......do Tenth harmonic or highest detectable emission. (b) For conducted...

  3. Fundamental factors affecting the optimum frequency range for SETI

    NASA Astrophysics Data System (ADS)

    Oliver, Bernard M.

    1993-08-01

    There is little doubt that confirmation of the existence of extraterrestrial intelligent life will be obtained from electromagnetic waves generated by our counterparts. The best frequency regions in which to expect such signals depends upon the free-space loss, the background noise, the spectral purity obtainable, and the power required as a function of frequency. This paper will discuss the rationale that led to the selection of the microwave window for the NASA SETI Program.

  4. ADRPM-VII applied to the long-range acoustic detection problem

    NASA Technical Reports Server (NTRS)

    Shalis, Edward; Koenig, Gerald

    1990-01-01

    An acoustic detection range prediction model (ADRPM-VII) has been written for IBM PC/AT machines running on the MS-DOS operating system. The software allows the user to predict detection distances of ground combat vehicles and their associated targets when they are involved in quasi-military settings. The program can also calculate individual attenuation losses due to spherical spreading, atmospheric absorption, ground reflection and atmospheric refraction due to temperature and wind gradients while varying parameters effecting the source-receiver problem. The purpose here is to examine the strengths and limitations of ADRPM-VII by modeling the losses due to atmospheric refraction and ground absorption, commonly known as excess attenuation, when applied to the long range detection problem for distances greater than 3 kilometers.

  5. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    PubMed Central

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-01-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity. PMID:26843283

  6. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  7. Frequency flicker of 2.3 GHz AlN-sapphire high-overtone bulk acoustic resonators

    NASA Astrophysics Data System (ADS)

    Boudot, Rodolphe; Martin, Gilles; Friedt, Jean-Michel; Rubiola, Enrico

    2016-12-01

    We report the detailed characterization of 2.3 GHz AlN-Sapphire high-overtone bulk acoustic resonators (HBARs), with a typical loaded Q-factor of 25-30 × 103, 15-20 dB insertion loss, and resonances separated by about 10 MHz. The temperature coefficient of frequency of HBARs is measured to be about -25 ppm/K. We observe at high-input microwave power a significant distortion of the HBAR resonance lineshape, attributed to non-linear effects. The power-induced fractional frequency variation of the HBAR resonance is measured to be about -5 × 10-10/μW. The residual phase noise of a HBAR is measured in the range of -110 to -130 dBrad2/Hz at 1 Hz Fourier frequency, yielding resonator fractional frequency fluctuations at the level of -205 to -225 dB/Hz at 1 Hz and an ultimate HBAR-limited oscillator Allan deviation about 7 × 10-12 at 1 s integration time. The 1/f noise of the HBAR resonator is found to increase with the input microwave power. A HBAR resonator is used for the development of a low phase noise 2.3 GHz oscillator. An absolute phase noise of -60, -120, and -145 dBrad2/Hz for offset frequencies of 10 Hz, 1 kHz, and 10 kHz, respectively, in excellent agreement with the Leeson effect, is measured.

  8. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  9. Iterative Receiver in Time-Frequency Domain for Shallow Water Acoustic Channel

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Ge, Jianhua

    2012-03-01

    Inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel, degrades the performance of underwater acoustic (UWA) communication systems. In this paper, we combine soft minimum mean squared error (MMSE) equalization and the serially concatenated trellis coded modulation (SCTCM) decoding to develop an iterative receiver in time-frequency domain (TFD) for underwater acoustic point to point communications. Based on sound speed profile (SSP) measured in the lake and finite-element ray (FER) tracing method (Bellhop), the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. The results suggest that the proposed iterative receiver can reduce the calculation complexity of the equalizer and obtain better performance using less receiving elements.

  10. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    SciTech Connect

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N.; Choubey, Ravi Kant

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  11. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    NASA Astrophysics Data System (ADS)

    Pawar, Dnyandeo; Rao, Ch. N.; Choubey, Ravi Kant; Kale, S. N.

    2016-01-01

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  12. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  13. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  14. Carrier frequency offset estimation for an acoustic-electric channel using 16 QAM modulation

    NASA Astrophysics Data System (ADS)

    Cunningham, Michael T.; Anderson, Leonard A.; Wilt, Kyle R.; Chakraborty, Soumya; Saulnier, Gary J.; Scarton, Henry A.

    2016-05-01

    Acoustic-electric channels can be used to send data through metallic barriers, enabling communications where electromagnetic signals are ineffective. This paper considers an acoustic-electric channel that is formed by mounting piezoelectric transducers on metallic barriers that are separated by a thin water layer. The transducers are coupled to the barriers using epoxy and the barriers are positioned to axially-align the PZTs, maximizing energy transfer efficiency. The electrical signals are converted by the transmitting transducers into acoustic waves, which propagate through the elastic walls and water medium to the receiving transducers. The reverberation of the acoustic signals in these channels can produce multipath distortion with a significant delay spread that introduces inter-symbol interference (ISI) into the received signal. While the multipath effects can be severe, the channel does not change rapidly which makes equalization easier. Here we implement a 16-QAM system on this channel, including a method for obtaining accurate carrier frequency offset (CFO) estimates in the presence of the quasi-static multipath propagation. A raised-power approach is considered but found to suffer from excessive data noise resulting from the ISI. An alternative approach that utilizes a pilot tone burst at the start of a data packet is used for CFO estimation and found to be effective. The autocorrelation method is used to estimate the frequency of the received burst. A real-time prototype of the 16 QAM system that uses a Texas Instruments MSP430 microcontroller-based transmitter and a personal computer-based receiver is presented along with performance results.

  15. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    NASA Technical Reports Server (NTRS)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  16. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography.

    PubMed

    Ma, Jianguo; Martin, K Heath; Li, Yang; Dayton, Paul A; Shung, K Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-07

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.

  17. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    NASA Astrophysics Data System (ADS)

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.

  18. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-01-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with the low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for design of intravascular acoustic angiography transducers. PMID:25856384

  19. Tremor suppression orthoses for parkinson's patients: a frequency range perspective.

    PubMed

    Rahimi, Fariborz; Almeida, Quincy J; Wang, David; Janabi-Sharifi, Farrokh

    2009-01-01

    While the majority of tremor-afflicted Parkinso-nian (PD) patients suffer from rest tremors, which is not considered highly disabling, a portion of these PD patients also demonstrate action tremors that interfere with their daily lives. Two main considerations in designing an orthosis that aims at suppressing the tremor, are the frequency bands of the tremor and the joints tremor affects. Nine subjects, which included six healthy people, two PD patients with typical tremor afflictions, and a PD patient with severe tremor of not only in her fingers and wrist, but also in her elbow, participated in this study. The highly afflicted patient displayed the need for tremor suppression in action as well as when in rest. The study focuses on uncommon elbow tremors and demonstrates that, for typically afflicted patients, tremor amplitudes are comparable to healthy subjects, but the frequency distribution of the tremors are different at high levels of elbow torque. For the highly afflicted patient, both tremor amplitude and its frequency distribution are different at all levels of elbow torque. The study further investigates the tremors in two bands of frequency on both hands of the highly troubled patient before, and after medication. The two bands are those of classical Parkinsonian tremor (4-6 Hz) and physiological (or enhanced physiological) tremor (8-12 Hz). Power spectrum and tremor amplitude comparisons reveal that, for part of tremulous PD patients, both tremors coexist and, depending on the level of affliction, the designed orthosis needs to suppress tremors in both bands, even at more proximal joints, such as the elbow.

  20. The mass load effect on the resonant acoustic frequencies of colloidal semiconductor nanoplatelets

    NASA Astrophysics Data System (ADS)

    Girard, Adrien; Saviot, Lucien; Pedetti, Silvia; Tessier, Mickaël D.; Margueritat, Jérémie; Gehan, Hélène; Mahler, Benoit; Dubertret, Benoit; Mermet, Alain

    2016-07-01

    Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances.Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR07383A

  1. An acoustic range for the measurement of the noise signature of aircraft during flyby operations

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.

    1978-01-01

    The remotely operated multiple array acoustic range (ROMAAR), which has been developed to give direct measurement and display of aircraft noise in several measurement units during takeoff, landing, and flyby operations, is described. The ROMAAR, which provides information on the ground noise signature of aircraft, represents a unique combination of state-of-the-art digital and analog noise-recording methods, computer-controlled digital communication methods, radar tracking facilities, quick-look weather (profile) capabilities, and sophisticated data handling routines and facilities. The ROMAAR, which is operated by NASA, allows direct data feedback to the NASA Aircraft Noise Prediction Office. As many as 38 simultaneous noise measurements can be made for each aircraft overflight.

  2. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound

    PubMed Central

    Tang, Yufan; Ren, Shuwei; Meng, Han; Xin, Fengxian; Huang, Lixi; Chen, Tianning; Zhang, Chuanzeng; Lu, Tian Jain

    2017-01-01

    A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption. PMID:28240239

  3. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound

    NASA Astrophysics Data System (ADS)

    Tang, Yufan; Ren, Shuwei; Meng, Han; Xin, Fengxian; Huang, Lixi; Chen, Tianning; Zhang, Chuanzeng; Lu, Tian Jain

    2017-02-01

    A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption.

  4. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound.

    PubMed

    Tang, Yufan; Ren, Shuwei; Meng, Han; Xin, Fengxian; Huang, Lixi; Chen, Tianning; Zhang, Chuanzeng; Lu, Tian Jain

    2017-02-27

    A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption.

  5. Amplification of terahertz frequency acoustic phonons by drifting electrons in three-dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Bhargavi, K. S.; Kubakaddi, S. S.

    2016-09-01

    The amplification coefficient α of acoustic phonons is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) driven by a dc electric field E causing the drift of the electrons. It is numerically studied as a function of the frequency ωq, drift velocity vd, electron concentration ne, and temperature T in the Dirac semimetal Cd3As2. We find that the amplification of acoustic phonons (α ˜ hundreds of cm-1) takes place when the electron drift velocity vd is greater than the sound velocity vs. The amplification is found to occur at small E (˜few V/cm) due to large electron mobility. The frequency dependence of α shows amplification in the THz regime with a maximum αm occurring at the same frequency ωqm for different vd. The αm is found to increase with increasing vd. α vs ωq for different ne also shows a maximum, with αm shifting to higher ωq for larger ne. Each maximum is followed by a vanishing α at nearly "2kf cutoff," where kf is the Fermi wave vector. It is found that αm/ne and ωqm/ne1/3 are nearly constant. The αm ˜ ne can be used to identify the 3DDS phase as it differs from αm ˜ ne1/3 dependence in conventional bulk Cd3As2 semiconductor.

  6. Frequency-range discriminations and absolute pitch in black-capped chickadees (Poecile atricapillus), mountain chickadees (Poecile gambeli), and zebra finches (Taeniopygia guttata).

    PubMed

    Lee, Tiffany T Y; Charrier, Isabelle; Bloomfield, Laurie L; Weisman, Ronald G; Sturdy, Christopher B

    2006-08-01

    The acoustic frequency ranges in birdsongs provide important absolute pitch cues for the recognition of conspecifics. Black-capped chickadees (Poecile atricapillus), mountain chickadees (Poecile gambeli), and zebra finches (Taeniopygia guttata) were trained to sort tones contiguous in frequency into 8 ranges on the basis of associations between response to the tones in each range and reward. All 3 species acquired accurate frequency-range discriminations, but zebra finches acquired the discrimination in fewer trials and to a higher standard than black-capped or mountain chickadees, which did not differ appreciably in the discrimination. Chickadees' relatively poorer accuracy was traced to poorer discrimination of tones in the higher frequency ranges. During transfer tests, the discrimination generalized to novel tones when the training tones were included, but not when they were omitted.

  7. Clicking in Shallow Rivers: Short-Range Echolocation of Irrawaddy and Ganges River Dolphins in a Shallow, Acoustically Complex Habitat

    PubMed Central

    Jensen, Frants H.; Rocco, Alice; Mansur, Rubaiyat M.; Smith, Brian D.; Janik, Vincent M.; Madsen, Peter T.

    2013-01-01

    Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1–2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes. PMID:23573197

  8. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges River dolphins in a shallow, acoustically complex habitat.

    PubMed

    Jensen, Frants H; Rocco, Alice; Mansur, Rubaiyat M; Smith, Brian D; Janik, Vincent M; Madsen, Peter T

    2013-01-01

    Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1-2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.

  9. High Frequency Acoustic Reflectometry for Solid/Liquid Interface Characterization: Application to Droplet Evaporation

    NASA Astrophysics Data System (ADS)

    Carlier, Julien; Toubal, Malika; Li, Sizhe; Campistron, Pierre; Callens, Dorothée; Thomy, Vincent; Senez, Vincent; Nongaillard, Bertrand

    Evolution of the local concentration in a 1 μL droplet of ethanol/water mixture during an evaporation process has been followed using high frequency acoustic reflectometry. This method has been developed for wetting characterization on micro/nanostructures and makes it possible to follow concentration evolution in a droplet deposited on a solid surface. This information gives the opportunity to predict wetting depending on surface tension linked to alcohol concentration evolution. The calibration of the method and concentration evolution in 50% and 30% ethanol droplets are presented. The evolution of a pure ethanol droplet composition is tracked so as to follow hydration process.

  10. Aero-acoustics source separation with sparsity inducing priors in the frequency domain

    NASA Astrophysics Data System (ADS)

    Schwander, Olivier; Picheral, José; Gac, Nicolas; Mohammad-Djafari, Ali; Blacodon, Daniel

    2015-01-01

    The characterization of acoustic sources is of great interest in many industrial applications, in particular for the aeronautic or automotive industry for the development of new products. While localization of sources using observations from a wind tunnel is a well-known subject, the characterization and separation of the sources still needs to be explored. We present here a Bayesian approach for sources separation. Two prior modeling of the sources are considered: a sparsity inducing prior in the frequency domain and an autoregressive model in the time domain. The proposed methods are evaluated on synthetic data simulating noise sources emitting from an airfoil inside a wind tunnel.

  11. Oscillating bubble as a sensor of low frequency electro-acoustic signals in electrolytes.

    PubMed

    Tankovsky, N; Baerner, K; Barey, Dooa Abdel

    2006-08-16

    Small air-bubble deformations, caused by electro-acoustic signals generated in electrolytic solutions have been detected by angle-modulation of a refracted He-Ne laser beam. The observed electromechanical resonance at low frequency, below 100 Hz, has proved to be directly related to the oscillations of characteristic ion-doped water structures when driven by an external electric field. The presence of structure-breaking or structure-making ions modifies the water structure, which varies the mechanical losses of the oscillating system and can be registered as changes in the width of the observed resonance curves.

  12. Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Shen, Huijie; Zhang, Linke; Su, Yongsheng; Yu, Dianlong

    2016-07-01

    Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range.

  13. Frequency-Dependent Spherical-Wave Reflection in Acoustic Media: Analysis and Inversion

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Shangxu; Wang, Jingbo; Dong, Chunhui; Yuan, Sanyi

    2017-02-01

    Spherical-wave reflectivity (SWR), which describes the seismic wave reflection in real subsurface media more accurately than plane-wave reflectivity (PWR), recently, again attracts geophysicists' attention. The recent studies mainly focus on the amplitude variation with offset/angle (AVO/AVA) attributes of SWR. For a full understanding of the reflection mechanism of spherical wave, this paper systematically investigates the frequency-dependent characteristics of SWR in a two-layer acoustic medium model with a planar interface. Two methods are used to obtain SWR. The first method is through the calculation of classical Sommerfeld integral. The other is by 3D wave equation numerical modeling. To enhance computation efficiency, we propose to perform wave equation simulation in cylindrical coordinates, wherein we for the first time implement unsplit convolutional perfectly matched layer as the absorbing boundary. Both methods yield the same results, which demonstrate the validity and accuracy of the computation. From both the numerical tests and the theoretical demonstration, we find that the necessary condition when frequency dependence of SWR occurs is that the upper and lower media have different velocities. At the precritical small angle, the SWR exhibits complicated frequency-dependent characteristics for varying medium parameters. Especially when the impedance of upper medium equals that of lower one, the PWR is zero according to geometric seismics. Whereas the SWR is nonzero: the magnitude of SWR decreases with growing frequency, and approaches that of the corresponding PWR at high frequency; the phase of SWR increases with growing frequency, but approaches 90° or -90° at high frequency. At near- and post-critical angles, large difference exists between SWR and PWR, and the difference is particularly great at low frequencies. Finally, we propose a nonlinear inversion method to estimate physical parameters and interface depth of media by utilizing the frequency

  14. Acoustic Impedance Analysis with High-Frequency Ultrasound for Identification of Fatty Acid Species in the Liver.

    PubMed

    Ito, Kazuyo; Yoshida, Kenji; Maruyama, Hitoshi; Mamou, Jonathan; Yamaguchi, Tadashi

    2017-03-01

    Acoustic properties of free fatty acids present in the liver were studied as a possible basis for non-invasive ultrasonic diagnosis of non-alcoholic steatohepatitis. Acoustic impedance was measured for the following types of tissue samples: Four pathologic types of mouse liver, five kinds of FFAs in solvent and five kinds of FFAs in cultured Huh-7 cells. A transducer with an 80-MHz center frequency was incorporated into a scanning acoustic microscopy system. Acoustic impedance was calculated from the amplitude of the signal reflected from the specimen surface. The Kruskal-Wallis test revealed statistically significant differences (p < 0.01) in acoustic impedance not only among pathologic types, but also among the FFAs in solvent and in cultured Huh-7 cells. These results suggest that each of the FFAs, especially palmitate, oleate and palmitoleate acid, can be distinguished from each other, regardless of whether they were in solution or absorbed by cells.

  15. Evaluation of Wave Propagation Properties during a True-Triaxial Rock Fracture Experiment using Acoustic Emission Frequency Characteristics

    NASA Astrophysics Data System (ADS)

    Goodfellow, S. D.; Ghofrani Tabari, M.; Nasseri, M. B.; Young, R.

    2013-12-01

    A true-triaxial deformation experiment was conducted to study the evolution of wave propagation properties by using frequency characteristics of AE waveforms to diagnose the state of fracturing in a sample of sandstone. Changes in waveform frequency content has been interpreted as either the generation of progressively larger fractures or the relative attenuation of high-frequency wave components as a result of micro-crack formation. A cubic sample of Fontainebleau sandstone was initially loaded to a stress state of σ1 = σ2 = 35 MPa, σ3 = 5 MPa at which point σ1¬ was increased until failure. Acoustic emission (AE) activity was monitored by 18 PZT transducers, three embedded in each platen. The sensor amplitude response spectrum was determined by following an absolute source calibration procedure and showed a relatively constant sensitivity in the frequency range between 20 kHz and 1200 kHz. Amplified waveforms were continuously recorded at a sampling rate of 10 MHz and 12-bit resolution. Continuous acoustic emission waveforms were harvested to extract discrete events. Using a time-varying transverse isotropic velocity model, 48,502 events were locatable inside the sample volume. Prior to peak-stress, AE activity was associated with stable quasi-static growth of fractures coplanar with σ1 and σ2 located near the platen boundaries. In the post peak-stress regime, fracture growth displays unstable ¬dynamic propagation. Analysis of waveform frequency characteristics was limited to the pre peak-stress regime. Analysis of AE frequency characteristics was conducted on all 48,502 located AE events; each event file containing 18 waveforms of varied quality. If the signal to noise ratio was greater than 5, the waveforms power spectrum was estimated and the source-receiver raypath vector was calculated. The power spectrum of each waveform was divided into three frequency bands (Low: 100 - 300 kHz, Medium: 300 - 600 kHz and High: 600 - 1000 kHz) and the power in each

  16. Low-loss unidirectional transducer for high frequency surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Biryukov, S. V.; Martin, G.; Schmidt, H.; Wall, B.

    2011-10-01

    A multi-track unidirectional transducer for surface acoustic wave devices is presented. This transducer consists of periodic cells containing in each of the multiple tracks, only two electrodes and two gaps with quarter period width. So the structure has maximal possible dimensions of its elements for a cell period equal to one wavelength. In spite of current technological limitations this permits to implement unidirectional transducers in GHz range. In contrast to known structures with active tracks only, the structure contains alternating both active transducer tracks and passive reflector tracks with different apertures comparable to surface acoustic wave (SAW) wavelength. The tracks strongly interact due to diffraction of waves excited by such electrode structure on a piezoelectric substrate. A structure analysis by means of finite element method shows that complete unidirectionality can be reached. First experimental results are given.

  17. Monitoring radio-frequency thermal ablation with ultrasound by low frequency acoustic emissions--in vitro and in vivo study.

    PubMed

    Winkler, Itai; Adam, Dan

    2011-05-01

    The object of this study was to evaluate the monitoring of thermal ablation therapy by measuring the nonlinear response to ultrasound insonation at the region being treated. Previous reports have shown that during tissue heating, microbubbles are formed. Under the application of ultrasound, these microbubbles may be driven into nonlinear motion that produces acoustic emissions at sub-harmonic frequencies and a general increase of emissions at low frequencies. These low frequency emissions may be used to monitor ablation surgery. In this study, a modified commercial ultrasound system was used for transmitting ultrasound pulses and for recording raw RF-lines from a scan plane in porcine (in vitro) and rabbit (in vivo) livers during radio-frequency ablation (RFA). The transmission pulse was 15 cycles in length at 4 MHz (in vitro) and 3.6 MHz (in vivo). Thermocouples were used for monitoring temperatures during the RFA treatment.In the in vitro experiments, recorded RF signals (A-lines) were segmented, and the total energy was measured at two different frequency bands: at a low frequency band (LFB) of 1-2.5 MHz and at the transmission frequency band (TFB) of 3.5-4.5 MHz. The mean energy at the LFB and at the TFB increased substantially in areas adjacent to the RF needle. These energies also changed abruptly at higher temperatures, thus, producing great variance in the received energy. Mean energies in areas distant from RF needle showed little change and variation during treatment. It was also shown that a 3 dB increase of energy at the low frequency band was typically obtained in regions in which temperature was above 53.3 ± 5° C. Thus, this may help in evaluating regions undergoing hyperthermia. In the in vivo experiments, an imaging algorithm based on measuring the LFB energy was used. The algorithm performs a moving average of the LFB energies measured at segments within the scan plane.Results show that a colored region is formed on the image and that it is

  18. Home range and diel behavior of the ballan wrasse, Labrus bergylta, determined by acoustic telemetry

    NASA Astrophysics Data System (ADS)

    Villegas-Ríos, David; Alós, Josep; March, David; Palmer, Miquel; Mucientes, Gonzalo; Saborido-Rey, Fran

    2013-07-01

    Effective fisheries management needs to consider spatial behavior in addition to more traditional aspects of population dynamics. Acoustic telemetry has been extensively used to provide information on fish movements over different temporal and spatial scales. Here, we used a fixed-receiver array to examine the movement patterns of Labrus bergylta Ascanius 1767, a species highly targeted by the artisanal fleet of Galicia, NW Spain. Data from 25 individuals was assessed for a period of 71 days between September and November 2011 in the Galician Atlantic Islands Maritime-Terrestrial National Park. Fish were present within the monitored area more than 92% of the monitored time. The estimated size of individual home ranges, i.e. the area where fish spent most of their time, was small. The total minimum convex polygons area based on all the estimated positions was 0.133 ± 0.072 km2, whereas the home range size estimated using a 95% kernel distribution of the estimated positions was 0.091 ± 0.031 km2. The core area (50% kernel) was 0.019 ± 0.006 km2. L. bergylta exhibited different patterns of movement in the day versus the night, with 92% of the fish detected more frequently and traveling longer distances during the daytime. In addition, 76% of the fish displayed a larger home range during the day versus during the night. The linearity index was less than 0.005 for all fish suggesting random movements but within a relatively small area, and the volume of intersection index between consecutive daily home ranges was 0.75 ± 0.13, suggesting high site fidelity. The small home range and the sedentary behavior of L. bergylta highlight the potential use of small MPAs as a management tool to ensure a sustainable fishery for this important species.

  19. Bandwidth-efficient frequency-domain equalization for single carrier multiple-input multiple-output underwater acoustic communications.

    PubMed

    Zhang, Jian; Zheng, Yahong Rosa

    2010-11-01

    This paper proposes a single carrier (SC) receiver scheme with bandwidth-efficient frequency-domain equalization (FDE) for underwater acoustic (UWA) communications employing multiple transducers and multiple hydrophones. Different from the FDE methods that perform FDE on a whole data block, the proposed algorithm implements an overlapped-window FDE by partitioning a large block into small subblocks. A decision-directed channel estimation scheme is incorporated with the overlapped-window FDE to track channel variations and improve the error performance. The proposed algorithm significantly increases the length of each block and keeps the same number of training symbols per block, hence achieving better data efficiency without performance degradation. The proposed scheme is tested by the undersea data collected in the Rescheduled Acoustic Communications Experiment (RACE) in March 2008. Without coding, the 2-by-12 MIMO overlapped-window FDE reduces the average bit error rate (BER) over traditional SC-FDE schemes by 74.4% and 84.6% for the 400 m and 1000 m range systems, respectively, at the same data efficiency. If the same BER performance is required, the proposed algorithm has only 8.4% transmission overhead, comparing to over 20% overhead in other existing UWA OFDM and SC-FDE systems. The improved data efficiency and/or error performance of the proposed FDE scheme is achieved by slightly increased computational complexity over traditional SC-FDE schemes.

  20. Instability of high-frequency acoustic waves in accretion disks with turbulent viscosity

    NASA Astrophysics Data System (ADS)

    Khoperskov, A. V.; Khrapov, S. S.

    1999-05-01

    The dynamics of linear perturbations in a differentially rotating accretion disk with a non-homogeneous vertical structure is investigated. We find that turbulent viscosity results in instability of both pinching oscillations, and bending modes. Not only the low-frequency fundamental modes, but also the high-frequency reflective harmonics appear to be unstable. The question of the limits of applicability of the thin disk model (MTD) is also investigated. Some differences in the dispersion properties of the MTD and of the three-dimensional model appear for wave numbers k <~ (1-3)/h (h is the half-thickness of a disk). In the long-wavelength limit, the relative difference between the eigenfrequencies of the unstable acoustic mode in the 3D-model and the MTD is smaller than 5%. In the short wavelength case (kh > 1) these differences are increased.

  1. Use of high frequency analysis of acoustic emission signals to determine rolling element bearing condition

    NASA Astrophysics Data System (ADS)

    Cockerill, A.; Holford, K. M.; Bradshaw, T.; Cole, P.; Pullin, R.; Clarke, A.

    2015-07-01

    Acoustic Emission (AE) sensors were used to detect signals arising from a cylindrical roller bearing with artificial defects seeded onto the outer raceway. An SKF N204ECP roller bearing was placed between two double row spherical roller bearings, type SKF 22202E, and loaded between 0.29 and 1.79kN. Speed was constant at 5780rpm. High frequency analysis allowed insight into the condition of the bearings through the determination of an increase in the structural resonances of the system as the size of an artificial defect was increased. As higher loads were applied, frequencies around 100kHz were excited, indicating the release of AE possibly attributed to friction and the plastic deformation as peaks, induced through engraving of the raceway, were flattened and worn down. Sensitivity of AE to this level in bearings indicates the potential of the technique to detect the early stages of bearing failure during life tests.

  2. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  3. Nondeterministic wave-based methods for low- and mid-frequency response analysis of acoustic field with limited information

    NASA Astrophysics Data System (ADS)

    Xia, Baizhan; Yin, Hui; Yu, Dejie

    2017-02-01

    The response of the acoustic field, especially for the mid-frequency response, is very sensitive to uncertainties rising from manufacturing/construction tolerances, aggressive environmental factors and unpredictable excitations. To quantify these uncertainties with limited information effectively, two nondeterministic models (the interval model and the hybrid probability-interval model) are introduced. And then, two corresponding nondeterministic numerical methods are developed for the low- and mid-frequency response analysis of the acoustic field under these two nondeterministic models. The first one is the interval perturbation wave-based method (IPWBM) which is proposed to predict the maximal values of the low- and mid-frequency responses of the acoustic field under the interval model. The second one is the hybrid perturbation wave-based method (HPWBM) which is proposed to predict the maximal values of expectations and standard variances of the low- and mid-frequency responses of the acoustic field under the hybrid probability-interval model. The effectiveness and efficiency of the proposed nondeterministic numerical methods for the low- and mid-frequency response analysis of the acoustic field under the interval model and the hybrid probability-interval model are investigated by a numerical example.

  4. Frequency-space prediction filtering for acoustic clutter and random noise attenuation in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Shin, Junseob; Huang, Lianjie

    2016-04-01

    Frequency-space prediction filtering (FXPF), also known as FX deconvolution, is a technique originally developed for random noise attenuation in seismic imaging. FXPF attempts to reduce random noise in seismic data by modeling only real signals that appear as linear or quasilinear events in the aperture domain. In medical ultrasound imaging, channel radio frequency (RF) signals from the main lobe appear as horizontal events after receive delays are applied while acoustic clutter signals from off-axis scatterers and electronic noise do not. Therefore, FXPF is suitable for preserving only the main-lobe signals and attenuating the unwanted contributions from clutter and random noise in medical ultrasound imaging. We adapt FXPF to ultrasound imaging, and evaluate its performance using simulated data sets from a point target and an anechoic cyst. Our simulation results show that using only 5 iterations of FXPF achieves contrast-to-noise ratio (CNR) improvements of 67 % in a simulated noise-free anechoic cyst and 228 % in a simulated anechoic cyst contaminated with random noise of 15 dB signal-to-noise ratio (SNR). Our findings suggest that ultrasound imaging with FXPF attenuates contributions from both acoustic clutter and random noise and therefore, FXPF has great potential to improve ultrasound image contrast for better visualization of important anatomical structures and detection of diseased conditions.

  5. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat

    USGS Publications Warehouse

    Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.

    2016-01-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef

  6. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  7. Information From the Voice Fundamental Frequency (F0) Region Accounts for the Majority of the Benefit When Acoustic Stimulation Is Added to Electric Stimulation

    PubMed Central

    Zhang, Ting; Dorman, Michael F.; Spahr, Anthony J.

    2013-01-01

    Objectives The aim of this study was to determine the minimum amount of low-frequency acoustic information that is required to achieve speech perception benefit in listeners with a cochlear implant in one ear and low-frequency hearing in the other ear. Design The recognition of monosyllabic words in quiet and sentences in noise was evaluated in three listening conditions: electric stimulation alone, acoustic stimulation alone, and combined electric and acoustic stimulation. The acoustic stimuli presented to the nonimplanted ear were either low-pass-filtered at 125, 250, 500, or 750 Hz, or unfiltered (wideband). Results Adding low-frequency acoustic information to electrically stimulated information led to a significant improvement in word recognition in quiet and sentence recognition in noise. Improvement was observed in the electric and acoustic stimulation condition even when the acoustic information was limited to the 125-Hz-low-passed signal. Further improvement for the sentences in noise was observed when the acoustic signal was increased to wideband. Conclusions Information from the voice fundamental frequency (F0) region accounts for the majority of the speech perception benefit when acoustic stimulation is added to electric stimulation. We propose that, in quiet, low-frequency acoustic information leads to an improved representation of voicing, which in turn leads to a reduction in word candidates in the lexicon. In noise, the robust representation of voicing allows access to low-frequency acoustic landmarks that mark syllable structure and word boundaries. These landmarks can bootstrap word and sentence recognition. PMID:20050394

  8. The influence of the acoustic resonance frequency on chemical reactions in solution

    NASA Astrophysics Data System (ADS)

    Fadeev, G. N.; Kuznetsov, N. N.; Beloborodova, E. F.; Matakova, S. A.

    2010-12-01

    The special features of the influence of low-frequency infrasonic and sonic range vibrations on various physicochemical processes were analyzed. Systems containing both low- and high-molecular-weight components of heterogeneous, microheterogeneous, and homogeneous interactions were studied.

  9. Acoustic Analysis of Vowels Following Glossectomy

    ERIC Educational Resources Information Center

    Whitehill, Tara L.; Ciocca, Valter; Chan, Judy C-T.; Samman, Nabil

    2006-01-01

    This study examined the acoustic characteristics of vowels produced by speakers with partial glossectomy. Acoustic variables investigated included first formant (F1) frequency, second formant (F2) frequency, F1 range, F2 range and vowel space area. Data from the speakers with partial glossectomy were compared with age- and gender-matched controls.…

  10. Acoustic characterization of multi-element, dual-frequency transducers for high-intensity contact ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, M.; N'Djin, W. A.; Persaud, L.; Bronskill, M.; Chopra, R.

    2012-10-01

    High-intensity contact ultrasound therapy can generate precise volumes of thermal damage in deep-seated tissue using interstitial or intracavitary devices. Multi-element, dual-frequency transducers offer increased spatial control of the heating pattern by enabling modulation of ultrasound power and frequency along the device. The performance and acoustic coupling between elements of simple, multi-element, dual-frequency transducers was measured. Transducer arrays were fabricated by cutting halfway through a rectangular plate of PZT, creating individual 4 × 5 mm segments with fundamental frequency (4.1 MHz) and third harmonic (13.3 MHz). Coupling between elements was investigated using a scanning laser vibrometer to measure transducer surface displacements at each frequency and different acoustic powers (0, 10, 20 W/cm2). The measured acoustic power was proportional to the input electrical power with no hysteresis and efficiencies >50% at both frequencies. Maximum transducer surface displacements were observed near element centers, reducing to ˜1/3-maximum near edges. The power and frequency of neighboring transducer segments had little impact on an element's output. In the worst case, an element operating at 4.1 MHz and 20 W/cm2 coupled only 1.5 W/cm2 to its immediate neighboring element. Multi-element, dual-frequency transducers were successfully constructed using a simple dicing method. Coupling between elements was minor, therefore the power and frequency of each transducer element could be considered independent.

  11. Experimentally determined attenuation and modulus in Earth analogue materials over a wide range of frequency

    NASA Astrophysics Data System (ADS)

    McCarthy, C.; Fujisawa, K.; Takei, Y.; Hiraga, T.

    2009-12-01

    Seismic observations, particularly in areas of active tectonics, show large variations and can be affected by many variables, including temperature, composition, grain size, volatile content and the presence of small quantities of melt or other fluids. The understanding and interpretation of seismic wave dispersion and attenuation data can be significantly enhanced through improved knowledge of material dynamic response at the grain scale (and smaller). The organic binary system borneol-diphenylamine is a suitable analogue of melting in the Earth’s mantle. Not only does the solid phase deform through the same deformation mechanisms (diffusion creep, dislocation creep) observed in geologic materials, but the moderate and controllable dihedral angle (40° at 316 K) exhibited by this system provides an equilibrium melt-geometry very similar to that of the olivine + basalt system [Takei, 2000]. With a eutectic melting temperature (TE = 316 K at ambient pressure) just above room temperature, borneol-diphenylamine provides an attractive chemical analogue to study the properties of solid-melt interaction, obviating the difficulties associated with high-temperature, high-pressure experimentation. We have initiated compression-compression cyclic loading experiments on single phase (borneol; TM = 477 K) and multiphase (borneol-diphenylamine) aggregates. Our newly developed apparatus is able to apply and measure very small stress and strain amplitudes with high accuracy using a piezoelectric actuator and optical displacement meters, respectively. The planned experimental conditions are P = 1 atm, T = 298 - 333 K, strain amplitude <10-5, f = 10-4 - 102 Hz, and melt fraction φ = 0 - 0.1. The combination of low (sub seismic) frequency data obtained from these forced oscillation experiments and high-frequency data (f = 102 - 106) from ultrasonic wave transmission measurements allows us to explore the dissipation and Young’s modulus over a frequency range of some ten decades

  12. Acoustical correlates of performance on a dynamic range compression discrimination task.

    PubMed

    Sabin, Andrew T; Gallun, Frederick J; Souza, Pamela E

    2013-09-01

    Dynamic range compression is widely used to reduce the difference between the most and least intense portions of a signal. Such compression distorts the shape of the amplitude envelope of a signal, but it is unclear to what extent such distortions are actually perceivable by listeners. Here, the ability to distinguish between compressed and uncompressed versions of a noise vocoded sentence was initially measured in listeners with normal hearing while varying the threshold, ratio, attack, and release parameters. This narrow condition was selected in order to characterize perception under the most favorable listening conditions. The average behavioral sensitivity to compression was highly correlated to several acoustical indices of modulation depth. In particular, performance was highly correlated to the Euclidean distance between the modulation spectra of the uncompressed and compressed signals. Suggesting that this relationship is not restricted to the initial test conditions, the correlation remained largely unchanged both (1) when listeners with normal hearing were tested using a time-compressed version of the original signal, and (2) when listeners with impaired hearing were tested using the original signal. If this relationship generalizes to more ecologically valid conditions, it will provide a straightforward method for predicting the detectability of compression-induced distortions.

  13. An optical beam frequency reference with 10{sup -14} range frequency instability

    SciTech Connect

    McFerran, J. J.; Hartnett, J. G.; Luiten, A. N.

    2009-07-20

    The authors report on a thermal beam optical frequency reference with a fractional frequency instability of 9.2x10{sup -14} at 1 s reducing to 2.0x10{sup -14} at 64 s before slowly rising. The {sup 1}S{sub 0}{r_reversible}{sup 3}P{sub 1} intercombination line in neutral {sup 40}Ca is used as a frequency discriminator. A diode laser at 423 nm probes the ground state population after a Ramsey-Borde sequence of 657 nm light-field interactions on the atoms. The measured fractional frequency instability is an order of magnitude improvement on previously reported thermal beam optical clocks. The photon shot-noise of the read-out produces a limiting square root {lambda}-variance of 7x10{sup -14}/{radical}({tau})

  14. Acoustical effects of a large ridge on low-frequency sound propagation in stationary and moving atmospheres

    NASA Technical Reports Server (NTRS)

    Robertson, J. S.; Jacobson, M. J.; Siegmann, W. L.; Santandrea, D. P.

    1989-01-01

    The effects of a ridge on a low-frequency acoustic propagation in quiescent and windy atmospheres are investigated using a parabolic approximation. A logarithmic wind-speed profile, commonly employed to model atmospheric wind currents, is modified and used to model two-dimensional atmospheric flow over a triangularly-shaped hill. The parabolic equation is solved using an implicit finite-difference algorithm. Several examples are examined to determine the combined effects of source-ridge distance, ridge dimensions, wind-speed profile, and CW source frequency on the received acoustic field.

  15. Quadratic Time-Frequency Analysis of Hydroacoustic Signals as Applied to Acoustic Emissions of Large Whales

    NASA Astrophysics Data System (ADS)

    Le Bras, Ronan; Victor, Sucic; Damir, Malnar; Götz, Bokelmann

    2014-05-01

    In order to enrich the set of attributes in setting up a large database of whale signals, as envisioned in the Baleakanta project, we investigate methods of time-frequency analysis. The purpose of establishing the database is to increase and refine knowledge of the emitted signal and of its propagation characteristics, leading to a better understanding of the animal migrations in a non-invasive manner and to characterize acoustic propagation in oceanic media. The higher resolution for signal extraction and a better separation from other signals and noise will be used for various purposes, including improved signal detection and individual animal identification. The quadratic class of time-frequency distributions (TFDs) is the most popular set of time-frequency tools for analysis and processing of non-stationary signals. Two best known and most studied members of this class are the spectrogram and the Wigner-Ville distribution. However, to be used efficiently, i.e. to have highly concentrated signal components while significantly suppressing interference and noise simultaneously, TFDs need to be optimized first. The optimization method used in this paper is based on the Cross-Wigner-Ville distribution, and unlike similar approaches it does not require prior information on the analysed signal. The method is applied to whale signals, which, just like the majority of other real-life signals, can generally be classified as multicomponent non-stationary signals, and hence time-frequency techniques are a natural choice for their representation, analysis, and processing. We present processed data from a set containing hundreds of individual calls. The TFD optimization method results into a high resolution time-frequency representation of the signals. It allows for a simple extraction of signal components from the TFD's dominant ridges. The local peaks of those ridges can then be used for the signal components instantaneous frequency estimation, which in turn can be used as

  16. Acoustic dispersive prism

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  17. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-07

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  18. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  19. Solar-cycle variations of large frequency separations of acoustic modes: implications for asteroseismology

    NASA Astrophysics Data System (ADS)

    Broomhall, A.-M.; Chaplin, W. J.; Elsworth, Y.; New, R.

    2011-06-01

    We have studied solar-cycle changes in the large frequency separations that can be observed in Birmingham Solar Oscillations Network (BiSON) data. The large frequency separation is often one of the first outputs from asteroseismic studies because it can help constrain stellar properties like mass and radius. We have used three methods for estimating the large separations: use of individual p-mode frequencies, computation of the autocorrelation of frequency-power spectra, and computation of the power spectrum of the power spectrum. The values of the large separations obtained by the different methods are offset from each other and have differing sensitivities to the realization noise. A simple model was used to predict solar-cycle variations in the large separations, indicating that the variations are due to the well-known solar-cycle changes to mode frequency. However, this model is only valid over a restricted frequency range. We discuss the implications of these results for asteroseismology.

  20. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  1. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.

  2. Performance analysis of single-frequency MPPSK integrated system for ranging applications.

    PubMed

    Yao, Yu; Wu, Lenan

    2014-01-01

    The dual-frequency MPPSK-MODEM is a flexible platform. When ranging accuracy request is low or platform is particularly limited by power, the platform would perform both data transmission and range measurement with single-frequency modes. In this paper, the ranging resolution of MPPSK pulse waveforms with the match filter and impacting filter processing are discussed, respectively. Also, the parameter selection of MPPSK modulator for ranging is considered. In particular, requirements that allow for employing such special parameter values for range measurements with high accuracy and high range are investigated. Moreover, high repetition frequency (HRF) biphase code MPPSK pulse train base on m sequence is presented, and the ranging accuracy of the proposed signal with the match filter processing is deduced. In addition to theoretical considerations, the paper presents system simulations and measurement results of single-frequency MPPSK integrated systems, demonstrating the high-performance of ranging applications.

  3. Performance Analysis of Single-Frequency MPPSK Integrated System for Ranging Applications

    PubMed Central

    Wu, Lenan

    2014-01-01

    The dual-frequency MPPSK-MODEM is a flexible platform. When ranging accuracy request is low or platform is particularly limited by power, the platform would perform both data transmission and range measurement with single-frequency modes. In this paper, the ranging resolution of MPPSK pulse waveforms with the match filter and impacting filter processing are discussed, respectively. Also, the parameter selection of MPPSK modulator for ranging is considered. In particular, requirements that allow for employing such special parameter values for range measurements with high accuracy and high range are investigated. Moreover, high repetition frequency (HRF) biphase code MPPSK pulse train base on m sequence is presented, and the ranging accuracy of the proposed signal with the match filter processing is deduced. In addition to theoretical considerations, the paper presents system simulations and measurement results of single-frequency MPPSK integrated systems, demonstrating the high-performance of ranging applications. PMID:25140340

  4. Low-frequency source for very long-range underwater communication.

    PubMed

    Mosca, Frédéric; Matte, Guillaume; Shimura, Takuya

    2013-01-01

    Very long-range underwater acoustic communication (UAC) is crucial for long cruising (>1000 km) autonomous underwater vehicles (AUVs). Very long-range UAC source for AUV must exhibit high electro-acoustic efficiency (>60%) and compactness. This paper describes the Janus-Hammer Bell (JHB) transducer that has been designed for this purpose and meets those requirements. The transducer works on the 450-550 Hz bandwidth and reaches source level above 200 dB (ref. 1 μPa at 1 m) with 1 kW excitation and full immersion capability. JHB source has been used for communication experiments by the Japanese institute for marine technology (Japan Agency for Marine-Earth Science and Technology) achieving a baud rate of 100 bits/s at 1000 km.

  5. Numerical Analysis of Stochastic Dynamical Systems in the Medium-Frequency Range

    DTIC Science & Technology

    2003-02-01

    frequency vibration analysis such as the statistical energy analysis (SEA), the traditional modal analysis (well-suited for high and low: frequency...that the first few structural normal modes primarily constitute the total response. In the higher frequency range, the statistical energy analysis (SEA

  6. Stabilization and Low-Frequency Oscillation of Capillary Bridges with Modulated Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.

    1996-01-01

    In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.

  7. Acoustical Evaluation of Combat Arms Firing Range, Ellsworth AFB, South Dakota

    DTIC Science & Technology

    2013-06-13

    B&K PULSE Analyzer, Type 3560-B-140, SN 2588445 (2) Larson Davis Microphone Pre- amplifier power supply, Type 2221, SN 0203 (3) Larson Davis...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 13 Jun 2013 2. REPORT TYPE ...acoustical reflections, particularly off the ceiling, side walls, overhead baffles , and floor. Therefore, it was recommended that acoustical

  8. Understanding the Effects of Water-Column Variability on Very-High-Frequency Acoustic Propagation in Support of High-Data-Rate Acoustic Communication Applications

    DTIC Science & Technology

    2014-09-30

    stratification, small-scale water- column temperature and salinity fluctuations, and suspended sediment loads, on very-high-frequency (VHF) acoustic...contribute to our understanding of the influence of high-stratification, water-column temperature and salinity fluctuations, and the presence of...temperature and salinity fluctuations contribute to the forward scattering and thus to the variability in the effective refractive index of the fluid

  9. Frequency-dependent conductivity contrast for tissue characterization using a dual-frequency range conductivity mapping magnetic resonance method.

    PubMed

    Kim, Dong-Hyun; Chauhan, Munish; Kim, Min-Oh; Jeong, Woo Chul; Kim, Hyung Joong; Sersa, Igor; Kwon, Oh In; Woo, Eung Je

    2015-02-01

    Electrical conductivities of biological tissues show frequency-dependent behaviors, and these values at different frequencies may provide clinically useful diagnostic information. MR-based tissue property mapping techniques such as magnetic resonance electrical impedance tomography (MREIT) and magnetic resonance electrical property tomography (MREPT) are widely used and provide unique conductivity contrast information over different frequency ranges. Recently, a new method for data acquisition and reconstruction for low- and high-frequency conductivity images from a single MR scan was proposed. In this study, we applied this simultaneous dual-frequency range conductivity mapping MR method to evaluate its utility in a designed phantom and two in vivo animal disease models. Magnetic flux density and B(1)(+) phase map for dual-frequency conductivity images were acquired using a modified spin-echo pulse sequence. Low-frequency conductivity was reconstructed from MREIT data by the projected current density method, while high-frequency conductivity was reconstructed from MREPT data by B(1)(+) mapping. Two different conductivity phantoms comprising varying ion concentrations separated by insulating films with or without holes were used to study the contrast mechanism of the frequency-dependent conductivities related to ion concentration and mobility. Canine brain abscess and ischemia were used as in vivo models to evaluate the capability of the proposed method to identify new electrical properties-based contrast at two different frequencies. The simultaneous dual-frequency range conductivity mapping MR method provides unique contrast information related to the concentration and mobility of ions inside tissues. This method has potential to monitor dynamic changes of the state of disease.

  10. Sensitivity kernels of finite-frequency travel times in ocean acoustic tomography

    NASA Astrophysics Data System (ADS)

    Skarsoulis, Emmanuel K.; Cornuelle, Bruce D.

    2004-05-01

    Wave theoretic modeling is applied to obtain travel-time sensitivity kernels representing the amount by which travel times are affected by localized sound-speed variations anywhere in the medium. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. In the wave-theoretic approach the perturbations of peak arrival times are expressed in terms of pressure perturbations, which are further related with the underlying sound-speed perturbations using the first Born approximation. In this way, an integral representation of travel-time perturbations is obtained in terms of sound-speed perturbations; the associated kernel represents the spatial sensitivity of travel times to sound-speed perturbations. The application of the travel-time sensitivity kernel to an ocean acoustic waveguide gives a picture close to the ray-theoretic one in the high-frequency case but significantly differs at lower frequencies. Low-frequency travel times are sensitive to sound-speed changes in areas surrounding the eigenrays, but not on the eigenrays themselves, where the sensitivity is zero. Further, there are areas of positive sensitivity, where, e.g., a sound-speed increase results in a counter-intuitive increase of arrival times. These findings are confirmed by independent forward calculations.

  11. Acoustic Reflection and Transmission of 2-Dimensional Rotors and Stators, Including Mode and Frequency Scattering Effects

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1999-01-01

    A reduced order modeling scheme has been developed for the unsteady acoustic and vortical coupling between blade rows of a turbomachine. The essential behavior of the system is governed by modal scattering coefficients (i.e., reflection and transmission coefficients) of the rotor, stator, inlet and nozzle, which are calculated as if they were connected to non-reflecting ducts. The objective of this report is to identify fundamental behavior of these scattering coefficients for a better understanding of the role of blade row reflection and transmission in noise generation. A 2D flat plate unsteady cascade model is used for the analysis with the expectation that the general behavior presented herein will carry over to models that include more realistic flow and geometry. It is shown that stators scatter input waves into many modes at the same frequency whereas rotors scatter on frequency, or harmonic order. Important cases are shown here the rotor reflection coefficient is greater than unity; a mode at blade passing frequency (BPF) traveling from the stator with unit sound power is reflected by the rotor with more than unit power at 2xBPF and 3xBPE Analysis is presented to explain this unexpected phenomenon. Scattering curves are presented in a format chosen for design use and for physical interpretation. To aid in interpretation of the curves, formulas are derived for special condition where waveforms are parallel to perpendicular to the rotor.

  12. A noninvasive acoustic method using frequency perturbations and computer-generated vocal-tract shapes.

    PubMed

    Beckman, D A; Wold, D C; Montague, J C

    1983-06-01

    This study investigated improved processing of acoustic data with two adult Down's syndrome subjects. Sustained vowel samples were processed through a fast-Fourier-transform spectrum analyzer, and digital waveform data were used to obtain period-by-period measurements of the fundamental frequencies. Unusual frequency perturbation (jitter), later identified as diplophonia, was found for one of the Down's subjects. In addition, the first three formant frequencies of the vowels were determined and, utilizing an algorithm described by Ladefoged and his colleagues, computer-generated vocal-tract shapes were plotted. Differences in vocal-tract shapes, especially for the back vowels, were observed between the Down's female and the normal shape. Correlations between vocal-tract shapes of the Down's subjects and those for a normal man or woman were computed. A partial three-way factor analysis was carried out to determine those load factors or coefficients for each subject that were due to individual differences. These procedures, offering synthesized techniques portraying the interpharyngeal/oral functioning of the speech structures, may eventually have direct noninvasive diagnostic and therapeutic benefit for voice/resonance-disordered clients.

  13. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    NASA Astrophysics Data System (ADS)

    Koukoulas, Triantafillos; Piper, Ben

    2015-04-01

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  14. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    SciTech Connect

    Koukoulas, Triantafillos Piper, Ben

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  15. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  16. Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy.

    PubMed

    Tezel, Ahmet; Sens, Ashley; Mitragotri, Samir

    2002-02-01

    Application of low-frequency ultrasound significantly enhances skin permeability. The enhancement of skin permeability is mediated by cavitation, oscillation, and collapse of gaseous cavities. In this article, we report detailed investigations of the occurrence of cavitation during low-frequency sonophoresis. Cavitation was monitored by recording pressure amplitudes of subharmonic emission and broadband noise at four different ultrasound frequencies in the range of 20-100 kHz and at various intensities in the range of 0-2.6 W/cm(2). Enhancement of skin conductivity, in the presence of sodium lauryl sulfate (SLS), was also measured under the same ultrasound conditions. Enhancement of skin conductivity correlated well with the amplitude of broadband noise, which suggests the role of transient cavitation in low-frequency sonophoresis. No correlation was found between the subharmonic pressure amplitude and conductivity enhancement.

  17. Range and Velocity Estimation of Moving Targets Using Multiple Stepped-frequency Pulse Trains

    PubMed Central

    Li, Gang; Meng, Huadong; Xia, Xiang-Gen; Peng, Ying-Ning

    2008-01-01

    Range and velocity estimation of moving targets using conventional stepped-frequency pulse radar may suffer from the range-Doppler coupling and the phase wrapping. To overcome these problems, this paper presents a new radar waveform named multiple stepped-frequency pulse trains and proposes a new algorithm. It is shown that by using multiple stepped-frequency pulse trains and the robust phase unwrapping theorem (RPUT), both of the range-Doppler coupling and the phase wrapping can be robustly resolved, and accordingly, the range and the velocity of a moving target can be accurately estimated. PMID:27879769

  18. An experimental investigation of thermoacoustic lasers operating in audible frequency range

    NASA Astrophysics Data System (ADS)

    Kolhe, Sanket Anil

    Thermoacoustic lasers convert heat from a high-temperature heat source into acoustic power while rejecting waste heat to a low temperature sink. The working fluids involved can be air or noble gases which are nontoxic and environmentally benign. Simple in construction due to absence of moving parts, thermoacoustic lasers can be employed to achieve generation of electricity at individual homes, water-heating for domestic purposes, and to facilitate space heating and cooling. The possibility of utilizing waste heat or solar energy to run thermoacoustic devices makes them technically promising and economically viable to generate large quantities of acoustic energy. The research presented in this thesis deals with the effects of geometric parameters (stack position, stack length, tube length) associated with a thermoacoustic laser on the output sound wave. The effects of varying input power on acoustic output were also studied. Based on the experiments, optimum operating conditions were identified and qualitative and/or quantitative explanations were provided to justify our observations. It was observed that the maximum sound pressure level was generated for the laser with the stack positioned at a distance of quarter lengths of a resonator from the closed end. Higher sound pressure levels were recorded for the laser with longer stack lengths and longer resonator lengths. Efforts were also made to develop high-frequency thermoacoustic lasers.

  19. Effect of Digital Frequency Compression (DFC) on Speech Recognition in Candidates for Combined Electric and Acoustic Stimulation (EAS)

    ERIC Educational Resources Information Center

    Gifford, Rene H.; Dorman, Michael F.; Spahr, Anthony J.; McKarns, Sharon A.

    2007-01-01

    Purpose: To compare the effects of conventional amplification (CA) and digital frequency compression (DFC) amplification on the speech recognition abilities of candidates for a partial-insertion cochlear implant, that is, candidates for combined electric and acoustic stimulation (EAS). Method: The participants were 6 patients whose audiometric…

  20. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    PubMed

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  1. Broad frequency acoustic response of ground/floor to human footsteps

    NASA Astrophysics Data System (ADS)

    Ekimov, Alexander; Sabatier, James M.

    2006-04-01

    The human footstep is one of several signatures that can serve as a useful parameter for human detection. In early research, the force of footsteps was measured on load cells and the input energy from multiple footsteps was detected in the frequency range of 1-4 Hz. Cress investigated the seismic velocity response of outdoor ground sites to individuals that were crawling, walking, and running. In his work, the seismic velocity response was shown to be site-specific and the characteristic frequency range was 20-90 Hz. The current paper will present vibration and sound pressure responses of human footsteps in a broad frequency range. The vibration and sound in the low-frequency band are well known in the literature and generated by the force component normal to the ground/floor. This force is a function of person's weight and a manner of motion (e.g. walking, running, etc). Forces tangential to the ground/floor from a footstep and the ground reaction generate the high frequency responses. The interactions of foot and the ground/floor produce sliding contacts and the result is a friction signal. The parameters of this friction signal, such as frequency band and vibration and sound magnitudes as functions of human walking styles, were studied. The results of tests are presented and discussed.

  2. Computed Linear/Nonlinear Acoustic Response of a Cascade for Single/Multi Frequency Excitation

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Hixon, R.; Sawyer, S.

    2004-01-01

    This paper examines mode generation and propagation characteristics of a 2-D cascade due to incident vortical disturbances using a time domain approach. Full nonlinear Euler equations are solved employing high order accurate spatial differencing and time marching techniques. The solutions show the generation and propagation of mode orders that are expected from theory. Single frequency excitations show linear response over a wide range of amplitudes. The response for multi-frequency excitations tend to become nonlinear due to interaction between frequencies and self interaction.

  3. Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: frequency-place functions and rate pitch.

    PubMed

    Schatzer, Reinhold; Vermeire, Katrien; Visser, Daniel; Krenmayr, Andreas; Kals, Mathias; Voormolen, Maurits; Van de Heyning, Paul; Zierhofer, Clemens

    2014-03-01

    Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEX(SOFT) electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565° to 758°. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (-0.16 octaves re. Greenwood) and the mean shifts in the basal (<240°; -0.33 octaves) and middle (-0.35 octaves) regions were statistically significant, the shift in the apical region (>480°; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480°, increasing to an octave at higher angular locations while individual functions were gradually leveling off. In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360°, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding

  4. The effect of duty cycle and frequency on muscle torque production using kilohertz frequency range alternating current.

    PubMed

    Ward, Alex R; Robertson, Valma J; Ioannou, Harry

    2004-09-01

    We investigated the frequency and duty cycle dependence of maximal electrically induced torque (MEIT) of the wrist extensors. Fifty hertz burst modulated sinusoidal alternating current (AC) in the frequency range 0.5-20 kHz was used, with duty cycles ranging from a minimum (one cycle) to maximum (continuous AC). MEITs were similar at low frequencies but decreased markedly above 2.5 kHz. MEITs also decreased markedly above a 20% duty cycle. Subjective reports of discomfort were fewest at 4 kHz and at duty cycles in the range 20-25%. Our conclusion is that for maximum torque production, a frequency of 1 kHz and a duty cycle of 20% are indicated. When comfort is a major consideration, a frequency of 2.5 kHz provides an acceptable trade-off between MEIT and comfort. The findings also suggest that low duty cycle, burst modulated AC stimulation may be more effective than stimulation using conventional low-frequency pulsed current.

  5. Classification of Hazelnut Kernels by Using Impact Acoustic Time-Frequency Patterns

    NASA Astrophysics Data System (ADS)

    Kalkan, Habil; Ince, Nuri Firat; Tewfik, Ahmed H.; Yardimci, Yasemin; Pearson, Tom

    2007-12-01

    Hazelnuts with damaged or cracked shells are more prone to infection with aflatoxin producing molds ( Aspergillus flavus). These molds can cause cancer. In this study, we introduce a new approach that separates damaged/cracked hazelnut kernels from good ones by using time-frequency features obtained from impact acoustic signals. The proposed technique requires no prior knowledge of the relevant time and frequency locations. In an offline step, the algorithm adaptively segments impact signals from a training data set in time using local cosine packet analysis and a Kullback-Leibler criterion to assess the discrimination power of different segmentations. In each resulting time segment, the signal is further decomposed into subbands using an undecimated wavelet transform. The most discriminative subbands are selected according to the Euclidean distance between the cumulative probability distributions of the corresponding subband coefficients. The most discriminative subbands are fed into a linear discriminant analysis classifier. In the online classification step, the algorithm simply computes the learned features from the observed signal and feeds them to the linear discriminant analysis (LDA) classifier. The algorithm achieved a throughput rate of 45 nuts/s and a classification accuracy of 96% with the 30 most discriminative features, a higher rate than those provided with prior methods.

  6. Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence.

    PubMed

    Park, Jinhyoung; Lee, Jungwoo; Lau, Sien Ting; Lee, Changyang; Huang, Ying; Lien, Ching-Ling; Kirk Shung, K

    2012-04-01

    Acoustic radiation force impulse (ARFI) imaging has been developed as a non-invasive method for quantitative illustration of tissue stiffness or displacement. Conventional ARFI imaging (2-10 MHz) has been implemented in commercial scanners for illustrating elastic properties of several organs. The image resolution, however, is too coarse to study mechanical properties of micro-sized objects such as cells. This article thus presents a high-frequency coded excitation ARFI technique, with the ultimate goal of displaying elastic characteristics of cellular structures. Tissue mimicking phantoms and zebrafish embryos are imaged with a 100-MHz lithium niobate (LiNbO₃) transducer, by cross-correlating tracked RF echoes with the reference. The phantom results show that the contrast of ARFI image (14 dB) with coded excitation is better than that of the conventional ARFI image (9 dB). The depths of penetration are 2.6 and 2.2 mm, respectively. The stiffness data of the zebrafish demonstrate that the envelope is harder than the embryo region. The temporal displacement change at the embryo and the chorion is as large as 36 and 3.6 μm. Consequently, this high-frequency ARFI approach may serve as a remote palpation imaging tool that reveals viscoelastic properties of small biological samples.

  7. Interaction of High Frequency Acoustic Waves and Optical Waves Propagating in Single Mode Fibers.

    NASA Astrophysics Data System (ADS)

    de Paula, Ramon Perez

    This paper develops a frequency dependent model for the acousto-optic interaction with a single mode fiber of acoustic waves having wavelengths comparable to the fiber diameter. This paper also presents optical techniques for experimental observation and measurement of such effects. The acoustic waves are both normally and obliquelly incident on the fiber. The solutions to the elastic problem studied here are constructed using scalar and vector potentials. The principal strains induced by a plane wave propagating in a fluid is calculated through the solution of the wave equation and the associated boundary condition. The optical beam propagation is analyzed starting with Maxwell's, equations and the required solution for single mode (degenerate double mode) propagation is presented. For the perturbed fiber the anisotropic solution is discussed. The optical indicatrix is derived from the electric energy density, with the major axis parallel to the induced principal strains obtained from the solution of the elastic problem. The solution of the optical indicatrix equation (index ellipsoid) yields two independent propagation modes that are linear polarized plane waves with two different propagation velocities. The induced phase shift and birefringence are calculated from the index ellipsoid. The birefringence and phase shift are also measured experimentally using a fiber optic interferometer and a fiber optic polariscope. The experimental apparatus is discussed in detail and the techniques used to make the measurements are presented. The results are separated into two parts: first, the results for ultrasonic waves of normal incidence are presented, theoretical and experimental results are discussed, and the two compared; second, the results for angular incidence are presented in the same format as above, and compared with the results for perpendicular incidence.

  8. Cross-correlation function of acoustic fields generated by random high-frequency sources.

    PubMed

    Godin, Oleg A

    2010-08-01

    Long-range correlations of noise fields in arbitrary inhomogeneous, moving or motionless fluids are studied in the ray approximation. Using the stationary phase method, two-point cross-correlation function of noise is shown to approximate the sum of the deterministic Green's functions describing sound propagation in opposite directions between the two points. Explicit relations between amplitudes of respective ray arrivals in the noise cross-correlation function and the Green's functions are obtained and verified against specific problems allowing an exact solution. Earlier results are extended by simultaneously accounting for sound absorption, arbitrary distribution of noise sources in a volume and on surfaces, and fluid inhomogeneity and motion. The information content of the noise cross-correlation function is discussed from the viewpoint of passive acoustic characterization of inhomogeneous flows.

  9. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  10. Range-Dependent Acoustic Propagation in Shallow Water with Elastic Bottom Effects

    DTIC Science & Technology

    2011-09-01

    interacting acoustic signals in shallow water for 1-D. Henrik Schmidt’s OASES program, a direct descendent of the original SAFARI, has solved the 1...D problem for isotropic elastic bottoms. OASES is efficient, can accept Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting

  11. Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows

    NASA Astrophysics Data System (ADS)

    Gizon, Laurent; Barucq, Hélène; Duruflé, Marc; Hanson, Chris S.; Leguèbe, Michael; Birch, Aaron C.; Chabassier, Juliette; Fournier, Damien; Hohage, Thorsten; Papini, Emanuele

    2017-03-01

    Context. Local helioseismology has so far relied on semi-analytical methods to compute the spatial sensitivity of wave travel times to perturbations in the solar interior. These methods are cumbersome and lack flexibility. Aims: Here we propose a convenient framework for numerically solving the forward problem of time-distance helioseismology in the frequency domain. The fundamental quantity to be computed is the cross-covariance of the seismic wavefield. Methods: We choose sources of wave excitation that enable us to relate the cross-covariance of the oscillations to the Green's function in a straightforward manner. We illustrate the method by considering the 3D acoustic wave equation in an axisymmetric reference solar model, ignoring the effects of gravity on the waves. The symmetry of the background model around the rotation axis implies that the Green's function can be written as a sum of longitudinal Fourier modes, leading to a set of independent 2D problems. We use a high-order finite-element method to solve the 2D wave equation in frequency space. The computation is embarrassingly parallel, with each frequency and each azimuthal order solved independently on a computer cluster. Results: We compute travel-time sensitivity kernels in spherical geometry for flows, sound speed, and density perturbations under the first Born approximation. Convergence tests show that travel times can be computed with a numerical precision better than one millisecond, as required by the most precise travel-time measurements. Conclusions: The method presented here is computationally efficient and will be used to interpret travel-time measurements in order to infer, e.g., the large-scale meridional flow in the solar convection zone. It allows the implementation of (full-waveform) iterative inversions, whereby the axisymmetric background model is updated at each iteration.

  12. Acoustic Beam Forming Array Using Feedback-Controlled Microphones for Tuning and Self-Matching of Frequency Response

    NASA Technical Reports Server (NTRS)

    Radcliffe, Eliott (Inventor); Naguib, Ahmed (Inventor); Humphreys, Jr., William M. (Inventor)

    2014-01-01

    A feedback-controlled microphone includes a microphone body and a membrane operatively connected to the body. The membrane is configured to be initially deflected by acoustic pressure such that the initial deflection is characterized by a frequency response. The microphone also includes a sensor configured to detect the frequency response of the initial deflection and generate an output voltage indicative thereof. The microphone additionally includes a compensator in electric communication with the sensor and configured to establish a regulated voltage in response to the output voltage. Furthermore, the microphone includes an actuator in electric communication with the compensator, wherein the actuator is configured to secondarily deflect the membrane in opposition to the initial deflection such that the frequency response is adjusted. An acoustic beam forming microphone array including a plurality of the above feedback-controlled microphones is also disclosed.

  13. Measurement of elastic nonlinearity using remote laser ultrasonics and CHeap Optical Transducers and dual frequency surface acoustic waves.

    PubMed

    Collison, I J; Stratoudaki, T; Clark, M; Somekh, M G

    2008-11-01

    A nonlinear ultrasonic technique for evaluating material elastic nonlinearity has been developed. It measures the phase modulation of a high frequency (82MHz) surface acoustic wave interacting with a low frequency (1MHz) high amplitude stress inducing surface acoustic wave. A new breed of optical transducers has been developed and used for the generation and detection of the high frequency wave. The CHeap Optical Transducer (CHOT) is an ultrasonic transducer system, optically activated and read by a laser. We show that CHOTs offer advantages over alternative transducers. CHOTs and nonlinear ultrasonics have great potential for aerospace applications. Results measuring changes in ultrasonic velocity corresponding to different stress states of the sample are presented on fused silica and aluminium.

  14. Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments

    NASA Astrophysics Data System (ADS)

    Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.

    2008-04-01

    We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.

  15. Optimal frequency range for medical radar measurements of human heartbeats using body-contact radar.

    PubMed

    Brovoll, Sverre; Aardal, Øyvind; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-01-01

    In this paper the optimal frequency range for heartbeat measurements using body-contact radar is experimentally evaluated. A Body-contact radar senses electromagnetic waves that have penetrated the human body, but the range of frequencies that can be used are limited by the electric properties of the human tissue. The optimal frequency range is an important property needed for the design of body-contact radar systems for heartbeat measurements. In this study heartbeats are measured using three different antennas at discrete frequencies from 0.1 - 10 GHz, and the strength of the received heartbeat signal is calculated. To characterize the antennas, when in contact with the body, two port S-parameters(†) are measured for the antennas using a pork rib as a phantom for the human body. The results shows that frequencies up to 2.5 GHz can be used for heartbeat measurements with body-contact radar.

  16. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    SciTech Connect

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-10-28

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  17. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    NASA Astrophysics Data System (ADS)

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-10-01

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  18. Passive acoustic telemetry reveals highly variable home range and movement patterns among unicornfish within a marine reserve

    NASA Astrophysics Data System (ADS)

    Marshell, A.; Mills, J. S.; Rhodes, K. L.; McIlwain, J.

    2011-09-01

    Marine reserves are the primary management tool for Guam's reef fish fishery. While a build-up of fish biomass has occurred inside reserve boundaries, it is unknown whether reserve size matches the scale of movement of target species. Using passive acoustic telemetry, we quantified movement patterns and home range size of two heavily exploited unicornfish Naso unicornis and Naso lituratus. Fifteen fish ( N. unicornis: n = 7; N. lituratus: n = 4 male, n = 4 female) were fitted with internal acoustic tags and tracked continuously over four months within a remote acoustic receiver array located in a decade-old marine reserve. This approach provided robust estimates of unicornfish movement patterns and home range size. The mean home range of 3.2 ha for N. unicornis was almost ten times larger than that previously recorded from a three-week tracking study of the species in Hawaii. While N. lituratus were smaller in body size, their mean home range (6.8 ha) was over twice that of N. unicornis. Both species displayed strong site fidelity, particularly during nocturnal and crepuscular periods. Although there was some overlap, individual movement patterns and home range size were highly variable within species and between sexes. N. unicornis home range increased with body size, and only the three largest fish home ranges extended into the deeper outer reef slope beyond the shallow reef flat. Both Naso species favoured habitat dominated by corals. Some individuals made predictable daily crepuscular migrations between different locations or habitat types. There was no evidence of significant spillover from the marine reserve into adjacent fished areas. Strong site fidelity coupled with negligible spillover suggests that small-scale reserves, with natural habitat boundaries to emigration, are effective in protecting localized unicornfish populations.

  19. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing.

    PubMed

    Williges, Ben; Dietz, Mathias; Hohmann, Volker; Jürgens, Tim

    2015-12-30

    For normal-hearing listeners, speech intelligibility improves if speech and noise are spatially separated. While this spatial release from masking has already been quantified in normal-hearing listeners in many studies, it is less clear how spatial release from masking changes in cochlear implant listeners with and without access to low-frequency acoustic hearing. Spatial release from masking depends on differences in access to speech cues due to hearing status and hearing device. To investigate the influence of these factors on speech intelligibility, the present study measured speech reception thresholds in spatially separated speech and noise for 10 different listener types. A vocoder was used to simulate cochlear implant processing and low-frequency filtering was used to simulate residual low-frequency hearing. These forms of processing were combined to simulate cochlear implant listening, listening based on low-frequency residual hearing, and combinations thereof. Simulated cochlear implant users with additional low-frequency acoustic hearing showed better speech intelligibility in noise than simulated cochlear implant users without acoustic hearing and had access to more spatial speech cues (e.g., higher binaural squelch). Cochlear implant listener types showed higher spatial release from masking with bilateral access to low-frequency acoustic hearing than without. A binaural speech intelligibility model with normal binaural processing showed overall good agreement with measured speech reception thresholds, spatial release from masking, and spatial speech cues. This indicates that differences in speech cues available to listener types are sufficient to explain the changes of spatial release from masking across these simulated listener types.

  20. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing

    PubMed Central

    Dietz, Mathias; Hohmann, Volker; Jürgens, Tim

    2015-01-01

    For normal-hearing listeners, speech intelligibility improves if speech and noise are spatially separated. While this spatial release from masking has already been quantified in normal-hearing listeners in many studies, it is less clear how spatial release from masking changes in cochlear implant listeners with and without access to low-frequency acoustic hearing. Spatial release from masking depends on differences in access to speech cues due to hearing status and hearing device. To investigate the influence of these factors on speech intelligibility, the present study measured speech reception thresholds in spatially separated speech and noise for 10 different listener types. A vocoder was used to simulate cochlear implant processing and low-frequency filtering was used to simulate residual low-frequency hearing. These forms of processing were combined to simulate cochlear implant listening, listening based on low-frequency residual hearing, and combinations thereof. Simulated cochlear implant users with additional low-frequency acoustic hearing showed better speech intelligibility in noise than simulated cochlear implant users without acoustic hearing and had access to more spatial speech cues (e.g., higher binaural squelch). Cochlear implant listener types showed higher spatial release from masking with bilateral access to low-frequency acoustic hearing than without. A binaural speech intelligibility model with normal binaural processing showed overall good agreement with measured speech reception thresholds, spatial release from masking, and spatial speech cues. This indicates that differences in speech cues available to listener types are sufficient to explain the changes of spatial release from masking across these simulated listener types. PMID:26721918

  1. Evaluation of a scale-model experiment to investigate long-range acoustic propagation

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Mcaninch, Gerry L.; Carlberg, Ingrid A.

    1987-01-01

    Tests were conducted to evaluate the feasibility of using a scale-model experiment situated in an anechoic facility to investigate long-range sound propagation over ground terrain. For a nominal scale factor of 100:1, attenuations along a linear array of six microphones colinear with a continuous-wave type of sound source were measured over a wavelength range from 10 to 160 for a nominal test frequency of 10 kHz. Most tests were made for a hard model surface (plywood), but limited tests were also made for a soft model surface (plywood with felt). For grazing-incidence propagation over the hard surface, measured and predicted attenuation trends were consistent for microphone locations out to between 40 and 80 wavelengths. Beyond 80 wavelengths, significant variability was observed that was caused by disturbances in the propagation medium. Also, there was evidence of extraneous propagation-path contributions to data irregularities at more remote microphones. Sensitivity studies for the hard-surface and microphone indicated a 2.5 dB change in the relative excess attenuation for a systematic error in source and microphone elevations on the order of 1 mm. For the soft-surface model, no comparable sensitivity was found.

  2. Dielectric Properties of Birch Wood in the High-Frequency Range

    NASA Astrophysics Data System (ADS)

    Goreshnev, M. A.; Litvishko, E. S.; Lopatin, V. V.

    2016-01-01

    Results of measurement of dielectric properties of birch wood in the radio-frequency range depending on its humidity are presented. The dependences obtained indicate strong influence of wood anisotropy especially at low frequencies. It is shown that it is irrational to use the wood for insulation if its humidity exceeds 15-20%.

  3. Simulation of polarizer based on chiral medium for terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Korolenko, S. Yu; Grebenchukov, A. N.; Masyukov, M. S.; Vozianova, A. V.; Khodzitsky, M. K.

    2016-08-01

    The work is devoted to development of the polarizer for terahertz frequency range. Chiral medium was simulated using the software package CST Microwave Studio by the method of Finite-Differences in Frequency Domain. The influence of geometry of chiral unit cell on the polarization of incident plane wave was investigated.

  4. Development of calibration techniques for ultrasonic hydrophone probes in the frequency range from 1 to 100 MHz

    NASA Astrophysics Data System (ADS)

    Umchid, Sumet

    The primary objective of this research was to develop and optimize the calibration techniques for ultrasonic hydrophone probes used in acoustic field measurements up to 100 MHz. A dependable, 100 MHz calibration method was necessary to examine the behavior of a sub-millimeter spatial resolution fiber optic (FO) sensor and assess the need for such a sensor as an alternative tool for high frequency characterization of ultrasound fields. Also, it was of interest to investigate the feasibility of using FO probes in high intensity fields such as those employed in HIFU (High Intensity Focused Ultrasound) applications. In addition to the development of a novel, 100 MHz calibration technique the innovative elements of this research include implementation of a prototype FO sensor with an active diameter of about 10 hum that exhibits uniform sensitivity over the considered frequency range and does not require any spatial averaging corrections up to about 75 MHz. The calibration technique provided the sensitivity of conventional, finite aperture piezoelectric hydrophone probes as a virtually continuous function of frequency and allowed the verification of the uniformity of the FO sensor frequency response. As anticipated, the overall uncertainty of the calibration was dependent on frequency and determined to be about +/-12% (+/-1 dB) up to 40 MHz, +/-20% (+/-1.5 dB) from 40 to 60 MHz and +/-25% (+/-2 dB) from 60 to 100 MHz. The outcome of this research indicates that once fully developed and calibrated, the combined acousto-optic system will constitute a universal reference tool in the wide, 100 MHz bandwidth.

  5. Electron-beam buncher to operate over the frequency range 1-4 GHz

    SciTech Connect

    Goldberg, D.A.; Arthur, A.A.; Flood, W.S.; Voelker, F.

    1983-03-01

    We present a description of an electron buncher to be installed in the terminal of a Van de Graaff, which is to produce a modulated beam over the frequency range 1-4 GHz. The modulator geometry has been optimized so that the modulation amplitude should be nearly constant over the frequency ranges 1-2 GHz and 2-4 GHz. Preliminary results indicate the device works as predicted.

  6. Outdoor stocking density in free-range laying hens: radio-frequency identification of impacts on range use.

    PubMed

    Campbell, D L M; Hinch, G N; Dyall, T R; Warin, L; Little, B A; Lee, C

    2017-01-01

    The number and size of free-range laying hen (Gallus gallus domesticus) production systems are increasing within Australia in response to consumer demand for perceived improvement in hen welfare. However, variation in outdoor stocking density has generated consumer dissatisfaction leading to the development of a national information standard on free-range egg labelling by the Australian Consumer Affairs Ministers. The current Australian Model Code of Practice for Domestic Poultry states a guideline of 1500 hens/ha, but no maximum density is set. Radio-frequency identification (RFID) tracking technology was used to measure daily range usage by individual ISA Brown hens housed in six small flocks (150 hens/flock - 50% of hens tagged), each with access to one of three outdoor stocking density treatments (two replicates per treatment: 2000, 10 000, 20 000 hens/ha), from 22 to 26, 27 to 31 and 32 to 36 weeks of age. There was some variation in range usage across the sampling periods and by weeks 32 to 36 individual hens from the lowest stocking density on average used the range for longer each day (P<0.001), with fewer visits and longer maximum durations per visit (P<0.001). Individual hens within all stocking densities varied in the percentage of days they accessed the range with 2% of tagged hens in each treatment never venturing outdoors and a large proportion that accessed the range daily (2000 hens/ha: 80.5%; 10 000 hens/ha: 66.5%; 20 000 hens/ha: 71.4%). On average, 38% to 48% of hens were seen on the range simultaneously and used all available areas of all ranges. These results of experimental-sized flocks have implications for determining optimal outdoor stocking densities for commercial free-range laying hens but further research would be needed to determine the effects of increased range usage on hen welfare.

  7. Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas).

    PubMed

    Finneran, James J; Carder, Donald A; Ridgway, Sam H

    2002-01-01

    The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.

  8. Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Finneran, James J.; Carder, Donald A.; Ridgway, Sam H.

    2002-01-01

    The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.

  9. Acoustic and Perceptual Measurement of Expressive Prosody in High-Functioning Autism: Increased Pitch Range and What it Means to Listeners

    ERIC Educational Resources Information Center

    Nadig, Aparna; Shaw, Holly

    2012-01-01

    Are there consistent markers of atypical prosody in speakers with high functioning autism (HFA) compared to typically-developing speakers? We examined: (1) acoustic measurements of pitch range, mean pitch and speech rate in conversation, (2) perceptual ratings of conversation for these features and overall prosody, and (3) acoustic measurements of…

  10. Effectiveness of T-shaped acoustic resonators in low-frequency sound transmission control of a finite double-panel partition

    NASA Astrophysics Data System (ADS)

    Li, Deyu; Zhang, Xiao-Hong; Cheng, Li; Yu, Ganghua

    2010-10-01

    Double-panel partitions are widely used for sound insulation purposes. Their insulation efficiency is, however, deteriorated at low frequencies due to the structural and acoustic resonances. To tackle this problem, this paper proposes the use of long T-shaped acoustic resonators in a double-panel partition embedded along the edges. In order to facilitate the design and assess the performance of the structure, a general vibro-acoustic model, characterizing the interaction between the panels, air cavity, and integrated acoustic resonators, is developed. The effectiveness of the technique as well as the optimal locations of the acoustic resonators is examined at various frequencies where the system exhibits different coupling characteristics. The measured optimal locations are also compared with the predicted ones to verify the developed theory. Finally, the performance of the acoustic resonators in broadband sound transmission control is demonstrated.

  11. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery.

    PubMed

    Ueda, Hideo; Mutoh, Mizue; Seki, Toshinobu; Kobayashi, Daisuke; Morimoto, Yasunori

    2009-05-01

    We investigated the role of acoustic cavitation on sonophoretic skin permeation of calcein, a model permeant, across excised hairless rat skin. Three different frequencies (41, 158, 445 kHz) and various intensities (60 to 300 mW/cm(2)) of ultrasound were applied. Cavitation generation in degassed and undegassed (normal) water was monitored using a commercially available cavitation meter, then compared with skin permeability from calcein solution consistent of them. In addition, the penetration of a fluorescent dye, rhodamine B, into gelatin gel as a skin alternative was observed to estimate the role of cavitation collapse in the solution at or near the skin surface. Cavitation generation in the undegassed water was dependent on the ultrasound frequency, and the rank order of the cavitation was 41 kHz>158 kHz>445 kHz. At 41 kHz, cavitation generation in degassed water was clearly lower than that in undegassed water. Calcein permeability during ultrasound application correlated well with the cavitation generation in the medium, suggesting the important role of the indirect actions of cavitation collapse which occurred in the applied solution rather than the direct action in the skin. When ultrasound (41 or 158 kHz) was applied to the gelatin gels covered with rhodamine B solution, alteration in the surface configuration, like spots, and the coincident penetration of the dye were observed only at 41 kHz, while no alteration in the surface configuration was evident at 158 kHz. These results suggest that cavitation collapses in the vicinity of the skin surface might be more important for solute penetration in addition to skin permeabilization.

  12. Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging

    PubMed Central

    Furukawa, Hiroyuki; Hiro-Oka, Hideaki; Satoh, Nobuyuki; Yoshimura, Reiko; Choi, Donghak; Nakanishi, Motoi; Igarashi, Akihito; Ishikawa, Hitoshi; Ohbayashi, Kohji; Shimizu, Kimiya

    2010-01-01

    We describe a high-speed long-depth range optical frequency domain imaging (OFDI) system employing a long-coherence length tunable source and demonstrate dynamic full-range imaging of the anterior segment of the eye including from the cornea surface to the posterior capsule of the crystalline lens with a depth range of 12 mm without removing complex conjugate image ambiguity. The tunable source spanned from 1260 to 1360 nm with an average output power of 15.8 mW. The fast A-scan rate of 20,000 per second provided dynamic OFDI and dependence of the whole anterior segment change on time following abrupt relaxation from the accommodated to the relaxed status, which was measured for a healthy eye and that with an intraocular lens. PMID:21258564

  13. Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1982-01-01

    A single-frequency multibeam synthetic aperture radar for large swath imaging is disclosed. Each beam illuminates a separate ""footprint'' (i.e., range and azimuth interval). The distinct azimuth intervals for the separate beams produce a distinct Doppler frequency spectrum for each beam. After range correlation of raw data, an optical processor develops image data for the different beams by spatially separating the beams to place each beam of different Doppler frequency spectrum in a different location in the frequency plane as well as the imaging plane of the optical processor. Selection of a beam for imaging may be made in the frequency plane by adjusting the position of an aperture, or in the image plane by adjusting the position of a slit. The raw data may also be processed in digital form in an analogous manner.

  14. Long Term Statistical Measurements of Environmental Acoustics Parameters in the Arctic. AEAS Report Number 2. Low Frequency Transmission Loss Measurements in the Central Arctic Ocean.

    DTIC Science & Technology

    2014-09-26

    RD-RI56 576 LONG TERM STATISTICAL MEASUREMENTS OF ENVIRONMENTAL 1/2 ACOUSTICS PRAMETERS I..(U) POLRR RESEARCH LAB INC CARPINTERIA CA B M BUCK 15 JAN...BUREAU Of STANDARDS-1963-A I l I E ".-.’ .’ In :j: Lona Term Statistical Measurements of Environmental Acoustics Parameters in the Arctic - AEAS...No - Lo Frequency Transmission ’>:--’.-’- , .- ’ ,. ’.*- Lona Term Statistical Measurements ofcean Environmental Acoustics Parameters ,..-’, in the

  15. Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1979-01-01

    A method and apparatus are described for single frequency multibeam imaging of multiple strips of range swath at high range intervals for those applications where it is desirable to cover a range swath much greater than is possible for a given interpulse interval. Data from a single frequency synthetic aperture radar (in which beam parameters are adjusted so that the return from each successive swath is received during successive interpulse periods) are separated in Dopple frequency for the return from each beam at the frequency plane of the processor. Alternatively, the image formed by each beam may be spatially separated in the azimuth direction and successively selected by positioning an appropriate slit in the recording plane of the processor.

  16. A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies

    NASA Astrophysics Data System (ADS)

    Santos, A. R. G.; Cunha, M. S.; Avelino, P. P.; Chaplin, W. J.; Campante, T. L.

    2017-02-01

    The frequencies of the solar acoustic oscillations vary over the activity cycle. The variations in other activity proxies are found to be well correlated with the variations in the acoustic frequencies. However, each proxy has a slightly different time behaviour. Our goal is to characterize the differences between the time behaviour of the frequency shifts and of two other activity proxies, namely the area covered by sunspots and the 10.7-cm flux. We define a new observable that is particularly sensitive to the short-term frequency variations. We then compare the observable when computed from model frequency shifts and from observed frequency shifts obtained with the Global Oscillation Network Group (GONG) for cycle 23. Our analysis shows that on the shortest time-scales, the variations in the frequency shifts seen in the GONG observations are strongly correlated with the variations in the area covered by sunspots. However, a significant loss of correlation is still found. We verify that the times when the frequency shifts and the sunspot area do not vary in a similar way tend to coincide with the times of the maxima of the quasi-biennial variations seen in the solar seismic data. A similar analysis of the relation between the 10.7-cm flux and the frequency shifts reveals that the short-time variations in the frequency shifts follow even more closely those of the 10.7-cm flux than those of the sunspot area. However, a loss of correlation between frequency shifts and 10.7-cm flux variations is still found around the same times.

  17. Acoustic transistor: Amplification and switch of sound by sound

    NASA Astrophysics Data System (ADS)

    Liang, Bin; Kan, Wei-wei; Zou, Xin-ye; Yin, Lei-lei; Cheng, Jian-chun

    2014-08-01

    We designed an acoustic transistor to manipulate sound in a manner similar to the manipulation of electric current by its electrical counterpart. The acoustic transistor is a three-terminal device with the essential ability to use a small monochromatic acoustic signal to control a much larger output signal within a broad frequency range. The output and controlling signals have the same frequency, suggesting the possibility of cascading the structure to amplify an acoustic signal. Capable of amplifying and switching sound by sound, acoustic transistors have various potential applications and may open the way to the design of conceptual devices such as acoustic logic gates.

  18. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.

    PubMed

    Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla

    2010-02-01

    Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.

  19. Single channel speech separation in modulation frequency domain based on a novel pitch range estimation method

    NASA Astrophysics Data System (ADS)

    Mahmoodzadeh, Azar; Abutalebi, Hamid Reza; Soltanian-Zadeh, Hamid; Sheikhzadeh, Hamid

    2012-12-01

    Computational Auditory Scene Analysis (CASA) has been the focus in recent literature for speech separation from monaural mixtures. The performance of current CASA systems on voiced speech separation strictly depends on the robustness of the algorithm used for pitch frequency estimation. We propose a new system that estimates pitch (frequency) range of a target utterance and separates voiced portions of target speech. The algorithm, first, estimates the pitch range of target speech in each frame of data in the modulation frequency domain, and then, uses the estimated pitch range for segregating the target speech. The method of pitch range estimation is based on an onset and offset algorithm. Speech separation is performed by filtering the mixture signal with a mask extracted from the modulation spectrogram. A systematic evaluation shows that the proposed system extracts the majority of target speech signal with minimal interference and outperforms previous systems in both pitch extraction and voiced speech separation.

  20. Flow and Acoustic Features of a Mach 0.9 Free Jet Using High-Frequency Excitation

    NASA Astrophysics Data System (ADS)

    Upadhyay, Puja; Alvi, Farrukh

    2016-11-01

    This study focuses on active control of a Mach 0.9 (ReD = 6 ×105) free jet using high-frequency excitation for noise reduction. Eight resonance-enhanced microjet actuators with nominal frequencies of 25 kHz (StD 2 . 2) are used to excite the shear layer at frequencies that are approximately an order of magnitude higher than the jet preferred frequency. The influence of control on mean and turbulent characteristics of the jet is studied using Particle Image Velocimetry. Additionally, far-field acoustic measurements are acquired to estimate the effect of pulsed injection on noise characteristics of the jet. Flow field measurements revealed that strong streamwise vortex pairs, formed as a result of control, result in a significantly thicker initial shear layer. This excited shear layer is also prominently undulated, resulting in a modified initial velocity profile. Also, the distribution of turbulent kinetic energy revealed that forcing results in increased turbulence levels for near-injection regions, followed by a global reduction for all downstream locations. Far-field acoustic measurements showed noise reductions at low to moderate frequencies. Additionally, an increase in high-frequency noise, mostly dominated by the actuators' resonant noise, was observed. AFOSR and ARO.

  1. Automated acoustic localization and call association for vocalizing humpback whales on the Navy's Pacific Missile Range Facility.

    PubMed

    Helble, Tyler A; Ierley, Glenn R; D'Spain, Gerald L; Martin, Stephen W

    2015-01-01

    Time difference of arrival (TDOA) methods for acoustically localizing multiple marine mammals have been applied to recorded data from the Navy's Pacific Missile Range Facility in order to localize and track humpback whales. Modifications to established methods were necessary in order to simultaneously track multiple animals on the range faster than real-time and in a fully automated way, while minimizing the number of incorrect localizations. The resulting algorithms were run with no human intervention at computational speeds faster than the data recording speed on over forty days of acoustic recordings from the range, spanning multiple years. Spatial localizations based on correlating sequences of units originating from within the range produce estimates having a standard deviation typically 10 m or less (due primarily to TDOA measurement errors), and a bias of 20 m or less (due primarily to sound speed mismatch). An automated method for associating units to individual whales is presented, enabling automated humpback song analyses to be performed.

  2. Measurement of the dielectric properties of dispersive materials over a wide frequency range.

    SciTech Connect

    Molina, Luis Leroy; Salazar, Robert Austin; Bacon, Larry Donald; Lehr, Jane Marie

    2003-06-01

    The propagation of electromagnetic waves through dispersive media forms the basis for a wide variety of applications. Rapid advances in materials have produced new products with tailored responses across frequency bands. Many of these new materials, such as radar absorbing material and photonic crystals, are dispersive in nature. This, in turn, has opened up the possibility for the exploitation of these dispersive dielectric properties for a variety of applications. Thus, it is desirable to know the electromagnetic properties of both man-made and natural materials across a wide frequency range. With the advent of transient pulsers with sub-nanosecond risetimes and rates of voltage rise approaching 10**16 V/s, the frequencies of interest in the transient response extend to approximately the 2 GHz range. Although a network analyzer can provide either frequency- or time-domain data (by inverse transform), common TEM cells are only rated to 0.5 to 1.5 GHz--significantly below the maximum frequency of interest. To extend the frequency range to include 2 GHz, a TEM cell was characterized and a deembedding algorithm was applied to account, in part, for the limitations of the cell. The de-embedding technique is described along with such measurement issues such as clear time and sneak around. Measurements of complex permittivity of common drinking water are shown. This frequency extension will lead to more expansive testing of dielectric materials of interest.

  3. Passive probing of the sound fixing and ranging channel with hydro-acoustic observations from ridge earthquakes.

    PubMed

    Evers, Läslo G; Snellen, Mirjam

    2015-04-01

    The International Monitoring System includes a hydro-acoustic part to verify the Comprehensive Nuclear-Test-Ban Treaty. Besides explosive signals, monitoring stations also detect acoustic waves from earthquakes that travel through the SOund Fixing And Ranging (SOFAR) channel. The travel times of such detections are listed in the Reviewed Event Bulletin, which is statistically evaluated for the stations located in the Pacific, Indian, and Atlantic Oceans. The celerities of ridge earthquakes are calculated to build up a homogeneous data-set, based on similar source mechanisms. The celerity is defined as the epicentral distance divided by the travel time. The global characteristics of these celerities can be well understood in terms of temperature variations in the SOFAR channel. A detailed velocity profile has been retrieved for the Atlantic Ocean where large differences (14 m/s) are found between the southern and northern parts of the basin. Propagation modeling with normal modes supports these findings, which shows that the celerity gives an estimate of the sound speed in the SOFAR channel. These results compare remarkably well with those from active experiments, showing the ability of passively probing the SOFAR channel with hydro-acoustic waves from earthquake sources.

  4. Low-frequency target strength and abundance of shoaling Atlantic herring (Clupea harengus) in the Gulf of Maine during the Ocean Acoustic Waveguide Remote Sensing 2006 Experiment.

    PubMed

    Gong, Zheng; Andrews, Mark; Jagannathan, Srinivasan; Patel, Ruben; Jech, J Michael; Makris, Nicholas C; Ratilal, Purnima

    2010-01-01

    The low-frequency target strength of shoaling Atlantic herring (Clupea harengus) in the Gulf of Maine during Autumn 2006 spawning season is estimated from experimental data acquired simultaneously at multiple frequencies in the 300-1200 Hz range using (1) a low-frequency ocean acoustic waveguide remote sensing (OAWRS) system, (2) areal population density calibration with several conventional fish finding sonar (CFFS) systems, and (3) low-frequency transmission loss measurements. The OAWRS system's instantaneous imaging diameter of 100 km and regular updating enabled unaliased monitoring of fish populations over ecosystem scales including shoals of Atlantic herring containing hundreds of millions of individuals, as confirmed by concurrent trawl and CFFS sampling. High spatial-temporal coregistration was found between herring shoals imaged by OAWRS and concurrent CFFS line-transects, which also provided fish depth distributions. The mean scattering cross-section of an individual shoaling herring is found to consistently exhibit a strong, roughly 20 dB/octave roll-off with decreasing frequency in the range of the OAWRS survey over all days of the roughly 2-week experiment, consistent with the steep roll-offs expected for sub-resonance scattering from fish with air-filled swimbladders.

  5. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  6. Depression Diagnoses and Fundamental Frequency-Based Acoustic Cues in Maternal Infant-Directed Speech

    PubMed Central

    Porritt, Laura L.; Zinser, Michael C.; Bachorowski, Jo-Anne; Kaplan, Peter S.

    2013-01-01

    F0-based acoustic measures were extracted from a brief, sentence-final target word spoken during structured play interactions between mothers and their 3- to 14-month-old infants, and were analyzed based on demographic variables and DSM-IV Axis-I clinical diagnoses and their common modifiers. F0 range (ΔF0) was negatively correlated with infant age and number of children. ΔF0 was significantly smaller in clinically depressed mothers and mothers diagnosed with depression in partial remission, relative to non-depressed mothers, mothers diagnosed with depression in full remission, and those diagnosed with depressive disorder not otherwise specified. ΔF0 was significantly lower in mothers experiencing their first major depressive episode relative to mothers with recurrent depression. Deficits in ΔF0 were specific to diagnosed clinical depression, and were not well predicted by elevated self-report scores only, or by diagnosed anxiety disorders. Mothers with higher ΔF0 had infants with reportedly larger productive vocabularies, but depression was unrelated to vocabulary development. Implications for cognitive-linguistic development are discussed. PMID:24489521

  7. Ionospheric frequency spread and its relationship with range spread in mid-latitude regions

    SciTech Connect

    Bowman, G.G. )

    1991-06-01

    The distinction between range spread and frequency spread as seen on mid-latitude ionograms is discussed. A classification of these two types of spread F is proposed in terms of different arrangements of the duplicate traces which provide the basic trace structures of mid-latitude spread F ionograms. Experimental results are presented to support the idea that frequency spread results from multiple ray paths (associated with a shallow ripple structure in the isoionic contours) close to the direction of the zenith position, so that each ray path has a range approximately equal to that of its neighbor. Furthermore, a horizontal gradient of maximum electron density is an additional requirement to create frequency spread. Atmospheric conditions (involving ionospheric F{sub 2} region heights and upper atmosphere neutral particle densities) which seem to favor the generation of frequency spread are discussed.

  8. Nonlinear Acoustics: Long Range Underwater Propagation, Air-Filled Porous Materials, and Noncollinear Interaction in a Waveguide.

    DTIC Science & Technology

    1985-10-28

    degree December 1985. 3. A. TenCate , Ph.D. student in Mechanical Engineering. " ’-. I. Sw J -- - . II. PROJECTS 1. Nonlinear effects in long range...interaction in a rectangular waveguide. (Hamilton and TenCate ). This work is an outgrowth of Hamilton’s Ph.D. research (84-6,7) and TenCate’s M.S...Ph.D. dissertation research topics. TenCate has begun work on an acoustical chaos experiment, intense standing waves in a closed tube. His initial

  9. Relationship Between Distortion Product - Otoacoustic Emissions (DPOAEs) and High-Frequency Acoustic Immittance Measures.

    PubMed

    Campos, Ualace De Paula; Hatzopoulos, Stavros; Śliwa, Lech K; Skarżyński, Piotr H; Jędrzejczak, Wiesław W; Skarżyński, Henryk; Carvallo, Renata Mota Mamede

    2016-06-14

    BACKGROUND Pathologies that alter the impedance of the middle ear may consequently modify the DPOAE amplitude. The aim of this study was to correlate information from 2 different clinical procedures assessing middle ear status. Data from DPOAE responses (both DP-Gram and DP I/O functions) were correlated with data from multi-component tympanometry at 1000 Hz. MATERIAL AND METHODS The subjects were divided into a double-peak group (DPG) and a single-peak group (SPG) depending on 1000 Hz tympanogram pattern. Exclusion criteria (described in the Methods section) were applied to both groups and finally only 31 ears were assigned to each group. The subjects were also assessed with traditional tympanometry and behavioral audiometry. RESULTS Compared to the single-peak group, in terms of the 226 Hz tympanometry data, subjects in the DPG group presented: (i) higher values of ear canal volume; (ii) higher peak pressure, and (iii) significantly higher values of acoustic admittance. DPOAE amplitudes were lower in the DPG group only at 6006 Hz, but the difference in amplitude between the DPG and SPG groups decreased as the frequency increased. Statistical differences were observed only at 1001 Hz and a borderline difference at 1501 Hz. In terms of DPOAE I/O functions, significant differences were observed only in 4 of the 50 tested points. CONCLUSIONS The 1000-Hz tympanometric pattern significantly affects the structure of DPOAE responses only at 1001 Hz. In this context, changes in the properties of the middle ear (as detected by the 1000 Hz tympanometry) can be considered as prime candidates for the observed variability in the DP-grams and the DP I/O functions.

  10. Relationship Between Distortion Product – Otoacoustic Emissions (DPOAEs) and High-Frequency Acoustic Immittance Measures

    PubMed Central

    De Paula Campos, Ualace; Hatzopoulos, Stavros; Śliwa, Lech K.; Skarżyński, Piotr H.; Jędrzejczak, Wiesław W.; Skarżyński, Henryk; Carvallo, Renata Mota Mamede

    2016-01-01

    Background Pathologies that alter the impedance of the middle ear may consequently modify the DPOAE amplitude. The aim of this study was to correlate information from 2 different clinical procedures assessing middle ear status. Data from DPOAE responses (both DP-Gram and DP I/O functions) were correlated with data from multi-component tympanometry at 1000 Hz. Material/Methods The subjects were divided into a double-peak group (DPG) and a single-peak group (SPG) depending on 1000 Hz tympanogram pattern. Exclusion criteria (described in the Methods section) were applied to both groups and finally only 31 ears were assigned to each group. The subjects were also assessed with traditional tympanometry and behavioral audiometry. Results Compared to the single-peak group, in terms of the 226 Hz tympanometry data, subjects in the DPG group presented: (i) higher values of ear canal volume; (ii) higher peak pressure, and (iii) significantly higher values of acoustic admittance. DPOAE amplitudes were lower in the DPG group only at 6006 Hz, but the difference in amplitude between the DPG and SPG groups decreased as the frequency increased. Statistical differences were observed only at 1001 Hz and a borderline difference at 1501 Hz. In terms of DPOAE I/O functions, significant differences were observed only in 4 of the 50 tested points. Conclusions The 1000-Hz tympanometric pattern significantly affects the structure of DPOAE responses only at 1001 Hz. In this context, changes in the properties of the middle ear (as detected by the 1000 Hz tympanometry) can be considered as prime candidates for the observed variability in the DP-grams and the DP I/O functions. PMID:27299792

  11. Waves guided by density ducts in magnetoplasma in the nonresonant region of the whistler frequency range

    SciTech Connect

    Es’kin, V. A.; Zaboronkova, T. M.; Kudrin, A. V. Ostafiychuk, O. M.

    2015-03-15

    Guidance of azimuthally symmetric waves by cylindrical density ducts in magnetoplasma in the nonresonant region of the whistler frequency range is investigated. It is demonstrated that eigenmodes existing at the studied frequencies in ducts with enhanced plasma density allow simplified description that makes analysis of the features of their guided propagation much easier. The results of calculation of the dispersion characteristics and field structure of the whistler modes supported by such ducts are presented.

  12. The source of solar high-frequency acoustic modes - Theoretical expectations

    NASA Technical Reports Server (NTRS)

    Brown, Timothy M.

    1991-01-01

    The source exciting the solar p-modes is likely to be acoustic noise generated in the top part of the sun's convection zone. If so, then simple arguments suggest that most of the emitted energy may come from rare localized events that are well separated from one another in space and time. This note describes the acoustic emission that would be expected from such events, based on a ray-theory analysis. Most of the acoustic energy is found to emerge very close to the source, so that observations to identify emission events will require high spatial resolution.

  13. Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency

    NASA Technical Reports Server (NTRS)

    Dean, L. W.

    1975-01-01

    An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.

  14. Individual optimization of EEG channel and frequency ranges by means of genetic algorithm.

    PubMed

    Lee, Chungki; Jung, Jihee; Kwon, Gyuhyun; Kim, Laehyun

    2012-01-01

    It is well established that motor action/imagery provokes an event-related desynchronization (ERD) response at specific brain areas with specific frequency ranges, typically the sensory motor rhythm and beta bands. However, there are individual differences in both brain areas and frequency ranges which can be used to identify ERD. This often results in low classification accuracy of ERD, which makes it difficult to implement of BCI application such as the control of external devices and motor rehabilitation. To overcome this problem, an individually optimized solution may be desirable for enhancing the accuracy of detecting motor action/imagery with ERD rather than a global solution for all BCI users. This paper presents a method based on a genetic algorithm to find individually optimized brain areas and frequency ranges for ERD classification. To optimize these two components, we designed a chromosome consisting of 64-bit elements represented by a binary number and another 9-bit elements using 512 pre-defined frequency ranges (2^9). The average value of the significant level is set for the properties of the objective function for use in a t-test, (p < 0.01) depending on the random selection from a concurrent population. As a result, contralateral ERD responses in the spatial domain with individually optimized frequency ranges showed a significant difference between resting and motor action. The ERD responses for motor imagery, on the other hand, led to a bilateral pattern with a narrow frequency band compared to motor action. This study provides the possibility of selecting optimized electrode positions and frequency bands which can lead to high levels of ERD classification accuracy.

  15. UTag: Long-range Ultra-wideband Passive Radio Frequency Tags

    SciTech Connect

    Dowla, F

    2007-03-14

    Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

  16. An atomic magnetometer with autonomous frequency stabilization and large dynamic range

    SciTech Connect

    Pradhan, S. E-mail: pradhans75@gmail.com; Poornima,; Dasgupta, K.; Mishra, S.; Behera, R.

    2015-06-15

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz{sup 1/2} @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the bias magnetic field without compromising on its sensitivity.

  17. An atomic magnetometer with autonomous frequency stabilization and large dynamic range.

    PubMed

    Pradhan, S; Mishra, S; Behera, R; Poornima; Dasgupta, K

    2015-06-01

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz(1/2) @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the bias magnetic field without compromising on its sensitivity.

  18. Note: Digital laser frequency auto-locking for inter-satellite laser ranging.

    PubMed

    Luo, Yingxin; Li, Hongyin; Yeh, Hsien-Chi

    2016-05-01

    We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.

  19. The influence of oceanic internal waves on the phase stability of broadband acoustic transmission at long range

    NASA Astrophysics Data System (ADS)

    Viechnicki, John Thomas

    1999-12-01

    Instantaneous phase stability in acoustic wavefields measured during the 1994 Acoustic Engineering Test (AET) is examined. AET is one of several preliminary Acoustic Thermometry of Ocean Climate (ATOC) experiments conducted in the past several years. Internal waves are assumed to be the mechanism responsible for phase decorrelation over time scales of ten to thirty minutes. The AET experiment had a center frequency of 75 Hz and a 3 megameter path length. Comparison of numerical simulations to experimental results provide insight into how internal waves scatter sound and can be used to constrain statistical descriptors of realistic deep ocean internal wave fields. Ray-based wavefield simulations are performed using both Deterministic Ray Theory (DRT) and Stochastic Ray Theory (SRT), while full wave simulations are performed using the co insensitive parabolic equation model. This work complements recent similar inference studies of Colosi et al. (1994) and Heaney (1997) on other preliminary ATOC experiments. Working within the framework of the Garrett- Munk internal wave spectrum, phase coherence time, which was observed to be roughly ten to fifteen minutes in the AET experiment, is found to be dependent on the vertically integrated potential energy density, ɛ, and the bounds on the horizontal wavenumber spectrum, k min and kmax. Results suggest that phase coherence is insensitive to mode number cutoff, jmax . Two manifestations of the phase decorrelation observed in simulations are studied. Temporal wavefront wander as defined by Flatté et al. (1979) is examined over the decorrelation period as a function of the horizontal wavenumber spectrum. Intermittent structure that appears and disappears throughout the wavefront on time scales of ten to thirty minutes is examined. This intermittent structure is observed in both full wave modeling and DRT but not SRT.

  20. High-Frequency Acoustic Propagation in Shallow, Energetic, Highly-Salt-Stratified Environments

    DTIC Science & Technology

    2012-09-30

    wind, currents, and topography. Under these conditions, it is typical to encounter regimes of homogenous and isotropic turbulence, and for...influence of different discharge regimes on the observation of shear instabilities. 3. Modeling. Modeling of the acoustic propagation eigenrays

  1. Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments

    DTIC Science & Technology

    2012-01-01

    sparse-array measurements might be used for this task. The long term goals of this project are: i) to determine the effectiveness of synthetic time...focused on developing an acoustic-ray-based version of synthetic time reversal (STR), a fully-passive technique for recovering the original signal and...simulations, b) verify these findings with simple airborne- or water-borne acoustic laboratory experiments involving multiple receivers and multiple ray paths

  2. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    NASA Astrophysics Data System (ADS)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  3. Method of range profile for step frequency MMW radar based on wavelet transform power spectrum estimator

    NASA Astrophysics Data System (ADS)

    Li, Yuehua; Gao, Duntang; Shen, Qinghong; Li, Xingguo

    2001-11-01

    The method of range profile for step frequency MMW radar targets based on wavelet transform power spectrum estimator is studied. We show how the Fourier power spectrum can be detected by using the wavelet function coefficients (WFC) of the DWT. This method can successfully measure the power spectrum in samples for which traditional methods often fail because the sample are finite sized, have a complex geometry, or are varyingly sampled. We demonstrate that the spectrum features, such as the power law index, the magnitude, and the typical scales can be determined by the DWT reconstructed spectrum. We apply this method to the practical step frequency MMW radar target echo signals, and on the condition of the same sampling frequency and sampling data length, it can achieve one dimensional range profile with profile"s resolution superior to FFT"s, so the one dimensional range profile of targets can be analyzed with high resolution, the detail algorithm of range profiles spectrum estimation based on wavelet transforming multirange cells is proposed. Compare with FFT algorithm, using wavelet spectrum estimator of short data series, we can achieves high resolution, high accuracy, and low SNR threshold. The Experiment results make clear that the DWT estimator is a sensitive tool in range profile of step frequency MMW radar.

  4. Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu

    2016-11-01

    Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.

  5. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    SciTech Connect

    Marchetti, M.; Laux, D.; Cappia, F.; Laurie, M.; Van Uffelen, P.; Rondinella, V.V.; Despaux, G.

    2015-07-01

    During irradiation UO{sub 2} nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO{sub 2} pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO{sub 2} pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  6. Quantitative assessment of articular cartilage with morphologic, acoustic and mechanical properties obtained using high-frequency ultrasound.

    PubMed

    Wang, Shu-Zhe; Huang, Yan-Ping; Saarakkala, Simo; Zheng, Yong-Ping

    2010-03-01

    Osteoarthritis (OA) is one of the most common joint diseases among adults, and its early detection is still not possible. In this study, high-frequency ultrasound and ultrasound-assisted mechanical testing systems were used to quantitatively measure the morphologic, acoustic and mechanical properties of normal and enzymatically degraded bovine articular cartilages in vitro. A total of 40 osteochondral cartilage plugs were prepared from 20 bovine patellae (n=20x2) and divided into two groups for collagenase and trypsin digestions, respectively. A high-frequency ultrasound system (center frequency: 40 MHz) was used to analyze the surface integrity (ultrasound roughness index, URI), thickness and acoustic properties of the articular cartilages before and after enzymatic degradations. Acoustic parameters included the integrated reflection coefficient (IRC) from the cartilage surface, reflection from the cartilage-bone interface (AIB(bone)), integrated attenuation (IA) and integrated backscatter (IBS) of the internal cartilage tissue. A newly developed ultrasound water jet indentation system was used to assess the mechanical properties of the cartilage samples. The results showed that the URI increased significantly (p<0.05) after collagenase digestion while no significant change (p>0.05) was found after trypsin digestion. With regard to acoustic parameters, the IRC decreased significantly (p<0.05) after collagenase digestion while no significant change (p>0.05) was found after trypsin digestion. The AIB(bone) demonstrated an insignificant change after collagenase digestion (p>0.05) but a significant decrease after trypsin digestion (p<0.05). Both enzymatic degradation groups showed insignificant differences (p>0.05) in the IA but a significant increase (p<0.05) in the IBS after both enzymatic degradations. The apparent stiffness measured by ultrasound water jet indentation suggested that articular cartilage from both groups became significantly softer (p<0.05) after

  7. A wide-range programmable frequency synthesizer based on a finite state machine filter

    NASA Astrophysics Data System (ADS)

    Alser, Mohammed H.; Assaad, Maher M.; Hussin, Fawnizu A.

    2013-11-01

    In this article, an FPGA-based design and implementation of a fully digital wide-range programmable frequency synthesizer based on a finite state machine filter is presented. The advantages of the proposed architecture are that, it simultaneously generates a high frequency signal from a low frequency reference signal (i.e. synthesising), and synchronising the two signals (signals have the same phase, or a constant difference) without jitter accumulation issue. The architecture is portable and can be easily implemented for various platforms, such as FPGAs and integrated circuits. The frequency synthesizer circuit can be used as a part of SERDES devices in intra/inter chip communication in system-on-chip (SoC). The proposed circuit is designed using Verilog language and synthesized for the Altera DE2-70 development board, with the Cyclone II (EP2C35F672C6) device on board. Simulation and experimental results are included; they prove the synthesizing and tracking features of the proposed architecture. The generated clock signal frequency of a range from 19.8 MHz to 440 MHz is synchronized to the input reference clock with a frequency step of 0.12 MHz.

  8. Range-Dependent Acoustic Propagation in Shallow Water with Elastic Bottom Effects

    DTIC Science & Technology

    2012-09-30

    dependence models a seamount of approximately 400m in heighth and about 20km in range extent. The seamount is 2-dimensional. The plot is preliminary...respectively. The range-dependence models a seamount of approximately 400m in heighth and about 20km in range extent. The seamount is 2-dimensional. The

  9. Changing the average frequency of contact calls is associated with changes in other acoustic parameters in the budgerigar (Melopsittacus undulatus)

    NASA Astrophysics Data System (ADS)

    Osmanski, Michael; Dooling, Robert

    2004-05-01

    The most-often produced vocalization of the budgerigar, a small parrot native to Australia, is the short (100-150 ms) frequency-modulated contact call. These calls play a role in maintaining flock dynamics and are believed to act as vocal signatures in these birds. Previous findings in our lab have shown that budgerigars can control the intensity of their vocal behavior and exhibit a robust Lombard effect (Manabe et al., 1998). Recently, we have shown that there is a high degree of stereotypy in contact calls across a number of acoustic parameters (Osmanski and Dooling, 2004). Questions arise concerning the limits of plasticity in these calls and the relation or interdependence among the various parameters. As a first approach to answering these questions, four budgerigars were trained using operant conditioning methods to change the average peak frequency of their contact calls (both upward and downward in frequency) to obtain access to a food reward. Results show that these birds can both increase and decrease the average frequency of their contact calls. Such changes are associated with modifications in a number of other acoustic parameters, suggesting constraints on vocal plasticity. [Work supported by NIH DC-00198 to RJD and NIDCD Training Grant DC-00046.

  10. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  11. Acoustic metamaterial with negative modulus.

    PubMed

    Lee, Sam Hyeon; Park, Choon Mahn; Seo, Yong Mun; Wang, Zhi Guo; Kim, Chul Koo

    2009-04-29

    We present experimental and theoretical results on an acoustic metamaterial that exhibits a negative effective modulus in a frequency range from 0 to 450 Hz. A one-dimensional acoustic metamaterial with an array of side holes on a tube was fabricated. We observed that acoustic waves above 450 Hz propagated well in this structure, but no sound below 450 Hz passed through. The frequency characteristics of the metamaterial has the same form as that of the permittivity in metals due to the plasma oscillation. We also provide a theory to explain the experimental results.

  12. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals.

    PubMed

    Ding, Zhenyang; Yao, X Steve; Liu, Tiegen; Du, Yang; Liu, Kun; Han, Qun; Meng, Zhuo; Chen, Hongxin

    2012-12-17

    We present a novel method to achieve a space-resolved long- range vibration detection system based on the correlation analysis of the optical frequency-domain reflectometry (OFDR) signals. By performing two separate measurements of the vibrated and non-vibrated states on a test fiber, the vibration frequency and position of a vibration event can be obtained by analyzing the cross-correlation between beat signals of the vibrated and non-vibrated states in a spatial domain, where the beat signals are generated from interferences between local Rayleigh backscattering signals of the test fiber and local light oscillator. Using the proposed technique, we constructed a standard single-mode fiber based vibration sensor that can have a dynamic range of 12 km and a measurable vibration frequency up to 2 kHz with a spatial resolution of 5 m. Moreover, preliminarily investigation results of two vibration events located at different positions along the test fiber are also reported.

  13. Range-Dependent Acoustic Propagation in Shallow Water with Elastic Bottom Effects

    DTIC Science & Technology

    2013-09-30

    found a number of bugs in our 2-way coupled mode code. Last year we presented a preliminary figure of propagation over a 2-D seamount model. The...This is the final version. The range-dependence models a seamount of approximately 400m in heigth and about 20km in range extent. The seamount is 2...The range-dependence models a seamount of approximately 400m in heighth and about 20km in range extent. The seamount is 2-dimensional. This is a

  14. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    SciTech Connect

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Chirstopher

    2013-10-15

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.

  15. UWB micro-doppler radar for human gait analysis using joint range-time-frequency representation

    NASA Astrophysics Data System (ADS)

    Wang, Yazhou; Fathy, Aly E.

    2013-05-01

    In this paper, we present a novel, standalone ultra wideband (UWB) micro-Doppler radar sensor that goes beyond simple range or micro-Doppler detection to combined range-time-Doppler frequency analysis. Moreover, it can monitor more than one human object in both line-of-sight (LOS) and through wall scenarios, thus have full human objects tracking capabilities. The unique radar design is based on narrow pulse transceiver, high speed data acquisition module, and wideband antenna array. For advanced radar post-data processing, joint range-time-frequency representation has been performed. Characteristics of human walking activity have been analyzed using the radar sensor by precisely tracking the radar object and acquiring range-time-Doppler information simultaneously. The UWB micro-Doppler radar prototype is capable of detecting Doppler frequency range from -180 Hz to +180 Hz, which allows a maximum target velocity of 9 m/s. The developed radar sensor can also be extended for many other applications, such as respiration and heartbeat detection of trapped survivors under building debris.

  16. Frequency modulation at a moving material interface and a conservation law for wave number. [acoustic wave reflection and transmission

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1976-01-01

    An integral conservation law for wave numbers is considered. In order to test the validity of the proposed conservation law, a complete solution for the reflection and transmission of an acoustic wave impinging normally on a material interface moving at a constant speed is derived. The agreement between the frequency condition thus deduced from the dynamic equations of motion and the frequency condition derived from the jump condition associated with the integral equation supports the proposed law as a true conservation law. Additional comparisons such as amplitude discontinuities and Snells' law in a moving media further confirm the stated proposition. Results are stated concerning frequency and wave number relations across a shock front as predicted by the proposed conservation law.

  17. Acoustic signal characteristics of laser induced cavitation in DDFP droplet: Spectrum and time-frequency analysis.

    PubMed

    Feng, Yi; Qin, Dui; Zhang, Jun; Ma, Chenxiang; Wan, Mingxi

    2015-01-01

    Cavitation has great application potential in microvessel damage and targeted drug delivery. Concerning cavitation, droplet vaporization has been widely investigated in vitro and in vivo with plasmonic nanoparticles. Droplets with a liquid dodecafluoropentane (DDFP) core enclosed in an albumin shell have a stable and simple structure with good characteristics of laser absorbing; thus, DDFP droplets could be an effective aim for laser-induced cavitation. The DDPF droplet was prepared and perfused in a mimic microvessel in the optical microscopic system with a passive acoustic detection module. Three patterns of laser-induced cavitation in the droplets were observed. The emitted acoustic signals showed specific spectrum components at specific time points. It was suggested that a nanosecond laser pulse could induce cavitation in DDPF droplets, and specific acoustic signals would be emitted. Analyzing its characteristics could aid in monitoring the laser-induced cavitation process in droplets, which is meaningful to theranostic application.

  18. Application of generalized Snoek's law over a finite frequency range: A case study

    NASA Astrophysics Data System (ADS)

    Rozanov, Konstantin N.; Koledintseva, Marina Y.

    2016-02-01

    Generalized Snoek's law proposed in an integral form by Acher and coauthors is a useful tool for investigation of high-frequency properties of magnetic materials. This integral law referred to as Acher's law allows for evaluating the ultimate performance of RF and microwave devices which employ magnetic materials. It may also be helpful in obtaining useful information on the structure and morphology of the materials. The key factor in practical application of Acher's law is an opportunity to employ either measured or calculated data available over a finite frequency range. The paper uses simple calculations to check the applicability of Acher's law in cases when the frequency range is limited and the magnetic loss peak is comparatively wide and has a distorted shape. The cases of large magnetic damping, pronounced skin effect, and inhomogeneity of the material are considered. It is shown that in most cases calculation of the integral through fitting of actual magnetic frequency dispersion by the Lorentzian dispersion law results in accurate estimations of the ultimate high-frequency performance of magnetic materials.

  19. Development of gyrotrons for fusion with power exceeding 1 MW over a wide frequency range

    NASA Astrophysics Data System (ADS)

    Kariya, T.; Imai, T.; Minami, R.; Numakura, T.; Eguchi, T.; Kato, T.; Endo, Y.; Ichimura, M.; Shimozuma, T.; Kubo, S.; Takahashi, H.; Yoshimura, Y.; Igami, H.; Ito, S.; Mutoh, T.; Sakamoto, K.; Idei, H.; Zushi, H.; Nagasaki, K.; Sano, F.; Ono, M.; Mitsunaka, Y.

    2015-09-01

    Megawatt-class gyrotrons covering a wide frequency range (14 GHz-300 GHz) are in increasing demand for nuclear fusion. Recent electron cyclotron heating and electron cyclotron current drive experiments highlight a requirement of megawatt-scale gyrotrons at a relatively lower frequency (14-35 GHz) range of some plasma devices, like GAMMA 10/PDX of the University of Tsukuba, QUEST of Kyushu University, NSTX-U of Princeton Plasma Physics Laboratory, and Heliotron J of Kyoto University. Collaborative studies for designing a new 28 GHz/35 GHz dual-frequency gyrotron and a 14 GHz gyrotron have commenced. Operation above 1 MW of 28 GHz/35 GHz dual oscillation was demonstrated experimentally. Further in the design of dual-frequency gyrotron, operations with 2 MW 3 s and 0.4 MW CW (continuous wave) at 28 GHz, and power exceeding 1 MW for 3 s at 34.8 GHz have been shown to be feasible. The 14 GHz gyrotron is expected to operate above 1 MW. We are also developing higher frequency gyrotrons (77-300 GHz). The joint program of National Institute for Fusion Science and the University of Tsukuba developed two new 154 GHz gyrotrons for the large helical device after the demonstration of three 77 GHz gyrotrons. The 154 GHz gyrotrons achieved a maximum output power of 1.25 MW and quasi-CW operation of 0.35 MW for 30 min.

  20. Optical Generation And Spatially Distinct Interferometric Detection Of Ultrahigh Frequency Surface Acoustic Waves

    SciTech Connect

    David H. Hurley

    2006-05-01

    Generation and interferometric detection of 22 GHz surface acoustic waves (SAWs) using two laterally separated absorption gratings on a Si substrate are presented. Optical phase sensitive detection of SAWs is demonstrated using a modified Sagnac interferometer. The reflection characteristics of the suboptical wavelength grating necessitate the use of only linear polarization. This is accomplished by employing a Faraday rotator to ensure path reversal of the reference and signal pulses. The enhanced sensitivity of the interferometer is exploited to measure the acoustic disturbance on an identical absorption grating at a distance of ~4.5 µm from the generation site.

  1. Theoretical analysis of the EAST 4-strap ion cyclotron range of frequency antenna with variational theory

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Hui; Zhang, Xin-Jun; Zhao, Yan-Ping; Qin, Cheng-Ming; Chen, Zhao; Yang, Lei; Wang, Jian-Hua

    2016-08-01

    A variational principle code which can calculate self-consistently currents on the conductors is used to assess the coupling characteristic of the EAST 4-strap ion cyclotron range of frequency (ICRF) antenna. Taking into account two layers of antenna conductors without lateral frame but with slab geometry, the antenna impedances as a function of frequency and the structure of RF field excited inside the plasma in various phasing cases are discussed in this paper. Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant No. 2015GB101001) and the National Natural Science Foundation of China (Grant Nos. 11375236 and 11375235).

  2. Frequency-specific adaptation in human auditory cortex depends on the spectral variance in the acoustic stimulation.

    PubMed

    Herrmann, Björn; Henry, Molly J; Obleser, Jonas

    2013-04-01

    In auditory cortex, activation and subsequent adaptation is strongest for regions responding best to a stimulated tone frequency and less for regions responding best to other frequencies. Previous attempts to characterize the spread of neural adaptation in humans investigated the auditory cortex N1 component of the event-related potentials. Importantly, however, more recent studies in animals show that neural response properties are not independent of the stimulation context. To link these findings in animals to human scalp potentials, we investigated whether contextual factors of the acoustic stimulation, namely, spectral variance, affect the spread of neural adaptation. Electroencephalograms were recorded while human participants listened to random tone sequences varying in spectral variance (narrow vs. wide). Spread of adaptation was investigated by modeling single-trial neural adaptation and subsequent recovery based on the spectro-temporal stimulation history. Frequency-specific neural responses were largest on the N1 component, and the modeled neural adaptation indices were strongly predictive of trial-by-trial amplitude variations. Yet the spread of adaption varied depending on the spectral variance in the stimulation, such that adaptation spread was broadened for tone sequences with wide spectral variance. Thus the present findings reveal context-dependent auditory cortex adaptation and point toward a flexibly adjusting auditory system that changes its response properties with the spectral requirements of the acoustic environment.

  3. An impedance bridge measuring the capacitance ratio in the high frequency range up to 1 MHz

    NASA Astrophysics Data System (ADS)

    Bee Kim, Dan; Kew Lee, Hyung; Kim, Wan-Seop

    2017-02-01

    This paper describes a 2-terminal-pair impedance bridge, measuring the capacitance ratio in the high frequency range up to 1 MHz. The bridge was configured with two voltage sources and a phase control unit which enabled the bridge balance by synchronizing the voltage sources with an enhanced phase resolution. Without employing the transformers such as inductive voltage divider, injection and detection transformers, etc, the bridge system is quite simple to set up, and the balance procedure is quick and easy. Using this dual-source coaxial bridge, the 1:1 and 10:1 capacitance ratios were measured with 1 pF-1 nF capacitors in the frequency range from 1 kHz to 1 MHz. The measurement values obtained by the dual-source bridge were then compared with reference values measured using a commercial precision capacitance bridge of AH2700A, the Z-matrix method developed by ourselves, and the 4-terminal-pair coaxial bridge by the Czech Metrological Institute. All the measurements agreed within the reference uncertainty range of an order of 10-6-10-5, proving the bridge ability as a trustworthy tool for measuring the capacitance ratio in the high frequency range.

  4. Noise in any frequency range can enhance information transmission in a sensory neuron

    NASA Astrophysics Data System (ADS)

    Levin, Jacob E.

    1997-05-01

    The effect of noise on the neural encoding of broadband signals was investigated in the cricket cercal system, a mechanosensory system sensitive to small near-field air particle disturbances. Known air current stimuli were presented to the cricket through audio speakers in a controlled environment in a variety of background noise conditions. Spike trains from the second layer of neuronal processing, the primary sensory interneurons, were recorded with intracellular Electrodes and the performance of these neurons characterized with the tools of information theory. SNR, mutual information rates, and other measures of encoding accuracy were calculated for single frequency, narrowband, and broadband signals over the entire amplitude sensitivity range of the cells, in the presence of uncorrelated noise background also spanning the cells' frequency and amplitude sensitivity range. Significant enhancements of transmitted information through the addition of external noise were observed regardless of the frequency range of either the signal or noise waveforms, provided both were within the operating range of the cell. Considerable improvements in signal encoding were observed for almost an entire order of magnitude of near-threshold signal amplitudes. This included sinusoidal signals embedded in broadband white noise, broadband signals in broadband noise, and even broadband signals presented with narrowband noise in a completely non-overlapping frequency range. The noise related increases in mutual information rate for broadband signals were as high as 150%, and up to 600% increases in SNR were observed for sinusoidal signals. Additionally, it was shown that the amount of information about the signal carried, on average, by each spike was INCREASED for small signals when presented with noise—implying that added input noise can, in certain situations, actually improve the accuracy of the encoding process itself.

  5. Spatial and temporal frequency domain laser-ultrasound applied in the direct measurement of dispersion relations of surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Grünsteidl, Clemens; Veres, István A.; Roither, Jürgen; Burgholzer, Peter; Murray, Todd W.; Berer, Thomas

    2013-01-01

    We present a laser-ultrasound measurement technique which combines adjustable spatial and temporal modulation of the excitation laser beam. Our method spreads the intensity of an amplitude modulated continuous wave laser over a micro-scale pattern on the sample surface to excite surface acoustic waves. The excitation pattern consists of parallel, equidistant lines and the waves generated from the individual lines interfere on the sample surface. Measurement is done in the spatial-temporal frequency domain allowing the direct determination of dispersion relations. The technique performs with high signal-to-noise-ratios and low peak power densities on the sample.

  6. Aerodynamic and Acoustic Effects of Abrupt Frequency Changes in Excised Larynges

    ERIC Educational Resources Information Center

    Alipour, Fariborz; Finnegan, Eileen M.; Scherer, Ronald C.

    2009-01-01

    Purpose: To determine the aerodynamic and acoustic effects due to a sudden change from chest to falsetto register or vice versa. It was hypothesized that the continuous change in subglottal pressure and flow rate alone (pressure-flow sweep [PFS]) can trigger a mode change in the canine larynx. Method: Ten canine larynges were each mounted over a…

  7. Estimation of Ocean and Seabed Parameters and Processes Using Low Frequency Acoustic Signals

    DTIC Science & Technology

    2012-09-30

    Ambient habitat noise and vibration at the Georgia Aquarium ,” J. Acoust. Soc. Am. 132, EL88 (2012), [published, refereed]. 8 9. Scheifele, P. M...Clark, J. G., Sonstrom,K., Kim, H., Potty, G. R., Miller, J. H., and Gaglione, E., “BallroomMusic Spillover into a BelugaWhale Aquarium Exhibit

  8. High-Frequency Acoustic Propagation in Shallow, Energetic, Highly-Salt-Stratified Environments

    DTIC Science & Technology

    2013-09-30

    depending on the tidal cycle, wind, currents, and topography. Under these conditions, it is typical to encounter regimes of homogenous and isotropic...acoustic propagation eigenrays based on the CTD data collected in the CT River was performed determine the best signals. 3. Permitting. The Coast

  9. High-Frequency Acoustic Propagation in Shallow, Energetic, Highly-Salt-Stratified Environments

    DTIC Science & Technology

    2013-10-03

    wind, currents, and topography. Under these conditions, it is typical to encounter regimes of homogenous and isotropic turbulence, and for propagations...the influence of different discharge regimes on the observation of shear instabilities. Modeling of the acoustic propagation eigenrays based on the

  10. Acoustic measurement of suspensions of clay and silt particles using single frequency attenuation and backscatter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of ultrasonic acoustic technology to measure the concentration of fine suspended sediments has the potential to greatly increase the temporal and spatial resolution of sediment measurements while reducing the need for personnel to be present at gauging stations during storm events. The conv...

  11. High Frequency Acoustic Sensor Dedicated to the High Resolution Measurement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Meignen, Pierre-Antoine; Le Clézio, Emmanuel; Despaux, Gilles

    Through acoustic signature, scanning acoustic microscopy can be used to quantify local mechanical properties of a medium thanks to the generation of surface waves, mostly Rayleigh waves. Despite being quite effective, this method requires to evaluate the mechanical properties of a single point the acquisition of many ultrasonic signals. This process is then time-consuming and is hardly adaptable to quantitative imaging. The solution considered in this paper to speed-up the method is to design a multi-element sensor allowing the extraction of information on Rayleigh waves with a reduced number of acquisitions. The work is conducted along two axes. As a first step, a model allowing the simulation of the acoustic wave behavior at a fluid/solid interface is developed. This model leads to a better understanding of the characterization of the mechanical properties and to the definition of an adapted sensor's design. As a second step, an experimental method for acoustic field reconstruction is used to characterize the multi-elements sensor and measurements of mechanical properties were done.

  12. Time-frequency Analysis for Acoustic Emission Signals of Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Liu, W. G.; Pang, B. J.; Zhang, W.; Sun, F.; Guan, G. S.

    The risk of collision of man-made orbital debris with spacecraft in near Earth orbits continues to increase A major of the space debris between 1mm and 10mm can t be well tracked in Earth orbits Damage from these un-tracked debris impacts is a serious hazard to aircraft and spacecraft These on-orbit collisions occur at velocities exceeding 10km s and at these velocities even very small particles can create significant damage The development of in-situ impact detecting system is indispensable for protecting the spacecraft from tragedy malfunction by the debris Acoustic Emission AE detecting technique has been recognized as an important technology for non-destructive detecting due to the AE signals offering a potentially useful additional means of non-invasively gathering concerning the state of spacecrafts Also Acoustic emission health monitoring is able to detect locate and assess impact damage when the spacecrafts is impacted by hypervelocity space debris and micrometeoroids This information can help operators and designers at the ground station take effective measures to maintain the function of spacecraft In this article Acoustic emission AE is used for characterization and location for hypervelocity Impacts Two different Acoustic Emission AE sensors were used to detect the arrival time and signals of the hits Hypervelocity Impacts were generated with a two-stage light-gas gun firing small Aluminum ball projectiles 4mm 6 4mm In the impact studies the signals were recorded with Disp AEwin PAC instruments by the conventional crossing

  13. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    NASA Astrophysics Data System (ADS)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  14. Exploring the accessible frequency range of phase-resolved ferromagnetic resonance detected with x-rays

    NASA Astrophysics Data System (ADS)

    Warnicke, P.; Knut, R.; Wahlström, E.; Karis, O.; Bailey, W. E.; Arena, D. A.

    2013-01-01

    We present time- and element-resolved measurements of the magnetization dynamics in a ferromagnetic trilayer structure. A pump-probe scheme was utilized with a microwave magnetic excitation field phase-locked to the photon bunches and x-ray magnetic circular dichroism in transmission geometry. Using a relatively large photon bunch length with a full width at half maximum of 650 ps, the precessional motion of the magnetization was resolved up to frequencies of 2.5 GHz, thereby enabling sampling at frequencies significantly above the inverse bunch length. By simulating the experimental data with a numerical model based on a forced harmonic oscillator, we obtain good correlation between the two. The model, which includes timing jitter analysis, is used to predict the accessible frequency range of x-ray detected ferromagnetic resonance.

  15. Perception of pitch location within a speaker's range: fundamental frequency, voice quality and speaker sex.

    PubMed

    Bishop, Jason; Keating, Patricia

    2012-08-01

    How are listeners able to identify whether the pitch of a brief isolated sample of an unknown voice is high or low in the overall pitch range of that speaker? Does the speaker's voice quality convey crucial information about pitch level? Results and statistical models of two experiments that provide answers to these questions are presented. First, listeners rated the pitch levels of vowels taken over the full pitch ranges of male and female speakers. The absolute f0 of the samples was by far the most important determinant of listeners' ratings, but with some effect of the sex of the speaker. Acoustic measures of voice quality had only a very small effect on these ratings. This result suggests that listeners have expectations about f0s for average speakers of each sex, and judge voice samples against such expectations. Second, listeners judged speaker sex for the same speech samples. Again, absolute f0 was the most important determinant of listeners' judgments, but now voice quality measures also played a role. Thus it seems that pitch level judgments depend on voice quality mostly indirectly, through its information about sex. Absolute f0 is the most important information for deciding both pitch level and speaker sex.

  16. SLS Scale Model Acoustic Test Liftoff Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, Douglas; Giacomoni, Clothilde

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible design phase test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments.

  17. Double Brillouin frequency spaced multiwavelength Brillouin-erbium fiber laser with 50 nm tuning range

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.

    2012-09-01

    A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.

  18. A reduced order model for dielectric elastomer actuators over a range of frequencies and prestrains

    NASA Astrophysics Data System (ADS)

    Kiser, Jillian; Manning, Michael; Adler, David; Breuer, Kenneth

    2016-09-01

    The actuation strain of an equibiaxially prestrained dielectric elastomer membrane is studied as a function of driving frequency and prestrain. Experimental data are gathered on the membrane's creep and recovery following DC actuation, as well as the steady state amplitude and phase for AC driving voltages ranging from 2 to 40 Hz. The effect of prestretch on steady state actuation was also investigated, using membranes of both 250% and 300% prestretch. A three-element generalized Kelvin-Voigt model is developed to capture the transient and steady-state actuation responses as a function of frequency and prestrain. We show that, despite its relative simplicity, this model captures the relevant timescales for the membrane behavior with good fidelity and can be used to accurately predict the actuation magnitude and phase as a function of time over a range of actuation configurations and driving conditions.

  19. A direct method for measuring acoustic ground impedance in long-range propagation experiments.

    PubMed

    Soh, Jin H; Gilbert, Kenneth E; Frazier, W M Garth; Talmadge, Carrick L; Waxler, Roger

    2010-11-01

    A method is reported for determining ground impedance in long-range propagation experiments by using the definition of impedance directly. The method is envisioned as way of measuring the impedence at multiple locations along the propagation path, using the signals broadcast during the experiment itself. In a short-range (10 m) test, the direct method was in good agreement with a more conventional model-based least-squares method. The utility of the direct method was demonstrated in a 400 m propagation experiment in a agricultural field. The resulting impedance was consistent with the impedance measured previously in the same field.

  20. Artificial Temperature Anisotropy of Crystals in X-Ray Frequency Range

    SciTech Connect

    Mkrtchyan, Vahram P.; Gasparyan, Laura G.; Balyan, Minas K.

    2010-04-06

    The effect of artificial temperature anisotropy of crystals in X-ray frequency range was observed for the first time and an effort to theoretically interpret this effect in Bragg-Laue diffraction case was made. It was established that an isotropic crystal optically turns into an artificially anisotropic one with optical axis along the direction of applied external influence as a symmetry axis, giving rise to the double refraction.