Science.gov

Sample records for acoustic interferometry sfai

  1. Swept-frequency acoustic interferometry technique for noninvasive chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.N.; Han, Wei; Lizon, D.C.; Houlton, R.J.

    1997-02-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range from outside a container (e.g., reactor vessel, tank, pipe, industrial containers etc.). From the frequency dependence of sound attenuation, fluid density can also be determined. These physical parameters. when combined together, can be used to identify a range of chemicals. This technique can be adapted for chemical diagnostic applications, particularly in process control where monitoring of acoustic properties of chemicals (liquids, mixtures, emulsions, suspensions, etc.) may provide appropriate feedback information. The SFAI theory is discussed and experimental techniques are presented. Examples of several novel applications of the SFAI technique are also presented.

  2. Applications of swept-frequency acoustic interferometry technique in chemical diagnostics

    SciTech Connect

    Sinha, D.N.; Springer, K.; Lizon, D.; Hasse, R.

    1996-09-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a noninvasive fluid characterization technique currently being developed for chemical weapons treaty verification. The SFAI technique determines sound speed and sound attenuation in a fluid over a wide frequency range completely noninvasively from outside a container (e.g., pipe, tank, reactor vessel, etc.,). These acoustic parameters, along with their frequency-dependence, can be used to identify various chemicals. This technique can be adapted for a range of chemical diagnostic applications, particularly, in process control where monitoring of acoustic properties of chemicals may provide appropriate feedback information. Both experimental data and theoretical modeling are presented. Examples of several novel applications of the SFAI technique are discussed.

  3. Swept frequency acoustic interferometry technique for chemical weapons verification and monitoring

    SciTech Connect

    Sinha, D.N.; Anthony, B.W.; Lizon, D.C.

    1995-03-01

    Nondestructive evaluation (NDE) techniques are important for rapid on-site verification and monitoring of chemical munitions, such as artillery shells and bulk containers. Present NDE techniques provide only limited characterizations of such munitions. This paper describes the development of a novel noninvasive technique, swept-frequency acoustic interferometry (SFAI), that significantly enhances the capability of munitions characterizations. The SFAI technique allows very accurate and simultaneous determination of sound velocity and attenuation of chemical agents over a large frequency range inside artillery shells, in addition to determining agent density. The frequency-dependent sound velocity and attenuation can, in principle, provide molecular relaxation properties of the chemical agent. The same instrument also enables a direct fill-level measurement in bulk containers. Industrial and other applications of this general-purpose technique are also discussed.

  4. Applications of swept-frequency acoustic interferometer for nonintrusive detection and identification of chemical warfare compounds

    SciTech Connect

    Sinha, D.N.; Springer, K.; Han, W.; Lizon, D.; Kogan, S.

    1997-12-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a nonintrusive liquid characterization technique developed specifically for detecting and identifying chemical warfare (CW) compounds inside sealed munitions. The SFAI technique can rapidly (less than 20 seconds) and accurately determine sound speed and sound attenuation of a liquid inside a container over a wide frequency range (1 kHz-15 MHz). From the frequency-dependent sound attenuation measurement, liquid density is determined. These three physical properties are used to uniquely identify the CW compounds. In addition, various chemical relaxation processes in liquids and particle size distribution in emulsions can also be determined from the frequency-dependent attenuation measurement. The SFAI instrument is battery-operated and highly portable (< 6 lb.). The instrument has many potential application in industry ranging from sensitive detection (ppm level) of contamination to process control. The theory of the technique will be described and examples of several chemical industry applications will be presented.

  5. Applications of whole field interferometry in mechanics and acoustics

    NASA Astrophysics Data System (ADS)

    Molin, Nils-Erik

    1999-07-01

    A description is given of fringe formation in holographic interferometry, in electronic speckle pattern interferometry, in electro-optic or TV holography and for a newly developed system for pulsed TV-holography. A numerical example, which simulates the equations describing the different techniques, is included. A strain measuring system using defocused digital speckle photography is described. Experiments showing mode shapes of musical instruments, transient bending wave propagation in beams and plates as well as sound pressure fields in air are included.

  6. Noninvasive identification of fluids by swept-frequency acoustic interferometry

    DOEpatents

    Sinha, Dipen N.

    1998-01-01

    A method for rapid, noninvasive identification and monitoring of chemicals in sealed containers or containers where direct access to the chemical is not possible is described. Multiple ultrasonic acoustic properties (up to four) of a fluid are simultaneously determined. The present invention can be used for chemical identification and for determining changes in known chemicals from a variety of sources. It is not possible to identify all known chemicals based on the measured parameters, but known classes of chemicals in suspected containers, such as in chemical munitions, can be characterized. In addition, a large number of industrial chemicals can be identified.

  7. Interferometry

    NASA Technical Reports Server (NTRS)

    Ridgway, Stephen; Wilson, Robert W.; Begelman, Mitchell C.; Bender, Peter; Burke, Bernard F.; Cornwell, Tim; Drever, Ronald; Dyck, H. Melvin; Johnston, Kenneth J.; Kibblewhite, Edward

    1991-01-01

    The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed.

  8. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    SciTech Connect

    Xiong, Jichuan; Xu, Xiaodong E-mail: christ.glorieux@fys.kuleuven.be; Glorieux, Christ E-mail: christ.glorieux@fys.kuleuven.be; Matsuda, Osamu; Cheng, Liping

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  9. Photoacoustic tomography based on the Green's function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer

    SciTech Connect

    Yin, Jie; Tao, Chao Cai, Peng; Liu, Xiaojun

    2015-06-08

    Acoustically inhomogeneous mediums with multiple scattering are often the nightmare of photoacoustic tomography. In order to break this limitation, a photoacoustic tomography scheme combining ultrasound interferometry and time reversal is proposed to achieve images in acoustically scattering medium. An ultrasound interferometry is developed to determine the unknown Green's function of strong scattering tissue. Using the determined Greens' function, a time-reversal process is carried out to restore images behind an acoustically inhomogeneous layer from the scattering photoacoustic signals. This method effectively decreases the false contrast, noise, and position deviation of images induced by the multiple scattering. Phantom experiment is carried out to validate the method. Therefore, the proposed method could have potential value in extending the biomedical applications of photoacoustic tomography in acoustically inhomogeneous tissue.

  10. Acoustic interferometry for geoacoustic characterization in a soft-layered sediment environment.

    PubMed

    Ren, Qun-yan; Hermand, Jean-Pierre

    2013-01-01

    The broadband spectrogram of a moving surface ship usually exhibits striations. Their structure is determined by bottom conditions of the shallow water waveguide and can therefore be used for environmental characterization. A two-step acoustic interferometry technique is proposed to estimate main geoacoustic properties of unconsolidated sediment by exploiting local features of the striations. Their positions at low frequencies are first used to detect the changes in sediment properties with respect to a reference sediment and provide a reliable estimation of the changes through the determination of a frequency shift. Then toward higher frequencies, local frequency-range areas with salient striations are selected to refine the solution with their structure features. The technique is tested with passive acoustic ship run data collected southeast of the island of Elba in the Mediterranean Sea in 2007. Data from the four receivers of a shallow sparse vertical array are processed to estimate the thickness and compression wave speed of a soft clay layer overlying a harder bottom. The results from individual receivers are close and agree well with active inversion results and seismic profiles in the same area. Moreover, a better resolution is obtained by combining these results. This method is demonstrated to be robust to source range uncertainties due to the striation stability to its small variation. The good experimental results suggest the technique is an effective tool for mapping the geoacoustic properties of wide coastal areas with easily deployed receiver systems or even one single receiver. PMID:23297885

  11. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    PubMed

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz. PMID:26026514

  12. Active monitoring of formaldehyde diffusion into histological tissues with digital acoustic interferometry.

    PubMed

    Bauer, Daniel R; Stevens, Benjamin; Chafin, David; Theiss, Abbey P; Otter, Michael

    2016-01-01

    The preservation of certain labile cancer biomarkers with formaldehyde-based fixatives can be considerably affected by preanalytical factors such as quality of fixation. Currently, there are no technologies capable of quantifying a fixative's concentration or the formation of cross-links in tissue specimens. This work examined the ability to detect formalin diffusion into a histological specimen in real time. As formaldehyde passively diffused into tissue, an ultrasound time-of-flight (TOF) shift of several nanoseconds was generated due to the distinct sound velocities of formalin and exchangeable fluid within the tissue. This signal was resolved with a developed digital acoustic interferometry algorithm, which compared the phase differential between signals and computed the absolute TOF with subnanosecond precision. The TOF was measured repeatedly across the tissue sample for several hours until diffusive equilibrium was realized. The change in TOF from 6-mm thick ex vivo human tonsil fit a single-exponential decay ([Formula: see text]) with rate constants that varied drastically spatially between 2 and 10 h ([Formula: see text]) due to substantial heterogeneity. This technology may prove essential to personalized cancer diagnostics by documenting and tracking biospecimen preanalytical fixation, guaranteeing their suitability for diagnostic assays, and speeding the workflow in clinical histopathology laboratories. PMID:26866049

  13. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

    2009-07-01

    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  14. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Wang, Chang; Wang, Chen; Shang, Ying; Liu, Xiaohui; Peng, Gangding

    2015-07-01

    We demonstrate the design and characterization of a distributed optical fiber sensing system based on Michelson interferometer of the phase sensitive optical time domain reflectometer (φ-OTDR) for acoustic measurement. Phase, amplitude, frequency response and location information can be directly obtained at the same time by using the passive 3×3 coupler demodulation. In order to simulate sound profiles of seismic or hydroacoustic imaging, experiments on detection of multiple piezoelectric transducers (PZT) are carried out. The result shows that our system can well demodulate different acoustic sources with different intensities.

  15. Characterization of surface acoustic waves by stroboscopic white-light interferometry.

    PubMed

    Kokkonen, Kimmo; Lipiäinen, Lauri; Shavrin, Igor; Novotny, Steffen; Kaivola, Matti; Ludvigsen, Hanne

    2015-04-20

    We present phase-sensitive absolute amplitude measurements of surface acoustic wave fields obtained using a stroboscopic white-light interferometer. The data analysis makes use of the high resolution available in the measured interferometric phase data, enabling the characterization of the out-of-plane surface vibration fields in electrically excited microstructures with better than 100 pm amplitude resolution. The setup uses a supercontinuum light source with tailored spectral properties for obtaining the high amplitude resolution. The duration of the light pulses is less than 300 ps to allow the detection of high frequencies. These capabilities enabled a detailed measurement of the focusing of surface acoustic waves by an annular interdigital transducer structure operating at 74 MHz, featuring a maximum vibration amplitude of 3 nm.

  16. Quantitative Interferometry in the Severe Acoustic Environment of Resonant Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Raman, Ganesh

    1999-01-01

    Understanding fundamental fluidic dynamic and acoustic processes in high-speed jets requires quantitative velocity, density and temperature measurements. In this paper we demonstrate a new, robust Liquid Crystal Point Diffraction Interferometer (LCPDI) that includes phase stepping and can provide accurate data even in the presence of intense acoustic fields. This novel common path interferometer (LCPDI) was developed to overcome difficulties with the Mach Zehnder interferometer in vibratory environments and is applied here to the case of a supersonic shock- containing jet. The environmentally insensitive LCPDI that is easy to align and capable of measuring optical wavefronts with high accuracy is briefly described, then integrated line of sight density data from the LCPDI for two underexpanded jets are presented.

  17. Digital stroboscopic holographic interferometry for power flow measurements in acoustically driven membranes

    NASA Astrophysics Data System (ADS)

    Keustermans, William; Pires, Felipe; De Greef, Daniël; Vanlanduit, Steve J. A.; Dirckx, Joris J. J.

    2016-06-01

    Despite the importance of the eardrum and the ossicles in the hearing chain, it remains an open question how acoustical energy is transmitted between them. Identifying the transmission path at different frequencies could lead to valuable information for the domain of middle ear surgery. In this work a setup for stroboscopic holography is combined with an algorithm for power flow calculations. With our method we were able to accurately locate the power sources and sinks in a membrane. The setup enabled us to make amplitude maps of the out-of-plane displacement of a vibrating rubber membrane at subsequent instances of time within the vibration period. From these, the amplitude maps of the moments of force and velocities are calculated. The magnitude and phase maps are extracted from this amplitude data, and form the input for the power flow calculations. We present the algorithm used for the measurements and for the power flow calculations. Finite element models of a circular plate with a local energy source and sink allowed us to test and optimize this algorithm in a controlled way and without the present of noise, but will not be discussed below. At the setup an earphone was connected with a thin tube which was placed very close to the membrane so that sound impinges locally on the membrane, hereby acting as a local energy source. The energy sink was a little piece of foam carefully placed against the membrane. The laser pulses are fired at selected instants within the vibration period using a 30 mW HeNe continuous wave laser (red light, 632.8 nm) in combination with an acousto-optic modulator. A function generator controls the phase of these illumination pulses and the holograms are recorded using a CCD camera. We present the magnitude and phase maps as well as the power flow measurements on the rubber membrane. Calculation of the divergence of this power flow map provides a simple and fast way of identifying and locating an energy source or sink. In conclusion

  18. Direct experimental investigations of acoustic modes guided by a solid{endash}solid interface using optical interferometry

    SciTech Connect

    Matteie, C.; Jia, X.; Quentin, G.

    1997-09-01

    This paper presents direct field measurements of acoustic modes guided by the interface between two transparent solids. The measurement technique is based on the acousto-optical interaction inside the solid between the acoustic field and the probe laser beam of an interferometer. The main advantage of the method is its ability to measure acoustic strain fields in areas of difficult access with the classic detection methods. Moreover, it gives complete information about the dilatation strain field inside the solid, e.g., amplitude and phase. The propagation of a real velocity mode (Stoneley wave) is first illustrated. Then the situation of complex velocity modes is investigated for a Plexiglas{endash}fused quartz slip interface. This material combination supports two possible interface modes theoretically. These modes are simultaneously observed and the differences between their behavior are measured. {copyright} {ital 1997 Acoustical Society of America.}

  19. Development of a surface-wave imaging system for geotechnical applications based on distributed acoustic sensing (DAS) and ambient noise interferometry

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Daley, T. M.; Freifeld, B. M.; Tang, D. G.; Zhang, R.; Wagner, A. M.; Dou, S.; Lindsey, N.; Bjella, K.; Pevzner, R.

    2014-12-01

    Distributed fiber-optic sensing methods have been used since the 1980's for continuous monitoring of near-surface soil properties, typically exploiting Raman scattering to measure temperature (DTS) or stimulated Brillouin scattering to measure strain (DSS). Recent advances in high speed measurement of Rayleigh scattering has enabled distributed recording of seismic waves over long sections of fiber; this approach, referred to as distributed acoustic sensing (DAS) has the potential to allow nearly continuous monitoring of near-surface mechanical properties, a crucial target for geotechnical management of infrastructure dependent on soil strength. We present initial results from our effort to build a real-time soil property monitoring system based on DAS; our approach employs seismic interferometry and dispersion analysis of ambient noise generated by infrastructure to provide a continuously updated model of shear modulus. Our preliminary results include an in-depth investigation of DAS fiber response in the context of active sources; this component of our study verifies classical models for the azimuthal response of straight fibers to propagating surface waves. We also explore the "noisescape" of linear infrastructure and show a usable seismic signal band of 8-40 hz at a series of sites, primarily consisting of Rayleigh waves. Finally, we present preliminary results from a DAS monitoring array installed at the Richmond Field Station near a heavily used road and compare interferometric processing of the acquired data to that generated by surface deployment of geophones.

  20. Interferometry concepts

    NASA Astrophysics Data System (ADS)

    Millour, F.

    2014-09-01

    This paper serves as an introduction to the current book. It provides the basic notions of long-baseline optical/infrared interferometry prior to reading all the subsequent chapters, and is not an extended introduction to the field.

  1. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  2. Speckle interferometry

    NASA Astrophysics Data System (ADS)

    Sirohi, Rajpal S.

    2002-03-01

    Illumination of a rough surface by a coherent monochromatic wave creates a grainy structure in space termed a speckle pattern. It was considered a special kind of noise and was the bane of holographers. However, its information-carrying property was soon discovered and the phenomenon was used for metrological applications. The realization that a speckle pattern carried information led to a new measurement technique known as speckle interferometry (SI). Although the speckle phenomenon in itself is a consequence of interference among numerous randomly dephased waves, a reference wave is required in SI. Further, it employs an imaging geometry. Initially SI was performed mostly by using silver emulsions as the recording media. The double-exposure specklegram was filtered to extract the desired information. Since SI can be configured so as to be sensitive to the in-plane displacement component, the out-of-plane displacement component or their derivatives, the interferograms corresponding to these were extracted from the specklegram for further analysis. Since the speckle size can be controlled by the F number of the imaging lens, it was soon realized that SI could be performed with electronic detection, thereby increasing its accuracy and speed of measurement. Furthermore, a phase-shifting technique can also be incorporated. This technique came to be known as electronic speckle pattern interferometry (ESPI). It employed the same experimental configurations as SI. ESPI found many industrial applications as it supplements holographic interferometry. We present three examples covering diverse areas. In one application it has been used to measure residual stress in a blank recordable compact disk. In another application, microscopic ESPI has been used to study the influence of relative humidity on paint-coated figurines and also the effect of a conservation agent applied on top of this. The final application is to find the defects in pipes. These diverse applications

  3. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  4. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  5. Speckle Interferometry

    NASA Astrophysics Data System (ADS)

    Chiang, F. P.; Jin, F.; Wang, Q.; Zhu, N.

    Before the milestone work of Leedertz in 1970 coherent speckles generated from a laser illuminated object are considered noise to be eliminated or minimized. Leedertz shows that coherent speckles are actually information carriers. Since then the speckle technique has found many applications to fields of mechanics, metrology, nondestructive evaluation and material sciences. Speckles need not be coherent. Artificially created socalled white light speckles can also be used as information carriers. In this paper we present two recent developments of speckle technique with applications to micromechanics problems using SIEM (Speckle Interferometry with Electron Microscopy), to nondestructive evaluation of crevice corrosion and composite disbond and vibration of large structures using TADS (Time-Average Digital Specklegraphy).

  6. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2016-07-12

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  7. History of Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.

    2004-01-01

    This viewgraph presentation reviews the history of stellar interferometry from the suggestion of Fizeau that stellar interferometry was possible,to the use of the Mark I, II and III for astrometry. Photographs, and parts of original articles are presented.

  8. Quantum Interferometry

    NASA Technical Reports Server (NTRS)

    Dowling, Jonathan P.

    2000-01-01

    Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.

  9. Non-contact fluid characterization in containers using ultrasonic waves

    DOEpatents

    Sinha, Dipen N.

    2012-05-15

    Apparatus and method for non-contact (stand-off) ultrasonic determination of certain characteristics of fluids in containers or pipes are described. A combination of swept frequency acoustic interferometry (SFAI), wide-bandwidth, air-coupled acoustic transducers, narrowband frequency data acquisition, and data conversion from the frequency domain to the time domain, if required, permits meaningful information to be extracted from such fluids.

  10. Flow visualization of acoustic levitation experiment

    NASA Technical Reports Server (NTRS)

    Baroth, ED

    1987-01-01

    Acoustic levitation experiments for space applications were performed. Holographic interferometry is being used to study the heat transfer rates on a heated rod enclosed in a 6 cu in chamber. Acoustic waves at levels up to 150 db increased the heating rates to the rod by factors of three to four. High speed real time holographic interferometry was used to measure the boundary layer on the heated rod. Data reduction and digitization of the interferograms are being implemented.

  11. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  12. Holograph and Interferometry.

    ERIC Educational Resources Information Center

    Altman, Thomas C.

    1992-01-01

    Describes a method to create holograms for use in different interferometry techniques. Students utilize these techniques in experiments to study the structural integrity of a clarinet reed and the effects of temperature on objects. (MDH)

  13. LISA Long-Arm Interferometry

    NASA Technical Reports Server (NTRS)

    Thorpe, James I.

    2009-01-01

    An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.

  14. Interferometry science center

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.

    2002-01-01

    The Interferometry Science Center (ISC) is operated jointly by Caltech and JPL and is part of NASA's Navigator Program. The ISC has been created to facilitate the timely and successful execution of scientific investigations within the Navigator program, particularly those that rely on observations from NASA's interferometer projects. Currently, ISC is expected to provide full life cycle support for the Keck Interferometer, the Starlight mission, the Space Interferometry Mission, and the Terrestrial Planet Finder Mission. The nature and goals of ISc will be described.

  15. Study of tympanic membrane displacements with digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernández-Montes, María del Socorro; Mendoza-Santoyo, Fernando; Muñoz-Solís, Silvino

    2010-09-01

    The study of the tympanic membrane is fundamental because it is one of the most important components of the middle ear. By finding the membrane's vibration patterns and quantifying the induced displacement, it is possible to characterize and determine its physiological state. Digital Holographic Interferometry (DHI) has proved to be a promising optical non-invasive and quasi-real time method for the investigation of different mechanical parameters of biological tissues. In this paper, we present a digital holographic interferometry setup used to measure the frequency response of the tympanic membrane in post-mortem cats subject to acoustic stimuli in the range of 485 Hz up to 10 kHz. We show the resonant vibration patterns found for this range of frequencies and the corresponding displacement amplitudes induced by the acoustic waves. The results show the potential that this method has to help improve the understanding of the tympanic membrane's working mechanisms.

  16. Coda wave interferometry for estimating nonlinear behavior in seismic velocity.

    PubMed

    Snieder, Roel; Grêt, Alexandre; Douma, Huub; Scales, John

    2002-03-22

    In coda wave interferometry, one records multiply scattered waves at a limited number of receivers to infer changes in the medium over time. With this technique, we have determined the nonlinear dependence of the seismic velocity in granite on temperature and the associated acoustic emissions. This technique can be used in warning mode, to detect the presence of temporal changes in the medium, or in diagnostic mode, where the temporal change in the medium is quantified.

  17. Simultaneous Immersion Mirau Interferometry

    NASA Astrophysics Data System (ADS)

    Lyulko, Oleksandra

    The present work describes a novel imaging technique for label-free no-UV vibration-insensitive imaging of live cells in an epi-illumination geometry. This technique can be implemented in a variety of imaging applications. For example, it can be used for cell targeting as a part of a platform for targeted cell irradiations - single-cell microbeam. The goal of microbeam facilities is to provide biological researchers with tools to study the effects of ionizing radiation on live cells. A common way of cell labeling - fluorescent staining - may alter cellular metabolism and UV illumination presents potential damage for the genetic material. The new imaging technique will allow the researchers to separate radiation-induced effects from the effects caused by confounding factors like fluorescent staining or UV light. Geometry of irradiation endstations at some microbeam facilities precludes the use of transmitted light, e.g. in the Columbia University's Radiological Research Accelerator Facility microbeam endstation, where the ion beam exit window is located just below the sample. Imaging techniques used at such endstations must use epi-illumination. Mirau Interferometry is an epi-illumination, non-stain imaging modality suitable for implementation at a microbeam endstation. To facilitate interferometry and to maintain cell viability, it is desirable that cells stay in cell growth medium during the course of an experiment. To accommodate the use of medium, Immersion Mirau Interferometry has been developed. A custom attachment for a microscope objective has been designed and built for interferometric imaging with the possibility of immersion of the apparatus into cell medium. The implemented data collection algorithm is based on the principles of Phase-Shifting Interferometry. The largest limitation of Phase-Shifting Interferometry is its sensitivity to the vertical position of the sample. In environments where vibration isolation is difficult, this makes image

  18. Digitally Enhanced Heterodyne Interferometry

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel; Ware, Brent; Lay, Oliver; Dubovitsky, Serge

    2010-01-01

    Spurious interference limits the performance of many interferometric measurements. Digitally enhanced interferometry (DEI) improves measurement sensitivity by augmenting conventional heterodyne interferometry with pseudo-random noise (PRN) code phase modulation. DEI effectively changes the measurement problem from one of hardware (optics, electronics), which may deteriorate over time, to one of software (modulation, digital signal processing), which does not. DEI isolates interferometric signals based on their delay. Interferometric signals are effectively time-tagged by phase-modulating the laser source with a PRN code. DEI improves measurement sensitivity by exploiting the autocorrelation properties of the PRN to isolate only the signal of interest and reject spurious interference. The properties of the PRN code determine the degree of isolation.

  19. A LISA Interferometry Primer

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2010-01-01

    A key challenge for all gravitational wave detectors in the detection of changes in the fractional difference between pairs of test masses with sufficient precision to measure astrophysical strains with amplitudes on the order of approx.10(exp -21). ln the case of the five million km arms of LISA, this equates to distance measurements on the ten picometer level. LISA interferometry utilizes a decentralized topology, in which each of the sciencecraft houses its own light sources, detectors, and electronics. The measurements made at each of the sciencecraft are then telemetered to ground and combined to extract the strain experienced by the constellation as a whole. I will present an overview of LISA interferometry and highlight some of the key components and technologies that make it possible.

  20. Recent advances in interferometry

    NASA Astrophysics Data System (ADS)

    Hummel, C. A.

    2013-02-01

    Observations of spectroscopic double stars with long baseline optical interferometry have resolved many pairs, allowing their orbits to be measured and stellar masses and distances to be derived. A number of these measurements have accuracies worthy of comparison with high quality results from eclipsing binaries, thus able challenge stellar evolution models. I will review the contributions, and also show recent results, among them observations of massive O-stars and multiple systems.

  1. Spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    A bibliographic guide is presented to publications of spatial interferometry techniques applied to optical astronomy. Listings appear in alphabetical order, by first author, as well as in specific subject categories listed in chronological order, including imaging theory and speckle interferometry, experimental techniques, and observational results of astronomical studies of stars, the Sun, and the solar system.

  2. Complex master slave interferometry.

    PubMed

    Rivet, Sylvain; Maria, Michael; Bradu, Adrian; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian

    2016-02-01

    A general theoretical model is developed to improve the novel Spectral Domain Interferometry method denoted as Master/Slave (MS) Interferometry. In this model, two functions, g and h are introduced to describe the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time and due to dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MS method. A first improvement consists in reducing the number of channeled spectra necessary to be collected at Master stage. In previous MSI implementation, the number of channeled spectra at the Master stage equated the number of depths where information was selected from at the Slave stage. The paper demonstrates that two experimental channeled spectra only acquired at Master stage suffice to produce A-scans from any number of resolved depths at the Slave stage. A second improvement is the utilization of complex signal processing. Previous MSI implementations discarded the phase. Complex processing of the electrical signal determined by the channeled spectrum allows phase processing that opens several novel avenues. A first consequence of such signal processing is reduction in the random component of the phase without affecting the axial resolution. In previous MSI implementations, phase instabilities were reduced by an average over the wavenumber that led to reduction in the axial resolution.

  3. Intellectual property in holographic interferometry

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-08-01

    This paper presents an overview of patents and patent applications on holographic interferometry, and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic interferometry were uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, Japanese Patent Office and Korean Patent Office for the time frame from 1971 through May 2006. The patent analysis unveils trends in patent temporal distribution, patent families formation, significant technological coverage within the market of system that employ holographic interferometry and other interesting insights.

  4. Deep frequency modulation interferometry.

    PubMed

    Gerberding, Oliver

    2015-06-01

    Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers. PMID:26072834

  5. Portable intensity interferometry

    NASA Astrophysics Data System (ADS)

    Horch, Elliott P.; Camarata, Matthew A.

    2012-07-01

    A limitation of the current generation of long baseline optical interferometers is the need to make the light interfere prior to detection. This is unlike the radio regime where signals can be recorded fast enough to use electronics to accomplish the same result. This paper describes a modern optical intensity interferometer based on electronics with picosecond timing resolution. The instrument will allow for portable optical interferometry with much larger baselines than currently possible by using existing large telescopes. With modern electronics, the limiting magnitude of the technique at a 4-m aperture size becomes competitive with some amplitude-based interferometers. The instrumentation will permit a wireless mode of operation with GPS clocking technology, extending the work to extremely large baselines. We discuss the basic observing strategy, a planned observational program at the Lowell Observatory 1.8-m and 1.0-m telescopes, and the science that can realistically be done with this instrumentation.

  6. Shaken lattice interferometry

    NASA Astrophysics Data System (ADS)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana

    2016-05-01

    In this work, we report on progress towards performing interferometry using atoms trapped in an optical lattice. That is, we start with atoms in the ground state of an optical lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , and by a prescribed phase function ϕ(t) , transform from one atomic wavefunction to another. In this way, we implement the standard interferometric sequence of beam splitting, propagation, reflection, reverse propagation, and recombination. Through the use of optimal control techniques, we have computationally demonstrated a scalable accelerometer that provides information on the sign of the applied acceleration. Extension of this idea to a two-dimensional shaken-lattice-based gyroscope is discussed. In addition, we report on the experimental implementation of the shaken lattice system.

  7. Spectroscopic Low Coherence Interferometry

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; van Leeuwen, T. G.; Aalders, Maurice C.; Hermann, Boris; Drexler, Wolfgang; Faber, Dirk J.

    Low-coherence interferometry (LCI) allows high-resolution volumetric imaging of tissue morphology and provides localized optical properties that can be related to the physiological status of tissue. This chapter discusses the combination of spatial and spectroscopic information by means of spectroscopic OCT (sOCT) and low-coherence spectroscopy (LCS). We describe the theory behind these modalities for the assessment of spatially resolved optical absorption and (back)scattering coefficient spectra. These spectra can be used for the highly localized quantification of chromophore concentrations and assessment of tissue organization on (sub)cellular scales. This leads to a wealth of potential clinical applications, ranging from neonatology for the determination of billibrubin concentrations, to oncology for the optical assessment of the aggressiveness of a cancerous lesion.

  8. Deep frequency modulation interferometry.

    PubMed

    Gerberding, Oliver

    2015-06-01

    Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers.

  9. Optical Long Baseline Interferometry News

    NASA Astrophysics Data System (ADS)

    Lawson, P. R.; Malbet, F.

    2005-12-01

    The Optical Long Baseline Interferometry News is a website and forum for scientists, engineers, and students who share an interest in long baseline stellar interferometry. It was established in 1995 and is the focus of activity of the IAU Working Group on Optical/Infrared Interferometry. Here you will find links to projects devoted to stellar interferometry, news items, recent papers and preprints, and resources for further research. The email news forum was established in 2001 to complement the website and to facilitate exchanges and collaborations. The forum includes an email exploder and an archived list of discussions. You are invited to explore the forum and website at http://olbin.jpl.nasa.gov. Work by PRL was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  10. Optical Interferometry Motivation and History

    NASA Technical Reports Server (NTRS)

    Lawson, Peter

    2006-01-01

    A history and motivation of stellar interferometry is presented. The topics include: 1) On Tides, Organ Pipes, and Soap Bubbles; 2) Armand Hippolyte Fizeau (1819-1896); 3) Fizeau Suggests Stellar Interferometry 1867; 4) Edouard Stephan (1837-1923); 5) Foucault Refractor; 6) Albert A. Michelson (1852-1931); 7) On the Application of Interference Methods to Astronomy (1890); 8) Moons of Jupiter (1891); 9) Other Applications in 19th Century; 10) Timeline of Interferometry to 1938; 11) 30 years goes by; 12) Mount Wilson Observatory; 13) Michelson's 20 ft Interferometer; 14) Was Michelson Influenced by Fizeau? 15) Work Continues in the 1920s and 30s; 16) 50 ft Interferometer (1931-1938); 17) Light Paths in the 50 ft Interferometer; 18) Ground-level at the 50 ft; 19) F.G. Pease (1881-1938); 20) Timeline of Optical Interferometry to 1970; 21) A New Type of Stellar Interferometer (1956); 22) Intensity Interferometer (1963- 1976; 23) Robert Hanbury Brown; 24) Interest in Optical Interferometry in the 1960s; 25) Interferometry in the Early 1970s; and 26) A New Frontier is Opened up in 1974.

  11. High-speed imaging of sound using parallel phase-shifting interferometry.

    PubMed

    Ishikawa, Kenji; Yatabe, Kohei; Chitanont, Nachanant; Ikeda, Yusuke; Oikawa, Yasuhiro; Onuma, Takashi; Niwa, Hayato; Yoshii, Minoru

    2016-06-13

    Sound-field imaging, the visualization of spatial and temporal distribution of acoustical properties such as sound pressure, is useful for understanding acoustical phenomena. This study investigated the use of parallel phase-shifting interferometry (PPSI) with a high-speed polarization camera for imaging a sound field, particularly high-speed imaging of propagating sound waves. The experimental results showed that the instantaneous sound field, which was generated by ultrasonic transducers driven by a pure tone of 40 kHz, was quantitatively imaged. Hence, PPSI can be used in acoustical applications requiring spatial information of sound pressure. PMID:27410311

  12. High-speed imaging of sound using parallel phase-shifting interferometry.

    PubMed

    Ishikawa, Kenji; Yatabe, Kohei; Chitanont, Nachanant; Ikeda, Yusuke; Oikawa, Yasuhiro; Onuma, Takashi; Niwa, Hayato; Yoshii, Minoru

    2016-06-13

    Sound-field imaging, the visualization of spatial and temporal distribution of acoustical properties such as sound pressure, is useful for understanding acoustical phenomena. This study investigated the use of parallel phase-shifting interferometry (PPSI) with a high-speed polarization camera for imaging a sound field, particularly high-speed imaging of propagating sound waves. The experimental results showed that the instantaneous sound field, which was generated by ultrasonic transducers driven by a pure tone of 40 kHz, was quantitatively imaged. Hence, PPSI can be used in acoustical applications requiring spatial information of sound pressure.

  13. Extreme ultraviolet interferometry

    SciTech Connect

    Goldberg, K A

    1997-12-01

    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources

  14. Internal stress determination in a polymer composite by Coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Binetruy, C.; Burtin, C.

    2016-07-01

    Coda wave interferometry (CWI) is largely employed in geotechnical applications to monitor changes due to cracks in materials but it is still not used for composite materials. In this paper, the technique is proposed to study internal stresses in a composite laminate [0°/90°]63 and was compared with the traditional acoustic technique. It is shown that the Coda wave interferometry has better precision and sensibility than the method based on the first arriving time of flight (TOF) measurement, especially when the fiber orientation is normal to the wave propagation. This method is found to be promising for residual stress evaluation in composite materials.

  15. Geometric time delay interferometry

    NASA Astrophysics Data System (ADS)

    Vallisneri, Michele

    2005-08-01

    The space-based gravitational-wave observatory LISA, a NASA-ESA mission to be launched after 2012, will achieve its optimal sensitivity using time delay interferometry (TDI), a LISA-specific technique needed to cancel the otherwise overwhelming laser noise in the interspacecraft phase measurements. The TDI observables of the Michelson and Sagnac types have been interpreted physically as the virtual measurements of a synthesized interferometer. In this paper, I present Geometric TDI, a new and intuitive approach to extend this interpretation to all TDI observables. Unlike the standard algebraic formalism, Geometric TDI provides a combinatorial algorithm to explore exhaustively the space of second-generation TDI observables (i.e., those that cancel laser noise in LISA-like interferometers with time-dependent arm lengths). Using this algorithm, I survey the space of second-generation TDI observables of length (i.e., number of component phase measurements) up to 24, and I identify alternative, improved forms of the standard second-generation TDI observables. The alternative forms have improved high-frequency gravitational-wave sensitivity in realistic noise conditions (because they have fewer nulls in the gravitational-wave and noise response functions), and are less susceptible to instrumental gaps and glitches (because their component phase measurements span shorter time periods).

  16. Preview of Blackbeard interferometry

    SciTech Connect

    Carter, M.J.

    1992-09-01

    Blackbeard is a broadband VHF measurements satellite experiment designed and built by the Space Science and Technology division of the Los Alamos National Laboratory. Blackbeard is a piggy-back experiment on the ALEXIS satellite to be launched into a 70 degree inclination orbit at an altitude of 750 km. The satellite experimental operation and data retrieval are controlled through a telemetry link from the Satellite Operations Center (SOC) located at Los Alamos, NM. The primary experimental objectives of Blackbeard are three-fold: (1) Study the dispersion of broad-band impulsive electromagnetic signals -- in particular, the higher-order amplitude and phase distortion due to propagation through the ionosphere. These depend on ionospheric conditions and irregularities. (2) Utilize RF interferometry and scintillation techniques in the low VHF-band to determine the size and extent of ionospheric irregularities and wave structure -- both natural and artificially induced. This narrow-band data will be used to categorize the ionospheric media as undisturbed, oscillatory, or turbulent. These parameters will then be input into transfer function simulations for broad-band propagation and compared with broad-band propagation data from Blackbeard. (3) Survey and characterize background noise in the VHF-band-consisting of (1) cataloging broadcast amplitudes and signatures and mapping their global pattern, and (2) cataloging the signatures of lightning events. Also, correlate emissions in the visible and VHF bands in an attempt to confirm broad-band RF emissions assumed to be associated with lightning.

  17. Preview of Blackbeard interferometry

    SciTech Connect

    Carter, M.J.

    1992-01-01

    Blackbeard is a broadband VHF measurements satellite experiment designed and built by the Space Science and Technology division of the Los Alamos National Laboratory. Blackbeard is a piggy-back experiment on the ALEXIS satellite to be launched into a 70 degree inclination orbit at an altitude of 750 km. The satellite experimental operation and data retrieval are controlled through a telemetry link from the Satellite Operations Center (SOC) located at Los Alamos, NM. The primary experimental objectives of Blackbeard are three-fold: (1) Study the dispersion of broad-band impulsive electromagnetic signals -- in particular, the higher-order amplitude and phase distortion due to propagation through the ionosphere. These depend on ionospheric conditions and irregularities. (2) Utilize RF interferometry and scintillation techniques in the low VHF-band to determine the size and extent of ionospheric irregularities and wave structure -- both natural and artificially induced. This narrow-band data will be used to categorize the ionospheric media as undisturbed, oscillatory, or turbulent. These parameters will then be input into transfer function simulations for broad-band propagation and compared with broad-band propagation data from Blackbeard. (3) Survey and characterize background noise in the VHF-band-consisting of (1) cataloging broadcast amplitudes and signatures and mapping their global pattern, and (2) cataloging the signatures of lightning events. Also, correlate emissions in the visible and VHF bands in an attempt to confirm broad-band RF emissions assumed to be associated with lightning.

  18. Shaken Lattice Interferometry

    NASA Astrophysics Data System (ADS)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana

    2015-05-01

    This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.

  19. Three-color differential interferometry.

    PubMed

    Desse, J M

    1997-10-01

    It is shown that differential interferometry using a Wollaston prism and a three-color laser source is an optical technique that has all the advantages of differential interferometry in polarized white light and of classical monochromatic interferometry. The interference fringe pattern obtained is very large and colored and presents a central white fringe that enables easy identification of the zero order of the interferogram. The three-color source is obtained by filtering the unwanted lines of the ionized laser (mixed argon and krypton) and balancing the three red, green, and blue lines by a technique that involves placing birefringent plates between the polarizer and the analyzer, the thickness of which has been calculated to create a natural filter. The unsteady aerodynamic flow downstream of a diamond shape airfoil has been visualized with this technique, which shows that the power of the light source is sufficient to record the interferograms at a high rate. PMID:18264221

  20. 100-Picometer Interferometry for EUVL

    SciTech Connect

    Sommargren, G E; Phillion, D W; Johnson, M A; Nguyen, N O; Barty, A; Snell, F J; Dillon, D R; Bradsher, L S

    2002-03-18

    Future extreme ultraviolet lithography (EWL) steppers will, in all likelihood, have six-mirror projection cameras. To operate at the diffraction limit over an acceptable depth of focus each aspheric mirror will have to be fabricated with an absolute figure accuracy approaching 100 pm rms. We are currently developing visible light interferometry to meet this need based on modifications of our present phase shifting diffraction interferometry (PSDI) methodology where we achieved an absolute accuracy of 250pm. The basic PSDI approach has been further simplified, using lensless imaging based on computational diffractive back-propagation, to eliminate auxiliary optics that typically limit measurement accuracy. Small remaining error sources, related to geometric positioning, CCD camera pixel spacing and laser wavelength, have been modeled and measured. Using these results we have estimated the total system error for measuring off-axis aspheric EUVL mirrors with this new approach to interferometry.

  1. Three-color differential interferometry.

    PubMed

    Desse, J M

    1997-10-01

    It is shown that differential interferometry using a Wollaston prism and a three-color laser source is an optical technique that has all the advantages of differential interferometry in polarized white light and of classical monochromatic interferometry. The interference fringe pattern obtained is very large and colored and presents a central white fringe that enables easy identification of the zero order of the interferogram. The three-color source is obtained by filtering the unwanted lines of the ionized laser (mixed argon and krypton) and balancing the three red, green, and blue lines by a technique that involves placing birefringent plates between the polarizer and the analyzer, the thickness of which has been calculated to create a natural filter. The unsteady aerodynamic flow downstream of a diamond shape airfoil has been visualized with this technique, which shows that the power of the light source is sufficient to record the interferograms at a high rate.

  2. Precision measurement with atom interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    2015-05-01

    Development of atom interferometry and its application in precision measurement are reviewed in this paper. The principle, features and the implementation of atom interferometers are introduced, the recent progress of precision measurement with atom interferometry, including determination of gravitational constant and fine structure constant, measurement of gravity, gravity gradient and rotation, test of weak equivalence principle, proposal of gravitational wave detection, and measurement of quadratic Zeeman shift are reviewed in detail. Determination of gravitational redshift, new definition of kilogram, and measurement of weak force with atom interferometry are also briefly introduced. Project supported by the National Basic Research Program of China (Grant No. 2010CB832805) and the National Natural Science Foundation of China (Grant No. 11227803).

  3. Techniques in Broadband Interferometry

    SciTech Connect

    Erskine, D J

    2004-01-04

    This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the official versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.

  4. High-Speed Digital Interferometry

    NASA Technical Reports Server (NTRS)

    De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk

    2012-01-01

    Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.

  5. Acoustics of old Asian bells

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.

    2001-05-01

    The art of casting bronze bells developed to a high level of sophistication in China during the Shang dynasty (1766-1123 BC). Many chimes of two-tone bells remain from the Western and Eastern Zhou dynasties (1122-249 BC). With the spread of Buddhism from the third century, large round temple bells developed in China and later in Korea, Japan, and other Asian countries. Vibrational modes of some of these bells have been studied by means of holographic interferometry and experimental modal testing. Their musical as well as acoustical properties are discussed.

  6. The Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    1998-01-01

    The Space Interferometry Mission (SIM) is the next major space mission in NASA's Origins program after SIRTF. The SIM architecture uses three Michelson interferometers in low-earth orbit to provide 4 microarcsecond precision absolute astrometric measurements on approx. 40,000 stars. SIM will also provide synthesis imaging in the visible waveband to a resolution of 10 milliarcsecond, and interferometric nulling to a depth of 10(exp -4). A near-IR (1-2 micron) capability is being considered. Many key technologies will be demonstrated by SIM that will be carried over directly or can be readily scaled to future Origins missions such as TPF. The SIM spacecraft will carry a triple Michelson interferometer with baselines in the 10 meter range. Two interferometers act as high precision trackers, providing attitude information at all time, while the third one conducts the science observations. Ultra-accurate laser metrology and active systems monitor the systematic errors and to control the instrument vibrations in order to reach the 4 microarcsecond level on wide-angle measurements. SIM will produce a wealth of new astronomical data. With an absolute positional precision of 4 microarcsecond, SIM will improve on the best currently available measures (the Hipparcos catalog) by 2 or 3 orders of magnitude, providing parallaxes accurate to 10% and transverse velocities to 0.2 km/s anywhere in the Galaxy, to stars as faint as 20th magnitude. With the addition of radial velocities, knowledge of the 6-dimension phase space for objects of interest will allow us to attack a wide array of previously inaccessible problems such as: search for planets down to few earth masses; calibration of stellar luminosities and by means of standard candles, calibration of the cosmic distance scale; detecting perturbations due to spiral arms, disk warps and central bar in our galaxy; probe of the gravitational potential of the Galaxy, several kiloparsecs out of the galactic plane; synthesis imaging

  7. Meteorology Gauges for Spatial Interferometry

    NASA Technical Reports Server (NTRS)

    Gursel, Y.

    1996-01-01

    Heterodyne interferometers have been commercially available for many years. In addition, many versions have been built at JPL for various projects. This activity is aimed at improving the accuracy of such interferometers from the 1-30 nanometer level to the picometer level for use in the proposes Stellar Interferometry Mission (SIM) as metrology gauges.

  8. AIPY: Astronomical Interferometry in PYthon

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron

    2016-09-01

    AIPY collects together tools for radio astronomical interferometry. In addition to pure-python phasing, calibration, imaging, and deconvolution code, this package includes interfaces to MIRIAD (ascl:1106.007) and HEALPix (ascl:1107.018), and math/fitting routines from SciPy.

  9. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  10. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  11. Retrieving time-dependent Green's functions in optics with low-coherence interferometry.

    PubMed

    Badon, Amaury; Lerosey, Geoffroy; Boccara, Albert C; Fink, Mathias; Aubry, Alexandre

    2015-01-16

    We report on the passive measurement of time-dependent Green's functions in the optical frequency domain with low-coherence interferometry. Inspired by previous studies in acoustics and seismology, we show how the correlations of a broadband and incoherent wave field can directly yield the Green's functions between scatterers of a complex medium. Both the ballistic and multiple scattering components of the Green's function are retrieved. This approach opens important perspectives for optical imaging and characterization in complex scattering media. PMID:25635547

  12. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  13. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  14. Optical and Infrared Interferometry IV

    NASA Astrophysics Data System (ADS)

    Rajagopal, Jayadev K.; Creech-Eakman, Michelle J.; Malbet, Fabien

    2014-08-01

    Optical and IR Interferometry IV at the SPIE 2014 symposium in Montreal had a strong and vibrant program. After initial fears about budget cuts and travel-funding constraints, the Program Committee had to work hard to accommodate as many quality submissions as possible. Innovative, creative and visionary work ensured that the field has progressed well, despite the bleak funding climate felt in the US, Europe and elsewhere. Montreal proved an excellent venue for this, the largest of Interferometry conferences and the only one that brings together practitioners from the world over. Let us summarize a few highlights to convey a glimpse of the excitement that is detailed in the rest of these Proceedings.

  15. Precision Geodesy via Radio Interferometry.

    PubMed

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F

    1972-10-27

    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  16. Integrated optics for astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Marques, P. V. S.; Ghasempour, A.; Alexandre, D.; Leite, A. M. P.; Garcia, P. J. V.; Reynaud, F.

    2011-05-01

    Integrated optics is a well established technology that finds its main applications in the fields of optical communication and sensing. However, it is expanding into new areas, and in the last decade application in astronomical interferometry has been explored. In particular, several examples have been demonstrated in the areas of beam control and combination. In this paper, different examples of application integrated optics devices for fabrication of beam combiners for astronomical interferometry is given. For the multiaxial beam combiners, a UV laser direct writing unit is used for mask fabrication. The operation principles of the coaxial combiners fabricated in hybrid sol-gel were validated using an interferometric set-up. These results demonstrate that hybrid sol-gel technology can produce quality devices, opening the possibility of rapid prototyping of new designs and concepts.

  17. Virtually calibrated projection moire interferometry.

    PubMed

    Kimber, Mark; Blotter, Jonathan

    2005-05-01

    Projection moire interferometry (PMI) is an out-of-plane displacement measurement technique that consists of differencing reference and deformed images of a grid pattern projected onto the test object. In conventional PMI, a tedious process of computing the fringe sensitivity coefficient (FSC), which requires moving the test object or the reference plane to known displacements, is used. We present a new technique for computing the FSC values that is called virtually calibrated projection moire interferometry (VCPMI). VCPMI is based on computer simulations of the conventional PMI process and does not require moving the actual test object or reference plane. We validate the VCPMI approach by comparing results for a flat plate and an airfoil with those made by use of other measurement methods.

  18. Meson interferometry in relativistic heavy ion collisions

    SciTech Connect

    Not Available

    1993-05-01

    This report contains discussions on the following topics: Recent HBT results form CERN experiment NA44; interferometry results from E802/E859/E866; recent results on two particle correlations from E814; source sizes from CERN data; intermittency and interferometry; Bose-Einstein correlations in 200A GeV S+Au collisions; HBT correlations at STAR; HBT interferometry with PHENIX; HBT calculations from ARC; three pion correlations; and pion correlations in proton-induced reactions.

  19. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  20. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  1. An Introduction to Optical Stellar Interferometry

    NASA Astrophysics Data System (ADS)

    Labeyrie, A.; Lipson, S. G.; Nisenson, P.

    2006-06-01

    1. Introduction; 2 Basic concepts: a qualitative introduction; 3. Interference, diffraction and coherence; 4. Aperture synthesis; 5. Optical effects of the atmosphere; 6. Single-aperture techniques; 7. Intensity interferometry; 8. Amplitude interferometry: techniques and instruments; 9. The hypertelescope; 10. Nulling and coronagraphy; 11. A sampling of interferometric science; 12. Future ground and space projects; Appendices.

  2. An Introduction to Optical Stellar Interferometry

    NASA Astrophysics Data System (ADS)

    Labeyrie, A.; Lipson, S. G.; Nisenson, P.

    2014-03-01

    1. Introduction; 2 Basic concepts: a qualitative introduction; 3. Interference, diffraction and coherence; 4. Aperture synthesis; 5. Optical effects of the atmosphere; 6. Single-aperture techniques; 7. Intensity interferometry; 8. Amplitude interferometry: techniques and instruments; 9. The hypertelescope; 10. Nulling and coronagraphy; 11. A sampling of interferometric science; 12. Future ground and space projects; Appendices.

  3. Astronomical imaging by pupil plane interferometry

    NASA Technical Reports Server (NTRS)

    Ribak, Erez

    1989-01-01

    Comparing rotational shear interferometry to standard speckle interferometry, it is found that it is easier in the first case to separate the atmospheric phases from the object transform phases. Phase closure and blind deconvolution should be directly applicable. Laboratory simulations were conducted to verify theoretical predictions and computer simulations for the phase closure case, and preliminary results show promise.

  4. Interferometry with synthetic gauge fields

    SciTech Connect

    Anderson, Brandon M.; Taylor, Jacob M.; Galitski, Victor M.

    2011-03-15

    We propose a compact atom interferometry scheme for measuring weak, time-dependent accelerations. Our proposal uses an ensemble of dilute trapped bosons with two internal states that couple to a synthetic gauge field with opposite charges. The trapped gauge field couples spin to momentum to allow time-dependent accelerations to be continuously imparted on the internal states. We generalize this system to reduce noise and estimate the sensitivity of such a system to be S{approx}10{sup -7}(m/s{sup 2}/{radical}(Hz)).

  5. 50 years of holographic interferometry

    NASA Astrophysics Data System (ADS)

    Stetson, Karl A.

    2015-01-01

    Fifty years ago, Robert L. Powell and I discovered holographic interferometry while working at the Radar Laboratory of the University of Michigan's Institute of Science and Technology. I have worked in this field for this entire time span, watched it grow from an unexplored technology to become a widespread industrial testing method, and I have contributed to these developments. In this paper, I will trace my history in this field from our discovery to my involvement in its theory and applications. I will conclude with a discussion of digital holography, which is currently replacing photographic holography for most research and industrial applications.

  6. Radio interferometry depth sounding. II.

    NASA Technical Reports Server (NTRS)

    Rossiter, J. R.; Annan, A. P.; Latorraca, G. A.; Simmons, G.; Strangway, D. W.

    1973-01-01

    Experimental results from an analog scale model and from field tests on two glaciers using radio-frequency interferometry (RFI) are interpreted on the basis of previously described theoretical results. The RFI technique is found to be a practical method with which to study layering in low-loss dielectrics. Three parameters of the upper layer can be estimated from the data: the dielectric constant, the loss tangent, and an estimate of the thickness to a reflector. The method is an inexpensive way to sound ice sheets less than a few hundred meters thick, and could be used to study low-loss layers on the moon.

  7. Golographic interferometry of physical processes

    NASA Astrophysics Data System (ADS)

    Ostrovskaya, G. V.

    2016-06-01

    This paper is devoted to the contribution of Yuri Ostrovsky to holographic interferometry, one of the fundamental scientific and practical applications of holography. The title of this paper is the same as the title of his doctoral thesis that he defended in 1974, and, as it seems to me, reflects most of the specific features of the majority of his scientific publications, viz., an inseparable link of the methods developed by him with the results obtained with the help of these methods in a wide range of investigations of physical processes and phenomena.

  8. An Interferometry Imaging Beauty Contest

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy; Thiebaut, Eric; Tuthill, Peter G.; Hani, Christopher A.; Pauls, Thomas; DuvertI, Gilles; Garcia, Paulo; Kuchner, Marc

    2004-01-01

    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  9. Vibration analysis using moire interferometry

    NASA Astrophysics Data System (ADS)

    Asundi, A.; Cheung, M. T.

    The present use of moire interferometry for low amplitude vibration and analysis demonstrates the possibility of obtaining out-of-plane displacement contours whose sensitivity is comparable to that of holographic methods. A major advantage of the present system, is the obviation of prior knowledge of resonant frequencies, as called for in time-average holography. The experimental apparatus employed encompasses a laser beam, a parabolic mirror, a high frequency (600 line/mm) grating, and a camera, in addition to the test model.

  10. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  11. Acoustic metafluids.

    PubMed

    Norris, Andrew N

    2009-02-01

    Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic metafluids are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials. The derivation uses the notion of finite deformation to define the transformation of one region to another. The main result is found by considering energy density in the original and transformed regions. Properties of acoustic metafluids are discussed, and general conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially opens up the possibility of achieving broadband cloaking. PMID:19206861

  12. Monitoring with Coda Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Gret, A.; Snieder, R.

    2004-12-01

    Aki has been a pioneer in monitoring the subsurface with coda waves and with guided waves. His analysis of temporal and spatial variations in coda Q has proven to be a powerful tool for monitoring purposes. We have extended his technique in new method called coda wave interferometry where changes in the full waveforms of coda waves are used to monitor changes in the subsurface. We have developed and implemented the theory to use this technique to monitor the following changes: a change in the seismic velocity, a change in scatterer locations, and a change in the location of earthquakes. As shown by Aki, the seismic coda is dominated by shear waves. Therefore our technique is primarily sensitive to changes in the S-velocity. Aki also worked on wave propagation in volcanoes. We have used coda wave interferometry to monitor two active volcanoes, Arenal (Costa Rica) and Mt. Erebus (Antarctica). I will give several examples to illustrate how coda waves can be used for monitoring purposes.

  13. Bibliography of spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.

  14. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  15. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  16. Underwater Acoustics.

    ERIC Educational Resources Information Center

    Creasey, D. J.

    1981-01-01

    Summarizes the history of underwater acoustics and describes related research studies and teaching activities at the University of Birmingham (England). Also includes research studies on transducer design and mathematical techniques. (SK)

  17. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  18. Field fluctuations measured by interferometry

    NASA Astrophysics Data System (ADS)

    Glauber, R. J.; Orozco, L. A.; Vogel, K.; Schleich, W. P.; Walther, H.

    2010-09-01

    We derive the complete photon count statistics of an interferometer based on two beam splitters. As a special case we consider a joint intensity-electric field measurement. Our approach is based on the transformation properties of state vectors as well as field operators at a beam splitter. The work presented here was stimulated by discussions during the Lake Garda Conference 2001. The recent experimental interest in six-port interferometry has moved us to return to the problem. We feel, moreover, that the topic is appropriate for the Festschrift in honour of Stig Stenholm since he can truly be considered a pioneer in the field of quantum networks. We hope that our discussion may pique his interest.

  19. Michelson interferometry with Keck I

    NASA Astrophysics Data System (ADS)

    Tuthill, Peter G.; Monnier, John D.; Danchi, William C.; Haniff, Christopher A.

    1998-07-01

    We have used the technique of aperture masking to transform the 10m Keck telescope into a separate-element, multiple aperture Michelson interferometer. This has allowed a dramatic gain in signal-to-noise to be achieved as compared to conventional full-pupil interferometry for bright targets such as evolved giant and supergiant stars. Preliminary results from a program of near-IR diffraction-limited imaging of such stars are presented. Multi-wavelength images in the IR JHK and L bands have revealed complex and asymmetric morphologies in the inner dust shells surrounding a number of proto-typical dust-enshrouded IR stars. In addition, we have imaged the stellar photospheres of some of our largest target stars, allowing us to measure diameters and search for structure, such as giant convective cells, on the stellar surface.

  20. Synthetic aperture interferometry: error analysis

    SciTech Connect

    Biswas, Amiya; Coupland, Jeremy

    2010-07-10

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  1. Differential spacecraft tracking by interferometry

    NASA Technical Reports Server (NTRS)

    Border, James S.; Folkner, William M.

    1990-01-01

    This study estimates measurement system errors for two space vehicles on the surface of Mars, and for two Mars orbiting spacecraft, which are being tracked by differential interferometry. In these examples, signals from all spacecraft lie within the same beamwidth of an earth-based radio antenna. The measurements of all spacecraft signals are made simultaneously; errors that scale with angular source separation or with temporal separation between measurement epochs are practically removed. It is shown that errors due to system thermal noise and to systematic effects within ground receiver electronics dominate, except for geometries when signals pass close to the sun, when solar plasma becomes the dominant error source. The instantaneous relative position of two orbiters may be measured to within ten meters, leading to 50-meter three-dimensional orbital accuracy.

  2. Uncertainty formulations for multislit interferometry

    NASA Astrophysics Data System (ADS)

    Biniok, Johannes C. G.

    2014-12-01

    In the context of (far-field) multislit interferometry we investigate the utility of two formulations of uncertainty in accounting for the complementarity of spatial localization and fringe width. We begin with a characterization of the relevant observables and general considerations regarding the suitability of different types of measures. The detailed analysis shows that both of the discussed uncertainty formulations yield qualitatively similar results, confirming that they correctly capture the relevant tradeoff. One approach, based on an idea of Aharonov and co-workers, is intuitively appealing and relies on a modification of the Heisenberg uncertainty relation. The other approach, developed by Uffink and Hilgevoord for single- and double-slit experiments, is readily applied to multislits. However, it is found that one of the underlying concepts requires generalization and that the choice of the parameters requires more consideration than was known.

  3. Signal competition in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    de La Rochefoucauld, Ombeline; Khanna, Shyam M.; Olson, Elizabeth S.

    2006-06-01

    The Organ of Corti is a complex structure with many reflecting surfaces characterized by a wide range of reflectivities. Heterodyne interferometry has been the primary technique for measuring motion of the cochlear sensory tissue for some time. We would like to know under what conditions reflections from out-of-focus surfaces affect the measured velocity of the in-focus surface. Heterodyne interferometry uses interference between two laser beams (object and reference). The velocity of the test object shifts the frequency of the object beam due to the Doppler effect. The heterodyne signal (a frequency modulated (FM) wave) is decoded using a frequency demodulator. By reviewing the theory of FM demodulation and showing tests with our Revox FM demodulator, we demonstrate that the influence of a secondary signal on a measurement depends on the modulation index (ratio of the frequency deviation (Δf=2V °/λ) to the modulation frequency, f m where V ° is the velocity amplitude and λ is the laser wavelength). For high-modulation-index signals, the fundamental component of the FM demodulator output is not affected by a secondary signal unless the secondary signal's power is nearly as large as that of the primary signal. However, the output waveform can be distorted. For a low-modulation-index signal, a secondary competing signal can have a relatively large effect on the fundamental component of the output signal, but the output signal waveform is not distorted. The results underscore the benefit of steep optical sectioning to reduce contamination by out-of-focus signals.

  4. Fringe Formation in Dual-Hologram Interferometry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1989-01-01

    A first order geometrical optics treatment of holograms combined with the generation of interference fringes by two point sources is used to describe reference fringe formation in non-diffuse dual-hologram interferometry.

  5. Fringe formation in dual-hologram interferometry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1990-01-01

    Reference-fringe formation in nondiffuse dual-hologram interferometry is described by combining a first-order geometrical hologram treatment with interference fringes generated by two point sources. The first-order imaging relationships can be used to describe reference-fringe patterns for the geometry of the dual-hologram interferometry. The process can be completed without adjusting the two holograms when the reconstructing wavelength is less than the exposing wavelength, and the process is found to facilitate basic intereferometer adjustments.

  6. Results of Infrasound Interferometry in Netherlands

    NASA Astrophysics Data System (ADS)

    Fricke, J. T.; Ruigrok, E. N.; Evers, L. G.; Simons, D. G.; Wapenaar, K.

    2012-04-01

    with an aperture of around 100 km. The in-house developed microbarometers are able to measure infrasound up to a period of 1000 seconds, which is in the acoustic-gravity wave regime. The results will also be directly applicable to the verification of the 'Comprehensive Nuclear-Test-Ban Treaty' (CTBT), where uncertainties in the atmospheric propagation of infrasound play a dominant role. This research is made possible by the support of the 'Netherlands Organisation for Scientific Research' (NWO). Haney, M., 2009. Infrasonic ambient noise interferometry from correlations of microbaroms, Geophysical Research Letters, 36, L19808, doi:10.1029/2009GL040179

  7. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  8. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  9. Thermal acoustic interaction and flow phenomenon

    NASA Astrophysics Data System (ADS)

    Leung, E. W.; Baroth, E.; Chan, C. K.; Wang, T. G.

    1990-01-01

    In containerless science for material processing, the acoustic fields is used to levitate and to control the position of a heated or cooled sample. The interaction between the temperature and the acoustic fields leads to complicated fluid flow phenomena, resulting in the perturbation of the sample position and the heat transfer process. The physical mechanisms in this thermal-acoustic field were investigated using the technique of holographic interferometry and thermometry. Of particular interest was the heat transfer rate from the sample associated with the sound intensities, normal frequencies of the acoustic standing wave field, and gravitational effects. For metallic spheres with high thermal conductivity, the surface temperature was found to be uniform. The thermal flow phenomenon, which is associated with the circulating flow inside the resonant chamber, was recorded. The heat transfer coefficient at the sample surface was correlated with the acoustic and the gravitational parameters, based on the classical theory of convective heat transfer. These correlations can be used to predict the heat transfer from a spherical object in a zero-gravity environment.

  10. Spectral Interferometry with Electron Microscopes.

    PubMed

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  11. Neutron interferometry with cold stage

    NASA Astrophysics Data System (ADS)

    Mineeva, Taisiya; Arif, M.; Huber, M. G.; Shahi, C. B.; Clark, C. W.; Cory, D. G.; Nsofini, J.; Sarenac, D.; Pushin, D. A.

    Neutron interferometry (NI) is amongst the most precise methods for characterizing neutron interactions by measuring the relative difference between two neutron paths, one of which contains a sample-of-interest. Because neutrons carry magnetic moment and are deeply penetrating, they are excellent probes to investigate properties of magnetic materials. The advantage of NI is its unique sensitivity which allows to directly measure magnetic and structural transitions in materials. Up to now NI has been sparingly used in material research due to its sensitivity to environmental noise. However, recent successes in implementing Quantum Error Correction principles lead to an improved NI design making it robust against mechanical vibrations. Following these advances, a new user facility at the National Institute for Standards and Technology was built to study condensed matter applications, biology and quantum physics. Incorporating cold sample stage inside NI is the first of its kind experiment which can be carried out on large range of temperatures down to 4K. Upon successful realization, it will open new frontiers to characterize magnetic domains, phase transitions and spin properties in a variety of materials such as, for example, iron-based superconductors and spintronic materials. Supported in part by CERC, CIFAR, NSERC and CREATE.

  12. Spectral Interferometry with Electron Microscopes

    PubMed Central

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  13. Spectral Interferometry with Electron Microscopes.

    PubMed

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential.

  14. Precision optical interferometry in space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    POINTS, an astrometric Optical interferometer with a nominal measurement accuracy of 5 microarcseconds for the angle between a pair of stars separated by about 90 deg, is presently under consideration by two divisions of NASA-OSSA. It will be a powerful new multi-disciplinary tool for astronomical research. If chosen as the TOPS-1 (Toward Other Planetary Systems) instrument by the Solar-System Exploration Division, it will perform a definitive search for extra-solar planetary systems, either finding and characterizing a large number of them or showing that they are far less numerous than now believed. If chosen as the AIM (Astrometric Interferometry Mission) by the Astrophysics Division, POINTS will open new areas of astrophysical research and change the nature of the questions being asked in some old areas. In either case. it will be the first of a new class of powerful instruments in space and will prove the technology for the larger members of that class to follow. Based on a preliminary indication of the observational needs of the two missions, we find that a single POINTS mission will meet the science objectives of both TOPS-1 and AIM. The instrument detects dispersed fringe (channel led spectrum) and therefore can tolerate large pointing errors.

  15. Persistent Scatterer Interferometry Using SENTINEL-1 Data

    NASA Astrophysics Data System (ADS)

    Crosetto, M.; Monserrat, O.; Devanthéry, N.; Cuevas-González, M.; Barra, A.; Crippa, B.

    2016-06-01

    This paper is focused on deformation monitoring using a Persistent Scatterer Interferometry technique and the interferometric SAR data acquired by the Sentinel-1 satellite of the European Space Agency. The first part of the paper describes the procedure used to process and analyze Sentinel-1 interferometric SAR data. Two main approaches are described. The first one is a simplified Persistent Scatterer Interferometry approach that exploits two key properties of the Sentinel-1 data: the high coherence of the 12-day interferograms and the reduced orbital tube. The second approach is a full Persistent Scatterer Interferometry approach, where a more sophisticate data treatment is employed. The second part of the paper illustrates the results obtained with the two processing approaches. Two case studies are described. The first one concerns landslide detection and monitoring. In this case, the simplified Persistent Scatterer Interferometry approach was used. The second one regards the deformation monitoring of an urban area. In this case, a full Persistent Scatterer Interferometry approach was used.

  16. Acoustic coupling in capacitive microfabricated ultrasonic transducers: modeling and experiments.

    PubMed

    Caronti, Alessandro; Savoia, Alessandro; Caliano, Giosuè; Pappalardo, Massimo

    2005-12-01

    In the design of low-frequency transducer arrays for active sonar systems, the acoustic interactions that occur between the transducer elements have received much attention. Because of these interactions, the acoustic loading on each transducer depends on its position in the array, and the radiated acoustic power may vary considerably from one element to another. Capacitive microfabricated ultrasonic transducers (CMUT) are made of a two-dimensional array of metallized micromembranes, all electrically connected in parallel, and driven into flexural motion by the electrostatic force produced by an applied voltage. The mechanical impedance of these membranes is typically much lower than the acoustic impedance of water. In our investigations of acoustic coupling in CMUTs, interaction effects between the membranes in immersion were observed, similar to those reported in sonar arrays. Because CMUTs have many promising applications in the field of medical ultrasound imaging, understanding of cross-coupling mechanisms and acoustic interaction effects is especially important for reducing cross-talk between array elements, which can produce artifacts and degrade image quality. In this paper, we report a finite-element study of acoustic interactions in CMUTs and experimental results obtained by laser interferometry measurements. The good agreement found between finite element modeling (FEM) results and optical displacement measurements demonstrates that acoustic interactions through the liquid represent a major source of cross coupling in CMUTs.

  17. Optical intensity interferometry through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Tan, P. K.; Chan, A. H.; Kurtsiefer, C.

    2016-04-01

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrow-band spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photodiodes, the Solar g(2)(τ) signature was directly measured. We observe an averaged photon bunching signal of g(2)(τ) = 1.693 ± 0.003 from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.

  18. Measuring subwavelength spatial coherence with plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Morrill, Drew; Li, Dongfang; Pacifici, Domenico

    2016-10-01

    Optical interferometry has enabled quantification of the spatial and temporal correlations of electromagnetic fields, which laid the foundations for the theory of optical coherence. Despite significant advances in fundamental theories and applications, the measurement of nanoscale coherence lengths for highly incoherent optical fields has remained elusive. Here, we employ plasmonic interferometry (that is, optical interferometry with surface plasmons) to characterize the spatial degree of coherence of light beams down to subwavelength scales, with measured coherence lengths as low as ∼330 nm for an incident wavelength of 500 nm. Furthermore, we demonstrate a compact coherence meter that integrates this method with an image sensor. Precise determination of spatial coherence can advance high-resolution imaging and tomographic schemes, and provide an experimental platform for the development and testing of optical coherence theories at the nanoscale.

  19. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  20. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  1. Soft x-ray interferometry

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument`s components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200{angstrom} wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency.

  2. Advances in Small-Telescope Speckle Interferometry

    NASA Astrophysics Data System (ADS)

    Rowe, David J.

    2016-06-01

    The current revolution in CMOS camera technology has enabled a new generation of small telescope systems targeted at the measurement of close binary systems using the techniques of speckle interferometry and bispectrum analysis. These inexpensive, ultra-sensitive, high resolution cameras are now outperforming CCD technology, and come at a truly affordable price. In addition, dedicated, user-friendly speckle interferometry reduction software has been developed for the amateur, making it easy to perform the otherwise complicated data processing tasks. This talk will address these recent advances in hardware and software, and describe some of the results of the informal amateur-professional collaboration that has formed around them.

  3. Global astrometry with the space interferometry mission

    NASA Technical Reports Server (NTRS)

    Boden, A.; Unwin, S.; Shao, M.

    1997-01-01

    The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.

  4. Altimetry Using GPS-Reflection/Occultation Interferometry

    NASA Technical Reports Server (NTRS)

    Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi

    2008-01-01

    A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.

  5. Holographic interferometry: A user`s guide

    SciTech Connect

    Griggs, D.

    1993-10-01

    This manual describes the procedures and components necessary to produce a holographic interferogram of a flow field in the Sandia National Laboratories hypersonic wind tunnel. In contrast to classical interferometry, holographic interferometry records the amplitude and phase distribution of a lightwave passing through the flow field at some instant of time. This information can then be reconstructed outside the wind tunnel for visual analysis and digital processing, yielding precise characterizations of aerodynamic phenomena. The reconstruction and subsequent hologram image storage process is discussed, with particular attention paid to the digital image processor and the data reduction technique.

  6. Spectral modulation interferometry for quantitative phase imaging

    PubMed Central

    Shang, Ruibo; Chen, Shichao; Li, Chengshuai; Zhu, Yizheng

    2015-01-01

    We propose a spectral-domain interferometric technique, termed spectral modulation interferometry (SMI), and present its application to high-sensitivity, high-speed, and speckle-free quantitative phase imaging. In SMI, one-dimensional complex field of an object is interferometrically modulated onto a broadband spectrum. Full-field phase and intensity images are obtained by scanning along the orthogonal direction. SMI integrates the high sensitivity of spectral-domain interferometry with the high speed of spectral modulation to quantify fast phase dynamics, and its dispersive and confocal nature eliminates laser speckles. The principle and implementation of SMI are discussed. Its performance is evaluated using static and dynamic objects. PMID:25780737

  7. Ocean acoustic remote sensing using ambient noise: results from the Florida Straits

    NASA Astrophysics Data System (ADS)

    Brown, M. G.; Godin, O. A.; Zang, X.; Ball, J. S.; Zabotin, N. A.; Zabotina, L. Y.; Williams, N. J.

    2016-07-01

    Noise interferometry is the process by which approximations to acoustic Green's functions, which describe sound propagation between two locations, are estimated by cross-correlating time series of ambient noise measured at those locations. Noise-interferometry-based approximations to Green's functions can be used as the basis for a variety of inversion algorithms, thereby providing a purely passive alternative to active-source ocean acoustic remote sensing. In this paper we give an overview of results from noise interferometry experiments conducted in the Florida Straits at 100 m depth in December 2012, and at 600 m depth in September/October 2013. Under good conditions for noise interferometry, estimates of cross-correlation functions are shown to allow one to perform advanced phase-coherent signal processing techniques to perform waveform inversions, estimate currents by exploiting non-reciprocity, perform time-reversal/back-propagation calculations and investigate modal dispersion using time-warping techniques. Conditions which are favourable for noise interferometry are identified and discussed.

  8. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  9. Multiple Beam Interferometry in Elementary Teaching

    ERIC Educational Resources Information Center

    Tolansky, S.

    1970-01-01

    Discusses a relatively simple technique for demonstrating multiple beam interferometry. The technique can be applied to measuring (1) radii of curvature of lenses, (2) surface finish of glass, and (3) differential phase change on reflection. Microtopographies, modulated fringe systems and opaque objects may also be observed by this technique.…

  10. Apparatus and method for laser velocity interferometry

    DOEpatents

    Stanton, Philip L.; Sweatt, William C.; Crump, Jr., O. B.; Bonzon, Lloyd L.

    1993-09-14

    An apparatus and method for laser velocity interferometry employing a fixed interferometer cavity and delay element. The invention permits rapid construction of interferometers that may be operated by those non-skilled in the art, that have high image quality with no drift or loss of contrast, and that have long-term stability even without shock isolation of the cavity.

  11. Detection of deoxynivalenol using biolayer interferometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biolayer interferometry allows for the real time monitoring of the interactions between molecules without the need for reagents with enzymatic, fluorescent, or radioactive labels. The technology is based upon the changes in interference pattern of light reflected from the surface of an optical fiber...

  12. Radio interferometry: Techniques for Geodesy. [conference

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress in the development and application of radio interferometry as a tool for geophysical research is reported and discussed. Among the topics reviewed are: Surveys of is the Seventies, Movements, Terrestrial and Celestial, Degrees Kelvin and Degrees of Phase, the Mark 3 VLBI System, Waves of the Future and other Emissions, and Adherence and Coherence in Networks, and Plans.

  13. Measurements of the tympanic membrane with digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Muñoz Solís, S.; Mendoza Santoyo, F.; Del Socorro Hernández-Montes, M.

    2011-08-01

    In this paper a digital holographic interferometry (DHI) system with three object-illumination beams is used for the first time to detect and measure micrometer deformations on the surface of a tympanic membrane. Using this optical setup allows all three object displacement components x, y, and z, to be independently calculated. The corresponding deformations are registered using a cw laser in stroboscopic mode and a CCD camera synchronized to the excitation acoustic wave that produces a resonant vibration mode on the tympanic membrane surface. A series of digital holographic interferograms record the displacements undergone by the tympanic membrane and from them full field deformation phase maps are obtained. From the latter it is possible to observe the displacement of the tympanic membrane in response to the sound pressure. The study was performed on the tympanic membrane taken from a post-mortem cat. The results show the feasibility to apply a similar optomechanical arrangement for the study in humans, representing an alternative technique for the study of pathologies in the tympanic membrane.

  14. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  15. Future Looks Bright for Interferometry

    NASA Astrophysics Data System (ADS)

    2008-09-01

    First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility

  16. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  17. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  18. Comparing laser interferometry and atom interferometry approaches to space-based gravitational-wave measurement

    NASA Astrophysics Data System (ADS)

    Ira Thorpe, James; Jennrich, Oliver; McNamara, Paul; Baker, John G.

    2012-07-01

    The science enabled by a space-based low-frequency gravitational-wave instrument is a high-priority objective of the international astronomy community. Mission concepts based on laser interferometry, such as the Laser Interferometer Space Antenna (LISA), have been thoroughly studied and determined to be capable of delivering significant science returns. Ongoing developments in laboratory atom interferometry techniques have inspired new gravitational-wave mission concepts. We present a comparative analysis of LISA-like light interferometer systems and atom interferometer systems for gravitational-wave detection. Specific attention is paid to the sources of instrumental noise that are most important for light interferometer systems. We find that the response to laser frequency noise is identical in light interferometer and atom interferometer systems and that similar mitigation strategies (e.g. multiple-arm interferometers) must be employed to reach interesting gravitational wave sensitivities. Response to acceleration of the optical platforms is slightly different, allowing smaller spacecraft separations in the atom interferometry approach, but the acceleration noise requirements are similar. Based on this analysis, we find no clear advantage of the atom interferometry approach over traditional laser interferometry.

  19. Station keeping strategy for multiple spacecraft interferometry

    NASA Technical Reports Server (NTRS)

    Decou, Anthony B.

    1991-01-01

    The feasibility of multiple spacecraft stationkeeping for submillimeter and optical interferometry is examined. A condition for interferometry is that two or more spacecraft must control their relative positions with better than 1 mn accuracy indefinitely in both radial and transverse directions although separated by as much as 1 Km in LEO and 100 Km in GEO. They must also maneuver through a useful area of the U-V plane of an arbitrary astronomical source. The problem is first outlined and a solution which utilizes gravity gradient forces to do most of the work and ion thrusters for additional maneuvering is proposed. All the perturbing forces are shown to be small compared to the ion thruster requirements. An inertial position and attitude control strategy is suggested which utilizes existing or soon to be available sensors and actuators. Finally, the fuel and power system mass requirements are estimated and found to be within reason for a 10 year mission.

  20. Speckle Interferometry with Amateur-Class Equipment

    NASA Astrophysics Data System (ADS)

    Harshaw, Richard; Wuthrich, Ethan; Dolbear, Kyle

    2015-05-01

    The relatively young field of speckle interferometry of close double stars has up to now been the domain of large telescopes and expensive scientific CCD cameras. With the advent of relatively inexpensive and high-performance CCD cameras, the domain of speckle interferometry has been extended into the serious amateur realm allowing amateurs with equipment as small as 8-inches aperture to do actual speckle analysis of binary star systems. This paper describes the work of one such team of amateur astronomers and students as part of their course work for an on-line scientific research experience course provided on-line by Cuesta College of San Luis Obispo, California. An explanation of speckle and how it works is followed by a discussion of how the camera was calibrated, then a discussion of the research methodology. Results of calibration and double star measurements are then given and implications of the process and results discussed.

  1. Near-Earth Object Astrometric Interferometry

    NASA Technical Reports Server (NTRS)

    Werner, Martin R.

    2005-01-01

    Using astrometric interferometry on near-Earth objects (NEOs) poses many interesting and difficult challenges. Poor reflectance properties and potentially no significant active emissions lead to NEOs having intrinsically low visual magnitudes. Using worst case estimates for signal reflection properties leads to NEOs having visual magnitudes of 27 and higher. Today the most sensitive interferometers in operation have limiting magnitudes of 20 or less. The main reason for this limit is due to the atmosphere, where turbulence affects the light coming from the target, limiting the sensitivity of the interferometer. In this analysis, the interferometer designs assume no atmosphere, meaning they would be placed at a location somewhere in space. Interferometer configurations and operational uncertainties are looked at in order to parameterize the requirements necessary to achieve measurements of low visual magnitude NEOs. This analysis provides a preliminary estimate of what will be required in order to take high resolution measurements of these objects using interferometry techniques.

  2. Externally Dispersed Interferometry for Planetary Studies

    SciTech Connect

    Erskine, D J; Edelstein, J; Harbeck, D; Lloyd, J

    2005-07-06

    We describe a plan to study the radial velocity of low mass stars and brown dwarfs using a combination of interferometry and multichannel dispersive spectroscopy, Externally Dispersed Interferometry (EDI). The EDI technology allows implementation of precision velocimetry and spectroscopy on existing moderate-resolution echelle or linear grating spectrograph over their full and simultaneous bandwidth. We intend to add EDI to the new Cornell TripleSpec infrared simultaneous JHK-band spectrograph at the Palomar Observatory 200'' telescope for a science-demonstration program that will allow a unique Doppler-search for planets orbiting low mass faint M, L and T type stars. The throughput advantage of EDI with a moderate resolution spectrograph is critical to achieving the requisite sensitivity for the low luminosity late L and T dwarfs.

  3. Subaperture stitching interferometry based on digital holography

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Lu, Xiaoyun; Dong, Bin; Ma, Xichao; Xiao, Wen

    2016-11-01

    A novel subaperture stitching interferometry based on digital holography is developed to measure the deformation of spherical surfaces. The subaperture measurement is performed by off-axis digital holography on single exposure. Then, the subaperture phase maps are obtained by digital holographic reconstruction, in which the phase aberration caused by position errors of each subaperture measurement is effectively compensated by the method of numerical parametric lens. After that, the full aperture phase map is retrieved by a subaperture stitching algorithm, in which the relative alignment errors of adjacent subapertures are eliminated with an iterative process of stitching optimization. The experiments demonstrate the feasibility and effectiveness of the proposed interferometry, which provides a rapid and robust way to measure spherical surfaces with high resolution and precision. A practical example is given to demonstrate the performance of this method. The stitching result shows good agreement with the full-aperture result.

  4. Nanoscale optical interferometry with incoherent light

    NASA Astrophysics Data System (ADS)

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-02-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications.

  5. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  6. Nanoscale optical interferometry with incoherent light

    PubMed Central

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-01-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171

  7. Acoustic emission descriptors

    NASA Astrophysics Data System (ADS)

    Witos, Franciszek; Malecki, Ignacy

    The authors present selected problems associated with acoustic emission interpreted as a physical phenomenon and as a measurement technique. The authors examine point sources of acoustic emission in isotropic, homogeneous linearly elastic media of different shapes. In the case of an unbounded medium the authors give the analytical form of the stress field and the wave shift field of the acoustic emission. In the case of a medium which is unbounded plate the authors give a form for the equations which is suitable for numerical calculation of the changes over time of selected acoustic emission values. For acoustic emission as a measurement technique, the authors represent the output signal as the resultant of a mechanical input value which describes the source, the transient function of the medium, and the transient function of specific components of the measurement loop. As an effect of this notation, the authors introduce the distinction between an acoustic measurement signal and an acoustic measurement impulse. The authors define the basic parameters of an arbitrary impulse. The authors extensively discuss the signal functions of acoustic emission impulses and acoustic emission signals defined in this article as acoustic emission descriptors (or signal functions of acoustic emission impulses) and advanced acoustic emission descriptors (which are either descriptors associated with acoustic emission applications or the signal functions of acoustic emission signals). The article also contains the results of experimental research on three different problems in which acoustic emission descriptors associated with acoustic emission pulses, acoustic emission applications, and acoustic emission signals are used. These problems are respectively: a problem of the amplitude-load characteristics of acoustic emission pulses in carbon samples subjected to compound uniaxial compression, the use of acoustic emission to predict the durability characteristics of conveyor belts, and

  8. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  9. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  10. Infrasound Interferometry for Active and Passive Sources: A Synthetic Example for Waves Refracted in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Fricke, J.; Ruigrok, E. N.; Evers, L. G.; El Allouche, N.; Simons, D.; Wapenaar, C. A.

    2012-12-01

    The travel time of infrasound through the stratosphere depends on the temperature profile and the wind speed. These atmospheric conditions can be estimated by determining the travel times between different receivers (microbarometers). Therefore the determination of the travel time of infrasound between different receivers becomes more and more important. An approach to determine the travel time is infrasound interferometry. In this work, the infrasound interferometry is applied to synthetic data of active and passive sources refracted by the stratosphere is tested. The synthetic data were generated with a raytracing model. The inputs of the raytracing model are the atmospheric conditions and a source wavelet. As source wavelet we used blast waves and microbaroms. With the atmospheric conditions and the source wavelet the raytracing model calculates the raypath and the travel time of the infrasound. In order to simulate the measurement of a receiver the rays which reach the receiver need to be found. The rays which propagate from a source to the receiver are called eigen rays. The simulation of the receiver measurements takes into account the travel time along the eigen rays, the attenuation of the different atmospheric layers, the spreading of the rays and the influence of caustics. The simulated measurements of the different receivers are combined to synthetic barograms. Two synthetic experiments were performed with the described model. In the first experiment the interferometry was applied to barograms of active sources like blast waves. The second experiment with microbaroms tests the applicability of interferometry to barograms of passive sources. In the next step infrasound interferometry will be applied to measured barograms. These barograms are measured with the 'Large Aperture Infrasound Array' (LAIA). LAIA is being installed by the Royal Netherlands Meteorological Institute (KNMI) in the framework of the radio-astronomical 'Low Frequency Array' (LOFAR

  11. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  12. Defect Depth Measurement Using White Light Interferometry

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan

    2009-01-01

    The objectives of the White Light Interferometry project are the following: (1) Demonstrate a small hand-held instrument capable of performing inspections of identified defects on Orbiter outer pane window surfaces. (2) Build and field-test a prototype device using miniaturized optical components. (3) Modify the instrument based on field testing and begin the conversion of the unit to become a certified shop-aid.

  13. Kaon decay interferometry as meson dynamics probes

    NASA Astrophysics Data System (ADS)

    D'ambrosio, G.; Paver, N.

    1994-05-01

    We discuss the time-dependent interferences between KL and KS in the decays in 3π and ππγ, to be studied at interferometry machines such as the φ factory and CERN LEAR. We emphasize the possibilities and the advantages of using interferences, in comparision with width measurements, to obtain information both on CP-conserving and CP-violating amplitudes. Comparision with present data and suggestions for future experiments are made.

  14. Electronic speckle pattern interferometry using vortex beams.

    PubMed

    Restrepo, René; Uribe-Patarroyo, Néstor; Belenguer, Tomás

    2011-12-01

    We show that it is possible to perform electronic speckle pattern interferometry (ESPI) using, for the first time to our knowledge, vortex beams as the reference beam. The technique we propose is easy to implement, and the advantages obtained are, among others, environmental stability, lower processing time, and the possibility to switch between traditional ESPI and spiral ESPI. The experimental results clearly show the advantages of using the proposed technique for deformation studies of complex structures.

  15. Moire interferometry for thermal expansion of composites

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.; Post, D.; Herakovich, C. T.

    1981-01-01

    Moire interferometry by reflection has been demonstrated using a real reference grating of 1200 lines/mm. The method is shown to be well adapted to thermal environments. Thermal expansion coefficients of graphite-epoxy composites have been measured with high precision over a wide range from nearly zero to 3300 microstrains in the temperature range 297-422 K. Random errors characterized by one standard deviation can be as small as one microstrain.

  16. Precision surveying using very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ryan, J. W.; Clark, T. A.; Coates, R.; Ma, C.; Robertson, D. S.; Corey, B. E.; Counselman, C. C.; Shapiro, I. I.; Wittels, J. J.; Hinteregger, H. F.

    1977-01-01

    Radio interferometry measurements were used to measure the vector baselines between large microwave radio antennas. A 1.24 km baseline in Massachusetts between the 36 meter Haystack Observatory antenna and the 18 meter Westford antenna of Lincoln Laboratory was measured with 5 mm repeatability in 12 separate experiments. Preliminary results from measurements of the 3,928 km baseline between the Haystack antenna and the 40 meter antenna at the Owens Valley Radio Observatory in California are presented.

  17. Lateral shear interferometry with holo shear lens

    NASA Astrophysics Data System (ADS)

    Joenathan, C.; Mohanty, R. K.; Sirohi, R. S.

    1984-12-01

    A simple method for obtaining lateral shear using holo shear lenses (HSL) has been discussed. This simple device which produces lateral shears in the orthogonal directions has been used for lens testing. The holo shear lens is placed at or near the focus of the lens to be tested. It has also been shown that HSL can be used in speckle shear interferometry as it performs both the functions of shearing and imaging.

  18. Interferometry theory for the block 2 processor

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1987-01-01

    Presented is the interferometry theory for the Block 2 processor, including a high-level functional description and a discussion of data structure. The analysis covers the major processing steps: cross-correlation, fringe counter-rotation, transformation to the frequency domain, phase calibration, bandwidth synthesis, and extraction of the observables of amplitude, phase, phase rate, and delay. Also included are analyses for fractional bitshift correction, station clock error, ionosphere correction, and effective frequencies for the observables.

  19. GPS radio interferometry of travelling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Palamartchouk, K. S.; Perevalova, N. P.

    1998-01-01

    This paper presents some results investigating the new possibilities of radio interferometry of Travelling Ionospheric Disturbances (TIDs) that are based on exploiting standard measurements of transionospheric radio signal characteristics and coordinate-time measurements using dual-frequency multichannel receivers of the Global Positioning System (GPS). A Statistical Angle-of-arrival and Doppler Method for GPS radio interferometry (SADM-GPS) is proposed for determining the characteristics of the TIDs dynamics by measuring variations of GPS phase derivatives with respect to time and spatial coordinates. These data are used to calculate corresponding values of the velocity vector, in view of a correction for satellite motions based on the current information available regarding the angular coordinates of the satellites. Subsequently, velocity and direction distributions are constructed and analyzed to verify the hypothesis of whether there is a predominant displacement. If it exists, then the pattern can be considered to be travelling, and the mean travel velocity can be determined from the velocity distribution. Through a computer simulation it was shown that multi-satellite GPS radio interferometry in conjunction with the SADM-GPS algorithm allows the detection and measurement of the velocity vector of TIDs in virtually the entire azimuthal range of possible TID propagation directions. The use of the proposed method is exemplified by an investigation of TIDs during the solar eclipse of 9 March 1997, using the GPS-radio interferometer GPSINT at Irkutsk.

  20. Optical interferometry in fluid dynamics research

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1985-01-01

    Optical interferometry techniques have been applied to the investigation of transonic airfoil flow fields in large-scale wind tunnels. Holographic interferometry techniques were used in the study of two-dimensional symmetric NACA 64A010 and Douglas Aircraft Company DSMA671 supercritical airfoil performance in the NASA Ames 2 ft x 2 ft transonic wind tunnel. Quantitative data obtained from the interferograms were compared to the surface pressure data. The excellent agreement obtained verified the accuracy of the flow visualization and demonstrated the potential for acquiring quantitative scalar results. Measurements of the inviscid flow speed and the boundary layer and wake velocity profiles were extracted from the interferograms and compared to laser Doppler velocimeter measurements. These results were also in good agreement. A method for acquiring real-time interferometric data in large-scale facilities was developed. This method, based on the point diffraction interferometer, was successfully tested in the Ames 2 ft x 2 ft transonic wind tunnel. The holographic and real-time interferometry methods were applied to the investigations of circulation control airfoils utilizing the Coanda effect. These results revealed the details of the jet interaction with the trailing edge boundary layer and the other parameters affecting the lift augmentation.

  1. Gravitational wave detection using atom interferometry

    NASA Astrophysics Data System (ADS)

    Hogan, Jason

    2016-05-01

    The advent of gravitational wave astronomy promises to provide a new window into the universe. Low frequency gravitational waves below 10 Hz are expected to offer rich science opportunities both in astrophysics and cosmology, complementary to signals in LIGO's band. Detector designs based on atom interferometry have a number of advantages over traditional approaches in this band, including the possibility of substantially reduced antenna baseline length in space and high isolation from seismic noise for a terrestrial detector. In particular, atom interferometry based on the clock transition in group II atoms offers tantalizing new possibilities. Such a design is expected to be highly immune to laser frequency noise because the signal arises strictly from the light propagation time between two ensembles of atoms. This would allow for a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry in a 10-meter drop tower has enabled observation of matter wave interference with atomic wavepacket separations exceeding 50 cm and interferometer durations of more than 2 seconds. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  2. Optical interferometry in fluid dynamics research

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1987-01-01

    Optical interferometry techniques were applied to the investigation of transonic airfoil flow fields in large wind tunnels. Holographic interferometry techniques were used to study 2 dimensional symmetric NACA 64A010 and Douglas Aircraft Co. DSMA671 supercritical airfoil performance in the NASA Ames 2 x 2 ft transonic wind tunnel. Quantitative data obtained from the interferograms were compared to the surface pressure data. The agreement obtained verified the accuracy of the flow visualization and demonstrated the potential for acquiring quantitative scalar results. Measurements of the inviscid flow speed and the boundary layer and wake velocity profiles were extracted from the interferograms and compared to laser Doppler velocimeter measurements. These results were also in good agreement. A method for acquiring real time interferometric data in large scale facilities was developed. This method, based on the point diffraction interferometer, was successfully tested in the 2 x 2 ft transonic wind tunnel. The holographic and real time interferometry methods were applied to the investigations of circulation control airfoils utilizing the Coanda effect. These results reveals the details of the jet interacting with the trailing edge boundary layer and the other parameters affecting the lift augmentation.

  3. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Weber, David C.

    1995-01-01

    Holographic interferometry is a primary candidate for determining temperature and concentration in crystal growth experiments designed for space. The method measures refractive index changes within the fluid of an experimental test cell resulting from temperature and/or concentration changes. When the refractive index changes are caused by simultaneous temperature and concentration changes, the contributions of the two effects cannot be separated by single wavelength interferometry. By using two wavelengths, however, two independent interferograms can provide the additional independent equation required to determine the two unknowns. There is no other technique available that provides this type of information. The primary objectives of this effort were to experimentally verify the mathematical theory of two color holographic interferometry (TCHI) and to determine the practical value of this technique for space application. In the foregoing study, the theory of TCHI has been tested experimentally over a range of interest for materials processing in space where measurements of temperature and concentration in a solution are required. New techniques were developed and applied to stretch the limits beyond what could be done with existing procedures. The study resulted in the production of one of the most advanced, enhanced sensitivity holographic interferometers in existence. The interferometric measurements made at MSFC represent what is believed to be the most accurate holographic interferometric measurements made in a fluid to date. The tests have provided an understanding of the limitations of the technique in practical use.

  4. Development of Speckle Interferometry Algorithm and System

    SciTech Connect

    Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.

    2011-05-25

    Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is optically mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.

  5. Holographic Interferometry Applications In External Osteosynthesis

    NASA Astrophysics Data System (ADS)

    Jacquot, P.; Rastogi, P. K.; Pflug, L.

    1985-08-01

    In order to maintain fragments of fractured bones in a state of immobilization, the use of an external rigid frame has proved to be very advantageous. Confronted by contradictory requirements, the conception of external fixation has, however, been a difficult task. The present paper aims to show, through three examples of varied bearings, the interest of holographic interferometry in external osteosynthesis. The first example deals with the mechanical behavior of a key element of the fixation device the ball joint submitted to realistic loads. The last two examples compare two models of ball joints as to their characteristics of rigidity and of resistance to slipping. Whereas in the former case holographic interferometry primarily fulfills the function of a prelude to the modelization work, in the latter cases it serves to formulate an engineering diagnostic. The findings relate to the remarkable elastic behavior of the ball joint, to the effectiveness of a lightened bowl design, and to the fact that cousin models may behave quite differently as to their resistance to slipping rotations of the bar. In comparison with other experimental methods, holographic interferometry appears to be very competitive and result-oriented and, as such, is expected to multiply applications in similar evaluation tasks.

  6. Atom Interferometry on a Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Becker, Dennis; Seidel, Stephan; Lachmann, Maike; Rasel, Ernst; Quantus Collaboration

    2015-05-01

    The universality of free fall is one of the fundamental postulates of our description of nature. The comparison of the free fall of two ultra-cold clouds of different atomic species via atom interferometry comprises a method to precisely test this assumption. By performing the experiments in a microgravity environment the sensitivity of such an atom interferometric measurement can be increased. In order to fully utilize the potential of these experiments the usage of a Bose-Einstein condensate as the initial state of the atom interferometer is necessary. As a step towards the transfer of such a system in space an atom optical experiment is currently being prepared as the scientific payload for a sounding rocket mission. This mission is aiming at the first demonstration of a Bose-Einstein condensate in space and using this quantum degenerate matter as a source for atom interferometry. The launch of the rocket is planned for 2015 from ESRANGE. This first mission will be followed by two more that extend the scientific goals to the creation of degenerate mixtures in space and simultaneous atom interferometry with two atomic species. Their success would mark a major advancement towards a precise measurement of the universality of free fall with a space-born atom interferometer. This research is funded by the German Space Agency DLR under grant number DLR 50 1131-37.

  7. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1993-01-01

    Holographic interferometry is a primary candidate for the measurement of temperature and concentration in various crystal growth experiments destined for space. The method measures refractive index changes in the experiment test cell. A refractive index change can be caused by concentration changes, temperature changes, or a combination of temperature and concentration changes. If the refractive index changes are caused by temperature and concentration changes occurring simultaneously in the experiment test cell, the contributions by the two effects cannot be separated by conventional measurement methods. By using two wavelengths, two independent interferograms can be produced from the reconstruction of the hologram. The two interferograms will be different due to dispersion properties of fluid materials. These differences provide the additional information that allows the separation of simultaneously occurring temperature and concentration gradients. There is no other technique available that can provide this type of information. The primary objectives of this effort are to experimentally verify the mathematical theory of two color holographic interferometry and to determine the practical value of this technique for space application. To achieve these objectives, the accuracy and sensitivity of the technique must be determined for geometry's and materials that are relevant to the Materials Processing in the Space program of NASA. This will be achieved through the use of a specially designed two-color holographic interferometry breadboard optical system. In addition to experiments to achieve the primary goals, the breadboard will also provide inputs to the design of an optimum space flight system.

  8. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    NASA Technical Reports Server (NTRS)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  9. Range-resolved signal processing for fibre segment interferometry applied to dynamic long-gauge length strain sensing

    NASA Astrophysics Data System (ADS)

    Kissinger, Thomas; Correia, Ricardo; Charrett, Thomas O. H.; James, Stephen W.; Tatam, Ralph P.

    2015-09-01

    A range-resolved interferometric signal processing technique using sinusoidal optical frequency modulation is applied to fibre segment interferometry. Here, six optical fibre segments of gauge length 12.5 cm are used as interferometric strain sensors and are formed between seven weak, broadband fibre Bragg gratings, acting as in-fibre partial reflectors. In a very simple and cost-effective optical setup using injection current modulation of a laser diode source, interferometric measurement of acoustic wave propagation in a metal rod is used to demonstrate the capabilities of the technique.

  10. Elastic characterization of isotropic materials by a single test based on the experimental determination of natural frequencies using laser interferometry

    SciTech Connect

    Bayon, A.; Varade, A.; Gascon, F.

    1997-04-01

    An experimental method is proposed for the elastic characterization of an isotropic material based upon the vibration natural frequencies recorded by means of a single assembly and experiment. Speckle heterodyne optic interferometry is applied to detect the tangential component of the vibration at a point. The sample is a slender rod excited through a broad-spectrum percussion, where the vibration recorded is a superposition of the transverse and torsional natural modes. Spectral analysis of the vibration allows the identification of the transverse and torsional natural frequencies. This is followed by calculation of the elastic moduli. {copyright} {ital 1997 Acoustical Society of America.}

  11. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  12. Phonon counting and intensity interferometry of a nanomechanical resonator.

    PubMed

    Cohen, Justin D; Meenehan, Seán M; MacCabe, Gregory S; Gröblacher, Simon; Safavi-Naeini, Amir H; Marsili, Francesco; Shaw, Matthew D; Painter, Oskar

    2015-04-23

    In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 ± 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.

  13. Phonon counting and intensity interferometry of a nanomechanical resonator

    NASA Astrophysics Data System (ADS)

    Cohen, Justin D.; Meenehan, Seán M.; Maccabe, Gregory S.; Gröblacher, Simon; Safavi-Naeini, Amir H.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar

    2015-04-01

    In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.

  14. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  15. Phase-Shift Interferometry with a Digital Photocamera

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe

    2007-01-01

    A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)

  16. Practical aspects of laser holographic interferometry in wind tunnels

    NASA Technical Reports Server (NTRS)

    Licursi, J.; Lee, G.

    1985-01-01

    Practical aspects of using laser holographic interferometry in some NASA Ames wind tunnels are presented. These aspects include the development of techniques for dual-plate interferometry, optics alignment, and laser alignment. In addition, methods to alleviate problems associated with vibration, photographic processing, photographic drying, and photographic reconstruction are discussed.

  17. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    response and the reflection response for a 1D multilayer structure, and next 3D approach (Wapenaar 2004). As a result of this seismic interferometry experiment the 3D reflectivity model (frequencies and resolution ranges) was obtained. We proved also that the seismic interferometry approach can be applied in asynchronous seismic auscultation. The reflections detected in the virtual seismic sections are in agreement with the geological features encountered during the excavation of the tunnel and also with the petrophysical properties and parameters measured in previous geophysical borehole logging. References Claerbout J.F., 1968. Synthesis of a layered medium from its acoustic transmision response. Geophysics, 33, 264-269 Flavio Poletto, Piero Corubolo and Paolo Comeli.2010. Drill-bit seismic interferometry whith and whitout pilot signals. Geophysical Prospecting, 2010, 58, 257-265. Wapenaar, K., J. Thorbecke, and D. Draganov, 2004, Relations between reflection and transmission responses of three-dimensional inhomogeneous media: Geophysical Journal International, 156, 179-194.

  18. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  19. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    NASA Astrophysics Data System (ADS)

    Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan

    2016-04-01

    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).

  20. Feasibility of satellite interferometry for surveillance, navigation, and traffic control

    NASA Technical Reports Server (NTRS)

    Gopalapillai, S.; Ruck, G. T.; Mourad, A. G.

    1976-01-01

    The feasibility of using a satellite borne interferometry system for surveillance, navigation, and traffic control applications was investigated. The evaluation was comprised of: (1) a two part systems analysis (software and hardware); (2) a survey of competitive navigation systems (both experimental and planned); (3) a comparison of their characteristics and capabilities with those of an interferometry system; and (4) a limited survey of potential users to determine the variety of possible applications for the interferometry system and the requirements which it would have to meet. Five candidate or "strawman" interferometry systems for various applications with various capabilities were configured (on a preliminary basis) and were evaluated. It is concluded that interferometry in conjunction with a geostationary satellite has an inherent ability to provide both a means for navigation/position location and communication. It offers a very high potential for meeting a large number of user applications and requirements for navigation and related functions.

  1. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  2. What Is an Acoustic Neuroma

    MedlinePlus

    ... Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, is a rare benign tumor of the ... Acoustic Neuroma? An acoustic neuroma, known as a vestibular schwannoma, is a benign (non-cancerous) growth that ...

  3. Acoustically Evoked Different Vibration Pattern Across the Width of the Cochlea Partition

    NASA Astrophysics Data System (ADS)

    Zha, Dingjun; Chen, Fangyi; Friderberg, Anders; Choudhury, Niloy; Nuttall, Alfred

    2011-11-01

    Using optical low coherence interferometry, the acoustically evoked vibration patterns of the basilar membrane (BM) and reticular lamina (RL) in the first turn of living guinea pigs were measured as function of the radial location. It was demonstrated that the vibration of the BM varied widely in amplitude, but little in phase across the width of the partition, while the RL had a different vibration pattern compared with the BM.

  4. Agile interferometry: a non-traditional approach

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Yaqoob, Zahid

    2004-11-01

    A new approach called agile interferometry is introduced to attain interferometric information with high sensitivity and scenario-based intelligence. Compared to traditional interferometric techniques, the proposed method thrives on dynamic control of the reference signal strength and detector integration time for efficient interferometric detection with high signal-to-noise ratio and significantly improved detected signal dynamic range capabilities. Theoretical analysis is presented with the operational methodology of the new approach. A high-speed optical attenuator is required in the interferometer reference arm to implement the proposed agile interferometer.

  5. Report on ''European Radio Interferometry School 2015''

    NASA Astrophysics Data System (ADS)

    Laing, R.; Richards, A.

    2016-03-01

    The sixth European Interferometry School (ERIS2015) was held at ESO for the first time. As usual the school was aimed at graduate students and early-career postdocs, but this year the emphasis was on enhanced wide-bandwidth interferometers covering metre to submillimetre wavebands. More than 100 participants attended ERIS2015. The topics of the school are briefly described here. They covered a wide range, from an introduction to radio interferometric techniques through packages for data reduction and analysis to hands-on workshop sessions and proposal writing.

  6. Breast cancer detection by holographic interferometry

    NASA Astrophysics Data System (ADS)

    Woisetschlaeger, Jakob; Sheffer, Daniel B.; Mikati, H.; Somasundaram, Kavitha; Loughry, C. William; Chawla, Surendra K.; Wesolowski, Piotr J.

    1993-02-01

    The overall breast cancer mortality rate has remained unchanged the last 50 years. The most significant factor in the treatment is its early detection which will alter the mortality rate. In this investigation, the feasibility of holographic interferometry for the purpose of detecting breast cancer was examined. Optical setups were developed to enable the collection of holographic interferograms in vivo of asymptomatic breasts and those containing cancerous lesions. Different stressing concepts of holographic nondestructive testing and their applicability for the detection of breast cancer were tested.

  7. Phase shifting interferometry of cold atoms.

    PubMed

    Ku, Tzu-Ping; Huang, Chi-Yuan; Shiau, Bor-Wen; Han, Dian-Jiun

    2011-02-14

    We propose a scheme to engage phase shifting interferometry on cold atomic samples and present the simulation results under several experimentally achievable conditions nowadays. This method allows far-detuning, low power probing, and is intrinsically nondestructive. This novel detection means yields image quality superior to the conventional phase contrast imaging at certain conditions and could be experimentally realized. Furthermore, the longitudinal resolution of imaging by this manner is mainly set by optical interference and can be better than the diffraction limit. This scheme also provides special advantages to diagnose the surface-trapped clouds, with which phase imaging on the fabricated wires and atoms altogether is possible as well.

  8. Damage Detection Using Holography and Interferometry

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2003-01-01

    This paper reviews classical approaches to damage detection using laser holography and interferometry. The paper then details the modern uses of electronic holography and neural-net-processed characteristic patterns to detect structural damage. The design of the neural networks and the preparation of the training sets are discussed. The use of a technique to optimize the training sets, called folding, is explained. Then a training procedure is detailed that uses the holography-measured vibration modes of the undamaged structures to impart damage-detection sensitivity to the neural networks. The inspections of an optical strain gauge mounting plate and an International Space Station cold plate are presented as examples.

  9. The critical angle in seismic interferometry

    USGS Publications Warehouse

    Van Wijk, K.; Calvert, A.; Haney, M.; Mikesell, D.; Snieder, R.

    2008-01-01

    Limitations with respect to the characteristics and distribution of sources are inherent to any field seismic experiment, but in seismic interferometry these lead to spurious waves. Instead of trying to eliminate, filter or otherwise suppress spurious waves, crosscorrelation of receivers in a refraction experiment indicate we can take advantage of spurious events for near-surface parameter extraction for static corrections or near-surface imaging. We illustrate this with numerical examples and a field experiment from the CSM/Boise State University Geophysics Field Camp.

  10. Atom interferometry with polarizing beam splitters

    NASA Astrophysics Data System (ADS)

    Hinderthür, H.; Pautz, A.; Ruschewitz, F.; Sengstock, K.; Ertmer, W.

    1998-06-01

    A special kind of atomic beam splitter using a four-level atomic system in combination with polarized light fields is demonstrated. These specific atom optical elements are used to operate an atom interferometer where the beam-splitting mechanism acts selectively on specific paths only and therefore allows for several different interferometer geometries. Based on a Ramsey-Bordé configuration, the experimental data show considerably better accuracy and a contrast enhanced by 65% compared to the two-level interferometer. Our concept appears to be especially interesting in the context of metrological aspects in matter-wave interferometry.

  11. A simple laser system for atom interferometry

    NASA Astrophysics Data System (ADS)

    Merlet, S.; Volodimer, L.; Lours, M.; Pereira Dos Santos, F.

    2014-07-01

    We present here a simple laser system for a laser-cooled atom interferometer, where all functions (laser cooling, interferometry and detection) are realized using only two extended cavity laser diodes, amplified by a common tapered amplifier. One laser is locked by frequency modulation transfer spectroscopy, the other being phase locked with an offset frequency determined by an field-programmable gate array-controlled direct digital synthesizer, which allows for efficient and versatile tuning of the laser frequency. Raman lasers are obtained with a double pass acoustooptic modulator. We demonstrate a gravimeter using this laser system, with performances close to the state of the art.

  12. Space Interferometry Mission: Measuring the Universe

    NASA Technical Reports Server (NTRS)

    Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

    1991-01-01

    The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

  13. Probing dark energy with atom interferometry

    SciTech Connect

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A. E-mail: Edmund.Copeland@nottingham.ac.uk

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  14. Moire interferometry for vibration analysis of plates

    NASA Astrophysics Data System (ADS)

    Asundi, A.; Cheung, M. T.

    1987-12-01

    Moire interferometry is used to locate nodal regions and measure vibration amplitudes of sinusoidally vibrating square plates. The high sensitivity afforded by this technique makes possible the study of plate vibrations at high frequencies and low amplitudes. The initial pattern is modulated by the zero-order Bessel function representing the vibratory motion. The fringe (or fringes) with best contrast indicate the nodal regions, while the higher order fringes, describing loci of points vibrating with the same amplitude, have decreasing contrast which is improved by spatial filtering.

  15. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  16. Acoustic Neuroma Educational Video

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  17. Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering

    SciTech Connect

    Gusev, Vitalyi E.

    2014-08-14

    In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range.

  18. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  19. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  20. Spaceborne radar interferometry for coastal DEM construction

    USGS Publications Warehouse

    Hong, S.-H.; Lee, C.-W.; Won, J.-S.; Kwoun, Oh-Ig; Lu, Zhiming

    2005-01-01

    Topographic features in coastal regions including tidal flats change more significantly than landmass, and are characterized by extremely low slopes. High precision DEMs are required to monitor dynamic changes in coastal topography. It is difficult to obtain coherent interferometric SAR pairs especially over tidal flats mainly because of variation of tidal conditions. Here we focus on i) coherence of multi-pass ERS SAR interferometric pairs and ii) DEM construction from ERS-ENVISAT pairs. Coherences of multi-pass ERS interferograms were good enough to construct DEM under favorable tidal conditions. Coherence in sand dominant area was generally higher than that in muddy surface. The coarse grained coastal areas are favorable for multi-pass interferometry. Utilization of ERS-ENVISAT interferometric pairs is taken a growing interest. We carried out investigation using a cross-interferometric pair with a normal baseline of about 1.3 km, a 30 minutes temporal separation and the height sensitivity of about 6 meters. Preliminary results of ERS-ENVISAT interferometry were not successful due to baseline and unfavorable scattering conditions. ?? 2005 IEEE.

  1. Is Space-based Interferometry Dead?

    NASA Astrophysics Data System (ADS)

    Leisawitz, David; Benford, D.; Blain, A.; Carr, J.; Fich, M.; Fischer, J.; Goldsmith, P.; Greaves, J.; Griffin, M.; Helou, G.; Ivison, R.; Kuchner, M.; Lyon, R.; Matsuo, H.; Rinehart, S. A.; Serabyn, E.; Shibai, H.; Silverberg, R.; Staguhn, J.; Unwin, S.; Wilner, D.; Wootten, A.; Wright, E. L.

    2011-05-01

    In the wake of the Decadal Survey and a January 2011 meeting of NASA's Exoplanet Exploration Program Analysis Group (ExoPAG), one might be tempted to conclude that space interferometry is dead. We explain why this slogan is hyperbole, summarize the steps currently being taken to prepare for a space-based far-IR interferometer, and reiterate the science case for an imaging and spectroscopic interferometer - SPIRIT - that would operate in space at long infrared wavelengths. Space-based interferometry is alive and well, but the center of activity has shifted to a spectral region (25 to 400 microns) in which no alternative measurement technique can provide information essential to answering several scientific questions deemed compelling by the Decadal Survey. Astrophysicists will use SPIRIT to: discover how the conditions for habitability arise during planetary system formation; find and characterize exoplanets by measuring their sculpting effects on protoplanetary and debris disks; and study the formation, merger history, and star formation history of galaxies.

  2. Interferometry-based Kolsky bar apparatus

    NASA Astrophysics Data System (ADS)

    Avinadav, C.; Ashuach, Y.; Kreif, R.

    2011-07-01

    A new experimental approach of the Kolsky bar system using optical interferometry is presented for determination of dynamic behavior of materials. Conventional measurements in the Kolsky bar system are based on recording the strain histories on the incident and transmitter bars with two strain gauges, and require good adhesion between the gauge and the bar. We suggest an alternative approach, based on measuring the actual velocities of the bars by using fiber-based velocity interferometry. Two fiber focusers illuminate the bars at a small angle and collect reflected Doppler-shifted light, which is interfered with a reference beam. Velocities are calculated from short-time Fourier transform and phase-based analysis, and the dynamic stress-strain curve is derived directly from the measured velocity traces. We demonstrate that the results coincide with those obtained by conventional strain gauge measurements. The new method is non-intervening and thus not affected by bar impacts, making it more robust and reliable than strain gauges.

  3. Testing the equivalence principle with atomic interferometry

    NASA Astrophysics Data System (ADS)

    Herrmann, Sven; Dittus, Hansjörg; Lämmerzahl, Claus; pre="the" post=""> QUANTUS,

    2012-09-01

    The weak equivalence principle (WEP), that is, the universality of free fall, states that all point-like neutral particles in a gravitational field fall in the same way. This is the basis of the geometrization of the gravitational interaction. Together with further requirements on the behavior of point particles, light propagation and clocks one can show that gravity is modeled by a Riemannian geometry. Since in the quantum domain all objects are extended, it is not clear whether the notion of a WEP in the quantum domain makes sense at all. We show that for matter wave interferometry the notion of WEP still can be given a meaning. We give a short overview over schemes which allows a violation of the WEP and emphasize that there are also schemes which show that there might be violations of the WEP in the quantum regime which are not present classically. This makes a test of the WEP with quantum matter necessary. We also give a brief outline of the efforts made for testing the WEP with interferometry with cold atoms in the Bremen drop tower carried out by the QUANTUS and PRIMUS collaboration.

  4. Diffusion in solids with holographic interferometry

    NASA Astrophysics Data System (ADS)

    Liu, Dingyu

    1996-12-01

    It is of great importance for the formation of p-n junction in semiconductors by penetrating some impurities through the depth near the surface, so it has long been paid attention to control the concentration distribution of impurities during the diffusion process. In recent years, ionic carburizing, and ion bombardment penetration etc. for the treatment of metal surface have also attracted by material sciences. It requires that the diffusion depth and the diffusion time of the impurities should be under precise control. Different methods, such as the method of radioisotopic detection and the method of chemical analysis have been adopted, however, the reports of different workers are very different, especially in the real time measurement, so, finding new method is never ending. In 1984, H. Fenichel have performed experiments on the solutions of table salt and sugar with the method of holographic interferometry. As for metals which are opaque for the visible light, but they become transparent by making them into a very thin film so that, in principle, the diffusion of atoms within a film is capable of measure by holographic interferometry. Alternatively, the electromagnetic waves within 1 - 70 micrometers wavelengths may be utilized, some materials, such as high purified germanium and silicon are good materials for infrared transmission. Some fluorides of alkaline-earth metals have high transmittance in the range of 1 - 8 micrometers , the concentration of impurities in the semiconductor and metal surface treatment are of 1015 - 1020 atoms per cubic cm, which is capable of detection.

  5. Speckle interferometry of nearby multiple stars

    NASA Astrophysics Data System (ADS)

    Balega, I. I.; Balega, Y. Y.; Hofmann, K.-H.; Maksimov, A. F.; Pluzhnik, E. A.; Schertl, D.; Shkhagosheva, Z. U.; Weigelt, G.

    2002-04-01

    We present the results of diffraction-limited optical speckle interferometry and infrared bispectrum speckle interferometry of 111 double and 10 triple systems performed in 1998-1999 with the 6-m telescope of the Special Astrophysical Observatory in Zelenchuk. The observations concentrated on nearby close binaries discovered during the Hipparcos mission. Many nearby fast-orbiting low-mass binaries known before Hipparcos were also included in the program. New companions were first resolved in 4 systems: HIP 5245, ADS 3179, Kui 99, and ADS 16138. In addition to accurate relative positions, magnitude differences were measured for most of the pairs. We combined our results with the Hipparcos parallaxes to derive absolute magnitudes and spectral types for 63 binaries and 4 triples. Preliminary orbital elements and the mass-sum are derived for HIP 689, and improved orbits are presented for HIP 16602 (CHR 117) and HIP 21280 (CHR 17). Based on data collected at the Special Astrophysical Observatory, Russia Table 1 is only, and Table 2 also, available in electronic form at the CDS via anonymons ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/385/87

  6. Stellar Interferometry from the Ground and Space

    NASA Technical Reports Server (NTRS)

    Danchi, William C.; Oegerle, William (Technical Monitor)

    2002-01-01

    Stellar Interferometry began more than 80 years ago with the pioneering measurement of the diameter of Betelqueuse by Michelson and Pease using a 20 foot beam mounted at the top of the 10011 Hooker telescope at Mt. Wilson. Essentially no other work was done in this field until the 1960's when Hanbury-Brown and his colleagues developed and used the Intensity Interferometer at Narrabri, Australia to measure the diameters of a number of important hot stars. The modern period of Stellar Interferometry really began in the 1970's with the successes of 3 or 4 small research groups in the US and Europe, and scientific and technical progress in the field has been outstanding, particularly in the last decade. This has lead to the development of two major ground based facilities: NASA's own Keck Interferometer and ESO's Very Large Telescope Interferometer, and a number of space interferometers such as the Space Interferometer Mission (SIM), and the Terrestrial Planet Finder (TPF), among others. I will review the principles, history, and scientific progress in the field both on the ground and in space, and I will discuss a mission concept under development here at NASA Goddard, the Fourier-Kelvin Stellar Interferometer, a near-term mid-infrared imaging interferometer, which can serve as a scientific and technical pre-cursor for some of the more ambitious concepts being discussed within the Astronomical and NASA communities.

  7. The Wide-Field Imaging Interferometry Testbed: Recent Progress

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.

  8. Applications of speckle interferometry to civil engineering in Cuba

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pena, Rolando; Cibrian-Ortiz de Anda, Rosa M.; Marti-Lopez, Luis

    2003-05-01

    Speckle interferometry has been introduced in Civil Engineering at CUJAE in 1988 as a useful technique in research work. This paper describes some applications of speckle interferometry in civil engineering. Speckle photography has been utilized to study deformation in shearwalls, and also studding of behavior building model under concentrate loading. Displacements were numerically calculated using a finite element method. Electronic Speckle Pattern Interferometry (ESPI) has been used for the measurement of the Young's modulus in mortars and concrete. Obtained values of the Young's modulus are in good agreement with reported for mortars or measured by a static compressive technique for concrete.

  9. Calibration and imaging algorithms for full-Stokes optical interferometry

    NASA Astrophysics Data System (ADS)

    Elias, Nicholas M.; Mozurkewich, David; Schmidt, Luke M.; Jurgenson, Colby A.; Edel, Stanislav S.; Jones, Carol E.; Halonen, Robert J.; Schmitt, Henrique R.; Jorgensen, Anders M.; Hutter, Donald J.

    2012-07-01

    Optical interferometry and polarimetry have separately provided new insights into stellar astronomy, especially in the fields of fundamental parameters and atmospheric models. Optical interferometers will eventually add full-Stokes polarization measuring capabilities, thus combining both techniques. In this paper, we: 1) list the observables, calibration quantities, and data acquisition strategies for both limited and full optical interferometric polarimetry (OIP); 2) describe the masking interferometer AMASING and its polarization measuring enhancement called AMASING-POL; 3) show how a radio interferometry imaging package, CASA, can be used for optical interferometry data reduction; and 4) present imaging simulations for Be stars.

  10. Status of holographic interferometry at Wright Patterson Air Force Base

    NASA Technical Reports Server (NTRS)

    Seibert, George

    1987-01-01

    At Wright Patterson AFB, holographic interferometry has been used for nearly 15 years in a variety of supersonic and hypersonic wind tunnels. Specifically, holographic interferometry was used to study boundary layers, shock boundary layer interaction, and general flow diagnostics. Although a considerable amount of quantitative work was done, the difficulty of reducing data severely restricted this. In the future, it is of interest to use holographic interferometry in conjunction with laser Doppler velocimetry to do more complete diagnostics. Also, there is an interest to do particle field diagnostics in the combustion research facility. Finally, there are efforts in nondestructive testing where automated fringe readout and analysis would be extremely helpful.

  11. ACOUSTICAL STANDARDS NEWS.

    PubMed

    Stremmel, Neil; Struck, Christopher J

    2016-07-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27475185

  12. Observations of Circumstellar Disks with Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel

    2008-01-01

    Star formation is arguably the area of astrophysics in which infrared interferometry has had the biggest impact. The optically thick portion of T Tauri and Herbig Ae/Be disks DO NOT extend to a few stellar radii of the stellar surface. Emission is coming from near the dust sublimation radius, but not all from a single radius. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. Observational prospects are rapidly improving: a) Higher spectral resolution will allow observations of the gas: jets, winds, accretion. b) Closure phase and imaging will help eliminate model uncertainties/dependencies.

  13. Refractive index determination by coherence scanning interferometry.

    PubMed

    Yoshino, H; Kaminski, P M; Smith, R; Walls, J M; Mansfield, D

    2016-05-20

    Coherence scanning interferometry is established as a powerful noncontact, three-dimensional, metrology technique used to determine accurate surface roughness and topography measurements with subnanometer precision. The helical complex field (HCF) function is a topographically defined helix modulated by the electrical field reflectance, originally developed for the measurement of thin films. An approach to extend the capability of the HCF function to determine the spectral refractive index of a substrate or absorbing film has recently been proposed. In this paper, we confirm this new capability, demonstrating it on surfaces of silicon, gold, and a gold/palladium alloy using silica and zirconia oxide thin films. These refractive index dispersion measurements show good agreement with those obtained by spectroscopic ellipsometry. PMID:27411157

  14. Polarization Effects Aboard the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard

    2006-01-01

    For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.

  15. In situ mechanical interferometry of matrigel films.

    PubMed

    Reed, Jason; Walczak, Wanda J; Petzold, Odessa N; Gimzewski, James K

    2009-01-01

    Many biological materials and cell substrates are very soft (Young's modulus <500 Pa) and it is difficult to characterize their mechanical properties. Here we report local elasticity of the surface layers of Matrigel films used for cell culture. We used a new measurement technology, mechanical imaging interferometry, to obtain point mechanical measurements over micron-sized areas. The median values of 650 +/- 400 Pa (# measurements, n = 50), determined by the Hertz contact model, agree well with bulk measurements; however, on the microscale, the films were heterogeneous and contained regions distinctly stiffer than average (1-2 kPa). The first measurement of yield strengths of 170 +/- 100 Pa (n = 43) indicates that Matrigel films deform plastically at stress levels of similar scale to cell tractional forces.

  16. Speckle interferometry of asteroids. I - 433 Eros

    NASA Technical Reports Server (NTRS)

    Drummond, J. D.; Cocke, W. J.; Hege, E. K.; Strittmatter, P. A.; Lambert, J. V.

    1985-01-01

    Analytical expressions are derived for the semimajor and semiminor axes and orientation angle of the ellipse projected by a triaxial asteroid, and the results are applied speckle-interferometry observations of the 433 Eros asteroid. The expressions were calculated as functions of the dimensions and pole of the body and of the asterocentric position of the earth and the sun. On the basis of the analytical expressions, the dimensions of 433 Eros are obtained. The light curve from December 18, 1981 is compared to the dimensions to obtain a geometric albedo of 0.156 (+ or - 0.010). A series of two-dimensional power spectra and autocorrelation functions for 433 Eros show that it is spinning in space.

  17. Hydroxyl density measurements with resonant holographic interferometry

    SciTech Connect

    Trolinger, J.D.; Hess, C.F.; Yip, B.; Battles, B.; Hanson, R.K. Stanford University, CA )

    1992-01-01

    This paper describes experimentation with a new type of flow diagnostics referred to as Resonant Holographic Interferometry Spectroscopy (RHIS). This technique combines the power of holography with the species selectivity of spectroscopy to provide three-dimensional images of the density profile of selected species in complex flows. The technique is particularly suitable to study mixing processes as well as to measure minor species in combustion processes. The method would allow the measurement of minor species in the presence of major species, as well as major species in a heterogeneous low pressure environment. Both experiments and modeling are being conducted to establish the feasibility of RHIS in measuring the hydroxyl concentrations in combustion processes. It is expected that in addition to the species concentration, the resonant holographic technique has the potential of providing temperature, pressure, and flow velocity. 28 refs.

  18. Optics and interferometry with atoms and molecules

    SciTech Connect

    Cronin, Alexander D.; Schmiedmayer, Joerg; Pritchard, David E.

    2009-07-15

    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review the basic tools for coherent atom optics are described including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on atom chips. Scientific advances in a broad range of fields that have resulted from the application of atom interferometers are reviewed. These are grouped in three categories: (i) fundamental quantum science, (ii) precision metrology, and (iii) atomic and molecular physics. Although some experiments with Bose-Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e., phenomena where each single atom interferes with itself.

  19. Sagnac Interferometry with a Single Atomic Clock.

    PubMed

    Stevenson, R; Hush, M R; Bishop, T; Lesanovsky, I; Fernholz, T

    2015-10-16

    The Sagnac effect enables interferometric measurements of rotation with high precision. Using matter waves instead of light promises resolution enhancement by orders of magnitude that scales with particle mass. So far, the paradigm for matter wave Sagnac interferometry relies on de Broglie waves and thus on free propagation of atoms either in free fall or within waveguides. However, the Sagnac effect can be expressed as a proper time difference experienced by two observers moving in opposite directions along closed paths and has indeed been measured with atomic clocks flown around Earth. Inspired by this, we investigate an interferometer comprised of a single atomic clock. The Sagnac effect manifests as a phase shift between trapped atoms in different internal states after transportation along closed paths in opposite directions, without any free propagation. With analytic models, we quantify limitations of the scheme arising from atomic dynamics and finite temperature. Furthermore, we suggest an implementation with previously demonstrated technology.

  20. Aperture-synthesis interferometry at optical wavelengths

    NASA Technical Reports Server (NTRS)

    Burke, Bernard F.

    1987-01-01

    The prospects for applying aperture-synthesis interferometry to the optical domain are reviewed. The radio examples such as the VLA provide a model, since the concepts are equally valid for radio and optical wavelengths. If scientific problems at the milliarc-second resolution level (or better) are to be addressed, a space-based optical array seems to be the only practical alternative, for the same reasons that dictated array development at radio wavelengths. One concept is examined, and speculations are offered concerning the prospects for developing real systems. Phase-coherence is strongly desired for a practical array, although self-calibration and phase-closure techniques allow one to relax the restriction on absolute phase stability. The design of an array must be guided by the scientific problems to be addressed.

  1. Transonic flow visualization using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Bryanston-Cross, Peter J.

    1987-01-01

    An account is made of some of the applications of holographic interferometry to the visualization of transonic flows. In the case of the compressor shock visualization, the method is used regularly and has moved from being a research department invention to a design test tool. With the implementation of automatic processing and simple digitization systems, holographic vibrational analysis has also moved into routine nondestructive testing. The code verification interferograms were instructive, but the main turbomachinery interest is now in 3 dimensional flows. A major data interpretation effort will be required to compute tomographically the 3 dimensional flow around the leading or the trailing edges of a rotating blade row. The bolt on approach shows the potential application to current unsteady flows of interest. In particular that of the rotor passing and vortex interaction effects is experienced by the new generation of unducted fans. The turbocharger tests presents a new area for the application of holography.

  2. Quantum interferometry with three-dimensional geometry

    PubMed Central

    Spagnolo, Nicolò; Aparo, Lorenzo; Vitelli, Chiara; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Mataloni, Paolo; Sciarrino, Fabio

    2012-01-01

    Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include “tritter” and “quarter” as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonics. PMID:23181189

  3. Moire interferometry for thermal expansion of composites

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.; Post, D.; Herakovich, C. T.

    1982-01-01

    Moire interferometry by reflection is described and demonstrated for the case of a real reference grating of 1200 lines/mm. Extraneous beams can be displaced and stopped by using a wedge-shaped air gap between reference and specimen gratings. Double-order dominance, the use of diffraction sequences for reflection, the isolation of preferred sequences, and the use of two-beam interference are discussed. Experimental accuracy is enhanced significantly by using several data points to establish displacements along a line, and random errors characterized by one standard deviation can be as small as one microstrain. The method is well adapted to thermal environments, coefficients of thermal expansion of selected graphite-epoxy laminates being determined in the temperature range of 297-422 K. Very good precision was achieved for a wide range of thermal expansion coefficients, from approximately zero to 27 microstrains/K.

  4. Sagnac Interferometry with a Single Atomic Clock.

    PubMed

    Stevenson, R; Hush, M R; Bishop, T; Lesanovsky, I; Fernholz, T

    2015-10-16

    The Sagnac effect enables interferometric measurements of rotation with high precision. Using matter waves instead of light promises resolution enhancement by orders of magnitude that scales with particle mass. So far, the paradigm for matter wave Sagnac interferometry relies on de Broglie waves and thus on free propagation of atoms either in free fall or within waveguides. However, the Sagnac effect can be expressed as a proper time difference experienced by two observers moving in opposite directions along closed paths and has indeed been measured with atomic clocks flown around Earth. Inspired by this, we investigate an interferometer comprised of a single atomic clock. The Sagnac effect manifests as a phase shift between trapped atoms in different internal states after transportation along closed paths in opposite directions, without any free propagation. With analytic models, we quantify limitations of the scheme arising from atomic dynamics and finite temperature. Furthermore, we suggest an implementation with previously demonstrated technology. PMID:26550871

  5. Low Coherence Interferometry in Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Neef, A.; Seyda, V.; Herzog, D.; Emmelmann, C.; Schönleber, M.; Kogel-Hollacher, M.

    Selective Laser Melting (SLM) is an additive layer manufacturing technology that offers several advantages compared to conven- tional methods of production such as an increased freedom of design and a toolless production suited for variable lot sizes. Despite these attractive aspects today's state of the art SLM machines lack a holistic process monitoring system that detects and records typical defects during production. A novel sensor concept based on the low coherence interferometry (LCI) was integrated into an SLM production setup. The sensor is mounted coaxially to the processing laser beam and is capable of sampling distances along the optical axis. Measurements during and between the processing of powder layers can reveal crucial topology information which is closely related to the final part quality. The overall potential of the sensor in terms of quality assurance and process control is being discussed. Furthermore fundamental experiments were performed to derive the performance of the system.

  6. Externally Dispersed Interferometry for Precision Radial Velocimetry

    SciTech Connect

    Erskine, D J; Muterspaugh, M W; Edelstein, J; Lloyd, J; Herter, T; Feuerstein, W M; Muirhead, P; Wishnow, E

    2007-03-27

    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.

  7. Apparatus for Ultra-Cold Fermion Interferometry

    NASA Astrophysics Data System (ADS)

    Aubin, Seth; Garcia, Aiyana; Desalvo, Brian

    2008-05-01

    We present progress on the construction of an apparatus for ultra-cold fermion interferometry experiments. The apparatus consists of two connected glass vacuum cells: Fermionic potassium (^40K) and bosonic rubidium (^87Rb) atoms are cooled and collected in a dual-species magneto-optical trap (MOT) in the first cell and are then transported magnetically to the second cell, where they are loaded into a micro-magnetic chip trap. We use radio-frequency (RF) evaporation to cool the rubidium atoms, which in turn sympathetically cool the potassium atoms. The apparatus takes advantage of the rapid cooling inherent to micro-magnetic traps, while also benefiting from the ultra high vacuum achievable with a two chamber vacuum system. In describing our experimental approach, we address the experimental challenges and possible force-sensing applications of fermion interferometers on chips.

  8. Speckle interferometry of nearby multiple stars. II.

    NASA Astrophysics Data System (ADS)

    Balega, I.; Balega, Y. Y.; Maksimov, A. F.; Pluzhnik, E. A.; Schertl, D.; Shkhagosheva, Z. U.; Weigelt, G.

    2004-08-01

    This paper is a continuation of diffraction-limited speckle interferometry of binary and multiple stars carried out at the 6-m telescope of the Special Astrophysical Observatory in Zelenchuk. The program has concentrated on nearby (π>10 mas) close binaries discovered or measured during the Hipparcos mission. Here, we present 132 measurements of relative positions and magnitude differences for 99 pairs and 8 measurements for 6 triple systems. 54 entries in the paper are new Hipparcos binaries. New triple systems with late-type dwarf components, discovered in the course of observations, are HIP 8533 and HIP 25354. Based on data collected at the Special Astrophysical Observatory, Russia. {Tables 1-3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/422/627

  9. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  10. Determination of thin hydrodynamic lubricating film thickness using dichromatic interferometry.

    PubMed

    Guo, L; Wong, P L; Guo, F; Liu, H C

    2014-09-10

    This paper introduces the application of dichromatic interferometry for the study of hydrodynamic lubrication. In conventional methods, two beams with different colors are projected consecutively on a static object. By contrast, the current method deals with hydrodynamic lubricated contacts under running conditions and two lasers with different colors are projected simultaneously to form interference images. Dichromatic interferometry incorporates the advantages of monochromatic and chromatic interferometry, which are widely used in lubrication research. This new approach was evaluated statically and dynamically by measuring the inclination of static wedge films and the thickness of the hydrodynamic lubricating film under running conditions, respectively. Results show that dichromatic interferometry can facilitate real-time determination of lubricating film thickness and is well suited for the study of transient or dynamic lubricating problems. PMID:25321689

  11. Application of stroboscopic and pulsed-laser electronic speckle pattern interferometry (ESPI) to modal analysis problems

    NASA Astrophysics Data System (ADS)

    Van der Auweraer, H.; Steinbichler, H.; Vanlanduit, S.; Haberstok, C.; Freymann, R.; Storer, D.; Linet, V.

    2002-04-01

    Accurate structural models are key to the optimization of the vibro-acoustic behaviour of panel-like structures. However, at the frequencies of relevance to the acoustic problem, the structural modes are very complex, requiring high-spatial-resolution measurements. The present paper discusses a vibration testing system based on pulsed-laser holographic electronic speckle pattern interferometry (ESPI) measurements. It is a characteristic of the method that time-triggered (and not time-averaged) vibration images are obtained. Its integration into a practicable modal testing and analysis procedure is reviewed. The accumulation of results at multiple excitation frequencies allows one to build up frequency response functions. A novel parameter extraction approach using spline-based data reduction and maximum-likelihood parameter estimation was developed. Specific extensions have been added in view of the industrial application of the approach. These include the integration of geometry and response information, the integration of multiple views into one single model, the integration with finite-element model data and the prior identification of the critical panels and critical modes. A global procedure was hence established. The approach has been applied to several industrial case studies, including car panels, the firewall of a monovolume car, a full vehicle, panels of a light truck and a household product. The research was conducted in the context of the EUREKA project HOLOMODAL and the Brite-Euram project SALOME.

  12. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  13. A Possible Future for Space-Based Interferometry

    NASA Technical Reports Server (NTRS)

    Labadie, L.; Leger, A.; Malbet, F.; Danchi, William C.; Lopez, B.

    2013-01-01

    We address the question of space interferometry following the recent outcome of the science themes selection by ESA for the L2/L3 missions slots. We review the current context of exoplanetary sciences and its impact for an interferometric mission. We argue that space interferometry will make a major step forward when the scientific communities interested in this technique will merge their efforts into a coherent technology development plan.

  14. Liquid Helium Acoustic Microscope.

    NASA Astrophysics Data System (ADS)

    Steer, Andrew Paul

    Available from UMI in association with The British Library. In an acoustic microscope, images are generated by monitoring the intensity of the ultrasonic reflection, or echo, from the surface of a sample. In order to achieve this a pulse of acoustic energy is produced by the excitation of a thin film transducer. The pulse thus generated propagates through a crystal and is incident upon the acoustic lens surface, which is the boundary between the crystal and an acoustic coupling liquid. The acoustic lens is a converging element, and brings the ultrasonic beam to a focus within the liquid. A sample, placed at the focus, can act as a reflector, and the returned pulse then contains information regarding the acoustic reflectivity of this specimen. Acoustic pulses are repeatedly launched and detected while the acoustic lens is scanned over the surface of the sample. In this manner an acoustic image is constructed. Acoustic losses in room temperature liquid coupling media represent a considerable source of difficulty in the recovery of acoustic echo signals. At the frequencies of operation required in a microscope which is capable of high resolution, the ultrasonic attenuation is not only large but increases with the square of frequency. In superfluid liquid helium at temperatures below 0.1 K, however, the ultrasonic attenuation becomes negligible. Furthermore, the low sound velocity in liquid helium results in an increase in resolution, since the acoustic wavelength is proportional to velocity. A liquid helium acoustic microscope has been designed and constructed. Details of the various possible detection methods are given, and comparisons are made between them. Measurements of the performance of the system that was adopted are reported. The development of a cooled preamplifier is also described. The variation of reflected signal with object distance has been measured and compared with theoretical predictions. This variation is important in the analysis of acoustic

  15. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  16. Acoustic Levitator Maintains Resonance

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.

    1986-01-01

    Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.

  17. Full-Field Imaging of GHz Film Bulk Acoustic Resonator Motion

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Cottle, David Lynn; Larson III, J. D.

    2003-10-01

    A full-field view laser ultrasonic imaging method has been developed that measures acoustic motion at a surface without scanning. Images are recorded at normal video frame rates by using dynamic holography with photorefractive interferometric detection. By extending the approach to ultra high frequencies, an acoustic microscope has been developed that is capable of operation at gigahertz frequency and micron length scales. Both acoustic amplitude and phase are recorded, allowing full calibration and determination of phases to within a single arbitrary constant. Results are presented of measurements at frequencies of 800-900 MHz, illustrating a multitude of normal mode behavior in electrically driven thin film acoustic resonators. Coupled with microwave electrical impedance measurements, this imaging mode provides an exceptionally fast method for evaluation of electric-to-acoustic coupling of these devices and their performance. Images of 256 /spl times/ 240 pixels are recorded at 18 fps rates synchronized to obtain both in-phase and quadrature detection of the acoustic motion. Simple averaging provides sensitivity to the subnanometer level at each pixel calibrated over the image using interferometry. Identification of specific acoustic modes and their relationship to electrical impedance characteristics show the advantages and overall high speed of the technique.

  18. Full-Field Imaging of Acoustic Motion at Nanosecond Time and Micron Length Scales

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Cottle, David Lynn; Larson III, John D.

    2002-10-01

    A full-field view laser ultrasonic imaging method has been developed that measures acoustic motion at a surface without scanning. Images are recorded at normal video frame rates by employing dynamic holography using photorefractive interferometric detection. By extending the approach to ultra high frequencies, an acoustic microscope has been developed capable of operation on the nanosecond time and micron length scales. Both acoustic amplitude and phase are recorded allowing full calibration and determination of phases to within a single arbitrary constant. Results are presented of measurements at frequencies at 800-900 MHz illustrating a multitude of normal mode behavior in electrically driven thin film acoustic resonators. Coupled with microwave electrical impedance measurements, this imaging mode provides an exceptionally fast method for evaluation of electric to acoustic coupling and performance of these devices. Images of 256x240 pixels are recorded at 18Hz rates synchronized to obtain both in-phase and quadrature detection of the acoustic motion. Simple averaging provides sensitivity to the subnanometer level calibrated over the image using interferometry. Identification of specific acoustic modes and their relationship to electrical impedance characteristics show the advantages and overall high speed of the technique.

  19. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  20. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  1. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  2. Acoustic Levitation With Less Equipment

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  3. Testing nonlinear vacuum electrodynamics with Michelson interferometry

    NASA Astrophysics Data System (ADS)

    Schellstede, Gerold O.; Perlick, Volker; Lämmerzahl, Claus

    2015-07-01

    We discuss the theoretical foundations for testing nonlinear vacuum electrodynamics with Michelson interferometry. Apart from some nondegeneracy conditions to be imposed, our discussion applies to all nonlinear electrodynamical theories of the Plebański class, i.e., to all Lagrangians that depend only on the two Lorentz-invariant scalars quadratic in the field strength. The main idea of the experiment proposed here is to use the fact that, according to nonlinear electrodynamics, the phase velocity of light should depend on the strength and on the direction of an electromagnetic background field. There are two possible experimental setups for testing this prediction with Michelson interferometry. The first possibility is to apply a strong electromagnetic field to the beam in one arm of the interferometer and to compare the situation where the field is switched on with the situation where it is switched off. The second possibility is to place the whole interferometer in a strong electromagnetic field and to rotate it. If an electromagnetic field is placed in one arm, the interferometer could have the size of a gravitational wave detector, i.e., an arm length of several hundred meters. If the whole interferometer is placed in an electromagnetic field, one would have to do the experiment with a tabletop interferometer. As an alternative to a traditional Michelson interferometer, one could use a pair of optical resonators that are not bigger than a few centimeters. Then the whole apparatus would be placed in the background field and one would either compare the situation where the field is switched on with the situation where it is switched off or one would rotate the apparatus with the field kept switched on. We derive the theoretical foundations for these types of experiments, in the context of an unspecified nonlinear electrodynamics of the Plebański class, and we discuss their feasibility. A null result of the experiment would place bounds on the parameters of the

  4. Evaluation of Homogeneity and Elastic Properties of Solid Argon at High Pressures Using Picosecond Laser Ultrasonic Interferometry

    NASA Astrophysics Data System (ADS)

    Zerr, A.; Kuriakose, M.; Raetz, S.; Chigarev, N.; Nikitin, S. M.; Gasteau, D.; Tournat, V.; Bulou, A.; Castagnede, B.; Gusev, V. E.; Lomonosov, A.

    2015-12-01

    In picosecond ultrasonic interferometry [1], femto- or picosecond pump laser pulses are first used to generate acoustic pulses ranging from several to a few tens of nanometres length, thanks to the optoacoustic transduction in a light absorbing generator. Time-delayed femto- or picosecond probe laser pulses are then used to follow the propagation of these ultrashort acoustic pulses through a transparent medium that is in contact with the generator surface. The transient signal thus contains, at each moment in time, information on the local elastic, optical and elasto-optical properties of the tested material at the position where the laser-generated picosecond acoustic pulse is located during its propagation in the sample depth. Hence, the technique allows evaluation of sound velocities and elastic anisotropy of micro-crystallites composing a transparent material compressed to high pressures in a diamond anvil cell (DAC). This interferometry technique also helps to understand the micro-crystallite orientations in a case of elastically anisotropic material. Here we report the preliminary results of picosecond ultrasonic interferometry applied to the evaluation of homogeneities and elastic properties of polycrystalline solid argon compressed to 10 GPa and 15 GPa. In comparison with the earlier reported experiments on H2O ice at Mbar pressures [2], more efforts were spent to the evaluation of the lateral microstructure of the sample at high pressures, i.e., to inhomogeneities along the surface of the optoacoustic generator, rather than to the in-depth imaging along the axis of the DAC. The lateral imaging is performed over a distance of 60 - 90 µm, nearly corresponding to the complete sample diameter. In addition to the presence of expected lateral inhomogeneities the obtained results demonstrate important changes in their distribution upon pressure increase from 10 to 15 GPa. On the basis of the analysis of the statistic probability in the detection of differently

  5. Surface acoustic BLOCH oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling in a solid.

    PubMed

    de Lima, M M; Kosevich, Yu A; Santos, P V; Cantarero, A

    2010-04-23

    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.

  6. Acoustics Critical Readiness Review

    NASA Technical Reports Server (NTRS)

    Ballard, Kenny

    2010-01-01

    This presentation reviews the status of the acoustic equipment from the medical operations perspective. Included is information about the acoustic dosimeters, sound level meter, and headphones that are planned for use while on orbit. Finally there is information about on-orbit hearing assessments.

  7. Introduction to acoustic emission

    NASA Technical Reports Server (NTRS)

    Possa, G.

    1983-01-01

    Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.

  8. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  9. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  10. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  11. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques.

  12. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  13. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  14. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  15. Acoustic integrated extinction

    PubMed Central

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100

  16. A review of connected element radio interferometry directed at establishing an almost internal reference frame

    NASA Technical Reports Server (NTRS)

    Johnston, K. J.

    1980-01-01

    The present status of connected element radio interferometry towards establishing an accurate grid of positions of extragalactic radio sources is reviewed. Many of the problems being encountered are, in general, also faced by very long baseline interferometry.

  17. Speckle reference beam holographic and speckle photographic interferometry in non-destructive test systems

    NASA Technical Reports Server (NTRS)

    Liu, H. K.

    1976-01-01

    The techniques of speckle beam holographic interferometry and speckle photographic interferometry are described. In particular, their practical limitations and their applications to the existing holographic nondestructive test system are discussed.

  18. Bounding the Higgs boson width through interferometry.

    PubMed

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  19. Experimental demonstration of deep frequency modulation interferometry.

    PubMed

    Isleif, Katharina-Sophie; Gerberding, Oliver; Schwarze, Thomas S; Mehmet, Moritz; Heinzel, Gerhard; Cervantes, Felipe Guzmán

    2016-01-25

    Experiments for space and ground-based gravitational wave detectors often require a large dynamic range interferometric position readout of test masses with 1 pm/√Hz precision over long time scales. Heterodyne interferometer schemes that achieve such precisions are available, but they require complex optical set-ups, limiting their scalability for multiple channels. This article presents the first experimental results on deep frequency modulation interferometry, a new technique that combines sinusoidal laser frequency modulation in unequal arm length interferometers with a non-linear fit algorithm. We have tested the technique in a Michelson and a Mach-Zehnder Interferometer topology, respectively, demonstrated continuous phase tracking of a moving mirror and achieved a performance equivalent to a displacement sensitivity of 250 pm/Hz at 1 mHz between the phase measurements of two photodetectors monitoring the same optical signal. By performing time series fitting of the extracted interference signals, we measured that the linearity of the laser frequency modulation is on the order of 2% for the laser source used. PMID:26832546

  20. Chameleon dark energy and atom interferometry

    NASA Astrophysics Data System (ADS)

    Elder, Benjamin; Khoury, Justin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul

    2016-08-01

    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a three-dimensional nonlinear partial differential equation. This paper calculates the chameleonic force using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the partial differential equation to a one-dimensional ordinary differential equation. We examine the effects of approximations made in previous efforts on this subject and calculate the chameleonic force in a setup that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its offset from the center, and the effects of the chamber walls. Remarkably, the acceleration on a test atomic particle is found to differ by only 20% from the approximate analytical treatment. These results allow us to place rigorous constraints on the parameter space of chameleon field theories, although ultimately the constraint we find is the same as the one we reported in Hamilton et al. because we had slightly underestimated the size of the vacuum chamber. This computational technique will continue to be useful as experiments become even more precise and will also be a valuable tool in optimizing future searches for chameleon fields and related theories.

  1. Optical interferometry from the lunar surface

    NASA Astrophysics Data System (ADS)

    Rayman, M. D.; Saunders, R. S.

    A preliminary study was conducted to determine the feasibility of a concept for a robust and expandable lunar optical interferometer that would perform new science even with the modest first element. With a phased approach, early steps verify technology for later phases. As elements are added to the observational system, astronomical observations unachievable from the surface of Earth are made possible. The initial experiment is supported by the Lunar Ultraviolet Telescope Experiment (LUTE), a 1-meter-class transit telescope. The first interferometry element, the Lunar Interferometer Technology Experiment (LITE), will perform ultraviolet astrometry and will demonstrate critical interferometer technologies (including optical delay lines and nanometer-level metrology) in the lunar environment. Subsequent elements will add capability, building on the design and performance of both LITE and LUTE. The starlight collectors will be based on the LUTE design but will be capable of being pointed. They will relay the received light to a centrally positioned beam combiner. As more collectors are added, the system will build up from an astrometric interferometer to an imaging interferometer with 100-m-class baselines. Because discrete elements are used, if any one of the collectors fails completely, the system remains functional.

  2. Multifrequency perturbations in matter-wave interferometry

    NASA Astrophysics Data System (ADS)

    Günther, A.; Rembold, A.; Schütz, G.; Stibor, A.

    2015-11-01

    High-contrast matter-wave interferometry is essential in various fundamental quantum mechanical experiments as well as for technical applications. Thereby, contrast and sensitivity are typically reduced by decoherence and dephasing effects. While decoherence accounts for a general loss of quantum information in a system due to entanglement with the environment, dephasing is due to collective time-dependent external phase shifts, which can be related to temperature drifts, mechanical vibrations, and electromagnetic oscillations. In contrast to decoherence, dephasing can, in principle, be reversed. Here, we demonstrate in experiment and theory a method for the analysis and reduction of the influence of dephasing noise and perturbations consisting of several external frequencies in an electron interferometer. This technique uses the high spatial and temporal resolution of a delay-line detector to reveal and remove dephasing perturbations by second-order correlation analysis. It allows matter-wave experiments under perturbing laboratory conditions and can be applied, in principle, to electron, atom, ion, neutron, and molecule interferometers.

  3. Clutter suppression interferometry system design and processing

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2015-05-01

    Clutter suppression interferometry (CSI) has received extensive attention due to its multi-modal capability to detect slow-moving targets, and concurrently form high-resolution synthetic aperture radar (SAR) images from the same data. The ability to continuously augment SAR images with geo-located ground moving target indicators (GMTI) provides valuable real-time situational awareness that is important for many applications. CSI can be accomplished with minimal hardware and processing resources. This makes CSI a natural candidate for applications where size, weight and power (SWaP) are constrained, such as unmanned aerial vehicles (UAVs) and small satellites. This paper will discuss the theory for optimal CSI system configuration focusing on sparse time-varying transmit and receive array manifold due to SWaP considerations. The underlying signal model will be presented and discussed as well as the potential benefits that a sparse time-varying transmit receive manifold provides. The high-level processing objectives will be detailed and examined on simulated data. Then actual SAR data collected with the Space Dynamic Laboratory (SDL) FlexSAR radar system will be analyzed. The simulated data contrasted with actual SAR data helps illustrate the challenges and limitations found in practice vs. theory. A new novel approach incorporating sparse signal processing is discussed that has the potential to reduce false- alarm rates and improve detections.

  4. Radar Interferometry Time Series Analysis and Tools

    NASA Astrophysics Data System (ADS)

    Buckley, S. M.

    2006-12-01

    We consider the use of several multi-interferogram analysis techniques for identifying transient ground motions. Our approaches range from specialized InSAR processing for persistent scatterer and small baseline subset methods to the post-processing of geocoded displacement maps using a linear inversion-singular value decomposition solution procedure. To better understand these approaches, we have simulated sets of interferograms spanning several deformation phenomena, including localized subsidence bowls with constant velocity and seasonal deformation fluctuations. We will present results and insights from the application of these time series analysis techniques to several land subsidence study sites with varying deformation and environmental conditions, e.g., arid Phoenix and coastal Houston-Galveston metropolitan areas and rural Texas sink holes. We consistently find that the time invested in implementing, applying and comparing multiple InSAR time series approaches for a given study site is rewarded with a deeper understanding of the techniques and deformation phenomena. To this end, and with support from NSF, we are preparing a first-version of an InSAR post-processing toolkit to be released to the InSAR science community. These studies form a baseline of results to compare against the higher spatial and temporal sampling anticipated from TerraSAR-X as well as the trade-off between spatial coverage and resolution when relying on ScanSAR interferometry.

  5. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  6. A spectroscopic refractometer based on plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Feng, Jing; Pacifici, Domenico

    2016-02-01

    We describe the design, fabrication, and testing of a spectroscopic refractometer that employs plasmonic interferometry to measure the optical dielectric functions of materials in the visible range. The proposed device, dubbed a plasmonic refractometer, consists of an array of slit-groove plasmonic interferometers etched in a ˜300 nm-thick metal film (silver or gold) with arm lengths varying in steps of 25 nm up to ˜8 μm. The nano-groove in each interferometer is able to generate propagating surface plasmon polaritons efficiently in a broad wavelength range, without requiring prism- or grating-coupling configurations. An integrated microfluidic channel ensures uniform delivery of dielectric materials in liquid phase. Spectrally resolved plasmonic interferograms are generated by measuring light transmission spectra through the slit of each slit-groove plasmonic interferometer and plotting the normalized intensity as a function of arm length (0.26-8.16 μm) and incident wavelength (400-800 nm) for various combinations of metal/dielectric materials. Fits of the plasmonic interferograms with a surface plasmon interference model allow determination of the refractive index dispersion of a broad class of dielectric materials, over a wide range of wavelengths and dielectric constants. As proof of concept, we extract and report the dielectric functions of representative materials, such as silver, gold, water, methanol, and ethanol.

  7. Quasar Astrophysics with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn

    2007-01-01

    Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.

  8. Laser wavelength comparison by high resolution interferometry.

    PubMed

    Layer, H P; Deslattes, R D; Schweitzer, W G

    1976-03-01

    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  9. Extending temporal coherence in speckle interferometry

    NASA Astrophysics Data System (ADS)

    Crespo Contiñas, J. M.; Moreno de las Cuevas, V.; Gallas Torreira, M.; Calizaya Calizaya, M.

    2013-11-01

    Electronic Speckle Pattern Interferometry (ESPI) and Shearography (ESPSI) techniques have been used in the field of non-destructive testing for a long time, providing accuracy, and allowing whole field analysis of pure deformation (ESPI) or the gradient of deformation (ESPSI). One of the major weaknesses of this two techniques is linked to speckle de-correlation. When the deformation process produces a displacement greater than a certain proportion of the speckle size, there is a severe loss of coherence which limits the application of these techniques to processes with strong or fast deformations. In order to avoid this limitation, the use of a dynamically updated reference frame is tested in this work. First, in ESPI and ESPSI setups, a metacrylathe bar is used as specimen for testing procedures, and finally a human jaw bone will be used in an ESPSI setup. One basic and regular-shaped object, the bar, and a structurally 3D complex structure, the human jaw bone, with complex elastic properties are the samples to test.

  10. Thermal expansion of composites using Moire interferometry

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Post, D.; Herakovich, C. T.; Tenny, D. R.

    1980-01-01

    An experimental technique for precise measurement of the thermal response of fiber-reinforced composite materials uses moire interferometry with fringe multiplication which yield a sensitivity of 833 nm (32.8 mu in.) per fringe. Results from the technique are compared with those obtained from electrical resistance strain gages, and also those predicted from classical lamination theory. Temperature dependent coefficients of thermal expansion for composite materials subjected to thermal cycling in the temperature range of 297 K (75 F) to 422 K (300 F) were determined for four laminate configurations (0, 90, 0/ + or - 45/90 sub s and 0/90/ + or - 45 sub s) of T300/5208 graphite epoxy, and ranged from -0.107 mu epsilon K/1 (-0.059 mu epsilon deg F/-) for the 0 laminate to 32.18 mu epsilon K/1 (17.88 mu epsilon F/1) for the 90 laminate. Moisture was found to greatly influence the thermal response of a quasi-isotropic laminate, resulting in hysteresis and residual compressive strain as the moisture content was reduced. Comparisons between moire and strain gage measurements were inconclusive with both techniques giving consistent but systematically different results. Differences of as much as 29% were observed.

  11. General Relativistic Effects in Atom Interferometry

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

    2008-03-17

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  12. Two-dimensional laser interferometry analysis

    NASA Astrophysics Data System (ADS)

    Mehr, Leo; Concepcion, Ricky; Duggan, Robert; Moore, Hannah; Novick, Asher; Ransohoff, Lauren; Gourdain, Pierre-Alexandre; Hammer, David; Kusse, Bruce

    2013-10-01

    The objective of our research was to create a two-dimensional interferometer which we will use to measure plasma densities at the Cornell Research Beam Accelerator (COBRA). We built two shearing interferometers and mounted them on an optics table. They intercept the probe laser beam which travels directly through the plasma and is captured by a 16-bit CCD camera. In comparing the interferometer images before the shot and during the plasma shot, we observed both lateral and vertical shifts in the interference pattern caused by the change of the refractive index due to the plasma electrons. We developed a computer program using Matlab to map a vector field depicting the shift between the two images. This shift is proportional to the line integral of electron density through the plasma chamber. We show this method provides a reliable way to determine the plasma electron density profile. Additionally, we hope this method can improve upon the diagnostic capabilities and efficiency of data collection used with standard one-dimensional interferometry. Undergraduate.

  13. Interferometry in the Era of Very Large Telescopes

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.

    2010-01-01

    Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.

  14. Robust signal evaluation for Chromatic Confocal Spectral Interferometry

    NASA Astrophysics Data System (ADS)

    Boettcher, Tobias; Lyda, Wolfram; Gronle, Marc; Mauch, Florian; Osten, Wolfgang

    2013-04-01

    The hybrid measurement principle Chromatic Confocal Spectral Interferometry combines Spectral Interferometry with Chromatic Confocal Microscopy and therefore benefits from their respective advantages. Our actual demonstrator setup enables an axial measurement range up to 100 μm with resolution up to 5 nm depending on the employed evaluation method and the characteristics of the object's surface. On structured surfaces, lateral features down to 1 μm can be measured. As the sensor raw signal consists of a Spectral Interferometry type wavelet modulated by a confocal envelope, two classes of evaluation methods working on the phasing or the position of the envelope are employed. Even though both of these information channels are subject to their respective problems, we show that a proper combination of the individual methods leads to a robust signal evaluation. In particular, we show that typical artifacts on curved surfaces, that are known from Chromatic Confocal Microscopy, are minimized or completely removed by taking the phasing of the Spectral Interferometry wavelet into consideration. At the same time the problem of determining the right fringe order of the Spectral Interferometry signal at surface discontinuities can be solved by evaluation of the confocal envelope. We present here a first approach using a contrast threshold on the signal and a median referencing for trusted sections of the analysed topography, which yields a reduction of artifacts in a submicron range on steep gradients, discontinuous specimen or curved mirror-like surfaces.

  15. Acoustic sniper localization system

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  16. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  17. Acoustic mapping velocimetry

    NASA Astrophysics Data System (ADS)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  18. Infrasonic interferometry of stratospherically refracted microbaroms--a numerical study.

    PubMed

    Fricke, Julius T; El Allouche, Nihed; Simons, Dick G; Ruigrok, Elmer N; Wapenaar, Kees; Evers, Läslo G

    2013-10-01

    The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles. PMID:24116404

  19. Resolving microstructures in Z pinches with intensity interferometry

    SciTech Connect

    Apruzese, J. P.; Kroupp, E.; Maron, Y.; Giuliani, J. L.; Thornhill, J. W.

    2014-03-15

    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the work of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.

  20. Application of the holographic interferometry in transport phenomena studies

    NASA Astrophysics Data System (ADS)

    Hartmann, A.; Lucic, A.

    This article provides an overview of all the experimental research studies in the field of heat and mass transfer by means of the holographic interferometry which were performed under the supervision of Professor Franz Mayinger during his professorship. The principle objective of this paper is to contribute to the knowledge base of the heat and mass transfer processes in various fields as well as to illustrate the capabilities of the holographic interferometry. Investigations of the heat transfer pattern in grooved channels and in various geometries of compact heat exchangers, drying processes of a dispersed, water-based varnish on paper, mixed convection in bent ducts, the growth and condensation of vapor bubbles in subcooled boiling and the simultaneous heat and mass transfer are presented. The results of all these studies demonstrate the successful application of the holographic interferometry and Professor Mayinger's highly valuable contribution in this area.

  1. The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2003-01-01

    Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.

  2. Calibration of acoustic transients.

    PubMed

    Burkard, Robert

    2006-05-26

    This article reviews the appropriate stimulus parameters (click duration, toneburst envelope) that should be used when eliciting auditory brainstem responses from mice. Equipment specifications required to calibrate these acoustic transients are discussed. Several methods of calibrating the level of acoustic transients are presented, including the measurement of peak equivalent sound pressure level (peSPL) and peak sound pressure level (pSPL). It is hoped that those who collect auditory brainstem response thresholds in mice will begin to use standardized methods of acoustic calibration, so that hearing thresholds across mouse strains obtained in different laboratories can more readily be compared.

  3. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  4. PRSEUS Acoustic Panel Fabrication

    NASA Technical Reports Server (NTRS)

    Nicolette, Velicki; Yovanof, Nicolette P.; Baraja, Jaime; Mathur, Gopal; Thrash, Patrick; Pickell, Robert

    2011-01-01

    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration with regards to acoustic response. A PRSEUS panel was designed and fabricated and provided to NASA-LaRC for acoustic response testing in the Structural Acoustics Loads and Transmission (SALT) facility). Preliminary assessments of the sound transmission characteristics of a PRSEUS panel subjected to a representative Hybrid Wing Body (HWB) operating environment were completed for the NASA Environmentally Responsible Aviation (ERA) Program.

  5. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  6. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  7. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  8. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  9. Progress in electron- and ion-interferometry

    NASA Astrophysics Data System (ADS)

    Hasselbach, Franz

    2010-01-01

    In the 1970s the prominent goal was to overcome the limitations of electron microscopy caused by aberrations of electron lenses by the development of electron holography. In the meantime this problem has been solved, not only in the roundabout way of holography, but directly by correcting the aberrations of the lenses. Nevertheless, many quantitative electron microscopical measurement methods—e.g. mapping and visualization of electric and magnetic fields—were developed within the context of holography and have become fields of their own. In this review we focus on less popular electron interferometric experiments which complement the field of electron holography. The paper is organized as follows. After a short sketch of the development of electron biprism interferometry after its invention in 1954, recent advances in technology are discussed that made electron biprism interferometry an indispensable tool for solving fundamental and applied questions in physics: the development and preparation of conventional and single-atom field electron and field ion sources with their extraordinary properties. Single- and few-atom sources exhibit spectacular features: their brightness at 100 keV exceeds that of conventional field emitters by two orders in magnitude. Due to the extremely small aberrations of diode field emitter extraction optics, the virtual source size of single-atom tips is on the order of 0.2 nm. As a consequence it illuminates an area 7 cm in diameter on a screen at a distance of 15 cm coherently. Projection electron micrographs taken with these sources reach spatial resolutions of atomic dimensions and in-line holograms are—due to the absence of lenses with their aberrations—not blurred. Their reconstruction is straightforward. By addition of a carbon nanotube biprism into the beam path of a projection microscope a lensless electron interferometer has been realized. In extremely ultrahigh vacuum systems flicker noise is practically absent in the new

  10. Seismic interferometry by multidimensional deconvolution without wavefield separation

    NASA Astrophysics Data System (ADS)

    Ravasi, Matteo; Meles, Giovanni; Curtis, Andrew; Rawlinson, Zara; Yikuo, Liu

    2015-07-01

    Seismic interferometry comprises a suite of methods to redatum recorded wavefields to those that would have been recorded if different sources (so-called virtual sources) had been activated. Seismic interferometry by cross-correlation has been formulated using either two-way (for full wavefields) or one-way (for directionally decomposed wavefields) representation theorems. To obtain improved Green's function estimates, the cross-correlation result can be deconvolved by a quantity that identifies the smearing of the virtual source in space and time, the so-called point-spread function. This type of interferometry, known as interferometry by multidimensional deconvolution (MDD), has so far been applied only to one-way directionally decomposed fields, requiring accurate wavefield decomposition from dual (e.g. pressure and velocity) recordings. Here we propose a form of interferometry by multidimensional deconvolution that uses full wavefields with two-way representations, and simultaneously invert for pressure and (normal) velocity Green's functions, rather than only velocity responses as for its one-way counterpart. Tests on synthetic data show that two-way MDD improves on results of interferometry by cross-correlation, and generally produces estimates of similar quality to those obtained by one-way MDD, suggesting that the preliminary decomposition into up- and downgoing components of the pressure field is not required if pressure and velocity data are jointly used in the deconvolution. We also show that constraints on the directionality of the Green's functions sought can be added directly into the MDD inversion process to further improve two-way multidimensional deconvolution. Finally, as a by-product of having pressure and particle velocity measurements, we adapt one- and two-way representation theorems to convert any particle velocity receiver into its corresponding virtual dipole/gradient source by means of MDD. Thus data recorded from standard monopolar (e

  11. Integrated Optics Achromatic Nuller for Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander

    2012-01-01

    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  12. Very Long Baseline Interferometry From the Moon

    NASA Astrophysics Data System (ADS)

    Gurvits, L. I.

    Very Long Baseline Interferometry (VLBI) occupies a special place among tools for studying the Universe due to its record high angular resolution. The latter depends on the aperture size of interferometer baseline at any given wavelength. Until recently, the available angular resolution in radio domain of about 1 milliarcsecond was limited by the Earth diameter. However, many astrophysical problems require a higher angular resolution. The only way to achieve it is to create an interferometer with the baseline larger than the Earth diameter by placing at least one telescope in space. In February 1997, the first dedicated Space VLBI mission, VSOP, led by the Institute of Space and Astronautical Sciences (Japan) has been launched. Undoubtfully, the VSOP opens a new dimension in the development of radio astronomy tools of extremely high angular resolution. The Moon, as an inevitable step in the exploring and exploiting the Space by the mankind offers several very attractive features for building effective astronomical facilities, particularly radio telescopes. One can mention among these features an RFI-free environment (especially on the far side of the Moon), natural deep cooling of temperature-sensitive detectors, an absence of a natural magnetic field (hence, an ionosphere) and an atmosphere, considerably lower gravitational field (hence lower gravitational deformations of large structures). All these advantages certainly would lead eventually to constructing a highly sensitive radio telescope on the Moon (possibly, a Moon-based analog of the SKAI radio telescope). And once such a telescope is becoming a reality, it would be an obvious mistake not to use it as a part of VLBI system. I briefly discuss the scientific motivation and some technical aspects of a VLBI telescope on the Moon. I conclude, that VLBI could not and should not be considered as a primary drive for a radio astronomy base on the Moon. However, VLBI would be a very valuable addition to the

  13. Single-mode fiber, velocity interferometry

    SciTech Connect

    Krauter, K. G.; Jacobson, G. F.; Patterson, J. R.; Nguyen, J. H.; Ambrose, W. P.

    2011-04-15

    In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, we demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats--this interference occurs between the ''recently'' shifted and ''formerly unshifted'' paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber.

  14. Grating interferometry method for torsion measurement

    NASA Astrophysics Data System (ADS)

    Li, Xiang-rong; Qiao, Yan-feng; Liu, Wei; Zhang, Yao-yu

    2006-01-01

    Method of grating interferometry was presented for torsion angle measurement, moire fringe generated by two gratings is used in a new field, it breaks through moire fringe's routine application. Measurement principle is described, torsion angle can be gotten by the tilt angle or the width of moire fringe. Different from moire fringe's characteristic information extracting methods in traditional measurement fields, fringe-tilt method and fringe-width method were put forward to extract moire fringe's characteristic information. Fringe-tilt method is on the basis of moire fringe's tilt to acquire torsion angle, uniform formula was built aiming at all positions of two gratings in the coordinates, fringe-width method is on the basis of moire fringe's width to acquire torsion angle, three key problems are given about fringe-width method. Thick, middle and thin moire fringe were collected in experiments and processed by two methods, fringe-width method's result shows that magnitude of boat torsion error is satisfied with that of theoretical precision analysis, and the change rule of torsion error is also same to that of theoretical analysis, the thicker fringe is, the higher precision is, when fringe width arrives to be 1695μm, the precision is 1.7", the thinner fringe is, the lower precision is, when fringe width arrives to be 734.7μm, the precision is 6.7". In addition to these, the results of repeatability experiments, sensibility experiments are given. In a word, the measurement principle is right and the precision of fringe processing is also reliable.

  15. Determination of Young's modulus of silica aerogels using holographic interferometry

    NASA Astrophysics Data System (ADS)

    Chikode, Prashant P.; Sabale, Sandip R.; Vhatkar, Rajiv S.

    2016-05-01

    Digital holographic interferometry technique is used to determine elastic modulus of silica aerogels. Tetramethoxysilane precursor based Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The alcogels were prepared by keeping the molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1:0.6:4 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 12 to 18. Holograms of translucent aerogel samples have been successfully recorded using the digital holographic interferometry technique. Stimulated digital interferograms gives localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and Young's modulus (Y) of the aerogels.

  16. The development of thin film metrology by coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Yoshino, Hirokazu; Smith, Roger; Walls, John M.; Mansfield, Daniel

    2016-02-01

    Scanning White Light Interferometry (SWLI), now referred to as Coherence Scanning Interferometry (CSI), is established as a powerful tool for sub-nanometer surface metrology. The technique provides accurate and rapid three dimensional topographical analysis without contacting the surface under measurement. This paper will focus on recent developments of CSI using the Helical Complex Field (HCF) function that have extended its use for important thin film measurements. These developments now enable CSI to perform thin film thickness measurements, to measure the surface profile and the interfacial surface roughness of a buried interface and to derive optical constants (index of refraction n and extinction coefficient K).

  17. Modulated Source Interferometry with Combined Amplitude and Frequency Modulation

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    1998-01-01

    An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.

  18. Generalized parametric down conversion, many particle interferometry, and Bell's theorem

    NASA Technical Reports Server (NTRS)

    Choi, Hyung Sup

    1992-01-01

    A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.

  19. Speckle interferometry measurements in testing halls for civil engineering applications

    NASA Astrophysics Data System (ADS)

    Facchini, Mauro; Jacquot, Pierre M.

    1999-08-01

    Speckle interferometry is an interesting tool for the measurement of micro-deformations and has found application in many different fields ranging from material testing to structural assessment. This kind of applications, however, has often been confined inside optical laboratories where operational conditions are optimal. This paper is devoted to the extension of speckle interferometry to various measurements--performed not inside well protected rooms but in testing halls dedicated to experimentation in civil engineering--where the environmental conditions are severe for an interferometric method.

  20. Assessment of a direct acoustic cochlear stimulator.

    PubMed

    Chatzimichalis, Michail; Sim, Jae Hoon; Huber, Alexander M

    2012-01-01

    This study aimed to assess the functional results of a new, active, acoustic-mechanical hearing implant, the Direct Acoustic Cochlear Stimulation Partial Implant (DACS PI), in a preclinical study. The DACS PI is an electromagnetic device fixed to the mastoid by screws and coupled to a standard stapes prosthesis by an artificial incus (AI). The function of the DACS PI-aided reconstruction was assessed by determining: (1) the maximum equivalent sound pressure level (SPL) of the implant, which was obtained from measurements of the volume displacement at the round window in normal and implanted ears, and (2) the quality at the coupling interface between the AI of the DACS and the stapes prosthesis, which was quantified from measurements of relative motions between the AI and the prosthesis. Both measurements were performed with fresh temporal bones using a scanning laser Doppler interferometry system. The expected maximum equivalent SPL with a typical driving voltage of 0.3 V was about 115-125 dB SPL up to 1.5 kHz in reconstruction with the DACS PI, and decreased with a roll-off slope of about 65 dB/decade, reaching 90 dB SPL at 8 kHz. The large roll-off relative to a normal ear was presumed to be a relatively high inductive impedance of the coil of the DACS PI actuator at higher frequencies. Good coupling quality between the AI and the prosthesis was achieved below the resonance (∼1.5 kHz) of the DACS PI for all tested stapes prostheses. Above the resonance, the SMart Piston, which is composed of a shape-memory alloy, had the best coupling quality.

  1. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  2. Acoustics lecturing in Mexico

    NASA Astrophysics Data System (ADS)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  3. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  4. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  5. Acoustic Neuroma Association

    MedlinePlus

    ... Platinum Sponsors More from this sponsor... Platinum Sponsor Gold Sponsor University of Colorado Acoustic Neuroma Program Rocky Mountain Gamma Knife Center Gold Sponsor NYU Langone Medical Center Departments of Neurosurgery ...

  6. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  7. Multimode Acoustic Research

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1985-01-01

    There is a need for high temperature containerless processing facilities that can efficiently position and manipulate molten samples in the reduced gravity environment of space. The goal of the research is to develop sophisticated high temperature manipulation capabilities such as selection of arbitrary axes rotation and rapid sample cooling. This program will investigate new classes of acoustic levitation in rectangular, cylindrical and spherical geometries. The program tasks include calculating theoretical expressions of the acoustic forces in these geometries for the excitation of up to three acoustic modes (multimodes). These calculations are used to: (1) determine those acoustic modes that produce stable levitation, (2) isolate the levitation and rotation capabilities to produce more than one axis of rotation, and (3) develop methods to translate samples down long tube cylindrical chambers. Experimental levitators will then be constructed to verify the stable levitation and rotation predictions of the models.

  8. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  9. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  10. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-11-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell’s law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  11. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  12. Acoustic detection of pneumothorax

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (<2000 Hz) acoustic methods for medical diagnosis. Several candidate methods of pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (p<0.0001). The ratio of acoustic energy between low (<220 Hz) and mid (550-770 Hz) frequency bands was significantly different in the control (healthy) and pneumothorax states (p<0.0001). The second approach measured breath sounds in the absence of an external acoustic input. Pneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (p<0.01 for each). Finally, chest percussion was implemented. Pneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  13. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  14. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  15. A compact acoustic recorder

    NASA Astrophysics Data System (ADS)

    Stein, Ronald

    1989-09-01

    The design and operation of a portable compact acoustic recorder is discussed. Designed to be used in arctic conditions for applications that require portable equipment, the device is configured to fit into a lightweight briefcase. It will operate for eight hours at -40 F with heat provided by a hot water bottle. It has proven to be an effective scientific tool in the measurement of underwater acoustic signals in arctic experiments. It has also been used successfully in warmer climates, e.g., in recording acoustic signals from small boats with no ac power. The acoustic recorder's cost is moderate since it is based on a Sony Walkman Professional (WM-D6C) tape recorder playback unit. A speaker and battery assembly and a hydrophone interface electronic assembly complete the system electronics. The interface assembly supplies a number of functions, including a calibration tone generator, an audio amplifier, and a hydrophone interface. Calibrated acoustic recordings can be made by comparing the calibration tone amplitude with the acoustic signal amplitude. The distortion of the recording is minimized by using a high quality, consumer tape recorder.

  16. Acoustic communication by ants

    NASA Astrophysics Data System (ADS)

    Hickling, Robert

    2002-05-01

    Many ant species communicate acoustically by stridulating, i.e., running a scraper over a washboard-like set of ridges. Ants appear to be insensitive to airborne sound. Consequently, myrmecologists have concluded that the stridulatory signals are transmitted through the substrate. This has tended to diminish the importance of acoustic communication, and it is currently believed that ant communication is based almost exclusively on pheromones, with acoustic communication assigned an almost nonexistent role. However, it can be shown that acoustic communication between ants is effective only if the medium is air and not the substrate. How, then, is it possible for ants to appear deaf to airborne sound and yet communicate through the air? An explanation is provided in a paper [R. Hickling and R. L. Brown, ``Analysis of acoustic communication by ants,'' J. Acoust. Soc. Am. 108, 1920-1929 (2000)]. Ants are small relative to the wavelengths they generate. Hence, they create a near field, which is characterized by a major increase in sound velocity (particle velocity of sound) in the vicinity of the source. Hair sensilla on the ants' antennae respond to sound velocity. Thus, ants are able to detect near-field sound from other ants and to exclude extraneous airborne sound.

  17. Tracking changes in volcanic systems with seismic Interferometry

    USGS Publications Warehouse

    Haney, Matt; Alicia J. Hotovec-Ellis,; Ninfa L. Bennington,; Silvio De Angelis,; Clifford Thurber,

    2014-01-01

    The detection and evaluation of time-dependent changes at volcanoes form the foundation upon which successful volcano monitoring is built. Temporal changes at volcanoes occur over all time scales and may be obvious (e.g., earthquake swarms) or subtle (e.g., a slow, steady increase in the level of tremor). Some of the most challenging types of time-dependent change to detect are subtle variations in material properties beneath active volcanoes. Although difficult to measure, such changes carry important information about stresses and fluids present within hydrothermal and magmatic systems. These changes are imprinted on seismic waves that propagate through volcanoes. In recent years, there has been a quantum leap in the ability to detect subtle structural changes systematically at volcanoes with seismic waves. The new methodology is based on the idea that useful seismic signals can be generated “at will” from seismic noise. This means signals can be measured any time, in contrast to the often irregular and unpredictable times of earthquakes. With seismic noise in the frequency band 0.1–1 Hz arising from the interaction of the ocean with the solid Earth known as microseisms, researchers have demonstrated that cross-correlations of passive seismic recordings between pairs of seismometers yield coherent signals (Campillo and Paul 2003; Shapiro and Campillo 2004). Based on this principle, coherent signals have been reconstructed from noise recordings in such diverse fields as helioseismology (Rickett and Claerbout 2000), ultrasound (Weaver and Lobkis 2001), ocean acoustic waves (Roux and Kuperman 2004), regional (Shapiro et al. 2005; Sabra et al. 2005; Bensen et al. 2007) and exploration (Draganov et al. 2007) seismology, atmospheric infrasound (Haney 2009), and studies of the cryosphere (Marsan et al. 2012). Initial applications of ambient seismic noise were to regional surface wave tomography (Shapiro et al. 2005). Brenguier et al. (2007) were the first to

  18. Laser Interferometry for Harsh Environment MEMS Sensors

    NASA Astrophysics Data System (ADS)

    Nieva, Patricia

    2008-03-01

    Silicon-based MEMS technology has enabled the fabrication of a broad range of sensor and actuator systems that are having a great impact in areas that benefit from miniaturization and increased functionality. The main advantage of Si-based MEMS technologies is their possibility of integration with microelectronics thus allowing the economical production of smart microsystems. In the automotive industry for example, there is a need for inexpensive smart MEMS sensors for engine control applications. For instance, smart MEMS sensors capable of operating ``in cylinder'', where temperatures are around 400 C, could continuously monitor the combustion quality of the cylinders of automotive engines thus leading to reduced emissions and improved fuel economy. However, when the environment temperature is too high (>180 C), conventional Si-based microelectronics suffer from severe performance degradation, thus making smart Si-based MEMS impractical. Hence, further development, in terms of new MEMS materials and/or new technologies, is needed especially where high temperature capability is crucial to realizing improved electronic control. Remote sensing through optical signal detection has major advantages for safe signal transmission in harsh environments. It is highly resistant to electromagnetic interference (EMI) and radio frequency interference (RFI) and at the same time, it eliminates the necessity of on-board electronics, which has been one of the main obstacles in the development of smart MEMS sensors for high temperature applications. An economical way to deal with higher temperatures and other aggressive environmental conditions is to build MEMS sensors out of robust materials (e.g. Silicon nitride, SiC) and integrate them with optical signal detection techniques to form MOEMS. In this paper, we review recent trends for the use of laser interferometry for MEMS sensors in the context of using them for high temperature applications. Technological challenges faced in

  19. Mask Design for the Space Interferometry Mission Internal Metrology

    NASA Technical Reports Server (NTRS)

    Marx, David; Zhao, Feng; Korechoff, Robert

    2005-01-01

    This slide presentation reviews the mask design used for the internal metrology of the Space Interferometry Mission (SIM). Included is information about the project, the method of measurements with SIM, the internal metrology, numerical model of internal metrology, wavefront examples, performance metrics, and mask design

  20. Laser optical interferometry for electric gas discharge diagnosis

    NASA Astrophysics Data System (ADS)

    Ralea, Mihai F.; Rosu, Nicu; Popescu, Ion M.; Iova, Iancu; Paraschiv, R.; Mircea, D.

    1995-03-01

    A new double-differential method based on holographic interferometry in real time with references fringes for the determination of gas parameters in cylindrical tubes is presented. By studying the interferograms one gets a graphical recording of the radial distribution of the refraction index of the gas in any region of the tube at a given time, as well as their axial distribution.

  1. Method of investigating phenomena in liquids by holographic interferometry

    NASA Astrophysics Data System (ADS)

    Rosu, Nicu; Ralea, Mihai F.; Iova, Iancu

    1996-05-01

    A method based on holographic interferometry in real time with reference fringes for the determination of liquid parameters in cells with one inclined wall is presented. By studying the interferograms one gets a graphical recording of the spatial distribution of the refraction index of the liquid at a given time.

  2. Kitt Peak Speckle Interferometry of Close Visual Binary Stars (Abstract)

    NASA Astrophysics Data System (ADS)

    Gener, R.; Rowe, D.; Smith, T. C.; Teiche, A.; Harshaw, R.; Wallace, D.; Weise, E.; Wiley, E.; Boyce, G.; Boyce, P.; Branston, D.; Chaney, K.; Clark, R. K.; Estrada, C.; Estrada, R.; Frey, T.; Green, W. L.; Haurberg, N.; Jones, G.; Kenney, J.; Loftin, S.; McGieson, I.; Patel, R.; Plummer, J.; Ridgely, J.; Trueblood, M.; Westergren, D.; Wren, P.

    2014-12-01

    (Abstract only) Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1,000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electron-multiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1,000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The database of well over one million images was reduced with the Speckle Interferometry Tool of platesolve3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.

  3. Engineering photonics: from nanoscale sensing to full-field interferometry

    NASA Astrophysics Data System (ADS)

    Tatam, Ralph P.

    2005-09-01

    This paper will present recent developments in optical fibre sensors and optical fibre based instrumentation research undertaken at Cranfield University. New sensor techniques based on nanoscale molecular coatings deposited on singlemode fibres containing long period gratings and the use of singlemode fibres and coherent imaging fibre bundles in full-field speckle interferometry and planar Doppler velocimetry will be presented.

  4. Recording depth and signal competition in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    de La Rochefoucauld, Ombeline; Khanna, Shyam M.; Olson, Elizabeth S.

    2005-03-01

    A common way to measure submicroscopic motion of the organ of Corti is heterodyne interferometry. The depth over which vibration can be accurately measured with heterodyne interferometry is determined by both the optics, which controls to what extent light from nonfocal planes reaches the photodetectors, and demodulation electronics, which determines to what extent signal generated by out-of-focal-plane light influences the measurements. The influence of a second reflecting surface is investigated theoretically and experimentally. By reviewing the theory of FM demodulation and showing tests with a Revox FM demodulator, it is demonstrated that the influence of a secondary signal on a measurement depends on the modulation index. Both high- and low-modulation index signals are encountered in heterodyne interferometry of the cochlea. Using a He-Ne-like diode laser (λ=638 nm), the border between low- and high-modulation signals is at a displacement of about 25-100 nm. Confocal interferometry reduces the magnitude of out-of-focus signals, and therefore their effect on vibration measurement. The response of the confocal system to reflected signals from two surfaces separated by distances encountered within the cochlear partition is shown. The results underscore the benefit of steep optical sectioning for intracochlear measurements. .

  5. Holographic interferometry applied to the case of large deformations.

    PubMed

    Schumann, W

    1989-11-01

    This investigation in holographic interferometry concerns an approach to a systematic quasi-compensation by appropriate optical modifications at the reconstruction in order that the fringes of interference become visible in the case of large unknown object deformations. The relevant relations are established by using the aberration theory for the image formation in combination with elementary intrinsic differential geometry.

  6. The Compact and Inexpensive "Arrowhead" Setup for Holographic Interferometry

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo

    2011-01-01

    Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that…

  7. Focus retrocollimated interferometry for long-radius-of-curvature measurement

    NASA Astrophysics Data System (ADS)

    Xiang, Yang

    2001-12-01

    Focus retrocollimated interferometry is described for measuring long radius of curvature (>1 m), and achievable accuracy is discussed. It is shown that this method can be applied to both concave and convex spherical surfaces and can provide measurement to accuracy of 0.01-0.1%.

  8. Distinguishing between Dirac and Majorana neutrinos withtwo-particle interferometry

    SciTech Connect

    Gutierrez, Thomas D.

    2006-03-02

    Two-particle interferometry, a second-order interferenceeffect, is explored as another possible tool to distinguish betweenmassive Dirac and Majorana neutrinos. A simple theoretical framework isdiscussed in the context of several gedanken experiments. The method canin principle provide both the mass scale and the quantum nature of theneutrino for a certain class of incoherent left-handed sourcecurrents.

  9. How to Test Atom and Neutron Neutrality with Atom Interferometry

    SciTech Connect

    Arvanitaki, Asimina; Dimopoulos, Savas; Geraci, Andrew A.; Hogan, Jason; Kasevich, Mark

    2008-03-28

    We propose an atom-interferometry experiment based on the scalar Aharonov-Bohm effect which detects an atom charge at the 10{sup -28}e level, and improves the current laboratory limits by 8 orders of magnitude. This setup independently probes neutron charges down to 10{sup -28}e, 7 orders of magnitude below current bounds.

  10. Testing Atom and Neutron Neutrality with Atom Interferometry

    SciTech Connect

    Arvanitaki, Asimina; Dimopoulos, Savas; Geraci, Andrew A.; Hogan, Jason; Kasevich, Mark; /Stanford U., Phys. Dept.

    2008-01-07

    We propose an atom-interferometry experiment based on the scalar Aharonov-Bohm effect which detects an atom charge at the 10{sup -28} e level, and improves the current laboratory limits by 8 orders of magnitude. This setup independently probes neutron charges down to 10{sup 28} e, 7 orders of magnitude below current bounds.

  11. Laboratory coda wave interferometry for the monitoring of rock property variations

    NASA Astrophysics Data System (ADS)

    Schmittbuhl, Jean; Chaintreuil, Marie; Lengliné, Olivier; Griffiths, Luke; Heap, Mike; Baud, Patrick

    2016-04-01

    A significant effort is on-going in the community to continuously monitor deep geothermal reservoirs using ambient seismic noise tomography (e.g. Calo et al, 2013; Lehujeur et al, 2015). It is a method that determines the Green's function between a pair of receivers by correlating sufficiently long seismic noise records. Very small changes of the medium are accessible using this new monitoring technique (significantly smaller than those deduced from direct arrivals). In particular, very small variations of seismic velocities are shown to appear both in time and space during the stimulation of the reservoir. A central question is how to interpret these transient or lateral variations of the seismic velocities for a precise 4D tomography of the reservoir properties. In this study, we address the direct problem of monitoring small variations in seismic velocities when small variations in stress or temperature are slowly applied to the sample. We use a network of piezo-electric sensors on laboratory samples (sandstone and granite from Soultz-sous-Forêts core samples) to perform coda wave interferometry from the multiple scattering of well-controlled seismic pulses (Grêt et al, 2006). The data collected are estimates of the relative variation of travel time. We combine acoustic measurements and strain gauges to differentiate between travel time variations due to seismic velocity changes and those due to deformation effects. We expect this approach to provide useful information for large scale seismic tomography despite the significant difference of considered wavelengths.

  12. Working-point control technique for the homodyne interferometry in hydrophone calibration

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Xing, Guangzhen

    2015-02-01

    The stabilization of a homodyne type Michelson interferometer for calibrating the high frequency hydrophone is presented in this article. For the detection of the ultrasonic field, a 5 um thickness pellicle was inserted in water moving in sympathy with the ultrasonic wave. To ensure high signal to noise ratio at high frequencies, a 5 MHz focusing transducer was driven by high voltage and harmonics of the shocked ultrasonic field could be activated. Nevertheless, the homodyne interferometer suffered from the drawback of signal fading caused by the low frequency noise in environment, including acoustic noise and water surface agitation. Direct Current Phase Tracking was utilized to maintain the quadrature working point for the interferometer. Most of environmental noises could be effectively compensated while stabilization was maintained. A piezoelectric actuator supporting the reference mirror was utilized as the stabilizing element whose output was frequency independent over the low frequency disturbances, usually below 200 Hz. The ultrasonic signal fading caused by environmental disturbances could be solved while the negative electric feedback loop was operating. The displacement and voltage output of the hydrophone under test were then processed by DFT to derive the fundamental and harmonic components. Under plane wave conditions, the ultrasonic pressure could be derived by the detected displacement with a stabilized homodyne interferometer, and the hydrophone could then be calibrated. Measurement results indicated that the hydrophone calibration system based on the active stabilization of homodyne interferometry was sound in theory and feasible in practice.

  13. Digital holographic interferometry applied to the study of tympanic membrane displacements

    NASA Astrophysics Data System (ADS)

    Hernández-Montes, María del Socorro; Mendoza Santoyo, Fernando; Pérez López, Carlos; Muñoz Solís, Silvino; Esquivel, Jesús

    2011-06-01

    Quantitative studies of the mechanical properties of tympanic membrane (TM) are needed for better understanding of its role in detailed clinical evaluation, its research being of extreme importance because it is one of the most important structures of the middle ear. By finding the membrane's vibration patterns and quantifying the induced displacement it is possible to characterize and determine its physiological status. Digital holographic interferometry (DHI) has proved to be a reliable optical non-invasive and full-field-of-view technique for the investigation of different mechanical parameters of biological tissues, i.e., DHI has demonstrated an ability to detect displacement changes in quasi-real time and without the need to contact the sample's surface under study providing relevant information, such as clinical and mechanical sample properties. In this research fresh tympanic membrane specimens taken from post-mortem cats are subjected to acoustic stimuli in the audible frequency range producing resonant vibration patterns on the membrane, a feature that results in an ideal application for DHI. An important feature of this approach over other techniques previously used to study the tympanic membrane vibrations is that it only requires two images and less hardware to carry out the measurements, making of DHI a simpler and faster technique as compared to other proposed approaches. The results found show a very good agreement between the present and past measurements from previous research work, showing that DHI is a technique that no doubt will help to improve the understanding of the tympanic membrane's working mechanisms.

  14. Full-field speckle interferometry for non-contact photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Horstmann, Jens; Spahr, Hendrik; Buj, Christian; Münter, Michael; Brinkmann, Ralf

    2015-05-01

    A full-field speckle interferometry method for non-contact and prospectively high speed Photoacoustic Tomography is introduced and evaluated as proof of concept. Thermoelastic pressure induced changes of the objects topography are acquired in a repetitive mode without any physical contact to the object. In order to obtain high acquisition speed, the object surface is illuminated by laser pulses and imaged onto a high speed camera chip. In a repetitive triple pulse mode, surface displacements can be acquired with nanometre sensitivity and an adjustable sampling rate of e.g. 20 MHz with a total acquisition time far below one second using kHz repetition rate lasers. Due to recurring interferometric referencing, the method is insensitive to thermal drift of the object due to previous pulses or other motion. The size of the investigated area and the spatial and temporal resolution of the detection are scalable. In this study, the approach is validated by measuring a silicone phantom and a porcine skin phantom with embedded silicone absorbers. The reconstruction of the absorbers is presented in 2D and 3D. The sensitivity of the measurement with respect to the photoacoustic detection is discussed. Potentially, Photoacoustic Imaging can be brought a step closer towards non-anaesthetized in vivo imaging and new medical applications not allowing acoustic contact, such as neurosurgical monitoring or burnt skin investigation.

  15. A primary standard for low-g shock calibration by laser interferometry

    NASA Astrophysics Data System (ADS)

    Sun, Qiao; Wang, Jian-lin; Hu, Hong-bo

    2014-07-01

    This paper presents a novel implementation of a primary standard for low-g shock acceleration calibration by laser interferometry based on rigid body collision at National Institute of Metrology, China. The mechanical structure of the standard device and working principles involved in the shock acceleration exciter, laser interferometers and virtual instruments are described. The novel combination of an electromagnetic exciter and a pneumatic exciter as the mechanical power supply of the standard device can deliver a wide range of shock acceleration levels. In addition to polyurethane rubber, two other types of material are investigated to ensure a wide selection of cushioning pads for shock pulse generation, with pulse shapes and data displayed. A heterodyne He-Ne laser interferometer is preferred for its precise and reliable measurement of shock acceleration while a homodyne one serves as a check standard. Some calibration results of a standard acceleration measuring chain are shown in company with the uncertainty evaluation budget. The expanded calibration uncertainty of shock sensitivity of the acceleration measuring chain is 0.8%, k = 2, with the peak acceleration range from 20 to 10 000 m s-2 and pulse duration from 0.5 to 10 ms. This primary shock standard can meet the traceability requirements of shock acceleration from various applications of industries from automobile to civil engineering and therefore is used for piloting the ongoing shock comparison of Technical Committee of Acoustics, Ultrasound and Vibration (TCAUV) of Asia Pacific Metrology Program (APMP), coded as APMP.AUV.V-P1.

  16. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  17. Digital Stroboscopic Holography Setup for Deformation Measurement at Both Quasi-Static and Acoustic Frequencies

    NASA Astrophysics Data System (ADS)

    De Greef, Daniël; Soons, Joris; Dirckx, Joris J. J.

    2014-10-01

    A setup for digital stroboscopic holography that combines the advantages of full-field digital holographic interferometry with a high temporal resolution is presented. The setup can be used to identify and visualize complicated vibrational patterns with nanometer amplitudes, ranging from quasi-static to high frequency vibrations. By using a high-energy pulsed laser, single-shot holograms can be recorded and stability issues are avoided. Results are presented for an acoustically stimulated rubber membrane and the technique is evaluated by means of an accuracy and a repeatability test. The presented technique offers wide application possibilities in areas such as biomechanics and industrial testing.

  18. Acoustic Imaging in Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Chang, Hsiang-Kuang; Sun, Ming-Tsung; LaBonte, Barry; Chen, Huei-Ru; Yeh, Sheng-Jen; Team, The TON

    1999-04-01

    The time-variant acoustic signal at a point in the solar interior can be constructed from observations at the surface, based on the knowledge of how acoustic waves travel in the Sun: the time-distance relation of the p-modes. The basic principle and properties of this imaging technique are discussed in detail. The helioseismic data used in this study were taken with the Taiwan Oscillation Network (TON). The time series of observed acoustic signals on the solar surface is treated as a phased array. The time-distance relation provides the phase information among the phased array elements. The signal at any location at any time can be reconstructed by summing the observed signal at array elements in phase and with a proper normalization. The time series of the constructed acoustic signal contains information on frequency, phase, and intensity. We use the constructed intensity to obtain three-dimensional acoustic absorption images. The features in the absorption images correlate with the magnetic field in the active region. The vertical extension of absorption features in the active region is smaller in images constructed with shorter wavelengths. This indicates that the vertical resolution of the three-dimensional images depends on the range of modes used in constructing the signal. The actual depths of the absorption features in the active region may be smaller than those shown in the three-dimensional images.

  19. [Acoustic characteristics of classrooms].

    PubMed

    Koszarny, Zbigniew; Chyla, Andrzej

    2003-01-01

    Quality and usefulness of school rooms for transmission of verbal information depends on the two basic parameters: form and quantity of the reverberation time, and profitable line measurements of school rooms from the acoustic point of view. An analysis of the above-mentioned parameters in 48 class rooms and two gymnasiums in schools, which were built in different periods, shows that the most important problem is connected with too long reverberation time and inappropriate acoustic proportions. In schools built in the 1970s, the length of reverberation time is mostly within a low frequency band, while in schools built contemporarily, the maximum length of disappearance time takes place in a quite wide band of 250-2000 Hz. This exceeds optimal values for that kind of rooms at least twice, and five times in the newly built school. A long reverberation time is connected with a low acoustic absorption of school rooms. Moreover, school rooms are characterised by inappropriate acoustic proportions. The classrooms, in their relation to the height, are too long and too wide. It is connected with deterioration of the transmission of verbal information. The data show that this transmission is unequal. Automatically, it leads to a speech disturbance and difficulties with understanding. There is the need for adaptation of school rooms through increase of an acoustic absorption.

  20. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  1. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  2. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  3. Acoustic particle separation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. (Inventor)

    1985-01-01

    A method is described which uses acoustic energy to separate particles of different sizes, densities, or the like. The method includes applying acoustic energy resonant to a chamber containing a liquid of gaseous medium to set up a standing wave pattern that includes a force potential well wherein particles within the well are urged towards the center, or position of minimum force potential. A group of particles to be separated is placed in the chamber, while a non-acoustic force such as gravity is applied, so that the particles separate with the larger or denser particles moving away from the center of the well to a position near its edge and progressively smaller lighter particles moving progressively closer to the center of the well. Particles are removed from different positions within the well, so that particles are separated according to the positions they occupy in the well.

  4. Acoustic Levitation Containerless Processing

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.; Rey, C. A.

    1985-01-01

    This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.

  5. Acoustic energy shaping

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D. (Inventor)

    1977-01-01

    A suspended mass is shaped by melting all or a selected portion of the mass and applying acoustic energy in varying amounts to different portions of the mass. In one technique for forming an optical waveguide slug, a mass of oval section is suspended and only a portion along the middle of the cross-section is heated to a largely fluid consistency. Acoustic energy is applied to opposite edges of the oval mass to press the unheated opposite edge portions together so as to form bulges at the middle of the mass. In another technique for forming a ribbon of silicon for constructing solar cells, a cylindrical thread of silicon is drawn from a molten mass of silicon, and acoustic energy is applied to opposite sides of the molten thread to flatten it into a ribbon.

  6. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  7. Latticed pentamode acoustic cloak.

    PubMed

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  8. Latticed pentamode acoustic cloak

    PubMed Central

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  9. A New Wave of Acoustics.

    ERIC Educational Resources Information Center

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  10. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  11. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  12. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  13. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  14. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  15. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  16. Post Treatment of Acoustic Neuroma

    MedlinePlus

    Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video Pre-Treatment Treatment Options Summary Treatment Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions ...

  17. Variable-Position Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  18. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  19. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    SciTech Connect

    Cheng, Ying; Liu, XiaoJun; Zhou, Chen; Wei, Qi; Wu, DaJian

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  20. Acoustical studies of the steelpan and HANG: Phase-sensitive holography and sound intensity measurements

    NASA Astrophysics Data System (ADS)

    Morrison, Andrew C. H.

    The Caribbean steelpan and an instrument closely related, the HANG, are two of the most, interesting acoustic musical instruments developed in the last century. Although simple in design, the acoustic properties of the steelpan and HANG are surprisingly complicated. Holographic interferometry was used to determine the resonances of a low tenor steelpan and a pentatonic HANG. Placement of a vibrating mirror in the optical path of the reference beam expands the capabilities of the holography system to include phase measurements. Phase maps and phase response curves of several low resonances of notes on a steelpan and HANG are shown. Sound intensity measurements were acquired to explore the relationship between the resonances and the radiated sound field. The instruments were placed in an anechoic chamber, and selected notes were excited electromagnetically with a swept sinusoid signal. A two-microphone probe was used to gather sound intensity measurements. Sound intensity reaps of the first three harmonics are shown for notes on both instruments.

  1. Acoustics in Schools.

    ERIC Educational Resources Information Center

    Singer, Miriam J.

    This paper explores the issues associated with poor acoustics within schools. Additionally, it suggests remedies for existing buildings and those under renovation, as well as concerns for new construction. The paper discusses the effects of unwanted noise on students in terms of physiological, motivational, and cognitive influences. Issues are…

  2. Improved acoustic levitation apparatus

    NASA Technical Reports Server (NTRS)

    Berge, L. H.; Johnson, J. L.; Oran, W. A.; Reiss, D. A.

    1980-01-01

    Concave driver and reflector enhance and shape levitation forces in acoustic resonance system. Single-mode standing-wave pattern is focused by ring element situated between driver and reflector. Concave surfaces increase levitating forces up to factor of 6 as opposed to conventional flat surfaces, making it possible to suspend heavier objects.

  3. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  4. Acoustic leak detection system

    SciTech Connect

    Peacock, M.J.

    1993-08-03

    An acoustic leak detection system is described for determining the location of leaks in storage tanks, comprising: (a) sensor means for detecting a leak signal; (b) data acquisition means for digitizing and storing leak signals meeting preset criterion; and (c) analysis means for analyzing the digitized signals and computing the location of the source of the leak signals.

  5. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  6. Teaching acoustics online

    NASA Astrophysics Data System (ADS)

    Morrison, Andrew; Rossing, Thomas D.

    2003-10-01

    We teach an introductory course in musical acoustics using a Blackboard. Students in this course can access audio and video materials as well as printed materials on our course website. All homework is submitted online, as are tests and examinations. The students also have the opportunity to use synchronous and asynchronous chat rooms to discuss the course with each other or with the instructors.

  7. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  8. Optical Distortion Evaluation in Large Area Windows using Interferometry

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.

    2015-01-01

    It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.

  9. Interferometry With ENVISAT ASAR Alternating Polarization Mode Data

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Zeng, Qiming; Liang, Cunren; Cui, Xiai; Jiao, Jian

    2010-10-01

    The Environmental Satellite Advanced Synthetic Aperture Radar (ASAR) sensor has been designed to provide enhanced capabilities for interferometric applications [?]. Different types of interferometric products can be obtained by combining the various ASAR modes, most of which are stripmap [image mode (IM)] and ScanSAR [wide swath (WS) mode]. However, the Alternating Polarization [AP mode] has been rarely used for interferometric experiments. This letter deals with the possibility of using AP mode data to produce two kinds of differential interferograms (HH/HH and HH/VV). We propose a complete processing chain of AP mode interferometry and the results are encouraging, of which the specialty of meaning is explained. The data is processed by the newly developed Peking University Multi-mode SAR Interferometry Processing Kit (PUMSIP v1.0), supported by ROI_PAC of JPL/Caltech.

  10. MAGIA - using atom interferometry to determine the Newtonian gravitational constant

    NASA Astrophysics Data System (ADS)

    Stuhler, J.; Fattori, M.; Petelski, T.; Tino, G. M.

    2003-04-01

    We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy.

  11. Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight.

    PubMed

    Abramson, Nils H

    2014-04-10

    In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation.

  12. Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight.

    PubMed

    Abramson, Nils H

    2014-04-10

    In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation. PMID:24787410

  13. Dual-wavelength laser source for onboard atom interferometry.

    PubMed

    Ménoret, V; Geiger, R; Stern, G; Zahzam, N; Battelier, B; Bresson, A; Landragin, A; Bouyer, P

    2011-11-01

    We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto-optical trap in microgravity during parabolic flights.

  14. Noise Characterization of Supercontinuum Sources for Low Coherence Interferometry Applications

    PubMed Central

    Brown, William J.; Kim, Sanghoon; Wax, Adam

    2015-01-01

    We examine the noise properties of supercontinuum light sources when used in low coherence interferometry applications. The first application is a multiple-scattering low-coherence interferometry (ms2/LCI) system where high power and long image acquisition times are required to image deep into tissue. For this system we compare the noise characteristics of two supercontinuum sources from different suppliers. Both sources have long term drift that limits the amount of time over which signal averaging is advantageous for reducing noise. The second application is a high resolution optical coherence tomography system where broadband light is needed for high axial resolution. For this system we compare the noise performance of the two supercontinuum sources and a light source based on four superluminescent diodes (SLDs) using imaging contrast as a comparative metric. We find that the NKT SuperK has superior noise performance compared to the Fianium SC-450-4 but neither meets the performance of the SLDs. PMID:25606759

  15. Applications Of A Spatial Filtering Detector To Dynamic Interferometry

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Ichirou

    1987-01-01

    Interferometry has recently shown great advances in practical applications owing to progress and utility of electrooptic devices and computers. For objects of interferometry it is now strongly desired to measure such dynamic quantities as displacement, vibration, strain, and temperature. In this case rapid movement of interference fringes or speckle patterns has to be detected. However, the conventional image processing techniques using digital computers are not quick enough for this purpose. For reducing computation time it is necessary to endow the detector with a preprocessing function. One of the solutions is a spatial filtering detector with electronic scanning facility which has been used for three dimensional displacement meter [1] and for accerelating a laser speckle strain gauge [2]. This detector, which consists of a photodiode array and its control circuit, delivers a voltage that is proportional to speckle displacement normal to the array. This paper reports applications of this detector to catch the movement of speckles and interference fringes obtained from optical fiber interferometers.

  16. Photofragmentation Beam Splitters for Matter-Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Dörre, Nadine; Rodewald, Jonas; Geyer, Philipp; von Issendorff, Bernd; Haslinger, Philipp; Arndt, Markus

    2014-12-01

    Extending the range of quantum interferometry to a wider class of composite nanoparticles requires new tools to diffract matter waves. Recently, pulsed photoionization light gratings have demonstrated their suitability for high mass matter-wave physics. Here, we extend quantum interference experiments to a new class of particles by introducing photofragmentation beam splitters into time-domain matter-wave interferometry. We present data that demonstrate this coherent beam splitting mechanism with clusters of hexafluorobenzene and we show single-photon depletion gratings based both on fragmentation and ionization for clusters of vanillin. We propose that photofragmentation gratings can act on a large set of van der Waals clusters and biomolecules which are thermally unstable and often resilient to single-photon ionization.

  17. Experimental steps towards a digital revival of Stellar Intensity Interferometry

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David; Lebohec, Stephan; Abeysekara, Udara

    2016-03-01

    Over the last decade there has been a growing interest in using Stellar intensity interferometry (sii) for high-resolution imaging of hot stars in the optical and uv. In contrast to standard amplitude interferometry, the sii technique is unaffected by atmospheric turbulence allowing for extremely large baselines (>100m) and angular resolution scales down to tens of micro-arcseconds. The technique can be applied to existing and planned observatories which employ imaging air cherenkov telescopes (iacts) due to the similar requirements of large light collection areas and nano-second time resolution capabilities. The university of utah operates the starbase-utah observatory, located in Grantsville, ut, consisting of dual three meter diameter telescopes serving as a test-bed for sii instrumentation. I will summarize the sii technique and highlight the motivation for using sii. I will also present laboratory results in the reconstruction of artificial sources using pseudo-thermal light and the development of starbase-utah.

  18. Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects

    NASA Astrophysics Data System (ADS)

    Hogan, Jason

    2015-04-01

    Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  19. Picosecond resolution soft x-ray laser plasma interferometry

    SciTech Connect

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  20. Deformations and strains in adhesive joints by moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J.; John, D.; Lubowinski, S.

    1984-01-01

    Displacement fields in a thick adherend lap joint and a cracked lap shear specimen were measured by high sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherent surfaces. Loading sequences ranged from modest loads to near-failure loads. Quantitative results are given for displacements and certain strains in the adhesive and along the adhesive/adherend boundary lines. The results show nonlinear displacements and strains as a function of loads or stresses and they show viscoelastic or time-dependent response. Moire interferometry is an excellent method for experimental studies of adhesive joint performance. Subwavelength displacement resolution of a few micro-inches, and spatial resolution corresponding to 1600 fringes/inch (64 fringes/mm), were obtained in these studies. The whole-field contour maps offer insights not available from local measurements made by high sensitivity gages.

  1. Two-dimensional attosecond electron wave-packet interferometry.

    PubMed

    Xie, Xinhua

    2015-05-01

    We propose a two-dimensional interferometry based on the electron wave-packet interference by using a cycle-shaped orthogonally polarized two-color laser field. With such a method, the subcycle and intercycle interferences can be disentangled into different directions in the measured photoelectron momentum spectra. The Coulomb influence can be minimized and the overlapping of interference fringes with the complicated low-energy structures can be avoided as well. The contributions of the excitation effect and the long-range Coulomb potential can be traced in the Fourier domain of the photoelectron distribution. Because of these advantages, precise information on valence electron dynamics of atoms or molecules with attosecond temporal resolution and additional spatial information with angstrom resolution can be obtained with the two-dimensional electron wave-packet interferometry.

  2. Application Of Holographic Interferometry To Shock Wave Research

    NASA Astrophysics Data System (ADS)

    Takayama, K.

    1983-10-01

    Paper reports a successful application of holographic interferometry to the shock wave research. Four topics are discussed; i) transonic flow over an aerofoil, ii) shock wave propagation and diffraction past a circular cross-sectional 90° bend and two-dimensional straight or curved wedges, iii) stability of converging cylindrical shock waves and iv) propagation and focusing of underwater shock waves. Experiments were conducted on shock tubes equipped with a double exposure holographic interferometer. In each case isopycnics around shock waves were determined and three-dimensional shock wave interactions were also observed. Results are not only bringing forth new interesting findings to the shock wave research but also showing a further potentiality of holographic interferometry to the high speed gasdynamic study.

  3. Two-Dimensional Attosecond Electron Wave-Packet Interferometry

    NASA Astrophysics Data System (ADS)

    Xie, Xinhua

    2015-05-01

    We propose a two-dimensional interferometry based on the electron wave-packet interference by using a cycle-shaped orthogonally polarized two-color laser field. With such a method, the subcycle and intercycle interferences can be disentangled into different directions in the measured photoelectron momentum spectra. The Coulomb influence can be minimized and the overlapping of interference fringes with the complicated low-energy structures can be avoided as well. The contributions of the excitation effect and the long-range Coulomb potential can be traced in the Fourier domain of the photoelectron distribution. Because of these advantages, precise information on valence electron dynamics of atoms or molecules with attosecond temporal resolution and additional spatial information with angstrom resolution can be obtained with the two-dimensional electron wave-packet interferometry.

  4. Searching for Dark Matter with Atomic Clocks and Laser Interferometry

    NASA Astrophysics Data System (ADS)

    Stadnik, Yevgeny; Flambaum, Victor

    2016-05-01

    We propose new schemes for the direct detection of low-mass bosonic dark matter, which forms a coherently oscillating classical field and resides in the observed galactic dark matter haloes, using atomic clock, atomic spectroscopy and laser interferometry measurements in the laboratory. We have recently shown that such dark matter can produce both a `slow' cosmological evolution and oscillating variations in the fundamental constants. Using recent atomic dysprosium spectroscopy measurements in, we have derived limits on the quadratic interactions of scalar dark matter with ordinary matter that improve on existing constraints by up to 15 orders of magnitude. We have also proposed the use of laser and maser interferometry as novel high-precision platforms to search for dark matter, with effects due to the variation of the electromagnetic fine-structure constant on alterations in the accumulated phase enhanced by up to 14 orders of magnitude. Other possibilities include the use of highly-charged ions, molecules and nuclear clocks.

  5. Acoustics- Version 1.0

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, themore » sounds are removed, as a character forgets what it has heard.« less

  6. Acoustics- Version 1.0

    SciTech Connect

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, the sounds are removed, as a character forgets what it has heard.

  7. Holograms for acoustics.

    PubMed

    Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer

    2016-01-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound. PMID:27652563

  8. Holograms for acoustics

    NASA Astrophysics Data System (ADS)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  9. Deformation Measurement Of Lumbar Vertebra By Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toshiro; Kojima, Arata; Ogawa, Ryoukei; Iwata, Koichi; Nagata, Ryo

    1988-01-01

    The mechanical properties of normal lumbar vertebra and one with the interarticular part cut off to simulate hemi-spondylolysis were measured by the double exposure holographic interferometry. In the normal lumbar vertebra, displacement due to the load applied to the inferior articular process was greater than that of superior articular process under the same load. The interarticular part was subjected to the high stress. From these points, one of the valuable data to consider the cause of spondylolysis was obtained.

  10. Laser holographic interferometry for investigations of cylindrical transparent tubes

    NASA Astrophysics Data System (ADS)

    Ralea, Mihai F.; Rosu, Nicu; Iova, Iancu

    1996-05-01

    A new double differential refractometer for student laboratories, based on holographic interferometry in real time with reference hologram and reference fringes, is presented. By studying the interferograms one gets a graphical record of the radial, axial, and temporal distribution of the refraction index in cylindrical tubes. This method permits the determination of the experimental parameters for cases when the relationship between these parameters and the refraction index is known. The paper presents experimental results for gas-discharge parameters.

  11. Laser Development for Gravitational-Wave Interferometry in Space

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.

  12. Spatial interferometry for white light processing: The coherence interferometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.

    1984-01-01

    An optical systems design approach for a parallel optical processor that has an information throughput capacity in excess of one petabit per second is discussed. This system enables predetection processing of white light, passively illuminated scenes. Integrated with a programmable Van der Lugt filter, this system is an effective data compression method. A program to implement this parallel optical processing by interferometry system is discussed.

  13. VO Access to Complex Data - MERLIN and Other Interferometry Archives

    NASA Astrophysics Data System (ADS)

    Richards, A. M. S.; Allen, M. D.; Garrington, S. T.; Harrison, P. A.; Lamb, P.; Muxlow, T. W. B.; Power, R.; Reynolds, C.; Stirling, A.; Thomasson, P.; Venturi, T.; Winstanley, N.

    2004-07-01

    Radio interferometry data should be as accessible as any other part of the electromagnetic spectrum in the form of images, spectra or whatever the astronomer requires, without laborious massive dataset transport or esoteric software at the user end. Many existing facilities are developing on-line access to archive and current data, incorporating VO compatibility. The next generation of interferometers will have data access for non-experts designed into their archives.

  14. Using Atom Interferometry to Search for New Forces

    SciTech Connect

    Wacker, Jay G.; /SLAC

    2009-12-11

    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10{sup 2} and near-future advances will be able to rewrite the limits for forces with ranges from 100 {micro}m to 1km.

  15. Infrasonic interferometry applied to synthetic and measured data

    NASA Astrophysics Data System (ADS)

    Fricke, Julius T.; Evers, Läslo G.; Ruigrok, Elmer; Wapenaar, Kees; Simons, Dick G.

    2013-04-01

    The estimation of the traveltime of infrasound through the atmosphere is interesting for several applications. For example, it could be used to determine temperature and wind of the atmosphere, since the traveltime depends on these atmospheric conditions (Haney, 2009). In this work the traveltime is estimated with infrasonic interferometry. In other words, we calculate the crosscorrelations of data of spatially distributed receivers. With this method the traveltime between two receivers is determined without the need for ground truth events. In a first step, we crosscorrelate synthetic data, which are generated by a raytracing model. This model takes into account the traveltime along the rays, the attenuation of the different atmospheric layers, the spreading of the rays and the influence of caustics. In these numerical experiments we show that it is possible to determine the traveltime through infrasonic interferometry. We present the results of infrasonic interferometry applied to measured data. Microbaroms are used in the crosscorrelation approach. Microbaroms are caused by ocean waves and are measured by the 'Large Aperture Infrasound Array' (LAIA). LAIA is being installed by the Royal Netherlands Meteorological Institute (KNMI) in the framework of the radio-astronomical 'Low Frequency Array' (LOFAR) initiative. LAIA consists currently of around twenty receivers (microbarometers) with an aperture of around 100 km, allowing for several inter-station distances. Here, we show the results of crosscorrelations as a function of receivers distance, to assess the signal coherency. This research is made possible by the support of the 'Netherlands Organization for Scientific Research' (NWO). Haney, M., 2009. Infrasonic ambient noise interferometry from correlations of microbaroms, Geophysical Research Letters, 36, L19808

  16. Sensitivity in X-ray grating interferometry on compact systems

    SciTech Connect

    Thuering, Thomas; Modregger, Peter; Haemmerle, Stefan; Weiss, Stephan; Nueesch, Joachim; Stampanoni, Marco

    2012-07-31

    The optimization of compact X-ray grating interferometry systems is crucial for the progress of this technique in industrial devices. Here, an analytical formulation for the sensitivity of the phase contrast image acquisition is derived using previous results from noise analyses. Furthermore, experimental measurements of the sensitivity for different configurations are compared, providing further insight into the dependence on polychromatic radiation. Finally, strategies for the geometrical optimization are given.

  17. Special topics in infrared interferometry. [Michelson interferometer development

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.

    1985-01-01

    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  18. Grazing Incidence Optics for X-rays Interferometry

    NASA Technical Reports Server (NTRS)

    Shipley, Ann; Zissa, David; Cash, Webster; Joy, Marshall

    1999-01-01

    Grazing incidence mirror parameters and constraints for x-ray interferometry are described. We present interferometer system tolerances and ray trace results used to define mirror surface accuracy requirements. Mirror material, surface figure, roughness, and geometry are evaluated based on analysis results. We also discuss mirror mount design constraints, finite element analysis, environmental issues, and solutions. Challenges associated with quantifying high accuracy mirror surface quality are addressed and test results are compared with theoretical predictions.

  19. Sagnac Interferometry Using Bright Matter-Wave Solitons

    NASA Astrophysics Data System (ADS)

    Helm, J. L.; Cornish, S. L.; Gardiner, S. A.

    2015-04-01

    We use an effective one-dimensional Gross-Pitaevskii equation to study bright matter-wave solitons held in a tightly confining toroidal trapping potential, in a rotating frame of reference, as they are split and recombined on narrow barrier potentials. In particular, we present an analytical and numerical analysis of the phase evolution of the solitons and delimit a velocity regime in which soliton Sagnac interferometry is possible, taking account of the effect of quantum uncertainty.

  20. Vibration modal analysis using stroboscopic digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Xizhou; Tan, Yushan

    1991-12-01

    Digital speckle pattern interferometry (DSPI) is a promising optoelectronic testing technique for a wide range of applications. Compared with holographic and speckle interferometry, it has some attractive features such as needlessness of tedious film processing, high measuring accuracy, and satisfactory automaticity. The measuring data can be displayed on the monitor at real time. In this paper, the vibration of a clamped steel plate is tested using stroboscopic digital speckle pattern interferometry. The advantages of stroboscopic technique are that it can give both the amplitude and phase information of a harmonic vibration. This is very useful for the vibration modal analysis of engineering structures. This work is realized on an image processing system based on IBM-PC/AT personal computer. The stroboscopic wavefronts are obtained by chopping a CW He-Ne laser using acousto-optic modulator. The fringe patterns obtained with stroboscopic DSPI are superior to that with time-averaging TV holography (ESPI or DPI). The interpretation of the stroboscopic DSPI fringes and selection of the system parameters are discussed in detail. The measured results are also given.

  1. The Brief Lives of Massive Stars as Witnessed by Interferometry

    NASA Astrophysics Data System (ADS)

    Hummel, C.

    2014-09-01

    Massive stars present the newest and perhaps most challenging opportunity for long baseline interferometry to excel. Large distances require high angular resolution both to study the means of accreting enough mass in a short time and to split new-born multiples into their components for the determination of their fundamental parameters. Dust obscuration of young stellar objects requires interferometry in the mid-infrared, while post-main-sequence stellar phases require high-precision measurements to challenge stellar evolution models. I will summarize my recent work on modeling mid-IR observations of a massive YSO in NGC 3603, and on the derivation of masses and luminosities of a massive hot supergiant star in another star-forming region in Orion. Challenges presented themselves when constraining the geometry of a hypothetical accretion disk as well as obtaining spectroscopy matching the interferometric precision when working with only a few photospheric lines. As a rapidly evolving application of interferometry, massive stars have a bright future.

  2. The brief lives of massive stars as witnessed by interferometry}

    NASA Astrophysics Data System (ADS)

    Hummel, Christian

    2013-06-01

    Massive stars present the newest and perhaps most challenging opportunity for long baseline interferometry to excel. Large distances require high angular resolution both to study the means of accreting enough mass in a short time and to split new-born multiples into their components for the determination of their fundamental parameters. Dust obscuration of young stellar objects require interferometry in the infrared, while post-mainsequence stellar phases require high-precision measurements to challenge stellar evolution models. I will summarize our work on a massive YSO in NGC 3603 including modeling mid-IR interferometric observations, as well as recent sub-mm imaging and spectroscopy with APEX. We find some evidence for a disk in the MIR, resolve multiple cores in the sub-mm with emission line spectra untypical for hot cores. I also report on the derivation of masses and luminosities of a massive O-type supergiant (ζ Orionis) in another star forming region in Orion. The small radial velocity semi-amplitudes coupled with few usable (i.e. wind-free) lines have made this work very challenging and forced us to base the mass determination on a photometric distance estimate. As a rapidly evolving application of interferometry, massive stars have a bright future.

  3. Super-resolution imaging with radio interferometry using sparse modeling

    NASA Astrophysics Data System (ADS)

    Honma, Mareki; Akiyama, Kazunori; Uemura, Makoto; Ikeda, Shiro

    2014-10-01

    We propose a new technique to obtain super-resolution images with radio interferometry using sparse modeling. In standard radio interferometry, sampling of (u, v) is quite often incomplete and thus obtaining an image from observed visibilities becomes an underdetermined problem, and a technique of so-called "zero-padding" is often used to fill up unsampled grids in the (u, v) plane, resulting in image degradation by finite beam size as well as numerous side-lobes. In this paper we show that directly solving such an underdetermined problem based on sparse modeling (in this paper, Least Absolute Shrinkage and Selection Operator, known as LASSO) avoids the above problems introduced by zero-padding, leading to super-resolution images in which structure finer than the standard beam size (diffraction limit) can be reproduced. We present results of one-dimensional and two-dimensional simulations of interferometric imaging, and discuss its implications for super-resolution imaging, particularly focusing on imaging of black hole shadows with millimeter VLBI (Very Long Baseline Interferometry).

  4. Comparison of Laser Interferometry and Atom Interferometry for Gravitational Wave Observations in Space

    NASA Astrophysics Data System (ADS)

    Bender, Peter L.

    2015-08-01

    1. In 2013 a suggestion was made by Graham et al. [1] [Phys. Rev. Lett. 110, 171102 (2013)] of possible GW observations over 10^3 km baselines using strongly forbidden single photon transitions in atoms such as Sr-87. A comparison of the requirements for such a mission with those for laser interferometer missions such as LISA or eLISA with roughly 10^6 km baselines was published in 2014 [Bender, Phys. Rev. D 89, 062004 (2014)]. The comparison will be somewhat updated in this talk.2. Recently, a possible method for gravitational wave observations with atom interferometry over million km scale baselines has been suggested by Hogan and Kasevich [arXiv:1501.06797v1 (2015)]. As an example, they consider observations similar to those discussed in [1], but over a 2*10^6 km baseline. The atomic transitions in the two spacecraft would be driven by separate lasers that are phase locked using 1 W laser power and 30 cm diam. telescopes. Total observation times for individual clouds of 80 to 320 s are assumed, along with 50 concurrent interferometers and a 60 Hz Rabi frequency for the laser pulses.3. After the flight of the LISA Pathfinder mission later this year, it is expected that more intensive work will start on a laser interferometer gravitational wave mission. Probably the most important objective will be the observation of GW signals from the mergers at high redshifts of massive black holes with masses in the range from perhaps 10^4 to 10^7 M_sun. Such signals would give new constraints on the mechanisms for the formation of intermediate mass and larger black holes at early times, and probably contribute to understanding the observed close correlation between the growth of galaxies and of the massive black holes at their centers.

  5. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  6. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  7. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  8. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  9. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  10. Radiosurgery of acoustic neurinomas

    SciTech Connect

    Flickinger, J.C.; Lunsford, L.D.; Coffey, R.J.; Linskey, M.E.; Bissonette, D.J.; Maitz, A.H.; Kondziolka, D. )

    1991-01-15

    Eighty-five patients with acoustic neurinomas underwent stereotactic radiosurgery with the gamma unit at the University of Pittsburgh (Pittsburgh, PA) during its first 30 months of operation. Neuroimaging studies performed in 40 patients with more than 1 year follow-up showed that tumors were smaller in 22 (55%), unchanged in 17 (43%), and larger in one (2%). The 2-year actuarial rates for preservation of useful hearing and any hearing were 46% and 62%, respectively. Previously undetected neuropathies of the trigeminal (n = 12) and facial nerves (n = 14) occurred 1 week to 1 year after radiosurgery (median, 7 and 6 months, respectively), and improved at median intervals of 13 and 8 months, respectively, after onset. Hearing loss was significantly associated with increasing average tumor diameter (P = 0.04). No deterioration of any cranial nerve function has yet developed in seven patients with average tumor diameters less than 10 mm. Radiosurgery is an important treatment alternative for selected acoustic neurinoma patients.

  11. A Martian acoustic anemometer.

    PubMed

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions. PMID:27586767

  12. Acoustic tractor beam.

    PubMed

    Démoré, Christine E M; Dahl, Patrick M; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P; Spalding, Gabriel C

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system. PMID:24836252

  13. Acoustic Tractor Beam

    NASA Astrophysics Data System (ADS)

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  14. Acoustics Discipline Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.

  15. Acoustic methodology review

    NASA Technical Reports Server (NTRS)

    Schlegel, R. G.

    1982-01-01

    It is important for industry and NASA to assess the status of acoustic design technology for predicting and controlling helicopter external noise in order for a meaningful research program to be formulated which will address this problem. The prediction methodologies available to the designer and the acoustic engineer are three-fold. First is what has been described as a first principle analysis. This analysis approach attempts to remove any empiricism from the analysis process and deals with a theoretical mechanism approach to predicting the noise. The second approach attempts to combine first principle methodology (when available) with empirical data to formulate source predictors which can be combined to predict vehicle levels. The third is an empirical analysis, which attempts to generalize measured trends into a vehicle noise prediction method. This paper will briefly address each.

  16. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  17. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    1999-01-01

    The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.

  18. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    2001-01-01

    The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.

  19. Acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  20. Fast wideband acoustical holography.

    PubMed

    Hald, Jørgen

    2016-04-01

    Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient. PMID:27106299

  1. Virtual acoustic prototyping

    NASA Astrophysics Data System (ADS)

    Johnson, Marty

    2003-10-01

    In this paper the re-creation of 3-D sound fields so the full psycho-acoustic impact of sound sources can be assessed before the manufacture of a product or environment is examined. Using head related transfer functions (HRTFs) coupled with a head tracked set of headphones the sound field at the left and right ears of a listener can be re-created for a set of sound sources. However, the HRTFs require that sources have a defined location and this is not the typical output from numerical codes which describe the sound field as a set of distributed modes. In this paper a method of creating a set of equivalent sources is described such that the standard set of HRTFs can be applied in real time. A structural-acoustic model of a cylinder driving an enclosed acoustic field will be used as an example. It will be shown that equivalent sources can be used to recreate all of the reverberation of the enclosed space. An efficient singular value decomposition technique allows the large number of sources required to be simulated in real time. An introduction to the requirements necessary for 3-D virtual prototyping using high frequency Statistical Energy Analysis models will be presented. [Work supported by AuSim and NASA.

  2. Acoustics, computers and measurements

    NASA Astrophysics Data System (ADS)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  3. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip. PMID:27661695

  4. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  5. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  6. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  7. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  8. Magnetostriction Measured by Holographic Interferometry with the Simple and Inexpensive "Arrowhead" Setup

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo; Contreras, Johnny H.

    2012-01-01

    Double-exposure holographic interferometry is applied to measure the "linear" or "longitudinal" magnetostriction constant of a soft-ferrite rod. This high-accuracy measurement is done indirectly, by measuring the small rotations of a lever in contact with the rod using double-exposure holographic interferometry implemented with a robust…

  9. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  10. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  11. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  12. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  13. Experimental Investigation of Textile Composite Materials Using Moire Interferometry

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.

    1995-01-01

    The viability as an efficient aircraft material of advanced textile composites is currently being addressed in the NASA Advanced Composites Technology (ACT) Program. One of the expected milestones of the program is to develop standard test methods for these complex material systems. Current test methods for laminated composites may not be optimum for textile composites, since the architecture of the textile induces nonuniform deformation characteristics on the scale of the smallest repeating unit of the architecture. The smallest repeating unit, also called the unit cell, is often larger than the strain gages used for testing of tape composites. As a result, extending laminated composite test practices to textiles can often lead to pronounced scatter in material property measurements. It has been speculated that the fiber architectures produce significant surface strain nonuniformities, however, the magnitudes were not well understood. Moire interferometry, characterized by full-field information, high displacement sensitivity, and high spatial resolution, is well suited to document the surface strain on textile composites. Studies at the NASA Langley Research Center on a variety of textile architectures including 2-D braids and 3-D weaves, has evidenced the merits of using moire interferometry to guide in test method development for textile composites. Moire was used to support tensile testing by validating instrumentation practices and documenting damage mechanisms. It was used to validate shear test methods by mapping the full-field deformation of shear specimens. Moire was used to validate open hole tension experiments to determine the strain concentration and compare then to numeric predictions. It was used for through-the-thickness tensile strength test method development, to verify capabilities for testing of both 2-D and 3-D material systems. For all of these examples, moire interferometry provided vision so that test methods could be developed with less

  14. Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics

    NASA Technical Reports Server (NTRS)

    Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John

    1996-01-01

    We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.

  15. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  16. BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2011-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII),8oeight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks io young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  17. Equivalent wavelength self-mixing interferometry for displacement measurement.

    PubMed

    Huang, Zhen; Li, Chengwei; Li, Songquan; Li, Dongyu

    2016-09-01

    In order to improve fringe precision of a self-mixing signal, a simple and effective method based on an equivalent wavelength self-mixing interferometer is presented. And a linearization fringe counting method is proposed for equivalent wavelength self-mixing interferometry to quickly reconstruct target displacement. The validity of the proposed method was demonstrated by means of simulated signals and confirmed by several experimental measurements for both harmonic and aleatory target displacement with a fringe resolution of ∼125  nm. PMID:27607290

  18. The Wide-Field Imaging Interferometry Testbed: Recent Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2006-01-01

    We present recent results from the Wide-Field Imaging Interferometry Testbed (WIIT). The data acquired with the WIIT is "double Fourier" data, including both spatial and spectral information within each data cube. We have been working with this data, and starting to develop algorithms, implementations, and techniques for reducing this data. Such algorithms and tools are of great importance for a number of proposed future missions, including the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder Interferometer (TPF-I)/Darwin. Recent results are discussed and future study directions are described.

  19. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline provides subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  20. Automated small tilt-angle measurement using Lau interferometry

    SciTech Connect

    Prakash, Shashi; Singh, Sumitra; Rana, Santosh

    2005-10-01

    A technique for a tilt-angle measurement of reflecting objects based on the Lau interferometry coupled with the moire readout has been proposed. A white-light incoherent source illuminates a set of two gratings, resulting in the generation of the Fresnel image due to the Lau effect. The Fresnel image is projected onto a reflecting object. The image reflected from the object is superimposed onto an identical grating, which results in the formation of a moire fringe pattern. The inclination angle of moire fringes is a function of tilt angle of the object. Theory and experimental arrangement of the proposed technique is presented and results of the investigation are reported.

  1. Thermal characterization of optical fibers using wavelength-sweeping interferometry

    SciTech Connect

    Perret, Luc; Pfeiffer, Pierre; Serio, Bruno; Twardowski, Patrice

    2010-06-20

    In this paper, we report a new method of thermal characterization of optical fibers using wavelength-sweeping interferometry and discuss its advantages compared to other techniques. The setup consists of two temperature-stabilized interferometers, a reference Michelson and a Mach-Zehnder, containing the fiber under test. The wavelength sweep is produced by an infrared tunable laser diode. We obtained the global phase shift coefficients of a large effective area fiber and gold-coated fiber optics with a 10{sup -7} accuracy.

  2. An in situ method for diagnosing phase shifting interferometry

    NASA Astrophysics Data System (ADS)

    Shao, J.; Ma, D.; Zhang, H.; Xie, Y.

    2016-05-01

    Current diagnosing phase shifting interferometry is a time and funds consuming process. Hence a brief and effective method is necessary to satisfy the real-time testing. In this paper, mathematical solutions for errors were deduced from the difference of intensity patterns. Based on the diversity of error distributions, an effective method for distinguishing and diagnosing the error sources is proposed and verified by an elaborative designed simulation. In the actual comparison experiment, vibration, phase-shift error and intensity fluctuation were imposed to demonstrate this method. The results showed that this method can be applied into the real-time measurement and provide an in situ diagnosing technique.

  3. Fast and accurate line scanner based on white light interferometry

    NASA Astrophysics Data System (ADS)

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  4. Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry

    SciTech Connect

    Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Mendoza, Albert

    2014-05-28

    We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.

  5. New surface forces apparatus using two-beam interferometry

    SciTech Connect

    Kawai, Hiroshi; Sakuma, Hiroshi; Mizukami, Masashi; Abe, Takashi; Fukao, Yasuhiro; Tajima, Haruo; Kurihara, Kazue

    2008-04-15

    We designed a new surface forces apparatus for measuring the interactions between two nontransparent substrates and/or in nontransparent liquids. The small displacement of a surface, the bottom one in this study, was measured by the two-beam (twin path) interferometry technique using the phase difference between the laser light reflected by the fixed mirror and that by the mirror on the back of the bottom surface unit. It is possible to determine the distance with a resolution of 1 nm in the working range of 5 {mu}m. This apparatus was successfully applied to measure the forces between mica surfaces in pure water and aqueous KBr solutions.

  6. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-01

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed. PMID:25615464

  7. Dual exposure interferometry. [gas dynamics and flow visualization

    NASA Technical Reports Server (NTRS)

    Smeets, G.; George, A.

    1982-01-01

    The application of dual exposure differential interferometry to gas dynamics and flow visualization is discussed. A differential interferometer with Wallaston prisms can produce two complementary interference fringe systems, depending on the polarization of the incident light. If these two systems are superimposed on a film, with one exposure during a phenomenon, the other before or after, the phenomenon will appear on a uniform background. By regulating the interferometer to infinite fringe distance, a resolution limit of approximately lambda/500 can be obtained in the quantitative analysis of weak phase objects. This method was successfully applied to gas dynamic investigations.

  8. Rapid prototyping of versatile atom chips for atom interferometry applications.

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Squires, Matthew; Olson, Spencer; Kroese, Bethany; Imhof, Eric; Kohn, Rudolph; Stuhl, Benjamin; Schramm, Stacy; Stickney, James

    2016-05-01

    We present recent advances in the manipulation of ultracold atoms with ex-vacuo atom chips (i.e. atom chips that are not inside to the UHV chamber). Details will be presented of an experimental system that allows direct bonded copper (DBC) atom chips to be removed and replaced in minutes, requiring minimal re-optimization of parameters. This system has been used to create Bose-Einstein condensates, as well as magnetic waveguides with precisely tunable axial parameters, allowing double wells, pure harmonic confinement, and modified harmonic traps. We investigate the effects of higher order magnetic field contributions to the waveguide, and the implications for confined atom interferometry.

  9. Precision Gravity Tests with Atom Interferometry in Space

    NASA Astrophysics Data System (ADS)

    Tino, G. M.; Sorrentino, F.; Aguilera, D.; Battelier, B.; Bertoldi, A.; Bodart, Q.; Bongs, K.; Bouyer, P.; Braxmaier, C.; Cacciapuoti, L.; Gaaloul, N.; Gürlebeck, N.; Hauth, M.; Herrmann, S.; Krutzik, M.; Kubelka, A.; Landragin, A.; Milke, A.; Peters, A.; Rasel, E. M.; Rocco, E.; Schubert, C.; Schuldt, T.; Sengstock, K.; Wicht, A.

    2013-10-01

    Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual 85Rb-87Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.

  10. Impact of atmospheric turbulence on geodetic very long baseline interferometry

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Haas, R.

    2010-03-01

    We assess the impact of atmospheric turbulence on geodetic very long baseline interferometry (VLBI) through simulations of atmospheric delays. VLBI observations are simulated for the two best existing VLBI data sets: The continuous VLBI campaigns CONT05 and CONT08. We test different methods to determine the magnitude of the turbulence above each VLBI station, i.e., the refractive index structure constant Cn2. The results from the analysis of the simulated data and the actually observed VLBI data are compared. We find that atmospheric turbulence today is the largest error source for geodetic VLBI. Accurate modeling of atmospheric turbulence is necessary to reach the highest accuracy with geodetic VLBI.

  11. Spherical grating based x-ray Talbot interferometry

    SciTech Connect

    Cong, Wenxiang E-mail: xiy2@rpi.edu Xi, Yan E-mail: xiy2@rpi.edu Wang, Ge E-mail: xiy2@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  12. New Orbits Based on Speckle Interferometry at SOAR

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2016-11-01

    The orbits of 55 visual binary stars are computed using recent speckle interferometry data from the SOAR telescope: 33 first-time orbits and 22 revisions of previous orbit calculations. The orbital periods range from 1.4–370 years, and the quality of the orbits ranges from definitive to preliminary and tentative. Most binaries consist of low-mass dwarfs and have short periods (median period 31 years). The dynamical parallaxes and masses are evaluated and compared to the Hipparcos parallaxes. Using differential speckle photometry, binary components are placed on the color–magnitude diagram. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope.

  13. Insect wing deformation measurements using high speed digital holographic interferometry.

    PubMed

    Aguayo, Daniel D; Mendoza Santoyo, Fernando; De la Torre-I, Manuel H; Salas-Araiza, Manuel D; Caloca-Mendez, Cristian; Gutierrez Hernandez, David Asael

    2010-03-15

    An out-of-plane digital holographic interferometry system is used to detect and measure insect's wing micro deformations. The in-vivo phenomenon of the flapping is registered using a high power cw laser and a high speed camera. A series of digital holograms with the deformation encoded are obtained. Full field deformation maps are presented for an eastern tiger swallowtail butterfly (Pterourus multicaudata). Results show no uniform or symmetrical deformations between wings. These deformations are in the order of hundreds of nanometers over the entire surface. Out-of-plane deformation maps are presented using the unwrapped phase maps. PMID:20389581

  14. Background-free nonlinear microspectroscopy with vibrational molecular interferometry

    NASA Astrophysics Data System (ADS)

    Garbacik, Erik T.; Korterik, Jeroen P.; Otto, Cees; Mukamel, Shaul; Herek, Jennifer L.; Offerhaus, Herman L.

    2012-03-01

    We demonstrate a method for performing nonlinear microspectroscopy that provides an intuitive and unified description of the various signal contributions, and allows the direct extraction of the vibrational response. Three optical fields create a pair of Stokes Raman pathways that interfere in the same vibrational state. Frequency modulating one of the fields leads to amplitude modulations on all of the fields. This vibrational molecular interferometry (VMI) technique allows imaging at high speed free of non-resonant background, and is able to distinguish between electronic and vibrational contributions to the total signal.

  15. Quantification of skin wrinkles using low coherence interferometry

    NASA Astrophysics Data System (ADS)

    Oh, Jung-Taek; Kim, Beop-Min; Son, Sang-Ryoon; Lee, Sang-Won; Kim, Dong-Yoon; Kim, Youn-Soo

    2004-07-01

    We measure the skin wrinkle topology by means of low coherence interferometry (LCI), which forms the basis of the optical coherence tomography (OCT). The skin topology obtained using LCI and corresponding 2-D fast Fourier transform allow quantification of skin wrinkles. It took approximately 2 minutes to obtain 2.1 mm x 2.1 mm topological image with 4 um and 16 um resolutions in axial and transverse directions, respectively. Measurement examples show the particular case of skin contour change after-wrinkle cosmeceutical treatments and atopic dermatitis

  16. Structured scintillator for hard x-ray grating interferometry

    SciTech Connect

    Rutishauser, Simon; Donath, Tilman; David, Christian; Zanette, Irene; Sahlholm, Anna; Linnros, Jan

    2011-04-25

    Grating interferometry at conventional x-ray tubes improves the quality of radiographies and tomograms by providing phase and scattering contrast data. The main challenge encountered when applying this technique at high photon energies, as required by many applications to obtain sufficient penetration depth, is to maintain a high fringe visibility. In this letter, we report on a substantial improvement in fringe visibility and according improvements in image quality achieved by replacing the absorbing analyzer grating of the interferometer with a structured scintillator grating. This development represents a significant step toward the implementation of this technique in industrial testing and medical applications.

  17. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-01

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.

  18. Interferometry in the Extreme Ultraviolet and X-Ray

    NASA Technical Reports Server (NTRS)

    Cash, W.; Shipley, A.; Osterman, S.; Joy, M. K.

    2000-01-01

    We report on demonstration of an x-ray interferometer that uses plane mirrors at grazing incidence to create interference fringes in the extreme ultraviolet and soft x-ray portions of the spectrum. X-ray interferometry has historically been implemented through narrow band, diffractive systems that split the wavefront. Our system, by using two separate optical channels to create interference from two areas of the wavefront, has broad band response and much higher efficiency. We discuss some applications of this technique to astronomy and microscopy including the possibility of eventually capturing a micro-arcsecond image of a black hole.

  19. Double-pulse digital speckle pattern interferometry for vibration analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Dazhi; Xue, Jingfeng; Chen, Lu; Wen, Juying; Wang, Jingjing

    2014-12-01

    The double-pulse Digital Speckle Pattern Interferometry (DSPI) in the laboratory is established. Two good performances have been achieved at the same time, which is uniform distribution of laser beam energy by space filter and recording two successive pictures by a CCD camera successfully. Then two-dimensional discrete orthogonal wavelet transform method is used for the process of filtering method. By using the DSPI, speckle pattern of a vibrated object is obtained with interval of (2~800)μs, and 3D plot of the transient vibration is achieved. Moreover, good agreements of the mode shapes and displacement are obtained by comparing with Laser Doppler Vibrometer (LDV) .

  20. Spherical interferometry for the characterization of precision spheres

    NASA Astrophysics Data System (ADS)

    Nicolaus, R. A.; Bartl, G.

    2016-09-01

    Interferometry with spherical wavefronts is usually used for characterizing precise optics. A special spherical interferometer was set up to measure the volume of high precision spheres used for the new definition of the SI unit kilogram, for which a fundamental constant, such as Planck’s constant h or Avogadro’s constant N A, was to be determined. Furthermore with this type of interferometer and with a special evaluating algorithm, absolute form deviations of spheres can be determined. With this knowledge, a sphere can be processed further to reach unrivaled small sphericity deviations.

  1. North and northeast Greenland ice discharge from satellite radar interferometry

    SciTech Connect

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.

    1997-05-09

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise. 24 refs., 3 figs., 1 tab.

  2. Nonlocal Pancharatnam phase in two-photon interferometry

    SciTech Connect

    Mehta, Poonam; Samuel, Joseph; Sinha, Supurna

    2010-09-15

    We propose a polarized intensity interferometry experiment, which measures the nonlocal Pancharatnam phase acquired by a pair of Hanbury-Brown-Twiss photons. The setup involves two polarized thermal sources illuminating two polarized detectors. Varying the relative polarization angle of the detectors introduces a two-photon geometric phase. Local measurements at either detector do not reveal the effects of the phase, which is an optical analog of the multiparticle Aharonov-Bohm effect. The geometric phase sheds light on the three-slit experiment and suggests ways of tuning entanglement.

  3. IMAP: Interferometry for Material Property Measurement in MEMS

    SciTech Connect

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.

    1999-03-10

    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  4. Denoising in digital speckle pattern interferometry using wave atoms.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2007-05-15

    We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.

  5. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  6. Acoustic Mechanical Feedthroughs

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  7. Frequency steerable acoustic transducers

    NASA Astrophysics Data System (ADS)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  8. The acoustics of snoring.

    PubMed

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (<500 Hz) and corresponds to a fundamental frequency with associated harmonics. The pitch of snoring is determined by vibration of the soft palate, while nonpalatal snoring is more 'noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as

  9. Dynamic acoustic tractor beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-03-01

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  10. Coffee roasting acoustics.

    PubMed

    Wilson, Preston S

    2014-06-01

    Cracking sounds emitted by coffee beans during the roasting process were recorded and analyzed to investigate the potential of using the sounds as the basis for an automated roast monitoring technique. Three parameters were found that could be exploited. Near the end of the roasting process, sounds known as "first crack" exhibit a higher acoustic amplitude than sounds emitted later, known as "second crack." First crack emits more low frequency energy than second crack. Finally, the rate of cracks appearing in the second crack chorus is higher than the rate in the first crack chorus.

  11. Numerical predictions in acoustics

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1992-01-01

    Computational Aeroacoustics (CAA) involves the calculation of the sound produced by a flow as well as the underlying flowfield itself from first principles. This paper describes the numerical challenges of CAA and recent research efforts to overcome these challenges. In addition, it includes the benefits of CAA in removing restrictions of linearity, single frequency, constant parameters, low Mach numbers, etc. found in standard acoustic analyses as well as means for evaluating the validity of these numerical approaches. Finally, numerous applications of CAA to both classical as well as modern problems of concern to the aerospace industry are presented.

  12. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  13. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  14. Standoff photo acoustic spectroscopy

    SciTech Connect

    Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George

    2008-01-01

    Here, we demonstrate a variation of photoacoustic spectroscopy that can be used for obtaining spectroscopic information of surface adsorbed chemicals in a standoff fashion. Pulsed light scattered from a target excites an acoustic resonator and the variation of the resonance amplitude as a function of illumination wavelength yields a representation of the absorption spectrum of the target. We report sensitive and selective detection of surface adsorbed compounds such as tributyl phosphate and residues of explosives such as trinitrotoluene at standoff distances ranging from 0.5-20 m, with a detection limit on the order of 100 ng/cm{sup 2}.

  15. Dynamic acoustic tractor beams

    SciTech Connect

    Mitri, F. G.

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  16. Numerical predictions in acoustics

    NASA Astrophysics Data System (ADS)

    Hardin, Jay C.

    Computational Aeroacoustics (CAA) involves the calculation of the sound produced by a flow as well as the underlying flowfield itself from first principles. This paper describes the numerical challenges of CAA and recent research efforts to overcome these challenges. In addition, it includes the benefits of CAA in removing restrictions of linearity, single frequency, constant parameters, low Mach numbers, etc. found in standard acoustic analyses as well as means for evaluating the validity of these numerical approaches. Finally, numerous applications of CAA to both classical as well as modern problems of concern to the aerospace industry are presented.

  17. Acoustical Environment for Academic Buildings.

    ERIC Educational Resources Information Center

    Lortie, L.J.

    Discussion of the parameters governing noise control and room acoustics are followed by a demonstration on how to achieve a good acoustical environment. Topics emphasized include--(1) design and control objectives, (2) noise sources and propagation, (3) reverberation parameters, (4) noise control factors and parameters, and (5) sound systems. Also…

  18. Improving Acoustics in American Schools.

    ERIC Educational Resources Information Center

    Nelson, Peggy B.

    2000-01-01

    This introductory article to a clinical forum describes the following seven articles that discuss the problem of noisy classrooms and resulting reduction in learning, basic principles of noise and reverberation measurements in classrooms, solutions to the problem of poor classroom acoustics, and the development of a classroom acoustics standard.…

  19. Piano acoustics-A review

    NASA Astrophysics Data System (ADS)

    Askenfelt, Anders

    2003-10-01

    The design of the piano as we know it today dates back to the second half of the 19th century. The history of studies of the acoustics of the piano begins during the same period. In this talk, known facts and unanswered questions about the acoustics of the piano are reviewed.

  20. Digital Controller For Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  1. The electron geodesic acoustic mode

    SciTech Connect

    Chakrabarti, N.; Kaw, P. K.

    2012-09-15

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  2. Acoustic Emissions Reveal Combustion Conditions

    NASA Technical Reports Server (NTRS)

    Ramohalli, D. N. R.; Seshan, P. K.

    1983-01-01

    Turbulent-flame acoustic emissions change with air/fuel ratio variations. Acoustic emissions sensed and processed to detect inefficient operation; control system responds by adjusting fuel/air mixture for greater efficiency. Useful for diagnosis of combustion processes and fuel/air control.

  3. Acoustic Levitation With One Driver

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Rudnick, I.; Elleman, D. D.; Stoneburner, J. D.

    1985-01-01

    Report discusses acoustic levitation in rectangular chamber using one driver mounted at corner. Placement of driver at corner enables it to couple effectively to acoustic modes along all three axes. Use of single driver reduces cost, complexity and weight of levitation system below those of three driver system.

  4. Acoustic Levitation With One Transducer

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.

    1987-01-01

    Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.

  5. Acoustic Similarity and Dichotic Listening.

    ERIC Educational Resources Information Center

    Benson, Peter

    1978-01-01

    An experiment tests conjectures that right ear advantage (REA) has an auditory origin in competition or interference between acoustically similar stimuli and that feature-sharing effect (FSE) has its origin in assignment of features of phonetically similar stimuli. No effect on the REA for acoustic similarity, and a clear effect of acoustic…

  6. Electronic dummy for acoustical testing

    NASA Technical Reports Server (NTRS)

    Bauer, B. B.; Di Mattia, A. L.; Rosencheck, A. J.; Stern, M.; Torick, E. L.

    1967-01-01

    Electronic Dummy /ED/ used for acoustical testing represents the average male torso from the Xiphoid process upward and includes an acoustic replica of the human head. This head simulates natural flesh, and has an artificial voice and artificial ears that measure sound pressures at the eardrum or the entrance to the ear canal.

  7. Sound Advice on Classroom Acoustics.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2003-01-01

    Discusses the importance of acoustic standards in classroom design, presenting an interview with the Acoustical Society of America's (ASA's) standards manager which focuses on reasons for the new ASA standards, the standards document (which was written for K-12 classroom but applies to college classrooms), the need to avoid echo and be able to…

  8. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  9. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  10. Acoustic controlled rotation and orientation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Allen, James L. (Inventor)

    1989-01-01

    Acoustic energy is applied to a pair of locations spaced about a chamber, to control rotation of an object levitated in the chamber. Two acoustic transducers applying energy of a single acoustic mode, one at each location, can (one or both) serve to levitate the object in three dimensions as well as control its rotation. Slow rotation is achieved by initially establishing a large phase difference and/or pressure ratio of the acoustic waves, which is sufficient to turn the object by more than 45 deg, which is immediately followed by reducing the phase difference and/or pressure ratio to maintain slow rotation. A small phase difference and/or pressure ratio enables control of the angular orientation of the object without rotating it. The sphericity of an object can be measured by its response to the acoustic energy.

  11. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Silverburg, Robert

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  12. Matter wave interferometry as a tool for molecule metrology

    NASA Astrophysics Data System (ADS)

    Gerlich, Stefan; Gring, Michael; Ulbricht, Hendrik; Hornberger, Klaus; Tuexen, Jens; Mayor, Marcel; Arndt, Markus

    2009-03-01

    Kapitza-Dirac-Talbot-Lau interferometry (KDTLI) has recently been established as an ideal method to perform quantum matter wave experiments with large, highly polarizable molecules in an unprecedented mass range of beyond 1000 atomic mass units [1]. Since the interference visibility reveals important information on the properties of the examined particles, such as their mass and polarizability, we identified KDTLI as a valuable tool for precision metrology. We demonstrate that quantum interferometry can therefore also serve as a powerful complement to mass spectrometry [2], in particular in cases where fragmentation may occur in the detector. Our new method is applicable to a wide range of molecules and is particularly valuable for characterizing neutral molecular beams. [1] S. Gerlich, L. Hackerm"uller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. M"uri, M. Mayor, M. Arndt, Nat. Phys. 2007, 3, 711 - 715. [2] Stefan Gerlich, Michael Gring, Hendrik Ulbricht, Klaus Hornberger, Jens T"uxen, Marcel Mayor, and Markus Arndt, Angew. Chem. Int. Ed. 2008, 47, 6195 - 6198.

  13. Impulse Response from Seismic Interferometry and Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Juarez, A.; Ramirez-Guzman, L.

    2014-12-01

    We study the Green´s function (GF) retrieval based on the cross-correlation of numerically generated signals and its application to tomographic studies in central Mexico. The GF between two receivers is typically obtained based on the cross-correlation of noise recorded in two stations. Nevertheless, in this research we use large-scale earthquake numerical simulations to construct appropriate signals and optimal linear combinations of the displacements at two stations due to a small number of double-couple sources in a layered media to retrieve the Green´s function between receivers. The impulse response is obtained successfully by applying the cross-correlation, following standard interferometry theory. Additionally, the azimuthal dependence on the cross-correlations as an estimate of the impulse response is discussed using specific source locations. The main objective of our research is to elucidate the applicability of seismic interferometry in order to extend the frequency range and quality of tomographic studies based on observed regional earthquake records and dispersion maps. Thus, we show the results of the GF obtained using the aforementioned procedure in a realistic three-dimensional model of central Mexico, and quantify the discrepancies against the exact numerically computed GF. We conclude that a fair recovery is achieved by inverting velocity profiles at selected stations.

  14. Liquid blending: an investigation using dynamic speckle interferometry

    NASA Astrophysics Data System (ADS)

    Slangen, Pierre; Aprin, Laurent; Heymes, Frédéric; Equis, Sébastien; Jacquot, Pierre

    2010-09-01

    The dynamics of liquid-liquid mixing is a difficult problem, encountered in many scientific and engineering branches. Experiments in this field are mandatory to help building sound mathematical models, finding out the best fit parameters, evaluating the degree of confidence of these models, or detecting traces of unwanted dangerous substances. The investigations reported here are driven by water pollution concerns. For analyzing the water-pollutant blending behavior, dynamic speckle interferometry has been preferred to more standard optical full field methods, like deflectometry, or classical and holographic interferometry. The choice of this technique is vindicated. The opto-fluidic system is described. A first series of results is presented, demonstrating the effectiveness of the technique and showing qualitatively how two liquids blend in controlled conditions. In the last part of the paper, recently appeared processing schemes, including empirical mode decomposition, Hilbert transform and piecewise treatment, give access to the numerical values of the phase maps computed for each frame of the recorded sequence. These phase maps represent the refractive index distributions integrated along the line of sight. They provide a better visualization of the dynamics of the blending behavior and therefore an improved understanding of the phenomena. These encouraging preliminary results should open the door to a full characterization of the method and to further flow investigations and diagnostics.

  15. Difficult Requirements for a Gravitational Wave Mission using Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Bender, Peter L.

    2014-03-01

    A PRL paper by Graham, Hogan, Kasevich, and Rajendran in April, 2013 suggested gravitational wave observations in space using single photon transitions on highly forbidden optical lines for atom interferometry measurements. The main example given was based on use of the 698 nm optical clock transition in Sr-87, a 1000 km baseline, and large momentum transfer laser pulse sequences producing 2400 state transitions for a given atom over a 100 s observation period. A specific scenario for such a mission is needed in order to permit evaluation of the requirements. As a stop-gap, a laser power of 30 W, square laser pulses, 1 m diam. transmitting telescopes, and operation of 4 concurrent pairs of atom interferometers are being assumed. Based on these assumptions, the atom cloud temperature requirement would be below 0.1 pK, and the number of atoms required per cloud would be extremely high. Such a mission would be much more complex than a laser interferometry mission with better overall sensitivity, such as the extensively studied LISA mission or the recently proposed evolved-LISA (eLISA) mission. A LISA Pathfinder mission is scheduled for launch in 2015, funded mainly by ESA . A gravitational wave observation theme is being considered by ESA as part of their Cosmic Vision Programme.

  16. High speed digital holographic interferometry for hypersonic flow visualization

    NASA Astrophysics Data System (ADS)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  17. Synthetic aperture radar and interferometry development at Sandia National Laboratories

    SciTech Connect

    1993-04-01

    Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

  18. Remote monitoring of the earthquake cycle using satellite radar interferometry.

    PubMed

    Wright, Tim J

    2002-12-15

    The earthquake cycle is poorly understood. Earthquakes continue to occur on previously unrecognized faults. Earthquake prediction seems impossible. These remain the facts despite nearly 100 years of intensive study since the earthquake cycle was first conceptualized. Using data acquired from satellites in orbit 800 km above the Earth, a new technique, radar interferometry (InSAR), has the potential to solve these problems. For the first time, detailed maps of the warping of the Earth's surface during the earthquake cycle can be obtained with a spatial resolution of a few tens of metres and a precision of a few millimetres. InSAR does not need equipment on the ground or expensive field campaigns, so it can gather crucial data on earthquakes and the seismic cycle from some of the remotest areas of the planet. In this article, I review some of the remarkable observations of the earthquake cycle already made using radar interferometry and speculate on breakthroughs that are tantalizingly close. PMID:12626271

  19. Non-null annular subaperture stitching interferometry for aspheric test

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.

  20. Full-field interferometry using infinity corrected optics

    NASA Astrophysics Data System (ADS)

    Charrett, T. O. H.; Tatam, R. P.

    2016-01-01

    In this paper the construction of full-field (imaging) interferometers using infinity corrected optics commonly used in microscopy is discussed, with an emphasis on self-mixing interferometry configurations where the imaged light field is mixed with itself rather than a reference wave. Such configurations are used in speckle shearing interferometry, flow visualisation and quantitative flow measurement. The critical considerations for constructing path-length imbalanced full-field interferometers for these and similar applications are discussed, expressions are derived for key calculations and interferograms from example interferometers are presented. These include the concept of balancing the infinity-spaces of the two arms via the use of a glass block to minimise the optical path difference variation across the interferogram and ensure adequate sampling of the fringes on the detector. Further, the use of tilted glass blocks in single-pass and double-pass arrangements is detailed for the generation and control of spatial carrier fringes without extensive realignment of the interferometer, and for phase shifting.